Diamond turning machine controller implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrard, K.P.; Taylor, L.W.; Knight, B.F.
The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, themore » control computer hardware and software, are discussed in detail below.« less
Flexible software architecture for user-interface and machine control in laboratory automation.
Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E
1998-10-01
We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.
2016-12-30
The Drug Enforcement Administration is updating its regulations for the import and export of tableting and encapsulating machines, controlled substances, and listed chemicals, and its regulations relating to reports required for domestic transactions in listed chemicals, gamma-hydroxybutyric acid, and tableting and encapsulating machines. In accordance with Executive Order 13563, the Drug Enforcement Administration has reviewed its import and export regulations and reporting requirements for domestic transactions in listed chemicals (and gamma-hydroxybutyric acid) and tableting and encapsulating machines, and evaluated them for clarity, consistency, continued accuracy, and effectiveness. The amendments clarify certain policies and reflect current procedures and technological advancements. The amendments also allow for the implementation, as applicable to tableting and encapsulating machines, controlled substances, and listed chemicals, of the President's Executive Order 13659 on streamlining the export/import process and requiring the government-wide utilization of the International Trade Data System (ITDS). This rule additionally contains amendments that implement recent changes to the Controlled Substances Import and Export Act (CSIEA) for reexportation of controlled substances among members of the European Economic Area made by the Improving Regulatory Transparency for New Medical Therapies Act. The rule also includes additional substantive and technical and stylistic amendments.
NASA Astrophysics Data System (ADS)
Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard
2017-09-01
Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.
Construction machine control guidance implementation strategy.
DOT National Transportation Integrated Search
2010-07-01
Machine Controlled Guidance (MCG) technology may be used in roadway and bridge construction to improve construction efficiencies, potentially resulting in reduced project costs and accelerated schedules. The technology utilizes a Global Positioning S...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mou, J.I.; King, C.
The focus of this study is to develop a sensor fused process modeling and control methodology to model, assess, and then enhance the performance of a hexapod machine for precision product realization. Deterministic modeling technique was used to derive models for machine performance assessment and enhancement. Sensor fusion methodology was adopted to identify the parameters of the derived models. Empirical models and computational algorithms were also derived and implemented to model, assess, and then enhance the machine performance. The developed sensor fusion algorithms can be implemented on a PC-based open architecture controller to receive information from various sensors, assess themore » status of the process, determine the proper action, and deliver the command to actuators for task execution. This will enhance a hexapod machine`s capability to produce workpieces within the imposed dimensional tolerances.« less
Energy Savings and Persistence from an Energy Services Performance Contract at an Army Base
2011-10-01
control system upgrades, lighting retrofits, vending machine controls, and cooling tower variable frequency drivers (VFDs). To accomplish the...controls were installed in the vending machines , and for the 87018 thermal plant, cooling tower VFDs were implemented. To develop baseline models...identify the reasons of improved or deteriorated energy performance of the buildings. For example, periodic submetering of the vending machines
Superconducting Coil Winding Machine Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogiec, J. M.; Kotelnikov, S.; Makulski, A.
The Spirex coil winding machine is used at Fermilab to build coils for superconducting magnets. Recently this ma-chine was equipped with a new control system, which al-lows operation from both a computer and a portable remote control unit. This control system is distributed between three layers, implemented on a PC, real-time target, and FPGA, providing respectively HMI, operational logic and direct controls. The system controls motion of all mechan-ical components and regulates the cable tension. Safety is ensured by a failsafe, redundant system.
A computer architecture for intelligent machines
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Saridis, G. N.
1992-01-01
The theory of intelligent machines proposes a hierarchical organization for the functions of an autonomous robot based on the principle of increasing precision with decreasing intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed. The authors present a computer architecture that implements the lower two levels of the intelligent machine. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Execution-level controllers for motion and vision systems are briefly addressed, as well as the Petri net transducer software used to implement coordination-level functions. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.
Sequence-invariant state machines
NASA Technical Reports Server (NTRS)
Whitaker, Sterling R.; Manjunath, Shamanna K.; Maki, Gary K.
1991-01-01
A synthesis method and an MOS VLSI architecture are presented to realize sequential circuits that have the ability to implement any state machine having N states and m inputs, regardless of the actual sequence specified in the flow table. The design method utilizes binary tree structured (BTS) logic to implement regular and dense circuits. The desired state sequence can be hardwired with power supply connections or can be dynamically reallocated if stored in a register. This allows programmable VLSI controllers to be designed with a compact size and performance approaching that of dedicated logic. Results of ICV implementations are reported and an example sequence-invariant state machine is contrasted with implementations based on traditional methods.
NASA Astrophysics Data System (ADS)
Bez'iazychnyi, V. F.
The paper is concerned with the problem of optimizing the machining of aircraft engine parts in order to satisfy certain requirements for tool wear, machining precision and surface layer characteristics, and hardening depth. A generalized multiple-objective function and its computer implementation are developed which make it possible to optimize the machining process without the use of experimental data. Alternative methods of controlling the machining process are discussed.
Methods, systems and apparatus for synchronous current regulation of a five-phase machine
Gallegos-Lopez, Gabriel; Perisic, Milun
2012-10-09
Methods, systems and apparatus are provided for controlling operation of and regulating current provided to a five-phase machine when one or more phases has experienced a fault or has failed. In one implementation, the disclosed embodiments can be used to synchronously regulate current in a vector controlled motor drive system that includes a five-phase AC machine, a five-phase inverter module coupled to the five-phase AC machine, and a synchronous current regulator.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-17
... Plastic Parts and Business Machines Coatings AGENCY: Environmental Protection Agency (EPA). ACTION: Final....19.07-2, Plastic Parts and Business Machines Coating. Maryland's SIP revision meets the requirement... Techniques Guidelines (CTG) standards for plastic parts and business machines coatings and will help Maryland...
Electric machine differential for vehicle traction control and stability control
NASA Astrophysics Data System (ADS)
Kuruppu, Sandun Shivantha
Evolving requirements in energy efficiency and tightening regulations for reliable electric drivetrains drive the advancement of the hybrid electric (HEV) and full electric vehicle (EV) technology. Different configurations of EV and HEV architectures are evaluated for their performance. The future technology is trending towards utilizing distinctive properties in electric machines to not only to improve efficiency but also to realize advanced road adhesion controls and vehicle stability controls. Electric machine differential (EMD) is such a concept under current investigation for applications in the near future. Reliability of a power train is critical. Therefore, sophisticated fault detection schemes are essential in guaranteeing reliable operation of a complex system such as an EMD. The research presented here emphasize on implementation of a 4kW electric machine differential, a novel single open phase fault diagnostic scheme, an implementation of a real time slip optimization algorithm and an electric machine differential based yaw stability improvement study. The proposed d-q current signature based SPO fault diagnostic algorithm detects the fault within one electrical cycle. The EMD based extremum seeking slip optimization algorithm reduces stopping distance by 30% compared to hydraulic braking based ABS.
Architectures for intelligent machines
NASA Technical Reports Server (NTRS)
Saridis, George N.
1991-01-01
The theory of intelligent machines has been recently reformulated to incorporate new architectures that are using neural and Petri nets. The analytic functions of an intelligent machine are implemented by intelligent controls, using entropy as a measure. The resulting hierarchical control structure is based on the principle of increasing precision with decreasing intelligence. Each of the three levels of the intelligent control is using different architectures, in order to satisfy the requirements of the principle: the organization level is moduled after a Boltzmann machine for abstract reasoning, task planning and decision making; the coordination level is composed of a number of Petri net transducers supervised, for command exchange, by a dispatcher, which also serves as an interface to the organization level; the execution level, include the sensory, planning for navigation and control hardware which interacts one-to-one with the appropriate coordinators, while a VME bus provides a channel for database exchange among the several devices. This system is currently implemented on a robotic transporter, designed for space construction at the CIRSSE laboratories at the Rensselaer Polytechnic Institute. The progress of its development is reported.
NASA Astrophysics Data System (ADS)
Qiu, Mo; Yu, Simin; Wen, Yuqiong; Lü, Jinhu; He, Jianbin; Lin, Zhuosheng
In this paper, a novel design methodology and its FPGA hardware implementation for a universal chaotic signal generator is proposed via the Verilog HDL fixed-point algorithm and state machine control. According to continuous-time or discrete-time chaotic equations, a Verilog HDL fixed-point algorithm and its corresponding digital system are first designed. In the FPGA hardware platform, each operation step of Verilog HDL fixed-point algorithm is then controlled by a state machine. The generality of this method is that, for any given chaotic equation, it can be decomposed into four basic operation procedures, i.e. nonlinear function calculation, iterative sequence operation, iterative values right shifting and ceiling, and chaotic iterative sequences output, each of which corresponds to only a state via state machine control. Compared with the Verilog HDL floating-point algorithm, the Verilog HDL fixed-point algorithm can save the FPGA hardware resources and improve the operation efficiency. FPGA-based hardware experimental results validate the feasibility and reliability of the proposed approach.
Modelling machine ensembles with discrete event dynamical system theory
NASA Technical Reports Server (NTRS)
Hunter, Dan
1990-01-01
Discrete Event Dynamical System (DEDS) theory can be utilized as a control strategy for future complex machine ensembles that will be required for in-space construction. The control strategy involves orchestrating a set of interactive submachines to perform a set of tasks for a given set of constraints such as minimum time, minimum energy, or maximum machine utilization. Machine ensembles can be hierarchically modeled as a global model that combines the operations of the individual submachines. These submachines are represented in the global model as local models. Local models, from the perspective of DEDS theory , are described by the following: a set of system and transition states, an event alphabet that portrays actions that takes a submachine from one state to another, an initial system state, a partial function that maps the current state and event alphabet to the next state, and the time required for the event to occur. Each submachine in the machine ensemble is presented by a unique local model. The global model combines the local models such that the local models can operate in parallel under the additional logistic and physical constraints due to submachine interactions. The global model is constructed from the states, events, event functions, and timing requirements of the local models. Supervisory control can be implemented in the global model by various methods such as task scheduling (open-loop control) or implementing a feedback DEDS controller (closed-loop control).
A computer architecture for intelligent machines
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Saridis, G. N.
1991-01-01
The Theory of Intelligent Machines proposes a hierarchical organization for the functions of an autonomous robot based on the Principle of Increasing Precision With Decreasing Intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed in recent years. A computer architecture that implements the lower two levels of the intelligent machine is presented. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Details of Execution Level controllers for motion and vision systems are addressed, as well as the Petri net transducer software used to implement Coordination Level functions. Extensions to UNIX and VxWorks operating systems which enable the development of a heterogeneous, distributed application are described. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.
Design and application of electromechanical actuators for deep space missions
NASA Technical Reports Server (NTRS)
Haskew, Tim A.; Wander, John
1993-01-01
The annual report Design and Application of Electromechanical Actuators for Deep Space Missions is presented. The reporting period is 16 Aug. 1992 to 15 Aug. 1993. However, the primary focus will be work performed since submission of our semi-annual progress report in Feb. 1993. Substantial progress was made. We currently feel confident in providing guidelines for motor and control strategy selection in electromechanical actuators to be used in thrust vector control (TVC) applications. A small portion was presented in the semi-annual report. At this point, we have implemented highly detailed simulations of various motor/drive systems. The primary motor candidates were the brushless dc machine, permanent magnet synchronous machine, and the induction machine. The primary control implementations were pulse width modulation and hysteresis current control. Each of the two control strategies were applied to each of the three motor choices. With either pulse width modulation or hysteresis current control, the induction machine was always vector controlled. A standard test position command sequence for system performance evaluation is defined. Currently, we are gathering all of the necessary data for formal presentation of the results. Briefly stated for TVC application, we feel that the brushless dc machine operating under PWM current control is the best option. Substantial details on the topic, with supporting simulation results, will be provided later, in the form of a technical paper prepared for submission and also in the next progress report with more detail than allowed for paper publication.
Experiments in balance with a 2D one-legged hopping machine
NASA Astrophysics Data System (ADS)
Raibert, M. H.; Brown, H. B., Jr.
1984-03-01
The ability to balance is important to the mobility obtained by legged creatures found in nature, and may someday lead to versatile legged vehicles. In order to study the role of balance in legged locomotion and to develop appropriate control strategies, a 2D hopping machine was constructed for experimentation. The machine has one leg on which it hops and runs, making balance a prime consideration. Control of the machine's locomotion was decomposed into three separate parts: a vertical height control part, a horizontal velocity part, and an angular attitude control part. Experiments showed that the three part control scheme, while very simple to implement, was powerful enough to permit the machine to hop in place, to run at a desired rate, to translate from place to place, and to leap over obstacles. Results from modeling and computer simulation of a similar one-legged device are described by Raibert (1983).
A Machine Vision Quality Control System for Industrial Acrylic Fibre Production
NASA Astrophysics Data System (ADS)
Heleno, Paulo; Davies, Roger; Correia, Bento A. Brázio; Dinis, João
2002-12-01
This paper describes the implementation of INFIBRA, a machine vision system used in the quality control of acrylic fibre production. The system was developed by INETI under a contract with a leading industrial manufacturer of acrylic fibres. It monitors several parameters of the acrylic production process. This paper presents, after a brief overview of the system, a detailed description of the machine vision algorithms developed to perform the inspection tasks unique to this system. Some of the results of online operation are also presented.
Outlier detection in contamination control
NASA Astrophysics Data System (ADS)
Weintraub, Jeffrey; Warrick, Scott
2018-03-01
A machine-learning model is presented that effectively partitions historical process data into outlier and inlier subpopulations. This is necessary in order to avoid using outlier data to build a model for detecting process instability. Exact control limits are given without recourse to approximations and the error characteristics of the control model are derived. A worked example for contamination control is presented along with the machine learning algorithm used and all the programming statements needed for implementation.
Shen, Fei; Yan, Ruqiang
2017-01-01
The imbalance between limited organ supply and huge potential need has hindered the development of organ-graft techniques. In this paper a low-cost hypothermic machine perfusion (HMP) device is designed and implemented to maintain suitable preservation surroundings and extend the survival life of isolated organs. Four necessary elements (the machine perfusion, the physiological parameter monitoring, the thermostatic control and the oxygenation apparatus) involved in this HMP device are introduced. Especially during the thermostatic control process, a modified Bayes estimation, which introduces the concept of improvement factor, is realized to recognize and reduce the possible measurement errors resulting from sensor faults and noise interference. Also, a fuzzy-PID controller contributes to improve the accuracy and reduces the computational load using the DSP. Our experiments indicate that the reliability of the instrument meets the design requirements, thus being appealing for potential clinical preservation applications. PMID:28587173
Light-operated machines based on threaded molecular structures.
Credi, Alberto; Silvi, Serena; Venturi, Margherita
2014-01-01
Rotaxanes and related species represent the most common implementation of the concept of artificial molecular machines, because the supramolecular nature of the interactions between the components and their interlocked architecture allow a precise control on the position and movement of the molecular units. The use of light to power artificial molecular machines is particularly valuable because it can play the dual role of "writing" and "reading" the system. Moreover, light-driven machines can operate without accumulation of waste products, and photons are the ideal inputs to enable autonomous operation mechanisms. In appropriately designed molecular machines, light can be used to control not only the stability of the system, which affects the relative position of the molecular components but also the kinetics of the mechanical processes, thereby enabling control on the direction of the movements. This step forward is necessary in order to make a leap from molecular machines to molecular motors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tal, J.; Lopez, A.; Edwards, J.M.
1995-04-01
In this paper, an alternative solution to the traditional CNC machine tool controller has been introduced. Software and hardware modules have been described and their incorporation in a CNC control system has been outlined. This type of CNC machine tool controller demonstrates that technology is accessible and can be readily implemented into an open architecture machine tool controller. Benefit to the user is greater controller flexibility, while being economically achievable. PC based, motion as well as non-motion features will provide flexibility through a Windows environment. Up-grading this type of controller system through software revisions will keep the machine tool inmore » a competitive state with minimal effort. Software and hardware modules are mass produced permitting competitive procurement and incorporation. Open architecture CNC systems provide diagnostics thus enhancing maintainability, and machine tool up-time. A major concern of traditional CNC systems has been operator training time. Training time can be greatly minimized by making use of Windows environment features.« less
Distributed communications and control network for robotic mining
NASA Technical Reports Server (NTRS)
Schiffbauer, William H.
1989-01-01
The application of robotics to coal mining machines is one approach pursued to increase productivity while providing enhanced safety for the coal miner. Toward that end, a network composed of microcontrollers, computers, expert systems, real time operating systems, and a variety of program languages are being integrated that will act as the backbone for intelligent machine operation. Actual mining machines, including a few customized ones, have been given telerobotic semiautonomous capabilities by applying the described network. Control devices, intelligent sensors and computers onboard these machines are showing promise of achieving improved mining productivity and safety benefits. Current research using these machines involves navigation, multiple machine interaction, machine diagnostics, mineral detection, and graphical machine representation. Guidance sensors and systems employed include: sonar, laser rangers, gyroscopes, magnetometers, clinometers, and accelerometers. Information on the network of hardware/software and its implementation on mining machines are presented. Anticipated coal production operations using the network are discussed. A parallelism is also drawn between the direction of present day underground coal mining research to how the lunar soil (regolith) may be mined. A conceptual lunar mining operation that employs a distributed communication and control network is detailed.
A tool for modeling concurrent real-time computation
NASA Technical Reports Server (NTRS)
Sharma, D. D.; Huang, Shie-Rei; Bhatt, Rahul; Sridharan, N. S.
1990-01-01
Real-time computation is a significant area of research in general, and in AI in particular. The complexity of practical real-time problems demands use of knowledge-based problem solving techniques while satisfying real-time performance constraints. Since the demands of a complex real-time problem cannot be predicted (owing to the dynamic nature of the environment) powerful dynamic resource control techniques are needed to monitor and control the performance. A real-time computation model for a real-time tool, an implementation of the QP-Net simulator on a Symbolics machine, and an implementation on a Butterfly multiprocessor machine are briefly described.
Implementation of GPS Machine Controlled Grading - Phase III (2008) and Technical Training
DOT National Transportation Integrated Search
2009-02-01
Beginning in 2006, WisDOT and the Construction Material and Support Center (CMSC) at UW-Madison worked together to develop the specifications and the QA/QC procedures for GPS machine guidance on highway grading projects. These specifications and proc...
Lokriti, Abdesslam; Salhi, Issam; Doubabi, Said; Zidani, Youssef
2013-05-01
An IP-self-tuning controller tuned by a fuzzy adjustor, is proposed to improve induction machine speed control. The interest of such controller is the possibility to adjust only one gain, instead of two gains for the case of the PI-self-tuning controllers commonly used in the literature. This paper presents simulation and experimental results. These latter were obtained by practical implementation on a DSPace 1104 board of three different speed controllers (the classical IP, the fuzzy-like-PI and the IP-self-tuning), for a 1.5KW induction machine. The paper presents different tests used to compare the performances of the proposed controller to the two others in terms of computation time, tracking performances and disturbances rejection. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
A neural network controller for automated composite manufacturing
NASA Technical Reports Server (NTRS)
Lichtenwalner, Peter F.
1994-01-01
At McDonnell Douglas Aerospace (MDA), an artificial neural network based control system has been developed and implemented to control laser heating for the fiber placement composite manufacturing process. This neurocontroller learns an approximate inverse model of the process on-line to provide performance that improves with experience and exceeds that of conventional feedback control techniques. When untrained, the control system behaves as a proportional plus integral (PI) controller. However after learning from experience, the neural network feedforward control module provides control signals that greatly improve temperature tracking performance. Faster convergence to new temperature set points and reduced temperature deviation due to changing feed rate have been demonstrated on the machine. A Cerebellar Model Articulation Controller (CMAC) network is used for inverse modeling because of its rapid learning performance. This control system is implemented in an IBM compatible 386 PC with an A/D board interface to the machine.
Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene
2010-01-01
Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602
Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Romero-Troncoso, Rene de Jesus
2010-01-01
Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node.
Variable cross-section windings for efficiency improvement of electric machines
NASA Astrophysics Data System (ADS)
Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.
2018-02-01
Implementation of energy-saving technologies in industry is impossible without efficiency improvement of electric machines. The article considers the ways of efficiency improvement and mass and dimensions reduction of electric machines with electronic control. Features of compact winding design for stators and armatures are described. Influence of compact winding on thermal and electrical process is given. Finite element method was used in computer simulation.
Rotating magnetizations in electrical machines: Measurements and modeling
NASA Astrophysics Data System (ADS)
Thul, Andreas; Steentjes, Simon; Schauerte, Benedikt; Klimczyk, Piotr; Denke, Patrick; Hameyer, Kay
2018-05-01
This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.
A rule-based approach to model checking of UML state machines
NASA Astrophysics Data System (ADS)
Grobelna, Iwona; Grobelny, Michał; Stefanowicz, Łukasz
2016-12-01
In the paper a new approach to formal verification of control process specification expressed by means of UML state machines in version 2.x is proposed. In contrast to other approaches from the literature, we use the abstract and universal rule-based logical model suitable both for model checking (using the nuXmv model checker), but also for logical synthesis in form of rapid prototyping. Hence, a prototype implementation in hardware description language VHDL can be obtained that fully reflects the primary, already formally verified specification in form of UML state machines. Presented approach allows to increase the assurance that implemented system meets the user-defined requirements.
Sequence invariant state machines
NASA Technical Reports Server (NTRS)
Whitaker, S.; Manjunath, S.
1990-01-01
A synthesis method and new VLSI architecture are introduced to realize sequential circuits that have the ability to implement any state machine having N states and m inputs, regardless of the actual sequence specified in the flow table. A design method is proposed that utilizes BTS logic to implement regular and dense circuits. A given state sequence can be programmed with power supply connections or dynamically reallocated if stored in a register. Arbitrary flow table sequences can be modified or programmed to dynamically alter the function of the machine. This allows VLSI controllers to be designed with the programmability of a general purpose processor but with the compact size and performance of dedicated logic.
82 FR 38764 - Wassenaar Arrangement 2016 Plenary Agreements Implementation
Federal Register 2010, 2011, 2012, 2013, 2014
2017-08-15
... `ceramic-``matrix'',' so as to control carbon fiber reinforced SiC matrix composites (C-SiC). These... Machines and Tow/Fiber Placement machines were accurately delineated at 1 inch, which is used in industry... manufacturing process. The formerly used phrase ``incorporating particles, whiskers or fibers'' did not...
NASA Astrophysics Data System (ADS)
Nagata, Fusaomi; Okada, Yudai; Sakamoto, Tatsuhiko; Kusano, Takamasa; Habib, Maki K.; Watanabe, Keigo
2017-06-01
The authors have developed earlier an industrial machining robotic system for foamed polystyrene materials. The developed robotic CAM system provided a simple and effective interface without the need to use any robot language between operators and the machining robot. In this paper, a preprocessor for generating Cutter Location Source data (CLS data) from Stereolithography (STL data) is first proposed for robotic machining. The preprocessor enables to control the machining robot directly using STL data without using any commercially provided CAM system. The STL deals with a triangular representation for a curved surface geometry. The preprocessor allows machining robots to be controlled through a zigzag or spiral path directly calculated from STL data. Then, a smart spline interpolation method is proposed and implemented for smoothing coarse CLS data. The effectiveness and potential of the developed approaches are demonstrated through experiments on actual machining and interpolation.
NASA Astrophysics Data System (ADS)
Zan, Tao; Wang, Min; Hu, Jianzhong
2010-12-01
Machining status monitoring technique by multi-sensors can acquire and analyze the machining process information to implement abnormity diagnosis and fault warning. Statistical quality control technique is normally used to distinguish abnormal fluctuations from normal fluctuations through statistical method. In this paper by comparing the advantages and disadvantages of the two methods, the necessity and feasibility of integration and fusion is introduced. Then an approach that integrates multi-sensors status monitoring and statistical process control based on artificial intelligent technique, internet technique and database technique is brought forward. Based on virtual instrument technique the author developed the machining quality assurance system - MoniSysOnline, which has been used to monitoring the grinding machining process. By analyzing the quality data and AE signal information of wheel dressing process the reason of machining quality fluctuation has been obtained. The experiment result indicates that the approach is suitable for the status monitoring and analyzing of machining process.
Confessions of a robot lobotomist
NASA Technical Reports Server (NTRS)
Gottshall, R. Marc
1994-01-01
Since its inception, numerically controlled (NC) machining methods have been used throughout the aerospace industry to mill, drill, and turn complex shapes by sequentially stepping through motion programs. However, the recent demand for more precision, faster feeds, exotic sensors, and branching execution have existing computer numerical control (CNC) and distributed numerical control (DNC) systems running at maximum controller capacity. Typical disadvantages of current CNC's include fixed memory capacities, limited communication ports, and the use of multiple control languages. The need to tailor CNC's to meet specific applications, whether it be expanded memory, additional communications, or integrated vision, often requires replacing the original controller supplied with the commercial machine tool with a more powerful and capable system. This paper briefly describes the process and equipment requirements for new controllers and their evolutionary implementation in an aerospace environment. The process of controller retrofit with currently available machines is examined, along with several case studies and their computational and architectural implications.
Manufacturing engineering: Principles for optimization
NASA Astrophysics Data System (ADS)
Koenig, Daniel T.
Various subjects in the area of manufacturing engineering are addressed. The topics considered include: manufacturing engineering organization concepts and management techniques, factory capacity and loading techniques, capital equipment programs, machine tool and equipment selection and implementation, producibility engineering, methods, planning and work management, and process control engineering in job shops. Also discussed are: maintenance engineering, numerical control of machine tools, fundamentals of computer-aided design/computer-aided manufacture, computer-aided process planning and data collection, group technology basis for plant layout, environmental control and safety, and the Integrated Productivity Improvement Program.
2013-11-01
machine learning techniques used in BBAC to make predictions about the intent of actors establishing TCP connections and issuing HTTP requests. We discuss pragmatic challenges and solutions we encountered in implementing and evaluating BBAC, discussing (a) the general concepts underlying BBAC, (b) challenges we have encountered in identifying suitable datasets, (c) mitigation strategies to cope...and describe current plans for transitioning BBAC capabilities into the Department of Defense together with lessons learned for the machine learning
PLA realizations for VLSI state machines
NASA Technical Reports Server (NTRS)
Gopalakrishnan, S.; Whitaker, S.; Maki, G.; Liu, K.
1990-01-01
A major problem associated with state assignment procedures for VLSI controllers is obtaining an assignment that produces minimal or near minimal logic. The key item in Programmable Logic Array (PLA) area minimization is the number of unique product terms required by the design equations. This paper presents a state assignment algorithm for minimizing the number of product terms required to implement a finite state machine using a PLA. Partition algebra with predecessor state information is used to derive a near optimal state assignment. A maximum bound on the number of product terms required can be obtained by inspecting the predecessor state information. The state assignment algorithm presented is much simpler than existing procedures and leads to the same number of product terms or less. An area-efficient PLA structure implemented in a 1.0 micron CMOS process is presented along with a summary of the performance for a controller implemented using this design procedure.
Lee, JuneHyuck; Noh, Sang Do; Kim, Hyun-Jung; Kang, Yong-Shin
2018-05-04
The prediction of internal defects of metal casting immediately after the casting process saves unnecessary time and money by reducing the amount of inputs into the next stage, such as the machining process, and enables flexible scheduling. Cyber-physical production systems (CPPS) perfectly fulfill the aforementioned requirements. This study deals with the implementation of CPPS in a real factory to predict the quality of metal casting and operation control. First, a CPPS architecture framework for quality prediction and operation control in metal-casting production was designed. The framework describes collaboration among internet of things (IoT), artificial intelligence, simulations, manufacturing execution systems, and advanced planning and scheduling systems. Subsequently, the implementation of the CPPS in actual plants is described. Temperature is a major factor that affects casting quality, and thus, temperature sensors and IoT communication devices were attached to casting machines. The well-known NoSQL database, HBase and the high-speed processing/analysis tool, Spark, are used for IoT repository and data pre-processing, respectively. Many machine learning algorithms such as decision tree, random forest, artificial neural network, and support vector machine were used for quality prediction and compared with R software. Finally, the operation of the entire system is demonstrated through a CPPS dashboard. In an era in which most CPPS-related studies are conducted on high-level abstract models, this study describes more specific architectural frameworks, use cases, usable software, and analytical methodologies. In addition, this study verifies the usefulness of CPPS by estimating quantitative effects. This is expected to contribute to the proliferation of CPPS in the industry.
Method and apparatus for controlling an earthworking implement to preserve a crown on a road surface
NASA Technical Reports Server (NTRS)
Lundquist, Steve D. (Inventor); Staub, Michael D. (Inventor); Alster, Louis G. (Inventor)
1999-01-01
A method and apparatus for controlling an earthworking implement on an earthworking machine to preserve a crown on the surface of a road, including determining the position of the crown on the road surface, choosing a sloped grade on one side of the crown, positioning the earthworking implement on the sloped grade so that a first end of the earthworking implement is on the road surface. The processor determines a desired position of a second end of the earthworking implement so that the second end overlaps the crown and the earthworking implement does not cut the crown.
Validation results of specifications for motion control interoperability
NASA Astrophysics Data System (ADS)
Szabo, Sandor; Proctor, Frederick M.
1997-01-01
The National Institute of Standards and Technology (NIST) is participating in the Department of Energy Technologies Enabling Agile Manufacturing (TEAM) program to establish interface standards for machine tool, robot, and coordinate measuring machine controllers. At NIST, the focus is to validate potential application programming interfaces (APIs) that make it possible to exchange machine controller components with a minimal impact on the rest of the system. This validation is taking place in the enhanced machine controller (EMC) consortium and is in cooperation with users and vendors of motion control equipment. An area of interest is motion control, including closed-loop control of individual axes and coordinated path planning. Initial tests of the motion control APIs are complete. The APIs were implemented on two commercial motion control boards that run on two different machine tools. The results for a baseline set of APIs look promising, but several issues were raised. These include resolving differing approaches in how motions are programmed and defining a standard measurement of performance for motion control. This paper starts with a summary of the process used in developing a set of specifications for motion control interoperability. Next, the EMC architecture and its classification of motion control APIs into two classes, Servo Control and Trajectory Planning, are reviewed. Selected APIs are presented to explain the basic functionality and some of the major issues involved in porting the APIs to other motion controllers. The paper concludes with a summary of the main issues and ways to continue the standards process.
Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye
2016-01-01
This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively. PMID:27271840
Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S; Phoon, Sin Ye
2016-06-07
This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.
NASA Astrophysics Data System (ADS)
Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye
2016-06-01
This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.
Using Pipelined XNOR Logic to Reduce SEU Risks in State Machines
NASA Technical Reports Server (NTRS)
Le, Martin; Zheng, Xin; Katanyoutant, Sunant
2008-01-01
Single-event upsets (SEUs) pose great threats to avionic systems state machine control logic, which are frequently used to control sequence of events and to qualify protocols. The risks of SEUs manifest in two ways: (a) the state machine s state information is changed, causing the state machine to unexpectedly transition to another state; (b) due to the asynchronous nature of SEU, the state machine's state registers become metastable, consequently causing any combinational logic associated with the metastable registers to malfunction temporarily. Effect (a) can be mitigated with methods such as triplemodular redundancy (TMR). However, effect (b) cannot be eliminated and can degrade the effectiveness of any mitigation method of effect (a). Although there is no way to completely eliminate the risk of SEU-induced errors, the risk can be made very small by use of a combination of very fast state-machine logic and error-detection logic. Therefore, one goal of two main elements of the present method is to design the fastest state-machine logic circuitry by basing it on the fastest generic state-machine design, which is that of a one-hot state machine. The other of the two main design elements is to design fast error-detection logic circuitry and to optimize it for implementation in a field-programmable gate array (FPGA) architecture: In the resulting design, the one-hot state machine is fitted with a multiple-input XNOR gate for detection of illegal states. The XNOR gate is implemented with lookup tables and with pipelines for high speed. In this method, the task of designing all the logic must be performed manually because no currently available logic synthesis software tool can produce optimal solutions of design problems of this type. However, some assistance is provided by a script, written for this purpose in the Python language (an object-oriented interpretive computer language) to automatically generate hardware description language (HDL) code from state-transition rules.
NASA Astrophysics Data System (ADS)
Ma, Zhichao; Hu, Leilei; Zhao, Hongwei; Wu, Boda; Peng, Zhenxing; Zhou, Xiaoqin; Zhang, Hongguo; Zhu, Shuai; Xing, Lifeng; Hu, Huang
2010-08-01
The theories and techniques for improving machining accuracy via position control of diamond tool's tip and raising resolution of cutting depth on precise CNC lathes have been extremely focused on. A new piezo-driven ultra-precision machine tool servo system is designed and tested to improve manufacturing accuracy of workpiece. The mathematical model of machine tool servo system is established and the finite element analysis is carried out on parallel plate flexure hinges. The output position of diamond tool's tip driven by the machine tool servo system is tested via a contact capacitive displacement sensor. Proportional, integral, derivative (PID) feedback is also implemented to accommodate and compensate dynamical change owing cutting forces as well as the inherent non-linearity factors of the piezoelectric stack during cutting process. By closed loop feedback controlling strategy, the tracking error is limited to 0.8 μm. Experimental results have shown the proposed machine tool servo system could provide a tool positioning resolution of 12 nm, which is much accurate than the inherent CNC resolution magnitude. The stepped shaft of aluminum specimen with a step increment of cutting depth of 1 μm is tested, and the obtained contour illustrates the displacement command output from controller is accurately and real-time reflected on the machined part.
NASA Astrophysics Data System (ADS)
Zhang, Chupeng; Zhao, Huiying; Zhu, Xueliang; Zhao, Shijie; Jiang, Chunye
2018-01-01
The chemical mechanical polishing (CMP) is a key process during the machining route of plane optics. To improve the polishing efficiency and accuracy, a CMP model and machine tool were developed. Based on the Preston equation and the axial run-out error measurement results of the m circles on the tin plate, a CMP model that could simulate the material removal at any point on the workpiece was presented. An analysis of the model indicated that lower axial run-out error led to lower material removal but better polishing efficiency and accuracy. Based on this conclusion, the CMP machine was designed, and the ultraprecision gas hydrostatic guideway and rotary table as well as the Siemens 840Dsl numerical control system were incorporated in the CMP machine. To verify the design principles of machine, a series of detection and machining experiments were conducted. The LK-G5000 laser sensor was employed for detecting the straightness error of the gas hydrostatic guideway and the axial run-out error of the gas hydrostatic rotary table. A 300-mm-diameter optic was chosen for the surface profile machining experiments performed to determine the CMP efficiency and accuracy.
A proposal of an architecture for the coordination level of intelligent machines
NASA Technical Reports Server (NTRS)
Beard, Randall; Farah, Jeff; Lima, Pedro
1993-01-01
The issue of obtaining a practical, structured, and detailed description of an architecture for the Coordination Level of Center for Intelligent Robotic Systems for Sapce Exploration (CIRSSE) Testbed Intelligent Controller is addressed. Previous theoretical and implementation works were the departure point for the discussion. The document is organized as follows: after this introductory section, section 2 summarizes the overall view of the Intelligent Machine (IM) as a control system, proposing a performance measure on which to base its design. Section 3 addresses with some detail implementation issues. An hierarchic petri-net with feedback-based learning capabilities is proposed. Finally, section 4 is an attempt to address the feedback problem. Feedback is used for two functions: error recovery and reinforcement learning of the correct translations for the petri-net transitions.
Lee, JuneHyuck; Noh, Sang Do; Kim, Hyun-Jung; Kang, Yong-Shin
2018-01-01
The prediction of internal defects of metal casting immediately after the casting process saves unnecessary time and money by reducing the amount of inputs into the next stage, such as the machining process, and enables flexible scheduling. Cyber-physical production systems (CPPS) perfectly fulfill the aforementioned requirements. This study deals with the implementation of CPPS in a real factory to predict the quality of metal casting and operation control. First, a CPPS architecture framework for quality prediction and operation control in metal-casting production was designed. The framework describes collaboration among internet of things (IoT), artificial intelligence, simulations, manufacturing execution systems, and advanced planning and scheduling systems. Subsequently, the implementation of the CPPS in actual plants is described. Temperature is a major factor that affects casting quality, and thus, temperature sensors and IoT communication devices were attached to casting machines. The well-known NoSQL database, HBase and the high-speed processing/analysis tool, Spark, are used for IoT repository and data pre-processing, respectively. Many machine learning algorithms such as decision tree, random forest, artificial neural network, and support vector machine were used for quality prediction and compared with R software. Finally, the operation of the entire system is demonstrated through a CPPS dashboard. In an era in which most CPPS-related studies are conducted on high-level abstract models, this study describes more specific architectural frameworks, use cases, usable software, and analytical methodologies. In addition, this study verifies the usefulness of CPPS by estimating quantitative effects. This is expected to contribute to the proliferation of CPPS in the industry. PMID:29734699
2016-08-10
AFRL-AFOSR-JP-TR-2016-0073 Large-scale Linear Optimization through Machine Learning: From Theory to Practical System Design and Implementation ...2016 4. TITLE AND SUBTITLE Large-scale Linear Optimization through Machine Learning: From Theory to Practical System Design and Implementation 5a...performances on various machine learning tasks and it naturally lends itself to fast parallel implementations . Despite this, very little work has been
Lunar surface vehicle model competition
NASA Technical Reports Server (NTRS)
1990-01-01
During Fall and Winter quarters, Georgia Tech's School of Mechanical Engineering students designed machines and devices related to Lunar Base construction tasks. These include joint projects with Textile Engineering students. Topics studied included lunar environment simulator via drop tower technology, lunar rated fasteners, lunar habitat shelter, design of a lunar surface trenching machine, lunar support system, lunar worksite illumination (daytime), lunar regolith bagging system, sunlight diffusing tent for lunar worksite, service apparatus for lunar launch vehicles, lunar communication/power cables and teleoperated deployment machine, lunar regolith bag collection and emplacement device, soil stabilization mat for lunar launch/landing site, lunar rated fastening systems for robotic implementation, lunar surface cable/conduit and automated deployment system, lunar regolith bagging system, and lunar rated fasteners and fastening systems. A special topics team of five Spring quarter students designed and constructed a remotely controlled crane implement for the SKITTER model.
NASA Astrophysics Data System (ADS)
Tkacz, J.; Bukowiec, A.; Doligalski, M.
2017-08-01
The paper presentes the method of modeling and implementation of concurrent controllers. Concurrent controllers are specified by Petri nets. Then Petri nets are decomposed using symbolic deduction method of analysis. Formal methods like sequent calculus system with considered elements of Thelen's algorithm have been used here. As a result, linked state machines (LSMs) are received. Each FSM is implemented using methods of structural decomposition during process of logic synthesis. The method of multiple encoding of microinstruction has been applied. It leads to decreased number of Boolean function realized by combinational part of FSM. The additional decoder could be implemented with the use of memory blocks.
Electro-Optical Inspection For Tolerance Control As An Integral Part Of A Flexible Machining Cell
NASA Astrophysics Data System (ADS)
Renaud, Blaise
1986-11-01
Institut CERAC has been involved in optical metrology and 3-dimensional surface control for the last couple of years. Among the industrial applications considered is the on-line shape evaluation of machined parts within the manufacturing cell. The specific objective is to measure the machining errors and to compare them with the tolerances set by designers. An electro-optical sensing technique has been developed which relies on a projection Moire contouring optical method. A prototype inspection system has been designed, making use of video detection and computer image processing. Moire interferograms are interpreted, and the metrological information automatically retrieved. A structured database can be generated for subsequent data analysis and for real-time closed-loop corrective actions. A real-time kernel embedded into a synchronisation network (Petri-net) for the control of concurrent processes in the Electra-Optical Inspection (E0I) station was realised and implemented in a MODULA-2 program DIN01. The prototype system for on-line automatic tolerance control taking place within a flexible machining cell is described in this paper, together with the fast-prototype synchronisation program.
Single instruction computer architecture and its application in image processing
NASA Astrophysics Data System (ADS)
Laplante, Phillip A.
1992-03-01
A single processing computer system using only half-adder circuits is described. In addition, it is shown that only a single hard-wired instruction is needed in the control unit to obtain a complete instruction set for this general purpose computer. Such a system has several advantages. First it is intrinsically a RISC machine--in fact the 'ultimate RISC' machine. Second, because only a single type of logic element is employed the entire computer system can be easily realized on a single, highly integrated chip. Finally, due to the homogeneous nature of the computer's logic elements, the computer has possible implementations as an optical or chemical machine. This in turn suggests possible paradigms for neural computing and artificial intelligence. After showing how we can implement a full-adder, min, max and other operations using the half-adder, we use an array of such full-adders to implement the dilation operation for two black and white images. Next we implement the erosion operation of two black and white images using a relative complement function and the properties of erosion and dilation. This approach was inspired by papers by van der Poel in which a single instruction is used to furnish a complete set of general purpose instructions and by Bohm- Jacopini where it is shown that any problem can be solved using a Turing machine with one entry and one exit.
Intelligent Manufacturing of Commercial Optics Final Report CRADA No. TC-0313-92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, J. S.; Pollicove, H.
The project combined the research and development efforts of LLNL and the University of Rochester Center for Manufacturing Optics (COM), to develop a new generation of flexible computer controlled optics· grinding machines. COM's principal near term development effort is to commercialize the OPTICAM-SM, a new prototype spherical grinding machine. A crucial requirement for commercializing the OPTICAM-SM is the development of a predictable and repeatable material removal process ( deterministic micro-grinding) that yields high quality surfaces that minimize non-deterministic polishing. OPTICAM machine tools and the fabrication process development studies are part of COM' s response to the DOD (ARPA) request tomore » implement a modernization strategy for revitalizing the U.S. optics manufacturing base. This project was entered into in order to develop a new generation of :flexible, computer-controlled optics grinding machines.« less
A mechanical Turing machine: blueprint for a biomolecular computer
Shapiro, Ehud
2012-01-01
We describe a working mechanical device that embodies the theoretical computing machine of Alan Turing, and as such is a universal programmable computer. The device operates on three-dimensional building blocks by applying mechanical analogues of polymer elongation, cleavage and ligation, movement along a polymer, and control by molecular recognition unleashing allosteric conformational changes. Logically, the device is not more complicated than biomolecular machines of the living cell, and all its operations are part of the standard repertoire of these machines; hence, a biomolecular embodiment of the device is not infeasible. If implemented, such a biomolecular device may operate in vivo, interacting with its biochemical environment in a program-controlled manner. In particular, it may ‘compute’ synthetic biopolymers and release them into its environment in response to input from the environment, a capability that may have broad pharmaceutical and biological applications. PMID:22649583
Intelligent fuzzy controller for event-driven real time systems
NASA Technical Reports Server (NTRS)
Grantner, Janos; Patyra, Marek; Stachowicz, Marian S.
1992-01-01
Most of the known linguistic models are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show a model for synchronous finite state machines based on fuzzy logic. Such finite state machines can be used to build both event-driven, time-varying, rule-based systems and the control unit section of a fuzzy logic computer. The architecture of a pipelined intelligent fuzzy controller is presented, and the linguistic model is represented by an overall fuzzy relation stored in a single rule memory. A VLSI integrated circuit implementation of the fuzzy controller is suggested. At a clock rate of 30 MHz, the controller can perform 3 MFLIPS on multi-dimensional fuzzy data.
Implementing finite state machines in a computer-based teaching system
NASA Astrophysics Data System (ADS)
Hacker, Charles H.; Sitte, Renate
1999-09-01
Finite State Machines (FSM) are models for functions commonly implemented in digital circuits such as timers, remote controls, and vending machines. Teaching FSM is core in the curriculum of many university digital electronic or discrete mathematics subjects. Students often have difficulties grasping the theoretical concepts in the design and analysis of FSM. This has prompted the author to develop an MS-WindowsTM compatible software, WinState, that provides a tutorial style teaching aid for understanding the mechanisms of FSM. The animated computer screen is ideal for visually conveying the required design and analysis procedures. WinState complements other software for combinatorial logic previously developed by the author, and enhances the existing teaching package by adding sequential logic circuits. WinState enables the construction of a students own FSM, which can be simulated, to test the design for functionality and possible errors.
What makes an automated teller machine usable by blind users?
Manzke, J M; Egan, D H; Felix, D; Krueger, H
1998-07-01
Fifteen blind and sighted subjects, who featured as a control group for acceptance, were asked for their requirements for automated teller machines (ATMs). Both groups also tested the usability of a partially operational ATM mock-up. This machine was based on an existing cash dispenser, providing natural speech output, different function menus and different key arrangements. Performance and subjective evaluation data of blind and sighted subjects were collected. All blind subjects were able to operate the ATM successfully. The implemented speech output was the main usability factor for them. The different interface designs did not significantly affect performance and subjective evaluation. Nevertheless, design recommendations can be derived from the requirement assessment. The sighted subjects were rather open for design modifications, especially the implementation of speech output. However, there was also a mismatch of the requirements of the two subject groups, mainly concerning the key arrangement.
NASA Astrophysics Data System (ADS)
Huang, Wentao; Hua, Wei; Yu, Feng
2017-05-01
Due to high airgap flux density generated by magnets and the special double salient structure, the cogging torque of the flux-switching permanent magnet (FSPM) machine is considerable, which limits the further applications. Based on the model predictive current control (MPCC) and the compensation control theory, a compensating-current MPCC (CC-MPCC) scheme is proposed and implemented to counteract the dominated components in cogging torque of an existing three-phase 12/10 FSPM prototyped machine, and thus to alleviate the influence of the cogging torque and improve the smoothness of electromagnetic torque as well as speed, where a comprehensive cost function is designed to evaluate the switching states. The simulated results indicate that the proposed CC-MPCC scheme can suppress the torque ripple significantly and offer satisfactory dynamic performances by comparisons with the conventional MPCC strategy. Finally, experimental results validate both the theoretical and simulated predictions.
Raul, Pramod R; Pagilla, Prabhakar R
2015-05-01
In this paper, two adaptive Proportional-Integral (PI) control schemes are designed and discussed for control of web tension in Roll-to-Roll (R2R) manufacturing systems. R2R systems are used to transport continuous materials (called webs) on rollers from the unwind roll to the rewind roll. Maintaining web tension at the desired value is critical to many R2R processes such as printing, coating, lamination, etc. Existing fixed gain PI tension control schemes currently used in industrial practice require extensive tuning and do not provide the desired performance for changing operating conditions and material properties. The first adaptive PI scheme utilizes the model reference approach where the controller gains are estimated based on matching of the actual closed-loop tension control systems with an appropriately chosen reference model. The second adaptive PI scheme utilizes the indirect adaptive control approach together with relay feedback technique to automatically initialize the adaptive PI gains. These adaptive tension control schemes can be implemented on any R2R manufacturing system. The key features of the two adaptive schemes is that their designs are simple for practicing engineers, easy to implement in real-time, and automate the tuning process. Extensive experiments are conducted on a large experimental R2R machine which mimics many features of an industrial R2R machine. These experiments include trials with two different polymer webs and a variety of operating conditions. Implementation guidelines are provided for both adaptive schemes. Experimental results comparing the two adaptive schemes and a fixed gain PI tension control scheme used in industrial practice are provided and discussed. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
ControlShell: A real-time software framework
NASA Technical Reports Server (NTRS)
Schneider, Stanley A.; Chen, Vincent W.; Pardo-Castellote, Gerardo
1994-01-01
The ControlShell system is a programming environment that enables the development and implementation of complex real-time software. It includes many building tools for complex systems, such as a graphical finite state machine (FSM) tool to provide strategic control. ControlShell has a component-based design, providing interface definitions and mechanisms for building real-time code modules along with providing basic data management. Some of the system-building tools incorporated in ControlShell are a graphical data flow editor, a component data requirement editor, and a state-machine editor. It also includes a distributed data flow package, an execution configuration manager, a matrix package, and an object database and dynamic binding facility. This paper presents an overview of ControlShell's architecture and examines the functions of several of its tools.
High-throughput state-machine replication using software transactional memory.
Zhao, Wenbing; Yang, William; Zhang, Honglei; Yang, Jack; Luo, Xiong; Zhu, Yueqin; Yang, Mary; Luo, Chaomin
2016-11-01
State-machine replication is a common way of constructing general purpose fault tolerance systems. To ensure replica consistency, requests must be executed sequentially according to some total order at all non-faulty replicas. Unfortunately, this could severely limit the system throughput. This issue has been partially addressed by identifying non-conflicting requests based on application semantics and executing these requests concurrently. However, identifying and tracking non-conflicting requests require intimate knowledge of application design and implementation, and a custom fault tolerance solution developed for one application cannot be easily adopted by other applications. Software transactional memory offers a new way of constructing concurrent programs. In this article, we present the mechanisms needed to retrofit existing concurrency control algorithms designed for software transactional memory for state-machine replication. The main benefit for using software transactional memory in state-machine replication is that general purpose concurrency control mechanisms can be designed without deep knowledge of application semantics. As such, new fault tolerance systems based on state-machine replications with excellent throughput can be easily designed and maintained. In this article, we introduce three different concurrency control mechanisms for state-machine replication using software transactional memory, namely, ordered strong strict two-phase locking, conventional timestamp-based multiversion concurrency control, and speculative timestamp-based multiversion concurrency control. Our experiments show that speculative timestamp-based multiversion concurrency control mechanism has the best performance in all types of workload, the conventional timestamp-based multiversion concurrency control offers the worst performance due to high abort rate in the presence of even moderate contention between transactions. The ordered strong strict two-phase locking mechanism offers the simplest solution with excellent performance in low contention workload, and fairly good performance in high contention workload.
High-throughput state-machine replication using software transactional memory
Yang, William; Zhang, Honglei; Yang, Jack; Luo, Xiong; Zhu, Yueqin; Yang, Mary; Luo, Chaomin
2017-01-01
State-machine replication is a common way of constructing general purpose fault tolerance systems. To ensure replica consistency, requests must be executed sequentially according to some total order at all non-faulty replicas. Unfortunately, this could severely limit the system throughput. This issue has been partially addressed by identifying non-conflicting requests based on application semantics and executing these requests concurrently. However, identifying and tracking non-conflicting requests require intimate knowledge of application design and implementation, and a custom fault tolerance solution developed for one application cannot be easily adopted by other applications. Software transactional memory offers a new way of constructing concurrent programs. In this article, we present the mechanisms needed to retrofit existing concurrency control algorithms designed for software transactional memory for state-machine replication. The main benefit for using software transactional memory in state-machine replication is that general purpose concurrency control mechanisms can be designed without deep knowledge of application semantics. As such, new fault tolerance systems based on state-machine replications with excellent throughput can be easily designed and maintained. In this article, we introduce three different concurrency control mechanisms for state-machine replication using software transactional memory, namely, ordered strong strict two-phase locking, conventional timestamp-based multiversion concurrency control, and speculative timestamp-based multiversion concurrency control. Our experiments show that speculative timestamp-based multiversion concurrency control mechanism has the best performance in all types of workload, the conventional timestamp-based multiversion concurrency control offers the worst performance due to high abort rate in the presence of even moderate contention between transactions. The ordered strong strict two-phase locking mechanism offers the simplest solution with excellent performance in low contention workload, and fairly good performance in high contention workload. PMID:29075049
ERIC Educational Resources Information Center
Eastman-Mueller, Heather P.; Gomez-Scott, Jessica R.; Jung, Ae-Kyung; Oswalt, Sara B.; Hagglund, Kristofer
2016-01-01
The U.S. Centers for Disease Control and Prevention advocate access to condoms as a critical sexual health prevention strategy. The purpose of this article is to discuss the implementation and evaluation of a condom availability program using dispensing machines in residence halls at a Midwestern U.S. university. Undergraduate students (N = 337)…
NASA Astrophysics Data System (ADS)
Ivanov, A. S.; Kalanchin, I. Yu; Pugacheva, E. E.
2017-09-01
One of the first electric motors, based on the use of electromagnets, was a reluctance motor in the XIX century. Due to the complexities in the implementation of control system the development of switched reluctance electric machines was repeatedly initiated only in 1960 thanks to the development of computers and power electronic devices. The main feature of these machines is the capacity to work both in engine mode and in generator mode. Thanks to a simple and reliable design in which there is no winding of the rotor, commutator, permanent magnets, a reactive gate-inductor electric drive operating in the engine mode is actively being introduced into various areas such as car industry, production of household appliances, wind power engineering, as well as responsible production processes in the oil and mining industries. However, the existing shortcomings of switched reluctance electric machines, such as nonlinear pulsations of electromagnetic moment, the presence of three or four phase supply system and sensor of rotor position prevent wide distribution of this kind of electric machines.
The management of large cabling campaigns during the Long Shutdown 1 of LHC
NASA Astrophysics Data System (ADS)
Meroli, S.; Machado, S.; Formenti, F.; Frans, M.; Guillaume, J. C.; Ricci, D.
2014-03-01
The Large Hadron Collider at CERN entered into its first 18 month-long shutdown period in February 2013. During this period the entire CERN accelerator complex will undergo major consolidation and upgrade works, preparing the machines for LHC operation at nominal energy (7 TeV/beam). One of the most challenging activities concerns the cabling infrastructure (copper and optical fibre cables) serving the CERN data acquisition, networking and control systems. About 1000 kilometres of cables, distributed in different machine areas, will be installed, representing an investment of about 15 MCHF. This implies an extraordinary challenge in terms of project management, including resource and activity planning, work execution and quality control. The preparation phase of this project started well before its implementation, by defining technical solutions and setting financial plans for staff recruitment and material supply. Enhanced task coordination was further implemented by deploying selected competences to form a central support team.
Development of generalized 3-D braiding machines for composite preforms
NASA Technical Reports Server (NTRS)
Huey, Cecil O., Jr.; Farley, Gary L.
1993-01-01
The operating principles of two prototype braiding machines for the production of generalized braid patterns are described. Both processes afford previously unachievable control of the interlacing of fibers within a textile structure that make them especially amenable to the fabrication of textile preforms for composite materials. They enable independent control of the motion of the individual fibers being woven, thereby enabling the greatest possible freedom in controlling fiber orientation within a structure. This freedom enables the designer to prescribe local fiber orientation to better optimize material performance. The processes have been implemented on a very small scale but at a level that demonstrates their practicality and the soundness of the principles governing their operation.
Development of Semi-Automatic Lathe by using Intelligent Soft Computing Technique
NASA Astrophysics Data System (ADS)
Sakthi, S.; Niresh, J.; Vignesh, K.; Anand Raj, G.
2018-03-01
This paper discusses the enhancement of conventional lathe machine to semi-automated lathe machine by implementing a soft computing method. In the present scenario, lathe machine plays a vital role in the engineering division of manufacturing industry. While the manual lathe machines are economical, the accuracy and efficiency are not up to the mark. On the other hand, CNC machine provide the desired accuracy and efficiency, but requires a huge capital. In order to over come this situation, a semi-automated approach towards the conventional lathe machine is developed by employing stepper motors to the horizontal and vertical drive, that can be controlled by Arduino UNO -microcontroller. Based on the input parameters of the lathe operation the arduino coding is been generated and transferred to the UNO board. Thus upgrading from manual to semi-automatic lathe machines can significantly increase the accuracy and efficiency while, at the same time, keeping a check on investment cost and consequently provide a much needed escalation to the manufacturing industry.
NASA Technical Reports Server (NTRS)
Rede, Leonard J.; Booth, Andrew; Hsieh, Jonathon; Summer, Kellee
2004-01-01
This paper presents a discussion of the evolution of a sequencer from a simple EPICS (Experimental Physics and Industrial Control System) based sequencer into a complex implementation designed utilizing UML (Unified Modeling Language) methodologies and a CASE (Computer Aided Software Engineering) tool approach. The main purpose of the sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable science operations be carried out by a single operator (and/or observer). The interferometer links the two 10m telescopes of the W. M. Keck Observatory at Mauna Kea, Hawaii. The IF Sequencer is a high-level, multi-threaded, Hare1 finite state machine, software program designed to orchestrate several lower-level hardware and software hard real time subsystems that must perform their work in a specific and sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a high-speed real-time multiple mode embedded controller via CORB A, or slower controllers via EPICS Channel Access interfaces. The overall operation of the system is simplified by the automation. The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of multiple infrastructures is presented.
NASA Astrophysics Data System (ADS)
Reder, Leonard J.; Booth, Andrew; Hsieh, Jonathan; Summers, Kellee R.
2004-09-01
This paper presents a discussion of the evolution of a sequencer from a simple Experimental Physics and Industrial Control System (EPICS) based sequencer into a complex implementation designed utilizing UML (Unified Modeling Language) methodologies and a Computer Aided Software Engineering (CASE) tool approach. The main purpose of the Interferometer Sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable science operations to be carried out by a single operator (and/or observer). The interferometer links the two 10m telescopes of the W. M. Keck Observatory at Mauna Kea, Hawaii. The IF Sequencer is a high-level, multi-threaded, Harel finite state machine software program designed to orchestrate several lower-level hardware and software hard real-time subsystems that must perform their work in a specific and sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a high-speed real-time multiple mode embedded controller via CORBA, or slower controllers via EPICS Channel Access interfaces. The overall operation of the system is simplified by the automation. The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of multiple infrastructures is presented.
Embedded Control System for Smart Walking Assistance Device.
Bosnak, Matevz; Skrjanc, Igor
2017-03-01
This paper presents the design and implementation of a unique control system for a smart hoist, a therapeutic device that is used in rehabilitation of walking. The control system features a unique human-machine interface that allows the human to intuitively control the system just by moving or rotating its body. The paper contains an overview of the complete system, including the design and implementation of custom sensors, dc servo motor controllers, communication interfaces and embedded-system based central control system. The prototype of the complete system was tested by conducting a 6-runs experiment on 11 subjects and results are showing that the proposed control system interface is indeed intuitive and simple to adopt by the user.
Machine-aided indexing at NASA
NASA Technical Reports Server (NTRS)
Silvester, June P.; Genuardi, Michael T.; Klingbiel, Paul H.
1994-01-01
This report describes the NASA Lexical Dictionary (NLD), a machine-aided indexing system used online at the National Aeronautics and Space Administration's Center for AeroSpace Information (CASI). This system automatically suggests a set of candidate terms from NASA's controlled vocabulary for any designated natural language text input. The system is comprised of a text processor that is based on the computational, nonsyntactic analysis of input text and an extensive knowledge base that serves to recognize and translate text-extracted concepts. The functions of the various NLD system components are described in detail, and production and quality benefits resulting from the implementation of machine-aided indexing at CASI are discussed.
Reverse time migration: A seismic processing application on the connection machine
NASA Technical Reports Server (NTRS)
Fiebrich, Rolf-Dieter
1987-01-01
The implementation of a reverse time migration algorithm on the Connection Machine, a massively parallel computer is described. Essential architectural features of this machine as well as programming concepts are presented. The data structures and parallel operations for the implementation of the reverse time migration algorithm are described. The algorithm matches the Connection Machine architecture closely and executes almost at the peak performance of this machine.
Implementation of GPS controlled highway construction equipment phase II.
DOT National Transportation Integrated Search
2008-01-01
"During 2006, WisDOT and the Construction Materials and Support Center at UW-Madison worked together to develop : a specification and QC/QA procedures for GPS machine guidance on highway construction grading operations. These : specifications and pro...
Implementation of GPS controlled highway construction equipment, phase III.
DOT National Transportation Integrated Search
2009-02-01
Beginning in 2006, WisDOT and the Construction Material and Support Center (CMSC) at UW-Madison worked : together to develop the specifications and the QA/QC procedures for GPS machine guidance on highway grading : projects. These specifications and ...
Dynamic partial reconfiguration of logic controllers implemented in FPGAs
NASA Astrophysics Data System (ADS)
Bazydło, Grzegorz; Wiśniewski, Remigiusz
2016-09-01
Technological progress in recent years benefits in digital circuits containing millions of logic gates with the capability for reprogramming and reconfiguring. On the one hand it provides the unprecedented computational power, but on the other hand the modelled systems are becoming increasingly complex, hierarchical and concurrent. Therefore, abstract modelling supported by the Computer Aided Design tools becomes a very important task. Even the higher consumption of the basic electronic components seems to be acceptable because chip manufacturing costs tend to fall over the time. The paper presents a modelling approach for logic controllers with the use of Unified Modelling Language (UML). Thanks to the Model Driven Development approach, starting with a UML state machine model, through the construction of an intermediate Hierarchical Concurrent Finite State Machine model, a collection of Verilog files is created. The system description generated in hardware description language can be synthesized and implemented in reconfigurable devices, such as FPGAs. Modular specification of the prototyped controller permits for further dynamic partial reconfiguration of the prototyped system. The idea bases on the exchanging of the functionality of the already implemented controller without stopping of the FPGA device. It means, that a part (for example a single module) of the logic controller is replaced by other version (called context), while the rest of the system is still running. The method is illustrated by a practical example by an exemplary Home Area Network system.
Petri nets SM-cover-based on heuristic coloring algorithm
NASA Astrophysics Data System (ADS)
Tkacz, Jacek; Doligalski, Michał
2015-09-01
In the paper, coloring heuristic algorithm of interpreted Petri nets is presented. Coloring is used to determine the State Machines (SM) subnets. The present algorithm reduces the Petri net in order to reduce the computational complexity and finds one of its possible State Machines cover. The proposed algorithm uses elements of interpretation of Petri nets. The obtained result may not be the best, but it is sufficient for use in rapid prototyping of logic controllers. Found SM-cover will be also used in the development of algorithms for decomposition, and modular synthesis and implementation of parallel logic controllers. Correctness developed heuristic algorithm was verified using Gentzen formal reasoning system.
[Challenges to implementation of the ECG reading center in ELSA-Brasil].
Ribeiro, Antonio Luiz; Pereira, Samuel Vianney da Cunha; Bergmann, Kaiser; Ladeira, Roberto Marini; Oliveira, Rackel Aguiar Mendes; Lotufo, Paulo A; Mill, José Geraldo; Barreto, Sandhi Maria
2013-06-01
Electrocardiography is an established low-cost method of cardiovascular assessment, utilized for decades large epidemiological studies. Nonetheless, its use in large epidemiological studies presents challenges, especially when seeking to develop a reading center. This article describes the process, difficulties and challenges of implementing an electrocardiogram reading center in Brazilian Longitudinal Study for Adult Health (ELSA-Brasil). Among the issues discussed, we have emphasized: the criteria for selection of the electrocardiography machine and the central for storage and management of the machines; the required personnel; the procedures for acquisition and transmission of electrocardiographs to the Reading Center; coding systems, with emphasis on the Minnesota code; ethical and practical issues regarding the delivery of reports to study participants; and aspects related to quality control.
Keyboard and message evaluation for cockpit input to data link
DOT National Transportation Integrated Search
1971-11-01
The project reported-herein studied some methods for implementation of the man-machine interface of Digital Data Link for Air Traffic Control. An analysis of information transfer requirements indicated that a vocabulary or less than 200 words could y...
Project Integration Architecture: Implementation of the CORBA-Served Application Infrastructure
NASA Technical Reports Server (NTRS)
Jones, William Henry
2005-01-01
The Project Integration Architecture (PIA) has been demonstrated in a single-machine C++ implementation prototype. The architecture is in the process of being migrated to a Common Object Request Broker Architecture (CORBA) implementation. The migration of the Foundation Layer interfaces is fundamentally complete. The implementation of the Application Layer infrastructure for that migration is reported. The Application Layer provides for distributed user identification and authentication, per-user/per-instance access controls, server administration, the formation of mutually-trusting application servers, a server locality protocol, and an ability to search for interface implementations through such trusted server networks.
Artificial consciousness and the consciousness-attention dissociation.
Haladjian, Harry Haroutioun; Montemayor, Carlos
2016-10-01
Artificial Intelligence is at a turning point, with a substantial increase in projects aiming to implement sophisticated forms of human intelligence in machines. This research attempts to model specific forms of intelligence through brute-force search heuristics and also reproduce features of human perception and cognition, including emotions. Such goals have implications for artificial consciousness, with some arguing that it will be achievable once we overcome short-term engineering challenges. We believe, however, that phenomenal consciousness cannot be implemented in machines. This becomes clear when considering emotions and examining the dissociation between consciousness and attention in humans. While we may be able to program ethical behavior based on rules and machine learning, we will never be able to reproduce emotions or empathy by programming such control systems-these will be merely simulations. Arguments in favor of this claim include considerations about evolution, the neuropsychological aspects of emotions, and the dissociation between attention and consciousness found in humans. Ultimately, we are far from achieving artificial consciousness. Copyright © 2016 Elsevier Inc. All rights reserved.
Design and implementation of a system for laser assisted milling of advanced materials
NASA Astrophysics Data System (ADS)
Wu, Xuefeng; Feng, Gaocheng; Liu, Xianli
2016-09-01
Laser assisted machining is an effective method to machine advanced materials with the added benefits of longer tool life and increased material removal rates. While extensive studies have investigated the machining properties for laser assisted milling(LAML), few attempts have been made to extend LAML to machining parts with complex geometric features. A methodology for continuous path machining for LAML is developed by integration of a rotary and movable table into an ordinary milling machine with a laser beam system. The machining strategy and processing path are investigated to determine alignment of the machining path with the laser spot. In order to keep the material removal temperatures above the softening temperature of silicon nitride, the transformation is coordinated and the temperature interpolated, establishing a transient thermal model. The temperatures of the laser center and cutting zone are also carefully controlled to achieve optimal machining results and avoid thermal damage. These experiments indicate that the system results in no surface damage as well as good surface roughness, validating the application of this machining strategy and thermal model in the development of a new LAML system for continuous path processing of silicon nitride. The proposed approach can be easily applied in LAML system to achieve continuous processing and improve efficiency in laser assisted machining.
Angular approach combined to mechanical model for tool breakage detection by eddy current sensors
NASA Astrophysics Data System (ADS)
Ritou, M.; Garnier, S.; Furet, B.; Hascoet, J. Y.
2014-02-01
The paper presents a new complete approach for Tool Condition Monitoring (TCM) in milling. The aim is the early detection of small damages so that catastrophic tool failures are prevented. A versatile in-process monitoring system is introduced for reliability concerns. The tool condition is determined by estimates of the radial eccentricity of the teeth. An adequate criterion is proposed combining mechanical model of milling and angular approach.Then, a new solution is proposed for the estimate of cutting force using eddy current sensors implemented close to spindle nose. Signals are analysed in the angular domain, notably by synchronous averaging technique. Phase shifts induced by changes of machining direction are compensated. Results are compared with cutting forces measured with a dynamometer table.The proposed method is implemented in an industrial case of pocket machining operation. One of the cutting edges has been slightly damaged during the machining, as shown by a direct measurement of the tool. A control chart is established with the estimates of cutter eccentricity obtained during the machining from the eddy current sensors signals. Efficiency and reliability of the method is demonstrated by a successful detection of the damage.
Intelligent power management in a vehicular system with multiple power sources
NASA Astrophysics Data System (ADS)
Murphey, Yi L.; Chen, ZhiHang; Kiliaris, Leonidas; Masrur, M. Abul
This paper presents an optimal online power management strategy applied to a vehicular power system that contains multiple power sources and deals with largely fluctuated load requests. The optimal online power management strategy is developed using machine learning and fuzzy logic. A machine learning algorithm has been developed to learn the knowledge about minimizing power loss in a Multiple Power Sources and Loads (M_PS&LD) system. The algorithm exploits the fact that different power sources used to deliver a load request have different power losses under different vehicle states. The machine learning algorithm is developed to train an intelligent power controller, an online fuzzy power controller, FPC_MPS, that has the capability of finding combinations of power sources that minimize power losses while satisfying a given set of system and component constraints during a drive cycle. The FPC_MPS was implemented in two simulated systems, a power system of four power sources, and a vehicle system of three power sources. Experimental results show that the proposed machine learning approach combined with fuzzy control is a promising technology for intelligent vehicle power management in a M_PS&LD power system.
Mau, T; Hartmann, V; Burmeister, J; Langguth, P; Häusler, H
2004-01-01
The use of steam in sterilization processes is limited by the implementation of heat-sensitive components inside the machines to be sterilized. Alternative low-temperature sterilization methods need to be found and their suitability evaluated. Vaporized Hydrogen Peroxide (VHP) technology was adapted for a production machine consisting of highly sensitive pressure sensors and thermo-labile air tube systems. This new kind of "cold" surface sterilization, known from the Barrier Isolator Technology, is based on the controlled release of hydrogen peroxide vapour into sealed enclosures. A mobile VHP generator was used to generate the hydrogen peroxide vapour. The unit was combined with the air conduction system of the production machine. Terminal vacuum pumps were installed to distribute the gas within the production machine and for its elimination. In order to control the sterilization process, different physical process monitors were incorporated. The validation of the process was based on biological indicators (Geobacillus stearothermophilus). The Limited Spearman Karber Method (LSKM) was used to statistically evaluate the sterilization process. The results show that it is possible to sterilize surfaces in a complex tube system with the use of gaseous hydrogen peroxide. A total microbial reduction of 6 log units was reached.
Kim, Dong Wook; Kim, Hwiyoung; Nam, Woong; Kim, Hyung Jun; Cha, In-Ho
2018-04-23
The aim of this study was to build and validate five types of machine learning models that can predict the occurrence of BRONJ associated with dental extraction in patients taking bisphosphonates for the management of osteoporosis. A retrospective review of the medical records was conducted to obtain cases and controls for the study. Total 125 patients consisting of 41 cases and 84 controls were selected for the study. Five machine learning prediction algorithms including multivariable logistic regression model, decision tree, support vector machine, artificial neural network, and random forest were implemented. The outputs of these models were compared with each other and also with conventional methods, such as serum CTX level. Area under the receiver operating characteristic (ROC) curve (AUC) was used to compare the results. The performance of machine learning models was significantly superior to conventional statistical methods and single predictors. The random forest model yielded the best performance (AUC = 0.973), followed by artificial neural network (AUC = 0.915), support vector machine (AUC = 0.882), logistic regression (AUC = 0.844), decision tree (AUC = 0.821), drug holiday alone (AUC = 0.810), and CTX level alone (AUC = 0.630). Machine learning methods showed superior performance in predicting BRONJ associated with dental extraction compared to conventional statistical methods using drug holiday and serum CTX level. Machine learning can thus be applied in a wide range of clinical studies. Copyright © 2017. Published by Elsevier Inc.
Electric converters of electromagnetic strike machine with battery power
NASA Astrophysics Data System (ADS)
Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.
2018-03-01
At present, the application of pulse linear electromagnetic engines to drive strike machines for immersion of rod elements into the soil, strike drilling of shallow wells, dynamic probing of soils is recognized as quite effective. The pulse linear electromagnetic engine performs discrete consumption and conversion of electrical energy into mechanical work. Pulse dosing of a stream transmitted by the battery source to the pulse linear electromagnetic engine of the energy is provided by the electrical converter. The electric converters with the control of an electromagnetic strike machine as functions of time and armature movement, which form the unipolar supply pulses of voltage and current necessary for the normal operation of a pulse linear electromagnetic engine, are proposed. Electric converters are stable in operation, implement the necessary range of output parameters control determined by the technological process conditions, have noise immunity and automatic disconnection of power supply in emergency modes.
NASA Astrophysics Data System (ADS)
Orra, Kashfull; Choudhury, Sounak K.
2016-12-01
The purpose of this paper is to build an adaptive feedback linear control system to check the variation of cutting force signal to improve the tool life. The paper discusses the use of transfer function approach in improving the mathematical modelling and adaptively controlling the process dynamics of the turning operation. The experimental results shows to be in agreement with the simulation model and error obtained is less than 3%. The state space approach model used in this paper successfully check the adequacy of the control system through controllability and observability test matrix and can be transferred from one state to another by appropriate input control in a finite time. The proposed system can be implemented to other machining process under varying range of cutting conditions to improve the efficiency and observability of the system.
Man-machine cooperation in advanced teleoperation
NASA Technical Reports Server (NTRS)
Fiorini, Paolo; Das, Hari; Lee, Sukhan
1993-01-01
Teleoperation experiments at JPL have shown that advanced features in a telerobotic system are a necessary condition for good results, but that they are not sufficient to assure consistently good performance by the operators. Two or three operators are normally used during training and experiments to maintain the desired performance. An alternative to this multi-operator control station is a man-machine interface embedding computer programs that can perform some of the operator's functions. In this paper we present our first experiments with these concepts, in which we focused on the areas of real-time task monitoring and interactive path planning. In the first case, when performing a known task, the operator has an automatic aid for setting control parameters and camera views. In the second case, an interactive path planner will rank different path alternatives so that the operator will make the correct control decision. The monitoring function has been implemented with a neural network doing the real-time task segmentation. The interactive path planner was implemented for redundant manipulators to specify arm configurations across the desired path and satisfy geometric, task, and performance constraints.
Model and experiments to optimize co-adaptation in a simplified myoelectric control system.
Couraud, M; Cattaert, D; Paclet, F; Oudeyer, P Y; de Rugy, A
2018-04-01
To compensate for a limb lost in an amputation, myoelectric prostheses use surface electromyography (EMG) from the remaining muscles to control the prosthesis. Despite considerable progress, myoelectric controls remain markedly different from the way we normally control movements, and require intense user adaptation. To overcome this, our goal is to explore concurrent machine co-adaptation techniques that are developed in the field of brain-machine interface, and that are beginning to be used in myoelectric controls. We combined a simplified myoelectric control with a perturbation for which human adaptation is well characterized and modeled, in order to explore co-adaptation settings in a principled manner. First, we reproduced results obtained in a classical visuomotor rotation paradigm in our simplified myoelectric context, where we rotate the muscle pulling vectors used to reconstruct wrist force from EMG. Then, a model of human adaptation in response to directional error was used to simulate various co-adaptation settings, where perturbations and machine co-adaptation are both applied on muscle pulling vectors. These simulations established that a relatively low gain of machine co-adaptation that minimizes final errors generates slow and incomplete adaptation, while higher gains increase adaptation rate but also errors by amplifying noise. After experimental verification on real subjects, we tested a variable gain that cumulates the advantages of both, and implemented it with directionally tuned neurons similar to those used to model human adaptation. This enables machine co-adaptation to locally improve myoelectric control, and to absorb more challenging perturbations. The simplified context used here enabled to explore co-adaptation settings in both simulations and experiments, and to raise important considerations such as the need for a variable gain encoded locally. The benefits and limits of extending this approach to more complex and functional myoelectric contexts are discussed.
Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces.
Dethier, Julie; Nuyujukian, Paul; Ryu, Stephen I; Shenoy, Krishna V; Boahen, Kwabena
2013-06-01
Cortically-controlled motor prostheses aim to restore functions lost to neurological disease and injury. Several proof of concept demonstrations have shown encouraging results, but barriers to clinical translation still remain. In particular, intracortical prostheses must satisfy stringent power dissipation constraints so as not to damage cortex. One possible solution is to use ultra-low power neuromorphic chips to decode neural signals for these intracortical implants. The first step is to explore in simulation the feasibility of translating decoding algorithms for brain-machine interface (BMI) applications into spiking neural networks (SNNs). Here we demonstrate the validity of the approach by implementing an existing Kalman-filter-based decoder in a simulated SNN using the Neural Engineering Framework (NEF), a general method for mapping control algorithms onto SNNs. To measure this system's robustness and generalization, we tested it online in closed-loop BMI experiments with two rhesus monkeys. Across both monkeys, a Kalman filter implemented using a 2000-neuron SNN has comparable performance to that of a Kalman filter implemented using standard floating point techniques. These results demonstrate the tractability of SNN implementations of statistical signal processing algorithms on different monkeys and for several tasks, suggesting that a SNN decoder, implemented on a neuromorphic chip, may be a feasible computational platform for low-power fully-implanted prostheses. The validation of this closed-loop decoder system and the demonstration of its robustness and generalization hold promise for SNN implementations on an ultra-low power neuromorphic chip using the NEF.
Machine Learning Control For Highly Reconfigurable High-Order Systems
2015-01-02
develop and flight test a Reinforcement Learning based approach for autonomous tracking of ground targets using a fixed wing Unmanned...Reinforcement Learning - based algorithms are developed for learning agents’ time dependent dynamics while also learning to control them. Three algorithms...to a wide range of engineering- based problems . Implementation of these solutions, however, is often complicated by the hysteretic, non-linear,
Interlock system for machine protection of the KOMAC 100-MeV proton linac
NASA Astrophysics Data System (ADS)
Song, Young-Gi
2015-02-01
The 100-MeV proton linear accelerator of the Korea Multi-purpose Accelerator Complex (KOMAC) has been developed. The beam service started this year after performing the beam commissioning. If the very sensitive and essential equipment is to be protected during machine operation, a machine interlock system is required, and the interlock system has been implemented. The purpose of the interlock system is to shut off the beam when the radio-frequency (RF) and ion source are unstable or a beam loss occurs. The interlock signal of the KOMAC linac includes a variety of sources, such as the beam loss, RF and high-voltage converter modulator faults, and fast closing valves of the vacuum window at the beam lines and so on. This system consists of a hardware-based interlock system using analog circuits and a software-based interlock system using an industrial programmable logic controller (PLC). The hardware-based interlock system has been fabricated, and the requirement has been satisfied with the results being within 10 µs. The software logic interlock system using the PLC has been connected to the framework of with the experimental physics and industrial control system (EPICS) to integrate a variety of interlock signals and to control the machine components when an interlock occurs. This paper will describe the design and the construction of the machine interlock system for the KOMAC 100-MeV linac.
NASA Technical Reports Server (NTRS)
Mcanulty, M. A.
1986-01-01
The orbital Maneuvering Vehicle (OMV) is intended to close with orbiting targets for relocation or servicing. It will be controlled via video signals and thruster activation based upon Earth or space station directives. A human operator is squarely in the middle of the control loop for close work. Without directly addressing future, more autonomous versions of a remote servicer, several techniques that will doubtless be important in a future increase of autonomy also have some direct application to the current situation, particularly in the area of image enhancement and predictive analysis. Several techniques are presentet, and some few have been implemented, which support a machine vision capability proposed to be adequate for detection, recognition, and tracking. Once feasibly implemented, they must then be further modified to operate together in real time. This may be achieved by two courses, the use of an array processor and some initial steps toward data reduction. The methodology or adapting to a vector architecture is discussed in preliminary form, and a highly tentative rationale for data reduction at the front end is also discussed. As a by-product, a working implementation of the most advanced graphic display technique, ray-casting, is described.
Management by consent in human-machine systems: when and why it breaks down.
Olson, W A; Sarter, N B
2001-01-01
This study examined the effects of conflict type, time pressure, and display design on operators' ability to make informed decisions about proposed machine goals and actions in a management-by-consent context. A group of 30 B757 pilots were asked to fly eight descent scenarios while responding to a series of air traffic control clearances. Each scenario presented pilots with a different conflict that arose from either incompatible goals contained in the clearance or inappropriate implementation of the clearance by automated flight deck systems. Pilots were often unable to detect these conflicts, especially under time pressure, and thus failed to disallow or intervene with proposed machine actions. Detection performance was particularly poor for conflicts related to clearance implementation. These conflicts were most likely to be missed when automated systems did more than the pilot expected of them. Performance and verbal protocol data indicate that the observed difficulties can be explained by a combination of poor system feedback and pilots' difficulties with generating expectations of future system behavior. Our results are discussed in terms of their implications for the choice and implementation of automation management strategies in general and, more specifically, with respect to risks involved in envisioned forms of digital air-ground communication in the future aviation system. Actual or potential applications of this research include the design of future data link systems and procedures, as well as the design of future automated systems in any domain that rely on operator consent as a mechanism for human-machine coordination.
CIM at GE's factory of the future
NASA Astrophysics Data System (ADS)
Waldman, H.
Functional features of a highly automated aircraft component batch processing factory are described. The system has processing, working, and methodology components. A rotating parts operation installed 20 yr ago features a high density of numerically controlled machines, and is connected to a hierarchical network of data communications and apparatus for moving the rotating parts and tools of engines. Designs produced at one location in the country are sent by telephone link to other sites for development of manufacturing plans, tooling, numerical control programs, and process instructions for the rotating parts. Direct numerical control is implemented at the work stations, which have instructions stored on tape for back-up in case the host computer goes down. Each machine is automatically monitored at 48 points and notice of failure can originate from any point in the system.
Buffered coscheduling for parallel programming and enhanced fault tolerance
Petrini, Fabrizio [Los Alamos, NM; Feng, Wu-chun [Los Alamos, NM
2006-01-31
A computer implemented method schedules processor jobs on a network of parallel machine processors or distributed system processors. Control information communications generated by each process performed by each processor during a defined time interval is accumulated in buffers, where adjacent time intervals are separated by strobe intervals for a global exchange of control information. A global exchange of the control information communications at the end of each defined time interval is performed during an intervening strobe interval so that each processor is informed by all of the other processors of the number of incoming jobs to be received by each processor in a subsequent time interval. The buffered coscheduling method of this invention also enhances the fault tolerance of a network of parallel machine processors or distributed system processors
Parker, David L; Yamin, Samuel C; Brosseau, Lisa M; Xi, Min; Gordon, Robert; Most, Ivan G; Stanley, Rodney
2015-11-01
Metal fabrication workers experience high rates of traumatic occupational injuries. Machine operators in particular face high risks, often stemming from the absence or improper use of machine safeguarding or the failure to implement lockout procedures. The National Machine Guarding Program (NMGP) was a translational research initiative implemented in conjunction with two workers' compensation insures. Insurance safety consultants trained in machine guarding used standardized checklists to conduct a baseline inspection of machine-related hazards in 221 business. Safeguards at the point of operation were missing or inadequate on 33% of machines. Safeguards for other mechanical hazards were missing on 28% of machines. Older machines were both widely used and less likely than newer machines to be properly guarded. Lockout/tagout procedures were posted at only 9% of machine workstations. The NMGP demonstrates a need for improvement in many aspects of machine safety and lockout in small metal fabrication businesses. © 2015 The Authors. American Journal of Industrial Medicine published by Wiley Periodicals, Inc.
Implementation and comparative study of control strategies for an isolated DFIG based WECS
NASA Astrophysics Data System (ADS)
Bouchiba, Nouha; Barkia, Asma; Sallem, Souhir; Chrifi-Alaoui, Larbi; Drid, Saïd; Kammoun, M. B. A.
2017-10-01
Nowadays, a global interest for renewable energy sources has been growing intensely. In particular, a wind energy has become the most popular. In case of autonomous systems, wind energy conversion system (WECS) based on a double fed induction generator (DFIG) is widely used. In this paper, in order to control the stand-alone system outputs under wind speed and load variations, three kinds of nonlinear control strategies have been proposed, applied and compared, such as: Classical PI controller, Back-Stepping and Sliding Mode controllers. A series of experiments have been conducted to evaluate and to compare the developed controllers' dynamic performances under load demand and speed variations. The design and the implementation of different control strategies to a 1.5kW doubly fed induction machine is carried out using a dSpace DS1104 card based on MATLAB/Simulink environment. Experimental results are presented to show the validity of the implemented controllers and demonstrate the effectiveness of each controller compared with others.
Spatial Brain Control Interface using Optical and Electrophysiological Measures
2013-08-27
appropriate for implementing a reliable brain-computer interface ( BCI ). The LSVM method 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 27-08-2013 13...Machine (LSVM) was the most appropriate for implementing a reliable brain-computer interface ( BCI ). The LSVM method was applied to the imaging data...local field potentials proved to be fast and strongly tuned for the spatial parameters of the task. Thus, a reliable BCI that can predict upcoming
Implementation and performance of parallel Prolog interpreter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, S.; Kale, L.V.; Balkrishna, R.
1988-01-01
In this paper, the authors discuss the implementation of a parallel Prolog interpreter on different parallel machines. The implementation is based on the REDUCE--OR process model which exploits both AND and OR parallelism in logic programs. It is machine independent as it runs on top of the chare-kernel--a machine-independent parallel programming system. The authors also give the performance of the interpreter running a diverse set of benchmark pargrams on parallel machines including shared memory systems: an Alliant FX/8, Sequent and a MultiMax, and a non-shared memory systems: Intel iPSC/32 hypercube, in addition to its performance on a multiprocessor simulation system.
Electromagnetic Signal Feedback Control for Proximity Detection Systems
NASA Astrophysics Data System (ADS)
Smith, Adam K.
Coal is the most abundant fossil fuel in the United States and remains an essential source of energy. While more than half of coal production comes from surface mining, nearly twice as many workers are employed by underground operations. One of the key pieces of equipment used in underground coal mining is the continuous mining machine. These large and powerful machines are operated in confined spaces by remote control. Since 1984, 40 mine workers in the U. S. have been killed when struck or pinned by a continuous mining machine. It is estimated that a majority of these accidents could have been prevented with the application of proximity detection systems. While proximity detection systems can significantly increase safety around a continuous mining machine, there are some system limitations. Commercially available proximity warning systems for continuous mining machines use magnetic field generators to detect workers and establish safe work areas around the machines. Several environmental factors, however, can influence and distort the magnetic fields. To minimize these effects, a control system has been developed using electromagnetic field strength and generator current to stabilize and control field drift induced by internal and external environmental factors. A laboratory test set-up was built using a ferrite-core magnetic field generator to produce a stable magnetic field. Previous work based on a field-invariant magnetic flux density model, which generically describes the electromagnetic field, is expanded upon. The analytically established transferable shell-based flux density distribution model is used to experimentally validate the control system. By controlling the current input to the ferrite-core generator, a more reliable and consistent magnetic field is produced. Implementation of this technology will improve accuracy and performance of existing commercial proximity detection systems. These research results will help reduce the risk of traumatic injuries and improve overall safety in the mining workplace.
New Technique of High-Performance Torque Control Developed for Induction Machines
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.
2003-01-01
Two forms of high-performance torque control for motor drives have been described in the literature: field orientation control and direct torque control. Field orientation control has been the method of choice for previous NASA electromechanical actuator research efforts with induction motors. Direct torque control has the potential to offer some advantages over field orientation, including ease of implementation and faster response. However, the most common form of direct torque control is not suitable for the highspeed, low-stator-flux linkage induction machines designed for electromechanical actuators with the presently available sample rates of digital control systems (higher sample rates are required). In addition, this form of direct torque control is not suitable for the addition of a high-frequency carrier signal necessary for the "self-sensing" (sensorless) position estimation technique. This technique enables low- and zero-speed position sensorless operation of the machine. Sensorless operation is desirable to reduce the number of necessary feedback signals and transducers, thus improving the reliability and reducing the mass and volume of the system. This research was directed at developing an alternative form of direct torque control known as a "deadbeat," or inverse model, solution. This form uses pulse-width modulation of the voltage applied to the machine, thus reducing the necessary sample and switching frequency for the high-speed NASA motor. In addition, the structure of the deadbeat form allows the addition of the high-frequency carrier signal so that low- and zero-speed sensorless operation is possible. The new deadbeat solution is based on using the stator and rotor flux as state variables. This choice of state variables leads to a simple graphical representation of the solution as the intersection of a constant torque line with a constant stator flux circle. Previous solutions have been expressed only in complex mathematical terms without a method to clearly visualize the solution. The graphical technique allows a more insightful understanding of the operation of the machine under various conditions.
An M-step preconditioned conjugate gradient method for parallel computation
NASA Technical Reports Server (NTRS)
Adams, L.
1983-01-01
This paper describes a preconditioned conjugate gradient method that can be effectively implemented on both vector machines and parallel arrays to solve sparse symmetric and positive definite systems of linear equations. The implementation on the CYBER 203/205 and on the Finite Element Machine is discussed and results obtained using the method on these machines are given.
Automated subsystems control development. [for life support systems of space station
NASA Technical Reports Server (NTRS)
Block, R. F.; Heppner, D. B.; Samonski, F. H., Jr.; Lance, N., Jr.
1985-01-01
NASA has the objective to launch a Space Station in the 1990s. It has been found that the success of the Space Station engineering development, the achievement of initial operational capability (IOC), and the operation of a productive Space Station will depend heavily on the implementation of an effective automation and control approach. For the development of technology needed to implement the required automation and control function, a contract entitled 'Automated Subsystems Control for Life Support Systems' (ASCLSS) was awarded to two American companies. The present paper provides a description of the ASCLSS program. Attention is given to an automation and control architecture study, a generic automation and control approach for hardware demonstration, a standard software approach, application of Air Revitalization Group (ARG) process simulators, and a generic man-machine interface.
A group communication approach for mobile computing mobile channel: An ISIS tool for mobile services
NASA Astrophysics Data System (ADS)
Cho, Kenjiro; Birman, Kenneth P.
1994-05-01
This paper examines group communication as an infrastructure to support mobility of users, and presents a simple scheme to support user mobility by means of switching a control point between replicated servers. We describe the design and implementation of a set of tools, called Mobile Channel, for use with the ISIS system. Mobile Channel is based on a combination of the two replication schemes: the primary-backup approach and the state machine approach. Mobile Channel implements a reliable one-to-many FIFO channel, in which a mobile client sees a single reliable server; servers, acting as a state machine, see multicast messages from clients. Migrations of mobile clients are handled as an intentional primary switch, and hand-offs or server failures are completely masked to mobile clients. To achieve high performance, servers are replicated at a sliding-window level. Our scheme provides a simple abstraction of migration, eliminates complicated hand-off protocols, provides fault-tolerance and is implemented within the existing group communication mechanism.
A Brain-Machine Interface Operating with a Real-Time Spiking Neural Network Control Algorithm.
Dethier, Julie; Nuyujukian, Paul; Eliasmith, Chris; Stewart, Terry; Elassaad, Shauki A; Shenoy, Krishna V; Boahen, Kwabena
2011-01-01
Motor prostheses aim to restore function to disabled patients. Despite compelling proof of concept systems, barriers to clinical translation remain. One challenge is to develop a low-power, fully-implantable system that dissipates only minimal power so as not to damage tissue. To this end, we implemented a Kalman-filter based decoder via a spiking neural network (SNN) and tested it in brain-machine interface (BMI) experiments with a rhesus monkey. The Kalman filter was trained to predict the arm's velocity and mapped on to the SNN using the Neural Engineering Framework (NEF). A 2,000-neuron embedded Matlab SNN implementation runs in real-time and its closed-loop performance is quite comparable to that of the standard Kalman filter. The success of this closed-loop decoder holds promise for hardware SNN implementations of statistical signal processing algorithms on neuromorphic chips, which may offer power savings necessary to overcome a major obstacle to the successful clinical translation of neural motor prostheses.
Lifelong Learning for the 21st Century.
ERIC Educational Resources Information Center
Goodnight, Ron
The Lifelong Learning Center for the 21st Century was proposed to provide personal renewal and technical training for employees at a major United States automotive manufacturing company when it implemented a new, computer-based Computer Numerical Controlled (CNC) machining, robotics, and high technology facility. The employees needed training for…
NASA Astrophysics Data System (ADS)
Cole, Matthew O. T.; Shinonawanik, Praween; Wongratanaphisan, Theeraphong
2018-05-01
Structural flexibility can impact negatively on machine motion control systems by causing unmeasured positioning errors and vibration at locations where accurate motion is important for task execution. To compensate for these effects, command signal prefiltering may be applied. In this paper, a new FIR prefilter design method is described that combines finite-time vibration cancellation with dynamic compensation properties. The time-domain formulation exploits the relation between tracking error and the moment values of the prefilter impulse response function. Optimal design solutions for filters having minimum H2 norm are derived and evaluated. The control approach does not require additional actuation or sensing and can be effective even without complete and accurate models of the machine dynamics. Results from implementation and testing on an experimental high-speed manipulator having a Delta robot architecture with directionally compliant end-effector are presented. The results show the importance of prefilter moment values for tracking performance and confirm that the proposed method can achieve significant reductions in both peak and RMS tracking error, as well as settling time, for complex motion patterns.
Room-Temperature Quantum Cloning Machine with Full Coherent Phase Control in Nanodiamond
Chang, Yan-Chun; Liu, Gang-Qin; Liu, Dong-Qi; Fan, Heng; Pan, Xin-Yu
2013-01-01
In contrast to the classical world, an unknown quantum state cannot be cloned ideally, as stated by the no-cloning theorem. However, it is expected that approximate or probabilistic quantum cloning will be necessary for different applications, and thus various quantum cloning machines have been designed. Phase quantum cloning is of particular interest because it can be used to attack the Bennett-Brassard 1984 (BB84) states used in quantum key distribution for secure communications. Here, we report the first room-temperature implementation of quantum phase cloning with a controllable phase in a solid-state system: the nitrogen-vacancy centre of a nanodiamond. The phase cloner works well for all qubits located on the equator of the Bloch sphere. The phase is controlled and can be measured with high accuracy, and the experimental results are consistent with theoretical expectations. This experiment provides a basis for phase-controllable quantum information devices. PMID:23511233
Experimental control of a fluidic pinball using genetic programming
NASA Astrophysics Data System (ADS)
Raibaudo, Cedric; Zhong, Peng; Noack, Bernd R.; Martinuzzi, Robert J.
2017-11-01
The wake stabilization of a triangular cluster of three rotating cylinders was investigated in the present study. Experiments were performed at Reynolds number Re 6000, and compared with URANS-2D simulations at same flow conditions. 2D2C PIV measurements and constant temperature anemometry were used to characterize the flow without and with actuation. Open-loop actuation was first considered for the identification of particular control strategies. Machine learning control was also implemented for the experimental study. Linear genetic programming has been used for the optimization of open-loop parameters and closed-loop controllers. Considering a cost function J based on the fluctuations of the velocity measured by the hot-wire sensor, significant performances were achieved using the machine learning approach. The present work is supported by the senior author's (R. J. Martinuzzi) NSERC discovery Grant. C. Raibaudo acknowledges the financial support of the University of Calgary Eyes-High PDF program.
Distributed intelligence for supervisory control
NASA Technical Reports Server (NTRS)
Wolfe, W. J.; Raney, S. D.
1987-01-01
Supervisory control systems must deal with various types of intelligence distributed throughout the layers of control. Typical layers are real-time servo control, off-line planning and reasoning subsystems and finally, the human operator. Design methodologies must account for the fact that the majority of the intelligence will reside with the human operator. Hierarchical decompositions and feedback loops as conceptual building blocks that provide a common ground for man-machine interaction are discussed. Examples of types of parallelism and parallel implementation on several classes of computer architecture are also discussed.
Creating an Electronic Reference and Information Database for Computer-aided ECM Design
NASA Astrophysics Data System (ADS)
Nekhoroshev, M. V.; Pronichev, N. D.; Smirnov, G. V.
2018-01-01
The paper presents a review on electrochemical shaping. An algorithm has been developed to implement a computer shaping model applicable to pulse electrochemical machining. For that purpose, the characteristics of pulse current occurring in electrochemical machining of aviation materials have been studied. Based on integrating the experimental results and comprehensive electrochemical machining process data modeling, a subsystem for computer-aided design of electrochemical machining for gas turbine engine blades has been developed; the subsystem was implemented in the Teamcenter PLM system.
Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces
NASA Astrophysics Data System (ADS)
Dethier, Julie; Nuyujukian, Paul; Ryu, Stephen I.; Shenoy, Krishna V.; Boahen, Kwabena
2013-06-01
Objective. Cortically-controlled motor prostheses aim to restore functions lost to neurological disease and injury. Several proof of concept demonstrations have shown encouraging results, but barriers to clinical translation still remain. In particular, intracortical prostheses must satisfy stringent power dissipation constraints so as not to damage cortex. Approach. One possible solution is to use ultra-low power neuromorphic chips to decode neural signals for these intracortical implants. The first step is to explore in simulation the feasibility of translating decoding algorithms for brain-machine interface (BMI) applications into spiking neural networks (SNNs). Main results. Here we demonstrate the validity of the approach by implementing an existing Kalman-filter-based decoder in a simulated SNN using the Neural Engineering Framework (NEF), a general method for mapping control algorithms onto SNNs. To measure this system’s robustness and generalization, we tested it online in closed-loop BMI experiments with two rhesus monkeys. Across both monkeys, a Kalman filter implemented using a 2000-neuron SNN has comparable performance to that of a Kalman filter implemented using standard floating point techniques. Significance. These results demonstrate the tractability of SNN implementations of statistical signal processing algorithms on different monkeys and for several tasks, suggesting that a SNN decoder, implemented on a neuromorphic chip, may be a feasible computational platform for low-power fully-implanted prostheses. The validation of this closed-loop decoder system and the demonstration of its robustness and generalization hold promise for SNN implementations on an ultra-low power neuromorphic chip using the NEF.
Programming the Navier-Stokes computer: An abstract machine model and a visual editor
NASA Technical Reports Server (NTRS)
Middleton, David; Crockett, Tom; Tomboulian, Sherry
1988-01-01
The Navier-Stokes computer is a parallel computer designed to solve Computational Fluid Dynamics problems. Each processor contains several floating point units which can be configured under program control to implement a vector pipeline with several inputs and outputs. Since the development of an effective compiler for this computer appears to be very difficult, machine level programming seems necessary and support tools for this process have been studied. These support tools are organized into a graphical program editor. A programming process is described by which appropriate computations may be efficiently implemented on the Navier-Stokes computer. The graphical editor would support this programming process, verifying various programmer choices for correctness and deducing values such as pipeline delays and network configurations. Step by step details are provided and demonstrated with two example programs.
Praxis language reference manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, J.H.
1981-01-01
This document is a language reference manual for the programming language Praxis. The document contains the specifications that must be met by any compiler for the language. The Praxis language was designed for systems programming in real-time process applications. Goals for the language and its implementations are: (1) highly efficient code generated by the compiler; (2) program portability; (3) completeness, that is, all programming requirements can be met by the language without needing an assembler; and (4) separate compilation to aid in design and management of large systems. The language does not provide any facilities for input/output, stack and queuemore » handling, string operations, parallel processing, or coroutine processing. These features can be implemented as routines in the language, using machine-dependent code to take advantage of facilities in the control environment on different machines.« less
Study About Ceiling Design for Main Control Room of NPP with HFE
NASA Astrophysics Data System (ADS)
Gu, Pengfei; Ni, Ying; Chen, Weihua; Chen, Bo; Zhang, Jianbo; Liang, Huihui
Recently since human factor engineering (HFE) has been used in control room design of nuclear power plant (NPP), the human-machine interface (HMI) has been gradual to develop harmoniously, especially the use of the digital technology. Comparing with the analog technology which was used to human-machine interface in the past, human-machine interaction has been more enhanced. HFE and the main control room (MCR) design engineering of NPP is a combination of multidisciplinary cross, mainly related to electrical and instrument control, reactor, machinery, systems engineering and management disciplines. However, MCR is not only equipped with HMI provided by the equipments, but also more important for the operator to provide a work environment, such as the main control room ceiling. The ceiling design of main control room related to HFE which influences the performance of staff should also be considered in the design of the environment and aesthetic factors, especially the introduction of professional design experience and evaluation method. Based on Ling Ao phase II and Hong Yanhe project implementation experience, the study analyzes lighting effect, space partition, vision load about the ceiling of main control room of NPP. Combining with the requirements of standards, the advantages and disadvantages of the main control room ceiling design has been discussed, and considering the requirements of lightweight, noise reduction, fire prevention, moisture protection, the ceiling design solution of the main control room also has been discussed.
National Ignition Facility Control and Information System Operational Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, C D; Beeler, R G; Bowers, G A
The National Ignition Facility (NIF) in Livermore, California, is the world's highest-energy laser fusion system and one of the premier large scale scientific projects in the United States. The system is designed to setup and fire a laser shot to a fusion ignition or high energy density target at rates up to a shot every 4 hours. NIF has 192 laser beams delivering up to 1.8 MJ of energy to a {approx}2 mm target that is planned to produce >100 billion atm of pressure and temperatures of >100 million degrees centigrade. NIF is housed in a ten-story building footprint themore » size of three football fields as shown in Fig. 1. Commissioning was recently completed and NIF will be formally dedicated at Lawrence Livermore National Laboratory on May 29, 2009. The control system has 60,000 hardware controls points and employs 2 million lines of control system code. The control room has highly automated equipment setup prior to firing laser system shots. This automation has a data driven implementation that is conducive to dynamic modification and optimization depending on the shot goals defined by the end user experimenters. NIF has extensive facility machine history and infrastructure maintenance workflow tools both under development and deployed. An extensive operational tools suite has been developed to support facility operations including experimental shot setup, machine readiness, machine health and safety, and machine history. The following paragraphs discuss the current state and future upgrades to these four categories of operational tools.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
... Implements of War and Machine Guns, Destructive Devices, and Certain Other Firearms; Extending the Term of... U.S.C. Chapter 53. The Attorney General is also responsible for enforcing the provisions of the Gun... application must be submitted for a permit to cover the unshipped balance. B. Importation of Machine Guns...
Using Multiple FPGA Architectures for Real-time Processing of Low-level Machine Vision Functions
Thomas H. Drayer; William E. King; Philip A. Araman; Joseph G. Tront; Richard W. Conners
1995-01-01
In this paper, we investigate the use of multiple Field Programmable Gate Array (FPGA) architectures for real-time machine vision processing. The use of FPGAs for low-level processing represents an excellent tradeoff between software and special purpose hardware implementations. A library of modules that implement common low-level machine vision operations is presented...
Modeling of Autovariator Operation as Power Components Adjuster in Adaptive Machine Drives
NASA Astrophysics Data System (ADS)
Balakin, P. D.; Belkov, V. N.; Shtripling, L. O.
2018-01-01
Full application of the available power and stationary mode preservation for the power station (engine) operation of the transport machine under the conditions of variable external loading, are topical issues. The issues solution is possible by means of mechanical drives with the autovaried rate transfer function and nonholonomic constraint of the main driving mediums. Additional to the main motion, controlled motion of the driving mediums is formed by a variable part of the transformed power flow and is implemented by the integrated control loop, functioning only on the basis of the laws of motion. The mathematical model of the mechanical autovariator operation is developed using Gibbs function, acceleration energy; the study results are presented; on their basis, the design calculations of the autovariator driving mediums and constraints, including its automatic control loop, are possible.
NASA Astrophysics Data System (ADS)
Yamamoto, Shu; Ara, Takahiro
Recently, induction motors (IMs) and permanent-magnet synchronous motors (PMSMs) have been used in various industrial drive systems. The features of the hardware device used for controlling the adjustable-speed drive in these motors are almost identical. Despite this, different techniques are generally used for parameter measurement and speed-sensorless control of these motors. If the same technique can be used for parameter measurement and sensorless control, a highly versatile adjustable-speed-drive system can be realized. In this paper, the authors describe a new universal sensorless control technique for both IMs and PMSMs (including salient pole and nonsalient pole machines). A mathematical model applicable for IMs and PMSMs is discussed. Using this model, the authors derive the proposed universal sensorless vector control algorithm on the basis of estimation of the stator flux linkage vector. All the electrical motor parameters are determined by a unified test procedure. The proposed method is implemented on three test machines. The actual driving test results demonstrate the validity of the proposed method.
Minati, Ludovico; Nigri, Anna; Rosazza, Cristina; Bruzzone, Maria Grazia
2012-06-01
Previous studies have demonstrated the possibility of using functional MRI to control a robot arm through a brain-machine interface by directly coupling haemodynamic activity in the sensory-motor cortex to the position of two axes. Here, we extend this work by implementing interaction at a more abstract level, whereby imagined actions deliver structured commands to a robot arm guided by a machine vision system. Rather than extracting signals from a small number of pre-selected regions, the proposed system adaptively determines at individual level how to map representative brain areas to the input nodes of a classifier network. In this initial study, a median action recognition accuracy of 90% was attained on five volunteers performing a game consisting of collecting randomly positioned coloured pawns and placing them into cups. The "pawn" and "cup" instructions were imparted through four mental imaginery tasks, linked to robot arm actions by a state machine. With the current implementation in MatLab language the median action recognition time was 24.3s and the robot execution time was 17.7s. We demonstrate the notion of combining haemodynamic brain-machine interfacing with computer vision to implement interaction at the level of high-level commands rather than individual movements, which may find application in future fMRI approaches relevant to brain-lesioned patients, and provide source code supporting further work on larger command sets and real-time processing. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Yamin, Samuel C.; Brosseau, Lisa M.; Xi, Min; Gordon, Robert; Most, Ivan G.; Stanley, Rodney
2015-01-01
Background Metal fabrication workers experience high rates of traumatic occupational injuries. Machine operators in particular face high risks, often stemming from the absence or improper use of machine safeguarding or the failure to implement lockout procedures. Methods The National Machine Guarding Program (NMGP) was a translational research initiative implemented in conjunction with two workers' compensation insures. Insurance safety consultants trained in machine guarding used standardized checklists to conduct a baseline inspection of machine‐related hazards in 221 business. Results Safeguards at the point of operation were missing or inadequate on 33% of machines. Safeguards for other mechanical hazards were missing on 28% of machines. Older machines were both widely used and less likely than newer machines to be properly guarded. Lockout/tagout procedures were posted at only 9% of machine workstations. Conclusions The NMGP demonstrates a need for improvement in many aspects of machine safety and lockout in small metal fabrication businesses. Am. J. Ind. Med. 58:1174–1183, 2015. © 2015 The Authors. American Journal of Industrial Medicine published by Wiley Periodicals, Inc. PMID:26332060
Software design and documentation language, revision 1
NASA Technical Reports Server (NTRS)
Kleine, H.
1979-01-01
The Software Design and Documentation Language (SDDL) developed to provide an effective communications medium to support the design and documentation of complex software applications is described. Features of the system include: (1) a processor which can convert design specifications into an intelligible, informative machine-reproducible document; (2) a design and documentation language with forms and syntax that are simple, unrestrictive, and communicative; and (3) methodology for effective use of the language and processor. The SDDL processor is written in the SIMSCRIPT II programming language and is implemented on the UNIVAC 1108, the IBM 360/370, and Control Data machines.
NASA Technical Reports Server (NTRS)
Phillips, Jennifer K.
1995-01-01
Two of the current and most popular implementations of the Message-Passing Standard, Message Passing Interface (MPI), were contrasted: MPICH by Argonne National Laboratory, and LAM by the Ohio Supercomputer Center at Ohio State University. A parallel skyline matrix solver was adapted to be run in a heterogeneous environment using MPI. The Message-Passing Interface Forum was held in May 1994 which lead to a specification of library functions that implement the message-passing model of parallel communication. LAM, which creates it's own environment, is more robust in a highly heterogeneous network. MPICH uses the environment native to the machine architecture. While neither of these free-ware implementations provides the performance of native message-passing or vendor's implementations, MPICH begins to approach that performance on the SP-2. The machines used in this study were: IBM RS6000, 3 Sun4, SGI, and the IBM SP-2. Each machine is unique and a few machines required specific modifications during the installation. When installed correctly, both implementations worked well with only minor problems.
Scientific bases of human-machine communication by voice.
Schafer, R W
1995-01-01
The scientific bases for human-machine communication by voice are in the fields of psychology, linguistics, acoustics, signal processing, computer science, and integrated circuit technology. The purpose of this paper is to highlight the basic scientific and technological issues in human-machine communication by voice and to point out areas of future research opportunity. The discussion is organized around the following major issues in implementing human-machine voice communication systems: (i) hardware/software implementation of the system, (ii) speech synthesis for voice output, (iii) speech recognition and understanding for voice input, and (iv) usability factors related to how humans interact with machines. PMID:7479802
Implementing Machine Learning in the PCWG Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifton, Andrew; Ding, Yu; Stuart, Peter
The Power Curve Working Group (www.pcwg.org) is an ad-hoc industry-led group to investigate the performance of wind turbines in real-world conditions. As part of ongoing experience-sharing exercises, machine learning has been proposed as a possible way to predict turbine performance. This presentation provides some background information about machine learning and how it might be implemented in the PCWG exercises.
Precedent approach to the formation of programs for cyclic objects control
NASA Astrophysics Data System (ADS)
Kulakov, S. M.; Trofimov, V. B.; Dobrynin, A. S.; Taraborina, E. N.
2018-05-01
The idea and procedure for formalizing the precedent method of formation of complex control solutions (complex control programs) is discussed with respect to technological or organizational objects, the operation of which is organized cyclically. A typical functional structure of the system of precedent control by complex technological unit is developed, including a subsystem of retrospective optimization of actually implemented control programs. As an example, the problem of constructing replaceable planograms for the operation of the link of a heading-and-winning machine on the basis of precedents is considered.
Bánfai, Balázs; Porció, Roland; Kovács, Tibor
2014-01-01
SNOMED CT is a vital component in the future of semantic interoperability in healthcare as it provides the meaning to EHRs via its semantically rich, controlled terminology. Communicating the concepts of this terminology to both humans and machines is crucial therefore formal guidelines for diagram and expression representations have been developed by the curators of SNOMED CT. This paper presents a novel, model-based approach to implementing these guidelines that allows simultaneous editing of a concept via both diagram and expression editors. The implemented extensible software component can be embedded both both desktop and web applications.
A VHDL Core for Intrinsic Evolution of Discrete Time Filters with Signal Feedback
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; Dutton, Kenneth
2005-01-01
The design of an Evolvable Machine VHDL Core is presented, representing a discrete-time processing structure capable of supporting control system applications. This VHDL Core is implemented in an FPGA and is interfaced with an evolutionary algorithm implemented in firmware on a Digital Signal Processor (DSP) to create an evolvable system platform. The salient features of this architecture are presented. The capability to implement IIR filter structures is presented along with the results of the intrinsic evolution of a filter. The robustness of the evolved filter design is tested and its unique characteristics are described.
Use of statecharts in the modelling of dynamic behaviour in the ATLAS DAQ prototype-1
NASA Astrophysics Data System (ADS)
Croll, P.; Duval, P.-Y.; Jones, R.; Kolos, S.; Sari, R. F.; Wheeler, S.
1998-08-01
Many applications within the ATLAS DAQ prototype-1 system have complicated dynamic behaviour which can be successfully modelled in terms of states and transitions between states. Previously, state diagrams implemented as finite-state machines have been used. Although effective, they become ungainly as system size increases. Harel statecharts address this problem by implementing additional features such as hierarchy and concurrency. The CHSM object-oriented language system is freeware which implements Harel statecharts as concurrent, hierarchical, finite-state machines (CHSMs). An evaluation of this language system by the ATLAS DAQ group has shown it to be suitable for describing the dynamic behaviour of typical DAQ applications. The language is currently being used to model the dynamic behaviour of the prototype-1 run-control system. The design is specified by means of a CHSM description file, and C++ code is obtained by running the CHSM compiler on the file. In parallel with the modelling work, a code generator has been developed which translates statecharts, drawn using the StP CASE tool, into the CHSM language. C++ code, describing the dynamic behaviour of the run-control system, has been successfully generated directly from StP statecharts using the CHSM generator and compiler. The validity of the design was tested using the simulation features of the Statemate CASE tool.
Model and experiments to optimize co-adaptation in a simplified myoelectric control system
NASA Astrophysics Data System (ADS)
Couraud, M.; Cattaert, D.; Paclet, F.; Oudeyer, P. Y.; de Rugy, A.
2018-04-01
Objective. To compensate for a limb lost in an amputation, myoelectric prostheses use surface electromyography (EMG) from the remaining muscles to control the prosthesis. Despite considerable progress, myoelectric controls remain markedly different from the way we normally control movements, and require intense user adaptation. To overcome this, our goal is to explore concurrent machine co-adaptation techniques that are developed in the field of brain-machine interface, and that are beginning to be used in myoelectric controls. Approach. We combined a simplified myoelectric control with a perturbation for which human adaptation is well characterized and modeled, in order to explore co-adaptation settings in a principled manner. Results. First, we reproduced results obtained in a classical visuomotor rotation paradigm in our simplified myoelectric context, where we rotate the muscle pulling vectors used to reconstruct wrist force from EMG. Then, a model of human adaptation in response to directional error was used to simulate various co-adaptation settings, where perturbations and machine co-adaptation are both applied on muscle pulling vectors. These simulations established that a relatively low gain of machine co-adaptation that minimizes final errors generates slow and incomplete adaptation, while higher gains increase adaptation rate but also errors by amplifying noise. After experimental verification on real subjects, we tested a variable gain that cumulates the advantages of both, and implemented it with directionally tuned neurons similar to those used to model human adaptation. This enables machine co-adaptation to locally improve myoelectric control, and to absorb more challenging perturbations. Significance. The simplified context used here enabled to explore co-adaptation settings in both simulations and experiments, and to raise important considerations such as the need for a variable gain encoded locally. The benefits and limits of extending this approach to more complex and functional myoelectric contexts are discussed.
Methods For Self-Organizing Software
Bouchard, Ann M.; Osbourn, Gordon C.
2005-10-18
A method for dynamically self-assembling and executing software is provided, containing machines that self-assemble execution sequences and data structures. In addition to ordered functions calls (found commonly in other software methods), mutual selective bonding between bonding sites of machines actuates one or more of the bonding machines. Two or more machines can be virtually isolated by a construct, called an encapsulant, containing a population of machines and potentially other encapsulants that can only bond with each other. A hierarchical software structure can be created using nested encapsulants. Multi-threading is implemented by populations of machines in different encapsulants that are interacting concurrently. Machines and encapsulants can move in and out of other encapsulants, thereby changing the functionality. Bonding between machines' sites can be deterministic or stochastic with bonding triggering a sequence of actions that can be implemented by each machine. A self-assembled execution sequence occurs as a sequence of stochastic binding between machines followed by their deterministic actuation. It is the sequence of bonding of machines that determines the execution sequence, so that the sequence of instructions need not be contiguous in memory.
Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata
NASA Astrophysics Data System (ADS)
Roy, Anindya; Bhole, R. B.; Nandy, Partha P.; Yadav, R. C.; Pal, Sarbajit; Roy, Amitava
2015-03-01
The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.
Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata.
Roy, Anindya; Bhole, R B; Nandy, Partha P; Yadav, R C; Pal, Sarbajit; Roy, Amitava
2015-03-01
The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.
Jeyabalan, Vickneswaran; Samraj, Andrews; Loo, Chu Kiong
2010-10-01
Aiming at the implementation of brain-machine interfaces (BMI) for the aid of disabled people, this paper presents a system design for real-time communication between the BMI and programmable logic controllers (PLCs) to control an electrical actuator that could be used in devices to help the disabled. Motor imaginary signals extracted from the brain’s motor cortex using an electroencephalogram (EEG) were used as a control signal. The EEG signals were pre-processed by means of adaptive recursive band-pass filtrations (ARBF) and classified using simplified fuzzy adaptive resonance theory mapping (ARTMAP) in which the classified signals are then translated into control signals used for machine control via the PLC. A real-time test system was designed using MATLAB for signal processing, KEP-Ware V4 OLE for process control (OPC), a wireless local area network router, an Omron Sysmac CPM1 PLC and a 5 V/0.3A motor. This paper explains the signal processing techniques, the PLC's hardware configuration, OPC configuration and real-time data exchange between MATLAB and PLC using the MATLAB OPC toolbox. The test results indicate that the function of exchanging real-time data can be attained between the BMI and PLC through OPC server and proves that it is an effective and feasible method to be applied to devices such as wheelchairs or electronic equipment.
Optimal Control of Induction Machines to Minimize Transient Energy Losses
NASA Astrophysics Data System (ADS)
Plathottam, Siby Jose
Induction machines are electromechanical energy conversion devices comprised of a stator and a rotor. Torque is generated due to the interaction between the rotating magnetic field from the stator, and the current induced in the rotor conductors. Their speed and torque output can be precisely controlled by manipulating the magnitude, frequency, and phase of the three input sinusoidal voltage waveforms. Their ruggedness, low cost, and high efficiency have made them ubiquitous component of nearly every industrial application. Thus, even a small improvement in their energy efficient tend to give a large amount of electrical energy savings over the lifetime of the machine. Hence, increasing energy efficiency (reducing energy losses) in induction machines is a constrained optimization problem that has attracted attention from researchers. The energy conversion efficiency of induction machines depends on both the speed-torque operating point, as well as the input voltage waveform. It also depends on whether the machine is in the transient or steady state. Maximizing energy efficiency during steady state is a Static Optimization problem, that has been extensively studied, with commercial solutions available. On the other hand, improving energy efficiency during transients is a Dynamic Optimization problem that is sparsely studied. This dissertation exclusively focuses on improving energy efficiency during transients. This dissertation treats the transient energy loss minimization problem as an optimal control problem which consists of a dynamic model of the machine, and a cost functional. The rotor field oriented current fed model of the induction machine is selected as the dynamic model. The rotor speed and rotor d-axis flux are the state variables in the dynamic model. The stator currents referred to as d-and q-axis currents are the control inputs. A cost functional is proposed that assigns a cost to both the energy losses in the induction machine, as well as the deviations from desired speed-torque-magnetic flux setpoints. Using Pontryagin's minimum principle, a set of necessary conditions that must be satisfied by the optimal control trajectories are derived. The conditions are in the form a two-point boundary value problem, that can be solved numerically. The conjugate gradient method that was modified using the Hestenes-Stiefel formula was used to obtain the numerical solution of both the control and state trajectories. Using the distinctive shape of the numerical trajectories as inspiration, analytical expressions were derived for the state, and control trajectories. It was shown that the trajectory could be fully described by finding the solution of a one-dimensional optimization problem. The sensitivity of both the optimal trajectory and the optimal energy efficiency to different induction machine parameters were analyzed. A non-iterative solution that can use feedback for generating optimal control trajectories in real time was explored. It was found that an artificial neural network could be trained using the numerical solutions and made to emulate the optimal control trajectories with a high degree of accuracy. Hence a neural network along with a supervisory logic was implemented and used in a real-time simulation to control the Finite Element Method model of the induction machine. The results were compared with three other control regimes and the optimal control system was found to have the highest energy efficiency for the same drive cycle.
High speed turning of compacted graphite iron using controlled modulation
NASA Astrophysics Data System (ADS)
Stalbaum, Tyler Paul
Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry. In industry, machining of CGI is done only at low speeds, less than V = 200 m/min, to avoid encountering rapid wear of the cutting tools during cutting. Studies have suggested intermittent cutting operations such as milling suffer less severe tool wear than continuous cutting. Furthermore, evidence that a hard sulfide layer which forms over the cutting edge in machining CI at high speeds is absent during machining CGI is a major factor in the difference in machinability of these material systems. The present study addresses both of these issues by modification to the conventional machining process to allow intermittent continuous cutting. The application of controlled modulation superimposed onto the cutting process -- modulation-assisted machining (MAM) -- is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining CGI at high machining speeds (> 500 m/min). The tool life is at least 20 times greater than found in conventional machining of CGI. This significant reduction in wear is a consequence of reduction in the severity of the tool-work contact conditions with MAM. The propensity for thermochemical wear of CBN is thus reduced. It is found that higher cutting speed (> 700 m/min) leads to lower tool wear with MAM. The MAM configuration employing feed-direction modulation appears feasible for implementation at high speeds and offers a solution to this challenging class of industrial machining applications. This study's approach is by series of high speed turning tests of CGI with CBN tools, comparing conventional machining to MAM for similar parameters otherwise, by tool wear measurements and machinability observations.
Healthier vending machines in workplaces: both possible and effective.
Gorton, Delvina; Carter, Julie; Cvjetan, Branko; Ni Mhurchu, Cliona
2010-03-19
To develop healthier vending guidelines and assess their effect on the nutrient content and sales of snack products sold through hospital vending machines, and on staff satisfaction. Nutrition guidelines for healthier vending machine products were developed and implemented in 14 snack vending machines at two hospital sites in Auckland, New Zealand. The guidelines comprised threshold criteria for energy, saturated fat, sugar, and sodium content of vended foods. Sales data were collected prior to introduction of the guidelines (March-May 2007), and again post-introduction (March-May 2008). A food composition database was used to assess impact of the intervention on nutrient content of purchases. A staff survey was also conducted pre- and post-intervention to assess acceptability. Pre-intervention, 16% of staff used vending machines once a week or more, with little change post-intervention (15%). The guidelines resulted in a substantial reduction in the amount of energy (-24%), total fat (-32%), saturated fat (-41%), and total sugars (-30%) per 100 g product sold. Sales volumes were not affected, and the proportion of staff satisfied with vending machine products increased. Implementation of nutrition guidelines in hospital vending machines led to substantial improvements in nutrient content of vending products sold. Wider implementation of these guidelines is recommended.
NASA Technical Reports Server (NTRS)
1972-01-01
A unified approach to computer vision and manipulation is developed which is called choreographic vision. In the model, objects to be viewed by a projected robot in the Viking missions to Mars are seen as objects to be manipulated within choreographic contexts controlled by a multimoded remote, supervisory control system on Earth. A new theory of context relations is introduced as a basis for choreographic programming languages. A topological vision model is developed for recognizing objects by shape and contour. This model is integrated with a projected vision system consisting of a multiaperture image dissector TV camera and a ranging laser system. System program specifications integrate eye-hand coordination and topological vision functions and an aerospace multiprocessor implementation is described.
Laser Measurements Based for Volumetric Accuracy Improvement of Multi-axis Systems
NASA Astrophysics Data System (ADS)
Vladimir, Sokolov; Konstantin, Basalaev
The paper describes a new developed approach to CNC-controlled multi-axis systems geometric errors compensation based on optimal error correction strategy. Multi-axis CNC-controlled systems - machine-tools and CMM's are the basis of modern engineering industry. Similar design principles of both technological and measurement equipment allow usage of similar approaches to precision management. The approach based on geometric errors compensation are widely used at present time. The paper describes a system for compensation of geometric errors of multi-axis equipment based on the new approach. The hardware basis of the developed system is a multi-function laser interferometer. The principles of system's implementation, results of measurements and system's functioning simulation are described. The effectiveness of application of described principles to multi-axis equipment of different sizes and purposes for different machining directions and zones within workspace is presented. The concepts of optimal correction strategy is introduced and dynamic accuracy control is proposed.
Gonzalez-Vargas, Jose; Dosen, Strahinja; Amsuess, Sebastian; Yu, Wenwei; Farina, Dario
2015-01-01
Modern assistive devices are very sophisticated systems with multiple degrees of freedom. However, an effective and user-friendly control of these systems is still an open problem since conventional human-machine interfaces (HMI) cannot easily accommodate the system’s complexity. In HMIs, the user is responsible for generating unique patterns of command signals directly triggering the device functions. This approach can be difficult to implement when there are many functions (necessitating many command patterns) and/or the user has a considerable impairment (limited number of available signal sources). In this study, we propose a novel concept for a general-purpose HMI where the controller and the user communicate bidirectionally to select the desired function. The system first presents possible choices to the user via electro-tactile stimulation; the user then acknowledges the desired choice by generating a single command signal. Therefore, the proposed approach simplifies the user communication interface (one signal to generate), decoding (one signal to recognize), and allows selecting from a number of options. To demonstrate the new concept the method was used in one particular application, namely, to implement the control of all the relevant functions in a state of the art commercial prosthetic hand without using any myoelectric channels. We performed experiments in healthy subjects and with one amputee to test the feasibility of the novel approach. The results showed that the performance of the novel HMI concept was comparable or, for some outcome measures, better than the classic myoelectric interfaces. The presented approach has a general applicability and the obtained results point out that it could be used to operate various assistive systems (e.g., prosthesis vs. wheelchair), or it could be integrated into other control schemes (e.g., myoelectric control, brain-machine interfaces) in order to improve the usability of existing low-bandwidth HMIs. PMID:26069961
Gonzalez-Vargas, Jose; Dosen, Strahinja; Amsuess, Sebastian; Yu, Wenwei; Farina, Dario
2015-01-01
Modern assistive devices are very sophisticated systems with multiple degrees of freedom. However, an effective and user-friendly control of these systems is still an open problem since conventional human-machine interfaces (HMI) cannot easily accommodate the system's complexity. In HMIs, the user is responsible for generating unique patterns of command signals directly triggering the device functions. This approach can be difficult to implement when there are many functions (necessitating many command patterns) and/or the user has a considerable impairment (limited number of available signal sources). In this study, we propose a novel concept for a general-purpose HMI where the controller and the user communicate bidirectionally to select the desired function. The system first presents possible choices to the user via electro-tactile stimulation; the user then acknowledges the desired choice by generating a single command signal. Therefore, the proposed approach simplifies the user communication interface (one signal to generate), decoding (one signal to recognize), and allows selecting from a number of options. To demonstrate the new concept the method was used in one particular application, namely, to implement the control of all the relevant functions in a state of the art commercial prosthetic hand without using any myoelectric channels. We performed experiments in healthy subjects and with one amputee to test the feasibility of the novel approach. The results showed that the performance of the novel HMI concept was comparable or, for some outcome measures, better than the classic myoelectric interfaces. The presented approach has a general applicability and the obtained results point out that it could be used to operate various assistive systems (e.g., prosthesis vs. wheelchair), or it could be integrated into other control schemes (e.g., myoelectric control, brain-machine interfaces) in order to improve the usability of existing low-bandwidth HMIs.
Lenhard, Fabian; Sauer, Sebastian; Andersson, Erik; Månsson, Kristoffer Nt; Mataix-Cols, David; Rück, Christian; Serlachius, Eva
2018-03-01
There are no consistent predictors of treatment outcome in paediatric obsessive-compulsive disorder (OCD). One reason for this might be the use of suboptimal statistical methodology. Machine learning is an approach to efficiently analyse complex data. Machine learning has been widely used within other fields, but has rarely been tested in the prediction of paediatric mental health treatment outcomes. To test four different machine learning methods in the prediction of treatment response in a sample of paediatric OCD patients who had received Internet-delivered cognitive behaviour therapy (ICBT). Participants were 61 adolescents (12-17 years) who enrolled in a randomized controlled trial and received ICBT. All clinical baseline variables were used to predict strictly defined treatment response status three months after ICBT. Four machine learning algorithms were implemented. For comparison, we also employed a traditional logistic regression approach. Multivariate logistic regression could not detect any significant predictors. In contrast, all four machine learning algorithms performed well in the prediction of treatment response, with 75 to 83% accuracy. The results suggest that machine learning algorithms can successfully be applied to predict paediatric OCD treatment outcome. Validation studies and studies in other disorders are warranted. Copyright © 2017 John Wiley & Sons, Ltd.
Wireless control system for two-axis linear oscillating motion applying CBR technology
NASA Astrophysics Data System (ADS)
Kuzyakov, O. N.; Andreeva, M. A.
2018-03-01
The paper presents the aspects of elaborating a movement control system. The system is to implement determination of movement characteristics of the object controlled, which performs an oscillating linear motion in a two-axis direction. The system has an electronic-optical principle of action: light receivers are attached to a controlled object, and a laser light emitter is attached to a static construction. While the object performs movement along the construction, the light emitter signal is registered by light receivers, based on which determination of the object position and characteristic of its movement are performed. An algorithm of system implementation is elaborated. Signal processing is performed on the basis of the case-based reasoning method. The system is to be used in machine-building industry in controlling relative displacement of the dynamic object or its assembly.
Pharis, Meagan L; Colby, Lisa; Wagner, Amanda; Mallya, Giridhar
2018-02-01
We examined outcomes following the implementation of employer-wide vending standards, designed to increase healthy snack and beverage options, on the proportion of healthy v. less healthy sales, sales volume and revenue for snack and beverage vending machines. A single-arm evaluation of a policy utilizing monthly sales volume and revenue data provided by the contracted vendor during baseline, machine conversion and post-conversion time periods. Study time periods are full calendar years unless otherwise noted. Property owned or leased by the City of Philadelphia, USA. Approximately 250 vending machines over a 4-year period (2010-2013). At post-conversion, the proportion of sales attributable to healthy items was 40 % for snacks and 46 % for beverages. Healthy snack sales were 323 % higher (38·4 to 162·5 items sold per machine per month) and total snack sales were 17 % lower (486·8 to 402·1 items sold per machine per month). Healthy beverage sales were 33 % higher (68·2 to 90·6 items sold per machine per month) and there was no significant change in total beverage sales (213·2 to 209·6 items sold per machine per month). Revenue was 11 % lower for snacks ($US 468·30 to $US 415·70 per machine per month) and 21 % lower for beverages ($US 344·00 to $US 270·70 per machine per month). Sales of healthy vending items were significantly higher following the implementation of employer-wide vending standards for snack and beverage vending machines. Entities receiving revenue-based commission payments from vending machines should employ strategies to minimize potential revenue losses.
NASA Technical Reports Server (NTRS)
Shearrow, Charles A.
1999-01-01
One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.
Extreme Learning Machine and Particle Swarm Optimization in optimizing CNC turning operation
NASA Astrophysics Data System (ADS)
Janahiraman, Tiagrajah V.; Ahmad, Nooraziah; Hani Nordin, Farah
2018-04-01
The CNC machine is controlled by manipulating cutting parameters that could directly influence the process performance. Many optimization methods has been applied to obtain the optimal cutting parameters for the desired performance function. Nonetheless, the industry still uses the traditional technique to obtain those values. Lack of knowledge on optimization techniques is the main reason for this issue to be prolonged. Therefore, the simple yet easy to implement, Optimal Cutting Parameters Selection System is introduced to help the manufacturer to easily understand and determine the best optimal parameters for their turning operation. This new system consists of two stages which are modelling and optimization. In modelling of input-output and in-process parameters, the hybrid of Extreme Learning Machine and Particle Swarm Optimization is applied. This modelling technique tend to converge faster than other artificial intelligent technique and give accurate result. For the optimization stage, again the Particle Swarm Optimization is used to get the optimal cutting parameters based on the performance function preferred by the manufacturer. Overall, the system can reduce the gap between academic world and the industry by introducing a simple yet easy to implement optimization technique. This novel optimization technique can give accurate result besides being the fastest technique.
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.; Huang, Song; Govind, Girish
1991-01-01
In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed.
A force-controllable macro-micro manipulator and its application to medical robots
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Uecker, Darrin R.; Wang, Yulun
1994-01-01
This paper describes an 8-degrees-of-freedom macro-micro robot. This robot is capable of performing tasks that require accurate force control, such as polishing, finishing, grinding, deburring, and cleaning. The design of the macro-micro mechanism, the control algorithms, and the hardware/software implementation of the algorithms are described in this paper. Initial experimental results are reported. In addition, this paper includes a discussion of medical surgery and the role that force control may play. We introduce a new class of robotic systems collectively called Robotic Enhancement Technology (RET). RET systems introduce the combination of robotic manipulation with human control to perform manipulation tasks beyond the individual capability of either human or machine. The RET class of robotic systems offers new challenges in mechanism design, control-law development, and man/machine interface design. We believe force-controllable mechanisms such as the macro-micro structure we have developed are a necessary part of RET. Work in progress in the area of RET systems and their application to minimally invasive surgery is presented, along with future research directions.
Biomimetic Hybrid Feedback Feedforward Neural-Network Learning Control.
Pan, Yongping; Yu, Haoyong
2017-06-01
This brief presents a biomimetic hybrid feedback feedforward neural-network learning control (NNLC) strategy inspired by the human motor learning control mechanism for a class of uncertain nonlinear systems. The control structure includes a proportional-derivative controller acting as a feedback servo machine and a radial-basis-function (RBF) NN acting as a feedforward predictive machine. Under the sufficient constraints on control parameters, the closed-loop system achieves semiglobal practical exponential stability, such that an accurate NN approximation is guaranteed in a local region along recurrent reference trajectories. Compared with the existing NNLC methods, the novelties of the proposed method include: 1) the implementation of an adaptive NN control to guarantee plant states being recurrent is not needed, since recurrent reference signals rather than plant states are utilized as NN inputs, which greatly simplifies the analysis and synthesis of the NNLC and 2) the domain of NN approximation can be determined a priori by the given reference signals, which leads to an easy construction of the RBF-NNs. Simulation results have verified the effectiveness of this approach.
Asynchronous machine rotor speed estimation using a tabulated numerical approach
NASA Astrophysics Data System (ADS)
Nguyen, Huu Phuc; De Miras, Jérôme; Charara, Ali; Eltabach, Mario; Bonnet, Stéphane
2017-12-01
This paper proposes a new method to estimate the rotor speed of the asynchronous machine by looking at the estimation problem as a nonlinear optimal control problem. The behavior of the nonlinear plant model is approximated off-line as a prediction map using a numerical one-step time discretization obtained from simulations. At each time-step, the speed of the induction machine is selected satisfying the dynamic fitting problem between the plant output and the predicted output, leading the system to adopt its dynamical behavior. Thanks to the limitation of the prediction horizon to a single time-step, the execution time of the algorithm can be completely bounded. It can thus easily be implemented and embedded into a real-time system to observe the speed of the real induction motor. Simulation results show the performance and robustness of the proposed estimator.
CFCC: A Covert Flows Confinement Mechanism for Virtual Machine Coalitions
NASA Astrophysics Data System (ADS)
Cheng, Ge; Jin, Hai; Zou, Deqing; Shi, Lei; Ohoussou, Alex K.
Normally, virtualization technology is adopted to construct the infrastructure of cloud computing environment. Resources are managed and organized dynamically through virtual machine (VM) coalitions in accordance with the requirements of applications. Enforcing mandatory access control (MAC) on the VM coalitions will greatly improve the security of VM-based cloud computing. However, the existing MAC models lack the mechanism to confine the covert flows and are hard to eliminate the convert channels. In this paper, we propose a covert flows confinement mechanism for virtual machine coalitions (CFCC), which introduces dynamic conflicts of interest based on the activity history of VMs, each of which is attached with a label. The proposed mechanism can be used to confine the covert flows between VMs in different coalitions. We implement a prototype system, evaluate its performance, and show that our mechanism is practical.
On Design and Implementation of Neural-Machine Interface for Artificial Legs
Zhang, Xiaorong; Liu, Yuhong; Zhang, Fan; Ren, Jin; Sun, Yan (Lindsay); Yang, Qing
2011-01-01
The quality of life of leg amputees can be improved dramatically by using a cyber physical system (CPS) that controls artificial legs based on neural signals representing amputees’ intended movements. The key to the CPS is the neural-machine interface (NMI) that senses electromyographic (EMG) signals to make control decisions. This paper presents a design and implementation of a novel NMI using an embedded computer system to collect neural signals from a physical system - a leg amputee, provide adequate computational capability to interpret such signals, and make decisions to identify user’s intent for prostheses control in real time. A new deciphering algorithm, composed of an EMG pattern classifier and a post-processing scheme, was developed to identify the user’s intended lower limb movements. To deal with environmental uncertainty, a trust management mechanism was designed to handle unexpected sensor failures and signal disturbances. Integrating the neural deciphering algorithm with the trust management mechanism resulted in a highly accurate and reliable software system for neural control of artificial legs. The software was then embedded in a newly designed hardware platform based on an embedded microcontroller and a graphic processing unit (GPU) to form a complete NMI for real time testing. Real time experiments on a leg amputee subject and an able-bodied subject have been carried out to test the control accuracy of the new NMI. Our extensive experiments have shown promising results on both subjects, paving the way for clinical feasibility of neural controlled artificial legs. PMID:22389637
NASA Astrophysics Data System (ADS)
Jarabo-Amores, María-Pilar; la Mata-Moya, David de; Gil-Pita, Roberto; Rosa-Zurera, Manuel
2013-12-01
The application of supervised learning machines trained to minimize the Cross-Entropy error to radar detection is explored in this article. The detector is implemented with a learning machine that implements a discriminant function, which output is compared to a threshold selected to fix a desired probability of false alarm. The study is based on the calculation of the function the learning machine approximates to during training, and the application of a sufficient condition for a discriminant function to be used to approximate the optimum Neyman-Pearson (NP) detector. In this article, the function a supervised learning machine approximates to after being trained to minimize the Cross-Entropy error is obtained. This discriminant function can be used to implement the NP detector, which maximizes the probability of detection, maintaining the probability of false alarm below or equal to a predefined value. Some experiments about signal detection using neural networks are also presented to test the validity of the study.
Spiking neuron network Helmholtz machine.
Sountsov, Pavel; Miller, Paul
2015-01-01
An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule.
Spiking neuron network Helmholtz machine
Sountsov, Pavel; Miller, Paul
2015-01-01
An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule. PMID:25954191
Controlled English to facilitate human/machine analytical processing
NASA Astrophysics Data System (ADS)
Braines, Dave; Mott, David; Laws, Simon; de Mel, Geeth; Pham, Tien
2013-06-01
Controlled English is a human-readable information representation format that is implemented using a restricted subset of the English language, but which is unambiguous and directly accessible by simple machine processes. We have been researching the capabilities of CE in a number of contexts, and exploring the degree to which a flexible and more human-friendly information representation format could aid the intelligence analyst in a multi-agent collaborative operational environment; especially in cases where the agents are a mixture of other human users and machine processes aimed at assisting the human users. CE itself is built upon a formal logic basis, but allows users to easily specify models for a domain of interest in a human-friendly language. In our research we have been developing an experimental component known as the "CE Store" in which CE information can be quickly and flexibly processed and shared between human and machine agents. The CE Store environment contains a number of specialized machine agents for common processing tasks and also supports execution of logical inference rules that can be defined in the same CE language. This paper outlines the basic architecture of this approach, discusses some of the example machine agents that have been developed, and provides some typical examples of the CE language and the way in which it has been used to support complex analytical tasks on synthetic data sources. We highlight the fusion of human and machine processing supported through the use of the CE language and CE Store environment, and show this environment with examples of highly dynamic extensions to the model(s) and integration between different user-defined models in a collaborative setting.
NASA Astrophysics Data System (ADS)
Yashvantrai Vyas, Bhargav; Maheshwari, Rudra Prakash; Das, Biswarup
2016-06-01
Application of series compensation in extra high voltage (EHV) transmission line makes the protection job difficult for engineers, due to alteration in system parameters and measurements. The problem amplifies with inclusion of electronically controlled compensation like thyristor controlled series compensation (TCSC) as it produce harmonics and rapid change in system parameters during fault associated with TCSC control. This paper presents a pattern recognition based fault type identification approach with support vector machine. The scheme uses only half cycle post fault data of three phase currents to accomplish the task. The change in current signal features during fault has been considered as discriminatory measure. The developed scheme in this paper is tested over a large set of fault data with variation in system and fault parameters. These fault cases have been generated with PSCAD/EMTDC on a 400 kV, 300 km transmission line model. The developed algorithm has proved better for implementation on TCSC compensated line with its improved accuracy and speed.
A general purpose subroutine for fast fourier transform on a distributed memory parallel machine
NASA Technical Reports Server (NTRS)
Dubey, A.; Zubair, M.; Grosch, C. E.
1992-01-01
One issue which is central in developing a general purpose Fast Fourier Transform (FFT) subroutine on a distributed memory parallel machine is the data distribution. It is possible that different users would like to use the FFT routine with different data distributions. Thus, there is a need to design FFT schemes on distributed memory parallel machines which can support a variety of data distributions. An FFT implementation on a distributed memory parallel machine which works for a number of data distributions commonly encountered in scientific applications is presented. The problem of rearranging the data after computing the FFT is also addressed. The performance of the implementation on a distributed memory parallel machine Intel iPSC/860 is evaluated.
Protecting Files Hosted on Virtual Machines With Out-of-Guest Access Control
2017-12-01
analyzes the design and methodology of the implemented mechanism, while Chapter 4 explains the test methodology, test cases, and performance testing ...SACL, we verify that the user or group accessing the file has sufficient permissions. If that is correct, the callback function returns control to...ferify. In the first section, we validate our design of ferify. Next, we explain the tests we performed to verify that ferify has the results we expected
NASA Astrophysics Data System (ADS)
Angu, Rittu; Mehta, R. K.
2018-04-01
This paper presents a robust controller known as Extended State Observer (ESO) in order to improve the stability and voltage regulation of a synchronous machine connected to an infinite bus power system through a transmission line. The ESO-based control scheme is implemented with an automatic voltage regulator in conjunction with an excitation system to enhance the damping of low frequency power system oscillations, as the Power System Stabilizer (PSS) does. The implementation of PSS excitation control techniques however requires reliable information about the entire states, though they are not always directly measureable. To address this issue, the proposed ESO provides the estimate of system states as well as disturbance state together in order to improve not only the damping but also compensates system efficiently in presence of parameter uncertainties and external disturbances. The Closed-Loop Poles (CLPs) of the system have been assigned by the symmetric root locus technique, with the desired level of system damping provided by the dominant CLPs. The performance of the system is analyzed through simulating at different operating conditions. The control method is not only capable of providing zero estimation error in steady-state, but also shows robustness in tracking the reference command under parametric variations and external disturbances. Illustrative examples have been provided to demonstrate the effectiveness of the developed methodology.
Active chatter suppression with displacement-only measurement in turning process
NASA Astrophysics Data System (ADS)
Ma, Haifeng; Wu, Jianhua; Yang, Liuqing; Xiong, Zhenhua
2017-08-01
Regenerative chatter is a major hindrance for achieving high quality and high production rate in machining processes. Various active controllers have been proposed to mitigate chatter. However, most of existing controllers were developed on the basis of multi-states feedback of the system and state observers were usually needed. Moreover, model parameters of the machining process (mass, damping and stiffness) were required in existing active controllers. In this study, an active sliding mode controller, which employs a dynamic output feedback sliding surface for the unmatched condition and an adaptive law for disturbance estimation, is designed, analyzed, and validated for chatter suppression in turning process. Only displacement measurement is required by this approach. Other sensors and state observers are not needed. Moreover, it facilitates a rapid implementation since the designed controller is established without using model parameters of the turning process. Theoretical analysis, numerical simulations and experiments on a computer numerical control (CNC) lathe are presented. It shows that the chatter can be substantially attenuated and the chatter-free region can be significantly expanded with the presented method.
Doppler ultrasound compatible plastic material for use in rigid flow models.
Wong, Emily Y; Thorne, Meghan L; Nikolov, Hristo N; Poepping, Tamie L; Holdsworth, David W
2008-11-01
A technique for the rapid but accurate fabrication of multiple flow phantoms with variations in vascular geometry would be desirable in the investigation of carotid atherosclerosis. This study demonstrates the feasibility and efficacy of implementing numerically controlled direct-machining of vascular geometries into Doppler ultrasound (DUS)-compatible plastic for the easy fabrication of DUS flow phantoms. Candidate plastics were tested for longitudinal speed of sound (SoS) and acoustic attenuation at the diagnostic frequency of 5 MHz. Teflon was found to have the most appropriate SoS (1376 +/- 40 m s(-1) compared with 1540 m s(-1) in soft tissue) and thus was selected to construct a carotid bifurcation flow model with moderate eccentric stenosis. The vessel geometry was machined directly into Teflon using a numerically controlled milling technique. Geometric accuracy of the phantom lumen was verified using nondestructive micro-computed tomography. Although Teflon displayed a higher attenuation coefficient than other tested materials, Doppler data acquired in the Teflon flow model indicated that sufficient signal power was delivered throughout the depth of the vessel and provided comparable velocity profiles to that obtained in the tissue-mimicking phantom. Our results indicate that Teflon provides the best combination of machinability and DUS compatibility, making it an appropriate choice for the fabrication of rigid DUS flow models using a direct-machining method.
Boboc, A; Bieg, B; Felton, R; Dalley, S; Kravtsov, Yu
2015-09-01
In this paper, we present the work in the implementation of a new calibration for the JET real-time polarimeter based on the complex amplitude ratio technique and a new self-validation mechanism of data. This allowed easy integration of the polarimetry measurements into the JET plasma density control (gas feedback control) and as well as machine protection systems (neutral beam injection heating safety interlocks). The new addition was used successfully during 2014 JET Campaign and is envisaged that will operate routinely from 2015 campaign onwards in any plasma condition (including ITER relevant scenarios). This mode of operation elevated the importance of the polarimetry as a diagnostic tool in the view of future fusion experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boboc, A., E-mail: Alexandru.Boboc@ccfe.ac.uk; Felton, R.; Dalley, S.
2015-09-15
In this paper, we present the work in the implementation of a new calibration for the JET real-time polarimeter based on the complex amplitude ratio technique and a new self-validation mechanism of data. This allowed easy integration of the polarimetry measurements into the JET plasma density control (gas feedback control) and as well as machine protection systems (neutral beam injection heating safety interlocks). The new addition was used successfully during 2014 JET Campaign and is envisaged that will operate routinely from 2015 campaign onwards in any plasma condition (including ITER relevant scenarios). This mode of operation elevated the importance ofmore » the polarimetry as a diagnostic tool in the view of future fusion experiments.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-19
... Promulgation of Air Quality Implementation Plans; Maryland; Adoption of Plastic Parts and Business Machines..., Plastic Parts and Business Machines Coating. Maryland's SIP revision meets the requirement to adopt... (CTG) for Miscellaneous Metal and Plastic Parts Coatings and will help Maryland attain and maintain the...
An Analysis of Hardware-Assisted Virtual Machine Based Rootkits
2014-06-01
certain aspects of TPM implementation just to name a few. HyperWall is an architecture proposed by Szefer and Lee to protect guest VMs from...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) The use of virtual machine (VM) technology has expanded rapidly since AMD and Intel implemented ...Intel VT-x implementations of Blue Pill to identify commonalities in the respective versions’ attack methodologies from both a functional and technical
Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Anindya, E-mail: r-ani@vecc.gov.in; Bhole, R. B.; Nandy, Partha P.
2015-03-15
The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A setmore » of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.« less
Method and system for fault accommodation of machines
NASA Technical Reports Server (NTRS)
Goebel, Kai Frank (Inventor); Subbu, Rajesh Venkat (Inventor); Rausch, Randal Thomas (Inventor); Frederick, Dean Kimball (Inventor)
2011-01-01
A method for multi-objective fault accommodation using predictive modeling is disclosed. The method includes using a simulated machine that simulates a faulted actual machine, and using a simulated controller that simulates an actual controller. A multi-objective optimization process is performed, based on specified control settings for the simulated controller and specified operational scenarios for the simulated machine controlled by the simulated controller, to generate a Pareto frontier-based solution space relating performance of the simulated machine to settings of the simulated controller, including adjustment to the operational scenarios to represent a fault condition of the simulated machine. Control settings of the actual controller are adjusted, represented by the simulated controller, for controlling the actual machine, represented by the simulated machine, in response to a fault condition of the actual machine, based on the Pareto frontier-based solution space, to maximize desirable operational conditions and minimize undesirable operational conditions while operating the actual machine in a region of the solution space defined by the Pareto frontier.
Perforated-Layer Implementation Of Radio-Frequency Lenses
NASA Technical Reports Server (NTRS)
Dolgin, Benjamin P.
1996-01-01
Luneberg-type radio-frequency dielectric lenses made of stacked perforated circular dielectric sheets, according to proposal. Perforation pattern designed to achieve required spatial variation of permittivity. Consists of round holes distributed across face of each sheet in "Swiss-cheese" pattern, plus straight or curved slots that break up outer parts into petals in "daisy-wheel" pattern. Holes and slots made by numerically controlled machining.
Simultaneous Planning and Control for Autonomous Ground Vehicles
2009-02-01
these applications is called A * ( A -star), and it was originally developed by Hart, Nilsson, and Raphael [HAR68]. Their research presented the formal...sequence, rather than a dynamic programming approach. A * search is a technique originally developed for Artificial Intelligence 43 applications ... developed at the Center for Intelligent Machines and Robotics, serves as a platform for the implementation and testing discussed. autonomous
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pin, F.G.; de Saussure, G.; Spelt, P.F.
1988-01-01
This paper describes recent research activities at the Center for Engineering Systems Advanced Research (CESAR) in the area of sensor based reasoning, with emphasis being given to their application and implementation on our HERMIES-IIB autonomous mobile vehicle. These activities, including navigation and exploration in a-priori unknown and dynamic environments, goal recognition, vision-guided manipulation and sensor-driven machine learning, are discussed within the framework of a scenario in which an autonomous robot is asked to navigate through an unknown dynamic environment, explore, find and dock at the panel, read and understand the status of the panel's meters and dials, learn the functioningmore » of a process control panel, and successfully manipulate the control devices of the panel to solve a maintenance emergency problems. A demonstration of the successful implementation of the algorithms on our HERMIES-IIB autonomous robot for resolution of this scenario is presented. Conclusions are drawn concerning the applicability of the methodologies to more general classes of problems and implications for future work on sensor-driven reasoning for autonomous robots are discussed. 8 refs., 3 figs.« less
NASA Astrophysics Data System (ADS)
Zhu, Meng-Zheng; Ye, Liu
2015-04-01
An efficient scheme is proposed to implement a quantum cloning machine in separate cavities based on a hybrid interaction between electron-spin systems placed in the cavities and an optical coherent pulse. The coefficient of the output state for the present cloning machine is just the direct product of two trigonometric functions, which ensures that different types of quantum cloning machine can be achieved readily in the same framework by appropriately adjusting the rotated angles. The present scheme can implement optimal one-to-two symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, optimal symmetric (asymmetric) real-state cloning, optimal one-to-three symmetric economical real-state cloning, and optimal symmetric cloning of qubits given by an arbitrary axisymmetric distribution. In addition, photon loss of the qubus beams during the transmission and decoherence effects caused by such a photon loss are investigated.
Implementation of an ADI method on parallel computers
NASA Technical Reports Server (NTRS)
Fatoohi, Raad A.; Grosch, Chester E.
1987-01-01
The implementation of an ADI method for solving the diffusion equation on three parallel/vector computers is discussed. The computers were chosen so as to encompass a variety of architectures. They are: the MPP, an SIMD machine with 16K bit serial processors; FLEX/32, an MIMD machine with 20 processors; and CRAY/2, an MIMD machine with four vector processors. The Gaussian elimination algorithm is used to solve a set of tridiagonal systems on the FLEX/32 and CRAY/2 while the cyclic elimination algorithm is used to solve these systems on the MPP. The implementation of the method is discussed in relation to these architectures and measures of the performance on each machine are given. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Finally, conclusions are presented.
Implementation of an ADI method on parallel computers
NASA Technical Reports Server (NTRS)
Fatoohi, Raad A.; Grosch, Chester E.
1987-01-01
In this paper the implementation of an ADI method for solving the diffusion equation on three parallel/vector computers is discussed. The computers were chosen so as to encompass a variety of architectures. They are the MPP, an SIMD machine with 16-Kbit serial processors; Flex/32, an MIMD machine with 20 processors; and Cray/2, an MIMD machine with four vector processors. The Gaussian elimination algorithm is used to solve a set of tridiagonal systems on the Flex/32 and Cray/2 while the cyclic elimination algorithm is used to solve these systems on the MPP. The implementation of the method is discussed in relation to these architectures and measures of the performance on each machine are given. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Finally conclusions are presented.
Perspex machine: V. Compilation of C programs
NASA Astrophysics Data System (ADS)
Spanner, Matthew P.; Anderson, James A. D. W.
2006-01-01
The perspex machine arose from the unification of the Turing machine with projective geometry. The original, constructive proof used four special, perspective transformations to implement the Turing machine in projective geometry. These four transformations are now generalised and applied in a compiler, implemented in Pop11, that converts a subset of the C programming language into perspexes. This is interesting both from a geometrical and a computational point of view. Geometrically, it is interesting that program source can be converted automatically to a sequence of perspective transformations and conditional jumps, though we find that the product of homogeneous transformations with normalisation can be non-associative. Computationally, it is interesting that program source can be compiled for a Reduced Instruction Set Computer (RISC), the perspex machine, that is a Single Instruction, Zero Exception (SIZE) computer.
Solving the Cauchy-Riemann equations on parallel computers
NASA Technical Reports Server (NTRS)
Fatoohi, Raad A.; Grosch, Chester E.
1987-01-01
Discussed is the implementation of a single algorithm on three parallel-vector computers. The algorithm is a relaxation scheme for the solution of the Cauchy-Riemann equations; a set of coupled first order partial differential equations. The computers were chosen so as to encompass a variety of architectures. They are: the MPP, and SIMD machine with 16K bit serial processors; FLEX/32, an MIMD machine with 20 processors; and CRAY/2, an MIMD machine with four vector processors. The machine architectures are briefly described. The implementation of the algorithm is discussed in relation to these architectures and measures of the performance on each machine are given. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Conclusions are presented.
Lebon, Nicolas; Tapie, Laurent; Duret, Francois; Attal, Jean-Pierre
2016-01-01
Nowadays, dental numerical controlled (NC) milling machines are available for dental laboratories (labside solution) and dental production centers. This article provides a mechanical engineering approach to NC milling machines to help dental technicians understand the involvement of technology in digital dentistry practice. The technical and economic criteria are described for four labside and two production center dental NC milling machines available on the market. The technical criteria are focused on the capacities of the embedded technologies of milling machines to mill prosthetic materials and various restoration shapes. The economic criteria are focused on investment cost and interoperability with third-party software. The clinical relevance of the technology is discussed through the accuracy and integrity of the restoration. It can be asserted that dental production center milling machines offer a wider range of materials and types of restoration shapes than labside solutions, while labside solutions offer a wider range than chairside solutions. The accuracy and integrity of restorations may be improved as a function of the embedded technologies provided. However, the more complex the technical solutions available, the more skilled the user must be. Investment cost and interoperability with third-party software increase according to the quality of the embedded technologies implemented. Each private dental practice may decide which fabrication option to use depending on the scope of the practice.
Basic design principles of colorimetric vision systems
NASA Astrophysics Data System (ADS)
Mumzhiu, Alex M.
1998-10-01
Color measurement is an important part of overall production quality control in textile, coating, plastics, food, paper and other industries. The color measurement instruments such as colorimeters and spectrophotometers, used for production quality control have many limitations. In many applications they cannot be used for a variety of reasons and have to be replaced with human operators. Machine vision has great potential for color measurement. The components for color machine vision systems, such as broadcast quality 3-CCD cameras, fast and inexpensive PCI frame grabbers, and sophisticated image processing software packages are available. However the machine vision industry has only started to approach the color domain. The few color machine vision systems on the market, produced by the largest machine vision manufacturers have very limited capabilities. A lack of understanding that a vision based color measurement system could fail if it ignores the basic principles of colorimetry is the main reason for the slow progress of color vision systems. the purpose of this paper is to clarify how color measurement principles have to be applied to vision systems and how the electro-optical design features of colorimeters have to be modified in order to implement them for vision systems. The subject of this presentation far exceeds the limitations of a journal paper so only the most important aspects will be discussed. An overview of the major areas of applications for colorimetric vision system will be discussed. Finally, the reasons why some customers are happy with their vision systems and some are not will be analyzed.
Olstad, Dana Lee; Poirier, Kelly; Naylor, Patti-Jean; Shearer, Cindy; Kirk, Sara F L
2015-08-01
To assess agreement among three nutrient profiling systems used to evaluate the healthfulness of vending machine products in recreation and sport settings in three Canadian provinces. We also assessed whether the nutritional profile of vending machine items in recreation and sport facilities that were adhering to nutrition guidelines (implementers) was superior to that of facilities that were not (non-implementers). Trained research assistants audited the contents of vending machines. Three provincial nutrient profiling systems were used to classify items into each province's most, moderately and least healthy categories. Agreement among systems was assessed using weighted κ statistics. ANOVA assessed whether the average nutritional profile of vending machine items differed according to province and guideline implementation status. Eighteen recreation and sport facilities in three Canadian provinces. One-half of facilities were implementing nutrition guidelines. Snacks (n 531) and beverages (n 618) within thirty-six vending machines were audited. Overall, the systems agreed that the majority of items belonged within their respective least healthy categories (66-69 %) and that few belonged within their most healthy categories (14-22 %). Agreement among profiling systems was moderate to good, with κ w values ranging from 0·49 to 0·69. Implementers offered fewer of the least healthy items (P<0·05) and these items had a better nutritional profile compared with items in non-implementing facilities. The policy outcomes of the three systems are likely to be similar, suggesting there may be scope to harmonize nutrient profiling systems at a national level to avoid unnecessary duplication and support food reformulation by industry.
Man/computer communication in a space environment
NASA Technical Reports Server (NTRS)
Hodges, B. C.; Montoya, G.
1973-01-01
The present work reports on a study of the technology required to advance the state of the art in man/machine communications. The study involved the development and demonstration of both hardware and software to effectively implement man/computer interactive channels of communication. While tactile and visual man/computer communications equipment are standard methods of interaction with machines, man's speech is a natural media for inquiry and control. As part of this study, a word recognition unit was developed capable of recognizing a minimum of one hundred different words or sentences in any one of the currently used conversational languages. The study has proven that efficiency in communication between man and computer can be achieved when the vocabulary to be used is structured in a manner compatible with the rigid communication requirements of the machine while at the same time responsive to the informational needs of the man.
Wang, Zhihui; Kiryu, Tohru
2006-04-01
Since machine-based exercise still uses local facilities, it is affected by time and place. We designed a web-based system architecture based on the Java 2 Enterprise Edition that can accomplish continuously supported machine-based exercise. In this system, exercise programs and machines are loosely coupled and dynamically integrated on the site of exercise via the Internet. We then extended the conventional health promotion model, which contains three types of players (users, exercise trainers, and manufacturers), by adding a new player: exercise program creators. Moreover, we developed a self-describing strategy to accommodate a variety of exercise programs and provide ease of use to users on the web. We illustrate our novel design with examples taken from our feasibility study on a web-based cycle ergometer exercise system. A biosignal-based workload control approach was introduced to ensure that users performed appropriate exercise alone.
NASA Astrophysics Data System (ADS)
Mohan, Dhanya; Kumar, C. Santhosh
2016-03-01
Predicting the physiological condition (normal/abnormal) of a patient is highly desirable to enhance the quality of health care. Multi-parameter patient monitors (MPMs) using heart rate, arterial blood pressure, respiration rate and oxygen saturation (S pO2) as input parameters were developed to monitor the condition of patients, with minimum human resource utilization. The Support vector machine (SVM), an advanced machine learning approach popularly used for classification and regression is used for the realization of MPMs. For making MPMs cost effective, we experiment on the hardware implementation of the MPM using support vector machine classifier. The training of the system is done using the matlab environment and the detection of the alarm/noalarm condition is implemented in hardware. We used different kernels for SVM classification and note that the best performance was obtained using intersection kernel SVM (IKSVM). The intersection kernel support vector machine classifier MPM has outperformed the best known MPM using radial basis function kernel by an absoute improvement of 2.74% in accuracy, 1.86% in sensitivity and 3.01% in specificity. The hardware model was developed based on the improved performance system using Verilog Hardware Description Language and was implemented on Altera cyclone-II development board.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angers, Crystal Plume; Bottema, Ryan; Buckley, Les
Purpose: Treatment unit uptime statistics are typically used to monitor radiation equipment performance. The Ottawa Hospital Cancer Centre has introduced the use of Quality Control (QC) test success as a quality indicator for equipment performance and overall health of the equipment QC program. Methods: Implemented in 2012, QATrack+ is used to record and monitor over 1100 routine machine QC tests each month for 20 treatment and imaging units ( http://qatrackplus.com/ ). Using an SQL (structured query language) script, automated queries of the QATrack+ database are used to generate program metrics such as the number of QC tests executed and themore » percentage of tests passing, at tolerance or at action. These metrics are compared against machine uptime statistics already reported within the program. Results: Program metrics for 2015 show good correlation between pass rate of QC tests and uptime for a given machine. For the nine conventional linacs, the QC test success rate was consistently greater than 97%. The corresponding uptimes for these units are better than 98%. Machines that consistently show higher failure or tolerance rates in the QC tests have lower uptimes. This points to either poor machine performance requiring corrective action or to problems with the QC program. Conclusions: QATrack+ significantly improves the organization of QC data but can also aid in overall equipment management. Complimenting machine uptime statistics with QC test metrics provides a more complete picture of overall machine performance and can be used to identify areas of improvement in the machine service and QC programs.« less
Four quadrant control of induction motors
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1991-01-01
Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.
Contributions a l'etude et a l'application industrielle de la machine asynchrone
NASA Astrophysics Data System (ADS)
Ouhrouche, Mohand-Ameziane
The work presented in this thesis, done in the Electrical Drives Laboratory of Electrical and Computer Engineering Department, deals with the industrial applications of a three-phase induction machine (electrical drives and electricity generation). This thesis, characterized by its multidisciplinary content, has two major parts. The first one deals with the on-line and off-line parametric identification of the induction machine model necessary to achieve accurate vector control strategy. The second part, which is a resume of a research work sponsored by Hydro-Quebec, deals with the application of an induction machine in Asynchronous Non Utility Generators units (ANUG). As it is shown in the following, major scientific contributions are made in both two parts. In the first part of our research work, we propose a new speed sensorless vector control strategy for an induction machine, which is adaptive to the rotor resistance variations. The proposed control strategy is based on the Extended Kalman Filter approach and a decoupling controller which takes into account the rotor resistance variations. The consideration of coupled electrical and mechanical modes leads to a fifth order nonlinear model of the induction machine. The load torque is taken as a function of the rotor angular speed. The Extended Kalman Filter, based on the process's nonlinear (bilinear) model, estimate simultaneously the rotor resistance, angular speed and the flux vector from the startup to the steady state equilibrium point. The machine-converter-control system is implemented in MATLAB/SIMULINK environment and the obtained results confirm the robustness of the proposed scheme. As in the electrical drives erea, the induction machine is now widely used by small to medium power Non Utility Generator units (NUG) to produce electricity. In Quebec, these NUGs units are integrated into the Hydro-Quebec 25 kV distribution system via transformer which exhibit nonlinear characteristics. We have shown by using the ElectroMagnetic Program (EMTP) that, in some islanding scenarios, i.e. that the NUG unit is disconnected from the power grid, in addition to frequency variations, appearence of high an abnormal overvoltages, ferroresonance should occur. As a consequence, normal protective devices could fail to securely operate, which could cause serious damages to the equipment and the maintenance staff. This result, established for the first time , can be useful to improve the reliability of the NUGs units and is considered important by the power engineering community. This has led to a publication in the John Wiley & Sons Encyclopedia of Electrical and Electronics Engineering which will be available in February 1999 ( http://www.engr.wisc.edu/ ece/ece).
Practical Framework: Implementing OEE Method in Manufacturing Process Environment
NASA Astrophysics Data System (ADS)
Maideen, N. C.; Sahudin, S.; Mohd Yahya, N. H.; Norliawati, A. O.
2016-02-01
Manufacturing process environment requires reliable machineries in order to be able to satisfy the market demand. Ideally, a reliable machine is expected to be operated and produce a quality product at its maximum designed capability. However, due to some reason, the machine usually unable to achieved the desired performance. Since the performance will affect the productivity of the system, a measurement technique should be applied. Overall Equipment Effectiveness (OEE) is a good method to measure the performance of the machine. The reliable result produced from OEE can then be used to propose a suitable corrective action. There are a lot of published paper mentioned about the purpose and benefit of OEE that covers what and why factors. However, the how factor not yet been revealed especially the implementation of OEE in manufacturing process environment. Thus, this paper presents a practical framework to implement OEE and a case study has been discussed to explain in detail each steps proposed. The proposed framework is beneficial to the engineer especially the beginner to start measure their machine performance and later improve the performance of the machine.
NASA Astrophysics Data System (ADS)
Kim, Hyung Tae; Jeong, An Mok; Kim, Hyo Young; An, Jong Wook; Kim, Cheol Ho; Jin, Kyung Chan; Choi, Seung-Bok
2018-03-01
In a previous work, magneto-rheological (MR) dampers were originally designed and implemented for reducing the vertical low-frequency vibration occurring in precise semi-conductor manufacturing equipment. To reduce the vibrations, an isolator levitated the manufacturing machine from the floor using pneumatic pressure which cut off the external vibration, while the MR damper was used to decrease the transient response of the isolator. However, it has been found that the MR damper also provides a damping effect on the lateral vibration induced by the high-speed plane motions. Therefore, in this work both vertical and lateral vibrations are controlled using the yield and shear stresses of the lateral directions generated from the MR fluids by applying a magnetic field. After deriving a vibration control model, an overall control logic is formulated considering both vertical and lateral vibrations. In this control strategy, a feedback loop associated with the laser sensor is used for vertical vibration control, while a feed-forward loop with the motion information is used for lateral vibration control. The experimental results show that the proposed concept is highly effective for lateral vibration control using the damping effect on multiple directions.
Implementing Journaling in a Linux Shared Disk File System
NASA Technical Reports Server (NTRS)
Preslan, Kenneth W.; Barry, Andrew; Brassow, Jonathan; Cattelan, Russell; Manthei, Adam; Nygaard, Erling; VanOort, Seth; Teigland, David; Tilstra, Mike; O'Keefe, Matthew;
2000-01-01
In computer systems today, speed and responsiveness is often determined by network and storage subsystem performance. Faster, more scalable networking interfaces like Fibre Channel and Gigabit Ethernet provide the scaffolding from which higher performance computer systems implementations may be constructed, but new thinking is required about how machines interact with network-enabled storage devices. In this paper we describe how we implemented journaling in the Global File System (GFS), a shared-disk, cluster file system for Linux. Our previous three papers on GFS at the Mass Storage Symposium discussed our first three GFS implementations, their performance, and the lessons learned. Our fourth paper describes, appropriately enough, the evolution of GFS version 3 to version 4, which supports journaling and recovery from client failures. In addition, GFS scalability tests extending to 8 machines accessing 8 4-disk enclosures were conducted: these tests showed good scaling. We describe the GFS cluster infrastructure, which is necessary for proper recovery from machine and disk failures in a collection of machines sharing disks using GFS. Finally, we discuss the suitability of Linux for handling the big data requirements of supercomputing centers.
Execution time supports for adaptive scientific algorithms on distributed memory machines
NASA Technical Reports Server (NTRS)
Berryman, Harry; Saltz, Joel; Scroggs, Jeffrey
1990-01-01
Optimizations are considered that are required for efficient execution of code segments that consists of loops over distributed data structures. The PARTI (Parallel Automated Runtime Toolkit at ICASE) execution time primitives are designed to carry out these optimizations and can be used to implement a wide range of scientific algorithms on distributed memory machines. These primitives allow the user to control array mappings in a way that gives an appearance of shared memory. Computations can be based on a global index set. Primitives are used to carry out gather and scatter operations on distributed arrays. Communications patterns are derived at runtime, and the appropriate send and receive messages are automatically generated.
Automatic detection of tweets reporting cases of influenza like illnesses in Australia
2015-01-01
Early detection of disease outbreaks is critical for disease spread control and management. In this work we investigate the suitability of statistical machine learning approaches to automatically detect Twitter messages (tweets) that are likely to report cases of possible influenza like illnesses (ILI). Empirical results obtained on a large set of tweets originating from the state of Victoria, Australia, in a 3.5 month period show evidence that machine learning classifiers are effective in identifying tweets that mention possible cases of ILI (up to 0.736 F-measure, i.e. the harmonic mean of precision and recall), regardless of the specific technique implemented by the classifier investigated in the study. PMID:25870759
Execution time support for scientific programs on distributed memory machines
NASA Technical Reports Server (NTRS)
Berryman, Harry; Saltz, Joel; Scroggs, Jeffrey
1990-01-01
Optimizations are considered that are required for efficient execution of code segments that consists of loops over distributed data structures. The PARTI (Parallel Automated Runtime Toolkit at ICASE) execution time primitives are designed to carry out these optimizations and can be used to implement a wide range of scientific algorithms on distributed memory machines. These primitives allow the user to control array mappings in a way that gives an appearance of shared memory. Computations can be based on a global index set. Primitives are used to carry out gather and scatter operations on distributed arrays. Communications patterns are derived at runtime, and the appropriate send and receive messages are automatically generated.
NASA Astrophysics Data System (ADS)
Datta, Jinia; Chowdhuri, Sumana; Bera, Jitendranath
2016-12-01
This paper presents a novel scheme of remote condition monitoring of multi machine system where a secured and coded data of induction machine with different parameters is communicated between a state-of-the-art dedicated hardware Units (DHU) installed at the machine terminal and a centralized PC based machine data management (MDM) software. The DHUs are built for acquisition of different parameters from the respective machines, and hence are placed at their nearby panels in order to acquire different parameters cost effectively during their running condition. The MDM software collects these data through a communication channel where all the DHUs are networked using RS485 protocol. Before transmitting, the parameter's related data is modified with the adoption of differential pulse coded modulation (DPCM) and Huffman coding technique. It is further encrypted with a private key where different keys are used for different DHUs. In this way a data security scheme is adopted during its passage through the communication channel in order to avoid any third party attack into the channel. The hybrid mode of DPCM and Huffman coding is chosen to reduce the data packet length. A MATLAB based simulation and its practical implementation using DHUs at three machine terminals (one healthy three phase, one healthy single phase and one faulty three phase machine) proves its efficacy and usefulness for condition based maintenance of multi machine system. The data at the central control room are decrypted and decoded using MDM software. In this work it is observed that Chanel efficiency with respect to different parameter measurements has been increased very much.
Burnishing Systems: a Short Survey of the State-of-the-art
NASA Astrophysics Data System (ADS)
Bobrovskij, I. N.
2018-01-01
The modern technological solutions allowing to implement a new technology of surface plastic deformation are considered. The technological device allowing to implement the technology of hyper productive surface plastic deformation or wide burnishing (machining time is up to 2-3 revolutions of workpiece) is presented. The device provides the constant force of instruments regardless the beating, non-roundness and other surface shape defects; usable and easily controlled force adjustment; precise installation of instruments and holders toward the along the worpieces axis; automation of the supply and retraction of instruments. Also the device allowing to implement the technology of nanostructuring burnishing is presented. The design of the device allows to eliminate the effect of auto-oscillations.
New sensorless, efficient optimized and stabilized v/f control for pmsm machines
NASA Astrophysics Data System (ADS)
Jafari, Seyed Hesam
With the rapid advances in power electronics and motor drive technologies in recent decades, permanent magnet synchronous machines (PMSM) have found extensive applications in a variety of industrial systems due to its many desirable features such as high power density, high efficiency, and high torque to current ratio, low noise, and robustness. In low dynamic applications like pumps, fans and compressors where the motor speed is nearly constant, usage of a simple control algorithm that can be implemented with least number of the costly external hardware can be highly desirable for industry. In recent published works, for low power PMSMs, a new sensorless volts-per-hertz (V/f) controlling method has been proposed which can be used for PMSM drive applications where the motor speed is constant. Moreover, to minimize the cost of motor implementation, the expensive rotor damper winding was eliminated. By removing the damper winding, however, instability problems normally occur inside of the motor which in some cases can be harmful for a PMSM drive. As a result, to address the instability issue, a stabilizing loop was developed and added to the conventional V/f. By further studying the proposed sensorless stabilized V/f, and calculating power loss, it became known that overall motor efficiency still is needed to be improved and optimized. This thesis suggests a new V/f control method for PMSMs, where both efficiency and stability problems are addressed. Also, although in nearly all recent related research, methods have been applied to low power PMSM, for the first time, in this thesis, the suggested method is implemented for a medium power 15 kW PMSM. A C2000 F2833x Digital Signal Processor (DSP) is used as controller part for the student custom built PMSM drive, but instead of programming the DSP in Assembly or C, the main control algorithm was developed in a rapid prototype software environment which here Matlab Simulink embedded code library is used.
Design and Performance Improvement of AC Machines Sharing a Common Stator
NASA Astrophysics Data System (ADS)
Guo, Lusu
With the increasing demand on electric motors in various industrial applications, especially electric powered vehicles (electric cars, more electric aircrafts and future electric ships and submarines), both synchronous reluctance machines (SynRMs) and interior permanent magnet (IPM) machines are recognized as good candidates for high performance variable speed applications. Developing a single stator design which can be used for both SynRM and IPM motors is a good way to reduce manufacturing and maintenance cost. SynRM can be used as a low cost solution for many electric driving applications and IPM machines can be used in power density crucial circumstances or work as generators to meet the increasing demand for electrical power on board. In this research, SynRM and IPM machines are designed sharing a common stator structure. The prototype motors are designed with the aid of finite element analysis (FEA). Machine performances with different stator slot and rotor pole numbers are compared by FEA. An 18-slot, 4-pole structure is selected based on the comparison for this prototype design. Sometimes, torque pulsation is the major drawback of permanent magnet synchronous machines. There are several sources of torque pulsations, such as back-EMF distortion, inductance variation and cogging torque due to presence of permanent magnets. To reduce torque pulsations in permanent magnet machines, all the efforts can be classified into two categories: one is from the design stage, the structure of permanent magnet machines can be optimized with the aid of finite element analysis. The other category of reducing torque pulsation is after the permanent magnet machine has been manufactured or the machine structure cannot be changed because of other reasons. The currents fed into the permanent magnet machine can be controlled to follow a certain profile which will make the machine generate a smoother torque waveform. Torque pulsation reduction methods in both categories will be discussed in this dissertation. In the design stage, an optimization method based on orthogonal experimental design will be introduced. Besides, a universal current profiling technique is proposed to minimize the torque pulsation along with the stator copper losses in modular interior permanent magnet motors. Instead of sinusoidal current waveforms, this algorithm will calculate the proper currents which can minimize the torque pulsation. Finite element analysis and Matlab programing will be used to develop this optimal current profiling algorithm. Permanent magnet machines are becoming more attractive in some modern traction applications, such as traction motors and generators for an electrified vehicle. The operating speed or the load condition in these applications may be changing all the time. Compared to electric machines used to operate at a constant speed and constant load, better control performance is required. In this dissertation, a novel model reference adaptive control (MRAC) used on five-phase interior permanent magnet motor drives is presented. The primary controller is designed based on artificial neural network (ANN) to simulate the nonlinear characteristics of the system without knowledge of accurate motor model or parameters. The proposed motor drive decouples the torque and flux components of five-phase IPM motors by applying a multiple reference frame transformation. Therefore, the motor can be easily driven below the rated speed with the maximum torque per ampere (MTPA) operation or above the rated speed with the flux weakening operation. The ANN based primary controller consists of a radial basis function (RBF) network which is trained on-line to adapt system uncertainties. The complete IPM motor drive is simulated in Matlab/Simulink environment and implemented experimentally utilizing dSPACE DS1104 DSP board on a five-phase prototype IPM motor. The proposed model reference adaptive control method has been applied on the commons stator SynRM and IPM machine as well.
Balasubramanian, Karthikeyan; Southerland, Joshua; Vaidya, Mukta; Qian, Kai; Eleryan, Ahmed; Fagg, Andrew H; Sluzky, Marc; Oweiss, Karim; Hatsopoulos, Nicholas
2013-01-01
Operant conditioning with biofeedback has been shown to be an effective method to modify neural activity to generate goal-directed actions in a brain-machine interface. It is particularly useful when neural activity cannot be mathematically mapped to motor actions of the actual body such as in the case of amputation. Here, we implement an operant conditioning approach with visual feedback in which an amputated monkey is trained to control a multiple degree-of-freedom robot to perform a reach-to-grasp behavior. A key innovation is that each controlled dimension represents a behaviorally relevant synergy among a set of joint degrees-of-freedom. We present a number of behavioral metrics by which to assess improvements in BMI control with exposure to the system. The use of non-human primates with chronic amputation is arguably the most clinically-relevant model of human amputation that could have direct implications for developing a neural prosthesis to treat humans with missing upper limbs.
Experimental investigation of nonlinear characteristics of a smart fluid damper
NASA Astrophysics Data System (ADS)
Rahman, Mahmudur; Ong, Zhi Chao; Chong, Wen Tong; Julai, Sabariah; Ahamed, Raju
2018-05-01
Smart fluids, known as smart material, are used to form controllable dampers in vibration control applications. Magnetorheological(MR) fluid damper is a well-known smart fluid damper which has a reputation to provide high damping force with low-power input. However, the force/velocity of the MR damper is significantly nonlinear and proper characteristic analysis are required to be studied for optimal implementation in structural vibration control. In this study, an experimental investigation is carried out to test the damping characteristics of MR damper. Dynamic testing is performed with a long-stroke MR damper model no RD-80410-1 from Lord corporation on a universal testing machine(UTM). The force responses of MR damper are measured under different stroke lengths, velocities and current inputs and their performances are analyzed. This study will play a key role to implement MR damper in many structural vibration control applications.
Liu, Nehemiah T; Holcomb, John B; Wade, Charles E; Batchinsky, Andriy I; Cancio, Leopoldo C; Darrah, Mark I; Salinas, José
2014-02-01
Accurate and effective diagnosis of actual injury severity can be problematic in trauma patients. Inherent physiologic compensatory mechanisms may prevent accurate diagnosis and mask true severity in many circumstances. The objective of this project was the development and validation of a multiparameter machine learning algorithm and system capable of predicting the need for life-saving interventions (LSIs) in trauma patients. Statistics based on means, slopes, and maxima of various vital sign measurements corresponding to 79 trauma patient records generated over 110,000 feature sets, which were used to develop, train, and implement the system. Comparisons among several machine learning models proved that a multilayer perceptron would best implement the algorithm in a hybrid system consisting of a machine learning component and basic detection rules. Additionally, 295,994 feature sets from 82 h of trauma patient data showed that the system can obtain 89.8 % accuracy within 5 min of recorded LSIs. Use of machine learning technologies combined with basic detection rules provides a potential approach for accurately assessing the need for LSIs in trauma patients. The performance of this system demonstrates that machine learning technology can be implemented in a real-time fashion and potentially used in a critical care environment.
Park, Eunjeong; Chang, Hyuk-Jae; Nam, Hyo Suk
2017-04-18
The pronator drift test (PDT), a neurological examination, is widely used in clinics to measure motor weakness of stroke patients. The aim of this study was to develop a PDT tool with machine learning classifiers to detect stroke symptoms based on quantification of proximal arm weakness using inertial sensors and signal processing. We extracted features of drift and pronation from accelerometer signals of wearable devices on the inner wrists of 16 stroke patients and 10 healthy controls. Signal processing and feature selection approach were applied to discriminate PDT features used to classify stroke patients. A series of machine learning techniques, namely support vector machine (SVM), radial basis function network (RBFN), and random forest (RF), were implemented to discriminate stroke patients from controls with leave-one-out cross-validation. Signal processing by the PDT tool extracted a total of 12 PDT features from sensors. Feature selection abstracted the major attributes from the 12 PDT features to elucidate the dominant characteristics of proximal weakness of stroke patients using machine learning classification. Our proposed PDT classifiers had an area under the receiver operating characteristic curve (AUC) of .806 (SVM), .769 (RBFN), and .900 (RF) without feature selection, and feature selection improves the AUCs to .913 (SVM), .956 (RBFN), and .975 (RF), representing an average performance enhancement of 15.3%. Sensors and machine learning methods can reliably detect stroke signs and quantify proximal arm weakness. Our proposed solution will facilitate pervasive monitoring of stroke patients. ©Eunjeong Park, Hyuk-Jae Chang, Hyo Suk Nam. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 18.04.2017.
An in-situ measuring method for planar straightness error
NASA Astrophysics Data System (ADS)
Chen, Xi; Fu, Luhua; Yang, Tongyu; Sun, Changku; Wang, Zhong; Zhao, Yan; Liu, Changjie
2018-01-01
According to some current problems in the course of measuring the plane shape error of workpiece, an in-situ measuring method based on laser triangulation is presented in this paper. The method avoids the inefficiency of traditional methods like knife straightedge as well as the time and cost requirements of coordinate measuring machine(CMM). A laser-based measuring head is designed and installed on the spindle of a numerical control(NC) machine. The measuring head moves in the path planning to measure measuring points. The spatial coordinates of the measuring points are obtained by the combination of the laser triangulation displacement sensor and the coordinate system of the NC machine, which could make the indicators of measurement come true. The method to evaluate planar straightness error adopts particle swarm optimization(PSO). To verify the feasibility and accuracy of the measuring method, simulation experiments were implemented with a CMM. Comparing the measurement results of measuring head with the corresponding measured values obtained by composite measuring machine, it is verified that the method can realize high-precise and automatic measurement of the planar straightness error of the workpiece.
The Machine Intelligence Hex Project
ERIC Educational Resources Information Center
Chalup, Stephan K.; Mellor, Drew; Rosamond, Fran
2005-01-01
Hex is a challenging strategy board game for two players. To enhance students' progress in acquiring understanding and practical experience with complex machine intelligence and programming concepts we developed the Machine Intelligence Hex (MIHex) project. The associated undergraduate student assignment is about designing and implementing Hex…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoginath, Srikanth B; Perumalla, Kalyan S; Henz, Brian J
2012-01-01
In prior work (Yoginath and Perumalla, 2011; Yoginath, Perumalla and Henz, 2012), the motivation, challenges and issues were articulated in favor of virtual time ordering of Virtual Machines (VMs) in network simulations hosted on multi-core machines. Two major components in the overall virtualization challenge are (1) virtual timeline establishment and scheduling of VMs, and (2) virtualization of inter-VM communication. Here, we extend prior work by presenting scaling results for the first component, with experiment results on up to 128 VMs scheduled in virtual time order on a single 12-core host. We also explore the solution space of design alternatives formore » the second component, and present performance results from a multi-threaded, multi-queue implementation of inter-VM network control for synchronized execution with VM scheduling, incorporated in our NetWarp simulation system.« less
The use of fatigue tests in the manufacture of automotive steel wheels.
NASA Astrophysics Data System (ADS)
Drozyner, P.; Rychlik, A.
2016-08-01
Production for the automotive industry must be particularly sensitive to the aspect of safety and reliability of manufactured components. One of such element is the rim, where durability is a feature which significantly affects the safety of transport. Customer complaints regarding this element are particularly painful for the manufacturer because it is almost always associated with the event of accident or near-accident. Authors propose original comprehensive method of quality control at selected stages of rims production: supply of materials, production and pre-shipment inspections. Tests by the proposed method are carried out on the originally designed inertial fatigue machine The machine allows bending fatigue tests in the frequency range of 0 to 50 Hz at controlled increments of vibration amplitude. The method has been positively verified in one of rims factory in Poland. Implementation resulted in an almost complete elimination of complaints resulting from manufacturing and material errors.
Implementation of compressive sensing for preclinical cine-MRI
NASA Astrophysics Data System (ADS)
Tan, Elliot; Yang, Ming; Ma, Lixin; Zheng, Yahong Rosa
2014-03-01
This paper presents a practical implementation of Compressive Sensing (CS) for a preclinical MRI machine to acquire randomly undersampled k-space data in cardiac function imaging applications. First, random undersampling masks were generated based on Gaussian, Cauchy, wrapped Cauchy and von Mises probability distribution functions by the inverse transform method. The best masks for undersampling ratios of 0.3, 0.4 and 0.5 were chosen for animal experimentation, and were programmed into a Bruker Avance III BioSpec 7.0T MRI system through method programming in ParaVision. Three undersampled mouse heart datasets were obtained using a fast low angle shot (FLASH) sequence, along with a control undersampled phantom dataset. ECG and respiratory gating was used to obtain high quality images. After CS reconstructions were applied to all acquired data, resulting images were quantitatively analyzed using the performance metrics of reconstruction error and Structural Similarity Index (SSIM). The comparative analysis indicated that CS reconstructed images from MRI machine undersampled data were indeed comparable to CS reconstructed images from retrospective undersampled data, and that CS techniques are practical in a preclinical setting. The implementation achieved 2 to 4 times acceleration for image acquisition and satisfactory quality of image reconstruction.
NASA Astrophysics Data System (ADS)
Herbuś, K.; Ociepka, P.
2017-08-01
In the work is analysed a sequential control system of a machine for separating and grouping work pieces for processing. Whereas, the area of the considered problem is related with verification of operation of an actuator system of an electro-pneumatic control system equipped with a PLC controller. Wherein to verification is subjected the way of operation of actuators in view of logic relationships assumed in the control system. The actuators of the considered control system were three drives of linear motion (pneumatic cylinders). And the logical structure of the system of operation of the control system is based on the signals flow graph. The tested logical structure of operation of the electro-pneumatic control system was implemented in the Automation Studio software of B&R company. This software is used to create programs for the PLC controllers. Next, in the FluidSIM software was created the model of the actuator system of the control system of a machine. To verify the created program for the PLC controller, simulating the operation of the created model, it was utilized the approach of integration these two programs using the tool for data exchange in the form of the OPC server.
Scalable hybrid computation with spikes.
Sarpeshkar, Rahul; O'Halloran, Micah
2002-09-01
We outline a hybrid analog-digital scheme for computing with three important features that enable it to scale to systems of large complexity: First, like digital computation, which uses several one-bit precise logical units to collectively compute a precise answer to a computation, the hybrid scheme uses several moderate-precision analog units to collectively compute a precise answer to a computation. Second, frequent discrete signal restoration of the analog information prevents analog noise and offset from degrading the computation. And, third, a state machine enables complex computations to be created using a sequence of elementary computations. A natural choice for implementing this hybrid scheme is one based on spikes because spike-count codes are digital, while spike-time codes are analog. We illustrate how spikes afford easy ways to implement all three components of scalable hybrid computation. First, as an important example of distributed analog computation, we show how spikes can create a distributed modular representation of an analog number by implementing digital carry interactions between spiking analog neurons. Second, we show how signal restoration may be performed by recursive spike-count quantization of spike-time codes. And, third, we use spikes from an analog dynamical system to trigger state transitions in a digital dynamical system, which reconfigures the analog dynamical system using a binary control vector; such feedback interactions between analog and digital dynamical systems create a hybrid state machine (HSM). The HSM extends and expands the concept of a digital finite-state-machine to the hybrid domain. We present experimental data from a two-neuron HSM on a chip that implements error-correcting analog-to-digital conversion with the concurrent use of spike-time and spike-count codes. We also present experimental data from silicon circuits that implement HSM-based pattern recognition using spike-time synchrony. We outline how HSMs may be used to perform learning, vector quantization, spike pattern recognition and generation, and how they may be reconfigured.
A Low-Cost Hand Trainer Device Based On Microcontroller Platform
NASA Astrophysics Data System (ADS)
Sabor, Muhammad Akmal Mohammad; Thamrin, Norashikin M.
2018-03-01
Conventionally, the rehabilitation equipment used in the hospital or recovery center to treat and train the muscle of the stroke patient is implementing the pneumatic or compressed air machine. The main problem caused by this equipment is that the arrangement of the machine is quite complex and the position of it has been locked and fixed, which can cause uncomfortable feeling to the patients throughout the recovery session. Furthermore, the harsh movement from the machine could harm the patient as it does not allow flexibility movement and the use of pneumatic actuator has increased the gripping force towards the patient which could hurt them. Therefore, the main aim of this paper is to propose the development of the Bionic Hand Trainer based on Arduino platform, for a low-cost solution for rehabilitation machine as well as allows flexibility and smooth hand movement for the patients during the healing process. The scope of this work is to replicate the structure of the hand only at the fingers structure that is the phalanges part, which inclusive the proximal, intermediate and distal of the fingers. In order to do this, a hand glove is designed by equipping with flex sensors at every finger and connected them to the Arduino platform. The movement of the hand will motorize the movement of the dummy hand that has been controlled by the servo motors, which have been equipped along the phalanges part. As a result, the bending flex sensors due to the movement of the fingers has doubled up the rotation of the servo motors to mimic this movement at the dummy hand. The voltage output from the bending sensors are ranging from 0 volt to 5 volts, which are suitable for low-cost hand trainer device implementation. Through this system, the patient will have the power to control their gripping operation slowly without having a painful force from the external actuators throughout the rehabilitation process.
Methods, systems and apparatus for controlling operation of two alternating current (AC) machines
Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA
2012-06-05
A system is provided for controlling two alternating current (AC) machines via a five-phase PWM inverter module. The system comprises a first control loop, a second control loop, and a current command adjustment module. The current command adjustment module operates in conjunction with the first control loop and the second control loop to continuously adjust current command signals that control the first AC machine and the second AC machine such that they share the input voltage available to them without compromising the target mechanical output power of either machine. This way, even when the phase voltage available to either one of the machines decreases, that machine outputs its target mechanical output power.
Machine intelligence and robotics: Report of the NASA study group
NASA Technical Reports Server (NTRS)
1980-01-01
Opportunities for the application of machine intelligence and robotics in NASA missions and systems were identified. The benefits of successful adoption of machine intelligence and robotics techniques were estimated and forecasts were prepared to show their growth potential. Program options for research, advanced development, and implementation of machine intelligence and robot technology for use in program planning are presented.
Harmonic reduction of Direct Torque Control of six-phase induction motor.
Taheri, A
2016-07-01
In this paper, a new switching method in Direct Torque Control (DTC) of a six-phase induction machine for reduction of current harmonics is introduced. Selecting a suitable vector in each sampling period is an ordinal method in the ST-DTC drive of a six-phase induction machine. The six-phase induction machine has 64 voltage vectors and divided further into four groups. In the proposed DTC method, the suitable voltage vectors are selected from two vector groups. By a suitable selection of two vectors in each sampling period, the harmonic amplitude is decreased more, in and various comparison to that of the ST-DTC drive. The harmonics loss is greater reduced, while the electromechanical energy is decreased with switching loss showing a little increase. Spectrum analysis of the phase current in the standard and new switching table DTC of the six-phase induction machine and determination for the amplitude of each harmonics is proposed in this paper. The proposed method has a less sampling time in comparison to the ordinary method. The Harmonic analyses of the current in the low and high speed shows the performance of the presented method. The simplicity of the proposed method and its implementation without any extra hardware is other advantages of the proposed method. The simulation and experimental results show the preference of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ercan, Ziya; Carvalho, Ashwin; Tseng, H. Eric; Gökaşan, Metin; Borrelli, Francesco
2018-05-01
Haptic shared control framework opens up new perspectives on the design and implementation of the driver steering assistance systems which provide torque feedback to the driver in order to improve safety. While designing such a system, it is important to account for the human-machine interactions since the driver feels the feedback torque through the hand wheel. The controller should consider the driver's impact on the steering dynamics to achieve a better performance in terms of driver's acceptance and comfort. In this paper we present a predictive control framework which uses a model of driver-in-the-loop steering dynamics to optimise the torque intervention with respect to the driver's neuromuscular response. We first validate the system in simulations to compare the performance of the controller in nominal and model mismatch cases. Then we implement the controller in a test vehicle and perform experiments with a human driver. The results show the effectiveness of the proposed system in avoiding hazardous situations under different driver behaviours.
Commutation assistée, des machines à courant continu
NASA Astrophysics Data System (ADS)
Goyet, R.; Benalla, H.
1994-12-01
The paper presents an experiment of DC machine (135V, 60A, 8kW) working without commutating poles. These have the usual function of implementing the commutation of sections as they pass trough the neutral line. It is a question of reversing the section current in front of the brushes. Commutating poles are generally bulky and increase perceptibly heaviness of the machine (of 1/5about). In the following experiment they are suppressed and commutation is carried out from the outside of the machine owing to an electronic device. Working of this electronic assistance has been described in a previous paper. Here, in this second paper, two different devices are implemented until three quarters of nominal values of the machine ; accurate control of the devices is made easier by means of a computer. Experiment has been implemented without any spark under the brushes, it confirms the feasibility of a new way of commutation for DC machines. These devices do not make yet an industrial way of suppressing commutating poles. On the other hand they lead to an original point of view about commutation phenomena. They set a new process using both the cutting off capability of brushes and the accurate adjustements of power electronics. Nous présentons ici une expérimentation d'une machine à courant continu de puissance 8 kW (135 V, 60 A) fonctionnant sans pôles auxiliaires. Rappelons que ces derniers ont pour fonction habituelle d'assurer la commutation des sections à leur passage sur la ligne neutre. Il s'agit d'inverser le courant dans la section lorsqu'elle passe devant les balais. Les pôles auxiliaires sont en général encombrants et augmentent sensiblement le poids de la machine (de 1/5 environ). Dans l'expérience présentée ici ils sont supprimés et la commutation est réalisée à l'extérieur de la machine grâce à un dispositif électronique appelé ll d'assistance gg. Dans un précédent article [1] nous avons donné le principe de fonctionnement de cette assistance. Dans ce deuxième article nous présentons les résultats obtenus sur une machine à l'aide de deux dispositifs électroniques différents pilotés par ordinateur. Cette machine a fonctionné, sans génération d'arc, à trois quarts de sa puissance nominale. L'expérience confirme les possibilités de la commutation assistée par électronique. Les dispositifs utilisés ne constituent pas encore une solution industriellement viable en remplacement du pôle auxiliaire. Ils permettent par contre d'appréhender de façon originale les phénomènes de commutation. Il s'agit d'un procédé nouveau, utilisant à la fois le pouvoir de coupure des balais et les possibilités de réglage fin de l'électronique de puissance.
Perspectives of construction robots
NASA Astrophysics Data System (ADS)
Stepanov, M. A.; Gridchin, A. M.
2018-03-01
This article is an overview of construction robots features, based on formulating the list of requirements for different types of construction robots in relation to different types of construction works.. It describes a variety of construction works and ways to construct new or to adapt existing robot designs for a construction process. Also, it shows the prospects of AI-controlled machines, implementation of automated control systems and networks on construction sites. In the end, different ways to develop and improve, including ecological aspect, the construction process through the wide robotization, creating of data communication networks and, in perspective, establishing of fully AI-controlled construction complex are formulated.
Technology of high-speed combined machining with brush electrode
NASA Astrophysics Data System (ADS)
Kirillov, O. N.; Smolentsev, V. P.; Yukhnevich, S. S.
2018-03-01
The new method was proposed for high-precision dimensional machining with a brush electrode when the true position of bundles of metal wire is adjusted by means of creating controlled centrifugal forces appeared due to the increased frequency of rotation of a tool. There are the ultimate values of circumferential velocity at which the bundles are pressed against a machined area of a workpiece in a stable manner despite the profile of the machined surface and variable stock of the workpiece. The special aspects of design of processing procedures for finishing standard parts, including components of products with low rigidity, are disclosed. The methodology of calculation and selection of processing modes which allow one to produce high-precision details and to provide corresponding surface roughness required to perform finishing operations (including the preparation of a surface for metal deposition) is presented. The production experience concerned with the use of high-speed combined machining with an unshaped tool electrode in knowledge-intensive branches of the machine-building industry for different types of production is analyzed. It is shown that the implementation of high-speed dimensional machining with an unshaped brush electrode allows one to expand the field of use of the considered process due to the application of a multipurpose tool in the form of a metal brush, as well as to obtain stable results of finishing and to provide the opportunities for long-term operation of the equipment without its changeover and readjustment.
NASA Astrophysics Data System (ADS)
Zhou, Ming; Wu, Jianyang; Xu, Xiaoyi; Mu, Xin; Dou, Yunping
2018-02-01
In order to obtain improved electrical discharge machining (EDM) performance, we have dedicated more than a decade to correcting one essential EDM defect, the weak stability of the machining, by developing adaptive control systems. The instabilities of machining are mainly caused by complicated disturbances in discharging. To counteract the effects from the disturbances on machining, we theoretically developed three control laws from minimum variance (MV) control law to minimum variance and pole placements coupled (MVPPC) control law and then to a two-step-ahead prediction (TP) control law. Based on real-time estimation of EDM process model parameters and measured ratio of arcing pulses which is also called gap state, electrode discharging cycle was directly and adaptively tuned so that a stable machining could be achieved. To this end, we not only theoretically provide three proved control laws for a developed EDM adaptive control system, but also practically proved the TP control law to be the best in dealing with machining instability and machining efficiency though the MVPPC control law provided much better EDM performance than the MV control law. It was also shown that the TP control law also provided a burn free machining.
Automation of Underground Cable Laying Equipment Using PLC and Hmi
NASA Astrophysics Data System (ADS)
Mal Kothari, Kesar; Samba, Vishweshwar; Tania, Kinza; Udayakumar, R., Dr; Karthikeyan, Ram, Dr
2018-04-01
Underground cable laying is an alternative for overhead cable laying of telecommunication and power transmission lines. It is becoming very popular in recent times because of some of its advantages over overhead cable laying. This type of cable laying is mostly practiced in developed countries because it is more expensive than overhead cable laying. Underground cable laying is more suitable when land is not available, and it also increases the aesthetics. This paper implements the automation on a manually operated cable pulling winch machine using programmable logic controller (PLC). Winch machines are useful in underground cable laying. The main aim of the project is to replace all the mechanical functions with electrical controls which are operated through a touch screen (HMI). The idea is that the machine should shift between parallel and series circuit automatically based on the pressure sensed instead of manually operating the solenoid valve. Traditional means of throttling the engine using lever and wire is replaced with a linear actuator. Sensors such as proximity, pressure and load sensor are used to provide the input to the system. The HMI used will display the speed, length and tension of the rope being winded. Ladder logic is used to program the PLC.
Optimal input selection for neural machine interfaces predicting multiple non-explicit outputs.
Krepkovich, Eileen T; Perreault, Eric J
2008-01-01
This study implemented a novel algorithm that optimally selects inputs for neural machine interface (NMI) devices intended to control multiple outputs and evaluated its performance on systems lacking explicit output. NMIs often incorporate signals from multiple physiological sources and provide predictions for multidimensional control, leading to multiple-input multiple-output systems. Further, NMIs often are used with subjects who have motor disabilities and thus lack explicit motor outputs. Our algorithm was tested on simulated multiple-input multiple-output systems and on electromyogram and kinematic data collected from healthy subjects performing arm reaches. Effects of output noise in simulated systems indicated that the algorithm could be useful for systems with poor estimates of the output states, as is true for systems lacking explicit motor output. To test efficacy on physiological data, selection was performed using inputs from one subject and outputs from a different subject. Selection was effective for these cases, again indicating that this algorithm will be useful for predictions where there is no motor output, as often is the case for disabled subjects. Further, prediction results generalized for different movement types not used for estimation. These results demonstrate the efficacy of this algorithm for the development of neural machine interfaces.
A Cooperative Approach to Virtual Machine Based Fault Injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naughton III, Thomas J; Engelmann, Christian; Vallee, Geoffroy R
Resilience investigations often employ fault injection (FI) tools to study the effects of simulated errors on a target system. It is important to keep the target system under test (SUT) isolated from the controlling environment in order to maintain control of the experiement. Virtual machines (VMs) have been used to aid these investigations due to the strong isolation properties of system-level virtualization. A key challenge in fault injection tools is to gain proper insight and context about the SUT. In VM-based FI tools, this challenge of target con- text is increased due to the separation between host and guest (VM).more » We discuss an approach to VM-based FI that leverages virtual machine introspection (VMI) methods to gain insight into the target s context running within the VM. The key to this environment is the ability to provide basic information to the FI system that can be used to create a map of the target environment. We describe a proof- of-concept implementation and a demonstration of its use to introduce simulated soft errors into an iterative solver benchmark running in user-space of a guest VM.« less
Prototyping Faithful Execution in a Java virtual machine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarman, Thomas David; Campbell, Philip LaRoche; Pierson, Lyndon George
2003-09-01
This report presents the implementation of a stateless scheme for Faithful Execution, the design for which is presented in a companion report, ''Principles of Faithful Execution in the Implementation of Trusted Objects'' (SAND 2003-2328). We added a simple cryptographic capability to an already simplified class loader and its associated Java Virtual Machine (JVM) to provide a byte-level implementation of Faithful Execution. The extended class loader and JVM we refer to collectively as the Sandia Faithfully Executing Java architecture (or JavaFE for short). This prototype is intended to enable exploration of more sophisticated techniques which we intend to implement in hardware.
NASA Astrophysics Data System (ADS)
Wang, Tao; Wang, Guilin; Zhu, Dengchao; Li, Shengyi
2015-02-01
In order to meet the requirement of aerodynamics, the infrared domes or windows with conformal and thin-wall structure becomes the development trend of high-speed aircrafts in the future. But these parts usually have low stiffness, the cutting force will change along with the axial position, and it is very difficult to meet the requirement of shape accuracy by single machining. Therefore, on-machine measurement and compensating turning are used to control the shape errors caused by the fluctuation of cutting force and the change of stiffness. In this paper, on the basis of ultra precision diamond lathe, a contact measuring system with five DOFs is developed to achieve on-machine measurement of conformal thin-wall parts with high accuracy. According to high gradient surface, the optimizing algorithm is designed on the distribution of measuring points by using the data screening method. The influence rule of sampling frequency is analyzed on measuring errors, the best sampling frequency is found out based on planning algorithm, the effect of environmental factors and the fitting errors are controlled within lower range, and the measuring accuracy of conformal dome is greatly improved in the process of on-machine measurement. According to MgF2 conformal dome with high gradient, the compensating turning is implemented by using the designed on-machine measuring algorithm. The shape error is less than PV 0.8μm, greatly superior compared with PV 3μm before compensating turning, which verifies the correctness of measuring algorithm.
A universal heliostat control system
NASA Astrophysics Data System (ADS)
Gross, Fabian; Geiger, Mark; Buck, Reiner
2017-06-01
This paper describes the development of a universal heliostat control system as part of the AutoR project [1]. The system can control multiple receivers and heliostat types in a single application. The system offers support for multiple operators on different machines and is designed to be as adaptive as possible. Thus, the system can be used for different heliostat field setups with only minor adaptations of the system's source code. This is achieved by extensive usage of modern programming techniques like reflection and dependency injection. Furthermore, the system features co-simulation of a ray tracer, a reference PID-controller implementation for open volumetric receivers and methods for heliostat calibration and monitoring.
A microcomputer network for control of a continuous mining machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiffbauer, W.H.
1993-12-31
This report details a microcomputer-based control and monitoring network that was developed in-house by the U.S. Bureau of Mines and installed on a continuous mining machine. The network consists of microcomputers that are connected together via a single twisted-pair cable. Each microcomputer was developed to provide a particular function in the control process. Machine-mounted microcomputers, in conjunction with the appropriate sensors, provide closed-loop control of the machine, navigation, and environmental monitoring. Off-the-machine microcomputers provide remote control of the machine, sensor status, and a connection to the network so that external computers can access network data and control the continuous miningmore » machine. Because of the network`s generic structure, it can be installed on most mining machines.« less
Trends and developments in industrial machine vision: 2013
NASA Astrophysics Data System (ADS)
Niel, Kurt; Heinzl, Christoph
2014-03-01
When following current advancements and implementations in the field of machine vision there seems to be no borders for future developments: Calculating power constantly increases, and new ideas are spreading and previously challenging approaches are introduced in to mass market. Within the past decades these advances have had dramatic impacts on our lives. Consumer electronics, e.g. computers or telephones, which once occupied large volumes, now fit in the palm of a hand. To note just a few examples e.g. face recognition was adopted by the consumer market, 3D capturing became cheap, due to the huge community SW-coding got easier using sophisticated development platforms. However, still there is a remaining gap between consumer and industrial applications. While the first ones have to be entertaining, the second have to be reliable. Recent studies (e.g. VDMA [1], Germany) show a moderately increasing market for machine vision in industry. Asking industry regarding their needs the main challenges for industrial machine vision are simple usage and reliability for the process, quick support, full automation, self/easy adjustment at changing process parameters, "forget it in the line". Furthermore a big challenge is to support quality control: Nowadays the operator has to accurately define the tested features for checking the probes. There is an upcoming development also to let automated machine vision applications find out essential parameters in a more abstract level (top down). In this work we focus on three current and future topics for industrial machine vision: Metrology supporting automation, quality control (inline/atline/offline) as well as visualization and analysis of datasets with steadily growing sizes. Finally the general trend of the pixel orientated towards object orientated evaluation is addressed. We do not directly address the field of robotics taking advances from machine vision. This is actually a fast changing area which is worth an own contribution.
An assessment of the connection machine
NASA Technical Reports Server (NTRS)
Schreiber, Robert
1990-01-01
The CM-2 is an example of a connection machine. The strengths and problems of this implementation are considered as well as important issues in the architecture and programming environment of connection machines in general. These are contrasted to the same issues in Multiple Instruction/Multiple Data (MIMD) microprocessors and multicomputers.
Man-Machine Communication Through a Teletypewriter.
ERIC Educational Resources Information Center
Rubinoff, Morris
A ten-year research study designed a mechanized information system in the information processing field. Special attention was paid to implementation criteria entering into on-line retrieval through man-machine dialog from a remote typewriter or video terminal and four major areas were investigated: search strategies, machine stored indexer aids,…
Machine Shop Projects. Instructor Guide. General Information.
ERIC Educational Resources Information Center
Westbrook, Raymond E.
Developed in Georgia, this manual contains 101 projects for use in machine shop courses, arranged according to a suggested machine shop curriculum. Each project, included in a student workbook, contains complete drawings and instructions for implementation. Tasks are listed under the broad headings of measuring, layout, bench work, saws, drilling,…
NASA Technical Reports Server (NTRS)
Bajis, Katie
1993-01-01
The characteristics and capabilities of existing machine translation systems were examined and procurement recommendations were developed. Four systems, SYSTRAN, GLOBALINK, PC TRANSLATOR, and STYLUS, were determined to meet the NASA requirements for a machine translation system. Initially, four language pairs were selected for implementation. These are Russian-English, French-English, German-English, and Japanese-English.
Software implementation of the SKIPSM paradigm under PIP
NASA Astrophysics Data System (ADS)
Hack, Ralf; Waltz, Frederick M.; Batchelor, Bruce G.
1997-09-01
SKIPSM (separated-kernel image processing using finite state machines) is a technique for implementing large-kernel binary- morphology operators and many other operations. While earlier papers on SKIPSM concentrated mainly on implementations using pipelined hardware, there is considerable scope for achieving major speed improvements in software systems. Using identical control software, one-pass binary erosion and dilation structuring elements (SEs) ranging from the trivial (3 by 3) to the gigantic (51 by 51, or even larger), are readily available. Processing speed is independent of the size of the SE, making the SKIPSM approach practical for work with very large SEs on ordinary desktop computers. PIP (prolog image processing) is an interactive machine vision prototyping environment developed at the University of Wales Cardiff. It consists of a large number of image processing operators embedded within the standard AI language Prolog. This paper describes the SKIPSM implementation of binary morphology operators within PIP. A large set of binary erosion and dilation operations (circles, squares, diamonds, octagons, etc.) is available to the user through a command-line driven dialogue, via pull-down menus, or incorporated into standard (Prolog) programs. Little has been done thus far to optimize speed on this first software implementation of SKIPSM. Nevertheless, the results are impressive. The paper describes sample applications and presents timing figures. Readers have the opportunity to try out these operations on demonstration software written by the University of Wales, or via their WWW home page at http://bruce.cs.cf.ac.uk/bruce/index.html .
1982-06-01
libary packages which support machine dependent physical interfaces, interrupt structures or special devices. Thus, programs and libraries written in...obtains real-time data, makes and imple- ments decisions and receives and originates digital messages. The major equipment items which are appropriate...maintenance. g. Provide digital communications access processing. Each microcomputer can be programmed to perform a specific set of functions using prepared
Current and Future Applications of Machine Learning for the US Army
2018-04-13
designing from the unwieldy application of the first principles of flight controls, aerodynamics, blade propulsion, and so on, the designers turned...when the number of features runs into millions can become challenging. To overcome these issues, regularization techniques have been developed which...and compiled to run efficiently on either CPU or GPU architectures. 5) Keras63 is a library that contains numerous implementations of commonly used
Automatic Traffic-Based Internet Control Message Protocol (ICMP) Model Generation for ns-3
2015-12-01
through visiting the inferred automata o Fuzzing of an implementation by generating altered message formats We tested with 3 versions of Netzob. First...relationships. Afterwards, we used the Automata module to generate state machines using different functions: “generateChainedStateAutomata...The “generatePTAAutomata” takes as input several communication sessions and then identifies common paths and merges these into a single automata . The
Experiments in cooperative manipulation: A system perspective
NASA Technical Reports Server (NTRS)
Schneider, Stanley A.; Cannon, Robert H., Jr.
1989-01-01
In addition to cooperative dynamic control, the system incorporates real time vision feedback, a novel programming technique, and a graphical high level user interface. By focusing on the vertical integration problem, not only these subsystems are examined, but also their interfaces and interactions. The control system implements a multi-level hierarchical structure; the techniques developed for operator input, strategic command, and cooperative dynamic control are presented. At the highest level, a mouse-based graphical user interface allows an operator to direct the activities of the system. Strategic command is provided by a table-driven finite state machine; this methodology provides a powerful yet flexible technique for managing the concurrent system interactions. The dynamic controller implements object impedance control; an extension of Nevill Hogan's impedance control concept to cooperative arm manipulation of a single object. Experimental results are presented, showing the system locating and identifying a moving object catching it, and performing a simple cooperative assembly. Results from dynamic control experiments are also presented, showing the controller's excellent dynamic trajectory tracking performance, while also permitting control of environmental contact force.
Wireless brain-machine interface using EEG and EOG: brain wave classification and robot control
NASA Astrophysics Data System (ADS)
Oh, Sechang; Kumar, Prashanth S.; Kwon, Hyeokjun; Varadan, Vijay K.
2012-04-01
A brain-machine interface (BMI) links a user's brain activity directly to an external device. It enables a person to control devices using only thought. Hence, it has gained significant interest in the design of assistive devices and systems for people with disabilities. In addition, BMI has also been proposed to replace humans with robots in the performance of dangerous tasks like explosives handling/diffusing, hazardous materials handling, fire fighting etc. There are mainly two types of BMI based on the measurement method of brain activity; invasive and non-invasive. Invasive BMI can provide pristine signals but it is expensive and surgery may lead to undesirable side effects. Recent advances in non-invasive BMI have opened the possibility of generating robust control signals from noisy brain activity signals like EEG and EOG. A practical implementation of a non-invasive BMI such as robot control requires: acquisition of brain signals with a robust wearable unit, noise filtering and signal processing, identification and extraction of relevant brain wave features and finally, an algorithm to determine control signals based on the wave features. In this work, we developed a wireless brain-machine interface with a small platform and established a BMI that can be used to control the movement of a robot by using the extracted features of the EEG and EOG signals. The system records and classifies EEG as alpha, beta, delta, and theta waves. The classified brain waves are then used to define the level of attention. The acceleration and deceleration or stopping of the robot is controlled based on the attention level of the wearer. In addition, the left and right movements of eye ball control the direction of the robot.
A self-configuring control system for storage and computing departments at INFN-CNAF Tierl
NASA Astrophysics Data System (ADS)
Gregori, Daniele; Dal Pra, Stefano; Ricci, Pier Paolo; Pezzi, Michele; Prosperini, Andrea; Sapunenko, Vladimir
2015-05-01
The storage and farming departments at the INFN-CNAF Tier1[1] manage approximately thousands of computing nodes and several hundreds of servers that provides access to the disk and tape storage. In particular, the storage server machines should provide the following services: an efficient access to about 15 petabytes of disk space with different cluster of GPFS file system, the data transfers between LHC Tiers sites (Tier0, Tier1 and Tier2) via GridFTP cluster and Xrootd protocol and finally the writing and reading data operations on magnetic tape backend. One of the most important and essential point in order to get a reliable service is a control system that can warn if problems arise and which is able to perform automatic recovery operations in case of service interruptions or major failures. Moreover, during daily operations the configurations can change, i.e. if the GPFS cluster nodes roles can be modified and therefore the obsolete nodes must be removed from the control system production, and the new servers should be added to the ones that are already present. The manual management of all these changes is an operation that can be somewhat difficult in case of several changes, it can also take a long time and is easily subject to human error or misconfiguration. For these reasons we have developed a control system with the feature of self-configure itself if any change occurs. Currently, this system has been in production for about a year at the INFN-CNAF Tier1 with good results and hardly any major drawback. There are three major key points in this system. The first is a software configurator service (e.g. Quattor or Puppet) for the servers machines that we want to monitor with the control system; this service must ensure the presence of appropriate sensors and custom scripts on the nodes to check and should be able to install and update software packages on them. The second key element is a database containing information, according to a suitable format, on all the machines in production and able to provide for each of them the principal information such as the type of hardware, the network switch to which the machine is connected, if the machine is real (physical) or virtual, the possible hypervisor to which it belongs and so on. The last key point is a control system software (in our implementation we choose the Nagios software), capable of assessing the status of the servers and services, and that can attempt to restore the working state, restart or inhibit software services and send suitable alarm messages to the site administrators. The integration of these three elements was made by appropriate scripts and custom implementation that allow the self-configuration of the system according to a decisional logic and the whole combination of all the above-mentioned components will be deeply discussed in this paper.
Coordination control of flexible manufacturing systems
NASA Astrophysics Data System (ADS)
Menon, Satheesh R.
One of the first attempts was made to develop a model driven system for coordination control of Flexible Manufacturing Systems (FMS). The structure and activities of the FMS are modeled using a colored Petri Net based system. This approach has the advantage of being able to model the concurrency inherent in the system. It provides a method for encoding the system state, state transitions and the feasible transitions at any given state. Further structural analysis (for detecting conflicting actions, deadlocks which might occur during operation, etc.) can be performed. The problem is also addressed of implementing and testing the behavior of existing dynamic scheduling approaches in simulations of realistic situations. A simulation architecture was proposed and performance evaluation was carried out for establishing the correctness of the model, stability of the system from a structural (deadlocks) and temporal (boundedness of backlogs) points of view, and for collection of statistics for performance measures such as machine and robot utilizations, average wait times and idle times of resources. A real-time implementation architecture for the coordination controller was also developed and implemented in a software simulated environment. Given the current technology of FMS control, the model-driven colored Petri net-based approach promises to develop a very flexible control environment.
The Machine / Job Features Mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alef, M.; Cass, T.; Keijser, J. J.
Within the HEPiX virtualization group and the Worldwide LHC Computing Grid’s Machine/Job Features Task Force, a mechanism has been developed which provides access to detailed information about the current host and the current job to the job itself. This allows user payloads to access meta information, independent of the current batch system or virtual machine model. The information can be accessed either locally via the filesystem on a worker node, or remotely via HTTP(S) from a webserver. This paper describes the final version of the specification from 2016 which was published as an HEP Software Foundation technical note, and themore » design of the implementations of this version for batch and virtual machine platforms. We discuss early experiences with these implementations and how they can be exploited by experiment frameworks.« less
The machine/job features mechanism
NASA Astrophysics Data System (ADS)
Alef, M.; Cass, T.; Keijser, J. J.; McNab, A.; Roiser, S.; Schwickerath, U.; Sfiligoi, I.
2017-10-01
Within the HEPiX virtualization group and the Worldwide LHC Computing Grid’s Machine/Job Features Task Force, a mechanism has been developed which provides access to detailed information about the current host and the current job to the job itself. This allows user payloads to access meta information, independent of the current batch system or virtual machine model. The information can be accessed either locally via the filesystem on a worker node, or remotely via HTTP(S) from a webserver. This paper describes the final version of the specification from 2016 which was published as an HEP Software Foundation technical note, and the design of the implementations of this version for batch and virtual machine platforms. We discuss early experiences with these implementations and how they can be exploited by experiment frameworks.
Microcomputer network for control of a continuous mining machine. Information circular/1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiffbauer, W.H.
1993-01-01
The paper details a microcomputer-based control and monitoring network that was developed in-house by the U.S. Bureau of Mines, and installed on a Joy 14 continuous mining machine. The network consists of microcomputers that are connected together via a single twisted pair cable. Each microcomputer was developed to provide a particular function in the control process. Machine-mounted microcomputers in conjunction with the appropriate sensors provide closed-loop control of the machine, navigation, and environmental monitoring. Off-the-machine microcomputers provide remote control of the machine, sensor status, and a connection to the network so that external computers can access network data and controlmore » the continuous mining machine. Although the network was installed on a Joy 14 continuous mining machine, its use extends beyond it. Its generic structure lends itself to installation onto most mining machine types.« less
Integrated Inverter For Driving Multiple Electric Machines
Su, Gui-Jia [Knoxville, TN; Hsu, John S [Oak Ridge, TN
2006-04-04
An electric machine drive (50) has a plurality of inverters (50a, 50b) for controlling respective electric machines (57, 62), which may include a three-phase main traction machine (57) and two-phase accessory machines (62) in a hybrid or electric vehicle. The drive (50) has a common control section (53, 54) for controlling the plurality of inverters (50a, 50b) with only one microelectronic processor (54) for controlling the plurality of inverters (50a, 50b), only one gate driver circuit (53) for controlling conduction of semiconductor switches (S1-S10) in the plurality of inverters (50a, 50b), and also includes a common dc bus (70), a common dc bus filtering capacitor (C1) and a common dc bus voltage sensor (67). The electric machines (57, 62) may be synchronous machines, induction machines, or PM machines and may be operated in a motoring mode or a generating mode.
NASA Astrophysics Data System (ADS)
Kweon, Hyunkyu; Choi, Sungdae; Kim, Youngsik; Nam, Kiho
Micro UTM (Universal Testing Machines) are becoming increasingly popular for testing the mechanical properties of MEMS materials, metal thin films, and micro-molecule materials1-2. And, new miniature testing machines that can perform in-process measurement in SEM, TEM, and SPM are also needed. In this paper, a new micro UTM with a precision positioning system that can be fine positioning stage. Coarse positioning is implemented by step motor. The size, load output and used in SEM, TEM, and SPM have been proposed. Bimorph type PZT precision actuator is used in displacement output of bimorph type UTM are 109×64×22(mm), about 35g, and 0.4 mm, respectively. And the displacement output is controlled in the block digital form. The results of the analysis and basic properties of positioning system and the UTM system are presented. In addition, the experiment results of in-process measurement during tensile load in SEM and AFM are showed.
A state-based approach to trend recognition and failure prediction for the Space Station Freedom
NASA Technical Reports Server (NTRS)
Nelson, Kyle S.; Hadden, George D.
1992-01-01
A state-based reasoning approach to trend recognition and failure prediction for the Altitude Determination, and Control System (ADCS) of the Space Station Freedom (SSF) is described. The problem domain is characterized by features (e.g., trends and impending failures) that develop over a variety of time spans, anywhere from several minutes to several years. Our state-based reasoning approach, coupled with intelligent data screening, allows features to be tracked as they develop in a time-dependent manner. That is, each state machine has the ability to encode a time frame for the feature it detects. As features are detected, they are recorded and can be used as input to other state machines, creating a hierarchical feature recognition scheme. Furthermore, each machine can operate independently of the others, allowing simultaneous tracking of features. State-based reasoning was implemented in the trend recognition and the prognostic modules of a prototype Space Station Freedom Maintenance and Diagnostic System (SSFMDS) developed at Honeywell's Systems and Research Center.
Machine learning algorithms for the creation of clinical healthcare enterprise systems
NASA Astrophysics Data System (ADS)
Mandal, Indrajit
2017-10-01
Clinical recommender systems are increasingly becoming popular for improving modern healthcare systems. Enterprise systems are persuasively used for creating effective nurse care plans to provide nurse training, clinical recommendations and clinical quality control. A novel design of a reliable clinical recommender system based on multiple classifier system (MCS) is implemented. A hybrid machine learning (ML) ensemble based on random subspace method and random forest is presented. The performance accuracy and robustness of proposed enterprise architecture are quantitatively estimated to be above 99% and 97%, respectively (above 95% confidence interval). The study then extends to experimental analysis of the clinical recommender system with respect to the noisy data environment. The ranking of items in nurse care plan is demonstrated using machine learning algorithms (MLAs) to overcome the drawback of the traditional association rule method. The promising experimental results are compared against the sate-of-the-art approaches to highlight the advancement in recommendation technology. The proposed recommender system is experimentally validated using five benchmark clinical data to reinforce the research findings.
Machine characterization based on an abstract high-level language machine
NASA Technical Reports Server (NTRS)
Saavedra-Barrera, Rafael H.; Smith, Alan Jay; Miya, Eugene
1989-01-01
Measurements are presented for a large number of machines ranging from small workstations to supercomputers. The authors combine these measurements into groups of parameters which relate to specific aspects of the machine implementation, and use these groups to provide overall machine characterizations. The authors also define the concept of pershapes, which represent the level of performance of a machine for different types of computation. A metric based on pershapes is introduced that provides a quantitative way of measuring how similar two machines are in terms of their performance distributions. The metric is related to the extent to which pairs of machines have varying relative performance levels depending on which benchmark is used.
Tasking and sharing sensing assets using controlled natural language
NASA Astrophysics Data System (ADS)
Preece, Alun; Pizzocaro, Diego; Braines, David; Mott, David
2012-06-01
We introduce an approach to representing intelligence, surveillance, and reconnaissance (ISR) tasks at a relatively high level in controlled natural language. We demonstrate that this facilitates both human interpretation and machine processing of tasks. More specically, it allows the automatic assignment of sensing assets to tasks, and the informed sharing of tasks between collaborating users in a coalition environment. To enable automatic matching of sensor types to tasks, we created a machine-processable knowledge representation based on the Military Missions and Means Framework (MMF), and implemented a semantic reasoner to match task types to sensor types. We combined this mechanism with a sensor-task assignment procedure based on a well-known distributed protocol for resource allocation. In this paper, we re-formulate the MMF ontology in Controlled English (CE), a type of controlled natural language designed to be readable by a native English speaker whilst representing information in a structured, unambiguous form to facilitate machine processing. We show how CE can be used to describe both ISR tasks (for example, detection, localization, or identication of particular kinds of object) and sensing assets (for example, acoustic, visual, or seismic sensors, mounted on motes or unmanned vehicles). We show how these representations enable an automatic sensor-task assignment process. Where a group of users are cooperating in a coalition, we show how CE task summaries give users in the eld a high-level picture of ISR coverage of an area of interest. This allows them to make ecient use of sensing resources by sharing tasks.
A system framework of inter-enterprise machining quality control based on fractal theory
NASA Astrophysics Data System (ADS)
Zhao, Liping; Qin, Yongtao; Yao, Yiyong; Yan, Peng
2014-03-01
In order to meet the quality control requirement of dynamic and complicated product machining processes among enterprises, a system framework of inter-enterprise machining quality control based on fractal was proposed. In this system framework, the fractal-specific characteristic of inter-enterprise machining quality control function was analysed, and the model of inter-enterprise machining quality control was constructed by the nature of fractal structures. Furthermore, the goal-driven strategy of inter-enterprise quality control and the dynamic organisation strategy of inter-enterprise quality improvement were constructed by the characteristic analysis on this model. In addition, the architecture of inter-enterprise machining quality control based on fractal was established by means of Web service. Finally, a case study for application was presented. The result showed that the proposed method was available, and could provide guidance for quality control and support for product reliability in inter-enterprise machining processes.
An iterative learning control method with application for CNC machine tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D.I.; Kim, S.
1996-01-01
A proportional, integral, and derivative (PID) type iterative learning controller is proposed for precise tracking control of industrial robots and computer numerical controller (CNC) machine tools performing repetitive tasks. The convergence of the output error by the proposed learning controller is guaranteed under a certain condition even when the system parameters are not known exactly and unknown external disturbances exist. As the proposed learning controller is repeatedly applied to the industrial robot or the CNC machine tool with the path-dependent repetitive task, the distance difference between the desired path and the actual tracked or machined path, which is one ofmore » the most significant factors in the evaluation of control performance, is progressively reduced. The experimental results demonstrate that the proposed learning controller can improve machining accuracy when the CNC machine tool performs repetitive machining tasks.« less
On the decomposition of synchronous state mechines using sequence invariant state machines
NASA Technical Reports Server (NTRS)
Hebbalalu, K.; Whitaker, S.; Cameron, K.
1992-01-01
This paper presents a few techniques for the decomposition of Synchronous State Machines of medium to large sizes into smaller component machines. The methods are based on the nature of the transitions and sequences of states in the machine and on the number and variety of inputs to the machine. The results of the decomposition, and of using the Sequence Invariant State Machine (SISM) Design Technique for generating the component machines, include great ease and quickness in the design and implementation processes. Furthermore, there is increased flexibility in making modifications to the original design leading to negligible re-design time.
Model-Driven Engineering of Machine Executable Code
NASA Astrophysics Data System (ADS)
Eichberg, Michael; Monperrus, Martin; Kloppenburg, Sven; Mezini, Mira
Implementing static analyses of machine-level executable code is labor intensive and complex. We show how to leverage model-driven engineering to facilitate the design and implementation of programs doing static analyses. Further, we report on important lessons learned on the benefits and drawbacks while using the following technologies: using the Scala programming language as target of code generation, using XML-Schema to express a metamodel, and using XSLT to implement (a) transformations and (b) a lint like tool. Finally, we report on the use of Prolog for writing model transformations.
NASA Astrophysics Data System (ADS)
Gołaś, H.; Mazur, A.; Gruszka, J.; Szafer, P.
2016-08-01
The elaboration is a case study and the research was carried out in the company Alco-Mot Ltd., which employs 120 people. The company specializes in the production of lead poles for industrial and traction batteries using gravity casting. The elements embedded in the cast are manufactured on a machining centre, which provides the stability of the process and of the dimensions of the product as well as a very short production time. As a result of observation and analysis the authors have developed a concept for the implementation of a dynamic suggestion system in ALCO-MOT, including, among others, a standard for actions in the implementation of the suggestion system, as well as clear guidelines for the processing and presentation of the activities undertaken in the time between the establishment of the concept (suggestions) and the benefits analysis after the proposed solutions have been implemented. The authors also present how suggestions proposed by ALCO-MOT staff contributed to the improvement of the processes of production and quality control. Employees offered more than 30 suggestions, of which more than a half are being implemented now and further actions are being prepared for implementation. The authors will present the results of improvements in, for example, tool replacement time, scrap reduction. The authors will present how kaizen can improve the production and quality control processes. They will present how the production and quality control processes looked before and after the implementation of employee suggestions.
Ergonomics for enhancing detection of machine abnormalities.
Illankoon, Prasanna; Abeysekera, John; Singh, Sarbjeet
2016-10-17
Detecting abnormal machine conditions is of great importance in an autonomous maintenance environment. Ergonomic aspects can be invaluable when detection of machine abnormalities using human senses is examined. This research outlines the ergonomic issues involved in detecting machine abnormalities and suggests how ergonomics would improve such detections. Cognitive Task Analysis was performed in a plant in Sri Lanka where Total Productive Maintenance is being implemented to identify sensory types that would be used to detect machine abnormalities and relevant Ergonomic characteristics. As the outcome of this research, a methodology comprising of an Ergonomic Gap Analysis Matrix for machine abnormality detection is presented.
Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth
2017-09-13
Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.
NASA Astrophysics Data System (ADS)
Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth
2017-09-01
Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.
Technical Report on Occupations in Numerically Controlled Metal-Cutting Machining.
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC. U.S. Employment Service.
At the present time, only 5 percent of the short-run metal-cutting machining in the United States is done by numerically controlled machined tools, but within the next decade it is expected to increase by 50 percent. Numerically controlled machines use taped data which is changed into instructions and directs the machine to do certain steps…
NASA Astrophysics Data System (ADS)
He, Ye; Chen, Xiaoan; Liu, Zhi; Qin, Yi
2018-06-01
The motorized spindle is the core component of CNC machine tools, and the vibration of it reduces the machining precision and service life of the machine tools. Owing to the fast response, large output force, and displacement of the piezoelectric stack, it is often used as the actuator in the active vibration control of the spindle. A piezoelectric self-sensing actuator (SSA) can reduce the cost of the active vibration control system and simplify the structure by eliminating the use of a sensor, because a SSA can have both actuating and sensing functions at the same time. The signal separation method of a SSA based on a bridge circuit is widely applied because of its simple principle and easy implementation. However, it is difficult to maintain dynamic balance of the circuit. Prior research has used adaptive algorithm to balance of the bridge circuit on the flexible beam dynamically, but those algorithms need no correlation between sensing and control voltage, which limit the applications of SSA in the vibration control of the rotor-bearing system. Here, the electromechanical coupling model of the piezoelectric stack is established, followed by establishment of the dynamic model of the spindle system. Next, a new adaptive signal separation method based on the bridge circuit is proposed, which can separate relative small sensing voltage from related mixed voltage adaptively. The experimental results show that when the self-sensing signal obtained from the proposed method is used as a displacement signal, the vibration of the motorized spindle can be suppressed effectively through a linear quadratic Gaussian (LQG) algorithm.
Cerasa, Antonio; Castiglioni, Isabella; Salvatore, Christian; Funaro, Angela; Martino, Iolanda; Alfano, Stefania; Donzuso, Giulia; Perrotta, Paolo; Gioia, Maria Cecilia; Gilardi, Maria Carla; Quattrone, Aldo
2015-01-01
Presently, there are no valid biomarkers to identify individuals with eating disorders (ED). The aim of this work was to assess the feasibility of a machine learning method for extracting reliable neuroimaging features allowing individual categorization of patients with ED. Support Vector Machine (SVM) technique, combined with a pattern recognition method, was employed utilizing structural magnetic resonance images. Seventeen females with ED (six with diagnosis of anorexia nervosa and 11 with bulimia nervosa) were compared against 17 body mass index-matched healthy controls (HC). Machine learning allowed individual diagnosis of ED versus HC with an Accuracy ≥ 0.80. Voxel-based pattern recognition analysis demonstrated that voxels influencing the classification Accuracy involved the occipital cortex, the posterior cerebellar lobule, precuneus, sensorimotor/premotor cortices, and the medial prefrontal cortex, all critical regions known to be strongly involved in the pathophysiological mechanisms of ED. Although these findings should be considered preliminary given the small size investigated, SVM analysis highlights the role of well-known brain regions as possible biomarkers to distinguish ED from HC at an individual level, thus encouraging the translational implementation of this new multivariate approach in the clinical practice. PMID:26648660
Characterization of robotics parallel algorithms and mapping onto a reconfigurable SIMD machine
NASA Technical Reports Server (NTRS)
Lee, C. S. G.; Lin, C. T.
1989-01-01
The kinematics, dynamics, Jacobian, and their corresponding inverse computations are six essential problems in the control of robot manipulators. Efficient parallel algorithms for these computations are discussed and analyzed. Their characteristics are identified and a scheme on the mapping of these algorithms to a reconfigurable parallel architecture is presented. Based on the characteristics including type of parallelism, degree of parallelism, uniformity of the operations, fundamental operations, data dependencies, and communication requirement, it is shown that most of the algorithms for robotic computations possess highly regular properties and some common structures, especially the linear recursive structure. Moreover, they are well-suited to be implemented on a single-instruction-stream multiple-data-stream (SIMD) computer with reconfigurable interconnection network. The model of a reconfigurable dual network SIMD machine with internal direct feedback is introduced. A systematic procedure internal direct feedback is introduced. A systematic procedure to map these computations to the proposed machine is presented. A new scheduling problem for SIMD machines is investigated and a heuristic algorithm, called neighborhood scheduling, that reorders the processing sequence of subtasks to reduce the communication time is described. Mapping results of a benchmark algorithm are illustrated and discussed.
Economical Implementation of a Filter Engine in an FPGA
NASA Technical Reports Server (NTRS)
Kowalski, James E.
2009-01-01
A logic design has been conceived for a field-programmable gate array (FPGA) that would implement a complex system of multiple digital state-space filters. The main innovative aspect of this design lies in providing for reuse of parts of the FPGA hardware to perform different parts of the filter computations at different times, in such a manner as to enable the timely performance of all required computations in the face of limitations on available FPGA hardware resources. The implementation of the digital state-space filter involves matrix vector multiplications, which, in the absence of the present innovation, would ordinarily necessitate some multiplexing of vector elements and/or routing of data flows along multiple paths. The design concept calls for implementing vector registers as shift registers to simplify operand access to multipliers and accumulators, obviating both multiplexing and routing of data along multiple paths. Each vector register would be reused for different parts of a calculation. Outputs would always be drawn from the same register, and inputs would always be loaded into the same register. A simple state machine would control each filter. The output of a given filter would be passed to the next filter, accompanied by a "valid" signal, which would start the state machine of the next filter. Multiple filter modules would share a multiplication/accumulation arithmetic unit. The filter computations would be timed by use of a clock having a frequency high enough, relative to the input and output data rate, to provide enough cycles for matrix and vector arithmetic operations. This design concept could prove beneficial in numerous applications in which digital filters are used and/or vectors are multiplied by coefficient matrices. Examples of such applications include general signal processing, filtering of signals in control systems, processing of geophysical measurements, and medical imaging. For these and other applications, it could be advantageous to combine compact FPGA digital filter implementations with other application-specific logic implementations on single integrated-circuit chips. An FPGA could readily be tailored to implement a variety of filters because the filter coefficients would be loaded into memory at startup.
Miller, Christopher A; Parasuraman, Raja
2007-02-01
To develop a method enabling human-like, flexible supervisory control via delegation to automation. Real-time supervisory relationships with automation are rarely as flexible as human task delegation to other humans. Flexibility in human-adaptable automation can provide important benefits, including improved situation awareness, more accurate automation usage, more balanced mental workload, increased user acceptance, and improved overall performance. We review problems with static and adaptive (as opposed to "adaptable") automation; contrast these approaches with human-human task delegation, which can mitigate many of the problems; and revise the concept of a "level of automation" as a pattern of task-based roles and authorizations. We argue that delegation requires a shared hierarchical task model between supervisor and subordinates, used to delegate tasks at various levels, and offer instruction on performing them. A prototype implementation called Playbook is described. On the basis of these analyses, we propose methods for supporting human-machine delegation interactions that parallel human-human delegation in important respects. We develop an architecture for machine-based delegation systems based on the metaphor of a sports team's "playbook." Finally, we describe a prototype implementation of this architecture, with an accompanying user interface and usage scenario, for mission planning for uninhabited air vehicles. Delegation offers a viable method for flexible, multilevel human-automation interaction to enhance system performance while maintaining user workload at a manageable level. Most applications of adaptive automation (aviation, air traffic control, robotics, process control, etc.) are potential avenues for the adaptable, delegation approach we advocate. We present an extended example for uninhabited air vehicle mission planning.
McCoy, Andrea
2017-01-01
Introduction Sepsis management is a challenge for hospitals nationwide, as severe sepsis carries high mortality rates and costs the US healthcare system billions of dollars each year. It has been shown that early intervention for patients with severe sepsis and septic shock is associated with higher rates of survival. The Cape Regional Medical Center (CRMC) aimed to improve sepsis-related patient outcomes through a revised sepsis management approach. Methods In collaboration with Dascena, CRMC formed a quality improvement team to implement a machine learning-based sepsis prediction algorithm to identify patients with sepsis earlier. Previously, CRMC assessed all patients for sepsis using twice-daily systemic inflammatory response syndrome screenings, but desired improvements. The quality improvement team worked to implement a machine learning-based algorithm, collect and incorporate feedback, and tailor the system to current hospital workflow. Results Relative to the pre-implementation period, the post-implementation period sepsis-related in-hospital mortality rate decreased by 60.24%, sepsis-related hospital length of stay decreased by 9.55% and sepsis-related 30-day readmission rate decreased by 50.14%. Conclusion The machine learning-based sepsis prediction algorithm improved patient outcomes at CRMC. PMID:29450295
Introduction to the HL-LHC Project
NASA Astrophysics Data System (ADS)
Rossi, L.; Brüning, O.
The Large Hadron Collider (LHC) is one of largest scientific instruments ever built. It has been exploring the new energy frontier since 2010, gathering a global user community of 7,000 scientists. To extend its discovery potential, the LHC will need a major upgrade in the 2020s to increase its luminosity (rate of collisions) by a factor of five beyond its design value and the integrated luminosity by a factor of ten. As a highly complex and optimized machine, such an upgrade of the LHC must be carefully studied and requires about ten years to implement. The novel machine configuration, called High Luminosity LHC (HL-LHC), will rely on a number of key innovative technologies, representing exceptional technological challenges, such as cutting-edge 11-12 tesla superconducting magnets, very compact superconducting cavities for beam rotation with ultra-precise phase control, new technology for beam collimation and 300-meter-long high-power superconducting links with negligible energy dissipation. HL-LHC federates efforts and R&D of a large community in Europe, in the US and in Japan, which will facilitate the implementation of the construction phase as a global project.
Calvo, Roque; D’Amato, Roberto; Gómez, Emilio; Domingo, Rosario
2016-01-01
Coordinate measuring machines (CMM) are main instruments of measurement in laboratories and in industrial quality control. A compensation error model has been formulated (Part I). It integrates error and uncertainty in the feature measurement model. Experimental implementation for the verification of this model is carried out based on the direct testing on a moving bridge CMM. The regression results by axis are quantified and compared to CMM indication with respect to the assigned values of the measurand. Next, testing of selected measurements of length, flatness, dihedral angle, and roundness features are accomplished. The measurement of calibrated gauge blocks for length or angle, flatness verification of the CMM granite table and roundness of a precision glass hemisphere are presented under a setup of repeatability conditions. The results are analysed and compared with alternative methods of estimation. The overall performance of the model is endorsed through experimental verification, as well as the practical use and the model capability to contribute in the improvement of current standard CMM measuring capabilities. PMID:27754441
Trends in extreme learning machines: a review.
Huang, Gao; Huang, Guang-Bin; Song, Shiji; You, Keyou
2015-01-01
Extreme learning machine (ELM) has gained increasing interest from various research fields recently. In this review, we aim to report the current state of the theoretical research and practical advances on this subject. We first give an overview of ELM from the theoretical perspective, including the interpolation theory, universal approximation capability, and generalization ability. Then we focus on the various improvements made to ELM which further improve its stability, sparsity and accuracy under general or specific conditions. Apart from classification and regression, ELM has recently been extended for clustering, feature selection, representational learning and many other learning tasks. These newly emerging algorithms greatly expand the applications of ELM. From implementation aspect, hardware implementation and parallel computation techniques have substantially sped up the training of ELM, making it feasible for big data processing and real-time reasoning. Due to its remarkable efficiency, simplicity, and impressive generalization performance, ELM have been applied in a variety of domains, such as biomedical engineering, computer vision, system identification, and control and robotics. In this review, we try to provide a comprehensive view of these advances in ELM together with its future perspectives.
Gloved Human-Machine Interface
NASA Technical Reports Server (NTRS)
Adams, Richard (Inventor); Hannaford, Blake (Inventor); Olowin, Aaron (Inventor)
2015-01-01
Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to: tracking movement of a gloved hand of a human; interpreting a gloved finger movement of the human; and/or in response to interpreting the gloved finger movement, providing feedback to the human.
2007-09-01
behaviour based on past experience of interacting with the operator), and mobile (i.e., can move themselves from one machine to another). Edwards argues that...Sofge, D., Bugajska, M., Adams, W., Perzanowski, D., and Schultz, A. (2003). Agent-based Multimodal Interface for Dynamically Autonomous Mobile Robots...based architecture can provide a natural and scalable approach to implementing a multimodal interface to control mobile robots through dynamic
Real time PI-backstepping induction machine drive with efficiency optimization.
Farhani, Fethi; Ben Regaya, Chiheb; Zaafouri, Abderrahmen; Chaari, Abdelkader
2017-09-01
This paper describes a robust and efficient speed control of a three phase induction machine (IM) subjected to load disturbances. First, a Multiple-Input Multiple-Output (MIMO) PI-Backstepping controller is proposed for a robust and highly accurate tracking of the mechanical speed and rotor flux. Asymptotic stability of the control scheme is proven by Lyapunov Stability Theory. Second, an active online optimization algorithm is used to optimize the efficiency of the drive system. The efficiency improvement approach consists of adjusting the rotor flux with respect to the load torque in order to minimize total losses in the IM. A dSPACE DS1104 R&D board is used to implement the proposed solution. The experimental results released on 3kW squirrel cage IM, show that the reference speed as well as the rotor flux are rapidly achieved with a fast transient response and without overshoot. A good load disturbances rejection response and IM parameters variation are fairly handled. The improvement of drive system efficiency reaches up to 180% at light load. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Human machine interface to manually drive rhombic like vehicles in remote handling operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopes, Pedro; Vale, Alberto; Ventura, Rodrigo
2015-07-01
In the thermonuclear experimental reactor ITER, a vehicle named CTS is designed to transport a container with activated components inside the buildings. In nominal operations, the CTS is autonomously guided under supervision. However, in some unexpected situations, such as in rescue and recovery operations, the autonomous mode must be overridden and the CTS must be remotely guided by an operator. The CTS is a rhombic-like vehicle, with two drivable and steerable wheels along its longitudinal axis, providing omni-directional capabilities. The rhombic kinematics correspond to four control variables, which are difficult to manage in manual mode operation. This paper proposes amore » Human Machine Interface (HMI) to remotely guide the vehicle in manual mode. The proposed solution is implemented using a HMI with an encoder connected to a micro-controller and an analog 2-axis joystick. Experimental results were obtained comparing the proposed solution with other controller devices in different scenarios and using a software platform that simulates the kinematics and dynamics of the vehicle. (authors)« less
Specifications and implementation of the RT MHD control system for the EC launcher of FTU
NASA Astrophysics Data System (ADS)
Galperti, C.; Alessi, E.; Boncagni, L.; Bruschi, A.; Granucci, G.; Grosso, A.; Iannone, F.; Marchetto, C.; Nowak, S.; Panella, M.; Sozzi, C.; Tilia, B.
2012-09-01
To perform real time plasma control experiments using EC heating waves by using the new fast launcher installed on FTU a dedicated data acquisition and elaboration system has been designed recently. A prototypical version of the acquisition/control system has been recently developed and will be tested on FTU machine in its next experimental campaign. The open-source framework MARTe (Multi-threaded Application Real-Time executor) on Linux/RTAI real-time operating system has been chosen as software platform to realize the control system. Standard open-architecture industrial PCs, based either on VME bus and CompactPCI bus equipped with standard input/output cards are the chosen hardware platform.
Cloud-based robot remote control system for smart factory
NASA Astrophysics Data System (ADS)
Wu, Zhiming; Li, Lianzhong; Xu, Yang; Zhai, Jingmei
2015-12-01
With the development of internet technologies and the wide application of robots, there is a prospect (trend/tendency) of integration between network and robots. A cloud-based robot remote control system over networks for smart factory is proposed, which enables remote users to control robots and then realize intelligent production. To achieve it, a three-layer system architecture is designed including user layer, service layer and physical layer. Remote control applications running on the cloud server is developed on Microsoft Azure. Moreover, DIV+ CSS technologies are used to design human-machine interface to lower maintenance cost and improve development efficiency. Finally, an experiment is implemented to verify the feasibility of the program.
Freeform diamond machining of complex monolithic metal optics for integral field systems
NASA Astrophysics Data System (ADS)
Dubbeldam, Cornelis M.; Robertson, David J.; Preuss, Werner
2004-09-01
Implementation of the optical designs of image slicing Integral Field Systems requires accurate alignment of a large number of small (and therefore difficult to manipulate) optical components. In order to facilitate the integration of these complex systems, the Astronomical Instrumentation Group (AIG) of the University of Durham, in collaboration with the Labor für Mikrozerspanung (Laboratory for Precision Machining - LFM) of the University of Bremen, have developed a technique for fabricating monolithic multi-faceted mirror arrays using freeform diamond machining. Using this technique, the inherent accuracy of the diamond machining equipment is exploited to achieve the required relative alignment accuracy of the facets, as well as an excellent optical surface quality for each individual facet. Monolithic arrays manufactured using this freeform diamond machining technique were successfully applied in the Integral Field Unit for the GEMINI Near-InfraRed Spectrograph (GNIRS IFU), which was recently installed at GEMINI South. Details of their fabrication process and optical performance are presented in this paper. In addition, the direction of current development work, conducted under the auspices of the Durham Instrumentation R&D Program supported by the UK Particle Physics and Astronomy Research Council (PPARC), will be discussed. The main emphasis of this research is to improve further the optical performance of diamond machined components, as well as to streamline the production and quality control processes with a view to making this technique suitable for multi-IFU instruments such as KMOS etc., which require series production of large quantities of optical components.
Chatter active control in a lathe machine using magnetostrictive actuator
NASA Astrophysics Data System (ADS)
Nosouhi, R.; Behbahani, S.
2011-01-01
This paper analyzes the chatter phenomena in lathe machines. Chatter is one of the main causes of inaccuracy, reduction of life cycle of the machine and tool wear in machine tools. This phenomenon limits the depth of cut as a function of the cutting speed, which consequently reduces the material removal rate and machining efficiency. Chatter control is therefore important since it increases the stability region in machining and increases the critical depth of cut in machining case. To control the chatter in lathe machines, a magnetostrictive actuator is used. The materials with magnetostriction properties are kind of smart materials of which their length changes as a result of applying an exterior magnetic field, which make them suitable for control applications. It is assumed that the actuator applies the proper force exactly at the point where the machining force is applied on the tool. In this paper the chatter stability lobes is excelled as a result of applying a PID controller on the magnetostrictive actuator equipped-tool in turning.
The LET Procedure for Prosthetic Myocontrol: Towards Multi-DOF Control Using Single-DOF Activations.
Nowak, Markus; Castellini, Claudio
2016-01-01
Simultaneous and proportional myocontrol of dexterous hand prostheses is to a large extent still an open problem. With the advent of commercially and clinically available multi-fingered hand prostheses there are now more independent degrees of freedom (DOFs) in prostheses than can be effectively controlled using surface electromyography (sEMG), the current standard human-machine interface for hand amputees. In particular, it is uncertain, whether several DOFs can be controlled simultaneously and proportionally by exclusively calibrating the intended activation of single DOFs. The problem is currently solved by training on all required combinations. However, as the number of available DOFs grows, this approach becomes overly long and poses a high cognitive burden on the subject. In this paper we present a novel approach to overcome this problem. Multi-DOF activations are artificially modelled from single-DOF ones using a simple linear combination of sEMG signals, which are then added to the training set. This procedure, which we named LET (Linearly Enhanced Training), provides an augmented data set to any machine-learning-based intent detection system. In two experiments involving intact subjects, one offline and one online, we trained a standard machine learning approach using the full data set containing single- and multi-DOF activations as well as using the LET-augmented data set in order to evaluate the performance of the LET procedure. The results indicate that the machine trained on the latter data set obtains worse results in the offline experiment compared to the full data set. However, the online implementation enables the user to perform multi-DOF tasks with almost the same precision as single-DOF tasks without the need of explicitly training multi-DOF activations. Moreover, the parameters involved in the system are statistically uniform across subjects.
Machine Protection System for the Stepper Motor Actuated SyLMAND Mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramanian, V. R.; Dolton, W.; Wells, G.
2010-06-23
SyLMAND, the Synchrotron Laboratory for Micro and Nano Devices at the Canadian Light Source, consists of a dedicated X-ray lithography beamline on a bend magnet port, and process support laboratories in a clean room environment. The beamline includes a double mirror system with flat, chromium-coated silicon mirrors operated at varying grazing angles of incidence (4 mrad to 45 mrad) for spectral adjustment by high energy cut-off. Each mirror can be independently moved by two stepper motors to precisely control the pitch and vertical position. We present in this paper the machine protection system implemented in the double mirror system tomore » allow for safe operation of the two mirrors and to avoid consequences of potential stepper motor malfunction.« less
Toward a Safer and Cleaner Way: Dealing With Human Waste in Healthcare.
Apple, Michael
2016-07-01
Organizations must evaluate their infection control plans in a holistic and inclusive manner to continue reducing healthcare-associated infection (HAI) rates, including giving consideration to the manner of collecting and disposing of patient waste. Manual washing of bedpans and other containers poses a risk of spreading infection via caregivers, the environment, and the still-contaminated bedpan. Several alternative disposal methods are available and have been tested in some countries for decades, including options such as bedpan washer-disinfector machines, macerator machines, and disposable bedpans. This article reviews methods and issues related to human waste disposal in healthcare settings. Healthcare organizations must evaluate the options thoroughly and then consistently implement the option most in line with its goals and culture. © The Author(s) 2016.
Resquin, F; Ibañez, J; Gonzalez-Vargas, J; Brunetti, F; Dimbwadyo, I; Alves, S; Carrasco, L; Torres, L; Pons, Jose Luis
2016-08-01
Reaching and grasping are two of the most affected functions after stroke. Hybrid rehabilitation systems combining Functional Electrical Stimulation with Robotic devices have been proposed in the literature to improve rehabilitation outcomes. In this work, we present the combined use of a hybrid robotic system with an EEG-based Brain-Machine Interface to detect the user's movement intentions to trigger the assistance. The platform has been tested in a single session with a stroke patient. The results show how the patient could successfully interact with the BMI and command the assistance of the hybrid system with low latencies. Also, the Feedback Error Learning controller implemented in this system could adjust the required FES intensity to perform the task.
NASA Astrophysics Data System (ADS)
Bernardet, Ulysses; Bermúdez I Badia, Sergi; Duff, Armin; Inderbitzin, Martin; Le Groux, Sylvain; Manzolli, Jônatas; Mathews, Zenon; Mura, Anna; Väljamäe, Aleksander; Verschure, Paul F. M. J.
The eXperience Induction Machine (XIM) is one of the most advanced mixed-reality spaces available today. XIM is an immersive space that consists of physical sensors and effectors and which is conceptualized as a general-purpose infrastructure for research in the field of psychology and human-artifact interaction. In this chapter, we set out the epistemological rational behind XIM by putting the installation in the context of psychological research. The design and implementation of XIM are based on principles and technologies of neuromorphic control. We give a detailed description of the hardware infrastructure and software architecture, including the logic of the overall behavioral control. To illustrate the approach toward psychological experimentation, we discuss a number of practical applications of XIM. These include the so-called, persistent virtual community, the application in the research of the relationship between human experience and multi-modal stimulation, and an investigation of a mixed-reality social interaction paradigm.
A COTS-MQS shipborne EO/IR imaging system
NASA Astrophysics Data System (ADS)
Hutchinson, Mark A.; Miller, John L.; Weaver, James
2005-05-01
The Sea Star SAFIRE is a commercially developed, off the shelf, military qualified system (COTS-MQS) consisting of a 640 by 480 InSb infrared imager, laser rangefinder and visible imager in a gyro-stabilized platform designed for shipborne applications. These applications include search and rescue, surveillance, fire control, fisheries patrol, harbor security, and own-vessel perimeter security and self protection. Particularly challenging considerations unique to shipborne systems include the demanding environment conditions, man-machine interfaces, and effects of atmospheric conditions on sensor performance. Shipborne environmental conditions requiring special attention include electromagnetic fields, as well as resistance to rain, ice and snow, shock, vibration, and salt. Features have been implemented to withstand exposure to water and high humidity; anti-ice/de-ice capability for exposure to snow and ice; wash/wipe of external windows; corrosion resistance for exposure to water and salt spray. A variety of system controller configurations provide man-machine interfaces suitable for operation on ships. EO sensor developments that address areas of haze penetration, glint, and scintillation will be presented.
Research into display sharing techniques for distributed computing environments
NASA Technical Reports Server (NTRS)
Hugg, Steven B.; Fitzgerald, Paul F., Jr.; Rosson, Nina Y.; Johns, Stephen R.
1990-01-01
The X-based Display Sharing solution for distributed computing environments is described. The Display Sharing prototype includes the base functionality for telecast and display copy requirements. Since the prototype implementation is modular and the system design provided flexibility for the Mission Control Center Upgrade (MCCU) operational consideration, the prototype implementation can be the baseline for a production Display Sharing implementation. To facilitate the process the following discussions are presented: Theory of operation; System of architecture; Using the prototype; Software description; Research tools; Prototype evaluation; and Outstanding issues. The prototype is based on the concept of a dedicated central host performing the majority of the Display Sharing processing, allowing minimal impact on each individual workstation. Each workstation participating in Display Sharing hosts programs to facilitate the user's access to Display Sharing as host machine.
Parallel grid generation algorithm for distributed memory computers
NASA Technical Reports Server (NTRS)
Moitra, Stuti; Moitra, Anutosh
1994-01-01
A parallel grid-generation algorithm and its implementation on the Intel iPSC/860 computer are described. The grid-generation scheme is based on an algebraic formulation of homotopic relations. Methods for utilizing the inherent parallelism of the grid-generation scheme are described, and implementation of multiple levELs of parallelism on multiple instruction multiple data machines are indicated. The algorithm is capable of providing near orthogonality and spacing control at solid boundaries while requiring minimal interprocessor communications. Results obtained on the Intel hypercube for a blended wing-body configuration are used to demonstrate the effectiveness of the algorithm. Fortran implementations bAsed on the native programming model of the iPSC/860 computer and the Express system of software tools are reported. Computational gains in execution time speed-up ratios are given.
Adaptive automation of human-machine system information-processing functions.
Kaber, David B; Wright, Melanie C; Prinzel, Lawrence J; Clamann, Michael P
2005-01-01
The goal of this research was to describe the ability of human operators to interact with adaptive automation (AA) applied to various stages of complex systems information processing, defined in a model of human-automation interaction. Forty participants operated a simulation of an air traffic control task. Automated assistance was adaptively applied to information acquisition, information analysis, decision making, and action implementation aspects of the task based on operator workload states, which were measured using a secondary task. The differential effects of the forms of automation were determined and compared with a manual control condition. Results of two 20-min trials of AA or manual control revealed a significant effect of the type of automation on performance, particularly during manual control periods as part of the adaptive conditions. Humans appear to better adapt to AA applied to sensory and psychomotor information-processing functions (action implementation) than to AA applied to cognitive functions (information analysis and decision making), and AA is superior to completely manual control. Potential applications of this research include the design of automation to support air traffic controller information processing.
Machine learning challenges in Mars rover traverse science
NASA Technical Reports Server (NTRS)
Castano, R.; Judd, M.; Anderson, R. C.; Estlin, T.
2003-01-01
The successful implementation of machine learning in autonomous rover traverse science requires addressing challenges that range from the analytical technical realm, to the fuzzy, philosophical domain of entrenched belief systems within scientists and mission managers.
An efficient annealing in Boltzmann machine in Hopfield neural network
NASA Astrophysics Data System (ADS)
Kin, Teoh Yeong; Hasan, Suzanawati Abu; Bulot, Norhisam; Ismail, Mohammad Hafiz
2012-09-01
This paper proposes and implements Boltzmann machine in Hopfield neural network doing logic programming based on the energy minimization system. The temperature scheduling in Boltzmann machine enhancing the performance of doing logic programming in Hopfield neural network. The finest temperature is determined by observing the ratio of global solution and final hamming distance using computer simulations. The study shows that Boltzmann Machine model is more stable and competent in term of representing and solving difficult combinatory problems.
Chang, G C; Kang, W J; Luh, J J; Cheng, C K; Lai, J S; Chen, J J; Kuo, T S
1996-10-01
The purpose of this study was to develop a real-time electromyogram (EMG) discrimination system to provide control commands for man-machine interface applications. A host computer with a plug-in data acquisition and processing board containing a TMS320 C31 floating-point digital signal processor was used to attain real-time EMG classification. Two-channel EMG signals were collected by two pairs of surface electrodes located bilaterally between the sternocleidomastoid and the upper trapezius. Five motions of the neck and shoulders were discriminated for each subject. The zero-crossing rate was employed to detect the onset of muscle contraction. The cepstral coefficients, derived from autoregressive coefficients and estimated by a recursive least square algorithm, were used as the recognition features. These features were then discriminated using a modified maximum likelihood distance classifier. The total response time of this EMG discrimination system was achieved about within 0.17 s. Four able bodied and two C5/6 quadriplegic subjects took part in the experiment, and achieved 95% mean recognition rate in discrimination between the five specific motions. The response time and the reliability of recognition indicate that this system has the potential to discriminate body motions for man-machine interface applications.
Chen, Xiaomei; Longstaff, Andrew; Fletcher, Simon; Myers, Alan
2014-04-01
This paper presents and evaluates an active dual-sensor autofocusing system that combines an optical vision sensor and a tactile probe for autofocusing on arrays of small holes on freeform surfaces. The system has been tested on a two-axis test rig and then integrated onto a three-axis computer numerical control (CNC) milling machine, where the aim is to rapidly and controllably measure the hole position errors while the part is still on the machine. The principle of operation is for the tactile probe to locate the nominal positions of holes, and the optical vision sensor follows to focus and capture the images of the holes. The images are then processed to provide hole position measurement. In this paper, the autofocusing deviations are analyzed. First, the deviations caused by the geometric errors of the axes on which the dual-sensor unit is deployed are estimated to be 11 μm when deployed on a test rig and 7 μm on the CNC machine tool. Subsequently, the autofocusing deviations caused by the interaction of the tactile probe, surface, and small hole are mathematically analyzed and evaluated. The deviations are a result of the tactile probe radius, the curvatures at the positions where small holes are drilled on the freeform surface, and the effect of the position error of the hole on focusing. An example case study is provided for the measurement of a pattern of small holes on an elliptical cylinder on the two machines. The absolute sum of the autofocusing deviations is 118 μm on the test rig and 144 μm on the machine tool. This is much less than the 500 μm depth of field of the optical microscope. Therefore, the method is capable of capturing a group of clear images of the small holes on this workpiece for either implementation.
Self-assembled software and method of overriding software execution
Bouchard, Ann M.; Osbourn, Gordon C.
2013-01-08
A computer-implemented software self-assembled system and method for providing an external override and monitoring capability to dynamically self-assembling software containing machines that self-assemble execution sequences and data structures. The method provides an external override machine that can be introduced into a system of self-assembling machines while the machines are executing such that the functionality of the executing software can be changed or paused without stopping the code execution and modifying the existing code. Additionally, a monitoring machine can be introduced without stopping code execution that can monitor specified code execution functions by designated machines and communicate the status to an output device.
Single bus star connected reluctance drive and method
Fahimi, Babak; Shamsi, Pourya
2016-05-10
A system and methods for operating a switched reluctance machine includes a controller, an inverter connected to the controller and to the switched reluctance machine, a hysteresis control connected to the controller and to the inverter, a set of sensors connected to the switched reluctance machine and to the controller, the switched reluctance machine further including a set of phases the controller further comprising a processor and a memory connected to the processor, wherein the processor programmed to execute a control process and a generation process.
Development of automated control system for wood drying
NASA Astrophysics Data System (ADS)
Sereda, T. G.; Kostarev, S. N.
2018-05-01
The article considers the parameters of convective wood drying which allows changing the characteristics of the air that performs drying at different stages: humidity, temperature, speed and direction of air movement. Despite the prevalence of this type of drying equipment, the main drawbacks of it are: the high temperature and humidity, negatively affecting the working conditions of maintenance personnel when they enter the drying chambers. It makes the automation of wood drying process necessary. The synthesis of a finite state of a machine control of wood drying process is implemented on a programmable logic device Omron.
Fuzzy logic controller optimization
Sepe, Jr., Raymond B; Miller, John Michael
2004-03-23
A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.
POLYSHIFT Communications Software for the Connection Machine System CM-200
George, William; Brickner, Ralph G.; Johnsson, S. Lennart
1994-01-01
We describe the use and implementation of a polyshift function PSHIFT for circular shifts and end-offs shifts. Polyshift is useful in many scientific codes using regular grids, such as finite difference codes in several dimensions, and multigrid codes, molecular dynamics computations, and in lattice gauge physics computations, such as quantum chromodynamics (QCD) calculations. Our implementation of the PSHIFT function on the Connection Machine systems CM-2 and CM-200 offers a speedup of up to a factor of 3–4 compared with CSHIFT when the local data motion within a node is small. The PSHIFT routine is included in the Connection Machine Scientificmore » Software Library (CMSSL).« less
Mechanization for Optimal Landscape Reclamation
NASA Astrophysics Data System (ADS)
Vondráčková, Terezie; Voštová, Věra; Kraus, Michal
2017-12-01
Reclamation is a method of ultimate utilization of land adversely affected by mining or other industrial activity. The paper explains the types of reclamation and the term “optimal reclamation”. Technological options of the long-lasting process of mine dumps reclamation starting with the removal of overlying rocks, transport and backfilling up to the follow-up remodelling of the mine dumps terrain. Technological units and equipment for stripping flow division. Stripping flow solution with respect to optimal reclamation. We recommend that the application of logistic chains and mining simulation with follow-up reclamation to open-pit mines be used for the implementation of optimal reclamation. In addition to a database of local heterogeneities of the stripped soil and reclaimed land, the flow of earths should be resolved in a manner allowing the most suitable soil substrate to be created for the restoration of agricultural and forest land on mine dumps. The methodology under development for the solution of a number of problems, including the geological survey of overlying rocks, extraction of stripping, their transport and backfilling in specified locations with the follow-up deployment of goal-directed reclamation. It will make possible to reduce the financial resources needed for the complex process chain by utilizing GIS, GPS and DGPS technologies, logistic tools and synergistic effects. When selecting machines for transport, moving and spreading of earths, various points of view and aspects must be taken into account. Among such aspects are e.g. the kind of earth to be operated by the respective construction machine, the kind of work activities to be performed, the machine’s capacity, the option to control the machine’s implement and economic aspects and clients’ requirements. All these points of view must be considered in the decision-making process so that the selected machine is capable of executing the required activity and that the use of an unsuitable machine is eliminated as it would result in a delay and increase in the project costs. Therefore, reclamation always includes extensive earth-moving work activities restoring the required relief of the land being reclaimed. Using the earth-moving machine capacity, the kind of soil in mine dumps, the kind of the work activity performed and the machine design, a SW application has been developed that allows the most suitable machine for the respective work technology to be selected with a view to preparing the land intended for reclamation.
An intelligent CNC machine control system architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D.J.; Loucks, C.S.
1996-10-01
Intelligent, agile manufacturing relies on automated programming of digitally controlled processes. Currently, processes such as Computer Numerically Controlled (CNC) machining are difficult to automate because of highly restrictive controllers and poor software environments. It is also difficult to utilize sensors and process models for adaptive control, or to integrate machining processes with other tasks within a factory floor setting. As part of a Laboratory Directed Research and Development (LDRD) program, a CNC machine control system architecture based on object-oriented design and graphical programming has been developed to address some of these problems and to demonstrate automated agile machining applications usingmore » platform-independent software.« less
Mann, Georgianna; Kraak, Vivica; Serrano, Elena
2015-09-17
The study objective was to examine the nutritional quality of competitive foods and beverages (foods and beverages from vending machines and à la carte foods) available to rural middle school students, before implementation of the US Department of Agriculture's Smart Snacks in School standards in July 2014. In spring 2014, we audited vending machines and à la carte cafeteria foods and beverages in 8 rural Appalachian middle schools in Virginia. Few schools had vending machines. Few à la carte and vending machine foods met Smart Snacks in School standards (36.5%); however, most beverages did (78.2%). The major challenges to meeting standards were fat and sodium content of foods. Most competitive foods (62.2%) did not meet new standards, and rural schools with limited resources will likely require assistance to fully comply.
Method and system for rendering and interacting with an adaptable computing environment
Osbourn, Gordon Cecil [Albuquerque, NM; Bouchard, Ann Marie [Albuquerque, NM
2012-06-12
An adaptable computing environment is implemented with software entities termed "s-machines", which self-assemble into hierarchical data structures capable of rendering and interacting with the computing environment. A hierarchical data structure includes a first hierarchical s-machine bound to a second hierarchical s-machine. The first hierarchical s-machine is associated with a first layer of a rendering region on a display screen and the second hierarchical s-machine is associated with a second layer of the rendering region overlaying at least a portion of the first layer. A screen element s-machine is linked to the first hierarchical s-machine. The screen element s-machine manages data associated with a screen element rendered to the display screen within the rendering region at the first layer.
Neuron-Type-Specific Utility in a Brain-Machine Interface: a Pilot Study.
Garcia-Garcia, Martha G; Bergquist, Austin J; Vargas-Perez, Hector; Nagai, Mary K; Zariffa, Jose; Marquez-Chin, Cesar; Popovic, Milos R
2017-11-01
Firing rates of single cortical neurons can be volitionally modulated through biofeedback (i.e. operant conditioning), and this information can be transformed to control external devices (i.e. brain-machine interfaces; BMIs). However, not all neurons respond to operant conditioning in BMI implementation. Establishing criteria that predict neuron utility will assist translation of BMI research to clinical applications. Single cortical neurons (n=7) were recorded extracellularly from primary motor cortex of a Long-Evans rat. Recordings were incorporated into a BMI involving up-regulation of firing rate to control the brightness of a light-emitting-diode and subsequent reward. Neurons were classified as 'fast-spiking', 'bursting' or 'regular-spiking' according to waveform-width and intrinsic firing patterns. Fast-spiking and bursting neurons were found to up-regulate firing rate by a factor of 2.43±1.16, demonstrating high utility, while regular-spiking neurons decreased firing rates on average by a factor of 0.73±0.23, demonstrating low utility. The ability to select neurons with high utility will be important to minimize training times and maximize information yield in future clinical BMI applications. The highly contrasting utility observed between fast-spiking and bursting neurons versus regular-spiking neurons allows for the hypothesis to be advanced that intrinsic electrophysiological properties may be useful criteria that predict neuron utility in BMI implementation.
2017-06-01
AUTONOMOUS CONTROL AND COLLABORATION (UTACC) HUMAN-MACHINE INTEGRATION MEASURES OF PERFORMANCE AND MEASURES OF EFFECTIVENESS by Thomas A...TACTICAL AUTONOMOUS CONTROL AND COLLABORATION (UTACC) HUMAN-MACHINE INTEGRATION MEASURES OF PERFORMANCE AND MEASURES OF EFFECTIVENESS 5. FUNDING...Tactical Autonomous Control and Collaboration (UTACC) program seeks to integrate Marines and autonomous machines to address the challenges encountered in
Quality Control System using Simple Implementation of Seven Tools for Batik Textile Manufacturing
NASA Astrophysics Data System (ADS)
Ragil Suryoputro, Muhammad; Sugarindra, Muchamad; Erfaisalsyah, Hendy
2017-06-01
In order to produce better products and mitigate defect in products, every company must implement a quality control system. Company will find means to implement a quality control system that is capable and reliable. One of the methods is using the simple implementation of the seven tools in quality control defects. The case studied in this research was the level of disability xyz grey fabric on a shuttle loom 2 on the Batik manufacturing company. The seven tools that include: flowchart, check sheet, histogram, scatter diagram combined with control charts, Pareto diagrams and fishbone diagrams (causal diagram). Check sheet results obtained types of defects in the grey fabric was woven xyz is warp, double warp, the warp break, double warp, empty warp, warp tenuous, ugly edges, thick warp, and rust. Based on the analysis of control chart indicates that the process is out of control. This can be seen in the graph control where there is still a lot of outlier data. Based on a scatter diagram shows a positive correlation between the percentage of disability and the number of production. Based on Pareto diagram, repair needs priority is for the dominant type of defect is warp (44%) and based on double warp value histogram is also the highest with a value of 23635.11 m. In addition, based on the analysis of the factors causing defect by fishbone diagram double warp or other types of defects originating from the materials, methods, machines, measurements, man and environment. Thus the company can take to minimize the prevention and repair of defects and improve product quality.
Intelligible machine learning with malibu.
Langlois, Robert E; Lu, Hui
2008-01-01
malibu is an open-source machine learning work-bench developed in C/C++ for high-performance real-world applications, namely bioinformatics and medical informatics. It leverages third-party machine learning implementations for more robust bug-free software. This workbench handles several well-studied supervised machine learning problems including classification, regression, importance-weighted classification and multiple-instance learning. The malibu interface was designed to create reproducible experiments ideally run in a remote and/or command line environment. The software can be found at: http://proteomics.bioengr. uic.edu/malibu/index.html.
Ponsonnard, Sébastien; Galy, Antoine; Cros, Jérôme; Daragon, Armelle Marie; Nathan, Nathalie
2017-02-01
End-tidal target-controlled inhalational anaesthesia (TCIA) with halogenated agents (HA) provides a faster and more accurately titrated anaesthesia as compared to manually-controlled anaesthesia. This study aimed to measure the macro-economic cost-benefit ratio of TCIA as compared to manually-controlled anaesthesia. This retrospective and descriptive study compared direct drug spending between two hospitals before 2011 and then after the replacement of three of six anaesthesia machines with TCIA mode machines in 2012 (Aisys carestation ® , GE). The direct costs were obtained from the pharmacy department and the number and duration of the anaesthesia procedures from the computerized files of the hospital. The cost of halogenated agents was reduced in the hospital equipped with an Aisys carestation ® by 13% as was the cost of one minute of anaesthesia by inhalation (€0.138 and €0.121/min between 2011 and 2012). The extra cost of the implementation of the 3 anaesthesia machines could be paid off with the resulting savings over 6 years. TCIA appears to have a favourable cost-benefit ratio. Despite a number of factors, which would tend to minimise the saving and increase costs, we still managed to observe a 13% savings. Shorter duration of surgery, type of induction as well as the way HA concentration is targeted may influence the savings results obtained. Copyright © 2016 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.
Comparison of the MPP with other supercomputers for LANDSAT data processing
NASA Technical Reports Server (NTRS)
Ozga, Martin
1987-01-01
The massively parallel processor is compared to the CRAY X-MP and the CYBER-205 for LANDSAT data processing. The maximum likelihood classification algorithm is the basis for comparison since this algorithm is simple to implement and vectorizes very well. The algorithm was implemented on all three machines and tested by classifying the same full scene of LANDSAT multispectral scan data. Timings are compared as well as features of the machines and available software.
49 CFR 236.771 - Machine, control.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Machine, control. 236.771 Section 236.771..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.771 Machine, control. An assemblage of manually operated devices for controlling the functions of a traffic...
49 CFR 236.771 - Machine, control.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Machine, control. 236.771 Section 236.771..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.771 Machine, control. An assemblage of manually operated devices for controlling the functions of a traffic...
49 CFR 236.771 - Machine, control.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Machine, control. 236.771 Section 236.771..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.771 Machine, control. An assemblage of manually operated devices for controlling the functions of a traffic...
49 CFR 236.771 - Machine, control.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Machine, control. 236.771 Section 236.771..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.771 Machine, control. An assemblage of manually operated devices for controlling the functions of a traffic...
On Why It Is Impossible to Prove that the BDX90 Dispatcher Implements a Time-sharing System
NASA Technical Reports Server (NTRS)
Boyer, R. S.; Moore, J. S.
1983-01-01
The Software Implemented Fault Tolerance SIFT system, is written in PASCAL except for about a page of machine code. The SIFT system implements a small time sharing system in which PASCAL programs for separate application tasks are executed according to a schedule with real time constraints. The PASCAL language has no provision for handling the notion of an interrupt such as the B930 clock interrupt. The PASCAL language also lacks the notion of running a PASCAL subroutine for a given amount of time, suspending it, saving away the suspension, and later activating the suspension. Machine code was used to overcome these inadequacies of PASCAL. Code which handles clock interrupts and suspends processes is called a dispatcher. The time sharing/virtual machine idea is completely destroyed by the reconfiguration task. After termination of the reconfiguration task, the tasks run by the dispatcher have no relation to those run before reconfiguration. It is impossible to view the dispatcher as a time-sharing system implementing virtual BDX930s running concurrently when one process can wipe out the others.
A distributed Petri Net controller for a dual arm testbed
NASA Technical Reports Server (NTRS)
Bjanes, Atle
1991-01-01
This thesis describes the design and functionality of a Distributed Petri Net Controller (DPNC). The controller runs under X Windows to provide a graphical interface. The DPNC allows users to distribute a Petri Net across several host computers linked together via a TCP/IP interface. A sub-net executes on each host, interacting with the other sub-nets by passing a token vector from host to host. One host has a command window which monitors and controls the distributed controller. The input to the DPNC is a net definition file generated by Great SPN. Thus, a net may be designed, analyzed and verified using this package before implementation. The net is distributed to the hosts by tagging transitions that are host-critical with the appropriate host number. The controller will then distribute the remaining places and transitions to the hosts by generating the local nets, the local marking vectors and the global marking vector. Each transition can have one or more preconditions which must be fulfilled before the transition can fire, as well as one or more post-processes to be executed after the transition fires. These implement the actual input/output to the environment (machines, signals, etc.). The DPNC may also be used to simulate a Great SPN net since stochastic and deterministic firing rates are implemented in the controller for timed transitions.
NASA Astrophysics Data System (ADS)
Liang, J.; Sédillot, S.; Traverson, B.
1997-09-01
This paper addresses federation of a transactional object standard - Object Management Group (OMG) object transaction service (OTS) - with the X/Open distributed transaction processing (DTP) model and International Organization for Standardization (ISO) open systems interconnection (OSI) transaction processing (TP) communication protocol. The two-phase commit propagation rules within a distributed transaction tree are similar in the X/Open, ISO and OMG models. Building an OTS on an OSI TP protocol machine is possible because the two specifications are somewhat complementary. OTS defines a set of external interfaces without specific internal protocol machine, while OSI TP specifies an internal protocol machine without any application programming interface. Given these observations, and having already implemented an X/Open two-phase commit transaction toolkit based on an OSI TP protocol machine, we analyse the feasibility of using this implementation as a transaction service provider for OMG interfaces. Based on the favourable result of this feasibility study, we are implementing an OTS compliant system, which, by initiating the extensibility and openness strengths of OSI TP, is able to provide interoperability between X/Open DTP and OMG OTS models.
Dynamically programmable cache
NASA Astrophysics Data System (ADS)
Nakkar, Mouna; Harding, John A.; Schwartz, David A.; Franzon, Paul D.; Conte, Thomas
1998-10-01
Reconfigurable machines have recently been used as co- processors to accelerate the execution of certain algorithms or program subroutines. The problems with the above approach include high reconfiguration time and limited partial reconfiguration. By far the most critical problems are: (1) the small on-chip memory which results in slower execution time, and (2) small FPGA areas that cannot implement large subroutines. Dynamically Programmable Cache (DPC) is a novel architecture for embedded processors which offers solutions to the above problems. To solve memory access problems, DPC processors merge reconfigurable arrays with the data cache at various cache levels to create a multi-level reconfigurable machines. As a result DPC machines have both higher data accessibility and FPGA memory bandwidth. To solve the limited FPGA resource problem, DPC processors implemented multi-context switching (Virtualization) concept. Virtualization allows implementation of large subroutines with fewer FPGA cells. Additionally, DPC processors can parallelize the execution of several operations resulting in faster execution time. In this paper, the speedup improvement for DPC machines are shown to be 5X faster than an Altera FLEX10K FPGA chip and 2X faster than a Sun Ultral SPARC station for two different algorithms (convolution and motion estimation).
Design of barrier bucket kicker control system
NASA Astrophysics Data System (ADS)
Ni, Fa-Fu; Wang, Yan-Yu; Yin, Jun; Zhou, De-Tai; Shen, Guo-Dong; Zheng, Yang-De.; Zhang, Jian-Chuan; Yin, Jia; Bai, Xiao; Ma, Xiao-Li
2018-05-01
The Heavy-Ion Research Facility in Lanzhou (HIRFL) contains two synchrotrons: the main cooler storage ring (CSRm) and the experimental cooler storage ring (CSRe). Beams are extracted from CSRm, and injected into CSRe. To apply the Barrier Bucket (BB) method on the CSRe beam accumulation, a new BB technology based kicker control system was designed and implemented. The controller of the system is implemented using an Advanced Reduced Instruction Set Computer (RISC) Machine (ARM) chip and a field-programmable gate array (FPGA) chip. Within the architecture, ARM is responsible for data presetting and floating number arithmetic processing. The FPGA computes the RF phase point of the two rings and offers more accurate control of the time delay. An online preliminary experiment on HIRFL was also designed to verify the functionalities of the control system. The result shows that the reference trigger point of two different sinusoidal RF signals for an arbitrary phase point was acquired with a matched phase error below 1° (approximately 2.1 ns), and the step delay time better than 2 ns were realized.
Experimental model of a wind energy conversion system
NASA Astrophysics Data System (ADS)
Vasar, C.; Rat, C. L.; Prostean, O.
2018-01-01
The renewable energy domain represents an important issue for the sustainable development of the mankind in the actual context of increasing demand for energy along with the increasing pollution that affect the environment. A significant quota of the clean energy is represented by the wind energy. As a consequence, the developing of wind energy conversion systems (WECS) in order to achieve high energetic performances (efficiency, stability, availability, competitive cost etc) represents a topic of permanent actuality. Testing and developing of an optimized control strategy for a WECS direct implemented on a real energetic site is quite difficult and not cost efficient. Thus a more convenient solution consists in a flexible laboratory setup which requires an experimental model of a WECS. Such approach would allow the simulation of various real conditions very similar with existing energetic sites. This paper presents a grid-connected wind turbine emulator. The wind turbine is implemented through a real-time Hardware-in-the-Loop (HIL) emulator, which will be analyzed extensively in the paper. The HIL system uses software implemented in the LabVIEW programming environment to control an ABB ACS800 electric drive. ACS800 has the task of driving an induction machine coupled to a permanent magnet synchronous generator. The power obtained from the synchronous generator is rectified, filtered and sent to the main grid through a controlled inverter. The control strategy is implemented on a NI CompactRIO (cRIO) platform.
Open architecture CMM motion controller
NASA Astrophysics Data System (ADS)
Chang, David; Spence, Allan D.; Bigg, Steve; Heslip, Joe; Peterson, John
2001-12-01
Although initially the only Coordinate Measuring Machine (CMM) sensor available was a touch trigger probe, technological advances in sensors and computing have greatly increased the variety of available inspection sensors. Non-contact laser digitizers and analog scanning touch probes require very well tuned CMM motion control, as well as an extensible, open architecture interface. This paper describes the implementation of a retrofit CMM motion controller designed for open architecture interface to a variety of sensors. The controller is based on an Intel Pentium microcomputer and a Servo To Go motion interface electronics card. Motor amplifiers, safety, and additional interface electronics are housed in a separate enclosure. Host Signal Processing (HSP) is used for the motion control algorithm. Compared to the usual host plus DSP architecture, single CPU HSP simplifies integration with the various sensors, and implementation of software geometric error compensation. Motion control tuning is accomplished using a remote computer via 100BaseTX Ethernet. A Graphical User Interface (GUI) is used to enter geometric error compensation data, and to optimize the motion control tuning parameters. It is shown that this architecture achieves the required real time motion control response, yet is much easier to extend to additional sensors.
Speed-Selector Guard For Machine Tool
NASA Technical Reports Server (NTRS)
Shakhshir, Roda J.; Valentine, Richard L.
1992-01-01
Simple guardplate prevents accidental reversal of direction of rotation or sudden change of speed of lathe, milling machine, or other machine tool. Custom-made for specific machine and control settings. Allows control lever to be placed at only one setting. Operator uses handle to slide guard to engage or disengage control lever. Protects personnel from injury and equipment from damage occurring if speed- or direction-control lever inadvertently placed in wrong position.
Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models
NASA Astrophysics Data System (ADS)
Benedetti, Marcello; Realpe-Gómez, John; Biswas, Rupak; Perdomo-Ortiz, Alejandro
2017-10-01
Mainstream machine-learning techniques such as deep learning and probabilistic programming rely heavily on sampling from generally intractable probability distributions. There is increasing interest in the potential advantages of using quantum computing technologies as sampling engines to speed up these tasks or to make them more effective. However, some pressing challenges in state-of-the-art quantum annealers have to be overcome before we can assess their actual performance. The sparse connectivity, resulting from the local interaction between quantum bits in physical hardware implementations, is considered the most severe limitation to the quality of constructing powerful generative unsupervised machine-learning models. Here, we use embedding techniques to add redundancy to data sets, allowing us to increase the modeling capacity of quantum annealers. We illustrate our findings by training hardware-embedded graphical models on a binarized data set of handwritten digits and two synthetic data sets in experiments with up to 940 quantum bits. Our model can be trained in quantum hardware without full knowledge of the effective parameters specifying the corresponding quantum Gibbs-like distribution; therefore, this approach avoids the need to infer the effective temperature at each iteration, speeding up learning; it also mitigates the effect of noise in the control parameters, making it robust to deviations from the reference Gibbs distribution. Our approach demonstrates the feasibility of using quantum annealers for implementing generative models, and it provides a suitable framework for benchmarking these quantum technologies on machine-learning-related tasks.
Testing and Validating Machine Learning Classifiers by Metamorphic Testing☆
Xie, Xiaoyuan; Ho, Joshua W. K.; Murphy, Christian; Kaiser, Gail; Xu, Baowen; Chen, Tsong Yueh
2011-01-01
Machine Learning algorithms have provided core functionality to many application domains - such as bioinformatics, computational linguistics, etc. However, it is difficult to detect faults in such applications because often there is no “test oracle” to verify the correctness of the computed outputs. To help address the software quality, in this paper we present a technique for testing the implementations of machine learning classification algorithms which support such applications. Our approach is based on the technique “metamorphic testing”, which has been shown to be effective to alleviate the oracle problem. Also presented include a case study on a real-world machine learning application framework, and a discussion of how programmers implementing machine learning algorithms can avoid the common pitfalls discovered in our study. We also conduct mutation analysis and cross-validation, which reveal that our method has high effectiveness in killing mutants, and that observing expected cross-validation result alone is not sufficiently effective to detect faults in a supervised classification program. The effectiveness of metamorphic testing is further confirmed by the detection of real faults in a popular open-source classification program. PMID:21532969
Technologies for developing an advanced intelligent ATM with self-defence capabilities
NASA Astrophysics Data System (ADS)
Sako, Hiroshi
2010-01-01
We have developed several technologies for protecting automated teller machines. These technologies are based mainly on pattern recognition and are used to implement various self-defence functions. They include (i) banknote recognition and information retrieval for preventing machines from accepting counterfeit and damaged banknotes and for retrieving information about detected counterfeits from a relational database, (ii) form processing and character recognition for preventing machines from accepting remittance forms without due dates and/or insufficient payment, (iii) person identification to prevent machines from transacting with non-customers, and (iv) object recognition to guard machines against foreign objects such as spy cams that might be surreptitiously attached to them and to protect users against someone attempting to peek at their user information such as their personal identification number. The person identification technology has been implemented in most ATMs in Japan, and field tests have demonstrated that the banknote recognition technology can recognise more then 200 types of banknote from 30 different countries. We are developing an "advanced intelligent ATM" that incorporates all of these technologies.
A Parallel Vector Machine for the PM Programming Language
NASA Astrophysics Data System (ADS)
Bellerby, Tim
2016-04-01
PM is a new programming language which aims to make the writing of computational geoscience models on parallel hardware accessible to scientists who are not themselves expert parallel programmers. It is based around the concept of communicating operators: language constructs that enable variables local to a single invocation of a parallelised loop to be viewed as if they were arrays spanning the entire loop domain. This mechanism enables different loop invocations (which may or may not be executing on different processors) to exchange information in a manner that extends the successful Communicating Sequential Processes idiom from single messages to collective communication. Communicating operators avoid the additional synchronisation mechanisms, such as atomic variables, required when programming using the Partitioned Global Address Space (PGAS) paradigm. Using a single loop invocation as the fundamental unit of concurrency enables PM to uniformly represent different levels of parallelism from vector operations through shared memory systems to distributed grids. This paper describes an implementation of PM based on a vectorised virtual machine. On a single processor node, concurrent operations are implemented using masked vector operations. Virtual machine instructions operate on vectors of values and may be unmasked, masked using a Boolean field, or masked using an array of active vector cell locations. Conditional structures (such as if-then-else or while statement implementations) calculate and apply masks to the operations they control. A shift in mask representation from Boolean to location-list occurs when active locations become sufficiently sparse. Parallel loops unfold data structures (or vectors of data structures for nested loops) into vectors of values that may additionally be distributed over multiple computational nodes and then split into micro-threads compatible with the size of the local cache. Inter-node communication is accomplished using standard OpenMP and MPI. Performance analyses of the PM vector machine, demonstrating its scaling properties with respect to domain size and the number of processor nodes will be presented for a range of hardware configurations. The PM software and language definition are being made available under unrestrictive MIT and Creative Commons Attribution licenses respectively: www.pm-lang.org.
Zhang, Fan; Liu, Ming; Harper, Stephen; Lee, Michael; Huang, He
2014-07-22
To enable intuitive operation of powered artificial legs, an interface between user and prosthesis that can recognize the user's movement intent is desired. A novel neural-machine interface (NMI) based on neuromuscular-mechanical fusion developed in our previous study has demonstrated a great potential to accurately identify the intended movement of transfemoral amputees. However, this interface has not yet been integrated with a powered prosthetic leg for true neural control. This study aimed to report (1) a flexible platform to implement and optimize neural control of powered lower limb prosthesis and (2) an experimental setup and protocol to evaluate neural prosthesis control on patients with lower limb amputations. First a platform based on a PC and a visual programming environment were developed to implement the prosthesis control algorithms, including NMI training algorithm, NMI online testing algorithm, and intrinsic control algorithm. To demonstrate the function of this platform, in this study the NMI based on neuromuscular-mechanical fusion was hierarchically integrated with intrinsic control of a prototypical transfemoral prosthesis. One patient with a unilateral transfemoral amputation was recruited to evaluate our implemented neural controller when performing activities, such as standing, level-ground walking, ramp ascent, and ramp descent continuously in the laboratory. A novel experimental setup and protocol were developed in order to test the new prosthesis control safely and efficiently. The presented proof-of-concept platform and experimental setup and protocol could aid the future development and application of neurally-controlled powered artificial legs.
Machine learning in autistic spectrum disorder behavioral research: A review and ways forward.
Thabtah, Fadi
2018-02-13
Autistic Spectrum Disorder (ASD) is a mental disorder that retards acquisition of linguistic, communication, cognitive, and social skills and abilities. Despite being diagnosed with ASD, some individuals exhibit outstanding scholastic, non-academic, and artistic capabilities, in such cases posing a challenging task for scientists to provide answers. In the last few years, ASD has been investigated by social and computational intelligence scientists utilizing advanced technologies such as machine learning to improve diagnostic timing, precision, and quality. Machine learning is a multidisciplinary research topic that employs intelligent techniques to discover useful concealed patterns, which are utilized in prediction to improve decision making. Machine learning techniques such as support vector machines, decision trees, logistic regressions, and others, have been applied to datasets related to autism in order to construct predictive models. These models claim to enhance the ability of clinicians to provide robust diagnoses and prognoses of ASD. However, studies concerning the use of machine learning in ASD diagnosis and treatment suffer from conceptual, implementation, and data issues such as the way diagnostic codes are used, the type of feature selection employed, the evaluation measures chosen, and class imbalances in data among others. A more serious claim in recent studies is the development of a new method for ASD diagnoses based on machine learning. This article critically analyses these recent investigative studies on autism, not only articulating the aforementioned issues in these studies but also recommending paths forward that enhance machine learning use in ASD with respect to conceptualization, implementation, and data. Future studies concerning machine learning in autism research are greatly benefitted by such proposals.
Stator and Rotor Flux Based Deadbeat Direct Torque Control of Induction Machines
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Lorenz, Robert D.
2001-01-01
A new, deadbeat type of direct torque control is proposed, analyzed, and experimentally verified in this paper. The control is based on stator and rotor flux as state variables. This choice of state variables allows a graphical representation which is transparent and insightful. The graphical solution shows the effects of realistic considerations such as voltage and current limits. A position and speed sensorless implementation of the control, based on the self-sensing signal injection technique, is also demonstrated experimentally for low speed operation. The paper first develops the new, deadbeat DTC methodology and graphical representation of the new algorithm. It then evaluates feasibility via simulation and experimentally demonstrates performance of the new method with a laboratory prototype including the sensorless methods.
Stator and Rotor Flux Based Deadbeat Direct Torque Control of Induction Machines
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Lorenz, Robert D.
2003-01-01
A new, deadbeat type of direct torque control is proposed, analyzed and experimentally verified in this paper. The control is based on stator and rotor flux as state variables. This choice of state variables allows a graphical representation which is transparent and insightful. The graphical solution shows the effects of realistic considerations such as voltage and current limits. A position and speed sensorless implementation of the control, based on the self-sensing signal injection technique, is also demonstrated experimentally for low speed operation. The paper first develops the new, deadbeat DTC methodology and graphical representation of the new algorithm. It then evaluates feasibility via simulation and experimentally demonstrates performance of the new method with a laboratory prototype including the sensorless methods.
Stator and Rotor Flux Based Deadbeat Direct Torque Control of Induction Machines. Revision 1
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Lorenz, Robert D.
2002-01-01
A new, deadbeat type of direct torque control is proposed, analyzed, and experimentally verified in this paper. The control is based on stator and rotor flux as state variables. This choice of state variables allows a graphical representation which is transparent and insightful. The graphical solution shows the effects of realistic considerations such as voltage and current limits. A position and speed sensorless implementation of the control, based on the self-sensing signal injection technique, is also demonstrated experimentally for low speed operation. The paper first develops the new, deadbeat DTC methodology and graphical representation of the new algorithm. It then evaluates feasibility via simulation and experimentally demonstrates performance of the new method with a laboratory prototype including the sensorless methods.
Simplify and Accelerate Earth Science Data Preparation to Systemize Machine Learning
NASA Astrophysics Data System (ADS)
Kuo, K. S.; Rilee, M. L.; Oloso, A.
2017-12-01
Data preparation is the most laborious and time-consuming part of machine learning. The effort required is usually more than linearly proportional to the varieties of data used. From a system science viewpoint, useful machine learning in Earth Science likely involves diverse datasets. Thus, simplifying data preparation to ease the systemization of machine learning in Earth Science is of immense value. The technologies we have developed and applied to an array database, SciDB, are explicitly designed for the purpose, including the innovative SpatioTemporal Adaptive-Resolution Encoding (STARE), a remapping tool suite, and an efficient implementation of connected component labeling (CCL). STARE serves as a universal Earth data representation that homogenizes data varieties and facilitates spatiotemporal data placement as well as alignment, to maximize query performance on massively parallel, distributed computing resources for a major class of analysis. Moreover, it converts spatiotemporal set operations into fast and efficient integer interval operations, supporting in turn moving-object analysis. Integrative analysis requires more than overlapping spatiotemporal sets. For example, meaningful comparison of temperature fields obtained with different means and resolutions requires their transformation to the same grid. Therefore, remapping has been implemented to enable integrative analysis. Finally, Earth Science investigations are generally studies of phenomena, e.g. tropical cyclone, atmospheric river, and blizzard, through their associated events, like hurricanes Katrina and Sandy. Unfortunately, except for a few high-impact phenomena, comprehensive episodic records are lacking. Consequently, we have implemented an efficient CCL tracking algorithm, enabling event-based investigations within climate data records beyond mere event presence. In summary, we have implemented the core unifying capabilities on a Big Data technology to enable systematic machine learning in Earth Science.
Machine learning for the meta-analyses of microbial pathogens' volatile signatures.
Palma, Susana I C J; Traguedo, Ana P; Porteira, Ana R; Frias, Maria J; Gamboa, Hugo; Roque, Ana C A
2018-02-20
Non-invasive and fast diagnostic tools based on volatolomics hold great promise in the control of infectious diseases. However, the tools to identify microbial volatile organic compounds (VOCs) discriminating between human pathogens are still missing. Artificial intelligence is increasingly recognised as an essential tool in health sciences. Machine learning algorithms based in support vector machines and features selection tools were here applied to find sets of microbial VOCs with pathogen-discrimination power. Studies reporting VOCs emitted by human microbial pathogens published between 1977 and 2016 were used as source data. A set of 18 VOCs is sufficient to predict the identity of 11 microbial pathogens with high accuracy (77%), and precision (62-100%). There is one set of VOCs associated with each of the 11 pathogens which can predict the presence of that pathogen in a sample with high accuracy and precision (86-90%). The implemented pathogen classification methodology supports future database updates to include new pathogen-VOC data, which will enrich the classifiers. The sets of VOCs identified potentiate the improvement of the selectivity of non-invasive infection diagnostics using artificial olfaction devices.
Rattanatamrong, Prapaporn; Matsunaga, Andrea; Raiturkar, Pooja; Mesa, Diego; Zhao, Ming; Mahmoudi, Babak; Digiovanna, Jack; Principe, Jose; Figueiredo, Renato; Sanchez, Justin; Fortes, Jose
2010-01-01
The CyberWorkstation (CW) is an advanced cyber-infrastructure for Brain-Machine Interface (BMI) research. It allows the development, configuration and execution of BMI computational models using high-performance computing resources. The CW's concept is implemented using a software structure in which an "experiment engine" is used to coordinate all software modules needed to capture, communicate and process brain signals and motor-control commands. A generic BMI-model template, which specifies a common interface to the CW's experiment engine, and a common communication protocol enable easy addition, removal or replacement of models without disrupting system operation. This paper reviews the essential components of the CW and shows how templates can facilitate the processes of BMI model development, testing and incorporation into the CW. It also discusses the ongoing work towards making this process infrastructure independent.
Transmission environmental scanning electron microscope with scintillation gaseous detection device.
Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios
2015-03-01
A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.
Grid generation methodology and CFD simulations in sliding vane compressors and expanders
NASA Astrophysics Data System (ADS)
Bianchi, Giuseppe; Rane, Sham; Kovacevic, Ahmed; Cipollone, Roberto; Murgia, Stefano; Contaldi, Giulio
2017-08-01
The limiting factor for the employment of advanced 3D CFD tools in the analysis and design of rotary vane machines is the unavailability of methods for generation of computational grids suitable for fast and reliable numerical analysis. The paper addresses this challenge presenting the development of an analytical grid generation for vane machines that is based on the user defined nodal displacement. In particular, mesh boundaries are defined as parametric curves generated using trigonometrical modelling of the axial cross section of the machine while the distribution of computational nodes is performed using algebraic algorithms with transfinite interpolation, post orthogonalisation and smoothing. Algebraic control functions are introduced for distribution of nodes on the rotor and casing boundaries in order to achieve good grid quality in terms of cell size and expansion. In this way, the moving and deforming fluid domain of the sliding vane machine is discretized and the conservation of intrinsic quantities in ensured by maintaining the cell connectivity and structure. For validation of generated grids, a mid-size air compressor and a small-scale expander for Organic Rankine Cycle applications have been investigated in this paper. Remarks on implementation of the mesh motion algorithm, stability and robustness experienced with the ANSYS CFX solver as well as the obtained flow results are presented.
Optical Implementation of the Optimal Universal and Phase-Covariant Quantum Cloning Machines
NASA Astrophysics Data System (ADS)
Ye, Liu; Song, Xue-Ke; Yang, Jie; Yang, Qun; Ma, Yang-Cheng
Quantum cloning relates to the security of quantum computation and quantum communication. In this paper, firstly we propose a feasible unified scheme to implement optimal 1 → 2 universal, 1 → 2 asymmetric and symmetric phase-covariant cloning, and 1 → 2 economical phase-covariant quantum cloning machines only via a beam splitter. Then 1 → 3 economical phase-covariant quantum cloning machines also can be realized by adding another beam splitter in context of linear optics. The scheme is based on the interference of two photons on a beam splitter with different splitting ratios for vertical and horizontal polarization components. It is shown that under certain condition, the scheme is feasible by current experimental technology.
NASA Astrophysics Data System (ADS)
Zapoměl, J.; Ferfecki, P.
2016-09-01
A frequently used technological solution for minimization of undesirable effects caused by vibration of rotating machines consists in placing damping devices in the rotor supports. The application of magnetorheological squeeze film dampers enables their optimum performance to be achieved in a wide range of rotating speeds by adapting their damping effect to the current operating conditions. The damping force, which is produced by squeezing the layer of magnetorheological oil, can be controlled by changing magnetic flux passing through the lubricant. The force acting between the rotor and its frame is transmitted through the rolling element bearing, the lubricating layer and the squirrel spring. The loading of the bearing produces a time variable friction moment, energy losses, uneven rotor running, and has an influence on the rotor service life and the current fluctuation in electric circuits. The carried out research consisted in the development of a mathematical model of a magnetorheological squeeze film damper, its implementation into the computational models of rotor systems, and in performing the study on the dependence of the energy losses and variation of the friction moment on the damping force and its control. The new and computationally stable mathematical model of a magnetorheological squeeze film damper, its implementation in the computational models of rigid rotors and learning more on the energy losses generated in the rotor supports in dependence on the damping effect are the principal contributions of this paper. The results of the computational simulations prove that a suitable control of the damping force enables the energy losses to be reduced in a wide velocity range.
Fast implementation of the 1\\rightarrow3 orbital state quantum cloning machine
NASA Astrophysics Data System (ADS)
Lin, Jin-Zhong
2018-05-01
We present a scheme to implement a 1→3 orbital state quantum cloning machine assisted by quantum Zeno dynamics. By constructing shortcuts to adiabatic passage with transitionless quantum driving, we can complete this scheme effectively and quickly in one step. The effects of decoherence, including spontaneous emission and the decay of the cavity, are also discussed. The numerical simulation results show that high fidelity can be obtained and the feasibility analysis indicates that this can also be realized in experiments.
Recursive computer architecture for VLSI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treleaven, P.C.; Hopkins, R.P.
1982-01-01
A general-purpose computer architecture based on the concept of recursion and suitable for VLSI computer systems built from replicated (lego-like) computing elements is presented. The recursive computer architecture is defined by presenting a program organisation, a machine organisation and an experimental machine implementation oriented to VLSI. The experimental implementation is being restricted to simple, identical microcomputers each containing a memory, a processor and a communications capability. This future generation of lego-like computer systems are termed fifth generation computers by the Japanese. 30 references.
NASA Astrophysics Data System (ADS)
Palagi, Stefano; Fischer, Peer
2018-06-01
Microorganisms can move in complex media, respond to the environment and self-organize. The field of microrobotics strives to achieve these functions in mobile robotic systems of sub-millimetre size. However, miniaturization of traditional robots and their control systems to the microscale is not a viable approach. A promising alternative strategy in developing microrobots is to implement sensing, actuation and control directly in the materials, thereby mimicking biological matter. In this Review, we discuss design principles and materials for the implementation of robotic functionalities in microrobots. We examine different biological locomotion strategies, and we discuss how they can be artificially recreated in magnetic microrobots and how soft materials improve control and performance. We show that smart, stimuli-responsive materials can act as on-board sensors and actuators and that `active matter' enables autonomous motion, navigation and collective behaviours. Finally, we provide a critical outlook for the field of microrobotics and highlight the challenges that need to be overcome to realize sophisticated microrobots, which one day might rival biological machines.
Banknotes and unattended cash transactions
NASA Astrophysics Data System (ADS)
Bernardini, Ronald R.
2000-04-01
There is a 64 billion dollar annual unattended cash transaction business in the US with 10 to 20 million daily transactions. Even small problems with the machine readability of banknotes can quickly become a major problem to the machine manufacturer and consumer. Traditional note designs incorporate overt security features for visual validation by the public. Many of these features such as fine line engraving, microprinting and watermarks are unsuitable as machine readable features in low cost note acceptors. Current machine readable features, mostly covert, were designed and implemented with the central banks in mind. These features are only usable by the banks large, high speed currency sorting and validation equipment. New note designs should consider and provide for low cost not acceptors, implementing features developed for inexpensive sensing technologies. Machine readable features are only as good as their consistency. Quality of security features as well as that of the overall printing process must be maintained to ensure reliable and secure operation of note readers. Variations in printing and of the components used to make the note are one of the major causes of poor performance in low cost note acceptors. The involvement of machine manufacturers in new currency designs will aid note producers in the design of a note that is machine friendly, helping to secure the acceptance of the note by the public as well as acting asa deterrent to fraud.
NASA Technical Reports Server (NTRS)
Anderson, W. W.; Will, R. W.; Grantham, C.
1972-01-01
A concept for automating the control of air traffic in the terminal area in which the primary man-machine interface is the cockpit is described. The ground and airborne inputs required for implementing this concept are discussed. Digital data link requirements of 10,000 bits per second are explained. A particular implementation of this concept including a sequencing and separation algorithm which generates flight paths and implements a natural order landing sequence is presented. Onboard computer/display avionics utilizing a traffic situation display is described. A preliminary simulation of this concept has been developed which includes a simple, efficient sequencing algorithm and a complete aircraft dynamics model. This simulated jet transport was flown through automated terminal-area traffic situations by pilots using relatively sophisticated displays, and pilot performance and observations are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, J.M.
The theory and methodology of design of general-purpose machines that may be controlled by a computer to perform all the tasks of a set of special-purpose machines is the focus of modern machine design research. These seventeen contributions chronicle recent activity in the analysis and design of robot manipulators that are the prototype of these general-purpose machines. They focus particularly on kinematics, the geometry of rigid-body motion, which is an integral part of machine design theory. The challenges to kinematics researchers presented by general-purpose machines such as the manipulator are leading to new perspectives in the design and control ofmore » simpler machines with two, three, and more degrees of freedom. Researchers are rethinking the uses of gear trains, planar mechanisms, adjustable mechanisms, and computer controlled actuators in the design of modern machines.« less
Preliminary Assessment of a Compliant Gait Exoskeleton.
Cestari, Manuel; Sanz-Merodio, Daniel; Garcia, Elena
2017-06-01
Current commercial wearable gait exoskeletons contain joints with stiff actuators that cannot adapt to unpredictable environments. These actuators consume a significant amount of energy, and their stiffness may not be appropriate for safe human-machine interactions. Adjustable compliant actuators are being designed and implemented because of their ability to minimize large forces due to shocks, to safely interact with the user, and to store and release energy in passive elastic elements. Introduction of such compliant actuation in gait exoskeletons, however, has been limited by the larger power-to-weight and volume ratio requirement. This article presents a preliminary assessment of the first compliant exoskeleton for children. Compliant actuation systems developed by our research group were integrated into the ATLAS exoskeleton prototype. The resulting device is a compliant exoskeleton, the ATLAS-C prototype. The exoskeleton is coupled with a special standing frame to provide balance while allowing a semi-natural gait. Experiments show that when comparing the behavior of the joints under different stiffness conditions, the inherent compliance of the implemented actuators showed natural adaptability during the gait cycle and in regions of shock absorption. Torque tracking of the joint is achieved, identifying the areas of loading response. The implementation of a state machine in the control of knee motion allowed reutilization of the stored energy during deflection at the end of the support phase to partially propel the leg and achieve a more natural and free swing.
Developing a PLC-friendly state machine model: lessons learned
NASA Astrophysics Data System (ADS)
Pessemier, Wim; Deconinck, Geert; Raskin, Gert; Saey, Philippe; Van Winckel, Hans
2014-07-01
Modern Programmable Logic Controllers (PLCs) have become an attractive platform for controlling real-time aspects of astronomical telescopes and instruments due to their increased versatility, performance and standardization. Likewise, vendor-neutral middleware technologies such as OPC Unified Architecture (OPC UA) have recently demonstrated that they can greatly facilitate the integration of these industrial platforms into the overall control system. Many practical questions arise, however, when building multi-tiered control systems that consist of PLCs for low level control, and conventional software and platforms for higher level control. How should the PLC software be structured, so that it can rely on well-known programming paradigms on the one hand, and be mapped to a well-organized OPC UA interface on the other hand? Which programming languages of the IEC 61131-3 standard closely match the problem domains of the abstraction levels within this structure? How can the recent additions to the standard (such as the support for namespaces and object-oriented extensions) facilitate a model based development approach? To what degree can our applications already take advantage of the more advanced parts of the OPC UA standard, such as the high expressiveness of the semantic modeling language that it defines, or the support for events, aggregation of data, automatic discovery, ... ? What are the timing and concurrency problems to be expected for the higher level tiers of the control system due to the cyclic execution of control and communication tasks by the PLCs? We try to answer these questions by demonstrating a semantic state machine model that can readily be implemented using IEC 61131 and OPC UA. One that does not aim to capture all possible states of a system, but rather one that attempts to organize the course-grained structure and behaviour of a system. In this paper we focus on the intricacies of this seemingly simple task, and on the lessons that we've learned during the development process of such a "PLC-friendly" state machine model.
Bearingless AC Homopolar Machine Design and Control for Distributed Flywheel Energy Storage
NASA Astrophysics Data System (ADS)
Severson, Eric Loren
The increasing ownership of electric vehicles, in-home solar and wind generation, and wider penetration of renewable energies onto the power grid has created a need for grid-based energy storage to provide energy-neutral services. These services include frequency regulation, which requires short response-times, high power ramping capabilities, and several charge cycles over the course of one day; and diurnal load-/generation-following services to offset the inherent mismatch between renewable generation and the power grid's load profile, which requires low self-discharge so that a reasonable efficiency is obtained over a 24 hour storage interval. To realize the maximum benefits of energy storage, the technology should be modular and have minimum geographic constraints, so that it is easily scalable according to local demands. Furthermore, the technology must be economically viable to participate in the energy markets. There is currently no storage technology that is able to simultaneously meet all of these needs. This dissertation focuses on developing a new energy storage device based on flywheel technology to meet these needs. It is shown that the bearingless ac homopolar machine can be used to overcome key obstacles in flywheel technology, namely: unacceptable self-discharge and overall system cost and complexity. Bearingless machines combine the functionality of a magnetic bearing and a motor/generator into a single electromechanical device. Design of these machines is particularly challenging due to cross-coupling effects and trade-offs between motor and magnetic bearing capabilities. The bearingless ac homopolar machine adds to these design challenges due to its 3D flux paths requiring computationally expensive 3D finite element analysis. At the time this dissertation was started, bearingless ac homopolar machines were a highly immature technology. This dissertation advances the state-of-the-art of these machines through research contributions in the areas of magnetic modeling, winding design, control, and power-electronic drive implementation. While these contributions are oriented towards facilitating more optimal flywheel designs, they will also be useful in applying the bearingless ac homopolar machine in other applications. Example designs are considered through finite element analysis and experimental validation is provided from a proof-of-concept prototype that has been designed and constructed as a part of this dissertation.
Shukla, Chinmay A
2017-01-01
The implementation of automation in the multistep flow synthesis is essential for transforming laboratory-scale chemistry into a reliable industrial process. In this review, we briefly introduce the role of automation based on its application in synthesis viz. auto sampling and inline monitoring, optimization and process control. Subsequently, we have critically reviewed a few multistep flow synthesis and suggested a possible control strategy to be implemented so that it helps to reliably transfer the laboratory-scale synthesis strategy to a pilot scale at its optimum conditions. Due to the vast literature in multistep synthesis, we have classified the literature and have identified the case studies based on few criteria viz. type of reaction, heating methods, processes involving in-line separation units, telescopic synthesis, processes involving in-line quenching and process with the smallest time scale of operation. This classification will cover the broader range in the multistep synthesis literature. PMID:28684977
The NASA/OAST telerobot testbed architecture
NASA Technical Reports Server (NTRS)
Matijevic, J. R.; Zimmerman, W. F.; Dolinsky, S.
1989-01-01
Through a phased development such as a laboratory-based research testbed, the NASA/OAST Telerobot Testbed provides an environment for system test and demonstration of the technology which will usefully complement, significantly enhance, or even replace manned space activities. By integrating advanced sensing, robotic manipulation and intelligent control under human-interactive supervision, the Testbed will ultimately demonstrate execution of a variety of generic tasks suggestive of space assembly, maintenance, repair, and telescience. The Testbed system features a hierarchical layered control structure compatible with the incorporation of evolving technologies as they become available. The Testbed system is physically implemented in a computing architecture which allows for ease of integration of these technologies while preserving the flexibility for test of a variety of man-machine modes. The development currently in progress on the functional and implementation architectures of the NASA/OAST Testbed and capabilities planned for the coming years are presented.
Hoeser, Jo; Gnandt, Emmanuel; Friedrich, Thorsten
2018-01-23
Differential scanning fluorimetry is a popular method to estimate the stability of a protein in distinct buffer conditions by determining its 'melting point'. The method requires a temperature controlled fluorescence spectrometer or a RT-PCR machine. Here, we introduce a low-budget version of a microcontroller based heating device implemented into a 96-well plate reader that is connected to a standard fluorescence spectrometer. We demonstrate its potential to determine the 'melting point' of soluble and membranous proteins at various buffer conditions.
2011-03-01
input spindle from the engine to over tighten and apply an even greater amount of resistance to the engine shaft . Not only was this dangerous to...Mengistu, Todd Rotramel, and Matt Rippl, all of whom worked together with me to design and build the test rig for our dynamometer setup. Countless...hours were spent together planning and executing the design and building the stand itself. The AFIT machine shop crew and ENY lab techs also
28 CFR 55.19 - Written materials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) IMPLEMENTATION OF THE PROVISIONS OF THE VOTING RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.19 Written... will be lost if a separate minority language ballot or voting machine is used. (d) Voting machines...
28 CFR 55.19 - Written materials.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) IMPLEMENTATION OF THE PROVISIONS OF THE VOTING RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.19 Written... will be lost if a separate minority language ballot or voting machine is used. (d) Voting machines...
Implementing Machine Learning in Radiology Practice and Research.
Kohli, Marc; Prevedello, Luciano M; Filice, Ross W; Geis, J Raymond
2017-04-01
The purposes of this article are to describe concepts that radiologists should understand to evaluate machine learning projects, including common algorithms, supervised as opposed to unsupervised techniques, statistical pitfalls, and data considerations for training and evaluation, and to briefly describe ethical dilemmas and legal risk. Machine learning includes a broad class of computer programs that improve with experience. The complexity of creating, training, and monitoring machine learning indicates that the success of the algorithms will require radiologist involvement for years to come, leading to engagement rather than replacement.
Bacillus cereus bacteremia outbreak due to contaminated hospital linens.
Sasahara, T; Hayashi, S; Morisawa, Y; Sakihama, T; Yoshimura, A; Hirai, Y
2011-02-01
We describe an outbreak of Bacillus cereus bacteremia that occurred at Jichi Medical University Hospital in 2006. This study aimed to identify the source of this outbreak and to implement appropriate control measures. We reviewed the charts of patients with blood cultures positive for B. cereus, and investigated B. cereus contamination within the hospital environment. Genetic relationships among B. cereus isolates were analyzed. Eleven patients developed B. cereus bacteremia between January and August 2006. The hospital linens and the washing machine were highly contaminated with B. cereus, which was also isolated from the intravenous fluid. All of the contaminated linens were autoclaved, the washing machine was cleaned with a detergent, and hand hygiene was promoted among the hospital staff. The number of patients per month that developed new B. cereus bacteremia rapidly decreased after implementing these measures. The source of this outbreak was B. cereus contamination of hospital linens, and B. cereus was transmitted from the linens to patients via catheter infection. Our findings demonstrated that bacterial contamination of hospital linens can cause nosocomial bacteremia. Thus, blood cultures that are positive for B. cereus should not be regarded as false positives in the clinical setting.
Analysis of noise on construction sites of high-rise buildings.
Barkokébas, Béda; Vasconcelos, Bianca M; Lago, Eliane Maria G; Alcoforador, Aline Fabiana P
2012-01-01
In the civil construction industry sector, it has been observed that the increasing use of machines has made tasks noisier and consequently caused hearing loss and had other adverse effects on workers. The objective of this study was to identify and assess the physical risks of noise present in activities undertaken in a construction company in order to propose control measures which will contribute to the management of health and safety within the company's organization. The methodology applied was based on verifying the characteristics of exposure to noise on construction sites, from an observation of sources which generated noise and making measurements of sound pressure levels emitted by these sources. The data was then analyzed and compared with the recommended performance levels established in control measures. As a result, it was found that some machines and equipment used in civil construction often generate noise above the acceptable levels and as such, in these cases, various control measures have been proposed. It is believed that the use of management techniques is the most effective way to assess risk and to implement the preventive and corrective actions proposed, and allows for the analysis of sound pressure levels on an ongoing basis.
An implementation of the SNR high speed network communication protocol (Receiver part)
NASA Astrophysics Data System (ADS)
Wan, Wen-Jyh
1995-03-01
This thesis work is to implement the receiver pan of the SNR high speed network transport protocol. The approach was to use the Systems of Communicating Machines (SCM) as the formal definition of the protocol. Programs were developed on top of the Unix system using C programming language. The Unix system features that were adopted for this implementation were multitasking, signals, shared memory, semaphores, sockets, timers and process control. The problems encountered, and solved, were signal loss, shared memory conflicts, process synchronization, scheduling, data alignment and errors in the SCM specification itself. The result was a correctly functioning program which implemented the SNR protocol. The system was tested using different connection modes, lost packets, duplicate packets and large data transfers. The contributions of this thesis are: (1) implementation of the receiver part of the SNR high speed transport protocol; (2) testing and integration with the transmitter part of the SNR transport protocol on an FDDI data link layered network; (3) demonstration of the functions of the SNR transport protocol such as connection management, sequenced delivery, flow control and error recovery using selective repeat methods of retransmission; and (4) modifications to the SNR transport protocol specification such as corrections for incorrect predicate conditions, defining of additional packet types formats, solutions for signal lost and processes contention problems etc.
A simple, inexpensive, and effective implementation of a vision-guided autonomous robot
NASA Astrophysics Data System (ADS)
Tippetts, Beau; Lillywhite, Kirt; Fowers, Spencer; Dennis, Aaron; Lee, Dah-Jye; Archibald, James
2006-10-01
This paper discusses a simple, inexpensive, and effective implementation of a vision-guided autonomous robot. This implementation is a second year entrance for Brigham Young University students to the Intelligent Ground Vehicle Competition. The objective of the robot was to navigate a course constructed of white boundary lines and orange obstacles for the autonomous competition. A used electric wheelchair was used as the robot base. The wheelchair was purchased from a local thrift store for $28. The base was modified to include Kegresse tracks using a friction drum system. This modification allowed the robot to perform better on a variety of terrains, resolving issues with last year's design. In order to control the wheelchair and retain the robust motor controls already on the wheelchair the wheelchair joystick was simply removed and replaced with a printed circuit board that emulated joystick operation and was capable of receiving commands through a serial port connection. Three different algorithms were implemented and compared: a purely reactive approach, a potential fields approach, and a machine learning approach. Each of the algorithms used color segmentation methods to interpret data from a digital camera in order to identify the features of the course. This paper will be useful to those interested in implementing an inexpensive vision-based autonomous robot.
Nanowire nanocomputer as a finite-state machine.
Yao, Jun; Yan, Hao; Das, Shamik; Klemic, James F; Ellenbogen, James C; Lieber, Charles M
2014-02-18
Implementation of complex computer circuits assembled from the bottom up and integrated on the nanometer scale has long been a goal of electronics research. It requires a design and fabrication strategy that can address individual nanometer-scale electronic devices, while enabling large-scale assembly of those devices into highly organized, integrated computational circuits. We describe how such a strategy has led to the design, construction, and demonstration of a nanoelectronic finite-state machine. The system was fabricated using a design-oriented approach enabled by a deterministic, bottom-up assembly process that does not require individual nanowire registration. This methodology allowed construction of the nanoelectronic finite-state machine through modular design using a multitile architecture. Each tile/module consists of two interconnected crossbar nanowire arrays, with each cross-point consisting of a programmable nanowire transistor node. The nanoelectronic finite-state machine integrates 180 programmable nanowire transistor nodes in three tiles or six total crossbar arrays, and incorporates both sequential and arithmetic logic, with extensive intertile and intratile communication that exhibits rigorous input/output matching. Our system realizes the complete 2-bit logic flow and clocked control over state registration that are required for a finite-state machine or computer. The programmable multitile circuit was also reprogrammed to a functionally distinct 2-bit full adder with 32-set matched and complete logic output. These steps forward and the ability of our unique design-oriented deterministic methodology to yield more extensive multitile systems suggest that proposed general-purpose nanocomputers can be realized in the near future.
Nanowire nanocomputer as a finite-state machine
Yao, Jun; Yan, Hao; Das, Shamik; Klemic, James F.; Ellenbogen, James C.; Lieber, Charles M.
2014-01-01
Implementation of complex computer circuits assembled from the bottom up and integrated on the nanometer scale has long been a goal of electronics research. It requires a design and fabrication strategy that can address individual nanometer-scale electronic devices, while enabling large-scale assembly of those devices into highly organized, integrated computational circuits. We describe how such a strategy has led to the design, construction, and demonstration of a nanoelectronic finite-state machine. The system was fabricated using a design-oriented approach enabled by a deterministic, bottom–up assembly process that does not require individual nanowire registration. This methodology allowed construction of the nanoelectronic finite-state machine through modular design using a multitile architecture. Each tile/module consists of two interconnected crossbar nanowire arrays, with each cross-point consisting of a programmable nanowire transistor node. The nanoelectronic finite-state machine integrates 180 programmable nanowire transistor nodes in three tiles or six total crossbar arrays, and incorporates both sequential and arithmetic logic, with extensive intertile and intratile communication that exhibits rigorous input/output matching. Our system realizes the complete 2-bit logic flow and clocked control over state registration that are required for a finite-state machine or computer. The programmable multitile circuit was also reprogrammed to a functionally distinct 2-bit full adder with 32-set matched and complete logic output. These steps forward and the ability of our unique design-oriented deterministic methodology to yield more extensive multitile systems suggest that proposed general-purpose nanocomputers can be realized in the near future. PMID:24469812
Experimental Realization of a Quantum Support Vector Machine
NASA Astrophysics Data System (ADS)
Li, Zhaokai; Liu, Xiaomei; Xu, Nanyang; Du, Jiangfeng
2015-04-01
The fundamental principle of artificial intelligence is the ability of machines to learn from previous experience and do future work accordingly. In the age of big data, classical learning machines often require huge computational resources in many practical cases. Quantum machine learning algorithms, on the other hand, could be exponentially faster than their classical counterparts by utilizing quantum parallelism. Here, we demonstrate a quantum machine learning algorithm to implement handwriting recognition on a four-qubit NMR test bench. The quantum machine learns standard character fonts and then recognizes handwritten characters from a set with two candidates. Because of the wide spread importance of artificial intelligence and its tremendous consumption of computational resources, quantum speedup would be extremely attractive against the challenges of big data.
The role of automation and artificial intelligence
NASA Astrophysics Data System (ADS)
Schappell, R. T.
1983-07-01
Consideration is given to emerging technologies that are not currently in common use, yet will be mature enough for implementation in a space station. Artificial intelligence (AI) will permit more autonomous operation and improve the man-machine interfaces. Technology goals include the development of expert systems, a natural language query system, automated planning systems, and AI image understanding systems. Intelligent robots and teleoperators will be needed, together with improved sensory systems for the robotics, housekeeping, vehicle control, and spacecraft housekeeping systems. Finally, NASA is developing the ROBSIM computer program to evaluate level of automation, perform parametric studies and error analyses, optimize trajectories and control systems, and assess AI technology.
The Ulysses spacecraft control and monitoring concepts and realities
NASA Technical Reports Server (NTRS)
Hamer, Paul; Angold, Nigel
1993-01-01
Ulysses is a joint ESA-NASA mission, the primary purpose of the mission is to make scientific measurements of the Sun outside the plane of the ecliptic. The delay in launching Ulysses, due to the Challenger disaster, meant that the hardware on which the Spacecraft Control and Monitoring System (SCMS) resides was becoming obsolete, and it was decided to convert SCMS to run on a DEC/VAX machine under VMS. The paper will cover the spacecraft, the conversion, the converted SCMS, problems found, and the upgrades implemented for solutions. It will also discuss the future for and enhancements already made to the converted SCMS.
A control technology evaluation of state-of-the-art, perchloroethylene dry-cleaning machines.
Earnest, G Scott
2002-05-01
NIOSH researchers evaluated the ability of fifth-generation dry-cleaning machines to control occupational exposure to perchloroethylene (PERC). Use of these machines is mandated in some countries; however, less than 1 percent of all U.S. shops have them. A study was conducted at a U.S. dry-cleaning shop where two fifth-generation machines were used. Both machines had a refrigerated condenser as a primary control and a carbon adsorber as a secondary control to recover PERC vapors during the dry cycle. These machines were designed to lower the PERC concentration in the cylinder at the end of the dry cycle to below 290 ppm. A single-beam infrared photometer continuously monitors the PERC concentration in the machine cylinder, and a door interlock prevents opening until the concentration is below 290 ppm. Personal breathing zone air samples were measured for the machine operator and presser. The operator had time-weighted average (TWA) PERC exposures that were less than 2 ppm. Highest exposures occurred during loading and unloading the machine and when performing routine machine maintenance. All presser samples were below the limit of detection. Real-time video exposure monitoring showed that the operator had peak exposures near 160 ppm during loading and unloading the machine (below the OSHA maximum of 300 ppm). This exposure (160 ppm) is an order of magnitude lower than exposures with more traditional machines that are widely used in the United States. The evaluated machines were very effective at reducing TWA PERC exposures as well as peak exposures that occur during machine loading and unloading. State-of-the-art dry-cleaning machines equipped with refrigerated condensers, carbon adsorbers, drum monitors, and door interlocks can provide substantially better protection than more traditional machines that are widely used in the United States.
Electronic vending machines for dispensing rapid HIV self-testing kits: a case study.
Young, Sean D; Klausner, Jeffrey; Fynn, Risa; Bolan, Robert
2014-02-01
This short report evaluates the feasibility of using electronic vending machines for dispensing oral, fluid, rapid HIV self-testing kits in Los Angeles County. Feasibility criteria that needed to be addressed were defined as: (1) ability to find a manufacturer who would allow dispensing of HIV testing kits and could fit them to the dimensions of a vending machine, (2) ability to identify and address potential initial obstacles, trade-offs in choosing a machine location, and (3) ability to gain community approval for implementing this approach in a community setting. To address these issues, we contracted a vending machine company who could supply a customized, Internet-enabled machine that could dispense HIV kits and partnered with a local health center available to host the machine onsite and provide counseling to participants, if needed. Vending machines appear to be feasible technologies that can be used to distribute HIV testing kits.
Electronic vending machines for dispensing rapid HIV self-testing kits: A case study
Young, Sean D.; Klausner, Jeffrey; Fynn, Risa; Bolan, Robert
2014-01-01
This short report evaluates the feasibility of using electronic vending machines for dispensing oral, fluid, rapid HIV-self testing kits in Los Angeles County. Feasibility criteria that needed to be addressed were defined as: 1) ability to find a manufacturer who would allow dispensing of HIV testing kits and could fit them to the dimensions of a vending machine, 2) ability to identify and address potential initial obstacles, trade-offs in choosing a machine location, and 3) ability to gain community approval for implementing this approach in a community setting. To address these issues, we contracted a vending machine company who could supply a customized, Internet-enabled machine that could dispense HIV kits and partnered with a local health center available to host the machine onsite and provide counseling to participants, if needed. Vending machines appear to be feasible technologies that can be used to distribute HIV testing kits. PMID:23777528
Ameid, Tarek; Menacer, Arezki; Talhaoui, Hicham; Azzoug, Youness
2018-05-03
This paper presents a methodology for the broken rotor bars fault detection is considered when the rotor speed varies continuously and the induction machine is controlled by Field-Oriented Control (FOC). The rotor fault detection is obtained by analyzing a several mechanical and electrical quantities (i.e., rotor speed, stator phase current and output signal of the speed regulator) by the Discrete Wavelet Transform (DWT) in variable speed drives. The severity of the fault is obtained by stored energy calculation for active power signal. Hence, it can be a useful solution as fault indicator. The FOC is implemented in order to preserve a good performance speed control; to compensate the broken rotor bars effect in the mechanical speed and to ensure the operation continuity and to investigate the fault effect in the variable speed. The effectiveness of the technique is evaluated in simulation and in a real-time implementation by using Matlab/Simulink with the real-time interface (RTI) based on dSpace 1104 board. Copyright © 2018. Published by Elsevier Ltd.
An examination of loads and responses of a wind turbine undergoing variable-speed operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, A.D.; Buhl, M.L. Jr.; Bir, G.S.
1996-11-01
The National Renewable Energy Laboratory has recently developed the ability to predict turbine loads and responses for machines undergoing variable-speed operation. The wind industry has debated the potential benefits of operating wind turbine sat variable speeds for some time. Turbine system dynamic responses (structural response, resonance, and component interactions) are an important consideration for variable-speed operation of wind turbines. The authors have implemented simple, variable-speed control algorithms for both the FAST and ADAMS dynamics codes. The control algorithm is a simple one, allowing the turbine to track the optimum power coefficient (C{sub p}). The objective of this paper is tomore » show turbine loads and responses for a particular two-bladed, teetering-hub, downwind turbine undergoing variable-speed operation. The authors examined the response of the machine to various turbulent wind inflow conditions. In addition, they compare the structural responses under fixed-speed and variable-speed operation. For this paper, they restrict their comparisons to those wind-speed ranges for which limiting power by some additional control strategy (blade pitch or aileron control, for example) is not necessary. The objective here is to develop a basic understanding of the differences in loads and responses between the fixed-speed and variable-speed operation of this wind turbine configuration.« less
Machine Shop. Module 8: CNC (Computerized Numerical Control). Instructor's Guide.
ERIC Educational Resources Information Center
Crosswhite, Dwight
This document consists of materials for a five-unit course on the following topics: (1) safety guidelines; (2) coordinates and dimensions; (3) numerical control math; (4) programming for numerical control machines; and (5) setting and operating the numerical control machine. The instructor's guide begins with a list of competencies covered in the…
Miniaturized multiwavelength digital holography sensor for extensive in-machine tool measurement
NASA Astrophysics Data System (ADS)
Seyler, Tobias; Fratz, Markus; Beckmann, Tobias; Bertz, Alexander; Carl, Daniel
2017-06-01
In this paper we present a miniaturized digital holographic sensor (HoloCut) for operation inside a machine tool. With state-of-the-art 3D measurement systems, short-range structures such as tool marks cannot be resolved inside a machine tool chamber. Up to now, measurements had to be conducted outside the machine tool and thus processing data are generated offline. The sensor presented here uses digital multiwavelength holography to get 3D-shape-information of the machined sample. By using three wavelengths, we get a large artificial wavelength with a large unambiguous measurement range of 0.5mm and achieve micron repeatability even in the presence of laser speckles on rough surfaces. In addition, a digital refocusing algorithm based on phase noise is implemented to extend the measurement range beyond the limits of the artificial wavelength and geometrical depth-of-focus. With complex wave field propagation, the focus plane can be shifted after the camera images have been taken and a sharp image with extended depth of focus is constructed consequently. With 20mm x 20mm field of view the sensor enables measurement of both macro- and micro-structure (such as tool marks) with an axial resolution of 1 µm, lateral resolution of 7 µm and consequently allows processing data to be generated online which in turn qualifies it as a machine tool control. To make HoloCut compact enough for operation inside a machining center, the beams are arranged in two planes: The beams are split into reference beam and object beam in the bottom plane and combined onto the camera in the top plane later on. Using a mechanical standard interface according to DIN 69893 and having a very compact size of 235mm x 140mm x 215mm (WxHxD) and a weight of 7.5 kg, HoloCut can be easily integrated into different machine tools and extends no more in height than a typical processing tool.
NASA Technical Reports Server (NTRS)
Riedel, Joseph E.; Grasso, Christopher A.
2012-01-01
VML (Virtual Machine Language) is an advanced computing environment that allows spacecraft to operate using mechanisms ranging from simple, time-oriented sequencing to advanced, multicomponent reactive systems. VML has developed in four evolutionary stages. VML 0 is a core execution capability providing multi-threaded command execution, integer data types, and rudimentary branching. VML 1 added named parameterized procedures, extensive polymorphism, data typing, branching, looping issuance of commands using run-time parameters, and named global variables. VML 2 added for loops, data verification, telemetry reaction, and an open flight adaptation architecture. VML 2.1 contains major advances in control flow capabilities for executable state machines. On the resource requirements front, VML 2.1 features a reduced memory footprint in order to fit more capability into modestly sized flight processors, and endian-neutral data access for compatibility with Intel little-endian processors. Sequence packaging has been improved with object-oriented programming constructs and the use of implicit (rather than explicit) time tags on statements. Sequence event detection has been significantly enhanced with multi-variable waiting, which allows a sequence to detect and react to conditions defined by complex expressions with multiple global variables. This multi-variable waiting serves as the basis for implementing parallel rule checking, which in turn, makes possible executable state machines. The new state machine feature in VML 2.1 allows the creation of sophisticated autonomous reactive systems without the need to develop expensive flight software. Users specify named states and transitions, along with the truth conditions required, before taking transitions. Transitions with the same signal name allow separate state machines to coordinate actions: the conditions distributed across all state machines necessary to arm a particular signal are evaluated, and once found true, that signal is raised. The selected signal then causes all identically named transitions in all present state machines to be taken simultaneously. VML 2.1 has relevance to all potential space missions, both manned and unmanned. It was under consideration for use on Orion.
Solution of a tridiagonal system of equations on the finite element machine
NASA Technical Reports Server (NTRS)
Bostic, S. W.
1984-01-01
Two parallel algorithms for the solution of tridiagonal systems of equations were implemented on the Finite Element Machine. The Accelerated Parallel Gauss method, an iterative method, and the Buneman algorithm, a direct method, are discussed and execution statistics are presented.
Accurate Micro-Tool Manufacturing by Iterative Pulsed-Laser Ablation
NASA Astrophysics Data System (ADS)
Warhanek, Maximilian; Mayr, Josef; Dörig, Christian; Wegener, Konrad
2017-12-01
Iterative processing solutions, including multiple cycles of material removal and measurement, are capable of achieving higher geometric accuracy by compensating for most deviations manifesting directly on the workpiece. Remaining error sources are the measurement uncertainty and the repeatability of the material-removal process including clamping errors. Due to the lack of processing forces, process fluids and wear, pulsed-laser ablation has proven high repeatability and can be realized directly on a measuring machine. This work takes advantage of this possibility by implementing an iterative, laser-based correction process for profile deviations registered directly on an optical measurement machine. This way efficient iterative processing is enabled, which is precise, applicable for all tool materials including diamond and eliminates clamping errors. The concept is proven by a prototypical implementation on an industrial tool measurement machine and a nanosecond fibre laser. A number of measurements are performed on both the machine and the processed workpieces. Results show production deviations within 2 μm diameter tolerance.
NASA Technical Reports Server (NTRS)
Prater, T.; Tilson, W.; Jones, Z.
2015-01-01
The absence of an economy of scale in spaceflight hardware makes additive manufacturing an immensely attractive option for propulsion components. As additive manufacturing techniques are increasingly adopted by government and industry to produce propulsion hardware in human-rated systems, significant development efforts are needed to establish these methods as reliable alternatives to conventional subtractive manufacturing. One of the critical challenges facing powder bed fusion techniques in this application is variability between machines used to perform builds. Even with implementation of robust process controls, it is possible for two machines operating at identical parameters with equivalent base materials to produce specimens with slightly different material properties. The machine variability study presented here evaluates 60 specimens of identical geometry built using the same parameters. 30 samples were produced on machine 1 (M1) and the other 30 samples were built on machine 2 (M2). Each of the 30-sample sets were further subdivided into three subsets (with 10 specimens in each subset) to assess the effect of progressive heat treatment on machine variability. The three categories for post-processing were: stress relief, stress relief followed by hot isostatic press (HIP), and stress relief followed by HIP followed by heat treatment per AMS 5664. Each specimen (a round, smooth tensile) was mechanically tested per ASTM E8. Two formal statistical techniques, hypothesis testing for equivalency of means and one-way analysis of variance (ANOVA), were applied to characterize the impact of machine variability and heat treatment on six material properties: tensile stress, yield stress, modulus of elasticity, fracture elongation, and reduction of area. This work represents the type of development effort that is critical as NASA, academia, and the industrial base work collaboratively to establish a path to certification for additively manufactured parts. For future flight programs, NASA and its commercial partners will procure parts from vendors who will use a diverse range of machines to produce parts and, as such, it is essential that the AM community develop a sound understanding of the degree to which machine variability impacts material properties.
A comparison of machine learning and Bayesian modelling for molecular serotyping.
Newton, Richard; Wernisch, Lorenz
2017-08-11
Streptococcus pneumoniae is a human pathogen that is a major cause of infant mortality. Identifying the pneumococcal serotype is an important step in monitoring the impact of vaccines used to protect against disease. Genomic microarrays provide an effective method for molecular serotyping. Previously we developed an empirical Bayesian model for the classification of serotypes from a molecular serotyping array. With only few samples available, a model driven approach was the only option. In the meanwhile, several thousand samples have been made available to us, providing an opportunity to investigate serotype classification by machine learning methods, which could complement the Bayesian model. We compare the performance of the original Bayesian model with two machine learning algorithms: Gradient Boosting Machines and Random Forests. We present our results as an example of a generic strategy whereby a preliminary probabilistic model is complemented or replaced by a machine learning classifier once enough data are available. Despite the availability of thousands of serotyping arrays, a problem encountered when applying machine learning methods is the lack of training data containing mixtures of serotypes; due to the large number of possible combinations. Most of the available training data comprises samples with only a single serotype. To overcome the lack of training data we implemented an iterative analysis, creating artificial training data of serotype mixtures by combining raw data from single serotype arrays. With the enhanced training set the machine learning algorithms out perform the original Bayesian model. However, for serotypes currently lacking sufficient training data the best performing implementation was a combination of the results of the Bayesian Model and the Gradient Boosting Machine. As well as being an effective method for classifying biological data, machine learning can also be used as an efficient method for revealing subtle biological insights, which we illustrate with an example.
Machine learning in cardiovascular medicine: are we there yet?
Shameer, Khader; Johnson, Kipp W; Glicksberg, Benjamin S; Dudley, Joel T; Sengupta, Partho P
2018-01-19
Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being explicitly programmed where to look. These include a family of operations encompassing several terms like machine learning, cognitive learning, deep learning and reinforcement learning-based methods that can be used to integrate and interpret complex biomedical and healthcare data in scenarios where traditional statistical methods may not be able to perform. In this review article, we discuss the basics of machine learning algorithms and what potential data sources exist; evaluate the need for machine learning; and examine the potential limitations and challenges of implementing machine in the context of cardiovascular medicine. The most promising avenues for AI in medicine are the development of automated risk prediction algorithms which can be used to guide clinical care; use of unsupervised learning techniques to more precisely phenotype complex disease; and the implementation of reinforcement learning algorithms to intelligently augment healthcare providers. The utility of a machine learning-based predictive model will depend on factors including data heterogeneity, data depth, data breadth, nature of modelling task, choice of machine learning and feature selection algorithms, and orthogonal evidence. A critical understanding of the strength and limitations of various methods and tasks amenable to machine learning is vital. By leveraging the growing corpus of big data in medicine, we detail pathways by which machine learning may facilitate optimal development of patient-specific models for improving diagnoses, intervention and outcome in cardiovascular medicine. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Sigurdson, J.; Tagerud, J.
1986-05-01
A UNIDO publication about machine tools with automatic control discusses the following: (1) numerical control (NC) machine tool perspectives, definition of NC, flexible manufacturing systems, robots and their industrial application, research and development, and sensors; (2) experience in developing a capability in NC machine tools; (3) policy issues; (4) procedures for retrieval of relevant documentation from data bases. Diagrams, statistics, bibliography are included.
Effective Dust Control Systems on Concrete Dowel Drilling Machinery
Echt, Alan S.; Sanderson, Wayne T.; Mead, Kenneth R.; Feng, H. Amy; Farwick, Daniel R.; Farwick, Dawn Ramsey
2016-01-01
Rotary-type percussion dowel drilling machines, which drill horizontal holes in concrete pavement, have been documented to produce respirable crystalline silica concentrations above recommended exposure criteria. This places operators at potential risk for developing health effects from exposure. United States manufacturers of these machines offer optional dust control systems. The effectiveness of the dust control systems to reduce respirable dust concentrations on two types of drilling machines was evaluated under controlled conditions with the machines operating inside large tent structures in an effort to eliminate secondary exposure sources not related to the dowel-drilling operation. Area air samples were collected at breathing zone height at three locations around each machine. Through equal numbers of sampling rounds with the control systems randomly selected to be on or off, the control systems were found to significantly reduce respirable dust concentrations from a geometric mean of 54 mg per cubic meter to 3.0 mg per cubic meter on one machine and 57 mg per cubic meter to 5.3 mg per cubic meter on the other machine. This research shows that the dust control systems can dramatically reduce respirable dust concentrations by over 90% under controlled conditions. However, these systems need to be evaluated under actual work conditions to determine their effectiveness in reducing worker exposures to crystalline silica below hazardous levels. PMID:27074062
Environmental concept for engineering software on MIMD computers
NASA Technical Reports Server (NTRS)
Lopez, L. A.; Valimohamed, K.
1989-01-01
The issues related to developing an environment in which engineering systems can be implemented on MIMD machines are discussed. The problem is presented in terms of implementing the finite element method under such an environment. However, neither the concepts nor the prototype implementation environment are limited to this application. The topics discussed include: the ability to schedule and synchronize tasks efficiently; granularity of tasks; load balancing; and the use of a high level language to specify parallel constructs, manage data, and achieve portability. The objective of developing a virtual machine concept which incorporates solutions to the above issues leads to a design that can be mapped onto loosely coupled, tightly coupled, and hybrid systems.
A coherent Ising machine for 2000-node optimization problems
NASA Astrophysics Data System (ADS)
Inagaki, Takahiro; Haribara, Yoshitaka; Igarashi, Koji; Sonobe, Tomohiro; Tamate, Shuhei; Honjo, Toshimori; Marandi, Alireza; McMahon, Peter L.; Umeki, Takeshi; Enbutsu, Koji; Tadanaga, Osamu; Takenouchi, Hirokazu; Aihara, Kazuyuki; Kawarabayashi, Ken-ichi; Inoue, Kyo; Utsunomiya, Shoko; Takesue, Hiroki
2016-11-01
The analysis and optimization of complex systems can be reduced to mathematical problems collectively known as combinatorial optimization. Many such problems can be mapped onto ground-state search problems of the Ising model, and various artificial spin systems are now emerging as promising approaches. However, physical Ising machines have suffered from limited numbers of spin-spin couplings because of implementations based on localized spins, resulting in severe scalability problems. We report a 2000-spin network with all-to-all spin-spin couplings. Using a measurement and feedback scheme, we coupled time-multiplexed degenerate optical parametric oscillators to implement maximum cut problems on arbitrary graph topologies with up to 2000 nodes. Our coherent Ising machine outperformed simulated annealing in terms of accuracy and computation time for a 2000-node complete graph.
exprso: an R-package for the rapid implementation of machine learning algorithms.
Quinn, Thomas; Tylee, Daniel; Glatt, Stephen
2016-01-01
Machine learning plays a major role in many scientific investigations. However, non-expert programmers may struggle to implement the elaborate pipelines necessary to build highly accurate and generalizable models. We introduce exprso , a new R package that is an intuitive machine learning suite designed specifically for non-expert programmers. Built initially for the classification of high-dimensional data, exprso uses an object-oriented framework to encapsulate a number of common analytical methods into a series of interchangeable modules. This includes modules for feature selection, classification, high-throughput parameter grid-searching, elaborate cross-validation schemes (e.g., Monte Carlo and nested cross-validation), ensemble classification, and prediction. In addition, exprso also supports multi-class classification (through the 1-vs-all generalization of binary classifiers) and the prediction of continuous outcomes.
Integrated computer-aided design using minicomputers
NASA Technical Reports Server (NTRS)
Storaasli, O. O.
1980-01-01
Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), a highly interactive software, has been implemented on minicomputers at the NASA Langley Research Center. CAD/CAM software integrates many formerly fragmented programs and procedures into one cohesive system; it also includes finite element modeling and analysis, and has been interfaced via a computer network to a relational data base management system and offline plotting devices on mainframe computers. The CAD/CAM software system requires interactive graphics terminals operating at a minimum of 4800 bits/sec transfer rate to a computer. The system is portable and introduces 'interactive graphics', which permits the creation and modification of models interactively. The CAD/CAM system has already produced designs for a large area space platform, a national transonic facility fan blade, and a laminar flow control wind tunnel model. Besides the design/drafting element analysis capability, CAD/CAM provides options to produce an automatic program tooling code to drive a numerically controlled (N/C) machine. Reductions in time for design, engineering, drawing, finite element modeling, and N/C machining will benefit productivity through reduced costs, fewer errors, and a wider range of configuration.
NASA Astrophysics Data System (ADS)
Griffin, James M.; Diaz, Fernanda; Geerling, Edgar; Clasing, Matias; Ponce, Vicente; Taylor, Chris; Turner, Sam; Michael, Ernest A.; Patricio Mena, F.; Bronfman, Leonardo
2017-02-01
By using acoustic emission (AE) it is possible to control deviations and surface quality during micro milling operations. The method of micro milling is used to manufacture a submillimetre waveguide where micro machining is employed to achieve the required superior finish and geometrical tolerances. Submillimetre waveguide technology is used in deep space signal retrieval where highest detection efficiencies are needed and therefore every possible signal loss in the receiver has to be avoided and stringent tolerances achieved. With a sub-standard surface finish the signals travelling along the waveguides dissipate away faster than with perfect surfaces where the residual roughness becomes comparable with the electromagnetic skin depth. Therefore, the higher the radio frequency the more critical this becomes. The method of time-frequency analysis (STFT) is used to transfer raw AE into more meaningful salient signal features (SF). This information was then correlated against the measured geometrical deviations and, the onset of catastrophic tool wear. Such deviations can be offset from different AE signals (different deviations from subsequent tests) and feedback for a final spring cut ensuring the geometrical accuracies are met. Geometrical differences can impact on the required transfer of AE signals (change in cut off frequencies and diminished SNR at the interface) and therefore errors have to be minimised to within 1 μm. Rules based on both Classification and Regression Trees (CART) and Neural Networks (NN) were used to implement a simulation displaying how such a control regime could be used as a real time controller, be it corrective measures (via spring cuts) over several initial machining passes or, with a micron cut introducing a level plain measure for allowing setup corrective measures (similar to a spirit level).
NASA Technical Reports Server (NTRS)
Burke, Gary R.; Taft, Stephanie
2004-01-01
State machines are commonly used to control sequential logic in FPGAs and ASKS. An errant state machine can cause considerable damage to the device it is controlling. For example in space applications, the FPGA might be controlling Pyros, which when fired at the wrong time will cause a mission failure. Even a well designed state machine can be subject to random errors us a result of SEUs from the radiation environment in space. There are various ways to encode the states of a state machine, and the type of encoding makes a large difference in the susceptibility of the state machine to radiation. In this paper we compare 4 methods of state machine encoding and find which method gives the best fault tolerance, as well as determining the resources needed for each method.
3D hierarchical spatial representation and memory of multimodal sensory data
NASA Astrophysics Data System (ADS)
Khosla, Deepak; Dow, Paul A.; Huber, David J.
2009-04-01
This paper describes an efficient method and system for representing, processing and understanding multi-modal sensory data. More specifically, it describes a computational method and system for how to process and remember multiple locations in multimodal sensory space (e.g., visual, auditory, somatosensory, etc.). The multimodal representation and memory is based on a biologically-inspired hierarchy of spatial representations implemented with novel analogues of real representations used in the human brain. The novelty of the work is in the computationally efficient and robust spatial representation of 3D locations in multimodal sensory space as well as an associated working memory for storage and recall of these representations at the desired level for goal-oriented action. We describe (1) A simple and efficient method for human-like hierarchical spatial representations of sensory data and how to associate, integrate and convert between these representations (head-centered coordinate system, body-centered coordinate, etc.); (2) a robust method for training and learning a mapping of points in multimodal sensory space (e.g., camera-visible object positions, location of auditory sources, etc.) to the above hierarchical spatial representations; and (3) a specification and implementation of a hierarchical spatial working memory based on the above for storage and recall at the desired level for goal-oriented action(s). This work is most useful for any machine or human-machine application that requires processing of multimodal sensory inputs, making sense of it from a spatial perspective (e.g., where is the sensory information coming from with respect to the machine and its parts) and then taking some goal-oriented action based on this spatial understanding. A multi-level spatial representation hierarchy means that heterogeneous sensory inputs (e.g., visual, auditory, somatosensory, etc.) can map onto the hierarchy at different levels. When controlling various machine/robot degrees of freedom, the desired movements and action can be computed from these different levels in the hierarchy. The most basic embodiment of this machine could be a pan-tilt camera system, an array of microphones, a machine with arm/hand like structure or/and a robot with some or all of the above capabilities. We describe the approach, system and present preliminary results on a real-robotic platform.
NASA Astrophysics Data System (ADS)
Bakhmutov, S. V.; Ivanov, V. G.; Karpukhin, K. E.; Umnitsyn, A. A.
2018-02-01
The paper considers the Anti-lock Braking System (ABS) operation algorithm, which enables the implementation of hybrid braking, i.e. the braking process combining friction brake mechanisms and e-machine (electric machine), which operates in the energy recovery mode. The provided materials focus only on the rectilinear motion of the vehicle. That the ABS task consists in the maintenance of the target wheel slip ratio, which depends on the tyre-road adhesion coefficient. The tyre-road adhesion coefficient was defined based on the vehicle deceleration. In the course of calculated studies, the following operation algorithm of hybrid braking was determined. At adhesion coefficient ≤0.1, driving axle braking occurs only due to the e-machine operating in the energy recovery mode. In other cases, depending on adhesion coefficient, the e-machine provides the brake torque, which changes from 35 to 100% of the maximum available brake torque. Virtual tests showed that values of the wheel slip ratio are close to the required ones. Thus, this algorithm makes it possible to implement hybrid braking by means of the two sources creating the brake torque.
Simulation and Experimental Investigation of Structural Dynamic Frequency Characteristics Control
Zhang, Xingwu; Chen, Xuefeng; You, Shangqin; He, Zhengjia; Li, Bing
2012-01-01
In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC) is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results. PMID:22666072
Simulation and experimental investigation of structural dynamic frequency characteristics control.
Zhang, Xingwu; Chen, Xuefeng; You, Shangqin; He, Zhengjia; Li, Bing
2012-01-01
In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC) is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results.
Automated Verification of Specifications with Typestates and Access Permissions
NASA Technical Reports Server (NTRS)
Siminiceanu, Radu I.; Catano, Nestor
2011-01-01
We propose an approach to formally verify Plural specifications based on access permissions and typestates, by model-checking automatically generated abstract state-machines. Our exhaustive approach captures all the possible behaviors of abstract concurrent programs implementing the specification. We describe the formal methodology employed by our technique and provide an example as proof of concept for the state-machine construction rules. The implementation of a fully automated algorithm to generate and verify models, currently underway, provides model checking support for the Plural tool, which currently supports only program verification via data flow analysis (DFA).
MBASIC batch processor architectural overview
NASA Technical Reports Server (NTRS)
Reynolds, S. M.
1978-01-01
The MBASIC (TM) batch processor, a language translator designed to operate in the MBASIC (TM) environment is described. Features include: (1) a CONVERT TO BATCH command, usable from the ready mode; and (2) translation of the users program in stages through several levels of intermediate language and optimization. The processor is to be designed and implemented in both machine-independent and machine-dependent sections. The architecture is planned so that optimization processes are transparent to the rest of the system and need not be included in the first design implementation cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hessell, Steven M.; Morris, Robert L.; McGrogan, Sean W.
A powertrain including an engine and torque machines is configured to transfer torque through a multi-mode transmission to an output member. A method for controlling the powertrain includes employing a closed-loop speed control system to control torque commands for the torque machines in response to a desired input speed. Upon approaching a power limit of a power storage device transferring power to the torque machines, power limited torque commands are determined for the torque machines in response to the power limit and the closed-loop speed control system is employed to determine an engine torque command in response to the desiredmore » input speed and the power limited torque commands for the torque machines.« less
NASA Astrophysics Data System (ADS)
Lucian, P.; Gheorghe, S.
2017-08-01
This paper presents a new method, based on FRISCO formula, for optimizing the choice of the best control system for kinematical feed chains with great distance between slides used in computer numerical controlled machine tools. Such machines are usually, but not limited to, used for machining large and complex parts (mostly in the aviation industry) or complex casting molds. For such machine tools the kinematic feed chains are arranged in a dual-parallel drive structure that allows the mobile element to be moved by the two kinematical branches and their related control systems. Such an arrangement allows for high speed and high rigidity (a critical requirement for precision machining) during the machining process. A significant issue for such an arrangement it’s the ability of the two parallel control systems to follow the same trajectory accurately in order to address this issue it is necessary to achieve synchronous motion control for the two kinematical branches ensuring that the correct perpendicular position it’s kept by the mobile element during its motion on the two slides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Yinan; Shi Handuo; Xiong Zhaoxi
We present a unified universal quantum cloning machine, which combines several different existing universal cloning machines together, including the asymmetric case. In this unified framework, the identical pure states are projected equally into each copy initially constituted by input and one half of the maximally entangled states. We show explicitly that the output states of those universal cloning machines are the same. One importance of this unified cloning machine is that the cloning procession is always the symmetric projection, which reduces dramatically the difficulties for implementation. Also, it is found that this unified cloning machine can be directly modified tomore » the general asymmetric case. Besides the global fidelity and the single-copy fidelity, we also present all possible arbitrary-copy fidelities.« less
Machine Learning in Radiology: Applications Beyond Image Interpretation.
Lakhani, Paras; Prater, Adam B; Hutson, R Kent; Andriole, Kathy P; Dreyer, Keith J; Morey, Jose; Prevedello, Luciano M; Clark, Toshi J; Geis, J Raymond; Itri, Jason N; Hawkins, C Matthew
2018-02-01
Much attention has been given to machine learning and its perceived impact in radiology, particularly in light of recent success with image classification in international competitions. However, machine learning is likely to impact radiology outside of image interpretation long before a fully functional "machine radiologist" is implemented in practice. Here, we describe an overview of machine learning, its application to radiology and other domains, and many cases of use that do not involve image interpretation. We hope that better understanding of these potential applications will help radiology practices prepare for the future and realize performance improvement and efficiency gains. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Quantum Machine Learning over Infinite Dimensions
Lau, Hoi-Kwan; Pooser, Raphael; Siopsis, George; ...
2017-02-21
Machine learning is a fascinating and exciting eld within computer science. Recently, this ex- citement has been transferred to the quantum information realm. Currently, all proposals for the quantum version of machine learning utilize the nite-dimensional substrate of discrete variables. Here we generalize quantum machine learning to the more complex, but still remarkably practi- cal, in nite-dimensional systems. We present the critical subroutines of quantum machine learning algorithms for an all-photonic continuous-variable quantum computer that achieve an exponential speedup compared to their equivalent classical counterparts. Finally, we also map out an experi- mental implementation which can be used as amore » blueprint for future photonic demonstrations.« less
Quantum Machine Learning over Infinite Dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Hoi-Kwan; Pooser, Raphael; Siopsis, George
Machine learning is a fascinating and exciting eld within computer science. Recently, this ex- citement has been transferred to the quantum information realm. Currently, all proposals for the quantum version of machine learning utilize the nite-dimensional substrate of discrete variables. Here we generalize quantum machine learning to the more complex, but still remarkably practi- cal, in nite-dimensional systems. We present the critical subroutines of quantum machine learning algorithms for an all-photonic continuous-variable quantum computer that achieve an exponential speedup compared to their equivalent classical counterparts. Finally, we also map out an experi- mental implementation which can be used as amore » blueprint for future photonic demonstrations.« less
Machine learning and medicine: book review and commentary.
Koprowski, Robert; Foster, Kenneth R
2018-02-01
This article is a review of the book "Master machine learning algorithms, discover how they work and implement them from scratch" (ISBN: not available, 37 USD, 163 pages) edited by Jason Brownlee published by the Author, edition, v1.10 http://MachineLearningMastery.com . An accompanying commentary discusses some of the issues that are involved with use of machine learning and data mining techniques to develop predictive models for diagnosis or prognosis of disease, and to call attention to additional requirements for developing diagnostic and prognostic algorithms that are generally useful in medicine. Appendix provides examples that illustrate potential problems with machine learning that are not addressed in the reviewed book.
A system architecture for a planetary rover
NASA Technical Reports Server (NTRS)
Smith, D. B.; Matijevic, J. R.
1989-01-01
Each planetary mission requires a complex space vehicle which integrates several functions to accomplish the mission and science objectives. A Mars Rover is one of these vehicles, and extends the normal spacecraft functionality with two additional functions: surface mobility and sample acquisition. All functions are assembled into a hierarchical and structured format to understand the complexities of interactions between functions during different mission times. It can graphically show data flow between functions, and most importantly, the necessary control flow to avoid unambiguous results. Diagrams are presented organizing the functions into a structured, block format where each block represents a major function at the system level. As such, there are six blocks representing telecomm, power, thermal, science, mobility and sampling under a supervisory block called Data Management/Executive. Each block is a simple collection of state machines arranged into a hierarchical order very close to the NASREM model for Telerobotics. Each layer within a block represents a level of control for a set of state machines that do the three primary interface functions: command, telemetry, and fault protection. This latter function is expanded to include automatic reactions to the environment as well as internal faults. Lastly, diagrams are presented that trace the system operations involved in moving from site to site after site selection. The diagrams clearly illustrate both the data and control flows. They also illustrate inter-block data transfers and a hierarchical approach to fault protection. This systems architecture can be used to determine functional requirements, interface specifications and be used as a mechanism for grouping subsystems (i.e., collecting groups of machines, or blocks consistent with good and testable implementations).
Design and construction of an impulse turbine
NASA Astrophysics Data System (ADS)
Hernández, E.
2013-11-01
Impulse turbine has been constructed to be used in the program of Hydraulic Machines, Faculty of Mechanical Engineering at the Universidad Pontificia Bolivariana, sede Bucaramanga. For construction of the impulse turbine (Pelton) detailed plans were drawn up taking into account the design and implementation of the fundamental equations of hydraulic turbomachinery. From the experimental data found maximum mechanical efficiency of 0.6 ± 0.03 for a water flow of 2.1 l/s. The maximum overall efficiency was 0.23 ± 0.02 for a water flow of 0.83 l/s. The design parameter used was a power of 1 kW, as flow regulator built a needle type regulator, which performed well, the model of the bucket or vane is built on a machine type CNC (Computer Numerical Control). For the construction of the impeller and blades was used aluminium because of chemical and physical characteristics and the casing was manufactured in acrylic.
Realization of Quantum Maxwell’s Demon with Solid-State Spins*
NASA Astrophysics Data System (ADS)
Wang, W.-B.; Chang, X.-Y.; Wang, F.; Hou, P.-Y.; Huang, Y.-Y.; Zhang, W.-G.; Ouyang, X.-L.; Huang, X.-Z.; Zhang, Z.-Y.; Wang, H.-Y.; He, L.; Duan, L.-M.
2018-04-01
Resolution of the century-long paradox on Maxwell's demon reveals a deep connection between information theory and thermodynamics. Although initially introduced as a thought experiment, Maxwell's demon can now be implemented in several physical systems, leading to intriguing test of information-thermodynamic relations. Here, we report experimental realization of a quantum version of Maxwell's demon using solid state spins where the information acquiring and feedback operations by the demon are achieved through conditional quantum gates. A unique feature of this implementation is that the demon can start in a quantum superposition state or in an entangled state with an ancilla observer. Through quantum state tomography, we measure the entropy in the system, demon, and the ancilla, showing the influence of coherence and entanglement on the result. A quantum implementation of Maxwell's demon adds more controllability to this paradoxical thermal machine and may find applications in quantum thermodynamics involving microscopic systems.
Optical Generation of Fuzzy-Based Rules
NASA Astrophysics Data System (ADS)
Gur, Eran; Mendlovic, David; Zalevsky, Zeev
2002-08-01
In the last third of the 20th century, fuzzy logic has risen from a mathematical concept to an applicable approach in soft computing. Today, fuzzy logic is used in control systems for various applications, such as washing machines, train-brake systems, automobile automatic gear, and so forth. The approach of optical implementation of fuzzy inferencing was given by the authors in previous papers, giving an extra emphasis to applications with two dominant inputs. In this paper the authors introduce a real-time optical rule generator for the dual-input fuzzy-inference engine. The paper briefly goes over the dual-input optical implementation of fuzzy-logic inferencing. Then, the concept of constructing a set of rules from given data is discussed. Next, the authors show ways to implement this procedure optically. The discussion is accompanied by an example that illustrates the transformation from raw data into fuzzy set rules.
Engineering of Impulse Mechanism for Mechanical Hander Power Tools
NASA Astrophysics Data System (ADS)
Nikolaevich Drozdov, Anatoliy
2018-03-01
The solution to the problem of human security in cities should be considered on the basis of an integrated and multidisciplinary approach, including issues of security and ecology in the application of technical means used to ensure the viability and development of technocracy. In this regard, an important task is the creation of a safe technique with improved environmental properties with high technological characteristics. This primarily relates to mechanised tool — the division of technological machines with built in engines is that their weight is fully or partially perceived by the operator’s hands, making the flow and control of the car. For this subclass of machines is characterized by certain features: a built-in motor, perception of at least part of their weight by the operator during the work, the implementation of feeding and management at the expense of the muscular power of the operator. Therefore, among the commonly accepted technical and economic characteristics, machines in this case, important ergonomic (ergonomics), regulation of levels which ensures the safety of the operator. To ergonomics include vibration, noise characteristics, mass, and force feeding machine operator. Vibration is a consequence of the dynamism of the system operator machine - processed object (environment) in which the engine energy is redistributed among all the structures, causing their instability. In the machine vibration caused by technological and constructive (transformative mechanisms) unbalance of individual parts of the drive, the presence of technological and design (impact mechanisms) clearances and other reasons. This article describes a new design of impulse mechanism for hander power tools (wrenches, screwdrivers) with enhanced torque. The article substantiates a simulation model of dynamic compression process in an operating chamber during impact, provides simulation results and outlines further lines of research.
Controlling the type and the form of chip when machining steel
NASA Astrophysics Data System (ADS)
Gruby, S. V.; Lasukov, A. A.; Nekrasov, R. Yu; Politsinsky, E. V.; Arkhipova, D. A.
2016-08-01
The type of the chip produced in the process of machining influences many factors of production process. Controlling the type of chip when cutting metals is important for producing swarf chips and for easing its utilization as well as for protecting the machined surface, cutting tool and the worker. In the given work we provide the experimental data on machining structural steel with implanted tool. The authors show that it is possible to control the chip formation process to produce the required type of chip by selecting the material for machining the tool surface.
NASA Astrophysics Data System (ADS)
Matetic, Rudy J.
Over-exposure to noise remains a widespread and serious health hazard in the U.S. mining industries despite 25 years of regulation. Every day, 80% of the nation's miners go to work in an environment where the time weighted average (TWA) noise level exceeds 85 dBA and more than 25% of the miners are exposed to a TWA noise level that exceeds 90 dBA, the permissible exposure limit (PEL). Additionally, MSHA coal noise sample data collected from 2000 to 2002 show that 65% of the equipment whose operators exceeded 100% noise dosage comprise only seven different types of machines; auger miners, bulldozers, continuous miners, front end loaders, roof bolters, shuttle cars (electric), and trucks. In addition, the MSHA data indicate that the roof bolter is third among all the equipment and second among equipment in underground coal whose operators exceed 100% dosage. A research program was implemented to: (1) determine, characterize and to measure sound power levels radiated by a roof bolting machine during differing drilling configurations (thrust, rotational speed, penetration rate, etc.) and utilizing differing types of drilling methods in high compressive strength rock media (>20,000 psi). The research approach characterized the sound power level results from laboratory testing and provided the mining industry with empirical data relative to utilizing differing noise control technologies (drilling configurations and types of drilling methods) in reducing sound power level emissions on a roof bolting machine; (2) distinguish and correlate the empirical data into one, statistically valid, equation, in which, provided the mining industry with a tool to predict overall sound power levels of a roof bolting machine given any type of drilling configuration and drilling method utilized in industry; (3) provided the mining industry with several approaches to predict or determine sound pressure levels in an underground coal mine utilizing laboratory test results from a roof bolting machine and (4) described a method for determining an operators' noise dosage of a roof bolting machine utilizing predicted or determined sound pressure levels.
Wu, Naiqi; Zhou, MengChu
2005-12-01
An automated manufacturing system (AMS) contains a number of versatile machines (or workstations), buffers, an automated material handling system (MHS), and is computer-controlled. An effective and flexible alternative for implementing MHS is to use automated guided vehicle (AGV) system. The deadlock issue in AMS is very important in its operation and has extensively been studied. The deadlock problems were separately treated for parts in production and transportation and many techniques were developed for each problem. However, such treatment does not take the advantage of the flexibility offered by multiple AGVs. In general, it is intractable to obtain maximally permissive control policy for either problem. Instead, this paper investigates these two problems in an integrated way. First we model an AGV system and part processing processes by resource-oriented Petri nets, respectively. Then the two models are integrated by using macro transitions. Based on the combined model, a novel control policy for deadlock avoidance is proposed. It is shown to be maximally permissive with computational complexity of O (n2) where n is the number of machines in AMS if the complexity for controlling the part transportation by AGVs is not considered. Thus, the complexity of deadlock avoidance for the whole system is bounded by the complexity in controlling the AGV system. An illustrative example shows its application and power.
McMullen, David P.; Hotson, Guy; Katyal, Kapil D.; Wester, Brock A.; Fifer, Matthew S.; McGee, Timothy G.; Harris, Andrew; Johannes, Matthew S.; Vogelstein, R. Jacob; Ravitz, Alan D.; Anderson, William S.; Thakor, Nitish V.; Crone, Nathan E.
2014-01-01
To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the object by the MPL. Sequential iterations of HARMONIE were tested in two pilot subjects implanted with electrocorticographic (ECoG) and depth electrodes within motor areas. The subjects performed the complex task in 71.4% (20/28) and 67.7% (21/31) of trials after minimal training. Balanced accuracy for detecting movements was 91.1% and 92.9%, significantly greater than chance accuracies (p < 0.05). After BMI-based initiation, the MPL completed the entire task 100% (one object) and 70% (three objects) of the time. The MPL took approximately 12.2 seconds for task completion after system improvements implemented for the second subject. Our hybrid-BMI design prevented all but one baseline false positive from initiating the system. The novel approach demonstrated in this proof-of-principle study, using hybrid input, supervisory control, and intelligent robotics, addresses limitations of current BMIs. PMID:24760914
McMullen, David P; Hotson, Guy; Katyal, Kapil D; Wester, Brock A; Fifer, Matthew S; McGee, Timothy G; Harris, Andrew; Johannes, Matthew S; Vogelstein, R Jacob; Ravitz, Alan D; Anderson, William S; Thakor, Nitish V; Crone, Nathan E
2014-07-01
To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the object by the MPL. Sequential iterations of HARMONIE were tested in two pilot subjects implanted with electrocorticographic (ECoG) and depth electrodes within motor areas. The subjects performed the complex task in 71.4% (20/28) and 67.7% (21/31) of trials after minimal training. Balanced accuracy for detecting movements was 91.1% and 92.9%, significantly greater than chance accuracies (p < 0.05). After BMI-based initiation, the MPL completed the entire task 100% (one object) and 70% (three objects) of the time. The MPL took approximately 12.2 s for task completion after system improvements implemented for the second subject. Our hybrid-BMI design prevented all but one baseline false positive from initiating the system. The novel approach demonstrated in this proof-of-principle study, using hybrid input, supervisory control, and intelligent robotics, addresses limitations of current BMIs.
Olaya-Castro, Alexandra; Johnson, Neil F; Quiroga, Luis
2005-03-25
We propose a physically realizable machine which can either generate multiparticle W-like states, or implement high-fidelity 1-->M (M=1,2,...infinity) anticloning of an arbitrary qubit state, in a single step. This universal machine acts as a catalyst in that it is unchanged after either procedure, effectively resetting itself for its next operation. It possesses an inherent immunity to decoherence. Most importantly in terms of practical multiparty quantum communication, the machine's robustness in the presence of decoherence actually increases as the number of qubits M increases.
Joint FAM/Line Management Assessment Report on LLNL Machine Guarding Safety Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, J. J.
2016-07-19
The LLNL Safety Program for Machine Guarding is implemented to comply with requirements in the ES&H Manual Document 11.2, "Hazards-General and Miscellaneous," Section 13 Machine Guarding (Rev 18, issued Dec. 15, 2015). The primary goal of this LLNL Safety Program is to ensure that LLNL operations involving machine guarding are managed so that workers, equipment and government property are adequately protected. This means that all such operations are planned and approved using the Integrated Safety Management System to provide the most cost effective and safest means available to support the LLNL mission.
Baseline Architecture of ITER Control System
NASA Astrophysics Data System (ADS)
Wallander, A.; Di Maio, F.; Journeaux, J.-Y.; Klotz, W.-D.; Makijarvi, P.; Yonekawa, I.
2011-08-01
The control system of ITER consists of thousands of computers processing hundreds of thousands of signals. The control system, being the primary tool for operating the machine, shall integrate, control and coordinate all these computers and signals and allow a limited number of staff to operate the machine from a central location with minimum human intervention. The primary functions of the ITER control system are plant control, supervision and coordination, both during experimental pulses and 24/7 continuous operation. The former can be split in three phases; preparation of the experiment by defining all parameters; executing the experiment including distributed feed-back control and finally collecting, archiving, analyzing and presenting all data produced by the experiment. We define the control system as a set of hardware and software components with well defined characteristics. The architecture addresses the organization of these components and their relationship to each other. We distinguish between physical and functional architecture, where the former defines the physical connections and the latter the data flow between components. In this paper, we identify the ITER control system based on the plant breakdown structure. Then, the control system is partitioned into a workable set of bounded subsystems. This partition considers at the same time the completeness and the integration of the subsystems. The components making up subsystems are identified and defined, a naming convention is introduced and the physical networks defined. Special attention is given to timing and real-time communication for distributed control. Finally we discuss baseline technologies for implementing the proposed architecture based on analysis, market surveys, prototyping and benchmarking carried out during the last year.
Model Machine Shop for Drafting Instruction.
ERIC Educational Resources Information Center
Jackson, Carl R.
The development and implementation of a two-year interdisciplinary course integrating a machine shop and drafting curriculum are described in the report. The purpose of the course is to provide a learning process in industrial drafting featuring identifiable orientation in skills that will enable the student to develop competencies that are…
Advances in 3-dimensional braiding
NASA Technical Reports Server (NTRS)
Thaxton, Cirrelia; Reid, Rona; El-Shiekh, Aly
1992-01-01
This paper encompasses an overview of the history of 3-D braiding and an in-depth survey of the most recent, technological advances in machine design and implementation. Its purpose is to review the major efforts of university and industry research and development into the successful machining of this textile process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Painter, J.; McCormick, P.; Krogh, M.
This paper presents the ACL (Advanced Computing Lab) Message Passing Library. It is a high throughput, low latency communications library, based on Thinking Machines Corp.`s CMMD, upon which message passing applications can be built. The library has been implemented on the Cray T3D, Thinking Machines CM-5, SGI workstations, and on top of PVM.
Machine Operator Training Program and Curriculum.
ERIC Educational Resources Information Center
St. Cyr, David; And Others
This curriculum contains materials for use in duplicating the 11-week course for machine operators that was implemented at New Hampshire Vocational-Technical College in Nashua, New Hampshire. Addressed in the course, which is designed to prepare entry-level employees, are the following topics: basic math, blueprint reading, layout tools and…
The Librarian Leading the Machine: A Reassessment of Library Instruction Methods
ERIC Educational Resources Information Center
Greer, Katie; Hess, Amanda Nichols; Kraemer, Elizabeth W.
2016-01-01
This article builds on the 2007 College and Research Libraries article, "The Librarian, the Machine, or a Little of Both." Since that time, Oakland University Libraries implemented changes to its instruction program that reflect larger trends in teaching and assessment throughout the profession; following these revisions, librarians…
75 FR 48954 - Arbitration Panel Decision Under the Randolph-Sheppard Act
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-12
... and its implementing regulations concerning the food services at Wright-Patterson Air Force Base in... permit to operate snack and beverage vending machines throughout the Wright-Patterson Air Force Base, and... income from the vending machines at the Wright-Patterson Air Force Base pursuant to the Act and...
Effective dust control systems on concrete dowel drilling machinery.
Echt, Alan S; Sanderson, Wayne T; Mead, Kenneth R; Feng, H Amy; Farwick, Daniel R; Farwick, Dawn Ramsey
2016-09-01
Rotary-type percussion dowel drilling machines, which drill horizontal holes in concrete pavement, have been documented to produce respirable crystalline silica concentrations above recommended exposure criteria. This places operators at potential risk for developing health effects from exposure. United States manufacturers of these machines offer optional dust control systems. The effectiveness of the dust control systems to reduce respirable dust concentrations on two types of drilling machines was evaluated under controlled conditions with the machines operating inside large tent structures in an effort to eliminate secondary exposure sources not related to the dowel-drilling operation. Area air samples were collected at breathing zone height at three locations around each machine. Through equal numbers of sampling rounds with the control systems randomly selected to be on or off, the control systems were found to significantly reduce respirable dust concentrations from a geometric mean of 54 mg per cubic meter to 3.0 mg per cubic meter on one machine and 57 mg per cubic meter to 5.3 mg per cubic meter on the other machine. This research shows that the dust control systems can dramatically reduce respirable dust concentrations by over 90% under controlled conditions. However, these systems need to be evaluated under actual work conditions to determine their effectiveness in reducing worker exposures to crystalline silica below hazardous levels.
Early experiences in developing and managing the neuroscience gateway.
Sivagnanam, Subhashini; Majumdar, Amit; Yoshimoto, Kenneth; Astakhov, Vadim; Bandrowski, Anita; Martone, MaryAnn; Carnevale, Nicholas T
2015-02-01
The last few decades have seen the emergence of computational neuroscience as a mature field where researchers are interested in modeling complex and large neuronal systems and require access to high performance computing machines and associated cyber infrastructure to manage computational workflow and data. The neuronal simulation tools, used in this research field, are also implemented for parallel computers and suitable for high performance computing machines. But using these tools on complex high performance computing machines remains a challenge because of issues with acquiring computer time on these machines located at national supercomputer centers, dealing with complex user interface of these machines, dealing with data management and retrieval. The Neuroscience Gateway is being developed to alleviate and/or hide these barriers to entry for computational neuroscientists. It hides or eliminates, from the point of view of the users, all the administrative and technical barriers and makes parallel neuronal simulation tools easily available and accessible on complex high performance computing machines. It handles the running of jobs and data management and retrieval. This paper shares the early experiences in bringing up this gateway and describes the software architecture it is based on, how it is implemented, and how users can use this for computational neuroscience research using high performance computing at the back end. We also look at parallel scaling of some publicly available neuronal models and analyze the recent usage data of the neuroscience gateway.
Early experiences in developing and managing the neuroscience gateway
Sivagnanam, Subhashini; Majumdar, Amit; Yoshimoto, Kenneth; Astakhov, Vadim; Bandrowski, Anita; Martone, MaryAnn; Carnevale, Nicholas. T.
2015-01-01
SUMMARY The last few decades have seen the emergence of computational neuroscience as a mature field where researchers are interested in modeling complex and large neuronal systems and require access to high performance computing machines and associated cyber infrastructure to manage computational workflow and data. The neuronal simulation tools, used in this research field, are also implemented for parallel computers and suitable for high performance computing machines. But using these tools on complex high performance computing machines remains a challenge because of issues with acquiring computer time on these machines located at national supercomputer centers, dealing with complex user interface of these machines, dealing with data management and retrieval. The Neuroscience Gateway is being developed to alleviate and/or hide these barriers to entry for computational neuroscientists. It hides or eliminates, from the point of view of the users, all the administrative and technical barriers and makes parallel neuronal simulation tools easily available and accessible on complex high performance computing machines. It handles the running of jobs and data management and retrieval. This paper shares the early experiences in bringing up this gateway and describes the software architecture it is based on, how it is implemented, and how users can use this for computational neuroscience research using high performance computing at the back end. We also look at parallel scaling of some publicly available neuronal models and analyze the recent usage data of the neuroscience gateway. PMID:26523124
Han-Markey, T L; Wang, L; Schlotterbeck, S; Jackson, E A; Gurm, R; Leidal, A; Eagle, K
2012-04-01
The school environment has been the focus of many health initiatives over the years as a means to address the childhood obesity crisis. The availability of low-nutrient, high-calorie foods and beverages to students via vending machines further exacerbates the issue of childhood obesity. However, a healthy overhaul of vending machines may also affect revenue on which schools have come to depend. This article describes the experience of one school district in changing the school environment, and the resulting impact on food and beverage vending machines. Observational study in Ann Arbor public schools. The contents and locations of vending machines were identified in 2003 and surveyed repeatedly in 2007. Overall revenues were also documented during this time period. Changes were observed in the contents of both food and beverage vending machines. Revenue in the form of commissions to the contracted companies and the school district decreased. Local and national wellness policy changes may have financial ramifications for school districts. In order to facilitate and sustain school environment change, all stakeholders, including teachers, administrators, students and healthcare providers, should collaborate and communicate on policy implementation, recognizing that change can have negative financial consequences as well as positive, healthier outcomes. Copyright © 2012 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Findings from the National Machine Guarding Program–A Small Business Intervention: Machine Safety
Yamin, Samuel C.; Xi, Min; Brosseau, Lisa M.; Gordon, Robert; Most, Ivan G.; Stanley, Rodney
2016-01-01
Objectives The purpose of this nationwide intervention was to improve machine safety in small metal fabrication businesses (3 – 150 employees). The failure to implement machine safety programs related to guarding and lockout/tagout (LOTO) are frequent causes of OSHA citations and may result in serious traumatic injury. Methods Insurance safety consultants conducted a standardized evaluation of machine guarding, safety programs, and LOTO. Businesses received a baseline evaluation, two intervention visits and a twelve-month follow-up evaluation. Results The intervention was completed by 160 businesses. Adding a safety committee was associated with a 10-percentage point increase in business-level machine scores (p< 0.0001) and a 33-percentage point increase in LOTO program scores (p <0.0001). Conclusions Insurance safety consultants proved effective at disseminating a machine safety and LOTO intervention via management-employee safety committees. PMID:26716850
Findings From the National Machine Guarding Program-A Small Business Intervention: Machine Safety.
Parker, David L; Yamin, Samuel C; Xi, Min; Brosseau, Lisa M; Gordon, Robert; Most, Ivan G; Stanley, Rodney
2016-09-01
The purpose of this nationwide intervention was to improve machine safety in small metal fabrication businesses (3 to 150 employees). The failure to implement machine safety programs related to guarding and lockout/tagout (LOTO) are frequent causes of Occupational Safety and Health Administration (OSHA) citations and may result in serious traumatic injury. Insurance safety consultants conducted a standardized evaluation of machine guarding, safety programs, and LOTO. Businesses received a baseline evaluation, two intervention visits, and a 12-month follow-up evaluation. The intervention was completed by 160 businesses. Adding a safety committee was associated with a 10% point increase in business-level machine scores (P < 0.0001) and a 33% point increase in LOTO program scores (P < 0.0001). Insurance safety consultants proved effective at disseminating a machine safety and LOTO intervention via management-employee safety committees.
Taniguchi, Hidetaka; Sato, Hiroshi; Shirakawa, Tomohiro
2018-05-09
Human learners can generalize a new concept from a small number of samples. In contrast, conventional machine learning methods require large amounts of data to address the same types of problems. Humans have cognitive biases that promote fast learning. Here, we developed a method to reduce the gap between human beings and machines in this type of inference by utilizing cognitive biases. We implemented a human cognitive model into machine learning algorithms and compared their performance with the currently most popular methods, naïve Bayes, support vector machine, neural networks, logistic regression and random forests. We focused on the task of spam classification, which has been studied for a long time in the field of machine learning and often requires a large amount of data to obtain high accuracy. Our models achieved superior performance with small and biased samples in comparison with other representative machine learning methods.
Entanglement-Based Machine Learning on a Quantum Computer
NASA Astrophysics Data System (ADS)
Cai, X.-D.; Wu, D.; Su, Z.-E.; Chen, M.-C.; Wang, X.-L.; Li, Li; Liu, N.-L.; Lu, C.-Y.; Pan, J.-W.
2015-03-01
Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.
Machine learning: novel bioinformatics approaches for combating antimicrobial resistance.
Macesic, Nenad; Polubriaginof, Fernanda; Tatonetti, Nicholas P
2017-12-01
Antimicrobial resistance (AMR) is a threat to global health and new approaches to combating AMR are needed. Use of machine learning in addressing AMR is in its infancy but has made promising steps. We reviewed the current literature on the use of machine learning for studying bacterial AMR. The advent of large-scale data sets provided by next-generation sequencing and electronic health records make applying machine learning to the study and treatment of AMR possible. To date, it has been used for antimicrobial susceptibility genotype/phenotype prediction, development of AMR clinical decision rules, novel antimicrobial agent discovery and antimicrobial therapy optimization. Application of machine learning to studying AMR is feasible but remains limited. Implementation of machine learning in clinical settings faces barriers to uptake with concerns regarding model interpretability and data quality.Future applications of machine learning to AMR are likely to be laboratory-based, such as antimicrobial susceptibility phenotype prediction.
Fault-Tolerant Coding for State Machines
NASA Technical Reports Server (NTRS)
Naegle, Stephanie Taft; Burke, Gary; Newell, Michael
2008-01-01
Two reliable fault-tolerant coding schemes have been proposed for state machines that are used in field-programmable gate arrays and application-specific integrated circuits to implement sequential logic functions. The schemes apply to strings of bits in state registers, which are typically implemented in practice as assemblies of flip-flop circuits. If a single-event upset (SEU, a radiation-induced change in the bit in one flip-flop) occurs in a state register, the state machine that contains the register could go into an erroneous state or could hang, by which is meant that the machine could remain in undefined states indefinitely. The proposed fault-tolerant coding schemes are intended to prevent the state machine from going into an erroneous or hang state when an SEU occurs. To ensure reliability of the state machine, the coding scheme for bits in the state register must satisfy the following criteria: 1. All possible states are defined. 2. An SEU brings the state machine to a known state. 3. There is no possibility of a hang state. 4. No false state is entered. 5. An SEU exerts no effect on the state machine. Fault-tolerant coding schemes that have been commonly used include binary encoding and "one-hot" encoding. Binary encoding is the simplest state machine encoding and satisfies criteria 1 through 3 if all possible states are defined. Binary encoding is a binary count of the state machine number in sequence; the table represents an eight-state example. In one-hot encoding, N bits are used to represent N states: All except one of the bits in a string are 0, and the position of the 1 in the string represents the state. With proper circuit design, one-hot encoding can satisfy criteria 1 through 4. Unfortunately, the requirement to use N bits to represent N states makes one-hot coding inefficient.
A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder.
Boi, Fabio; Moraitis, Timoleon; De Feo, Vito; Diotalevi, Francesco; Bartolozzi, Chiara; Indiveri, Giacomo; Vato, Alessandro
2016-01-01
Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link between the brain and the external world. A decoder translates recorded neural activity into motor commands and an encoder delivers sensory information collected from the environment directly to the brain creating a closed-loop system. These two modules are typically integrated in bulky external devices. However, the clinical support of patients with severe motor and sensory deficits requires compact, low-power, and fully implantable systems that can decode neural signals to control external devices. As a first step toward this goal, we developed a modular bidirectional BMI setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits. On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn to decode neural signals recorded from the brain into motor outputs controlling the movements of an external device. The modularity of the BMI allowed us to tune the individual components of the setup without modifying the whole system. In this paper, we present the features of this modular BMI and describe how we configured the network of spiking neuron circuits to implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm that connects bidirectionally the brain of an anesthetized rat with an external object. We show that the chip learned the decoding task correctly, allowing the interfaced brain to control the object's trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is mature enough for the development of BMI modules that are sufficiently low-power and compact, while being highly computationally powerful and adaptive.
A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder
Boi, Fabio; Moraitis, Timoleon; De Feo, Vito; Diotalevi, Francesco; Bartolozzi, Chiara; Indiveri, Giacomo; Vato, Alessandro
2016-01-01
Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link between the brain and the external world. A decoder translates recorded neural activity into motor commands and an encoder delivers sensory information collected from the environment directly to the brain creating a closed-loop system. These two modules are typically integrated in bulky external devices. However, the clinical support of patients with severe motor and sensory deficits requires compact, low-power, and fully implantable systems that can decode neural signals to control external devices. As a first step toward this goal, we developed a modular bidirectional BMI setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits. On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn to decode neural signals recorded from the brain into motor outputs controlling the movements of an external device. The modularity of the BMI allowed us to tune the individual components of the setup without modifying the whole system. In this paper, we present the features of this modular BMI and describe how we configured the network of spiking neuron circuits to implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm that connects bidirectionally the brain of an anesthetized rat with an external object. We show that the chip learned the decoding task correctly, allowing the interfaced brain to control the object's trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is mature enough for the development of BMI modules that are sufficiently low-power and compact, while being highly computationally powerful and adaptive. PMID:28018162
NASA Technical Reports Server (NTRS)
Stein, J. A.
1974-01-01
Fully-automatic tube-joint soldering machine can be used to make leakproof joints in aluminum tubes of 3/16 to 2 in. in diameter. Machine consists of temperature-control unit, heater transformer and heater head, vibrator, and associated circuitry controls, and indicators.
Critical Technology Assessment of Five Axis Simultaneous Control Machine Tools
2009-07-01
assessment, BIS specifically examined: • The application of Export Control Classification Numbers ( ECCN ) 2B001.b.2 and 2B001.c.2 controls and related...availability of certain five axis simultaneous control mills, mill/turns, and machining centers controlled by ECCN 2B001.b.2 (but not grinders controlled by... ECCN 2B001.c.2) exists to China and Taiwan, which both have an indigenous capability to produce five axis simultaneous control machine tools with
Impact of the HEALTHY Study on Vending Machine Offerings in Middle Schools.
Hartstein, Jill; Cullen, Karen W; Virus, Amy; El Ghormli, Laure; Volpe, Stella L; Staten, Myrlene A; Bridgman, Jessica C; Stadler, Diane D; Gillis, Bonnie; McCormick, Sarah B; Mobley, Connie C
2011-01-01
The purpose of this study is to report the impact of the three-year middle school-based HEALTHY study on intervention school vending machine offerings. There were two goals for the vending machines: serve only dessert/snack foods with 200 kilocalories or less per single serving package, and eliminate 100% fruit juice and beverages with added sugar. Six schools in each of seven cities (Houston, TX, San Antonio, TX, Irvine, CA, Portland, OR, Pittsburg, PA, Philadelphia, PA, and Chapel Hill, NC) were randomized into intervention (n=21 schools) or control (n=21 schools) groups, with three intervention and three control schools per city. All items in vending machine slots were tallied twice in the fall of 2006 for baseline data and twice at the end of the study, in 2009. The percentage of total slots for each food/beverage category was calculated and compared between intervention and control schools at the end of study, using the Pearson chi-square test statistic. At baseline, 15 intervention and 15 control schools had beverage and/or snack vending machines, compared with 11 intervention and 11 control schools at the end of the study. At the end of study, all of the intervention schools with beverage vending machines, but only one out of the nine control schools, met the beverage goal. The snack goal was met by all of the intervention schools and only one of the four control schools with snack vending machines. The HEALTHY study's vending machine beverage and snack goals were successfully achieved in intervention schools, reducing access to less healthy food items outside the school meals program. Although the effect of these changes on student diet, energy balance and growth is unknown, these results suggest that healthier options for snacks can successfully be offered in school vending machines.
Implementation of the force decomposition machine for molecular dynamics simulations.
Borštnik, Urban; Miller, Benjamin T; Brooks, Bernard R; Janežič, Dušanka
2012-09-01
We present the design and implementation of the force decomposition machine (FDM), a cluster of personal computers (PCs) that is tailored to running molecular dynamics (MD) simulations using the distributed diagonal force decomposition (DDFD) parallelization method. The cluster interconnect architecture is optimized for the communication pattern of the DDFD method. Our implementation of the FDM relies on standard commodity components even for networking. Although the cluster is meant for DDFD MD simulations, it remains general enough for other parallel computations. An analysis of several MD simulation runs on both the FDM and a standard PC cluster demonstrates that the FDM's interconnect architecture provides a greater performance compared to a more general cluster interconnect. Copyright © 2012 Elsevier Inc. All rights reserved.
Embedded control system for computerized franking machine
NASA Astrophysics Data System (ADS)
Shi, W. M.; Zhang, L. B.; Xu, F.; Zhan, H. W.
2007-12-01
This paper presents a novel control system for franking machine. A methodology for operating a franking machine using the functional controls consisting of connection, configuration and franking electromechanical drive is studied. A set of enabling technologies to synthesize postage management software architectures driven microprocessor-based embedded systems is proposed. The cryptographic algorithm that calculates mail items is analyzed to enhance the postal indicia accountability and security. The study indicated that the franking machine is reliability, performance and flexibility in printing mail items.
Lee, Giljae; Matsunaga, Andréa; Dura-Bernal, Salvador; Zhang, Wenjie; Lytton, William W; Francis, Joseph T; Fortes, José Ab
2014-11-01
Development of more sophisticated implantable brain-machine interface (BMI) will require both interpretation of the neurophysiological data being measured and subsequent determination of signals to be delivered back to the brain. Computational models are the heart of the machine of BMI and therefore an essential tool in both of these processes. One approach is to utilize brain biomimetic models (BMMs) to develop and instantiate these algorithms. These then must be connected as hybrid systems in order to interface the BMM with in vivo data acquisition devices and prosthetic devices. The combined system then provides a test bed for neuroprosthetic rehabilitative solutions and medical devices for the repair and enhancement of damaged brain. We propose here a computer network-based design for this purpose, detailing its internal modules and data flows. We describe a prototype implementation of the design, enabling interaction between the Plexon Multichannel Acquisition Processor (MAP) server, a commercial tool to collect signals from microelectrodes implanted in a live subject and a BMM, a NEURON-based model of sensorimotor cortex capable of controlling a virtual arm. The prototype implementation supports an online mode for real-time simulations, as well as an offline mode for data analysis and simulations without real-time constraints, and provides binning operations to discretize continuous input to the BMM and filtering operations for dealing with noise. Evaluation demonstrated that the implementation successfully delivered monkey spiking activity to the BMM through LAN environments, respecting real-time constraints.
LANDMARK-BASED SPEECH RECOGNITION: REPORT OF THE 2004 JOHNS HOPKINS SUMMER WORKSHOP.
Hasegawa-Johnson, Mark; Baker, James; Borys, Sarah; Chen, Ken; Coogan, Emily; Greenberg, Steven; Juneja, Amit; Kirchhoff, Katrin; Livescu, Karen; Mohan, Srividya; Muller, Jennifer; Sonmez, Kemal; Wang, Tianyu
2005-01-01
Three research prototype speech recognition systems are described, all of which use recently developed methods from artificial intelligence (specifically support vector machines, dynamic Bayesian networks, and maximum entropy classification) in order to implement, in the form of an automatic speech recognizer, current theories of human speech perception and phonology (specifically landmark-based speech perception, nonlinear phonology, and articulatory phonology). All three systems begin with a high-dimensional multiframe acoustic-to-distinctive feature transformation, implemented using support vector machines trained to detect and classify acoustic phonetic landmarks. Distinctive feature probabilities estimated by the support vector machines are then integrated using one of three pronunciation models: a dynamic programming algorithm that assumes canonical pronunciation of each word, a dynamic Bayesian network implementation of articulatory phonology, or a discriminative pronunciation model trained using the methods of maximum entropy classification. Log probability scores computed by these models are then combined, using log-linear combination, with other word scores available in the lattice output of a first-pass recognizer, and the resulting combination score is used to compute a second-pass speech recognition output.
A New Approach to Geoengineering: Manna From Heaven
NASA Astrophysics Data System (ADS)
Ellery, Alex
2015-04-01
Geo-engineering, although controversial, has become an emerging factor in coping with climate change. Although most are terrestrial-based technologies, I focus on a space-based approach implemented through a solar shield system. I present several new elements that essentially render the high-cost criticism moot. Of special relevance are two seemingly unrelated technologies - the Resource Prospector Mission (RPM) to the Moon in 2018 that shall implement a technology demonstration of simple material resource extraction from lunar regolith, and the emergence of multi-material 3D printing technology that promises unprecedented robotic manufacturing capabilities. My research group has begun theoretical and experimentation work in developing the concept of a 3D printed electric motor system from lunar-type resources. The electric motor underlies every universal mechanical machine. Together with 3D printed electronics, I submit that this would enable self-replicating machines to be realised. A detailed exposition on how this may be achieved will be outlined. Such self-replicating machines could construct the spacecraft required to implement a solar shield and solar power satellites in large numbers from lunar resources with the same underlying technologies at extremely low cost.
Implementation and analysis of a Navier-Stokes algorithm on parallel computers
NASA Technical Reports Server (NTRS)
Fatoohi, Raad A.; Grosch, Chester E.
1988-01-01
The results of the implementation of a Navier-Stokes algorithm on three parallel/vector computers are presented. The object of this research is to determine how well, or poorly, a single numerical algorithm would map onto three different architectures. The algorithm is a compact difference scheme for the solution of the incompressible, two-dimensional, time-dependent Navier-Stokes equations. The computers were chosen so as to encompass a variety of architectures. They are the following: the MPP, an SIMD machine with 16K bit serial processors; Flex/32, an MIMD machine with 20 processors; and Cray/2. The implementation of the algorithm is discussed in relation to these architectures and measures of the performance on each machine are given. The basic comparison is among SIMD instruction parallelism on the MPP, MIMD process parallelism on the Flex/32, and vectorization of a serial code on the Cray/2. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Finally, conclusions are presented.
[Research on infrared safety protection system for machine tool].
Zhang, Shuan-Ji; Zhang, Zhi-Ling; Yan, Hui-Ying; Wang, Song-De
2008-04-01
In order to ensure personal safety and prevent injury accident in machine tool operation, an infrared machine tool safety system was designed with infrared transmitting-receiving module, memory self-locked relay and voice recording-playing module. When the operator does not enter the danger area, the system has no response. Once the operator's whole or part of body enters the danger area and shades the infrared beam, the system will alarm and output an control signal to the machine tool executive element, and at the same time, the system makes the machine tool emergency stop to prevent equipment damaged and person injured. The system has a module framework, and has many advantages including safety, reliability, common use, circuit simplicity, maintenance convenience, low power consumption, low costs, working stability, easy debugging, vibration resistance and interference resistance. It is suitable for being installed and used in different machine tools such as punch machine, pour plastic machine, digital control machine, armor plate cutting machine, pipe bending machine, oil pressure machine etc.
Determining Underground Mining Work Postures Using Motion Capture and Digital Human Modeling
Lutz, Timothy J.; DuCarme, Joseph P.; Smith, Adam K.; Ambrose, Dean
2017-01-01
According to Mine Safety and Health Administration (MSHA) data, during 2008–2012 in the U.S., there were, on average, 65 lost-time accidents per year during routine mining and maintenance activities involving remote-controlled continuous mining machines (CMMs). To address this problem, the National Institute for Occupational Safety and Health (NIOSH) is currently investigating the implementation and integration of existing and emerging technologies in underground mines to provide automated, intelligent proximity detection (iPD) devices on CMMs. One research goal of NIOSH is to enhance the proximity detection system by improving its capability to track and determine identity, position, and posture of multiple workers, and to selectively disable machine functions to keep workers and machine operators safe. Posture of the miner can determine the safe working distance from a CMM by way of the variation in the proximity detection magnetic field. NIOSH collected and analyzed motion capture data and calculated joint angles of the back, hips, and knees from various postures on 12 human subjects. The results of the analysis suggests that lower body postures can be identified by observing the changes in joint angles of the right hip, left hip, right knee, and left knee. PMID:28626796
Deformation of products cut on AWJ x-y tables and its suppression
NASA Astrophysics Data System (ADS)
Hlaváč, L. M.; Hlaváčová, I. M.; Plančár, Š.; Krenický, T.; Geryk, V.
2018-02-01
The aim of this study is namely investigation of the abrasive water jet (AWJ) cutting of column pieces on commercial x-y cutting machines with AWJ. The shape deformation in curved and/or stepped parts of cutting trajectories caused by both the trailback (declination angle) and the taper (inclination of cut walls) can be calculated from submitted analytical model. Some of the results were compared with data measured on samples cut on two types of commercial tables. The main motivation of this investigation is determination of the percentage difference between predicted and real distortion of cutting product, i.e. accuracy of prepared analytical model. Subsequently, the possibility of reduction of the distortion can be studied through implementation of the theoretical model into the control systems of the cutting machines with the system for cutting head tilting. Despite some limitations of the used AWJ machines the comparison of calculated dimensions with the real ones shows very good correlation of model and experimental data lying within the range of measurement uncertainty. Results on special device demonstrated that the shape deformation in curved parts of the cutting trajectory can be substantially reduced through tilting of the cutting head.
Chen, Chi-Jim; Pai, Tun-Wen; Cheng, Mox
2015-01-01
A sweeping fingerprint sensor converts fingerprints on a row by row basis through image reconstruction techniques. However, a built fingerprint image might appear to be truncated and distorted when the finger was swept across a fingerprint sensor at a non-linear speed. If the truncated fingerprint images were enrolled as reference targets and collected by any automated fingerprint identification system (AFIS), successful prediction rates for fingerprint matching applications would be decreased significantly. In this paper, a novel and effective methodology with low time computational complexity was developed for detecting truncated fingerprints in a real time manner. Several filtering rules were implemented to validate existences of truncated fingerprints. In addition, a machine learning method of supported vector machine (SVM), based on the principle of structural risk minimization, was applied to reject pseudo truncated fingerprints containing similar characteristics of truncated ones. The experimental result has shown that an accuracy rate of 90.7% was achieved by successfully identifying truncated fingerprint images from testing images before AFIS enrollment procedures. The proposed effective and efficient methodology can be extensively applied to all existing fingerprint matching systems as a preliminary quality control prior to construction of fingerprint templates. PMID:25835186
Hybrid EEG-EOG brain-computer interface system for practical machine control.
Punsawad, Yunyong; Wongsawat, Yodchanan; Parnichkun, Manukid
2010-01-01
Practical issues such as accuracy with various subjects, number of sensors, and time for training are important problems of existing brain-computer interface (BCI) systems. In this paper, we propose a hybrid framework for the BCI system that can make machine control more practical. The electrooculogram (EOG) is employed to control the machine in the left and right directions while the electroencephalogram (EEG) is employed to control the forword, no action, and complete stop motions of the machine. By using only 2-channel biosignals, the average classification accuracy of more than 95% can be achieved.
Manufacturing Laboratory for Next Generation Engineers
2013-12-16
automated CNC machines, rapid prototype systems, robotic assembly systems, metrology , and non-traditional systems such as a waterjet cutter, EDM machine...CNC machines, rapid prototype systems, robotic assembly systems, metrology , and non-traditional systems such as a waterjet cutter, EDM machine, plasma...System Metrology and Quality Control Equipment - This area already had a CMM and other well known quality control instrumentation. It has been enhanced
Machine vision for digital microfluidics
NASA Astrophysics Data System (ADS)
Shin, Yong-Jun; Lee, Jeong-Bong
2010-01-01
Machine vision is widely used in an industrial environment today. It can perform various tasks, such as inspecting and controlling production processes, that may require humanlike intelligence. The importance of imaging technology for biological research or medical diagnosis is greater than ever. For example, fluorescent reporter imaging enables scientists to study the dynamics of gene networks with high spatial and temporal resolution. Such high-throughput imaging is increasingly demanding the use of machine vision for real-time analysis and control. Digital microfluidics is a relatively new technology with expectations of becoming a true lab-on-a-chip platform. Utilizing digital microfluidics, only small amounts of biological samples are required and the experimental procedures can be automatically controlled. There is a strong need for the development of a digital microfluidics system integrated with machine vision for innovative biological research today. In this paper, we show how machine vision can be applied to digital microfluidics by demonstrating two applications: machine vision-based measurement of the kinetics of biomolecular interactions and machine vision-based droplet motion control. It is expected that digital microfluidics-based machine vision system will add intelligence and automation to high-throughput biological imaging in the future.
PID self tuning control based on Mamdani fuzzy logic control for quadrotor stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priyambodo, Tri Kuntoro, E-mail: mastri@ugm.ac.id; Putra, Agfianto Eko; Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta
Quadrotor as one type of UAV have the ability to perform Vertical Take Off and Landing (VTOL). It allows the Quadrotor to be stationary hovering in the air. PID (Proportional Integral Derivative) control system is one of the control methods that are commonly used. It is usually used to optimize the Quadrotor stabilization at least based on the three Eulerian angles (roll, pitch, and yaw) as input parameters for the control system. The three constants of PID can be obtained in various methods. The simplest method is tuning manually. This method has several weaknesses. For example if the three constantsmore » are not exact, the resulting response will deviate from the desired result. By combining the methods of PID with fuzzy logic systems where human expertise is implemented into the machine language is expected to further optimize the control system.« less
Man-machine interface and control of the shuttle digital flight system
NASA Technical Reports Server (NTRS)
Burghduff, R. D.; Lewis, J. L., Jr.
1985-01-01
The space shuttle main engine (SSME) presented new requirements in the design of controls for large pump fed liquid rocket engine systems. These requirements were the need for built in full mission support capability, and complexity and flexibility of function not previously needed in this type of application. An engine mounted programmable digital control system was developed to meet these requirements. The engine system and controller and their function are described. Design challenges encountered during the course of development included accommodation for a very severe engine environment, the implementation of redundancy and redundancy management to provide fail operational/fail safe capability, removal of heat from the package, and significant constraints on computer memory size and processing time. The flexibility offered by programmable control reshaped the approach to engine design and development and set the pattern for future controls development in these types of applications.
Google glass-based remote control of a mobile robot
NASA Astrophysics Data System (ADS)
Yu, Song; Wen, Xi; Li, Wei; Chen, Genshe
2016-05-01
In this paper, we present an approach to remote control of a mobile robot via a Google Glass with the multi-function and compact size. This wearable device provides a new human-machine interface (HMI) to control a robot without need for a regular computer monitor because the Google Glass micro projector is able to display live videos around robot environments. In doing it, we first develop a protocol to establish WI-FI connection between Google Glass and a robot and then implement five types of robot behaviors: Moving Forward, Turning Left, Turning Right, Taking Pause, and Moving Backward, which are controlled by sliding and clicking the touchpad located on the right side of the temple. In order to demonstrate the effectiveness of the proposed Google Glass-based remote control system, we navigate a virtual Surveyor robot to pass a maze. Experimental results demonstrate that the proposed control system achieves the desired performance.
Perisic, Milun; Kinoshita, Michael H; Ranson, Ray M; Gallegos-Lopez, Gabriel
2014-06-03
Methods, system and apparatus are provided for controlling third harmonic voltages when operating a multi-phase machine in an overmodulation region. The multi-phase machine can be, for example, a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided. For example, when the reference voltage vector is determined to be within the overmodulation region, an angle of the reference voltage vector can be modified to generate a reference voltage overmodulation control angle, and a magnitude of the reference voltage vector can be modified, based on the reference voltage overmodulation control angle, to generate a modified magnitude of the reference voltage vector. By modifying the reference voltage vector, voltage command signals that control a five-phase inverter module can be optimized to increase output voltages generated by the five-phase inverter module.
FSW of Aluminum Tailor Welded Blanks across Machine Platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovanski, Yuri; Upadhyay, Piyush; Carlson, Blair
2015-02-16
Development and characterization of friction stir welded aluminum tailor welded blanks was successfully carried out on three separate machine platforms. Each was a commercially available, gantry style, multi-axis machine designed specifically for friction stir welding. Weld parameters were developed to support high volume production of dissimilar thickness aluminum tailor welded blanks at speeds of 3 m/min and greater. Parameters originally developed on an ultra-high stiffness servo driven machine where first transferred to a high stiffness servo-hydraulic friction stir welding machine, and subsequently transferred to a purpose built machine designed to accommodate thin sheet aluminum welding. The inherent beam stiffness, bearingmore » compliance, and control system for each machine were distinctly unique, which posed specific challenges in transferring welding parameters across machine platforms. This work documents the challenges imposed by successfully transferring weld parameters from machine to machine, produced from different manufacturers and with unique control systems and interfaces.« less
Terry-McElrath, Yvonne M; Hood, Nancy E; Colabianchi, Natalie; O'Malley, Patrick M; Johnston, Lloyd D
2014-07-01
The 2013-2014 school year involved preparation for implementing the new US Department of Agriculture (USDA) competitive foods nutrition standards. An awareness of associations between commercial supplier involvement, food vending practices, and food vending item availability may assist schools in preparing for the new standards. Analyses used 2007-2012 questionnaire data from administrators of 814 middle and 801 high schools in the nationally representative Youth, Education, and Society study to examine prevalence of profit from and commercial involvement with vending machine food sales, and associations between such measures and food availability. Profits for the school district were associated with decreased low-nutrient, energy-dense (LNED) food availability and increased fruit/vegetable availability. Profits for the school and use of company suppliers were associated with increased LNED availability; company suppliers also were associated with decreased fruit/vegetable availability. Supplier "say" in vending food selection was associated with increased LNED availability and decreased fruit/vegetable availability. Results support (1) increased district involvement with school vending policies and practices, and (2) limited supplier "say" as to what items are made available in student-accessed vending machines. Schools and districts should pay close attention to which food items replace vending machine LNED foods following implementation of the new nutrition standards. © 2014, American School Health Association.
Przybyszewski, Andrzej W; Linsay, Paul S; Gaudiano, Paolo; Wilson, Christopher M
2007-01-01
There exists a common view that the brain acts like a Turing machine: The machine reads information from an infinite tape (sensory data) and, on the basis of the machine's state and information from the tape, an action (decision) is made. The main problem with this model lies in how to synchronize a large number of tapes in an adaptive way so that the machine is able to accomplish tasks such as object classification. We propose that such mechanisms exist already in the eye. A popular view is that the retina, typically associated with high gain and adaptation for light processing, is actually performing local preprocessing by means of its center-surround receptive field. We would like to show another property of the retina: The ability to integrate many independent processes. We believe that this integration is implemented by synchronization of neuronal oscillations. In this paper, we present a model of the retina consisting of a series of coupled oscillators which can synchronize on several scales. Synchronization is an analog process which is converted into a digital spike train in the output of the retina. We have developed a hardware implementation of this model, which enables us to carry out rapid simulation of multineuron oscillatory dynamics. We show that the properties of the spike trains in our model are similar to those found in vivo in the cat retina.
Scemama, Anthony; Caffarel, Michel; Oseret, Emmanuel; Jalby, William
2013-04-30
Various strategies to implement efficiently quantum Monte Carlo (QMC) simulations for large chemical systems are presented. These include: (i) the introduction of an efficient algorithm to calculate the computationally expensive Slater matrices. This novel scheme is based on the use of the highly localized character of atomic Gaussian basis functions (not the molecular orbitals as usually done), (ii) the possibility of keeping the memory footprint minimal, (iii) the important enhancement of single-core performance when efficient optimization tools are used, and (iv) the definition of a universal, dynamic, fault-tolerant, and load-balanced framework adapted to all kinds of computational platforms (massively parallel machines, clusters, or distributed grids). These strategies have been implemented in the QMC=Chem code developed at Toulouse and illustrated with numerical applications on small peptides of increasing sizes (158, 434, 1056, and 1731 electrons). Using 10-80 k computing cores of the Curie machine (GENCI-TGCC-CEA, France), QMC=Chem has been shown to be capable of running at the petascale level, thus demonstrating that for this machine a large part of the peak performance can be achieved. Implementation of large-scale QMC simulations for future exascale platforms with a comparable level of efficiency is expected to be feasible. Copyright © 2013 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Greer, Lawrence (Inventor)
2017-01-01
An apparatus and a computer-implemented method for generating pulses synchronized to a rising edge of a tachometer signal from rotating machinery are disclosed. For example, in one embodiment, a pulse state machine may be configured to generate a plurality of pulses, and a period state machine may be configured to determine a period for each of the plurality of pulses.
DEVELOPING PROPER ATTITUDES TOWARD EYE PROTECTION IN THE SCHOOL SHOP, A RESEARCH REPORT.
ERIC Educational Resources Information Center
SCHAEFER, CARL J.; AND OTHERS
TWO METHODS OF IMPLEMENTING SCHOOL SHOP EYE PROTECTION PROGRAMS WERE INVESTIGATED TO DETERMINE THE MORE EFFECTIVE FOR DEVELOPING FAVORABLE AND LASTING STUDENT ATTITUDES. TWO INDEPENDENT SAMPLES, TOTALING 76, WERE DRAWN FROM THE TENTH GRADE VOCATIONAL MACHINE SHOP STUDENTS AND FROM COLLEGE STUDENTS ENROLLED IN AN ENGINEERING MACHINE SHOP COURSE.…
27 CFR 447.22 - Forgings, castings, and machined bodies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Forgings, castings, and... IMPLEMENTS OF WAR The U.S. Munitions Import List § 447.22 Forgings, castings, and machined bodies. Articles on the U.S. Munitions Import List include articles in a partially completed state (such as forgings...
THE DESIGN OF A MAN-MACHINE COUNSELING SYSTEM. A PROFESSIONAL PAPER.
ERIC Educational Resources Information Center
COGSWELL, J.F.; AND OTHERS
TWO PROJECTS ON THE DESIGN, DEVELOPMENT, IMPLEMENTATION, AND EVALUATION OF A MAN-MACHINE SYSTEM FOR COUNSELING IN THE PALO ALTO AND LOS ANGELES SCHOOL DISTRICTS ARE REPORTED. THE EARLIER PHILCO 2000 COMPUTER PROGRAMS SIMULATED A COUNSELOR'S WORK IN THE EDUCATIONAL PLANNING INTERVIEW BY ACCEPTING INPUTS SUCH AS SCHOOL GRADES, TEST SCORES, AND…
Energy-Efficient Hosting Rich Content from Mobile Platforms with Relative Proximity Sensing.
Park, Ki-Woong; Lee, Younho; Baek, Sung Hoon
2017-08-08
In this paper, we present a tiny networked mobile platform, termed Tiny-Web-Thing ( T-Wing ), which allows the sharing of data-intensive content among objects in cyber physical systems. The object includes mobile platforms like a smartphone, and Internet of Things (IoT) platforms for Human-to-Human (H2H), Human-to-Machine (H2M), Machine-to-Human (M2H), and Machine-to-Machine (M2M) communications. T-Wing makes it possible to host rich web content directly on their objects, which nearby objects can access instantaneously. Using a new mechanism that allows the Wi-Fi interface of the object to be turned on purely on-demand, T-Wing achieves very high energy efficiency. We have implemented T-Wing on an embedded board, and present evaluation results from our testbed. From the evaluation result of T-Wing , we compare our system against alternative approaches to implement this functionality using only the cellular or Wi-Fi (but not both), and show that in typical usage, T-Wing consumes less than 15× the energy and is faster by an order of magnitude.
Koul, Atesh; Becchio, Cristina; Cavallo, Andrea
2017-12-12
Recent years have seen an increased interest in machine learning-based predictive methods for analyzing quantitative behavioral data in experimental psychology. While these methods can achieve relatively greater sensitivity compared to conventional univariate techniques, they still lack an established and accessible implementation. The aim of current work was to build an open-source R toolbox - "PredPsych" - that could make these methods readily available to all psychologists. PredPsych is a user-friendly, R toolbox based on machine-learning predictive algorithms. In this paper, we present the framework of PredPsych via the analysis of a recently published multiple-subject motion capture dataset. In addition, we discuss examples of possible research questions that can be addressed with the machine-learning algorithms implemented in PredPsych and cannot be easily addressed with univariate statistical analysis. We anticipate that PredPsych will be of use to researchers with limited programming experience not only in the field of psychology, but also in that of clinical neuroscience, enabling computational assessment of putative bio-behavioral markers for both prognosis and diagnosis.
Method and apparatus for automatic control of a humanoid robot
NASA Technical Reports Server (NTRS)
Abdallah, Muhammad E (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Sanders, Adam M (Inventor); Reiland, Matthew J (Inventor)
2013-01-01
A robotic system includes a humanoid robot having a plurality of joints adapted for force control with respect to an object acted upon by the robot, a graphical user interface (GUI) for receiving an input signal from a user, and a controller. The GUI provides the user with intuitive programming access to the controller. The controller controls the joints using an impedance-based control framework, which provides object level, end-effector level, and/or joint space-level control of the robot in response to the input signal. A method for controlling the robotic system includes receiving the input signal via the GUI, e.g., a desired force, and then processing the input signal using a host machine to control the joints via an impedance-based control framework. The framework provides object level, end-effector level, and/or joint space-level control of the robot, and allows for functional-based GUI to simplify implementation of a myriad of operating modes.
Gram staining with an automatic machine.
Felek, S; Arslan, A
1999-01-01
This study was undertaken to develop a new Gram-staining machine controlled by a micro-controller and to investigate the quality of slides that were stained in the machine. The machine was designed and produced by the authors. It uses standard 220 V AC. Staining, washing, and drying periods are controlled by a timer built in the micro-controller. A software was made that contains a certain algorithm and time intervals for the staining mode. One-hundred and forty smears were prepared from Escherichia coli, Staphylococcus aureus, Neisseria sp., blood culture, trypticase soy broth, direct pus and sputum smears for comparison studies. Half of the slides in each group were stained with the machine, the other half by hand and then examined by four different microbiologists. Machine-stained slides had a higher clarity and less debris than the hand-stained slides (p < 0.05). In hand-stained slides, some Gram-positive organisms showed poor Gram-positive staining features (p < 0.05). In conclusion, we suggest that Gram staining with the automatic machine increases the staining quality and helps to decrease the work load in a busy diagnostic laboratory.
A framework for porting the NeuroBayes machine learning algorithm to FPGAs
NASA Astrophysics Data System (ADS)
Baehr, S.; Sander, O.; Heck, M.; Feindt, M.; Becker, J.
2016-01-01
The NeuroBayes machine learning algorithm is deployed for online data reduction at the pixel detector of Belle II. In order to test, characterize and easily adapt its implementation on FPGAs, a framework was developed. Within the framework an HDL model, written in python using MyHDL, is used for fast exploration of possible configurations. Under usage of input data from physics simulations figures of merit like throughput, accuracy and resource demand of the implementation are evaluated in a fast and flexible way. Functional validation is supported by usage of unit tests and HDL simulation for chosen configurations.
Data parallel sorting for particle simulation
NASA Technical Reports Server (NTRS)
Dagum, Leonardo
1992-01-01
Sorting on a parallel architecture is a communications intensive event which can incur a high penalty in applications where it is required. In the case of particle simulation, only integer sorting is necessary, and sequential implementations easily attain the minimum performance bound of O (N) for N particles. Parallel implementations, however, have to cope with the parallel sorting problem which, in addition to incurring a heavy communications cost, can make the minimun performance bound difficult to attain. This paper demonstrates how the sorting problem in a particle simulation can be reduced to a merging problem, and describes an efficient data parallel algorithm to solve this merging problem in a particle simulation. The new algorithm is shown to be optimal under conditions usual for particle simulation, and its fieldwise implementation on the Connection Machine is analyzed in detail. The new algorithm is about four times faster than a fieldwise implementation of radix sort on the Connection Machine.
Support Vector Machine algorithm for regression and classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Chenggang; Zavaljevski, Nela
2001-08-01
The software is an implementation of the Support Vector Machine (SVM) algorithm that was invented and developed by Vladimir Vapnik and his co-workers at AT&T Bell Laboratories. The specific implementation reported here is an Active Set method for solving a quadratic optimization problem that forms the major part of any SVM program. The implementation is tuned to specific constraints generated in the SVM learning. Thus, it is more efficient than general-purpose quadratic optimization programs. A decomposition method has been implemented in the software that enables processing large data sets. The size of the learning data is virtually unlimited by themore » capacity of the computer physical memory. The software is flexible and extensible. Two upper bounds are implemented to regulate the SVM learning for classification, which allow users to adjust the false positive and false negative rates. The software can be used either as a standalone, general-purpose SVM regression or classification program, or be embedded into a larger software system.« less
Romaniello, Roberto; Leone, Alessandro; Tamborrino, Antonia
2017-01-01
An industrial prototype of a partial de-stoner machine was specified, built and implemented in an industrial olive oil extraction plant. The partial de-stoner machine was compared to the traditional mechanical crusher to assess its quantitative and qualitative performance. The extraction efficiency of the olive oil extraction plant, olive oil quality, sensory evaluation and rheological aspects were investigated. The results indicate that by using the partial de-stoner machine the extraction plant did not show statistical differences with respect to the traditional mechanical crushing. Moreover, the partial de-stoner machine allowed recovery of 60% of olive pits and the oils obtained were characterised by more marked green fruitiness, flavour and aroma than the oils produced using the traditional processing systems. The partial de-stoner machine removes the limitations of the traditional total de-stoner machine, opening new frontiers for the recovery of pits to be used as biomass. Moreover, the partial de-stoner machine permitted a significant reduction in the viscosity of the olive paste. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Wikswo, John; Kolli, Aditya; Shankaran, Harish; Wagoner, Matthew; Mettetal, Jerome; Reiserer, Ronald; Gerken, Gregory; Britt, Clayton; Schaffer, David
Genetic, proteomic, and metabolic networks describing biological signaling can have 102 to 103 nodes. Transcriptomics and mass spectrometry can quantify 104 different dynamical experimental variables recorded from in vitro experiments with a time resolution approaching 1 s. It is difficult to infer metabolic and signaling models from such massive data sets, and it is unlikely that causality can be determined simply from observed temporal correlations. There is a need to design and apply specific system perturbations, which will be difficult to perform manually with 10 to 102 externally controlled variables. Machine learning and optimal experimental design can select an experiment that best discriminates between multiple conflicting models, but a remaining problem is to control in real time multiple variables in the form of concentrations of growth factors, toxins, nutrients and other signaling molecules. With time-division multiplexing, a microfluidic MicroFormulator (μF) can create in real time complex mixtures of reagents in volumes suitable for biological experiments. Initial 96-channel μF implementations control the exposure profile of cells in a 96-well plate to different temporal profiles of drugs; future experiments will include challenge compounds. Funded in part by AstraZeneca, NIH/NCATS HHSN271201600009C and UH3TR000491, and VIIBRE.
Ma, Jiaxin; Zhang, Yu; Cichocki, Andrzej; Matsuno, Fumitoshi
2015-03-01
This study presents a novel human-machine interface (HMI) based on both electrooculography (EOG) and electroencephalography (EEG). This hybrid interface works in two modes: an EOG mode recognizes eye movements such as blinks, and an EEG mode detects event related potentials (ERPs) like P300. While both eye movements and ERPs have been separately used for implementing assistive interfaces, which help patients with motor disabilities in performing daily tasks, the proposed hybrid interface integrates them together. In this way, both the eye movements and ERPs complement each other. Therefore, it can provide a better efficiency and a wider scope of application. In this study, we design a threshold algorithm that can recognize four kinds of eye movements including blink, wink, gaze, and frown. In addition, an oddball paradigm with stimuli of inverted faces is used to evoke multiple ERP components including P300, N170, and VPP. To verify the effectiveness of the proposed system, two different online experiments are carried out. One is to control a multifunctional humanoid robot, and the other is to control four mobile robots. In both experiments, the subjects can complete tasks effectively by using the proposed interface, whereas the best completion time is relatively short and very close to the one operated by hand.
Some problems of control of dynamical conditions of technological vibrating machines
NASA Astrophysics Data System (ADS)
Kuznetsov, N. K.; Lapshin, V. L.; Eliseev, A. V.
2017-10-01
The possibility of control of dynamical condition of the shakers that are designed for vibration treatment of parts interacting with granular media is discussed. The aim of this article is to develop the methodological basis of technology of creation of mathematical models of shake tables and the development of principles of formation of vibrational fields, estimation of their parameters and control of the structure vibration fields. Approaches to build mathematical models that take into account unilateral constraints, the relationships between elements, with the vibrating surface are developed. Methods intended to construct mathematical model of linear mechanical oscillation systems are used. Small oscillations about the position of static equilibrium are performed. The original method of correction of vibration fields by introduction of the oscillating system additional ties to the structure are proposed. Additional ties are implemented in the form of a mass-inertial device for changing the inertial parameters of the working body of the vibration table by moving the mass-inertial elements. The concept of monitoring the dynamic state of the vibration table based on the original measuring devices is proposed. Estimation for possible changes in dynamic properties is produced. The article is of interest for specialists in the field of creation of vibration technology machines and equipment.
Discomfort analysis in computerized numeric control machine operations.
Muthukumar, Krishnamoorthy; Sankaranarayanasamy, Krishnasamy; Ganguli, Anindya Kumar
2012-06-01
The introduction of computerized numeric control (CNC) technology in manufacturing industries has revolutionized the production process, but there are some health and safety problems associated with these machines. The present study aimed to investigate the extent of postural discomfort in CNC machine operators, and the relationship of this discomfort to the display and control panel height, with a view to validate the anthropometric recommendation for the location of the display and control panel in CNC machines. The postural discomforts associated with CNC machines were studied in 122 male operators using Corlett and Bishop's body part discomfort mapping, subject information, and discomfort level at various time intervals from starting to end of a shift. This information was collected using a questionnaire. Statistical analysis was carried out using ANOVA. Neck discomfort due to the positioning of the machine displays, and shoulder and arm discomfort due to the positioning of controls were identified as common health issues in the operators of these machines. The study revealed that 45.9% of machine operators reported discomfort in the lower back, 41.8% in the neck, 22.1% in the upper-back, 53.3% in the shoulder and arm, and 21.3% of the operators reported discomfort in the leg. Discomfort increased with the progress of the day and was highest at the end of a shift; subject age had no effect on patient tendency to experience discomfort levels.
Discomfort Analysis in Computerized Numeric Control Machine Operations
Sankaranarayanasamy, Krishnasamy; Ganguli, Anindya Kumar
2012-01-01
Objectives The introduction of computerized numeric control (CNC) technology in manufacturing industries has revolutionized the production process, but there are some health and safety problems associated with these machines. The present study aimed to investigate the extent of postural discomfort in CNC machine operators, and the relationship of this discomfort to the display and control panel height, with a view to validate the anthropometric recommendation for the location of the display and control panel in CNC machines. Methods The postural discomforts associated with CNC machines were studied in 122 male operators using Corlett and Bishop's body part discomfort mapping, subject information, and discomfort level at various time intervals from starting to end of a shift. This information was collected using a questionnaire. Statistical analysis was carried out using ANOVA. Results Neck discomfort due to the positioning of the machine displays, and shoulder and arm discomfort due to the positioning of controls were identified as common health issues in the operators of these machines. The study revealed that 45.9% of machine operators reported discomfort in the lower back, 41.8% in the neck, 22.1% in the upper-back, 53.3% in the shoulder and arm, and 21.3% of the operators reported discomfort in the leg. Conclusion Discomfort increased with the progress of the day and was highest at the end of a shift; subject age had no effect on patient tendency to experience discomfort levels. PMID:22993720
Utilization of building information modeling in infrastructure’s design and construction
NASA Astrophysics Data System (ADS)
Zak, Josef; Macadam, Helen
2017-09-01
Building Information Modeling (BIM) is a concept that has gained its place in the design, construction and maintenance of buildings in Czech Republic during recent years. This paper deals with description of usage, applications and potential benefits and disadvantages connected with implementation of BIM principles in the preparation and construction of infrastructure projects. Part of the paper describes the status of BIM implementation in Czech Republic, and there is a review of several virtual design and construction practices in Czech Republic. Examples of best practice are presented from current infrastructure projects. The paper further summarizes experiences with new technologies gained from the application of BIM related workflows. The focus is on the BIM model utilization for the machine control systems on site, quality assurance, quality management and construction management.
Code of Federal Regulations, 2010 CFR
2010-07-01
... vending facilities, including vending machines, on property controlled by the Department of the Treasury... States. Treasury bureaus shall ensure that the collection and distribution of vending machine income from vending machines on Treasury-controlled property shall be in compliance with the regulations set forth in...
The Development of Dispatcher Training Simulator in a Thermal Energy Generation System
NASA Astrophysics Data System (ADS)
Hakim, D. L.; Abdullah, A. G.; Mulyadi, Y.; Hasan, B.
2018-01-01
A dispatcher training simulator (DTS) is a real-time Human Machine Interface (HMI)-based control tool that is able to visualize industrial control system processes. The present study was aimed at developing a simulator tool for boilers in a thermal power station. The DTS prototype was designed using technical data of thermal power station boilers in Indonesia. It was then designed and implemented in Wonderware Intouch 10. The resulting simulator came with component drawing, animation, control display, alarm system, real-time trend, historical trend. This application used 26 tagnames and was equipped with a security system. The test showed that the principles of real-time control worked well. It is expected that this research could significantly contribute to the development of thermal power station, particularly in terms of its application as a training simulator for beginning dispatchers.
Machining of AISI D2 Tool Steel with Multiple Hole Electrodes by EDM Process
NASA Astrophysics Data System (ADS)
Prasad Prathipati, R.; Devuri, Venkateswarlu; Cheepu, Muralimohan; Gudimetla, Kondaiah; Uzwal Kiran, R.
2018-03-01
In recent years, with the increasing of technology the demand for machining processes is increasing for the newly developed materials. The conventional machining processes are not adequate to meet the accuracy of the machining of these materials. The non-conventional machining processes of electrical discharge machining is one of the most efficient machining processes is being widely used to machining of high accuracy products of various industries. The optimum selection of process parameters is very important in machining processes as that of an electrical discharge machining as they determine surface quality and dimensional precision of the obtained parts, even though time consumption rate is higher for machining of large dimension features. In this work, D2 high carbon and chromium tool steel has been machined using electrical discharge machining with the multiple hole electrode technique. The D2 steel has several applications such as forming dies, extrusion dies and thread rolling. But the machining of this tool steel is very hard because of it shard alloyed elements of V, Cr and Mo which enhance its strength and wear properties. However, the machining is possible by using electrical discharge machining process and the present study implemented a new technique to reduce the machining time using a multiple hole copper electrode. In this technique, while machining with multiple holes electrode, fin like projections are obtained, which can be removed easily by chipping. Then the finishing is done by using solid electrode. The machining time is reduced to around 50% while using multiple hole electrode technique for electrical discharge machining.
Methods, systems and apparatus for controlling operation of two alternating current (AC) machines
Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA
2012-02-14
A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.
Miller, Jane; Lee, Amanda; Obersky, Natalie; Edwards, Rachael
2015-06-01
The present paper reports on a quality improvement activity examining implementation of A Better Choice Healthy Food and Drink Supply Strategy for Queensland Health Facilities (A Better Choice). A Better Choice is a policy to increase supply and promotion of healthy foods and drinks and decrease supply and promotion of energy-dense, nutrient-poor choices in all food supply areas including food outlets, staff dining rooms, vending machines, tea trolleys, coffee carts, leased premises, catering, fundraising, promotion and advertising. An online survey targeted 278 facility managers to collect self-reported quantitative and qualitative data. Telephone interviews were sought concurrently with the twenty-five A Better Choice district contact officers to gather qualitative information. Public sector-owned and -operated health facilities in Queensland, Australia. One hundred and thirty-four facility managers and twenty-four district contact officers participated with response rates of 48.2% and 96.0%, respectively. Of facility managers, 78.4% reported implementation of more than half of the A Better Choice requirements including 24.6% who reported full strategy implementation. Reported implementation was highest in food outlets, staff dining rooms, tea trolleys, coffee carts, internal catering and drink vending machines. Reported implementation was more problematic in snack vending machines, external catering, leased premises and fundraising. Despite methodological challenges, the study suggests that policy approaches to improve the food and drink supply can be implemented successfully in public-sector health facilities, although results can be limited in some areas. A Better Choice may provide a model for improving food supply in other health and workplace settings.
ERIC Educational Resources Information Center
Kocken, Paul L.; Eeuwijk, Jennifer; van Kesteren, Nicole M.C.; Dusseldorp, Elise; Buijs, Goof; Bassa-Dafesh, Zeina; Snel, Jeltje
2012-01-01
Background: Vending machines account for food sales and revenue in schools. We examined 3 strategies for promoting the sale of lower-calorie food products from vending machines in high schools in the Netherlands. Methods: A school-based randomized controlled trial was conducted in 13 experimental schools and 15 control schools. Three strategies…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, A. L.; Biedron, S. G.; Milton, S. V.
At present, a variety of image-based diagnostics are used in particle accelerator systems. Often times, these are viewed by a human operator who then makes appropriate adjustments to the machine. Given recent advances in using convolutional neural networks (CNNs) for image processing, it should be possible to use image diagnostics directly in control routines (NN-based or otherwise). This is especially appealing for non-intercepting diagnostics that could run continuously during beam operation. Here, we show results of a first step toward implementing such a controller: our trained CNN can predict multiple simulated downstream beam parameters at the Fermilab Accelerator Science andmore » Technology (FAST) facility's low energy beamline using simulated virtual cathode laser images, gun phases, and solenoid strengths.« less
A hybrid architecture for the implementation of the Athena neural net model
NASA Technical Reports Server (NTRS)
Koutsougeras, C.; Papachristou, C.
1989-01-01
The implementation of an earlier introduced neural net model for pattern classification is considered. Data flow principles are employed in the development of a machine that efficiently implements the model and can be useful for real time classification tasks. Further enhancement with optical computing structures is also considered.
Runtime Verification of C Programs
NASA Technical Reports Server (NTRS)
Havelund, Klaus
2008-01-01
We present in this paper a framework, RMOR, for monitoring the execution of C programs against state machines, expressed in a textual (nongraphical) format in files separate from the program. The state machine language has been inspired by a graphical state machine language RCAT recently developed at the Jet Propulsion Laboratory, as an alternative to using Linear Temporal Logic (LTL) for requirements capture. Transitions between states are labeled with abstract event names and Boolean expressions over such. The abstract events are connected to code fragments using an aspect-oriented pointcut language similar to ASPECTJ's or ASPECTC's pointcut language. The system is implemented in the C analysis and transformation package CIL, and is programmed in OCAML, the implementation language of CIL. The work is closely related to the notion of stateful aspects within aspect-oriented programming, where pointcut languages are extended with temporal assertions over the execution trace.
Design of electric control system for automatic vegetable bundling machine
NASA Astrophysics Data System (ADS)
Bao, Yan
2017-06-01
A design can meet the requirements of automatic bale food structure and has the advantages of simple circuit, and the volume is easy to enhance the electric control system of machine carrying bunch of dishes and low cost. The bundle of vegetable machine should meet the sensor to detect and control, in order to meet the control requirements; binding force can be adjusted by the button to achieve; strapping speed also can be adjusted, by the keys to set; sensors and mechanical line connection, convenient operation; can be directly connected with the plug, the 220V power supply can be connected to a power source; if, can work, by the transmission signal sensor, MCU to control the motor, drive and control procedures for small motor. The working principle of LED control circuit and temperature control circuit is described. The design of electric control system of automatic dish machine.
Feasibility of a real-time hand hygiene notification machine learning system in outpatient clinics.
Geilleit, R; Hen, Z Q; Chong, C Y; Loh, A P; Pang, N L; Peterson, G M; Ng, K C; Huis, A; de Korne, D F
2018-04-09
Various technologies have been developed to improve hand hygiene (HH) compliance in inpatient settings; however, little is known about the feasibility of machine learning technology for this purpose in outpatient clinics. To assess the effectiveness, user experiences, and costs of implementing a real-time HH notification machine learning system in outpatient clinics. In our mixed methods study, a multi-disciplinary team co-created an infrared guided sensor system to automatically notify clinicians to perform HH just before first patient contact. Notification technology effects were measured by comparing HH compliance at baseline (without notifications) with real-time auditory notifications that continued till HH was performed (intervention I) or notifications lasting 15 s (intervention II). User experiences were collected during daily briefings and semi-structured interviews. Costs of implementation of the system were calculated and compared to the current observational auditing programme. Average baseline HH performance before first patient contact was 53.8%. With real-time auditory notifications that continued till HH was performed, overall HH performance increased to 100% (P < 0.001). With auditory notifications of a maximum duration of 15 s, HH performance was 80.4% (P < 0.001). Users emphasized the relevance of real-time notification and contributed to technical feasibility improvements that were implemented in the prototype. Annual running costs for the machine learning system were estimated to be 46% lower than the observational auditing programme. Machine learning technology that enables real-time HH notification provides a promising cost-effective approach to both improving and monitoring HH, and deserves further development in outpatient settings. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Design and Fabrication of Automatic Glass Cutting Machine
NASA Astrophysics Data System (ADS)
Veena, T. R.; Kadadevaramath, R. S.; Nagaraj, P. M.; Madhusudhan, S. V.
2016-09-01
This paper deals with the design and fabrication of the automatic glass or mirror cutting machine. In order to increase the accuracy of cut and production rate; and decrease the production time and accidents caused due to manual cutting of mirror or glass, this project aims at development of an automatic machine which uses a programmable logic controller (PLC) for controlling the movement of the conveyer and also to control the pneumatic circuit. In this machine, the work of the operator is to load and unload the mirror. The cutter used in this machine is carbide wheel with its cutting edge ground to a V-shaped profile. The PLC controls the pneumatic cylinder and intern actuates the cutter along the glass, a fracture layer is formed causing a mark to be formed below the fracture layer and a crack to be formed below the rib mark. The machine elements are designed using CATIA V5R20 and pneumatic circuit are designed using FESTO FLUID SIM software.
Wireless local area network in a prehospital environment
Chen, Dongquan; Soong, Seng-jaw; Grimes, Gary J; Orthner, Helmuth F
2004-01-01
Background Wireless local area networks (WLANs) are considered the next generation of clinical data network. They open the possibility for capturing clinical data in a prehospital setting (e.g., a patient's home) using various devices, such as personal digital assistants, laptops, digital electrocardiogram (EKG) machines, and even cellular phones, and transmitting the captured data to a physician or hospital. The transmission rate is crucial to the applicability of the technology in the prehospital setting. Methods We created two separate WLANs to simulate a virtual local are network environment such as in a patient's home or an emergency room (ER). The effects of different methods of data transmission, number of clients, and roaming among different access points on the file transfer rate were determined. Results The present results suggest that it is feasible to transfer small files such as patient demographics and EKG data from the patient's home to the ER at a reasonable speed. Encryption, user control, and access control were implemented and results discussed. Conclusions Implementing a WLAN in a centrally managed and multiple-layer-controlled access control server is the key to ensuring its security and accessibility. Future studies should focus on product capacity, speed, compatibility, interoperability, and security management. PMID:15339336
Wireless local area network in a prehospital environment.
Chen, Dongquan; Soong, Seng-jaw; Grimes, Gary J; Orthner, Helmuth F
2004-08-31
Wireless local area networks (WLANs) are considered the next generation of clinical data network. They open the possibility for capturing clinical data in a prehospital setting (e.g., a patient's home) using various devices, such as personal digital assistants, laptops, digital electrocardiogram (EKG) machines, and even cellular phones, and transmitting the captured data to a physician or hospital. The transmission rate is crucial to the applicability of the technology in the prehospital setting. We created two separate WLANs to simulate a virtual local are network environment such as in a patient's home or an emergency room (ER). The effects of different methods of data transmission, number of clients, and roaming among different access points on the file transfer rate were determined. The present results suggest that it is feasible to transfer small files such as patient demographics and EKG data from the patient's home to the ER at a reasonable speed. Encryption, user control, and access control were implemented and results discussed. Implementing a WLAN in a centrally managed and multiple-layer-controlled access control server is the key to ensuring its security and accessibility. Future studies should focus on product capacity, speed, compatibility, interoperability, and security management.
Application of high speed machining technology in aviation
NASA Astrophysics Data System (ADS)
Bałon, Paweł; Szostak, Janusz; Kiełbasa, Bartłomiej; Rejman, Edward; Smusz, Robert
2018-05-01
Aircraft structures are exposed to many loads during their working lifespan. Every particular action made during a flight is composed of a series of air movements which generate various aircraft loads. The most rigorous requirement which modern aircraft structures must fulfill is to maintain their high durability and reliability. This requirement involves taking many restrictions into account during the aircraft design process. The most important factor is the structure's overall mass, which has a crucial impact on both utility properties and cost-effectiveness. This makes aircraft one of the most complex results of modern technology. Additionally, there is currently an increasing utilization of high strength aluminum alloys, which requires the implementation of new manufacturing processes. High Speed Machining technology (HSM) is currently one of the most important machining technologies used in the aviation industry, especially in the machining of aluminium alloys. The primary difference between HSM and other milling techniques is the ability to select cutting parameters - depth of the cut layer, feed rate, and cutting speed in order to simultaneously ensure high quality, precision of the machined surface, and high machining efficiency, all of which shorten the manufacturing process of the integral components. In this paper, the authors explain the implementation of the HSM method in integral aircraft constructions. It presents the method of the airframe manufacturing method, and the final results. The HSM method is compared to the previous method where all subcomponents were manufactured by bending and forming processes, and then, they were joined by riveting.
Nonlinear and Digital Man-machine Control Systems Modeling
NASA Technical Reports Server (NTRS)
Mekel, R.
1972-01-01
An adaptive modeling technique is examined by which controllers can be synthesized to provide corrective dynamics to a human operator's mathematical model in closed loop control systems. The technique utilizes a class of Liapunov functions formulated for this purpose, Liapunov's stability criterion and a model-reference system configuration. The Liapunov function is formulated to posses variable characteristics to take into consideration the identification dynamics. The time derivative of the Liapunov function generate the identification and control laws for the mathematical model system. These laws permit the realization of a controller which updates the human operator's mathematical model parameters so that model and human operator produce the same response when subjected to the same stimulus. A very useful feature is the development of a digital computer program which is easily implemented and modified concurrent with experimentation. The program permits the modeling process to interact with the experimentation process in a mutually beneficial way.
High-Density Liquid-State Machine Circuitry for Time-Series Forecasting.
Rosselló, Josep L; Alomar, Miquel L; Morro, Antoni; Oliver, Antoni; Canals, Vincent
2016-08-01
Spiking neural networks (SNN) are the last neural network generation that try to mimic the real behavior of biological neurons. Although most research in this area is done through software applications, it is in hardware implementations in which the intrinsic parallelism of these computing systems are more efficiently exploited. Liquid state machines (LSM) have arisen as a strategic technique to implement recurrent designs of SNN with a simple learning methodology. In this work, we show a new low-cost methodology to implement high-density LSM by using Boolean gates. The proposed method is based on the use of probabilistic computing concepts to reduce hardware requirements, thus considerably increasing the neuron count per chip. The result is a highly functional system that is applied to high-speed time series forecasting.
AC/DC current ratio in a current superimposition variable flux reluctance machine
NASA Astrophysics Data System (ADS)
Kohara, Akira; Hirata, Katsuhiro; Niguchi, Noboru; Takahara, Kazuaki
2018-05-01
We have proposed a current superimposition variable flux reluctance machine for traction motors. The torque-speed characteristics of this machine can be controlled by increasing or decreasing the DC current. In this paper, we discuss an AC/DC current ratio in the current superimposition variable flux reluctance machine. The structure and control method are described, and the characteristics are computed using FEA in several AC/DC ratios.
ERIC Educational Resources Information Center
BOLDT, MILTON; POKORNY, HARRY
THIRTY-THREE MACHINE SHOP INSTRUCTORS FROM 17 STATES PARTICIPATED IN AN 8-WEEK SEMINAR TO DEVELOP THE SKILLS AND KNOWLEDGE ESSENTIAL FOR TEACHING THE OPERATION OF NUMERICALLY CONTROLLED MACHINE TOOLS. THE SEMINAR WAS GIVEN FROM JUNE 20 TO AUGUST 12, 1966, WITH COLLEGE CREDIT AVAILABLE THROUGH STOUT STATE UNIVERSITY. THE PARTICIPANTS COMPLETED AN…
A New Type of Tea Baking Machine Based on Pro/E Design
NASA Astrophysics Data System (ADS)
Lin, Xin-Ying; Wang, Wei
2017-11-01
In this paper, the production process of wulong tea was discussed, mainly the effect of baking on the quality of tea. The suitable baking temperature of different tea was introduced. Based on Pro/E, a new type of baking machine suitable for wulong tea baking was designed. The working principle, mechanical structure and constant temperature timing intelligent control system of baking machine were expounded. Finally, the characteristics and innovation of new baking machine were discussed.The mechanical structure of this baking machine is more simple and reasonable, and can use the heat of the inlet and outlet, more energy saving and environmental protection. The temperature control part adopts fuzzy PID control, which can improve the accuracy and response speed of temperature control and reduce the dependence of baking operation on skilled experience.
NASA Technical Reports Server (NTRS)
Lyster, P. M.; Liewer, P. C.; Decyk, V. K.; Ferraro, R. D.
1995-01-01
A three-dimensional electrostatic particle-in-cell (PIC) plasma simulation code has been developed on coarse-grain distributed-memory massively parallel computers with message passing communications. Our implementation is the generalization to three-dimensions of the general concurrent particle-in-cell (GCPIC) algorithm. In the GCPIC algorithm, the particle computation is divided among the processors using a domain decomposition of the simulation domain. In a three-dimensional simulation, the domain can be partitioned into one-, two-, or three-dimensional subdomains ("slabs," "rods," or "cubes") and we investigate the efficiency of the parallel implementation of the push for all three choices. The present implementation runs on the Intel Touchstone Delta machine at Caltech; a multiple-instruction-multiple-data (MIMD) parallel computer with 512 nodes. We find that the parallel efficiency of the push is very high, with the ratio of communication to computation time in the range 0.3%-10.0%. The highest efficiency (> 99%) occurs for a large, scaled problem with 64(sup 3) particles per processing node (approximately 134 million particles of 512 nodes) which has a push time of about 250 ns per particle per time step. We have also developed expressions for the timing of the code which are a function of both code parameters (number of grid points, particles, etc.) and machine-dependent parameters (effective FLOP rate, and the effective interprocessor bandwidths for the communication of particles and grid points). These expressions can be used to estimate the performance of scaled problems--including those with inhomogeneous plasmas--to other parallel machines once the machine-dependent parameters are known.
A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors.
Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei
2017-09-21
In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.
Knowledge-based load leveling and task allocation in human-machine systems
NASA Technical Reports Server (NTRS)
Chignell, M. H.; Hancock, P. A.
1986-01-01
Conventional human-machine systems use task allocation policies which are based on the premise of a flexible human operator. This individual is most often required to compensate for and augment the capabilities of the machine. The development of artificial intelligence and improved technologies have allowed for a wider range of task allocation strategies. In response to these issues a Knowledge Based Adaptive Mechanism (KBAM) is proposed for assigning tasks to human and machine in real time, using a load leveling policy. This mechanism employs an online workload assessment and compensation system which is responsive to variations in load through an intelligent interface. This interface consists of a loading strategy reasoner which has access to information about the current status of the human-machine system as well as a database of admissible human/machine loading strategies. Difficulties standing in the way of successful implementation of the load leveling strategy are examined.
Findings From the National Machine Guarding Program–A Small Business Intervention
Parker, David L.; Yamin, Samuel C.; Xi, Min; Brosseau, Lisa M.; Gordon, Robert; Most, Ivan G.; Stanley, Rodney
2016-01-01
Objectives: The purpose of this nationwide intervention was to improve machine safety in small metal fabrication businesses (3 to 150 employees). The failure to implement machine safety programs related to guarding and lockout/tagout (LOTO) are frequent causes of Occupational Safety and Health Administration (OSHA) citations and may result in serious traumatic injury. Methods: Insurance safety consultants conducted a standardized evaluation of machine guarding, safety programs, and LOTO. Businesses received a baseline evaluation, two intervention visits, and a 12-month follow-up evaluation. Results: The intervention was completed by 160 businesses. Adding a safety committee was associated with a 10% point increase in business-level machine scores (P < 0.0001) and a 33% point increase in LOTO program scores (P < 0.0001). Conclusions: Insurance safety consultants proved effective at disseminating a machine safety and LOTO intervention via management-employee safety committees. PMID:27466709
A Bidirectional Brain-Machine Interface Algorithm That Approximates Arbitrary Force-Fields
Semprini, Marianna; Mussa-Ivaldi, Ferdinando A.; Panzeri, Stefano
2014-01-01
We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field) applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop. PMID:24626393
NASA Astrophysics Data System (ADS)
Zander, T. O.; Jatzev, S.
2012-02-01
Brain-computer interface (BCI) systems are usually applied in highly controlled environments such as research laboratories or clinical setups. However, many BCI-based applications are implemented in more complex environments. For example, patients might want to use a BCI system at home, and users without disabilities could benefit from BCI systems in special working environments. In these contexts, it might be more difficult to reliably infer information about brain activity, because many intervening factors add up and disturb the BCI feature space. One solution for this problem would be adding context awareness to the system. We propose to augment the available information space with additional channels carrying information about the user state, the environment and the technical system. In particular, passive BCI systems seem to be capable of adding highly relevant context information—otherwise covert aspects of user state. In this paper, we present a theoretical framework based on general human-machine system research for adding context awareness to a BCI system. Building on that, we present results from a study on a passive BCI, which allows access to the covert aspect of user state related to the perceived loss of control. This study is a proof of concept and demonstrates that context awareness could beneficially be implemented in and combined with a BCI system or a general human-machine system. The EEG data from this experiment are available for public download at www.phypa.org. Parts of this work have already been presented in non-journal publications. This will be indicated specifically by appropriate references in the text.
Social Intelligence in a Human-Machine Collaboration System
NASA Astrophysics Data System (ADS)
Nakajima, Hiroshi; Morishima, Yasunori; Yamada, Ryota; Brave, Scott; Maldonado, Heidy; Nass, Clifford; Kawaji, Shigeyasu
In this information society of today, it is often argued that it is necessary to create a new way of human-machine interaction. In this paper, an agent with social response capabilities has been developed to achieve this goal. There are two kinds of information that is exchanged by two entities: objective and functional information (e.g., facts, requests, states of matters, etc.) and subjective information (e.g., feelings, sense of relationship, etc.). Traditional interactive systems have been designed to handle the former kind of information. In contrast, in this study social agents handling the latter type of information are presented. The current study focuses on sociality of the agent from the view point of Media Equation theory. This article discusses the definition, importance, and benefits of social intelligence as agent technology and argues that social intelligence has a potential to enhance the user's perception of the system, which in turn can lead to improvements of the system's performance. In order to implement social intelligence in the agent, a mind model has been developed to render affective expressions and personality of the agent. The mind model has been implemented in a human-machine collaborative learning system. One differentiating feature of the collaborative learning system is that it has an agent that performs as a co-learner with which the user interacts during the learning session. The mind model controls the social behaviors of the agent, thus making it possible for the user to have more social interactions with the agent. The experiment with the system suggested that a greater degree of learning was achieved when the students worked with the co-learner agent and that the co-learner agent with the mind model that expressed emotions resulted in a more positive attitude toward the system.
Impact of the HEALTHY Study on Vending Machine Offerings in Middle Schools
Hartstein, Jill; Cullen, Karen W.; Virus, Amy; El Ghormli, Laure; Volpe, Stella L.; Staten, Myrlene A; Bridgman, Jessica C.; Stadler, Diane D.; Gillis, Bonnie; McCormick, Sarah B.; Mobley, Connie C.
2013-01-01
Purpose/Objectives The purpose of this study is to report the impact of the three-year middle school-based HEALTHY study on intervention school vending machine offerings. There were two goals for the vending machines: serve only dessert/snack foods with 200 kilocalories or less per single serving package, and eliminate 100% fruit juice and beverages with added sugar. Methods Six schools in each of seven cities (Houston, TX, San Antonio, TX, Irvine, CA, Portland, OR, Pittsburg, PA, Philadelphia, PA, and Chapel Hill, NC) were randomized into intervention (n=21 schools) or control (n=21 schools) groups, with three intervention and three control schools per city. All items in vending machine slots were tallied twice in the fall of 2006 for baseline data and twice at the end of the study, in 2009. The percentage of total slots for each food/beverage category was calculated and compared between intervention and control schools at the end of study, using the Pearson chi-square test statistic. Results At baseline, 15 intervention and 15 control schools had beverage and/or snack vending machines, compared with 11 intervention and 11 control schools at the end of the study. At the end of study, all of the intervention schools with beverage vending machines, but only one out of the nine control schools, met the beverage goal. The snack goal was met by all of the intervention schools and only one of the four control schools with snack vending machines. Applications to Child Nutrition Professionals The HEALTHY study’s vending machine beverage and snack goals were successfully achieved in intervention schools, reducing access to less healthy food items outside the school meals program. Although the effect of these changes on student diet, energy balance and growth is unknown, these results suggest that healthier options for snacks can successfully be offered in school vending machines. PMID:23687471
Improving brain-machine interface performance by decoding intended future movements
NASA Astrophysics Data System (ADS)
Willett, Francis R.; Suminski, Aaron J.; Fagg, Andrew H.; Hatsopoulos, Nicholas G.
2013-04-01
Objective. A brain-machine interface (BMI) records neural signals in real time from a subject's brain, interprets them as motor commands, and reroutes them to a device such as a robotic arm, so as to restore lost motor function. Our objective here is to improve BMI performance by minimizing the deleterious effects of delay in the BMI control loop. We mitigate the effects of delay by decoding the subject's intended movements a short time lead in the future. Approach. We use the decoded, intended future movements of the subject as the control signal that drives the movement of our BMI. This should allow the user's intended trajectory to be implemented more quickly by the BMI, reducing the amount of delay in the system. In our experiment, a monkey (Macaca mulatta) uses a future prediction BMI to control a simulated arm to hit targets on a screen. Main Results. Results from experiments with BMIs possessing different system delays (100, 200 and 300 ms) show that the monkey can make significantly straighter, faster and smoother movements when the decoder predicts the user's future intent. We also characterize how BMI performance changes as a function of delay, and explore offline how the accuracy of future prediction decoders varies at different time leads. Significance. This study is the first to characterize the effects of control delays in a BMI and to show that decoding the user's future intent can compensate for the negative effect of control delay on BMI performance.
IMAGE 100: The interactive multispectral image processing system
NASA Technical Reports Server (NTRS)
Schaller, E. S.; Towles, R. W.
1975-01-01
The need for rapid, cost-effective extraction of useful information from vast quantities of multispectral imagery available from aircraft or spacecraft has resulted in the design, implementation and application of a state-of-the-art processing system known as IMAGE 100. Operating on the general principle that all objects or materials possess unique spectral characteristics or signatures, the system uses this signature uniqueness to identify similar features in an image by simultaneously analyzing signatures in multiple frequency bands. Pseudo-colors, or themes, are assigned to features having identical spectral characteristics. These themes are displayed on a color CRT, and may be recorded on tape, film, or other media. The system was designed to incorporate key features such as interactive operation, user-oriented displays and controls, and rapid-response machine processing. Owing to these features, the user can readily control and/or modify the analysis process based on his knowledge of the input imagery. Effective use can be made of conventional photographic interpretation skills and state-of-the-art machine analysis techniques in the extraction of useful information from multispectral imagery. This approach results in highly accurate multitheme classification of imagery in seconds or minutes rather than the hours often involved in processing using other means.
Implementing Audio-CASI on Windows’ Platforms
Cooley, Philip C.; Turner, Charles F.
2011-01-01
Audio computer-assisted self interviewing (Audio-CASI) technologies have recently been shown to provide important and sometimes dramatic improvements in the quality of survey measurements. This is particularly true for measurements requiring respondents to divulge highly sensitive information such as their sexual, drug use, or other sensitive behaviors. However, DOS-based Audio-CASI systems that were designed and adopted in the early 1990s have important limitations. Most salient is the poor control they provide for manipulating the video presentation of survey questions. This article reports our experiences adapting Audio-CASI to Microsoft Windows 3.1 and Windows 95 platforms. Overall, our Windows-based system provided the desired control over video presentation and afforded other advantages including compatibility with a much wider array of audio devices than our DOS-based Audio-CASI technologies. These advantages came at the cost of increased system requirements --including the need for both more RAM and larger hard disks. While these costs will be an issue for organizations converting large inventories of PCS to Windows Audio-CASI today, this will not be a serious constraint for organizations and individuals with small inventories of machines to upgrade or those purchasing new machines today. PMID:22081743
Brown, Raymond J.
1977-01-01
The present invention relates to a tool setting device for use with numerically controlled machine tools, such as lathes and milling machines. A reference position of the machine tool relative to the workpiece along both the X and Y axes is utilized by the control circuit for driving the tool through its program. This reference position is determined for both axes by displacing a single linear variable displacement transducer (LVDT) with the machine tool through a T-shaped pivotal bar. The use of the T-shaped bar allows the cutting tool to be moved sequentially in the X or Y direction for indicating the actual position of the machine tool relative to the predetermined desired position in the numerical control circuit by using a single LVDT.
Wade, Matthew; Isom, Ryan; Georgescu, Dan; Olson, Randall J
2007-06-01
To determine the efficacy of the Cruise Control surge-limiting device (Staar Surgical) with phacoemulsification machines known to have high levels of surge. John A. Moran Eye Center Clinical Laboratories. In an in vitro study, postocclusion anterior chamber depth changes were measured in fresh phakic human eye-bank eyes using the Alcon Legacy and Bausch & Lomb Millennium venturi machines in conjunction with the Staar Cruise Control device. Both machines were tested with 19-gauge non-Aspiration Bypass System tips at high-surge settings (500 mm Hg vacuum pressure, 75 cm bottle height, 40 mL/min flow rate for the Legacy) and low-surge settings (400 mm Hg vacuum pressure, 125 cm bottle height, 40 mL/min flow rate for the Legacy). Adjusted parameters of flow, vacuum, and irrigation were used based on previous studies to create identical conditions for each device tested. The effect of the Cruise Control device on aspiration rates was also tested with both machines at the low-surge settings. At the high setting with the addition of Cruise Control, surge decreased significantly with the Legacy but was too large to measure with the Millennium venturi. At the low setting with the addition of Cruise Control, surge decreased significantly with both machines. Surge with the Millennium decreased from more than 1.0 mm to a mean of 0.21 mm +/- 0.02 (SD) (P<.0001). Surge with the Legacy decreased from a mean of 0.09 +/- 0.02 mm to 0.05 +/- 0 mm, a 42.9% decrease (P<.0001). The Millennium had the highest surge and aspiration rate before Cruise Control and the greatest percentage decrease in the surge and aspiration rates as a result of the addition of Cruise Control. In the Legacy machine, the Cruise Control device had a statistically and clinically significant effect. Cruise Control had a large effect on fluidics as well as surge amplitude with the Millennium machine. The greater the flow or greater the initial surge, the greater the impact of the Cruise Control device.