Science.gov

Sample records for machine cooperative telerobotics

  1. HUMAN MACHINE COOPERATIVE TELEROBOTICS

    SciTech Connect

    William R. Hamel; Spivey Douglass; Sewoong Kim; Pamela Murray; Yang Shou; Sriram Sridharan; Ge Zhang; Scott Thayer; Rajiv V. Dubey

    2003-06-30

    described as Human Machine Cooperative Telerobotics (HMCTR). The HMCTR combines the telerobot with robotic control techniques to improve the system efficiency and reliability in teleoperation mode. In this topical report, the control strategy, configuration and experimental results of Human Machines Cooperative Telerobotics (HMCTR), which modifies and limits the commands of human operator to follow the predefined constraints in the teleoperation mode, is described. The current implementation is a laboratory-scale system that will be incorporated into an engineering-scale system at the Oak Ridge National Laboratory in the future.

  2. Cooperative Telerobotic Retrieval system Phase 1 technology evaluation report

    SciTech Connect

    Hyde, R.A.; Croft, K.M.

    1995-03-01

    This document describes the results from the Cooperative Telerobotic Retrieval demonstration and testing conducted at the Idaho National Engineering Laboratory during December 1994 and January 1995. The purpose of the demonstration was to ascertain the feasibility of the system for deploying tools both independently and cooperatively for supporting remote characterization and removal of buried waste in a safe manner and in compliance with all regulatory requirements. The procedures and goals of the demonstration were previously defined in the Cooperative Telerobotic Retrieval System Test Plan for Fiscal Year 1994, which served as a guideline for evaluating the system.

  3. Machine vision for space telerobotics and planetary rovers

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    1988-01-01

    Machine vision allows a non-contact means of determining the three-dimensional shape of objects in the environment, enabling the control of contact forces when manipulation by a telerobot or traversal by a vehicle is desired. Telerobotic manipulation in Earth orbit requires a system that can recognize known objects in spite of harsh lighting conditions and highly specular or absorptive surfaces. Planetary surface traversal requires a system that can recognize the surface shape and properties of an unknown and arbitrary terrain. Research on these two rather disparate types of vision systems is described.

  4. Hierarchical control of intelligent machines applied to space station telerobots

    NASA Technical Reports Server (NTRS)

    Albus, J. S.; Lumia, R.; Mccain, H.

    1987-01-01

    A hierarchical architecture is described which supports space station telerobots in a variety of modes. The system is divided into three hierarchies: task decomposition, world model, and sensory processing. Goals at each level of the task decomposition hierarchy are divided both spatially and temporally into simpler commands for the next lower level. This decomposition is repeated until, at the lowest level, the drive signals to the robot actuators are generated. To accomplish its goals, task decomposition modules must often use information stored in the world model. The purpose of the sensory system is to update the world model as rapidly as possible to keep the model in registration with the physical world. The architecture of the entire control system hierarchy and how it can be applied to space telerobot applications are discussed.

  5. Man-machine interface issues in space telerobotics: A JPL research and development program

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1987-01-01

    Technology issues related to the use of robots as man-extension or telerobot systems in space are discussed and exemplified. General considerations are presentd on control and information problems in space teleoperation and on the characteristics of Earth orbital teleoperation. The JPL R and D work in the area of man-machine interface devices and techniques for sensing and computer-based control is briefly summarized. The thrust of this R and D effort is to render space teleoperation efficient and safe through the use of devices and techniques which will permit integrated and task-level (intelligent) two-way control communication between human operator and telerobot machine in Earth orbit. Specific control and information display devices and techniques are discussed and exemplified with development results obtained at JPL in recent years.

  6. State of the art in nuclear telerobotics: focus on the man/machine connection

    NASA Astrophysics Data System (ADS)

    Greaves, Amna E.

    1995-12-01

    The interface between the human controller and remotely operated device is a crux of telerobotic investigation today. This human-to-machine connection is the means by which we communicate our commands to the device, as well as the medium for decision-critical feedback to the operator. The amount of information transferred through the user interface is growing. This can be seen as a direct result of our need to support added complexities, as well as a rapidly expanding domain of applications. A user interface, or UI, is therefore subject to increasing demands to present information in a meaningful manner to the user. Virtual reality, and multi degree-of-freedom input devices lend us the ability to augment the man/machine interface, and handle burgeoning amounts of data in a more intuitive and anthropomorphically correct manner. Along with the aid of 3-D input and output devices, there are several visual tools that can be employed as part of a graphical UI that enhance and accelerate our comprehension of the data being presented. Thus an advanced UI that features these improvements would reduce the amount of fatigue on the teleoperator, increase his level of safety, facilitate learning, augment his control, and potentially reduce task time. This paper investigates the cutting edge concepts and enhancements that lead to the next generation of telerobotic interface systems.

  7. State of the art in nuclear telerobotics: Focus on the man/machine connection

    SciTech Connect

    Greaves, E.R.

    1994-12-31

    The interface between the human controller and remote operated device is a crux of telerobotic investigation today. This human-to-machine connection is the means by which we communicate our commands to the device, as well as the medium for decision-critical feedback to the operator. The amount of information transferred through the user interface is growing. This can be seen as a direct result of our need to support added complexities, as well as a rapidly expanding domain of applications. A user interface (UI) is therefore subject to increasing demands to present information in a meaningful manner to the user. Virtual reality and multi-degree-of-freedom input devices lend us the ability to augment the man/machine interface and handle burgeoning amounts of data in a more intuitive and anthropomorphically correct manner. Along with the aid of three-dimensional input and output devices, there are several visual tools that can be employed as part of a graphical UI that enhance and accelerate our comprehension of the data being presented. Thus, an advanced UI that features these improvements would reduce the amount of fatigue on the teleoperator, increase his level of safety, facilitate learning, augment his control, and potentially reduce task time. This paper investigates the cutting edge concepts and enhancements that will lead to the next generation of telerobotic interface systems.

  8. Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery

    PubMed Central

    Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell

    2013-01-01

    This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information. PMID:24398557

  9. Safety plan for the cooperative telerobotic retrieval system equipment development area

    SciTech Connect

    Haney, T.J.; Jessmore, J.J.

    1995-07-01

    This plan establishes guidelines to minimize safety risks for the cooperative telerobotic retrieval project at the North Boulevard Annex (NBA). This plan has the dual purpose of minimizing safety risks to workers and visitors and of securing sensitive equipment from inadvertent damage by nonqualified personnel. This goal will be accomplished through physical control of work zones and through assigned responsibilities for project personnel. The scope of this plan is limited to establishing the working zone boundaries and entry requirements, and assigning responsibilities for project personnel. This plan does not supersede current safety organization responsibilities for the Landfill Stabilization Focus Area Transuranic (LSFA TRU) Arid outlined in the Environment, Safety, Health, and Quality Plan for the Buried Waste Integrated Demonstration Program; Tenant Manual; Idaho Falls Building Emergency Control Plan;; applicable Company Procedures; the attached Interface Agreement (Appendix A).

  10. Man-machine cooperation in advanced teleoperation

    NASA Technical Reports Server (NTRS)

    Fiorini, Paolo; Das, Hari; Lee, Sukhan

    1993-01-01

    Teleoperation experiments at JPL have shown that advanced features in a telerobotic system are a necessary condition for good results, but that they are not sufficient to assure consistently good performance by the operators. Two or three operators are normally used during training and experiments to maintain the desired performance. An alternative to this multi-operator control station is a man-machine interface embedding computer programs that can perform some of the operator's functions. In this paper we present our first experiments with these concepts, in which we focused on the areas of real-time task monitoring and interactive path planning. In the first case, when performing a known task, the operator has an automatic aid for setting control parameters and camera views. In the second case, an interactive path planner will rank different path alternatives so that the operator will make the correct control decision. The monitoring function has been implemented with a neural network doing the real-time task segmentation. The interactive path planner was implemented for redundant manipulators to specify arm configurations across the desired path and satisfy geometric, task, and performance constraints.

  11. From human-machine interaction to human-machine cooperation.

    PubMed

    Hoc, J M

    2000-07-01

    Since the 1960s, the rapid growth of information systems has led to the wide development of research on human-computer interaction (HCI) that aims at the designing of human-computer interfaces presenting ergonomic properties, such as friendliness, usability, transparency, etc. Various work situations have been covered--clerical work, computer programming, design, etc. However, they were mainly static in the sense that the user fully controls the computer. More recently, public and private organizations have engaged themselves in the enterprise of managing more and more complex and coupled systems by the means of automation. Modern machines not only process information, but also act on dynamic situations as humans have done in the past, managing stock exchange, industrial plants, aircraft, etc. These dynamic situations are not fully controlled and are affected by uncertain factors. Hence, degrees of freedom must be maintained to allow the humans and the machine to adapt to unforeseen contingencies. A human-machine cooperation (HMC) approach is necessary to address the new stakes introduced by this trend. This paper describes the possible improvement of HCI by HMC, the need for a new conception of function allocation between humans and machines, and the main problems encountered within the new forms of human-machine relationship. It proposes a conceptual framework to study HMC from a cognitive point of view in highly dynamic situations like aircraft piloting or air-traffic control, and concludes on the design of 'cooperative' machines.

  12. Cooperative EVA/Telerobotic Surface Operations in Support of Exploration Science

    NASA Astrophysics Data System (ADS)

    Akin, David L.

    2001-01-01

    The contents include: 1) Planetary Surface Robotics; 2) EVA Difficulties from Apollo; 3) Robotic Capabilities for EVA Support; 4) Astronaut Support Vehicle; 5) Three ASV Preliminary Designs; 6) Small Single-arm Assistant; 7) Dual-arm Assistant; 8) Large EVA Assistant; 9) Lessons Learned-Preliminary Designs; 10) Rover Design Assumptions; 11) Design Requirements-Terrain; 12) Design Requirements; 13) Science Payload; 14) Manipulator Arm; 15) EVA Multiple Robot Cooperation; 16) SSL Rover Body Concept; 17) Advanced EVA Support Rover Concept; 18) Robotic Access to Restricted Sites; 19) Robotic Rescue of EVA crew; and 19) Why Do We Need Humans? This paper is presented in viewgraph form.

  13. Scaling up: Distributed machine learning with cooperation

    SciTech Connect

    Provost, F.J.; Hennessy, D.N.

    1996-12-31

    Machine-learning methods are becoming increasingly popular for automated data analysis. However, standard methods do not scale up to massive scientific and business data sets without expensive hardware. This paper investigates a practical alternative for scaling up: the use of distributed processing to take advantage of the often dormant PCs and workstations available on local networks. Each workstation runs a common rule-learning program on a subset of the data. We first show that for commonly used rule-evaluation criteria, a simple form of cooperation can guarantee that a rule will look good to the set of cooperating learners if and only if it would look good to a single learner operating with the entire data set. We then show how such a system can further capitalize on different perspectives by sharing learned knowledge for significant reduction in search effort. We demonstrate the power of the method by learning from a massive data set taken from the domain of cellular fraud detection. Finally, we provide an overview of other methods for scaling up machine learning.

  14. Participatory telerobotics

    NASA Astrophysics Data System (ADS)

    Wissner-Gross, Alexander D.; Sullivan, Timothy M.

    2013-05-01

    We present a novel "participatory telerobotics" system that generalizes the existing concept of participatory sensing to include real-time teleoperation and telepresence by treating humans with mobile devices as ad-hoc telerobots. In our approach, operators or analysts first choose a desired location for remote surveillance or activity from a live geographic map and are then automatically connected via a coordination server to the nearest available trusted human. That human's device is then activated and begins recording and streaming back to the operator a live audiovisual feed for telepresence, while allowing the operator in turn to request complex teleoperative motions or actions from the human. Supported action requests currently include walking, running, leaning, and turning, all with controllable magnitudes and directions. Compliance with requests is automatically measured and scored in real time by fusing information received from the device's onboard sensors, including its accelerometers, gyroscope, magnetometer, GPS receiver, and cameras. Streams of action requests are visually presented by each device to its human in the form of an augmented reality game that rewards prompt physical compliance while remaining tolerant of network latency. Because of its ability to interactively elicit physical knowledge and operations through ad-hoc collaboration, we anticipate that our participatory telerobotics system will have immediate applications in the intelligence, retail, healthcare, security, and travel industries.

  15. Telerobotics for depot modernization

    NASA Technical Reports Server (NTRS)

    Leahy, M. B., Jr.; Petroski, S. B.

    1994-01-01

    Development and application of telerobotics technology for the enhancement of the quality of the Air Logistic Centers (ALC) repair and remanufacturing processes is described. Telerobotics provides the means for bridging the gap between manual operation and full automation. The Robotics and Automation Center for Excellence (RACE) initiated the Unified Telerobotics Architecture Project (UTAP) to support the development and application of telerobotics for depot operation.

  16. Proceedings of the NASA Conference on Space Telerobotics, volume 1

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty.

  17. Proceedings of the NASA Conference on Space Telerobotics, volume 5

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotics technology to the space systems planned for the 1990's and beyond. Volume 5 contains papers related to the following subject areas: robot arm modeling and control, special topics in telerobotics, telerobotic space operations, manipulator control, flight experiment concepts, manipulator coordination, issues in artificial intelligence systems, and research activities at the Johnson Space Center.

  18. Intelligent virtual interfaces for telerobotics

    NASA Astrophysics Data System (ADS)

    Grinstein, Georges G.; Maybury, Mark T.; Mitchell, Richard B.

    1992-11-01

    One promise of telerobotics is the ability to interact in environments that are distant (e.g., deep sea or deep space), dangerous (e.g., nuclear, chemical, or biological environments), or inaccessible by humans for political or legal reasons. A key component to such interactions are sophisticated human-computer interfaces that can replicate sufficient information about a local environment to permit remote navigation and manipulation. This environment replication can, in part, be provided by technologies such as virtual reality. In addition, however, telerobotic interfaces may need to enhance human-machine interaction to assist users in task performance, for example, governing motion or manipulation controls to avoid obstacles or to restrict interaction with certain objects (e.g., avoiding contact with a live mine or a deep sea treasure). Thus, effective interactions within remote environments require intelligent virtual interfaces to telerobotic devices. In part to address this problem, MITRE is investigating virtual reality architectures that will enable enhanced interaction within virtual environments. Key components to intelligent virtual interfaces include spoken language processing, gesture recognition algorithms, and more generally, task recognition. In addition, these interfaces will eventually have to take into account properties of the user, the task, and discourse context to be more adaptive to the current situation at hand. While our work has not yet investigated the connection of virtual interfaces to external robotic devices, we have begun developing the key components for intelligent virtual interfaces for information and training systems.

  19. Telerobotic workstation design aid

    NASA Technical Reports Server (NTRS)

    Corker, K.; Hudlicka, E.; Young, D.; Cramer, N.

    1989-01-01

    Telerobot systems are being developed to support a number of space mission applications. In low earth orbit, telerobots and teleoperated manipulators will be used in shuttle operations and space station construction/maintenance. Free flying telerobotic service vehicles will be used at low and geosynchronous orbital operations. Rovers and autonomous vehicles will be equipped with telerobotic devices in planetary exploration. In all of these systems, human operators will interact with the robot system at varied levels during the scheduled operations. The human operators may be in either orbital or ground-based control systems. To assure integrated system development and maximum utility across these systems, designers must be sensitive to the constraints and capabilities that the human brings to system operation and must be assisted in applying these human factors to system development. The simulation and analysis system is intended to serve the needs of system analysis/designers as an integrated workstation in support of telerobotic design.

  20. Proceedings of the NASA Conference on Space Telerobotics, volume 3

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research.

  1. A Study on Machine Maintenance Scheduling Using Distributed Cooperative Approach

    NASA Astrophysics Data System (ADS)

    Tsujibe, Akihisa; Kaihara, Toshiya; Fujii, Nobutada; Nonaka, Youichi

    In this study, we propose a distributed cooperative scheduling method, and apply the method into a machine maintenance scheduling problem in re-entrant production systems. As one of the distributed cooperative scheduling methods, we focus on Lagrangian decomposition and coordination (LDC) method, and formulate the machine maintenance scheduling problem with LDC so as to improve computational efficiency by decomposing an original scheduling problem into several sub-problems. The derived solutions by solving the decomposed dual problem are converted into feasible solutions with a heuristic procedure applied in this study. The proposed approach regards maintenance as job with starting and finishing time constraints, so that product and maintenance schedule can realize proper maintenance operations without losing productivity. We show the effectiveness of the proposed method in several simulation experiments.

  2. Cooperation and emergence: the missing elements of the Darwin machine.

    PubMed

    Grotuss, Jason

    2014-08-01

    The authors present a compelling argument for a science of intentional change by unifying evolutionary psychology (EP) with the standard social science model; however, since its inception, traditional EP models have not held up well to empirical scrutiny. The authors address the importance of cooperation in individuals and social systems, but the Darwin machine they propose does not adequately stress fundamental aspects of evolutionary processes. PMID:25162870

  3. Test Bed For Telerobots

    NASA Technical Reports Server (NTRS)

    Matijevic, Jacob R.; Zimmerman, Wayne F.; Dolinsky, Shlomo

    1990-01-01

    Assembly of electromechanical and electronic equipment (including computers) constitutes test bed for development of advanced robotic systems for remote manipulation. Combines features not found in commercial systems. Its architecture allows easy growth in complexity and level of automation. System national resource for validation of new telerobotic technology. Intended primarily for robots used in outer space, test bed adapted to development of advanced terrestrial telerobotic systems for handling radioactive materials, dangerous chemicals, and explosives.

  4. Proceedings of the NASA Conference on Space Telerobotics, volume 2

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research.

  5. A distributed telerobotics construction set

    NASA Technical Reports Server (NTRS)

    Wise, James D.

    1994-01-01

    During the course of our research on distributed telerobotic systems, we have assembled a collection of generic, reusable software modules and an infrastructure for connecting them to form a variety of telerobotic configurations. This paper describes the structure of this 'Telerobotics Construction Set' and lists some of the components which comprise it.

  6. Proceedings of the Workshop on Space Telerobotics, volume 1

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. (Editor)

    1987-01-01

    These proceedings report the results of a workshop on space telerobotics, which was held at the Jet Propulsion Laboratory, January 20-22, 1987. Sponsored by the NASA Office of Aeronautics and Space Technology (OAST), the Workshop reflected NASA's interest in developing new telerobotics technology for automating the space systems planned for the 1990s and beyond. The workshop provided a window into NASA telerobotics research, allowing leading researchers in telerobotics to exchange ideas on manipulation, control, system architectures, artificial intelligence, and machine sensing. One of the objectives was to identify important unsolved problems of current interest. The workshop consisted of surveys, tutorials, and contributed papers of both theoretical and practical interest. Several sessions were held on the themes of sensing and perception, control execution, operator interface, planning and reasoning, and system architecture.

  7. Telerobotics test bed for space structure assembly

    NASA Technical Reports Server (NTRS)

    Kitami, M.; Ogimoto, K.; Yasumoto, F.; Katsuragawa, T.; Itoko, T.; Kurosaki, Y.; Hirai, S.; Machida, K.

    1994-01-01

    A cooperative research on super long distance space telerobotics is now in progress both in Japan and USA. In this program. several key features will be tested, which can be applicable to the control of space robots as well as to terrestrial robots. Local (control) and remote (work) sites will be shared between Electrotechnical Lab (ETL) of MITI in Japan and Jet Propulsion Lab (JPL) in USA. The details of a test bed for this international program are discussed in this report.

  8. Telerobot for space station

    NASA Technical Reports Server (NTRS)

    Jenkins, Lyle M.

    1987-01-01

    The Flight Telerobotic Servicer (FTS), a multiple arm dexterous manipulation system, will aid in the assembly, maintenance, and servicing of the space station. Fundamental ideas and basic conceptual designs for a shuttle-based telerobot system have been produced. Recent space station studies provide additional concepts that should aid in the accomplishment of mission requirements. Currently, the FTS is in contractual source selection for a Phase B preliminary design. At the same time, design requirements are being developed through a series of robotic assessment tasks being performed at NASA and commercial installations. A number of the requirements for remote operation on the space station, necessary to supplement extravehicular activity (EVA), will be met by the FTS. Finally, technology developed for telerobotics will advance the state of the art of remote operating systems, enhance operator productivity, and prove instrumental in the evolution of an adaptive, intelligent autonomous robot.

  9. Monovision techniques for telerobots

    NASA Technical Reports Server (NTRS)

    Goode, P. W.; Carnils, K.

    1987-01-01

    The primary task of the vision sensor in a telerobotic system is to provide information about the position of the system's effector relative to objects of interest in its environment. The subtasks required to perform the primary task include image segmentation, object recognition, and object location and orientation in some coordinate system. The accomplishment of the vision task requires the appropriate processing tools and the system methodology to effectively apply the tools to the subtasks. The functional structure of the telerobotic vision system used in the Langley Research Center's Intelligent Systems Research Laboratory is discussed as well as two monovision techniques for accomplishing the vision subtasks.

  10. MIT research in telerobotics

    NASA Technical Reports Server (NTRS)

    Sheridan, T. B.

    1987-01-01

    Ongoing MIT research in telerobotics (vehicles capable of some autonomous sensing and manipulating, having some remote supervisory control by people) and teleoperation (vehicles for sensing and manipulating which are fully controlled remotely by people) is discussed. The current efforts mix human and artificial intelligence/control. The idea of adjustable impedance at either end of pure master-slave teleoperation, and simultaneous coordinated control of teleoperator/telerobotic systems which have more than six degrees of freedom (e.g., a combined vehicle and arm, each with five or six DOF) are discussed. A new cable-controlled parallel link arm which offers many advantages over conventional arms for space is briefly described. Predictor displays to compensate for time delay in teleoperator loops, the use of state estimation to help human control decisions in space, and ongoing research in supervisory command language are covered. Finally, efforts to build a human flyable real-time dynamic computer-graphic telerobot simulator are described. These projects represent most, but not all, of the telerobotics research in our laboratory, supported by JPL, NASA Ames and NOAA.

  11. Telerobotic research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Sliwa, Nancy E.

    1987-01-01

    An overview of Automation Technology Branch facilities and research is presented. Manipulator research includes dual-arm coordination studies, space manipulator dynamics, end-effector controller development, automatic space structure assembly, and the development of a dual-arm master-slave telerobotic manipulator system. Sensor research includes gravity-compensated force control, real-time monovision techniques, and laser ranging. Artificial intelligence techniques are being explored for supervisory task control, collision avoidance, and connectionist system architectures. A high-fidelity dynamic simulation of robotic systems, ROBSIM, is being supported and extended. Cooperative efforts with Oak Ridge National Laboratory have verified the ability of teleoperators to perform complex structural assembly tasks, and have resulted in the definition of a new dual-arm master-slave telerobotic manipulator. A bibliography of research results and a list of technical contacts are included.

  12. Cooperative control - The interface challenge for men and automated machines

    NASA Technical Reports Server (NTRS)

    Hankins, W. W., III; Orlando, N. E.

    1984-01-01

    The research issues associated with the increasing autonomy and independence of machines and their evolving relationships to human beings are explored. The research, conducted by Langley Research Center (LaRC), will produce a new social work order in which the complementary attributes of robots and human beings, which include robots' greater strength and precision and humans' greater physical and intellectual dexterity, are necessary for systems of cooperation. Attention is given to the tools for performing the research, including the Intelligent Systems Research Laboratory (ISRL) and industrial manipulators, as well as to the research approaches taken by the Automation Technology Branch (ATB) of LaRC to achieve high automation levels. The ATB is focusing on artificial intelligence research through DAISIE, a system which tends to organize its environment into hierarchical controller/planner abstractions.

  13. Flocking small smart machines: An experiment in cooperative, multi-machine control

    SciTech Connect

    Klarer, P.R.

    1998-03-01

    The intent and purpose of this work was to investigate and demonstrate cooperative behavior among a group of mobile robot machines. The specific goal of this work was to build a small swarm of identical machines and control them in such a way as to show a coordinated movement of the group in a flocking manner, similar to that observed in nature. Control of the swarm`s individual members and its overall configuration is available to the human user via a graphic man-machine interface running on a base station control computer. Any robot may be designated as the nominal leader through the interface tool, which then may be commanded to proceed to a particular geographic destination. The remainder of the flock follows the leader by maintaining their relative positions in formation, as specified by the human controller through the interface. The formation`s configuration can be altered manually through an interactive graphic-based tool. An alternative mode of control allows for teleoperation of one robot, with the flock following along as described above.

  14. Telerobotic truss assembly

    NASA Technical Reports Server (NTRS)

    Sheridan, Philip L.

    1987-01-01

    The ACCESS truss was telerobotically assembled in order to gain experience with robotic assembly of hardware designed for astronaut extravehicular (EVA) assembly. Tight alignment constraints of the ACCESS hardware made telerobotic assembly difficult. A wider alignment envelope and a compliant end effector would have reduced the problem. The manipulator had no linear motion capability, but many of the assembly operations required straight line motion. The manipulator was attached to a motion table in order to provide the X, Y, and Z translations needed. A programmable robot with linear translation capability would have eliminated the need for the motion table and streamlined the assembly. Poor depth perception was a major problem. Shaded paint schemes and alignment lines were helpful in reducing this problem. The four cameras used worked well for only some operations. It was not possible to identify camera locations that worked well for all assembly steps. More cameras or movable cameras would have simplified some operations. The audio feedback system was useful.

  15. Telerobot control system

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor); Tso, Kam S. (Inventor)

    1993-01-01

    This invention relates to an operator interface for controlling a telerobot to perform tasks in a poorly modeled environment and/or within unplanned scenarios. The telerobot control system includes a remote robot manipulator linked to an operator interface. The operator interface includes a setup terminal, simulation terminal, and execution terminal for the control of the graphics simulator and local robot actuator as well as the remote robot actuator. These terminals may be combined in a single terminal. Complex tasks are developed from sequential combinations of parameterized task primitives and recorded teleoperations, and are tested by execution on a graphics simulator and/or local robot actuator, together with adjustable time delays. The novel features of this invention include the shared and supervisory control of the remote robot manipulator via operator interface by pretested complex tasks sequences based on sequences of parameterized task primitives combined with further teleoperation and run-time binding of parameters based on task context.

  16. Proceedings of the NASA Conference on Space Telerobotics, volume 4

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotic technology to the space systems planned for the 1990's and beyond. Volume 4 contains papers related to the following subject areas: manipulator control; telemanipulation; flight experiments (systems and simulators); sensor-based planning; robot kinematics, dynamics, and control; robot task planning and assembly; and research activities at the NASA Langley Research Center.

  17. A six-legged telerobot for nuclear applications development

    SciTech Connect

    Byrd, J.S. ); DeVries, K.R. )

    1990-04-01

    A six-legged telerobot was evaluated for nuclear applications at the Savannah River Laboratory. Enhancements were added to the man-machine control interface to improve the efficiency and productivity of operations. Although this system was a prototype for laboratory research and development and was not intended for operation in a nuclear environment, the work demonstrated the feasibility of sophisticated walking robots in nuclear service. The Savannah River system has served as a valuable prototype forerunner to a production model telerobot that is now under development by Odetics Incorporated for the Electric Power Research Institute.

  18. The JPL telerobot operator control station. Part 1: Hardware

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.; Tower, John T.; Hunka, George W.; Vansant, Glenn J.

    1989-01-01

    The Operator Control Station of the Jet Propulsion Laboratory (JPL)/NASA Telerobot Demonstrator System provides the man-machine interface between the operator and the system. It provides all the hardware and software for accepting human input for the direct and indirect (supervised) manipulation of the robot arms and tools for task execution. Hardware and software are also provided for the display and feedback of information and control data for the operator's consumption and interaction with the task being executed. The hardware design, system architecture, and its integration and interface with the rest of the Telerobot Demonstrator System are discussed.

  19. Telerobotic surgery: stable force feedback with time delay

    NASA Astrophysics Data System (ADS)

    Hu, Jianjuen; Ren, Jie; Sheridan, Thomas B.

    1996-12-01

    A master-slave telerobotic surgery system has been developed in Human Machine Systems Lab at MIT. This system is composed of a master-slave telerobotic system, a two-way video/audio transmission link, a control data link, and a laparoscopic surgery simulation platform. With video, audio and force feedback, a surgeon can conduct telelaparoscopic surgery for a remote 'patient' by means of the master-slave telerobotic system. However, the force feedback can go unstable when the communication time delay of the control data link is larger than roughly 0.2 seconds. Therefore designing a stable force feedback control becomes an important issue for a telerobotic surgery system. This paper proposes a new approach to achieve stable force reflecting teleoperation control under time delay -- fuzzy sliding control (FSC). FSC is based on the conventional fuzzy control and sliding mode control both of which have been proven robust and stable. The design methodology of FSC includes the following major parts: a fuzzy sliding control law, rule tuning in the phase plane, and soft boundary layer tuning. FSC can easily be modified and applied to deal with the uncertainties and human interactions in teleoperation. In our research, a novel control structure which consists of FSC and a fuzzy supervisor has been implemented in our high bandwidth master-slave telerobotic system. It has been shown that this approach has stable force reflection and good tracking accuracy for loop delays up to 2 seconds. Experiment results are described in the paper.

  20. Multiscale Surgical Telerobots

    SciTech Connect

    Miles, R R; Seward, K P; Benett, W J; Tendick, F; Bentley, L; Stephan, P L

    2002-01-23

    A project was undertaken to improve robotic surgical tools for telerobotic minimally invasive surgery. The major objectives were to reduce the size of the tools to permit new surgical procedures in confined spaces such as the heart and to improve control of surgical tools by locating positional sensors and actuators at the end effector rather than external to the patient as is currently the state of the technology. A new compact end-effector with wrist-like flexibility was designed. Positional sensors based on MEMS microfabrication techniques were designed.

  1. Human factors issues in telerobotic systems for Space Station Freedom servicing

    NASA Technical Reports Server (NTRS)

    Malone, Thomas B.; Permenter, Kathryn E.

    1990-01-01

    Requirements for Space Station Freedom servicing are described and the state-of-the-art for telerobotic system on-orbit servicing of spacecraft is defined. The projected requirements for the Space Station Flight Telerobotic Servicer (FTS) are identified. Finally, the human factors issues in telerobotic servicing are discussed. The human factors issues are basically three: the definition of the role of the human versus automation in system control; the identification of operator-device interface design requirements; and the requirements for development of an operator-machine interface simulation capability.

  2. The laboratory telerobotic manipulator program

    NASA Technical Reports Server (NTRS)

    Herndon, J. N.; Babcock, S. M.; Butler, P. L.; Costello, H. M.; Glassell, R. L.; Kress, R. L.; Kuban, D. P.; Rowe, J. C.; Williams, D. M.

    1989-01-01

    New opportunities for the application of telerobotic systems to enhance human intelligence and dexterity in the hazardous environment of space are presented by the NASA Space Station Program. Because of the need for significant increases in extravehicular activity and the potential increase in hazards associated with space programs, emphasis is being heightened on telerobotic systems research and development. The Laboratory Telerobotic Manipulator (LTM) program is performed to develop and demonstrate ground-based telerobotic manipulator system hardware for research and demonstrations aimed at future NASA applications. The LTM incorporates traction drives, modularity, redundant kinematics, and state-of-the-art hierarchical control techniques to form a basis for merging the diverse technological domains of robust, high-dexterity teleoperations and autonomous robotic operation into common hardware to further NASA's research.

  3. Development and evaluation of a predictive algorithm for telerobotic task complexity

    NASA Technical Reports Server (NTRS)

    Gernhardt, M. L.; Hunter, R. C.; Hedgecock, J. C.; Stephenson, A. G.

    1993-01-01

    There is a wide range of complexity in the various telerobotic servicing tasks performed in subsea, space, and hazardous material handling environments. Experience with telerobotic servicing has evolved into a knowledge base used to design tasks to be 'telerobot friendly.' This knowledge base generally resides in a small group of people. Written documentation and requirements are limited in conveying this knowledge base to serviceable equipment designers and are subject to misinterpretation. A mathematical model of task complexity based on measurable task parameters and telerobot performance characteristics would be a valuable tool to designers and operational planners. Oceaneering Space Systems and TRW have performed an independent research and development project to develop such a tool for telerobotic orbital replacement unit (ORU) exchange. This algorithm was developed to predict an ORU exchange degree of difficulty rating (based on the Cooper-Harper rating used to assess piloted operations). It is based on measurable parameters of the ORU, attachment receptacle and quantifiable telerobotic performance characteristics (e.g., link length, joint ranges, positional accuracy, tool lengths, number of cameras, and locations). The resulting algorithm can be used to predict task complexity as the ORU parameters, receptacle parameters, and telerobotic characteristics are varied.

  4. Telerobotic activities at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Price, Charles R.

    1989-01-01

    The Johnson Space Center telerobotic efforts span three major thrusts: (1) sustaining and expanding the capability of the Shuttle manipulator; (2) developing and integrating the multiple telerobotic system of the Space Station; and (3) fostering and applying research in all areas of telerobotics technology within the government, private, and academic sectors.

  5. The WCSAR telerobotics test bed

    NASA Technical Reports Server (NTRS)

    Duffie, N.; Zik, J.; Teeter, R.; Crabb, T.

    1988-01-01

    Component technologies for use in telerobotic systems for space are being developed. As part of this effort, a test bed was established in which these technologies can be verified and integrated into telerobotic systems. The facility consists of two slave industrial robots, an articulated master arm controller, a cartesian coordinate master arm controller, and a variety of sensors, displays and stimulators for feedback to human operators. The controller of one of the slave robots remains in its commercial state, while the controller of the other robot has been replaced with a new controller that achieves high-performance in telerobotic operating modes. A dexterous slave hand which consists of two fingers and a thumb is being developed, along with a number of force-reflecting and non-force reflecting master hands, wrists and arms. A tactile sensing finger tip based on piezo-film technology has been developed, along with tactile stimulators and CAD-based displays for sensory feedback and sensory substitution. The telerobotics test bed and its component technologies are described, as well as the integration of these component technologies into telerobotic systems, and their performance in conjunction with human operators.

  6. Rover and Telerobotics Technology Program

    NASA Technical Reports Server (NTRS)

    Weisbin, Charles R.

    1998-01-01

    The Jet Propulsion Laboratory's (JPL's) Rover and Telerobotics Technology Program, sponsored by the National Aeronautics and Space Administration (NASA), responds to opportunities presented by NASA space missions and systems, and seeds commerical applications of the emerging robotics technology. The scope of the JPL Rover and Telerobotics Technology Program comprises three major segments of activity: NASA robotic systems for planetary exploration, robotic technology and terrestrial spin-offs, and technology for non-NASA sponsors. Significant technical achievements have been reached in each of these areas, including complete telerobotic system prototypes that have built and tested in realistic scenarios relevant to prospective users. In addition, the program has conducted complementary basic research and created innovative technology and terrestrial applications, as well as enabled a variety of commercial spin-offs.

  7. Control strategies for a telerobot

    NASA Technical Reports Server (NTRS)

    Ohara, John; Stasi, Bill

    1989-01-01

    One of the major issues impacting the utility of telerobotic systems for space is the development of effective control strategies. For near-term applications, telerobot control is likely to utilize teleoperation methodologies with integrated supervisory control capabilities to assist the operator. Two different approaches to telerobotic control are evaluated: bilateral force reflecting master controllers and proportional rate six degrees-of-freedom hand controllers. The controllers' performance of single manipulator arm tasks is compared. Simultaneous operation of both manipulator arms and complex multiaxis slave arm movements is investigated. Task times are significantly longer and fewer errors are committed with the hand controllers. The hand controllers are also rated significantly higher in cognitive and manual control workload on the two-arm task. The master controllers are rated significantly higher in physical workload. The implications of these findings for space teleoperations and higher levels of control are discussed.

  8. NASA telerobotics technology highlights

    SciTech Connect

    Weisbin, C.R.; Lavery, D.

    1994-12-31

    The goal of the National Aeronautics and Space Administration`s (NASA`s) Telerobotics Program, part of the over-all research program of the Office of Advanced Concepts and Technology (OACT), is to develop the technology in space-borne systems that enables new space tasks in Earth-orbiting satellite and platform servicing; robotic tending of science payloads and instruments; and planetary surface exploration, scientific sampling, and in situ analysis. Our objective is that by 2004, 50% of the extra-vehicular activity (EVA)-required operations on orbit and on planetary surfaces may be conducted via remote operation. The technologies developed for space have important dual uses for commercial areas such as medical robotics, agriculture, and subsea welding; this synergy is being actively encouraged. Moreover, mutually reciprocal collaboration with international partners (e.g., Japan and Russia) has received increasing attention. The purpose of this paper is to provide an overview of some of the ongoing program activities, which are described briefly.

  9. Temporal logics meet telerobotics

    NASA Technical Reports Server (NTRS)

    Rutten, Eric; Marce, Lionel

    1989-01-01

    The specificity of telerobotics being the presence of a human operator, decision assistance tools are necessary for the operator, especially in hostile environments. In order to reduce execution hazards due to a degraded ability for quick and efficient recovery of unexpected dangerous situations, it is of importance to have the opportunity, amongst others, to simulate the possible consequences of a plan before its actual execution, in order to detect these problematic situations. Hence the idea of providing the operator with a simulator enabling him to verify the temporal and logical coherence of his plans. Therefore, the power of logical formalisms is used for representation and deduction purposes. Starting from the class of situations that are represented, a STRIPS (the STanford Research Institute Problem Solver)-like formalism and its underlying logic are adapted to the simulation of plans of actions in time. The choice of a temporal logic enables to build a world representation, on which the effects of plans, grouping actions into control structures, will be transcribed by the simulation, resulting in a verdict and information about the plan's coherence.

  10. The NASA/OAST telerobot testbed architecture

    NASA Technical Reports Server (NTRS)

    Matijevic, J. R.; Zimmerman, W. F.; Dolinsky, S.

    1989-01-01

    Through a phased development such as a laboratory-based research testbed, the NASA/OAST Telerobot Testbed provides an environment for system test and demonstration of the technology which will usefully complement, significantly enhance, or even replace manned space activities. By integrating advanced sensing, robotic manipulation and intelligent control under human-interactive supervision, the Testbed will ultimately demonstrate execution of a variety of generic tasks suggestive of space assembly, maintenance, repair, and telescience. The Testbed system features a hierarchical layered control structure compatible with the incorporation of evolving technologies as they become available. The Testbed system is physically implemented in a computing architecture which allows for ease of integration of these technologies while preserving the flexibility for test of a variety of man-machine modes. The development currently in progress on the functional and implementation architectures of the NASA/OAST Testbed and capabilities planned for the coming years are presented.

  11. The JPL/KSC telerobotic inspection demonstration

    NASA Technical Reports Server (NTRS)

    Mittman, David; Bon, Bruce; Collins, Carol; Fleischer, Gerry; Litwin, Todd; Morrison, Jack; Omeara, Jacquie; Peters, Stephen; Brogdon, John; Humeniuk, Bob

    1990-01-01

    An ASEA IRB90 robotic manipulator with attached inspection cameras was moved through a Space Shuttle Payload Assist Module (PAM) Cradle under computer control. The Operator and Operator Control Station, including graphics simulation, gross-motion spatial planning, and machine vision processing, were located at JPL. The Safety and Support personnel, PAM Cradle, IRB90, and image acquisition system, were stationed at the Kennedy Space Center (KSC). Images captured at KSC were used both for processing by a machine vision system at JPL, and for inspection by the JPL Operator. The system found collision-free paths through the PAM Cradle, demonstrated accurate knowledge of the location of both objects of interest and obstacles, and operated with a communication delay of two seconds. Safe operation of the IRB90 near Shuttle flight hardware was obtained both through the use of a gross-motion spatial planner developed at JPL using artificial intelligence techniques, and infrared beams and pressure sensitive strips mounted to the critical surfaces of the flight hardward at KSC. The Demonstration showed that telerobotics is effective for real tasks, safe for personnel and hardware, and highly productive and reliable for Shuttle payload operations and Space Station external operations.

  12. Analysis of human-machine cooperation when driving with different degrees of haptic shared control.

    PubMed

    Mars, Franck; Deroo, Mathieu; Hoc, Jean-Michel

    2014-01-01

    This study investigated human-machine cooperation when driving with different degrees of a shared control system. By means of a direct intervention on the steering wheel, shared control systems partially correct the vehicle's trajectory and, at the same time, provide continuous haptic guidance to the driver. A crucial point is to determine the optimal level of steering assistance for effective cooperation between the two agents. Five system settings were compared with a condition in which no assistance was present. In addition, road visibility was manipulated by means of additional fog or self-controlled visual occlusions. Several performance indicators and subjective assessments were analyzed. The results show that the best repartition of control in terms of cooperation between human and machine can be identified through an analysis of the steering wheel reversal rate, the steering effort and the mean lateral position of the vehicle. The best cooperation was achieved with systems of relatively low-level haptic authority, although more intervention may be preferable in poor visibility conditions. Increasing haptic authority did not yield higher benefits in terms of steering behavior, visual demand or subjective feeling.

  13. Telerobotics: Research needs for evolving space stations

    NASA Technical Reports Server (NTRS)

    Stark, L.

    1987-01-01

    It is argued that triplicate planning for telerobotics applicable to space stations is needed. It is important to carry out research to accomplish tasks: (1) with man alone (such as extra-vehicular activities), (2) with autonomous robots, and (3) with telerobotics. The research necessary to carry out these approaches is compared and contrasted in order to clarify present problems.

  14. Telerobotic technology for nuclear and space applications

    SciTech Connect

    Herndon, J.N.; Hamel, W.R.

    1987-03-01

    Telerobotic development efforts at Oak Ridge National Laboratory are extensive and relatively diverse. Current efforts include development of a prototype space telerobot system for the NASA Langley Research Center and development and large-scale demonstration of nuclear fuel cycle teleoperators in the Consolidated Fuel Reprocessing Program. This paper presents an overview of the efforts in these major programs. 10 refs., 8 figs.

  15. Expert system control of a six-legged walking telerobot

    SciTech Connect

    DeVries, K R

    1989-01-01

    The Robotics Technology Group of the Savannah River Laboratory has implemented a three-stage expert system for a six-legged walking telerobot. Remote operation of this machine requires the knowledge of a highly skilled operator. Stability, size, and mode of operation considerations must take place continuously, in general, much more so than with a typical wheeled vehicle. The technology employed provides for quasi-real-time computer control, manual control, and an expert advisor -- all in the same package, which runs on the IBM PC/AT. 2 refs., 5 figs.

  16. An operator interface design for a telerobotic inspection system

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Tso, Kam S.; Hayati, Samad

    1993-01-01

    The operator interface has recently emerged as an important element for efficient and safe interactions between human operators and telerobotics. Advances in graphical user interface and graphics technologies enable us to produce very efficient operator interface designs. This paper describes an efficient graphical operator interface design newly developed for remote surface inspection at NASA-JPL. The interface, designed so that remote surface inspection can be performed by a single operator with an integrated robot control and image inspection capability, supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.

  17. Telerobotic ground-remote operations

    NASA Technical Reports Server (NTRS)

    Bon, Bruce; Zimmerman, Wayne

    1991-01-01

    The Telerobotic Ground-Remote Operations task consists of development of a demonstration local-site operator control station that includes a graphical user interface (GUI) for control of a remote robot, and development of operator-assisted perception algorithms and software that will provide flexible and accurate world modeling capabilities. The topics covered are presented in view graph form and include: (1) local site development configuration; (2) system design; (3) operator control station (local site) software block diagram; (4) operator-assisted perception; and (5) program status.

  18. A Wireless Control System with Mutual Use of Control Signals for Cooperative Machines

    NASA Astrophysics Data System (ADS)

    Kondo, Tsugunori; Kobayashi, Kentaro; Katayama, Masaaki

    This paper discusses a wireless control system for cooperative motion of multiple machines, and clarifies the influence of packet losses on the system behavior. We focus on the synchronization of the motion of the machines, and using the nature of wireless, we propose a new wireless control scheme for maintaining the synchronization performance under packet loss conditions. In the proposed scheme, each controlled object (plant) utilizes control information destined for all plants, and the main controller also utilizes state information of all plants. The additional information of the other controller-plant pairs is used to compensate lost information. As an example of the controlled plants, rotary inverted pendulums, which move synchronously with wireless connections in their control-feedback loops, are considered. Numerical examples confirm the superiority of the proposed scheme from the view-point of the synchronization of the motion of the plants.

  19. A lattice controller for telerobotic systems

    NASA Technical Reports Server (NTRS)

    Sliwa, Nancy Orlando; Soloway, Donald

    1987-01-01

    A model for a lattice control structure for telerobotic systems (Critter) has been developed and prototyped. The Critter hierarchical lattice structure, node potentiation, and weighted feedback are described, and the implementation of the Critter model on a VAX architecture is addressed with regard to node processes, lattice structure, node potentiation, and network activation. The implementation environment is considered and the Critter model attributes which are desirable in a telerobotic system are discussed. Future research directions on the use of this concept for telerobotic control are examined.

  20. Telerobotic work system: Concept development and evolution

    NASA Technical Reports Server (NTRS)

    Jenkins, Lyle M.

    1987-01-01

    The basic concept of a telerobotic work system (TWS) consists of two dexterous manipulator arms controlled from a remote station. The term telerobotic describes a system that is a combination of teleoperator control and robotic operation. Work represents the function of producing physical changes. System describes the integration of components and subsystems to effectively accomplish the needed mission. Telerobotics reduces exposure to hazards for flight crewmembers and increases their productivity. The requirements for the TWS are derived from both the mission needs and the functional capabilities of existing hardware and software to meet those needs. The development of the TWS is discussed.

  1. Control enhancements in a commercial mobile telerobot

    SciTech Connect

    Jones, S.L.; Spelt, P.F.

    1994-12-31

    In this paper we discuss the cooperative research and development agreement between Oak Ridge Naitonal Laboratory and REMOTEC to automate components of the operator`s workload using REMOTEC`s ANDROS telerobot, thereby providing an enhanced user interface that can be retrofit to existing fielded units and incorporated into new production units. REMOTECs ANDROS robots are used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists and by the armed forces and numerous law enforcement agencies. The automation of task components, as well as the video graphics display of the robot`s position in the environment, will enhance all tasks performed by these users and will enable performance in terrain where the robots cannot now perform due to lack of knowledge about matters such as the degree of tilt of the robot. Enhanced performance of a successful industrial mobile robot leads to increased safety and efficiency of performance in hazardous environments. The addition of these capabilities will greatly enhance the utility and marketability of the robot.

  2. Task automation in a successful industrial telerobot

    SciTech Connect

    Spelt, P.F.; Jones, S.L.

    1994-01-01

    In this paper, we discuss cooperative work by Oak Ridge National Laboratory and Remotec{trademark}, Inc., to automate components of the operator`s workload using Remotec`s Andros telerobot, thereby providing an enhanced user interface which can be retroll to existing fielded units as well as being incorporated into now production units. Remotec`s Andros robots are presently used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists, as well as by the armed forces and numerous law enforcement agencies. The automation of task components, as well as the video graphics display of the robot`s position in the environment, will enhance all tasks performed by these users, as well as enabling performance in terrain where the robots cannot presently perform due to lack of knowledge about, for instance, the degree of tilt of the robot. Enhanced performance of a successful industrial mobile robot leads to increased safety and efficiency of performances in hazardous environments. The addition of these capabilities will greatly enhance the utility of the robot, as well as its marketability.

  3. Task automation in a successful industrial telerobot

    NASA Technical Reports Server (NTRS)

    Spelt, Philip F.; Jones, Sammy L.

    1994-01-01

    In this paper, we discuss cooperative work by Oak Ridge National Laboratory and Remotec, Inc., to automate components of the operator's workload using Remotec's Andros telerobot, thereby providing an enhanced user interface which can be retrofit to existing fielded units as well as being incorporated into new production units. Remotec's Andros robots are presently used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists, as well as by the armed forces and numerous law enforcement agencies. The automation of task components, as well as the video graphics display of the robot's position in the environment, will enhance all tasks performed by these users, as well as enabling performance in terrain where the robots cannot presently perform due to lack of knowledge about, for instance, the degree of tilt of the robot. Enhanced performance of a successful industrial mobile robot leads to increased safety and efficiency of performance in hazardous environments. The addition of these capabilities will greatly enhance the utility of the robot, as well as its marketability.

  4. Vision system for telerobotics operation

    NASA Astrophysics Data System (ADS)

    Wong, Andrew K. C.; Li, Li-Wei; Liu, Wei-Cheng

    1992-10-01

    This paper presents a knowledge-based vision system for a telerobotics guidance project. The system is capable of recognizing and locating 3-D objects with unrestricted viewpoints in a simulated unconstrained space environment. It constructs object representation for vision tasks from wireframe models; recognizes and locates objects in a 3-D scene, and provides world modeling capability to establish, maintain, and update 3-D environment description for telerobotic manipulations. In this paper, an object model is represented by an attributed hypergraph which contains direct structural (relational) information with features grouped according to their multiple-views so as the interpretation of the 3-D object and its 2-D projections are coupled. With this representation, object recognition is directed by a knowledge-directed hypothesis refinement strategy. The strategy starts with the identification of 2-D local feature characteristics for initiating feature and relation matching. Next it continues to refine the matching by adding 2-D features from the image according to viewpoint and geometric consistency. Finally it links the successful matchings back to the 3-D model to recover the feature, relation and location information of the recognized object. The paper also presents the implementation and the experimentation of the vision prototype.

  5. Miniature Telerobots in Space Applications

    NASA Technical Reports Server (NTRS)

    Venema, S. C.; Hannaford, B.

    1995-01-01

    Ground controlled telerobots can be used to reduce astronaut workload while retaining much of the human capabilities of planning, execution, and error recovery for specific tasks. Miniature robots can be used for delicate and time consuming tasks such as biological experiment servicing without incurring the significant mass and power penalties associated with larger robot systems. However, questions remain regarding the technical and economic effectiveness of such mini-telerobotic systems. This paper address some of these open issues and the details of two projects which will provide some of the needed answers. The Microtrex project is a joint University of Washington/NASA project which plans on flying a miniature robot as a Space Shuttle experiment to evaluate the effects of microgravity on ground-controlled manipulation while subject to variable time-delay communications. A related project involving the University of Washington and Boeing Defense and Space will evaluate the effectiveness f using a minirobot to service biological experiments in a space station experiment 'glove-box' rack mock-up, again while subject to realistic communications constraints.

  6. Telerobotic system performance measurement - Motivation and methods

    NASA Technical Reports Server (NTRS)

    Kondraske, George V.; Khoury, George J.

    1992-01-01

    A systems performance-based strategy for modeling and conducting experiments relevant to the design and performance characterization of telerobotic systems is described. A developmental testbed consisting of a distributed telerobotics network and initial efforts to implement the strategy described is presented. Consideration is given to the general systems performance theory (GSPT) to tackle human performance problems as a basis for: measurement of overall telerobotic system (TRS) performance; task decomposition; development of a generic TRS model; and the characterization of performance of subsystems comprising the generic model. GSPT employs a resource construct to model performance and resource economic principles to govern the interface of systems to tasks. It provides a comprehensive modeling/measurement strategy applicable to complex systems including both human and artificial components. Application is presented within the framework of a distributed telerobotics network as a testbed. Insight into the design of test protocols which elicit application-independent data is described.

  7. Space telerobotic systems: Applications and concepts

    NASA Technical Reports Server (NTRS)

    Jenkins, L.

    1987-01-01

    The definition of a variety of assembly, servicing, and maintenance missions has led to the generation of a number of space telerobot concepts. The remote operation of a space telerobot is seen as a means to increase astronaut productivity. Dexterous manipulator arms are controlled from the Space Shuttle Orbiter cabin or a Space Station module. Concepts for the telerobotic work system have been developed by the Lyndon B. Johnson Space Center through contracts with the Grumman Aerospace Corporation and Marin Marietta Corporation. These studies defined a concept for a telerobot with extravehicular activity (EVA) astronaut equivalent capability that would be controlled from the Space Shuttle. An evolutionary development of the system is proposed as a means of incorporating technology advances. Early flight testing is seen as needed to address the uncertainties of robotic manipulation in space. Space robotics can be expected to spin off technology to terrestrial robots, particularly in hazardous and unstructured applications.

  8. Frequency Analysis Of Data On Telerobotic Tasks

    NASA Technical Reports Server (NTRS)

    Fiorini, Paolo; Giancaspro, Antonio

    1994-01-01

    Data on forces and torques measured in experiments with remote manipulators processed into spectral signatures via special frequency-analysis procedure. Spectral signatures complement other measures used to evaluate performances of telerobotic systems and human operators. Contributes to verification of some assumptions made in designing manipulator arms and control subsystems and used as feedback by operators engaged in realtime monitoring of telerobotic tasks. Also provides useful indications of flows of power between manipulators and their environments.

  9. Dexterity-Enhanced Telerobotic Microsurgery

    NASA Technical Reports Server (NTRS)

    Charles, Steve; Das, Hari; Ohm, Timothy; Boswell, Curtis; Rodriguez, Guillermo; Steele, Robert; Istrate, Dan

    1997-01-01

    The work reported in this paper is the result, of a collaboration between researchers at the Jet Propulsion Laboratory and Steve Charles, MD, a vitreo-retinal surgeon. The Robot Assisted MicroSurgery (RAMS) telerobotic workstation developed at JPL is a prototype of a system that will be completely under the manual control of a surgeon. The system has a slave robot that will hold surgical instruments. The slave robot motions replicate in six degrees of freedom those of tile. surgeon's hand measured using a master input device with a surgical instrument, shaped handle. The surgeon commands motions for the instrument by moving the handle in the desired trajectories. The trajectories are measured, filtered, and scaled down then used to drive the slave robot.

  10. Telerobotic electronic materials processing experiment

    NASA Technical Reports Server (NTRS)

    Ollendorf, Stanford

    1991-01-01

    The Office of Commercial Programs (OCP), working in conjunction with NASA engineers at the Goddard Space Flight Center, is supporting research efforts in robot technology and microelectronics materials processing that will provide many spinoffs for science and industry. The Telerobotic Materials Processing Experiment (TRMPX) is a Shuttle-launched materials processing test payload using a Get Away Special can. The objectives of the project are to define, develop, and demonstrate an automated materials processing capability under realistic flight conditions. TRMPX will provide the capability to test the production processes that are dependent on microgravity. The processes proposed for testing include the annealing of amorphous silicon to increase grain size for more efficient solar cells, thin film deposition to demonstrate the potential of fabricating solar cells in orbit, and the annealing of radiation damaged solar cells.

  11. Haptic device for telerobotic surgery

    DOEpatents

    Salisbury, Curt; Salisbury, Jr., J. Kenneth

    2014-12-30

    A haptic device for telerobotic surgery, including a base; a linkage system having first and second linkage members coupled to the base; a motor that provides a motor force; a transmission including first and second driving pulleys arranged such that their faces form an angle and their axes form a plane, first and second idler pulleys offset from the plane and arranged between the first and second driving pulleys such that their axes divide the angle between the first and second driving pulleys, and a cable that traverses the first and second driving pulleys and the set of idler pulleys and transfers the motor force to the linkage system; an end effector coupled to distal ends of the first and second linkage members and maneuverable relative to the base; and a controller that modulates the motor force to simulate a body part at a point portion of the end effector.

  12. Telerobotics in rehabilitation: Barriers to a virtual existence

    NASA Technical Reports Server (NTRS)

    Leifer, Larry; Vanderloos, Machiel; Michalowski, Stefan

    1991-01-01

    The topics covered include the following: the need for telerobotics in rehabilitation; barriers to telerobotics technology in rehabilitation and health care; institutional barriers; technical barriers; and a partial view of the future.

  13. Cooperative optimization of reconfigurable machine tool configurations and production process plan

    NASA Astrophysics Data System (ADS)

    Xie, Nan; Li, Aiping; Xue, Wei

    2012-09-01

    The production process plan design and configurations of reconfigurable machine tool (RMT) interact with each other. Reasonable process plans with suitable configurations of RMT help to improve product quality and reduce production cost. Therefore, a cooperative strategy is needed to concurrently solve the above issue. In this paper, the cooperative optimization model for RMT configurations and production process plan is presented. Its objectives take into account both impacts of process and configuration. Moreover, a novel genetic algorithm is also developed to provide optimal or near-optimal solutions: firstly, its chromosome is redesigned which is composed of three parts, operations, process plan and configurations of RMTs, respectively; secondly, its new selection, crossover and mutation operators are also developed to deal with the process constraints from operation processes (OP) graph, otherwise these operators could generate illegal solutions violating the limits; eventually the optimal configurations for RMT under optimal process plan design can be obtained. At last, a manufacturing line case is applied which is composed of three RMTs. It is shown from the case that the optimal process plan and configurations of RMT are concurrently obtained, and the production cost decreases 6.28% and nonmonetary performance increases 22%. The proposed method can figure out both RMT configurations and production process, improve production capacity, functions and equipment utilization for RMT.

  14. Human-machine cooperation: a solution for life-critical systems?

    PubMed

    Millot, Patrick; Boy, Guy A

    2012-01-01

    Decision-making plays an important role in life-critical systems. It entails cognitive functions such as monitoring, as well as fault prevention and recovery. Three kinds of objectives are typically considered: safety, efficiency and comfort. People involved in the control and management of such systems provide two kinds of contributions: positive with their unique involvement and capacity to deal with the unexpected; and negative with their ability to make errors. In the negative view, people are the problem and need to be supervised by regulatory systems in the form of operational constraints or by design. In the positive view, people are the solution and lead the game; they are decision-makers. The former view also deals with error resistance, and the latter with error tolerance, which, for example, enables cooperation between people and decision support systems (DSS). In the real life, both views should be considered with respect to appropriate situational factors, such as time constraints and very dangerous environments. This is known as function allocation between people and systems. This paper presents a possibility to reconcile both approaches into a joint human-machine organization, where the main dimensioning factors are safety and complexity. A framework for cooperative and fault tolerant systems is proposed, and illustrated by an example in Air Traffic Control.

  15. Integrated Design of a Telerobotic Workstation

    NASA Technical Reports Server (NTRS)

    Rochlis, Jennifer L.; Clarke, John-Paul

    2001-01-01

    The experiments described in this paper are part of a larger joint MIT/NASA research effort that focuses on the development of a methodology for designing and evaluating integrated interfaces for highly dexterous and multi-functional telerobots. Specifically, a telerobotic workstation is being designed for an Extravehicular Activity (EVA) anthropomorphic space station telerobot. Previous researchers have designed telerobotic workstations based upon performance of discrete subsets of tasks (for example, peg-in-hole, tracking, etc.) without regard for transitions that operators go through between tasks performed sequentially in the context of larger integrated tasks. The exploratory research experiments presented here took an integrated approach and assessed how subjects operating a full-immersion telerobot perform during the transitions between sub-tasks of two common EVA tasks. Preliminary results show that up to 30% of total task time is spent gaining and maintaining Situation Awareness (SA) of their task space and environment during transitions. Although task performance improves over the two trial days, the percentage of time spent on SA remains the same. This method identifies areas where workstation displays and feedback mechanisms are most needed to increase operator performance and decrease operator workload - areas that previous research methods have not been able to address.

  16. JPL space station telerobotic engineering prototype development: Advanced telerobotics system technology

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.

    1991-01-01

    The objective of the Advanced Telerobotics System Technology Task is to develop/prototype advanced telerobotics supervisory and shared control to enhance Intra-Vehicular Activity (IVA) teleoperation in the Space Station. The technology provides enhanced telerobotics capabilities while operating within the expected constraints of computation limitations, time delay, and bus bandwidth. A local site operator interface has also been developed for specifying teleoperation and shared control modes as well as supervised autonomous macros for execution at the remote site. The primary objective of the task is to transfer the advanced technology to appropriate flight centers to enhance the baseline Station capabilities.

  17. Terrestrial applications of NASA space telerobotics technologies

    NASA Technical Reports Server (NTRS)

    Lavery, Dave

    1994-01-01

    In 1985 the National Aeronautics and Space Administration (NASA) instituted a research program in telerobotics to develop and provide the technology for applications of telerobotics to the United States space program. The activities of the program are intended to most effectively utilize limited astronaut time by facilitating tasks such as inspection, assembly, repair, and servicing, as well as providing extended capability for remotely conducting planetary surface operations. As the program matured, it also developed a strong heritage of working with government and industry to directly transfer the developed technology into industrial applications.

  18. Space Telerobotics and Rover Research at JPL

    NASA Technical Reports Server (NTRS)

    Weisbin, C.; Hayati, S.; Rodriguez, G.

    1995-01-01

    The goal of our program is to develop, integrate and demonstrate the science and technology of remote telerobotics leading to increases in operational capability, safety, cost effectiveness and probability of success of NASA missions. To that end, the program fosters the development of innovative system concepts for on-orbit servicing and planetary surface missions which use telerobotic systems as an important central component. These concepts are carried forward into develoments which are used to evaluate and demonstrate technology in realistic flight and ground experiments.

  19. Operator assistant systems - An experimental approach using a telerobotics application

    NASA Technical Reports Server (NTRS)

    Boy, Guy A.; Mathe, Nathalie

    1993-01-01

    This article presents a knowledge-based system methodology for developing operator assistant (OA) systems in dynamic and interactive environments. This is a problem both of training and design, which is the subject of this article. Design includes both design of the system to be controlled and design of procedures for operating this system. A specific knowledge representation is proposed for representing the corresponding system and operational knowledge. This representation is based on the situation recognition and analytical reasoning paradigm. It tries to make explicit common factors involved in both human and machine intelligence, including perception and reasoning. An OA system based on this representation has been developed for space telerobotics. Simulations have been carried out with astronauts and the resulting protocols have been analyzed. Results show the relevance of the approach and have been used for improving the knowledge representation and the OA architecture.

  20. Structural health monitoring for bolt loosening via a non-invasive vibro-haptics human-machine cooperative interface

    NASA Astrophysics Data System (ADS)

    Pekedis, Mahmut; Mascerañas, David; Turan, Gursoy; Ercan, Emre; Farrar, Charles R.; Yildiz, Hasan

    2015-08-01

    For the last two decades, developments in damage detection algorithms have greatly increased the potential for autonomous decisions about structural health. However, we are still struggling to build autonomous tools that can match the ability of a human to detect and localize the quantity of damage in structures. Therefore, there is a growing interest in merging the computational and cognitive concepts to improve the solution of structural health monitoring (SHM). The main object of this research is to apply the human-machine cooperative approach on a tower structure to detect damage. The cooperation approach includes haptic tools to create an appropriate collaboration between SHM sensor networks, statistical compression techniques and humans. Damage simulation in the structure is conducted by releasing some of the bolt loads. Accelerometers are bonded to various locations of the tower members to acquire the dynamic response of the structure. The obtained accelerometer results are encoded in three different ways to represent them as a haptic stimulus for the human subjects. Then, the participants are subjected to each of these stimuli to detect the bolt loosened damage in the tower. Results obtained from the human-machine cooperation demonstrate that the human subjects were able to recognize the damage with an accuracy of 88 ± 20.21% and response time of 5.87 ± 2.33 s. As a result, it is concluded that the currently developed human-machine cooperation SHM may provide a useful framework to interact with abstract entities such as data from a sensor network.

  1. Speed-accuracy characteristics of human-machine cooperative manipulation using virtual fixtures with variable admittance.

    PubMed

    Marayong, Panadda; Okamura, Allison M

    2004-01-01

    This work explores the effect of virtual fixture admittance on the performance, defined by error and time, of task execution with a human-machine cooperative system. A desired path is obtained using computer vision, and virtual fixtures for assistance in planar path following were implemented on an admittance-controlled robot. The admittance controller uses a velocity gain, so that the speed of the robot is proportional to the force applied by the operator. The level of virtual fixture guidance is determined by the admittance ratio, which is the ratio of the admittance gain of the force components orthogonal to the path to the gain of the force components parallel to the path. In Experiment 1, we found a linear relationship between admittance ratio and performance. In Experiment 2, we examined the effect of admittance ratio on the performance of three tasks: path following, off-path targeting, and obstacle avoidance. An algorithm was developed to select an appropriate admittance ratio based on the nature of the task. Automatic admittance ratio tuning is recommended for next-generation virtual fixtures. Actual or potential applications of this research include surgery, assembly, and manipulation at the macro and micro scales.

  2. Planning And Reasoning For A Telerobot

    NASA Technical Reports Server (NTRS)

    Peters, Stephen F.; Mittman, David S.; Collins, Carol E.; O'Meara Callahan, Jacquelyn S.; Rokey, Mark J.

    1992-01-01

    Document discusses research and development of Telerobot Interactive Planning System (TIPS). Goal in development of TIPS is to enable it to accept instructions from operator, then command run-time controller to execute operations to execute instructions. Challenges in transferring technology from testbed to operational system discussed.

  3. Virtual environments for telerobotic shared control

    NASA Technical Reports Server (NTRS)

    Christensen, Brian K.

    1994-01-01

    The use of a virtual environment to bring about telerobotic shared control is discussed. A knowledge base, referred to as the World Model, is used to aid the system in its decision making. Information from the World Model is displayed visually in order to aid the human side of human-computer interface.

  4. An Intelligent Simulator for Telerobotics Training

    ERIC Educational Resources Information Center

    Belghith, K.; Nkambou, R.; Kabanza, F.; Hartman, L.

    2012-01-01

    Roman Tutor is a tutoring system that uses sophisticated domain knowledge to monitor the progress of students and advise them while they are learning how to operate a space telerobotic system. It is intended to help train operators of the Space Station Remote Manipulator System (SSRMS) including astronauts, operators involved in ground-based…

  5. A collision detection algorithm for telerobotic arms

    NASA Technical Reports Server (NTRS)

    Tran, Doan Minh; Bartholomew, Maureen Obrien

    1991-01-01

    The telerobotic manipulator's collision detection algorithm is described. Its applied structural model of the world environment and template representation of objects is evaluated. Functional issues that are required for the manipulator to operate in a more complex and realistic environment are discussed.

  6. Control of Telerobots with Variable Communication Delay

    NASA Technical Reports Server (NTRS)

    Oboe, R.; Fiorini, P.

    1998-01-01

    Ths paper proposes two solutions for the control of telerobots, in which master and slave are connected through a communication system that introduces a variable delay. This is the typical case of packet-switched networks (e.g. Internet), in which the delay varies in an unpredictible way.

  7. Multi-level manual and autonomous control superposition for intelligent telerobot

    NASA Technical Reports Server (NTRS)

    Hirai, Shigeoki; Sato, T.

    1989-01-01

    Space telerobots are recognized to require cooperation with human operators in various ways. Multi-level manual and autonomous control superposition in telerobot task execution is described. The object model, the structured master-slave manipulation system, and the motion understanding system are proposed to realize the concept. The object model offers interfaces for task level and object level human intervention. The structured master-slave manipulation system offers interfaces for motion level human intervention. The motion understanding system maintains the consistency of the knowledge through all the levels which supports the robot autonomy while accepting the human intervention. The superposing execution of the teleoperational task at multi-levels realizes intuitive and robust task execution for wide variety of objects and in changeful environment. The performance of several examples of operating chemical apparatuses is shown.

  8. A Space Data System Standard for Telerobotic Operations

    NASA Technical Reports Server (NTRS)

    Mittman, David S.; Martinez, Lindolfo

    2014-01-01

    The Telerobotics Working Group of the Mission Operations and Information Management Services Area of the Consultative Committee for Space Data Systems is drafting a document that will help bound the scope of an eventual international standard for telerobotic operations services. This paper will present the work in progress and provide background for how the international community is beginning to define standards in telerobotic operations that will help ensure the success of complex missions to explore beyond Earth orbit.

  9. ISS Update: SPHERES with Telerobotics Project Manager Terry Fong

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean talks with Terry Fong, Telerobotics Project Manager, about how the Synchronized Position, Hold, Engage and Reorient Experimental Satellites, or SPHERES, are ...

  10. NASREN: Standard reference model for telerobot control

    NASA Technical Reports Server (NTRS)

    Albus, J. S.; Lumia, R.; Mccain, H.

    1987-01-01

    A hierarchical architecture is described which supports space station telerobots in a variety of modes. The system is divided into three hierarchies: task decomposition, world model, and sensory processing. Goals at each level of the task dedomposition heirarchy are divided both spatially and temporally into simpler commands for the next lower level. This decomposition is repreated until, at the lowest level, the drive signals to the robot actuators are generated. To accomplish its goals, task decomposition modules must often use information stored it the world model. The purpose of the sensory system is to update the world model as rapidly as possible to keep the model in registration with the physical world. The architecture of the entire control system hierarch is described and how it can be applied to space telerobot applications.

  11. The JAU-JPL anthropomorphic telerobot

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.

    1989-01-01

    Work in progress on the new anthropomorphic telerobot is described. The initial robot configuration consists of a seven DOF arm and a sixteen DOF hand, having three fingers and a thumb. The robot has active compliance, enabling subsequent dual arm manipulations. To control the rather complex configuration of this robot, an exoskeleton master arm harness and a glove controller were built. The controller will be used for teleoperational tasks and as a research tool to efficiently teach the computer controller advanced manipulation techniques.

  12. Telerobotic operation of conventional robot manipulators

    SciTech Connect

    Boissiere, P.T.; Harrigan, R.W.

    1988-01-01

    This paper discusses a new telerobotic control concept and its implementation using a PUMA-560 robot manipulator. The control concept couples human supervisory commands with computer reasoning. The control system is responsive and accomplishes an operator's commands while providing obstacle avoidance and controlled interactions with the environment where desired. This provides a system which not only assists the operator in accomplishing tasks but modifies inappropriate operator commands which can result in safety hazards and/or equipment damage. 15 refs., 6 figs.

  13. Using automatic robot programming for space telerobotics

    NASA Technical Reports Server (NTRS)

    Mazer, E.; Jones, J.; Lanusse, A.; Lozano-Perez, T.; Odonnell, P.; Tournassoud, P.

    1987-01-01

    The interpreter of a task level robot programming system called Handey is described. Handey is a system that can recognize, manipulate and assemble polyhedral parts when given only a specification of the goal. To perform an assembly, Handey makes use of a recognition module, a gross motion planner, a grasp planner, a local approach planner and is capable of planning part re-orientation. The possibility of including these modules in a telerobotics work-station is discussed.

  14. Manipulator control and mechanization: A telerobot subsystem

    NASA Technical Reports Server (NTRS)

    Hayati, S.; Wilcox, B.

    1987-01-01

    The short- and long-term autonomous robot control activities in the Robotics and Teleoperators Research Group at the Jet Propulsion Laboratory (JPL) are described. This group is one of several involved in robotics and is an integral part of a new NASA robotics initiative called Telerobot program. A description of the architecture, hardware and software, and the research direction in manipulator control is given.

  15. Telerobotic system performance measurement: motivation and methods

    NASA Astrophysics Data System (ADS)

    Kondraske, George V.; Khoury, George J.

    1992-11-01

    Telerobotic systems (TRSs) and shared teleautonomous systems result from the integration of multiple sophisticated modules. Procedures used in systems integration design decision-making of such systems are frequently ad hoc compared to more quantitative and systematic methods employed elsewhere in engineering. Experimental findings associated with verification and validation (V&V) are often application-specific. Furthermore, models and measurement strategies do not exist which allow prediction of overall TRS performance in a given task based on knowledge of the performance characteristics of individual subsystems. This paper introduces the use of general systems performance theory (GSPT), developed by the senior author to help resolve similar problems in human performance, as a basis for: (1) measurement of overall TRS performance (viewing all system components, including the operator, as a single entity); (2) task decomposition; (3) development of a generic TRS model; and (4) the characterization of performance of subsystems comprising the generic model. GSPT uses a resource construct to model performance and resource economic principles to govern the interface of systems to tasks. It provides a comprehensive modeling/measurement strategy applicable to complex systems including both human and artificial components. Application is presented in the context of a distributed telerobotics network (Universities Space Automation and Robotics Consortium) as a testbed. Insight into the design of test protocols which elicit application-independent data (i.e., multi-purpose or reusable) is described. Although the work is motivated by space automation and robotics challenges, it is considered to be applicable to telerobotic systems in general.

  16. Jet Propulsion Laboratory/Kennedy Space Center telerobotic inspection and manipulation demonstration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian; Davis, Leon

    1990-01-01

    The goal of this effort is to demonstrate telerobotic inspection and mainpulation of space shuttle payloads in the presence of substantial communications time delays between the operator station and the robotic work space. The processing of space shuttle payloads provides a variety of tasks which are typical of both space shuttle ground operations and Space Station in-flight operations, and communications time delays are inevitable in space operations where the operator station will be light-seconds away from the telerobot. With this demonstration we hope to show the efficacy and safety of robotic technology for ground and space operations. Our approach is to develop an experimental telerobotic system with the remote sensing, actuation and reflex portions located at KSC in Florida, while the operator control station will be located at Jet Propulsion Laboratory (JPL) in California. The JPL portion of the system includes a high-level operator interface, intelligent spatial planning and machine vision, while the KSC portion includes the robot arm, end effectors, cameras and proximity sensors, and the necessary control and communications computers and software. The communications between JPL and KSC are over a limited-bandwidth network channel (19200 baud) with unpredictable and unrepeatable time delays. In FY89 we integrated a basic version of the robotic, communications, and computer hardware, and we developed the software to perform an operator-supervised inspection of a PAM-D satellite upper stage rocket motor and its shuttle support cradle. The demonstration, though severely limited by the bulk of the available computer arm, showed the potential of telerobotics for inspection tasks. In the future, we plan to develop additional capabilities which will allow manipulation tasks to be performed, including removal of dust covers and lens caps, insertion of connectors and batteries, and installation of payload objects.

  17. Challenges of Human-Robot Communication in Telerobotics

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.

    1996-01-01

    Some general considerations are presented on bilateral human-telerobot control and information communication issues. Advances are reviewed related to the more conventional human-telerobot communication techniques, and some unconventional but promising communication methods are briefly discussed. Future needs and emerging application domains are briefly indicated.

  18. Human-telerobot interactions - Information, control, and mental models

    NASA Technical Reports Server (NTRS)

    Smith, Randy L.; Gillan, Douglas J.

    1987-01-01

    A part of the NASA's Space Station will be a teleoperated robot (telerobot) with arms for grasping and manipulation, feet for holding onto objects, and television cameras for visual feedback. The objective of the work described in this paper is to develop the requirements and specifications for the user-telerobot interface and to determine through research and testing that the interface results in efficient system operation. The focus of the development of the user-telerobot interface is on the information required by the user, the user inputs, and the design of the control workstation. Closely related to both the information required by the user and the user's control of the telerobot is the user's mental model of the relationship between the control inputs and the telerobot's actions.

  19. Traction-drive, seven-degree-of-freedom telerobot arm: A concept for manipulaton in space

    NASA Technical Reports Server (NTRS)

    Kuban, D. P.; Williams, D. M.

    1987-01-01

    As man seeks to expand his dominion into new environments, the demand increases for machines that perform useful functions in remote locations. This new concept for manipulation in space is based on knowledge and experience gained from manipulator systems developed to meet the needs of remote nuclear applications. It merges the best characteristics of teleoperation and robotic technologies. The design goals for the telerobot, a mechanical description, and technology areas that must be addressed for successful implementation are presented and discussed. The concept incorporates mechanical traction drives, redundant kinematics, and modular arm subelements to provide a backlash-free manipulator capable of obstacle avoidance.

  20. Construction and demonstration of a 9-string 6 DOF force reflecting joystick for telerobotics

    NASA Technical Reports Server (NTRS)

    Lindemann, Randel; Tesar, Delbert

    1989-01-01

    Confrontation with difficult manipulation tasks in hostile environments such as space, has led to the development of means to transport the human's senses, skills and cognition to the remote site. The use of advanced Telerobotics to achieve this goal is examined. A novel and universal hand controller based on a fully parallel mechanical architecture is discussed. The design and implementation of this 6 DOF force reflecting joystick is shown in relationship to the general philosophy of achieving telepresence in a man-machine system.

  1. Visual Information Processing for Television and Telerobotics

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Park, Stephen K. (Editor)

    1989-01-01

    This publication is a compilation of the papers presented at the NASA conference on Visual Information Processing for Television and Telerobotics. The conference was held at the Williamsburg Hilton, Williamsburg, Virginia on May 10 to 12, 1989. The conference was sponsored jointly by NASA Offices of Aeronautics and Space Technology (OAST) and Space Science and Applications (OSSA) and the NASA Langley Research Center. The presentations were grouped into three sessions: Image Gathering, Coding, and Advanced Concepts; Systems; and Technologies. The program was organized to provide a forum in which researchers from industry, universities, and government could be brought together to discuss the state of knowledge in image gathering, coding, and processing methods.

  2. Telerobotics with whole arm collision avoidance

    SciTech Connect

    Wilhelmsen, K.; Strenn, S.

    1993-09-01

    The complexity of teleorbotic operations in a cluttered environment is exacerbated by the need to present collision information to the operator in an understandable fashion. In addition to preventing movements which will cause collisions, a system providing some form of virtual force reflection (VFR) is desirable. With this goal in mind, Lawrence Livermore National Laboratory (LLNL) has installed a kinematically master/slave system and developed a whole arm collision avoidance system which interacts directly with the telerobotic controller. LLNL has also provided a structure to allow for automated upgrades of workcell models and provide collision avoidance even in a dynamically changing workcell.

  3. Dual use display systems for telerobotics

    NASA Technical Reports Server (NTRS)

    Massimino, Michael J.; Meschler, Michael F.; Rodriguez, Alberto A.

    1994-01-01

    This paper describes a telerobotics display system, the Multi-mode Manipulator Display System (MMDS), that has applications for a variety of remotely controlled tasks. Designed primarily to assist astronauts with the control of space robotics systems, the MMDS has applications for ground control of space robotics as well as for toxic waste cleanup, undersea, remotely operated vehicles, and other environments which require remote operations. The MMDS has three modes: (1) Manipulator Position Display (MPD) mode, (2) Joint Angle Display (JAD) mode, and (3) Sensory Substitution (SS) mode. These three modes are discussed in the paper.

  4. Al, Automation And The Flight Telerobotic Servicer

    NASA Astrophysics Data System (ADS)

    Goforth, Andre; Dominy, Robert

    1988-10-01

    NASA has recently completed a study for the preliminary definition of a teleoperated robotic device. The Flight Telerobotic Servicer (FTS) will be used to assist astronauts in many of the on-board tasks of assembly, maintenance, servicing and inspection of the Space Station. This paper makes an assessment of the role that Artificial Intelligence (AI) may have in furthering the automation capabilities of the FTS and, hence, extending the FTS capacity for growth and evolution. Relevant system engineering issues are identified, and an approach for insertion of AI technology is presented in terms of the NASA/NBS Standard Reference Model (NASREM) control architecture.

  5. NASA Laboratory telerobotic manipulator control system architecture

    NASA Technical Reports Server (NTRS)

    Rowe, J. C.; Butler, P. L.; Glassell, R. L.; Herndon, J. N.

    1991-01-01

    In support of the National Aeronautics and Space Administration (NASA) goals to increase the utilization of dexterous robotic systems in space, the Oak Ridge National Laboratory (ORNL) has developed the Laboratory Telerobotic Manipulator (LTM) system. It is a dexterous, dual-arm, force reflecting teleoperator system with robotic features for NASA ground-based research. This paper describes the overall control system architecture, including both the hardware and software. The control system is a distributed, modular, and hierarchical design with flexible expansion capabilities for future enhancements of both the hardware and software.

  6. Open control/display system for a telerobotics work station

    NASA Technical Reports Server (NTRS)

    Keslowitz, Saul

    1987-01-01

    A working Advanced Space Cockpit was developed that integrated advanced control and display devices into a state-of-the-art multimicroprocessor hardware configuration, using window graphics and running under an object-oriented, multitasking real-time operating system environment. This Open Control/Display System supports the idea that the operator should be able to interactively monitor, select, control, and display information about many payloads aboard the Space Station using sets of I/O devices with a single, software-reconfigurable workstation. This is done while maintaining system consistency, yet the system is completely open to accept new additions and advances in hardware and software. The Advanced Space Cockpit, linked to Grumman's Hybrid Computing Facility and Large Amplitude Space Simulator (LASS), was used to test the Open Control/Display System via full-scale simulation of the following tasks: telerobotic truss assembly, RCS and thermal bus servicing, CMG changeout, RMS constrained motion and space constructible radiator assembly, HPA coordinated control, and OMV docking and tumbling satellite retrieval. The proposed man-machine interface standard discussed has evolved through many iterations of the tasks, and is based on feedback from NASA and Air Force personnel who performed those tasks in the LASS.

  7. An Ada run-time control architecture for telerobots

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Rodriguez, G.

    1987-01-01

    This paper describes the architecture and Ada language implementation of a process-level run-time control subystem for the Jet Propulsion Laboratory (JPL) telerobot system. The concept of run-time control in a combined robot-teleoperation environment is examined and the telerobot system at JPL is described. An Ada language implementation of the JPL Telerobot Run-Time Controller (RTC) is described by highlighting the functional behavior of the subsystem, defining the internal modules, and providing a functional flow time sequence of internal module activity.

  8. Telerobotic excavation system for unexploded ordnance retrieval

    SciTech Connect

    Burks, B.L.; Killough, S.M.; Thompson, D.H.; Rossi, R.A.

    1994-12-31

    The small emplacement excavator (SEE) is a ruggedized military vehicle with backhoe and front loader used by the US Army for unexploded ordnance (UXO) retrieval and general utility excavation activities. In order to evaluate the feasibility of removing personnel from the vehicle during high-risk excavation tasks a development and demonstration project was initiated to evaluate performance capabilities of the SEE under telerobotic control. A technology demonstration of the TSEE was conducted at McKinley Range, Redstone Arsenal, Huntsville, Alabama on 13--17 September, 1993. The primary objective of the demonstration was to evaluate and demonstrate the feasibility of remote UXO retrieval. During the demonstration, explosive ordnance disposal specialists were instructed on telerobotic operation of the TSEE, and then were asked to complete a simulated UXO retrieval task. Participants then submitted an evaluation of the system including human factors performance data. This presentation will describe the TSEE, retrieval demonstration, and summarize results of the performance evaluations. Some examples of the results are given below. Seventy percent of the demonstration participants found the tasks were as easy or easier to accomplish utilizing the remote system than with an unmodified system. Similarly, eighty percent of the participants found the TSEE hand controller was as easy or easier to use than the normal manual controls.

  9. Behavior-Based Assists for Telerobotic Manipulation

    SciTech Connect

    Noakes, Mark W; Hamel, Dr. William R.

    2008-01-01

    Teleoperated manipulation has been a critical tool in hazardous operations where the presence of humans has been precluded since the early days of nuclear material handling. Performance levels and limitations were understood and accepted. However, in the current era of decontamination and decommissioning (D&D) of facilities owned by the U.S. Department of Energy, there has been criticism that traditional remote systems are too expensive, too slow, and too difficult to use by cost-driven demolition companies. Previous research in telerobotics has attempted to alleviate some of these issues; however, it has been difficult to get capabilities generated in the research lab into the field. One major difficulty is the severely unstructured environments found in real D&D type environments. Behavior-based robotics (BBR) is based on concepts specifically designed to permit autonomous robots to function in unstructured environments. BBR schemes use sensor data to interact with the world directly rather than to generate models that are manipulated. Because the robot is immersed in its environment and since sensors are mounted on the robot, sensing and motion are inherently calibrated with respect to the robot. This paper presents a behavior-based approach and architecture for executing telerobotic D&D type tooling tasks.

  10. Comparison of two different running models for the shock wave lithotripsy machine in Taipei City Hospital: self-support versus outsourcing cooperation.

    PubMed

    Huang, Chi-Yi; Chen, Shiou-Sheng; Chen, Li-Kuei

    2009-10-01

    To compare two different running models including self-support and outsourcing cooperation for the extracorporeal shock wave lithotripsy (SWL) machine in Taipei City Hospital, we made a retrospective study. Self-support means that the hospital has to buy an SWL machine and get all the payment from SWL. In outsourcing cooperation, the cooperative company provides an SWL machine and shares the payment with the hospital. Between January 2002 and December 2006, we used self-support for the SWL machine, and from January 2007 to December 2008, we used outsourcing cooperation. We used the method of full costing to calculate the cost of SWL, and the break-even point was the lowest number of treatment sessions of SWL to make balance of payments every month. Quality parameters including stone-free rate, retreatment rate, additional procedures and complication rate were evaluated. When outsourcing cooperation was used, there were significantly more treatment sessions of SWL every month than when utilizing self-support (36.3 +/- 5.1 vs. 48.1 +/- 8.4, P = 0.03). The cost of SWL for every treatment session was significantly higher using self-support than with outsourcing cooperation (25027.5 +/- 1789.8 NT$ vs. 21367.4 +/- 201.0 NT$). The break-even point was 28.3 (treatment sessions) for self-support, and 28.4 for outsourcing cooperation, when the hospital got 40% of the payment, which would decrease if the percentage increased. No significant differences were noticed for stone-free rate, retreatment rate, additional procedures and complication rate of SWL between the two running models. Besides, outsourcing cooperation had lower cost (every treatment session), but a greater number of treatment sessions of SWL every month than self-support.

  11. Plugfest 2009: Global Interoperability in Telerobotics and Telemedicine

    PubMed Central

    King, H. Hawkeye; Hannaford, Blake; Kwok, Ka-Wai; Yang, Guang-Zhong; Griffiths, Paul; Okamura, Allison; Farkhatdinov, Ildar; Ryu, Jee-Hwan; Sankaranarayanan, Ganesh; Arikatla, Venkata; Tadano, Kotaro; Kawashima, Kenji; Peer, Angelika; Schauß, Thomas; Buss, Martin; Miller, Levi; Glozman, Daniel; Rosen, Jacob; Low, Thomas

    2014-01-01

    Despite the great diversity of teleoperator designs and applications, their underlying control systems have many similarities. These similarities can be exploited to enable inter-operability between heterogeneous systems. We have developed a network data specification, the Interoperable Telerobotics Protocol, that can be used for Internet based control of a wide range of teleoperators. In this work we test interoperable telerobotics on the global Internet, focusing on the telesurgery application domain. Fourteen globally dispersed telerobotic master and slave systems were connected in thirty trials in one twenty four hour period. Users performed common manipulation tasks to demonstrate effective master-slave operation. With twenty eight (93%) successful, unique connections the results show a high potential for standardizing telerobotic operation. Furthermore, new paradigms for telesurgical operation and training are presented, including a networked surgery trainer and upper-limb exoskeleton control of micro-manipulators. PMID:24748993

  12. A Telerobot to Extend the Skill of Microsurgeons

    NASA Technical Reports Server (NTRS)

    Das, H.; Ohm, T.; Boswell, C.; Rodriguez, G.; Steele, R.; Charles, S.

    1998-01-01

    The engineering details of the Robot Assisted MicroSurgery (RAMS) telerobotic system designed to assist microsurgeons improve the precision and dexterity with which they can position surgical instruments is described in this paper.

  13. Telerobotic manipulator developments for ground-based space research

    NASA Technical Reports Server (NTRS)

    Herndon, J. N.; Babcock, S. M.; Butler, P. L.; Costello, H. M.; Glassell, R. L.; Kress, Reid L.; Kuban, D. P.; Rowe, J. C.; Williams, D. M.; Meintel, A. J.

    1988-01-01

    New opportunities for the application of telerobotic systems to enhance human intelligence and dexterity in the hazardous environment of space are presented by the National Aeronautics and Space Administration (NASA) Space Station Program. Because of the need for significant increases in extravehicular activity and the potential increase in hazards associated with space programs, emphasis is being heightened on telerobotic systems research and development. The Automation Technology Branch at NASA Langley Research Center currently is sponsoring the Laboratory Telerobotic Manipulator (LTM) program at Oak Ridge National Laboratory to develop and demonstrate ground-based telerobotic manipulator system hardware for research and demonstrations aimed at future NASA applications. The LTM incorporates traction drives, modularity, redundant kinematics, and state-of-the-art hierarchical control techniques to form a basis for merging the diverse technological domains of robust, high-dexterity teleoperations and autonomous robotic operation into common hardware to further NASA's research.

  14. System integration of a Telerobotic Demonstration System (TDS) testbed

    NASA Technical Reports Server (NTRS)

    Myers, John K.

    1987-01-01

    The concept for and status of a telerobotic demonstration system testbed that integrates teleoperation and robotics is described. The components of the telerobotic system are described and the ongoing projects are discussed. The system can be divided into two sections: the autonomous subsystems, and the additional interface and support subsystems including teleoperations. The workings of each subsystem by itself and how the subsystems integrate into a complete system is discussed.

  15. Planning and reasoning in the JPL telerobot testbed

    NASA Technical Reports Server (NTRS)

    Peters, Stephen; Mittman, David; Collins, Carol; Omeara, Jacquie; Rokey, Mark

    1990-01-01

    The Telerobot Interactive Planning System is developed to serve as the highest autonomous-control level of the Telerobot Testbed. A recent prototype is described which integrates an operator interface for supervisory control, a task planner supporting disassembly and re-assembly operations, and a spatial planner for collision-free manipulator motion through the workspace. Each of these components is described in detail. Descriptions of the technical problem, approach, and lessons learned are included.

  16. PC/AT-based architecture for shared telerobotic control

    NASA Astrophysics Data System (ADS)

    Schinstock, Dale E.; Faddis, Terry N.; Barr, Bill G.

    1993-03-01

    A telerobotic control system must include teleoperational, shared, and autonomous modes of control in order to provide a robot platform for incorporating the rapid advances that are occurring in telerobotics and associated technologies. These modes along with the ability to modify the control algorithms are especially beneficial for telerobotic control systems used for research purposes. The paper describes an application of the PC/AT platform to the control system of a telerobotic test cell. The paper provides a discussion of the suitability of the PC/AT as a platform for a telerobotic control system. The discussion is based on the many factors affecting the choice of a computer platform for a real time control system. The factors include I/O capabilities, simplicity, popularity, computational performance, and communication with external systems. The paper also includes a description of the actuation, measurement, and sensor hardware of both the master manipulator and the slave robot. It also includes a description of the PC-Bus interface cards. These cards were developed by the researchers in the KAT Laboratory, specifically for interfacing to the master manipulator and slave robot. Finally, a few different versions of the low level telerobotic control software are presented. This software incorporates shared control by supervisory systems and the human operator and traded control between supervisory systems and the human operator.

  17. Telerobotic rendezvous and docking vision system architecture

    NASA Technical Reports Server (NTRS)

    Gravely, Ben; Myers, Donald; Moody, David

    1992-01-01

    This research program has successfully demonstrated a new target label architecture that allows a microcomputer to determine the position, orientation, and identity of an object. It contains a CAD-like database with specific geometric information about the object for approach, grasping, and docking maneuvers. Successful demonstrations were performed selecting and docking an ORU box with either of two ORU receptacles. Small, but significant differences were seen in the two camera types used in the program, and camera sensitive program elements have been identified. The software has been formatted into a new co-autonomy system which provides various levels of operator interaction and promises to allow effective application of telerobotic systems while code improvements are continuing.

  18. Modular telerobot control system for accident response

    NASA Astrophysics Data System (ADS)

    Anderson, Richard J. M.; Shirey, David L.

    1999-08-01

    The Accident Response Mobile Manipulator System (ARMMS) is a teleoperated emergency response vehicle that deploys two hydraulic manipulators, five cameras, and an array of sensors to the scene of an incident. It is operated from a remote base station that can be situated up to four kilometers away from the site. Recently, a modular telerobot control architecture called SMART was applied to ARMMS to improve the precision, safety, and operability of the manipulators on board. Using SMART, a prototype manipulator control system was developed in a couple of days, and an integrated working system was demonstrated within a couple of months. New capabilities such as camera-frame teleoperation, autonomous tool changeout and dual manipulator control have been incorporated. The final system incorporates twenty-two separate modules and implements seven different behavior modes. This paper describes the integration of SMART into the ARMMS system.

  19. An expert system for planning and scheduling in a telerobotic environment

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.; Park, Eui H.

    1991-01-01

    A knowledge based approach to assigning tasks to multi-agents working cooperatively in jobs that require a telerobot in the loop was developed. The generality of the approach allows for such a concept to be applied in a nonteleoperational domain. The planning architecture known as the task oriented planner (TOP) uses the principle of flow mechanism and the concept of planning by deliberation to preserve and use knowledge about a particular task. The TOP is an open ended architecture developed with a NEXPERT expert system shell and its knowledge organization allows for indirect consultation at various levels of task abstraction. Considering that a telerobot operates in a hostile and nonstructured environment, task scheduling should respond to environmental changes. A general heuristic was developed for scheduling jobs with the TOP system. The technique is not to optimize a given scheduling criterion as in classical job and/or flow shop problems. For a teleoperation job schedule, criteria are situation dependent. A criterion selection is fuzzily embedded in the task-skill matrix computation. However, goal achievement with minimum expected risk to the human operator is emphasized.

  20. Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation

    PubMed Central

    Mogk, Axel; Kummer, Eva; Bukau, Bernd

    2015-01-01

    Unicellular and sessile organisms are particularly exposed to environmental stress such as heat shock causing accumulation and aggregation of misfolded protein species. To counteract protein aggregation, bacteria, fungi, and plants encode a bi-chaperone system composed of ATP-dependent Hsp70 and hexameric Hsp100 (ClpB/Hsp104) chaperones, which rescue aggregated proteins and provide thermotolerance to cells. The partners act in a hierarchic manner with Hsp70 chaperones coating first the surface of protein aggregates and next recruiting Hsp100 through direct physical interaction. Hsp100 proteins bind to the ATPase domain of Hsp70 via their unique M-domain. This extra domain functions as a molecular toggle allosterically controlling ATPase and threading activities of Hsp100. Interactions between neighboring M-domains and the ATPase ring keep Hsp100 in a repressed state exhibiting low ATP turnover. Breakage of intermolecular M-domain interactions and dissociation of M-domains from the ATPase ring relieves repression and allows for Hsp70 interaction. Hsp70 binding in turn stabilizes Hsp100 in the activated state and primes Hsp100 ATPase domains for high activity upon substrate interaction. Hsp70 thereby couples Hsp100 substrate binding and motor activation. Hsp100 activation presumably relies on increased subunit cooperation leading to high ATP turnover and threading power. This Hsp70-mediated activity control of Hsp100 is crucial for cell viability as permanently activated Hsp100 variants are toxic. Hsp100 activation requires simultaneous binding of multiple Hsp70 partners, restricting high Hsp100 activity to the surface of protein aggregates and ensuring Hsp100 substrate specificity. PMID:26042222

  1. Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation.

    PubMed

    Mogk, Axel; Kummer, Eva; Bukau, Bernd

    2015-01-01

    Unicellular and sessile organisms are particularly exposed to environmental stress such as heat shock causing accumulation and aggregation of misfolded protein species. To counteract protein aggregation, bacteria, fungi, and plants encode a bi-chaperone system composed of ATP-dependent Hsp70 and hexameric Hsp100 (ClpB/Hsp104) chaperones, which rescue aggregated proteins and provide thermotolerance to cells. The partners act in a hierarchic manner with Hsp70 chaperones coating first the surface of protein aggregates and next recruiting Hsp100 through direct physical interaction. Hsp100 proteins bind to the ATPase domain of Hsp70 via their unique M-domain. This extra domain functions as a molecular toggle allosterically controlling ATPase and threading activities of Hsp100. Interactions between neighboring M-domains and the ATPase ring keep Hsp100 in a repressed state exhibiting low ATP turnover. Breakage of intermolecular M-domain interactions and dissociation of M-domains from the ATPase ring relieves repression and allows for Hsp70 interaction. Hsp70 binding in turn stabilizes Hsp100 in the activated state and primes Hsp100 ATPase domains for high activity upon substrate interaction. Hsp70 thereby couples Hsp100 substrate binding and motor activation. Hsp100 activation presumably relies on increased subunit cooperation leading to high ATP turnover and threading power. This Hsp70-mediated activity control of Hsp100 is crucial for cell viability as permanently activated Hsp100 variants are toxic. Hsp100 activation requires simultaneous binding of multiple Hsp70 partners, restricting high Hsp100 activity to the surface of protein aggregates and ensuring Hsp100 substrate specificity. PMID:26042222

  2. Label-free and dual-amplified detection of protein via small molecule-ligand linked DNA and a cooperative DNA machine.

    PubMed

    Li, Pei; Wang, Lei; Zhu, Jing; Wu, Yushu; Jiang, Wei

    2015-10-15

    Sensitive detection of protein is essential for both molecular diagnostics and biomedical research. Here, taking folate receptor as the model analyte, we developed a label-free and dual-amplified strategy via small molecular-ligand linked DNA and a cooperative DNA machine which could perform primary amplification and mediate secondary amplification simultaneously. Firstly, the specific binding of folate receptor to the small-molecule folate which linked to a trigger DNA could protect the trigger DNA from exonuclease I digestion, translating folate receptor detection into trigger DNA detection. Subsequently, trigger DNA initiated the DNA machine through hybridizing with the hairpin of the DNA machine, resulting in hairpin conformational change and stem open. The open stem further hybridized with a primer which initiated circular strand-displacement polymerization reaction; meanwhile the rolling circle amplification templates which were initially blocked in the DNA machine were liberated to mediate rolling circle amplification. In such a working model, the DNA machine achieved cooperatively controlling circular strand-displacement polymerization reaction and rolling circle amplification, realizing dual-amplification. Finally, the rolling circle amplification process synthesized a long repeated G-quadruplex sequence, which strongly interacted with N-methyl mesoporphyrin IX, bringing label-free fluorescence signal. This strategy could detect folate receptor as low as 0.23 pM. A recovery over 90% was obtained when folate receptor was detected in spiked human serum, demonstrating the feasibility of this detection strategy in biological samples.

  3. Application of structured analysis to a telerobotic system

    NASA Technical Reports Server (NTRS)

    Dashman, Eric; Mclin, David; Harrison, F. W.; Soloway, Donald; Young, Steven

    1990-01-01

    The analysis and evaluation of a multiple arm telerobotic research and demonstration system developed by the NASA Intelligent Systems Research Laboratory (ISRL) is described. Structured analysis techniques were used to develop a detailed requirements model of an existing telerobotic testbed. Performance models generated during this process were used to further evaluate the total system. A commercial CASE tool called Teamwork was used to carry out the structured analysis and development of the functional requirements model. A structured analysis and design process using the ISRL telerobotic system as a model is described. Evaluation of this system focused on the identification of bottlenecks in this implementation. The results demonstrate that the use of structured methods and analysis tools can give useful performance information early in a design cycle. This information can be used to ensure that the proposed system meets its design requirements before it is built.

  4. Weighted feature selection criteria for visual servoing of a telerobot

    NASA Technical Reports Server (NTRS)

    Feddema, John T.; Lee, C. S. G.; Mitchell, O. R.

    1989-01-01

    Because of the continually changing environment of a space station, visual feedback is a vital element of a telerobotic system. A real time visual servoing system would allow a telerobot to track and manipulate randomly moving objects. Methodologies for the automatic selection of image features to be used to visually control the relative position between an eye-in-hand telerobot and a known object are devised. A weighted criteria function with both image recognition and control components is used to select the combination of image features which provides the best control. Simulation and experimental results of a PUMA robot arm visually tracking a randomly moving carburetor gasket with a visual update time of 70 milliseconds are discussed.

  5. High level intelligent control of telerobotics systems

    NASA Technical Reports Server (NTRS)

    Mckee, James

    1988-01-01

    A high level robot command language is proposed for the autonomous mode of an advanced telerobotics system and a predictive display mechanism for the teleoperational model. It is believed that any such system will involve some mixture of these two modes, since, although artificial intelligence can facilitate significant autonomy, a system that can resort to teleoperation will always have the advantage. The high level command language will allow humans to give the robot instructions in a very natural manner. The robot will then analyze these instructions to infer meaning so that is can translate the task into lower level executable primitives. If, however, the robot is unable to perform the task autonomously, it will switch to the teleoperational mode. The time delay between control movement and actual robot movement has always been a problem in teleoperations. The remote operator may not actually see (via a monitor) the results of high actions for several seconds. A computer generated predictive display system is proposed whereby the operator can see a real-time model of the robot's environment and the delayed video picture on the monitor at the same time.

  6. Fuzzy logic control of telerobot manipulators

    NASA Technical Reports Server (NTRS)

    Franke, Ernest A.; Nedungadi, Ashok

    1992-01-01

    Telerobot systems for advanced applications will require manipulators with redundant 'degrees of freedom' (DOF) that are capable of adapting manipulator configurations to avoid obstacles while achieving the user specified goal. Conventional methods for control of manipulators (based on solution of the inverse kinematics) cannot be easily extended to these situations. Fuzzy logic control offers a possible solution to these needs. A current research program at SRI developed a fuzzy logic controller for a redundant, 4 DOF, planar manipulator. The manipulator end point trajectory can be specified by either a computer program (robot mode) or by manual input (teleoperator). The approach used expresses end-point error and the location of manipulator joints as fuzzy variables. Joint motions are determined by a fuzzy rule set without requiring solution of the inverse kinematics. Additional rules for sensor data, obstacle avoidance and preferred manipulator configuration, e.g., 'righty' or 'lefty', are easily accommodated. The procedure used to generate the fuzzy rules can be extended to higher DOF systems.

  7. Telerobotics for Human Exploration: Enhancing Crew Capabilities in Deep Space

    NASA Technical Reports Server (NTRS)

    Fong, Terrence

    2013-01-01

    Future space missions in Earth orbit, to the Moon, and to other distant destinations offer many new opportunities for exploration. But, astronaut time will always be limited and some work will not be feasible or efficient for humans to perform manually. Telerobots, however, can complement human explorers, performing work under remote control from Earth, orbit or nearby habitats. A central challenge, therefore, is to understand how humans and remotely operated robots can be jointly employed to maximize mission performance and success. This presentation provides an overview of the key issues with using telerobots for human exploration.

  8. Telerobotic on-orbit remote fluid resupply system

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The development of a telerobotic on-orbit fluid resupply demonstration system is described. A fluid transfer demonstration system was developed which functionally simulates operations required to remotely transfer fluids (liquids or gases) from a servicing spacecraft to a receiving spacecraft through the use of telerobotic manipulations. The fluid system is representative of systems used by current or planned spacecraft and propulsion stages requiring on-orbit remote resupply. The system was integrated with an existing MSFC remotely controlled manipulator arm to mate/demate couplings for demonstration and evaluation of a complete remotely operated fluid transfer system.

  9. Traction-drive seven degrees-of-freedom telerobot arm: A concept for manipulation in space

    SciTech Connect

    Kuban, D.P.; Williams, D.M.

    1987-01-01

    As man seeks to expand his dominion into new environments, the demand increases for machines that perform useful functions in remote locations. This new concept for manipulation in space is based on knowledge and experience gained from manipulator systems developed to meet the needs of remote nuclear applications. It merges the best characteristics of teleoperation and robotic technologies. This paper summarizes the report of a study performed for NASA Langley Research Center. The design goals for the telerobot, a mechanical description, and technology areas that must be addressed for successful implementation will be presented and discussed. The concept incorporates mechanical traction drives, redundant kinematics, and modular arm subelements to provide a backlash-free manipulator capable of obstacle avoidance. Further development of this arm is in progress at the Oak Ridge National Laboratory.

  10. Man/Machine Interaction Dynamics And Performance (MMIDAP) capability

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    1991-01-01

    The creation of an ability to study interaction dynamics between a machine and its human operator can be approached from a myriad of directions. The Man/Machine Interaction Dynamics and Performance (MMIDAP) project seeks to create an ability to study the consequences of machine design alternatives relative to the performance of both machine and operator. The class of machines to which this study is directed includes those that require the intelligent physical exertions of a human operator. While Goddard's Flight Telerobotic's program was expected to be a major user, basic engineering design and biomedical applications reach far beyond telerobotics. Ongoing efforts are outlined of the GSFC and its University and small business collaborators to integrate both human performance and musculoskeletal data bases with analysis capabilities necessary to enable the study of dynamic actions, reactions, and performance of coupled machine/operator systems.

  11. Java interface for asserting interactive telerobotic control

    NASA Astrophysics Data System (ADS)

    DePasquale, Peter; Lewis, John; Stein, Matthew R.

    1997-12-01

    Many current web-based telerobotic interfaces use HyperText Markup Language (HTML) forms to assert user control on a robot. While acceptable for some tasks, a Java interface can provide better client-server interaction. The Puma Paint project is a joint effort between the Department of Computing Sciences at Villanova University and the Department of Mechanical and Materials Engineering at Wilkes University. THe project utilizes a Java applet to control a Unimation Puma 1760 robot during the task of painting on a canvas. The interface allows the user to control the paint strokes as well as the pressure of a brush on the canvas and how deep the brush is dipped into a paint jar. To provide immediate feedback, a virtual canvas models the effects of the controls as the artist paints. Live color video feedback is provided, allowing the user to view the actual results of the robot's motions. Unlike the step-at-a-time model of many web forms, the application permits the user to assert interactive control. The greater the complexity of the interaction between the robot and its environment, the greater the need for high quality information presentation to the user. The use of Java allows the sophistication of the user interface to be raised to the level required for satisfactory control. This paper describes the Puma Paint project, including the interface and communications model. It also examines the challenges of using the Internet as the medium of communications and the challenges of encoding free ranging motions for transmission from the client to the robot.

  12. Telerobotics Workstation (TRWS) for Deep Space Habitats

    NASA Technical Reports Server (NTRS)

    Mittman, David S.; Howe, Alan S.; Tores, Recaredo J.; Rochlis, Jennifer L.; Hambuchen, Kimberly A.; Demel, Matthew; Chapman, Christopher C.

    2012-01-01

    On medium- to long-duration human spaceflight missions, latency in communications from Earth could reduce efficiency or hinder local operations, control, and monitoring of the various mission vehicles and other elements. Regardless of the degree of autonomy of any one particular element, a means of monitoring and controlling the elements in real time based on mission needs would increase efficiency and response times for their operation. Since human crews would be present locally, a local means for monitoring and controlling all the various mission elements is needed, particularly for robotic elements where response to interesting scientific features in the environment might need near- instantaneous manipulation and control. One of the elements proposed for medium- and long-duration human spaceflight missions, the Deep Space Habitat (DSH), is intended to be used as a remote residence and working volume for human crews. The proposed solution for local monitoring and control would be to provide a workstation within the DSH where local crews can operate local vehicles and robotic elements with little to no latency. The Telerobotics Workstation (TRWS) is a multi-display computer workstation mounted in a dedicated location within the DSH that can be adjusted for a variety of configurations as required. From an Intra-Vehicular Activity (IVA) location, the TRWS uses the Robot Application Programming Interface Delegate (RAPID) control environment through the local network to remotely monitor and control vehicles and robotic assets located outside the pressurized volume in the immediate vicinity or at low-latency distances from the habitat. The multiple display area of the TRWS allows the crew to have numerous windows open with live video feeds, control windows, and data browsers, as well as local monitoring and control of the DSH and associated systems.

  13. Mars Surface Operations via Low-Latency Telerobotics from Phobos

    NASA Technical Reports Server (NTRS)

    Wright, Michael; Lupisella, Mark

    2016-01-01

    To help assess the feasibility and timing of Low-Latency Telerobotics (LLT) operations on Mars via a Phobos telecommand base, operations concepts (ops cons) and timelines for several representative sequences for Mars surface operations have been developed. A summary of these LLT sequences and timelines will be presented, along with associated assumptions, operational considerations, and challenges.

  14. Medical telerobotic systems: current status and future trends.

    PubMed

    Avgousti, Sotiris; Christoforou, Eftychios G; Panayides, Andreas S; Voskarides, Sotos; Novales, Cyril; Nouaille, Laurence; Pattichis, Constantinos S; Vieyres, Pierre

    2016-01-01

    Teleoperated medical robotic systems allow procedures such as surgeries, treatments, and diagnoses to be conducted across short or long distances while utilizing wired and/or wireless communication networks. This study presents a systematic review of the relevant literature between the years 2004 and 2015, focusing on medical teleoperated robotic systems which have witnessed tremendous growth over the examined period. A thorough insight of telerobotics systems discussing design concepts, enabling technologies (namely robotic manipulation, telecommunications, and vision systems), and potential applications in clinical practice is provided, while existing limitations and future trends are also highlighted. A representative paradigm of the short-distance case is the da Vinci Surgical System which is described in order to highlight relevant issues. The long-distance telerobotics concept is exemplified through a case study on diagnostic ultrasound scanning. Moreover, the present review provides a classification into short- and long-distance telerobotic systems, depending on the distance from which they are operated. Telerobotic systems are further categorized with respect to their application field. For the reviewed systems are also examined their engineering characteristics and the employed robotics technology. The current status of the field, its significance, the potential, as well as the challenges that lie ahead are thoroughly discussed. PMID:27520552

  15. Telerobotic Tending of Space Based Plant Growth Chamber

    NASA Technical Reports Server (NTRS)

    Backes, P. G.; Long, M. K.; Das, H.

    1994-01-01

    The kinematic design of a telerobotic mechanism for tending a plant growth space science experiment chamber is described. Ground based control of tending mechanisms internal to space science experiments will allow ground based principal investigators to interact directly with their space science experiments.

  16. Custom electronic subsystems for the Laboratory Telerobotic Manipulator

    SciTech Connect

    Glassell, R.L.; Butler, P.L.; Rowe, J.C. ); Zimmermann, S.D. )

    1990-01-01

    The National Aeronautics and Space Administration (NASA) Space Station Program presents new opportunities for the application of telerobotic and robotic systems. The Laboratory Telerobotic Manipulator (LTM) is a highly advanced 7 degrees-of-freedom (DOF) telerobotic/robotic manipulator. It was developed and built for the Automation Technology Branch at NASA's Langley Research Center (LaRC) for work in research and to demonstrate ground-based telerobotic manipulator system hardware and software systems for future NASA applications in the hazardous environment of space. The LTM manipulator uses an embedded wiring design with all electronics, motor power, and control and communication cables passing through the pitch-yaw differential joints. This design requires the number of cables passing through the pitch/yaw joint to be kept to a minimum. To eliminate the cables needed to carry each pitch-yaw joint's sensor data to the VME control computers, a custom-embedded electronics package for each manipulator joint was developed. The electronics package collects and sends the joint's sensor data to the VME control computers over a fiber optic cable. The electronics package consist of five individual subsystems: the VME Link Processor, the Joint Processor and the Joint Processor power supply in the joint module, the fiber optics communications system, and the electronics and motor power cabling. 3 refs., 3 figs.

  17. Establishment of the World's First Telerobotic Remote Surgical Service

    PubMed Central

    Anvari, Mehran; McKinley, Craig; Stein, Harvey

    2005-01-01

    Objective: To establish a telerobotic surgical service between a teaching hospital and a rural hospital for provision of telerobotic surgery and assistance to aid rural surgeons in providing a variety of advanced laparoscopic surgery to their community patients. Summary Background Data: The above service was established between St. Joseph's Hospital in Hamilton and North Bay General Hospital 400 km north of Hamilton on February 28, 2003. The service uses an IP-VPN (15 Mbps of bandwidth) commercially available network to connect the robotic console in Hamilton with 3 arms of the Zeus-TS surgical system in North Bay. Results: To date, 21 telerobotic laparoscopic surgeries have taken place between North Bay and Hamilton, including 13 fundoplications, 3 sigmoid resections, 2 right hemicolectomies, 1 anterior resection, and 2 inguinal hernia repairs. The 2 surgeons were able to operate together using the same surgical footprint and interchange roles seamlessly when desired. There have been no serious intraoperative complications and no cases have had to be converted to open surgeries. The mean hospital stays were equivalent to mean laparoscopic LOS in the tertiary institution. Conclusions: Telerobotic remote surgery is now in routine use, providing high-quality laparoscopic surgical services to patients in a rural community and providing a superior degree of collaboration between surgeons in teaching hospitals and rural hospitals. Further refinement of the robotic and telecommunication technology should ensure its wider application in the near future. PMID:15729068

  18. Custom electronic subsystems for the laboratory telerobotic manipulator

    NASA Technical Reports Server (NTRS)

    Glassell, R. L.; Butler, P. L.; Rowe, J. C.; Zimmermann, S. D.

    1990-01-01

    The National Aeronautics and Space Administration (NASA) Space Station Program presents new opportunities for the application of telerobotic and robotic systems. The Laboratory Telerobotic Manipulator (LTM) is a highly advanced 7 degrees-of-freedom (DOF) telerobotic/robotic manipulator. It was developed and built for the Automation Technology Branch at NASA's Langley Research Center (LaRC) for work in research and to demonstrate ground-based telerobotic manipulator system hardware and software systems for future NASA applications in the hazardous environment of space. The LTM manipulator uses an embedded wiring design with all electronics, motor power, and control and communication cables passing through the pitch-yaw differential joints. This design requires the number of cables passing through the pitch/yaw joint to be kept to a minimum. To eliminate the cables needed to carry each pitch-yaw joint's sensor data to the VME control computers, a custom-embedded electronics package for each manipulator joint was developed. The electronics package collects and sends the joint's sensor data to the VME control computers over a fiber optic cable. The electronics package consist of five individual subsystems: the VME Link Processor, the Joint Processor and the Joint Processor power supply in the joint module, the fiber optics communications system, and the electronics and motor power cabling.

  19. Experiences with the JPL telerobot testbed: Issues and insights

    NASA Technical Reports Server (NTRS)

    Stone, Henry W.; Balaram, Bob; Beahan, John

    1989-01-01

    The Jet Propulsion Laboratory's (JPL) Telerobot Testbed is an integrated robotic testbed used to develop, implement, and evaluate the performance of advanced concepts in autonomous, tele-autonomous, and tele-operated control of robotic manipulators. Using the Telerobot Testbed, researchers demonstrated several of the capabilities and technological advances in the control and integration of robotic systems which have been under development at JPL for several years. In particular, the Telerobot Testbed was recently employed to perform a near completely automated, end-to-end, satellite grapple and repair sequence. The task of integrating existing as well as new concepts in robot control into the Telerobot Testbed has been a very difficult and timely one. Now that researchers have completed the first major milestone (i.e., the end-to-end demonstration) it is important to reflect back upon experiences and to collect the knowledge that has been gained so that improvements can be made to the existing system. It is also believed that the experiences are of value to the others in the robotics community. Therefore, the primary objective here will be to use the Telerobot Testbed as a case study to identify real problems and technological gaps which exist in the areas of robotics and in particular systems integration. Such problems have surely hindered the development of what could be reasonably called an intelligent robot. In addition to identifying such problems, researchers briefly discuss what approaches have been taken to resolve them or, in several cases, to circumvent them until better approaches can be developed.

  20. The use of graphics in the design of the human-telerobot interface

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Smith, Randy L.

    1989-01-01

    The Man-Systems Telerobotics Laboratory (MSTL) of NASA's Johnson Space Center employs computer graphics tools in their design and evaluation of the Flight Telerobotic Servicer (FTS) human/telerobot interface on the Shuttle and on the Space Station. It has been determined by the MSTL that the use of computer graphics can promote more expedient and less costly design endeavors. Several specific examples of computer graphics applied to the FTS user interface by the MSTL are described.

  1. NASA's Space Launch System: Positioning Assets for Tele-Robotic Operations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.; Robinson, Kimberly F.

    2013-01-01

    The National Aeronautics and Space Administration (NASA) is designing and developing America's most capable launch vehicle to support high-priority human and scientific exploration beyond Earth's orbit. The Space Launch System (SLS) will initially lift 70 metric tons (t) on its first flights, slated to begin in 2017, and will be evolved after 2021 to a full 130-t capability-larger than the Saturn V Moon rocket. This superior lift and associated volume capacity will support game-changing exploration in regions that were previously unattainable, being too costly and risky to reach. On the International Space Station, astronauts are training for long-duration missions to asteroids and cis-martian regions, but have not had transportation out of Earth's orbit - until now. Simultaneously, productive rovers are sending scientists - and space fans - unprecedented information about the composition and history of Mars, the planet thought to be most like Earth. This combination of experience and information is laying the foundation for future missions, such as those outlined in NASA's "Mars Next Decade" report, that will rely on te1e-robotic operations to take exploration to the next level. Within this paradigm, NASA's Space Launch System stands ready to manifest the unique payloads that will be required for mission success. Ultimately, the ability to position assets - ranging from orbiters, to landers, to communication satellites and surface systems - is a critical step in broadening the reach of technological innovation that will benefit all Earth's people as the Space Age unfolds. This briefing will provide an overview of how the Space Launch System will support delivery of elements for tele-robotic operations at destinations such as the Moon and Mars, which will synchronize the human-machine interface to deliver hybrid on-orbit capabilities. Ultimately, telerobotic operations will open entirely new vistas and the doors of discovery. NASA's Space Launch System will be a

  2. The effect of bandwidth on telerobot system performance

    NASA Technical Reports Server (NTRS)

    Uebel, Mark; Ali, Michael S.; Minis, Ioannis

    1991-01-01

    The purpose of the experiment was to determine the effect that various slave-joint bandwidths have on telerobot system performance. The telerobot system consisted of a slave arm controlled by a master. The slave incorporated an impedance loop to provide local compliance in addition to the compliance provided by the operator via force feedback. Three joint bandwidths, 0.5, 1.0, and 2.0 Hz, were used. The performance measures were the task completion time and the sums of the squared forces and moments exerted on the environment. The task consisted of peg-in-hole insertion and removal. The results of the experiment indicate a significant performance decrease at 0.5-Hz bandwidth relative to the 1- and 2-Hz bandwidths. There was no significant change in performance between the 1- and 2-Hz bandwidths.

  3. Thermal feedback in virtual reality and telerobotic systems

    NASA Technical Reports Server (NTRS)

    Zerkus, Mike; Becker, Bill; Ward, Jon; Halvorsen, Lars

    1994-01-01

    A new concept has been developed that allows temperature to be part of the virtual world. The Displaced Temperature Sensing System (DTSS) can 'display' temperature in a virtual reality system.The DTSS can also serve as a feedback device for telerobotics. For virtual reality applications the virtual world software would be required to have a temperature map of its world. By whatever means (magnetic tracker, ultrasound tracker, etc.) the hand and fingers, which have been instrumented with thermodes, would be tracked. The temperature associated with the current position would be transmitted to the DRSS via a serial data link. The DTSS would provide that temperature to the fingers. For telerobotic operation the function of the DTSS is to transmit a temperature from a remote location to the fingers where the temperature can be felt.

  4. Telerobotics surgery in a transatlantic experiment: application in laparoscopy

    NASA Astrophysics Data System (ADS)

    Rovetta, Alberto; Sala, Remo; Cosmi, Francesca; Wen, Xia; Sabbadini, Dario; Milanesi, Santo; Togno, Arianna; Angelini, Licinio; Bejczy, Antal K.

    1993-12-01

    This paper describes the significance in human, scientific, and technical terms of the first experiment of robotic telesurgery effected between the Telerobotics Laboratory of the Politecnico di Milano and the Jet Propulsion Laboratory, NASA, in Pasadena California, on 7 July 1993. An Italian surgeon controlled from the U.S. A. an Italian robot in the Telerobotics Laboratory in such a way that the robot performed a biopsy, on a model containing the organs of a pig, carrying out an aspiration of organic material and two incisions for the commencement of the surgical operation of laparoscopy. Transmission was effected by means of a double satellite link with three stations -- one in Italy, one in New York and one in Pasadena -- and two geostationary satellites, the first over the Atlantic and the second over the United States.

  5. Proportional proximity sensing for telerobots using Coherent Laser Radar

    NASA Technical Reports Server (NTRS)

    Vazquez, Sixto L.; Goode, Plesent W.; Slotwinski, Anthony R.

    1992-01-01

    The ability of a telerobotic manipulator to operate in confined spaces while avoiding unwanted collisions is enhanced by the accurate sensing of its proximate environment. To achieve the fidelity required for precise manipulator control, a proportional proximity sensor system with a sufficiently large measurement envelope is required. Current proximity sensors provide a binary indication of the presence of obstacles within a small envelope with coarse or no proportional measurement of their location. A proportional proximity sensor system configured as a Frequency Modulated Continuous Wave (FMCW) Coherent Laser Radar (CLR) using a semiconductor laser as the energy source is described and analyzed. The source and reflected energies mix coherently to generate a radio frequency (RF) signal whose frequency is proportional to the range. The system is tested for accuracy, range, depth of range, speed, and sensitivity and the results are presented. Techniques to derive orientation information and an application to telerobotic control are also described.

  6. A smart telerobotic system driven by monocular vision

    NASA Technical Reports Server (NTRS)

    Defigueiredo, R. J. P.; Maccato, A.; Wlczek, P.; Denney, B.; Scheerer, J.

    1994-01-01

    A robotic system that accepts autonomously generated motion and control commands is described. The system provides images from the monocular vision of a camera mounted on a robot's end effector, eliminating the need for traditional guidance targets that must be predetermined and specifically identified. The telerobotic vision system presents different views of the targeted object relative to the camera, based on a single camera image and knowledge of the target's solid geometry.

  7. Real-time qualitative reasoning for telerobotic systems

    NASA Technical Reports Server (NTRS)

    Pin, Eancois G.

    1993-01-01

    This paper discusses the sensor-based telerobotic driving of a car in a-priori unknown environments using 'human-like' reasoning schemes implemented on custom-designed VLSI fuzzy inferencing boards. These boards use the Fuzzy Set theoretic framework to allow very vast (30 kHz) processing of full sets of information that are expressed in qualitative form using membership functions. The sensor-based and fuzzy inferencing system was incorporated on an outdoor test-bed platform to investigate two control modes for driving a car on the basis of very sparse and imprecise range data. In the first mode, the car navigates fully autonomously to a goal specified by the operator, while in the second mode, the system acts as a telerobotic driver's aid providing the driver with linguistic (fuzzy) commands to turn left or right, speed up, slow down, stop, or back up depending on the obstacles perceived by the sensors. Indoor and outdoor experiments with both modes of control are described in which the system uses only three acoustic range (sonar) sensor channels to perceive the environment. Sample results are presented that illustrate the feasibility of developing autonomous navigation modules and robust, safety-enhancing driver's aids for telerobotic systems using the new fuzzy inferencing VLSI hardware and 'human-like' reasoning schemes.

  8. Telerobotic Perception During Asteroid and Mars Regolith Operations Project

    NASA Technical Reports Server (NTRS)

    Gaddis, Steven; Zeitlin, Nancy (Compiler); Mueller, Robert (Compiler)

    2015-01-01

    Current space telerobotic systems are constrained to only operating in bright light and dust-free conditions. This project will study the effects of difficult lighting and dust conditions on telerobotic perception systems to better assess and refine regolith operations on other neighboring celestial bodies. In partnership with Embry-Riddle Aeronautical University and Caterpillar, Inc., optical, LiDAR and RADAR sensing equipment will be used in performing the study. This project will create a known dust environment in the Swamp Works Granular Mechanics & Regolith Operations (GMRO) Laboratory regolith test bin to characterize the behavior of the sensing equipment in various calibrated lighting and dust conditions. It will also identify potential methods for mitigating the impacts of these undesirable conditions on the performance of the sensing equipment. Enhancing the capability of telerobotic perception systems will help improve life on earth for those working in dangerous, dusty mining conditions, as well as help advance the same technologies used for safer self-driving automobiles in various lighting and weather conditions. It will also prove to be a critical skill needed for advancing robotic and human exploration throughout our solar system, for activities such as mining on an asteroid or pioneering the first colony on Mars.

  9. Real-time qualitative reasoning for telerobotic systems

    NASA Astrophysics Data System (ADS)

    Pin, Eancois G.

    1993-02-01

    This paper discusses the sensor-based telerobotic driving of a car in a-priori unknown environments using 'human-like' reasoning schemes implemented on custom-designed VLSI fuzzy inferencing boards. These boards use the Fuzzy Set theoretic framework to allow very vast (30 kHz) processing of full sets of information that are expressed in qualitative form using membership functions. The sensor-based and fuzzy inferencing system was incorporated on an outdoor test-bed platform to investigate two control modes for driving a car on the basis of very sparse and imprecise range data. In the first mode, the car navigates fully autonomously to a goal specified by the operator, while in the second mode, the system acts as a telerobotic driver's aid providing the driver with linguistic (fuzzy) commands to turn left or right, speed up, slow down, stop, or back up depending on the obstacles perceived by the sensors. Indoor and outdoor experiments with both modes of control are described in which the system uses only three acoustic range (sonar) sensor channels to perceive the environment. Sample results are presented that illustrate the feasibility of developing autonomous navigation modules and robust, safety-enhancing driver's aids for telerobotic systems using the new fuzzy inferencing VLSI hardware and 'human-like' reasoning schemes.

  10. Test bed experiments for various telerobotic system characteristics and configurations

    NASA Technical Reports Server (NTRS)

    Duffie, Neil A.; Wiker, Steven F.; Zik, John J.

    1990-01-01

    Dexterous manipulation and grasping in telerobotic systems depends on the integration of high-performance sensors, displays, actuators and controls into systems in which careful consideration has been given to human perception and tolerance. Research underway at the Wisconsin Center for Space Automation and Robotics (WCSAR) has the objective of enhancing the performance of these systems and their components, and quantifying the effects of the many electrical, mechanical, control, and human factors that affect their performance. This will lead to a fundamental understanding of performance issues which will in turn allow designers to evaluate sensor, actuator, display, and control technologies with respect to generic measures of dexterous performance. As part of this effort, an experimental test bed was developed which has telerobotic components with exceptionally high fidelity in master/slave operation. A Telerobotic Performance Analysis System has also been developed which allows performance to be determined for various system configurations and electro-mechanical characteristics. Both this performance analysis system and test bed experiments are described.

  11. Machine Vision Tests for Spent Fuel Scrap Characteristics

    SciTech Connect

    BERGER, W.W.

    2000-04-27

    The purpose of this work is to perform a feasibility test of a Machine Vision system for potential use at the Hanford K basins during spent nuclear fuel (SNF) operations. This report documents the testing performed to establish functionality of the system including quantitative assessment of results. Fauske and Associates, Inc., which has been intimately involved in development of the SNF safety basis, has teamed with Agris-Schoen Vision Systems, experts in robotics, tele-robotics, and Machine Vision, for this work.

  12. Voice control of a dual-arm telerobot

    NASA Astrophysics Data System (ADS)

    Haberlein, Robert Arthur

    This investigation explores voice control of a dual-arm telerobot. A literature review of voice control, voice technology and work measurements is conducted. This review includes a discussion of important voice technology topics, a survey of commercial voice equipment, and a study of industrial and vocational work measurement techniques. A voice control system is created for two Kraft GRIPS Master-Slave telerobotic manipulators. This system is based upon the concept of distributed computer control using inexpensive PC-AT computers that exchange information according to special communication and command protocols. The voice control system consists of four separate sub-systems; a Camera Sub-system that controls a motorized camera mount, a Teach Pendant Sub-system that emulates two standard Termiflex teach pendants, a Switch Sub-system that controls the Kraft Master switches, and a Voice Sub-system that accepts the operator's vocal commands and broadcasts digitally-recorded messages. The Voice Sub-system utilizes a Votan VPC-2100 recognition board and a TI-Speech synthesis board. The vocal commands are organized into a hierarchical structure based upon the fire-and-forget control scheme. A visual display of the vocal command status is also detailed. In order to measure the effect of the voice control system upon the work performance of the telerobot, a formal experimental plan is described using twenty-four untrained operators divided into a voice group and a control group. Each group performs an experimental taskset using modified peg-in-hole vocational rehabilitation assessment test equipment. The experimental taskset consists of eight separate subtasks that exercise each of the four voice control sub-systems. The times to complete the subtasks are recorded to score each group's work performance. A split-plot ANOVA of the performance scores reveals significant group improvements in both the mean performance and the performance variance for those tasks which involve

  13. Haptics-based immersive telerobotic system for improvised explosive device disposal: Are two hands better than one?

    NASA Astrophysics Data System (ADS)

    Erickson, David; Lacheray, Hervé; Lambert, Jason Michel; Mantegh, Iraj; Crymble, Derry; Daly, John; Zhao, Yan

    2012-06-01

    State-of-the-art robotic explosive ordnance disposal robotics have not, in general, adopted recent advances in control technology and man-machine interfaces and lag many years behind academia. This paper describes the Haptics-based Immersive Telerobotic System project investigating an immersive telepresence envrionment incorporating advanced vehicle control systems, Augmented immersive sensory feedback, dynamic 3D visual information, and haptic feedback for explosive ordnance disposal operators. The project aim is to provide operatiors a more sophisticated interface and expand sensory input to perform complex tasks to defeat improvised explosive devices successfully. The introduction of haptics and immersive teleprescence has the potential to shift the way teleprescence systems work for explosive ordnance disposal tasks or more widely for first responders scenarios involving remote unmanned ground vehicles.

  14. The sensing and perception subsystem of the NASA research telerobot

    NASA Technical Reports Server (NTRS)

    Wilcox, B.; Gennery, D. B.; Bon, B.; Litwin, T.

    1987-01-01

    A useful space telerobot for on-orbit assembly, maintenance, and repair tasks must have a sensing and perception subsystem which can provide the locations, orientations, and velocities of all relevant objects in the work environment. This function must be accomplished with sufficient speed and accuracy to permit effective grappling and manipulation. Appropriate symbolic names must be attached to each object for use by higher-level planning algorithms. Sensor data and inferences must be presented to the remote human operator in a way that is both comprehensible in ensuring safe autonomous operation and useful for direct teleoperation. Research at JPL toward these objectives is described.

  15. Universal computer control system (UCCS) for space telerobots

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Szakaly, Zoltan

    1987-01-01

    A universal computer control system (UCCS) is under development for all motor elements of a space telerobot. The basic hardware architecture and software design of UCCS are described, together with the rich motor sensing, control, and self-test capabilities of this all-computerized motor control system. UCCS is integrated into a multibus computer environment with direct interface to higher level control processors, uses pulsewidth multiplier power amplifiers, and one unit can control up to sixteen different motors simultaneously at a high I/O rate. UCCS performance capabilities are illustrated by a few data.

  16. Stereo vision controlled bilateral telerobotic remote assembly station

    NASA Astrophysics Data System (ADS)

    Dewitt, Robert L.

    1992-05-01

    The objective of this project was to develop a bilateral six degree-of-freedom telerobotic component assembly station utilizing remote stereo vision assisted control. The component assembly station consists of two Unimation Puma 260 robot arms and their associated controls, two Panasonic miniature camera systems, and an air compressor. The operator controls the assembly station remotely via kinematically similar master controllers. A Zenith 386 personal computer acts as an interface and system control between the human operator's controls and the Val II computer controlling the arms. A series of tasks, ranging in complexity and difficulty, was utilized to assess and demonstrate the performance of the complete system.

  17. Robot-assisted ultrasound imaging: overview and development of a parallel telerobotic system.

    PubMed

    Monfaredi, Reza; Wilson, Emmanuel; Azizi Koutenaei, Bamshad; Labrecque, Brendan; Leroy, Kristen; Goldie, James; Louis, Eric; Swerdlow, Daniel; Cleary, Kevin

    2015-02-01

    Ultrasound imaging is frequently used in medicine. The quality of ultrasound images is often dependent on the skill of the sonographer. Several researchers have proposed robotic systems to aid in ultrasound image acquisition. In this paper we first provide a short overview of robot-assisted ultrasound imaging (US). We categorize robot-assisted US imaging systems into three approaches: autonomous US imaging, teleoperated US imaging, and human-robot cooperation. For each approach several systems are introduced and briefly discussed. We then describe a compact six degree of freedom parallel mechanism telerobotic system for ultrasound imaging developed by our research team. The long-term goal of this work is to enable remote ultrasound scanning through teleoperation. This parallel mechanism allows for both translation and rotation of an ultrasound probe mounted on the top plate along with force control. Our experimental results confirmed good mechanical system performance with a positioning error of < 1 mm. Phantom experiments by a radiologist showed promising results with good image quality.

  18. Development and demonstration of a telerobotic excavation system

    NASA Technical Reports Server (NTRS)

    Burks, Barry L.; Thompson, David H.; Killough, Stephen M.; Dinkins, Marion A.

    1994-01-01

    Oak Ridge National Laboratory is developing remote excavation technologies for the Department of Energy's Office (DOE) of Technology Development, Robotics Technology Development Program, and also for the Department of Defense (DOD) Project Manager for Ammunition Logistics. This work is being done to meet the need for remote excavation and removal of radioactive and contaminated buried waste at several DOE sites and unexploded ordnance at DOD sites. System requirements are based on the need to uncover and remove waste from burial sites in a way that does not cause unnecessary personnel exposure or additional environmental contamination. Goals for the current project are to demonstrate dexterous control of a backhoe with force feedback and to implement robotic operations that will improve productivity. The Telerobotic Small Emplacement Excavator is a prototype system that incorporates the needed robotic and telerobotic capabilities on a commercially available platform. The ability to add remote dexterous teleoperation and robotic operating modes is intended to be adaptable to other commercially available excavator systems.

  19. Control Software for a High-Performance Telerobot

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert J.; Finger, William

    2005-01-01

    A computer program for controlling a high-performance, force-reflecting telerobot has been developed. The goal in designing a telerobot-control system is to make the velocity of the slave match the master velocity, and the environmental force on the master match the force on the slave. Instability can arise from even small delays in propagation of signals between master and slave units. The present software, based on an impedance-shaping algorithm, ensures stability even in the presence of long delays. It implements a real-time algorithm that processes position and force measurements from the master and slave and represents the master/slave communication link as a transmission line. The algorithm also uses the history of the control force and the slave motion to estimate the impedance of the environment. The estimate of the impedance of the environment is used to shape the controlled slave impedance to match the transmission-line impedance. The estimate of the environmental impedance is used to match the master and transmission-line impedances and to estimate the slave/environment force in order to present that force immediately to the operator via the master unit.

  20. NASA/University Technology Cooperation

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA is extensively engaged in cooperative technology development efforts with the nation's research universities. An example of NASA/university cooperation is the work of the Space Technology Center at the University of Kansas (KU) and the KU Center for Research, Inc. (CRINC). Directed by Professor Bill G. Barr, the Space Technology Center is one of 27 interdisciplinary centers established as part of a NASA plan to set up a network of advanced facilities across the nation. Since 1981 CRINC has been involved in a technology transfer program supported by the NASA Technology Utilization Division and by industry. The objective of the technology transfer program is to encourage industrial innovation through utilization of NASA technology through improved industry/university cooperation. At KU, research is conducted by the Industrial Innovation Laboratory and the Computer Integrated Manufacturing Laboratory which utilize graduate students in engineering and computer science as research assistants. A new project of the Space Technology Center is one designed to advance NASA objectives in "augmented telerobotics." A telerobot is programmed to respond to commands from a human operator, or to mimic the movements of its human operator. The project is being conducted under the guidance of Langley Research Center.

  1. Low-Latency Telerobotics from Mars Orbit: The Case for Synergy Between Science and Human Exploration

    NASA Astrophysics Data System (ADS)

    Valinia, A.; Garvin, J. B.; Vondrak, R.; Thronson, H.; Lester, D.; Schmidt, G.; Fong, T.; Wilcox, B.; Sellers, P.; White, N.

    2012-06-01

    Initial, science-directed human exploration of Mars will benefit from low-latency, high-bandwidth telerobotics operated by astronauts from Mars orbit. This paper describes the scientific framework and technological requirements to achieve this goal.

  2. Low-Latency Lunar Surface Telerobotics from Earth-Moon Libration Points

    NASA Technical Reports Server (NTRS)

    Lester, Daniel; Thronson, Harley

    2011-01-01

    Concepts for a long-duration habitat at Earth-Moon LI or L2 have been advanced for a number of purposes. We propose here that such a facility could also have an important role for low-latency telerobotic control of lunar surface equipment, both for lunar science and development. With distances of about 60,000 km from the lunar surface, such sites offer light-time limited two-way control latencies of order 400 ms, making telerobotic control for those sites close to real time as perceived by a human operator. We point out that even for transcontinental teleoperated surgical procedures, which require operational precision and highly dexterous manipulation, control latencies of this order are considered adequate. Terrestrial telerobots that are used routinely for mining and manufacturing also involve control latencies of order several hundred milliseconds. For this reason, an Earth-Moon LI or L2 control node could build on the technology and experience base of commercially proven terrestrial ventures. A lunar libration-point telerobotic node could demonstrate exploration strategies that would eventually be used on Mars, and many other less hospitable destinations in the solar system. Libration-point telepresence for the Moon contrasts with lunar telerobotic control from the Earth, for which two-way control latencies are at least six times longer. For control latencies that long, telerobotic control efforts are of the "move-and-wait" variety, which is cognitively inferior to near real-time control.

  3. Generic extravehicular (EVA) and telerobot task primitives for analysis, design, and integration. Version 1.0: Reference compilation for the EVA and telerobotics communities

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Drews, Michael

    1990-01-01

    The results are described of an effort to establish commonality and standardization of generic crew extravehicular (crew-EVA) and telerobotic task analysis primitives used for the study of spaceborne operations. Although direct crew-EVA plans are the most visible output of spaceborne operations, significant ongoing efforts by a wide variety of projects and organizations also require tools for estimation of crew-EVA and telerobotic times. Task analysis tools provide estimates for input to technical and cost tradeoff studies. A workshop was convened to identify the issues and needs to establish a common language and syntax for task analysis primitives. In addition, the importance of such a syntax was shown to have precedence over the level to which such a syntax is applied. The syntax, lists of crew-EVA and telerobotic primitives, and the data base in diskette form are presented.

  4. Adjustable impedance, force feedback and command language aids for telerobotics (parts 1-4 of an 8-part MIT progress report)

    NASA Technical Reports Server (NTRS)

    Sheridan, Thomas B.; Raju, G. Jagganath; Buzan, Forrest T.; Yared, Wael; Park, Jong

    1989-01-01

    Projects recently completed or in progress at MIT Man-Machine Systems Laboratory are summarized. (1) A 2-part impedance network model of a single degree of freedom remote manipulation system is presented in which a human operator at the master port interacts with a task object at the slave port in a remote location is presented. (2) The extension of the predictor concept to include force feedback and dynamic modeling of the manipulator and the environment is addressed. (3) A system was constructed to infer intent from the operator's commands and the teleoperation context, and generalize this information to interpret future commands. (4) A command language system is being designed that is robust, easy to learn, and has more natural man-machine communication. A general telerobot problem selected as an important command language context is finding a collision-free path for a robot.

  5. The Flight Telerobotic Servicer (FTS) NASA's first operational robotic system

    NASA Technical Reports Server (NTRS)

    Andary, J.; Halterman, K.; Hewitt, D.; Sabelhaus, P.

    1990-01-01

    NASA has completed the preliminary definition phase of the Flight Telerobotic Servicer (FTS) and is now preparing to begin the detailed design and fabrication phase. The FTS will be designed and built by Martin Marietta Astronautics Group in Denver, CO, for the Goddard Space Flight Center, in support of the Space Station Freedom Program. The design concepts for the FTS are discussed, as well as operational scenarios for the assembly, maintenance, servicing and inspection tasks which are being considered for the FTS. The upcoming Development Test Flight (DTF-1) is the first of two shuttle test flights to test FTS operations in the environment of space and to demonstrate the FTS capabilities in performing tasks for Space Station Freedom. Operational planning for DTF-1 is discussed as well as development plans for the operational support of the FTS on the space station.

  6. Technology transfer and evaluation for Space Station telerobotics

    NASA Technical Reports Server (NTRS)

    Price, Charles R.; Stokes, Lebarian; Diftler, Myron A.

    1994-01-01

    The international space station (SS) must take advantage of advanced telerobotics in order to maximize productivity and safety and to reduce maintenance costs. The Automation and Robotics Division at the NASA Lyndon B. Johnson Space Center (JSC) has designed, developed, and constructed the Automated Robotics Maintenance of Space Station (ARMSS) facility for the purpose of transferring and evaluating robotic technology that will reduce SS operation costs. Additionally, JSC had developed a process for expediting the transfer of technology from NASA research centers and evaluating these technologies in SS applications. Software and hardware system developed at the research centers and NASA sponsored universities are currently being transferred to JSC and integrated into the ARMSS for flight crew personnel testing. These technologies will be assessed relative to the SS baseline, and, after refinements, those technologies that provide significant performance improvements will be recommended as upgrades to the SS. Proximity sensors, vision algorithms, and manipulator controllers are among the systems scheduled for evaluation.

  7. Workspace visualization and time-delay telerobotic operations

    NASA Technical Reports Server (NTRS)

    Schenker, P. S.; Bejczy, A. K.

    1990-01-01

    The paper examines the performance of telerobotic tasks where the operator and robot are physically separated, and a comunication time delay of up to several seconds between them exists. This situation is applicable to space robotic servicing-assembly-maintenance operations on low earth or geosynchronous orbits with a ground-based command station. Attention is given to two developments which address advanced time-delay teleoperations for unstructured tasks: (1) the 'phantom robot', a real-time predictive graphics simulator developed to allow teleoperator eye-to-hand coordination or robot free-space kinematics under a time delay of several seconds; and (2) shared compliance control, a modified form of automatic electromechanical impedance control employed in parallel with manual position control to permit soft contact and grasp compliance with workpiece geometry under a time delay of several seconds.

  8. A Modular Telerobot Control System for Accident Response

    SciTech Connect

    Anderson, Robert J.; Shirey, David L.

    1999-07-20

    The Accident Response Mobile Manipulator System (ARMMS) is a teleoperated emergency response vehicle that deploys two hydraulic manipulators, five cameras, and an array of sensors to the scene of an incident. It is operated from a remote base station that can be situated up to four kilometers away from the site. Recently, a modular telerobot control architecture called SMART (Sandia's Modular Architecture for Robotic and Teleoperation) was applied to ARMMS to improve the precision, safety, and operability of the manipulators on board. Using SMART, a prototype manipulator control system was developed in a couple of days, and an integrated working system was demonstrated within a couple of months. New capabilities such as camera teleoperation, autonomous tool changeout and dual manipulator control have been incorporated. The final system incorporates twenty-two separate modules and implements eight different behavior modes. This paper describes the integration of SMART into the ARMMS system.

  9. Kinematic study of flight telerobotic servicer configuration issues

    NASA Technical Reports Server (NTRS)

    Lewis, R. H.; Scott, R. D.; Howard, W. S.

    1987-01-01

    Several factors, such as body size and shape, and the number of arms and their placement, will influence how well the Flight Telerobotic Servicer (FTS) is suited to its potential duties for the Space Station Program. In order to examine the implications of these configuration options, eight specific 2, 3, and 4 armed FTS configuration were simulated and used to perform a Space Station Orbital Replacement Unit (ORU) exchange. The strengths and weaknesses of each configuration were evaluated. Although most of the configurations examined were able to perform the exchange, several of the 3 and 4 arm configurations had operational advantages. The results obtained form these simulations are specific to the assumptions associated with the ORU exchange scenario examined. However, they do illustrate the general interrelationships and sensitivities which need to be understood.

  10. Design concept for the Flight Telerobotic Servicer (FITS)

    NASA Technical Reports Server (NTRS)

    Andary, J. F.; Hinkai, S. W.; Watzin, J. G.

    1988-01-01

    NASA has just completed an in-house Phase B Study (one of three studies) for the preliminary definition of a teleoperated robotic device that will be used on the National Space Transportation System (NSTS) and the Space Station to assist the astronauts in the performance of assembly, maintenance, servicing, and inspection tasks. This device, the Flight Telerobotic Servicer (FTS), will become a permanent element on the Space Station. Although it is primarily a teleoperated device, the FTS is being designed to grow and evolve to higher states of autonomy. Eventually, it will be capable of working from the Orbital Maneuvering Vehicle (OMV) to service free-flying spacecraft at great distances from the Space Station. A version of the FTS could also be resident on the large space platforms that are part of the Space Station Program.

  11. Virtual reality and telerobotics applications of an Address Recalculation Pipeline

    NASA Technical Reports Server (NTRS)

    Regan, Matthew; Pose, Ronald

    1994-01-01

    The technology described in this paper was designed to reduce latency to user interactions in immersive virtual reality environments. It is also ideally suited to telerobotic applications such as interaction with remote robotic manipulators in space or in deep sea operations. in such circumstances the significant latency is observed response to user stimulus which is due to communications delays, and the disturbing jerkiness due to low and unpredictable frame rates on compressed video user feedback or computationally limited virtual worlds, can be masked by our techniques. The user is provided with highly responsive visual feedback independent of communication or computational delays in providing physical video feedback or in rendering virtual world images. Virtual and physical environments can be combined seamlessly using these techniques.

  12. Tests on reliability of a prostate biopsy telerobotic system.

    PubMed

    Rovetta, A

    1999-01-01

    This paper deals with the development of a robotic (mechanical-electronic) system that operates in the field of surgery, with new sensors and equipment ("Biopsy Program"). The system permits a rapid analysis of the mechanical needle + needle-holder + mechanism system for penetration and aspiration for surgery, for prostate biopsies. These operations benefit from the use of a SR 8438 Sankyo Scara robot; they are also remote-controlled, i.e. via telerobotics. They require accurate positioning in known points of three-dimensional space with a high degree of precision. The safety of the surgical operations is guaranteed by the most complete observance of regulations under European Union Directives and Decrees 626 and 242 of Italian laws. The system proposed represents a big step for the application of industrial solutions, precisely for industrial companies in the medical and surgical field.

  13. The flight telerobotic servicer: From functional architecture to computer architecture

    NASA Technical Reports Server (NTRS)

    Lumia, Ronald; Fiala, John

    1989-01-01

    After a brief tutorial on the NASA/National Bureau of Standards Standard Reference Model for Telerobot Control System Architecture (NASREM) functional architecture, the approach to its implementation is shown. First, interfaces must be defined which are capable of supporting the known algorithms. This is illustrated by considering the interfaces required for the SERVO level of the NASREM functional architecture. After interface definition, the specific computer architecture for the implementation must be determined. This choice is obviously technology dependent. An example illustrating one possible mapping of the NASREM functional architecture to a particular set of computers which implements it is shown. The result of choosing the NASREM functional architecture is that it provides a technology independent paradigm which can be mapped into a technology dependent implementation capable of evolving with technology in the laboratory and in space.

  14. Stereoscopic, Force-Feedback Trainer For Telerobot Operators

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Schenker, Paul S.; Bejczy, Antal K.

    1994-01-01

    Computer-controlled simulator for training technicians to operate remote robots provides both visual and kinesthetic virtual reality. Used during initial stage of training; saves time and expense, increases operational safety, and prevents damage to robots by inexperienced operators. Computes virtual contact forces and torques of compliant robot in real time, providing operator with feel of forces experienced by manipulator as well as view in any of three modes: single view, two split views, or stereoscopic view. From keyboard, user specifies force-reflection gain and stiffness of manipulator hand for three translational and three rotational axes. System offers two simulated telerobotic tasks: insertion of peg in hole in three dimensions, and removal and insertion of drawer.

  15. TEJAS - TELEROBOTICS/EVA JOINT ANALYSIS SYSTEM VERSION 1.0

    NASA Technical Reports Server (NTRS)

    Drews, M. L.

    1994-01-01

    The primary objective of space telerobotics as a research discipline is the augmentation and/or support of extravehicular activity (EVA) with telerobotic activity; this allows increased emplacement of on-orbit assets while providing for their "in situ" management. Development of the requisite telerobot work system requires a well-understood correspondence between EVA and telerobotics that to date has been only partially established. The Telerobotics/EVA Joint Analysis Systems (TEJAS) hypermedia information system uses object-oriented programming to bridge the gap between crew-EVA and telerobotics activities. TEJAS Version 1.0 contains twenty HyperCard stacks that use a visual, customizable interface of icon buttons, pop-up menus, and relational commands to store, link, and standardize related information about the primitives, technologies, tasks, assumptions, and open issues involved in space telerobot or crew EVA tasks. These stacks are meant to be interactive and can be used with any database system running on a Macintosh, including spreadsheets, relational databases, word-processed documents, and hypermedia utilities. The software provides a means for managing volumes of data and for communicating complex ideas, relationships, and processes inherent to task planning. The stack system contains 3MB of data and utilities to aid referencing, discussion, communication, and analysis within the EVA and telerobotics communities. The six baseline analysis stacks (EVATasks, EVAAssume, EVAIssues, TeleTasks, TeleAssume, and TeleIssues) work interactively to manage and relate basic information which you enter about the crew-EVA and telerobot tasks you wish to analyze in depth. Analysis stacks draw on information in the Reference stacks as part of a rapid point-and-click utility for building scripts of specific task primitives or for any EVA or telerobotics task. Any or all of these stacks can be completely incorporated within other hypermedia applications, or they can be

  16. Human Exploration Using Real-Time Robotic Operations (HERRO)- Crew Telerobotic Control Vehicle (CTCV) Design

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.; Burke, Laura; Chato, David; Fincannon, James; Landis, Geoff; Sandifer, Carl; Warner, Joe; Williams, Glenn; Colozza, Tony; Fittje, Jim; Martini, Mike; Packard, Tom; McCurdy, Dave; Gyekenyesi, John

    2010-01-01

    The HERRO concept allows real time investigation of planets and small bodies by sending astronauts to orbit these targets and telerobotically explore them using robotic systems. Several targets have been put forward by past studies including Mars, Venus, and near Earth asteroids. A conceptual design study was funded by the NASA Innovation Fund to explore what the HERRO concept and it's vehicles would look like and what technological challenges need to be met. This design study chose Mars as the target destination. In this way the HERRO studies can define the endpoint design concepts for an all-up telerobotic exploration of the number one target of interest Mars. This endpoint design will serve to help planners define combined precursor telerobotics science missions and technology development flights. A suggested set of these technologies and demonstrator missions is shown in Appendix B. The HERRO concept includes a crewed telerobotics orbit vehicle as well three Truck rovers, each supporting two teleoperated geologist robots Rockhounds (each truck/Rockhounds set is landed using a commercially launched aeroshell landing system.) Options include a sample ascent system teamed with an orbital telerobotic sample rendezvous and return spacecraft (S/C) (yet to be designed). Each truck rover would be landed in a science location with the ability to traverse a 100 km diameter area, carrying the Rockhounds to 100 m diameter science areas for several week science activities. The truck is not only responsible for transporting the Rockhounds to science areas, but also for relaying telecontrol and high-res communications to/from the Rockhound and powering/heating the Rockhound during the non-science times (including night-time). The Rockhounds take the place of human geologists by providing an agile robotic platform with real-time telerobotics control to the Rockhound from the crew telerobotics orbiter. The designs of the Truck rovers and Rockhounds will be described in other

  17. Telerobotic laparoscopic repair of incisional ventral hernias using intraperitoneal prosthetic mesh.

    PubMed

    Ballantyne, Garth H; Hourmont, Katherine; Wasielewski, Annette

    2003-01-01

    Laparoscopic ventral hernia repair shortens the length of hospital stay and achieves low rates of hernia recurrence. The inherent difficulties of performing advanced laparoscopy operations, however, have limited the adoption of this technique by many surgeons. We hypothesized that the virtual operative field and hand-like instruments of a telerobotic surgical system could overcome these limitations. We present herein the first 2 reported cases of telerobotic laparoscopic ventral hernia repair with mesh. The operations were accomplished with the da Vinci telerobotic surgical system. The hernia defects were repaired with dual-sided, expanded polytetrafluoroethylene (ePTFE) mesh. The mesh was secured in place with 8 sutures that were passed through the abdominal wall, and 5-mm surgical tacks were placed around the circumference of the mesh. The 2 operations were accomplished with total operative times of 120 and 135 minutes and total operating room times of 166 and 180 minutes, respectively. The patients were discharged home on postoperative days 1 and 4. The surgeon sat in an ergonomically comfortable position at a computer console that was remote from the patient. Immersion of the surgeon within the 3-dimensional virtual operative field expedited each stage of these procedures. The articulation of the wristed telerobotic instruments greatly facilitated reaching the anterior abdominal cavity near the abdominal wall. This report indicates that telerobotic laparoscopic ventral hernia repair is feasible and suggests that telepresence technology facilitates this procedure. PMID:12722992

  18. Telerobotic Laparoscopic Repair of Incisional Ventral Hernias Using Intraperitoneal Prosthetic Mesh

    PubMed Central

    Hourmont, Katherine; Wasielewski, Annette

    2003-01-01

    Laparoscopic ventral hernia repair shortens the length of hospital stay and achieves low rates of hernia recurrence. The inherent difficulties of performing advanced laparoscopy operations, however, have limited the adoption of this technique by many surgeons. We hypothesized that the virtual operative field and hand-like instruments of a telerobotic surgical system could overcome these limitations. We present herein the first 2 reported cases of telerobotic laparoscopic ventral hernia repair with mesh. The operations were accomplished with the da Vinci telerobotic surgical system. The hernia defects were repaired with dual-sided, expanded polytetrafluoroethylene (ePTFE) mesh. The mesh was secured in place with 8 sutures that were passed through the abdominal wall, and 5-mm surgical tacks were placed around the circumference of the mesh. The 2 operations were accomplished with total operative times of 120 and 135 minutes and total operating room times of 166 and 180 minutes, respectively. The patients were discharged home on postoperative days 1 and 4. The surgeon sat in an ergonomically comfortable position at a computer console that was remote from the patient. Immersion of the surgeon within the 3-dimensional virtual operative field expedited each stage of these procedures. The articulation of the wristed telerobotic instruments greatly facilitated reaching the anterior abdominal cavity near the abdominal wall. This report indicates that telerobotic laparoscopic ventral hernia repair is feasible and suggests that telepresence technology facilitates this procedure. PMID:12722992

  19. Simple Machines Made Simple.

    ERIC Educational Resources Information Center

    St. Andre, Ralph E.

    Simple machines have become a lost point of study in elementary schools as teachers continue to have more material to cover. This manual provides hands-on, cooperative learning activities for grades three through eight concerning the six simple machines: wheel and axle, inclined plane, screw, pulley, wedge, and lever. Most activities can be…

  20. Design of a structural and functional hierarchy for planning and control of telerobotic systems

    NASA Technical Reports Server (NTRS)

    Acar, Levent; Ozguner, Umit

    1989-01-01

    Hierarchical structures offer numerous advantages over conventional structures for the control of telerobotic systems. A hierarchically organized system can be controlled via undetailed task assignments and can easily adapt to changing circumstances. The distributed and modular structure of these systems also enables fast response needed in most telerobotic applications. On the other hand, most of the hierarchical structures proposed in the literature are based on functional properties of a system. These structures work best for a few given functions of a large class of systems. In telerobotic applications, all functions of a single system needed to be explored. This approach requires a hierarchical organization based on physical properties of a system and such a hierarchical organization is introduced. The decomposition, organization, and control of the hierarchical structure are considered, and a system with two robot arms and a camera is presented.

  1. Surface Telerobotics: Development and Testing of a Crew Controlled Planetary Rover System

    NASA Technical Reports Server (NTRS)

    Bualat, Maria G.; Fong, Terrence; Allan, Mark; Bouyssounouse, Xavier; Cohen, Tamar; Kobayashi, Linda

    2013-01-01

    In planning for future exploration missions, architecture and study teams have made numerous assumptions about how crew can be telepresent on a planetary surface by remotely operating surface robots from space (i.e. from a flight vehicle or deep space habitat). These assumptions include estimates of technology maturity, existing technology gaps, and operational risks. These assumptions, however, have not been grounded by experimental data. Moreover, to date, no crew-controlled surface telerobot has been fully tested in a high-fidelity manner. To address these issues, we developed the "Surface Telerobotics" tests to do three things: 1) Demonstrate interactive crew control of a mobile surface telerobot in the presence of short communications delay. 2) Characterize a concept of operations for a single astronaut remotely operating a planetary rover with limited support from ground control. 3) Characterize system utilization and operator work-load for a single astronaut remotely operating a planetary rover with limited support from ground control.

  2. HERRO Mission to Mars Using Telerobotic Surface Exploration from Orbit

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Landis, Geoffrey A.; McGuire, Melissa L.; Schmidt, George R.

    2013-01-01

    This paper presents a concept for a human mission to Mars orbit that features direct robotic exploration of the planet s surface via teleoperation from orbit. This mission is a good example of Human Exploration using Real-time Robotic Operations (HERRO), an exploration strategy that refrains from sending humans to the surfaces of planets with large gravity wells. HERRO avoids the need for complex and expensive man-rated lander/ascent vehicles and surface systems. Additionally, the humans are close enough to the surface to effectively eliminate the two-way communication latency that constrains typical robotic space missions, thus allowing real-time command and control of surface operations and experiments by the crew. Through use of state-of-the-art telecommunications and robotics, HERRO provides the cognitive and decision-making advantages of having humans at the site of study for only a fraction of the cost of conventional human surface missions. It is very similar to how oceanographers and oil companies use telerobotic submersibles to work in inaccessible areas of the ocean, and represents a more expedient, near-term step prior to landing humans on Mars and other large planetary bodies. Results suggest that a single HERRO mission with six crew members could achieve the same exploratory and scientific return as three conventional crewed missions to the Mars surface.

  3. Traction-drive force transmission for telerobotic joints

    NASA Technical Reports Server (NTRS)

    Kuban, D. P.; Williams, D. M.

    1989-01-01

    The U.S. Space Station Program is providing many technological developments to meet the increasing demands of designing such a facility. One of the key areas of research is that of telerobotics for space station assembly and maintenance. Initial implementation will be teleoperated, but long-term plans call for autonomous robotics. One of the essential components for making this transition successful is the manipulator joints mechanism. Historically, teleoperated manipulators and industrial robotics have had very different mechanisms for force transmission. This is because the design objectives are almost mutually exclusive. A teleoperator must have very low friction and inertia to minimize operator fatigue; backlash and stiffness are of secondary concern. A robot, however, must have minimum backlash, and high stiffness for accurate and rapid positioning. A joint mechanism has yet to be developed that can optimize these divergent performance objectives. A joint mechanism that approaches this optimal performance was developed for NASA Langley, Automation Technology Branch. It is a traction-drive differential that uses variable preload mechanisms. The differential provides compact, dexterous motion range with a torque density similar to geared systems. The traction drive offers high stiffness and zero backlash, for good robotic performance, and the variable loading mechanism (VLM) minimizes the drive-train friction, for improved teleoperation.

  4. Development of advanced control schemes for telerobot manipulators

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Zhou, Zhen-Lei

    1991-01-01

    To study space applications of telerobotics, Goddard Space Flight Center (NASA) has recently built a testbed composed mainly of a pair of redundant slave arms having seven degrees of freedom and a master hand controller system. The mathematical developments required for the computerized simulation study and motion control of the slave arms are presented. The slave arm forward kinematic transformation is presented which is derived using the D-H notation and is then reduced to its most simplified form suitable for real-time control applications. The vector cross product method is then applied to obtain the slave arm Jacobian matrix. Using the developed forward kinematic transformation and quaternions representation of the slave arm end-effector orientation, computer simulation is conducted to evaluate the efficiency of the Jacobian in converting joint velocities into Cartesian velocities and to investigate the accuracy of the Jacobian pseudo-inverse for various sampling times. In addition, the equivalence between Cartesian velocities and quaternion is also verified using computer simulation. The motion control of the slave arm is examined. Three control schemes, the joint-space adaptive control scheme, the Cartesian adaptive control scheme, and the hybrid position/force control scheme are proposed for controlling the motion of the slave arm end-effector. Development of the Cartesian adaptive control scheme is presented and some preliminary results of the remaining control schemes are presented and discussed.

  5. Application of telerobotic control to remote processing of nuclear material

    SciTech Connect

    Merrill, R.D.; Grasz, E.L.; Herget, C.J.; Gavel, D.T.; Addis, R.B.; DeMinico, G.A.

    1991-07-08

    In processing radioactive material there are certain steps which have customarily required operators working at glove box enclosures. This can subject the operators to low level radiation dosages and the risk of accidental contamination, as well as generate significant radioactive waste to accommodate the human interaction. An automated system is being developed to replace the operator at the glove box and thus remove the human from these risks, and minimize waste. Although most of the processing can be automated with very little human operator interaction, there are some tasks where intelligent intervention is necessary to adapt to unexpected circumstances and events. These activities will require that the operator be able to interact with the process using a remote manipulator in a manner as natural as if the operator were actually in the work cell. This robot-based remote manipulation system, or telerobot, must provide the operator with an effective means of controlling the robot arm, gripper and tools. This paper describes the effort in progress in Lawrence Livermore National Laboratory to achieve this capability. 8 refs.

  6. Evaluation of a telerobotic system to assist surgeons in microsurgery

    NASA Technical Reports Server (NTRS)

    Das, H.; Zak, H.; Johnson, J.; Crouch, J.; Frambach, D.

    1999-01-01

    A tool was developed that assists surgeons in manipulating surgical instruments more precisely than is possible manually. The tool is a telemanipulator that scales down the surgeon's hand motion and filters tremor in the motion. The signals measured from the surgeon's hand are transformed and used to drive a six-degrees-of-freedom robot to position the surgical instrument mounted on its tip. A pilot study comparing the performance of the telemanipulator system against manual instrument positioning was conducted at the University of Southern California School of Medicine. The results show that a telerobotic tool can improve the performance of a microsurgeon by increasing the precision with which he can position surgical instruments, but this is achieved at the cost of increased time in performing the task. We believe that this technology will extend the capabilities of microsurgeons and allow more surgeons to perform highly skilled procedures currently performed only by the best surgeons. It will also enable performance of new surgical procedures that are beyond the capabilities of even the most skilled surgeons. Copyright 1999 Wiley-Liss, Inc.

  7. Computational Virtual Reality (VR) as a human-computer interface in the operation of telerobotic systems

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.

    1995-01-01

    This presentation focuses on the application of computer graphics or 'virtual reality' (VR) techniques as a human-computer interface tool in the operation of telerobotic systems. VR techniques offer very valuable task realization aids for planning, previewing and predicting robotic actions, operator training, and for visual perception of non-visible events like contact forces in robotic tasks. The utility of computer graphics in telerobotic operation can be significantly enhanced by high-fidelity calibration of virtual reality images to actual TV camera images. This calibration will even permit the creation of artificial (synthetic) views of task scenes for which no TV camera views are available.

  8. Head-controlled assistive telerobot with extended physiological proprioception capability

    NASA Astrophysics Data System (ADS)

    Salganicoff, Marcos; Rahman, Tariq; Mahoney, Ricardo; Pino, D.; Jayachandran, Vijay; Kumar, Vijay; Chen, Shoupu; Harwin, William S.

    1995-12-01

    People with disabilities such as quadriplegia can use mouth-sticks and head-sticks as extension devices to perform desired manipulations. These extensions provide extended proprioception which allows users to directly feel forces and other perceptual cues such as texture present at the tip of the mouth-stick. Such devices are effective for two principle reasons: because of their close contact with the user's tactile and proprioceptive sensing abilities; and because they tend to be lightweight and very stiff, and can thus convey tactile and kinesthetic information with high-bandwidth. Unfortunately, traditional mouth-sticks and head-sticks are limited in workspace and in the mechanical power that can be transferred because of user mobility and strength limitations. We describe an alternative implementation of the head-stick device using the idea of a virtual head-stick: a head-controlled bilateral force-reflecting telerobot. In this system the end-effector of the slave robot moves as if it were at the tip of an imaginary extension of the user's head. The design goal is for the system is to have the same intuitive operation and extended proprioception as a regular mouth-stick effector but with augmentation of workspace volume and mechanical power. The input is through a specially modified six DOF master robot (a PerForceTM hand-controller) whose joints can be back-driven to apply forces at the user's head. The manipulation tasks in the environment are performed by a six degree-of-freedom slave robot (the Zebra-ZEROTM) with a built-in force sensor. We describe the prototype hardware/software implementation of the system, control system design, safety/disability issues, and initial evaluation tasks.

  9. Multimodally controlled intelligent telerobot for people with disabilities

    NASA Astrophysics Data System (ADS)

    Kazi, Zunaid; Chen, Shoupu; Beitler, Matthew; Chester, Daniel; Foulds, Richard

    1996-12-01

    This paper reports on the current status of the multimodal user supervised interface and intelligent control (MUSIIC) project, which is working towards the development of an intelligent assistive telemanipulative system for people with motor disabilities. Our MUSIIC strategy overcomes the limitations of previous approaches by integrating a multimodal RUI (robot user interface) and a semi-autonomous reactive planner that will allow users with severe motor disabilities to manipulate objects in an unstructured domain. The multimodal user interface is a speech and deictic (pointing) gesture based control that guides the operation of a semi-autonomous planner controlling the assistive telerobot. MUSIIC uses a vision system to determine the three-dimensional shape, pose and color of objects and surfaces which are in the environment, and as well as an object-oriented knowledge base and planning system which superimposes information about common objects in the three-dimensional world. This approach allows the users to identify objects and tasks via a multimodal user interface which interprets their deictic gestures and a restricted natural language like speech input. The multimodal interface eliminates the need for general purpose object recognition by binding the users speech and gesture input to a locus in the domain of interest. The underlying knowledge-driven planner, combines information obtained from the user, the stereo vision mechanism as well as the knowledge bases to adapt previously learned plans to perform new tasks and also to manipulate newly introduced objects into the workspace. Therefore, what we have is a flexible and intelligent telemanipulative system that functions as an assistive robot for people with motor disabilities.

  10. Parallel Kinematic Machines (PKM)

    SciTech Connect

    Henry, R.S.

    2000-03-17

    The purpose of this 3-year cooperative research project was to develop a parallel kinematic machining (PKM) capability for complex parts that normally require expensive multiple setups on conventional orthogonal machine tools. This non-conventional, non-orthogonal machining approach is based on a 6-axis positioning system commonly referred to as a hexapod. Sandia National Laboratories/New Mexico (SNL/NM) was the lead site responsible for a multitude of projects that defined the machining parameters and detailed the metrology of the hexapod. The role of the Kansas City Plant (KCP) in this project was limited to evaluating the application of this unique technology to production applications.

  11. Telerobot task planning and reasoning: Introduction to JPL artificial intelligence research

    NASA Technical Reports Server (NTRS)

    Atkinson, D. J.

    1987-01-01

    A view of the capabilities and areas of artificial intelligence research which are required for autonomous space telerobotics extending through the year 2000 is given. In the coming years, JPL will be conducting directed research to achieve these capabilities, as well as drawing heavily on collaborative efforts conducted with other research laboratories.

  12. Role of computer graphics in space telerobotics - Preview and predictive displays

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Venema, Steven; Kim, Won S.

    1991-01-01

    The application of computer graphics in space telerobotics research and development work is briefly reviewed and illustrated by specific examples implemented in real time operation. The applications are discussed under the following four major categories: preview displays, predictive displays, sensor data displays, and control system status displays.

  13. Advanced data management design for autonomous telerobotic systems in space using spaceborne symbolic processors

    NASA Technical Reports Server (NTRS)

    Goforth, Andre

    1987-01-01

    The use of computers in autonomous telerobots is reaching the point where advanced distributed processing concepts and techniques are needed to support the functioning of Space Station era telerobotic systems. Three major issues that have impact on the design of data management functions in a telerobot are covered. It also presents a design concept that incorporates an intelligent systems manager (ISM) running on a spaceborne symbolic processor (SSP), to address these issues. The first issue is the support of a system-wide control architecture or control philosophy. Salient features of two candidates are presented that impose constraints on data management design. The second issue is the role of data management in terms of system integration. This referes to providing shared or coordinated data processing and storage resources to a variety of telerobotic components such as vision, mechanical sensing, real-time coordinated multiple limb and end effector control, and planning and reasoning. The third issue is hardware that supports symbolic processing in conjunction with standard data I/O and numeric processing. A SSP that currently is seen to be technologically feasible and is being developed is described and used as a baseline in the design concept.

  14. Robust telerobotics - an integrated system for waste handling, characterization and sorting

    SciTech Connect

    Couture, S.A.; Hurd, R.L.; Wilhelmsen, K.C.

    1997-01-01

    The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory was designed to serve as a national testbed to demonstrate integrated technologies for the treatment of low-level organic mixed waste at a pilot-plant scale. Pilot-scale demonstration serves to bridge the gap between mature, bench-scale proven technologies and full-scale treatment facilities by providing the infrastructure needed to evaluate technologies in an integrated, front-end to back-end facility. Consistent with the intent to focus on technologies that are ready for pilot scale deployment, the front-end handling and feed preparation of incoming waste material has been designed to demonstrate the application of emerging robotic and remotely operated handling systems. The selection of telerobotics for remote handling in MWMF was made based on a number of factors - personnel protection, waste generation, maturity, cost, flexibility and extendibility. Telerobotics, or shared control of a manipulator by an operator and a computer, provides the flexibility needed to vary the amount of automation or operator intervention according to task complexity. As part of the telerobotics design effort, the technical risk of deploying the technology was reduced through focused developments and demonstrations. The work involved integrating key tools (1) to make a robust telerobotic system that operates at speeds and reliability levels acceptable to waste handling operators and, (2) to demonstrate an efficient operator interface that minimizes the amount of special training and skills needed by the operator. This paper describes the design and operation of the prototype telerobotic waste handling and sorting system that was developed for MWMF.

  15. Human-machine interactions

    DOEpatents

    Forsythe, J. Chris; Xavier, Patrick G.; Abbott, Robert G.; Brannon, Nathan G.; Bernard, Michael L.; Speed, Ann E.

    2009-04-28

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  16. Beginnings of open-heart surgery in Gdansk – double role of the Pemco heart-lung machine and new facts about Dutch-Polish cooperation

    PubMed Central

    2016-01-01

    The first open-heart surgery in Gdansk took place in 1975. It was possible thanks to the gift of a Pemco extracorporeal circulation machine from the Netherlands to the Surgery Institute of the Medical Academy of Gdansk. The article presents additional, unpublished informations which enable a new interpretation of the previously known facts. PMID:27516801

  17. Low-Latency Telerobotics from Mars Orbit: The Case for Synergy Between Science and Human Exploration

    NASA Technical Reports Server (NTRS)

    Valinia, A.; Garvin, J. B.; Vondrak, R.; Thronson, H.; Lester, D.; Schmidt, G.; Fong, T.; Wilcox, B.; Sellers, P.; White, N.

    2012-01-01

    Initial, science-directed human exploration of Mars will benefit from capabilities in which human explorers remain in orbit to control telerobotic systems on the surface (Figure 1). Low-latency, high-bandwidth telerobotics (LLT) from Mars orbit offers opportunities for what the terrestrial robotics community considers to be high-quality telepresence. Such telepresence would provide high quality sensory perception and situation awareness, and even capabilities for dexterous manipulation as required for adaptive, informed selection of scientific samples [1]. Astronauts on orbit in close communication proximity to a surface exploration site (in order to minimize communication latency) represent a capability that would extend human cognition to Mars (and potentially for other bodies such as asteroids, Venus, the Moon, etc.) without the challenges, expense, and risk of putting those humans on hazardous surfaces or within deep gravity wells. Such a strategy may be consistent with goals for a human space flight program that, are currently being developed within NASA.

  18. OPTICAM machine design

    NASA Astrophysics Data System (ADS)

    Liedes, Jyrki T.

    1992-01-01

    Rank Pneumo has worked with the Center of Optics Manufacturing to design a multiple-axis flexible machining center for spherical lens fabrication. The OPTICAM/SM prototype machine has been developed in cooperation with the Center's Manufacturing Advisory Board. The SM will generate, fine grind, pre-polish, and center a spherical lens surface in one setup sequence. Unique features of the design incorporate machine resident metrology to provide RQM (Real-time Quality Management) and closed-loop feedback control that corrects for lens thickness, diameter, and centering error. SPC (Statistical Process Control) software can compensate for process drift and QA data collection is provided without additional labor.

  19. Telerobotic hand controller study of force reflection with position control mode

    NASA Technical Reports Server (NTRS)

    Willshire, Kelli F.; Hankins, Walter W.; Morris, A. Terry; Mixon, Randolph W.

    1992-01-01

    To gain further information about the effectiveness of kinesthetic force feedback or force reflection in position control mode for a telerobot, two Space Station related tasks were performed by eight subjects with and without the use of force reflection. Both time and subjective responses were measured. No differences due to force were found, however, other differences were found, e.g., gender. Comparisons of these results with other studies are discussed.

  20. Software architecture for a distributed real-time system in Ada, with application to telerobotics

    NASA Technical Reports Server (NTRS)

    Olsen, Douglas R.; Messiora, Steve; Leake, Stephen

    1992-01-01

    The architecture structure and software design methodology presented is described in the context of telerobotic application in Ada, specifically the Engineering Test Bed (ETB), which was developed to support the Flight Telerobotic Servicer (FTS) Program at GSFC. However, the nature of the architecture is such that it has applications to any multiprocessor distributed real-time system. The ETB architecture, which is a derivation of the NASA/NBS Standard Reference Model (NASREM), defines a hierarchy for representing a telerobot system. Within this hierarchy, a module is a logical entity consisting of the software associated with a set of related hardware components in the robot system. A module is comprised of submodules, which are cyclically executing processes that each perform a specific set of functions. The submodules in a module can run on separate processors. The submodules in the system communicate via command/status (C/S) interface channels, which are used to send commands down and relay status back up the system hierarchy. Submodules also communicate via setpoint data links, which are used to transfer control data from one submodule to another. A submodule invokes submodule algorithms (SMA's) to perform algorithmic operations. Data that describe or models a physical component of the system are stored as objects in the World Model (WM). The WM is a system-wide distributed database that is accessible to submodules in all modules of the system for creating, reading, and writing objects.

  1. Explosive ordinance disposal technology demonstration using the telerobotic small emplacement excavator

    SciTech Connect

    Burks, B.L.; Killough, S.M.; Thompson, D.H.; Dinkins, M.A.

    1994-06-01

    The small emplacement excavator (SEE) is a ruggedized military vehicle with backhoe and front loader used by the US Army for explosive ordinance disposal (EOD), combat engineer, and general utility excavation activities. In order to evaluate the feasibility of removing personnel from the vehicle during the high risk EOD excavation tasks a development and demonstration project was initiated to evaluate performance capabilities of the SEE under telerobotic control. This feasibility study was performed at the request of the Ordinance Missile and Munitions Center and School (OMMCS) at the Redstone Arsenal to help define requirements for further joint service development activities. Development of a telerobotic SEE (TSEE) was performed by the Oak Ridge National Laboratory (ORNL) in a project funded jointly by the US Army Project Manager for Ammunition Logistics (PM-AMMOLOG) and the Department of Energy (DOE) Office of Technology Development (OTD) Robotics Technology Development Program (RTDP). A technology demonstration of the TSEE was conducted at McKinley Range, Redstone Arsenal, Huntsville, Alabama, on September 13--17, 1993. The primary objective of the demonstration was to evaluate and demonstrate the feasibility of remote EOD. During the demonstration, approximately 40 EOD specialists were instructed on telerobotic operation of the TSEE and then were asked to complete a series of simulated EOD tasks. Upon completion of the tasks, participants completed an evaluation of the system including human factors performance data.

  2. A methodology for automation and robotics evaluation applied to the space station telerobotic servicer

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Gyanfi, Max; Volkmer, Kent; Zimmerman, Wayne

    1988-01-01

    The efforts of a recent study aimed at identifying key issues and trade-offs associated with using a Flight Telerobotic Servicer (FTS) to aid in Space Station assembly-phase tasks is described. The use of automation and robotic (A and R) technologies for large space systems would involve a substitution of automation capabilities for human extravehicular or intravehicular activities (EVA, IVA). A methodology is presented that incorporates assessment of candidate assembly-phase tasks, telerobotic performance capabilities, development costs, and effect of operational constraints (space transportation system (STS), attached payload, and proximity operations). Changes in the region of cost-effectiveness are examined under a variety of systems design assumptions. A discussion of issues is presented with focus on three roles the FTS might serve: (1) as a research-oriented testbed to learn more about space usage of telerobotics; (2) as a research based testbed having an experimental demonstration orientation with limited assembly and servicing applications; or (3) as an operational system to augment EVA and to aid the construction of the Space Station and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations.

  3. NASA/NBS (National Aeronautics and Space Administration/National Bureau of Standards) standard reference model for telerobot control system architecture (NASREM)

    NASA Technical Reports Server (NTRS)

    Albus, James S.; Mccain, Harry G.; Lumia, Ronald

    1989-01-01

    The document describes the NASA Standard Reference Model (NASREM) Architecture for the Space Station Telerobot Control System. It defines the functional requirements and high level specifications of the control system for the NASA space Station document for the functional specification, and a guideline for the development of the control system architecture, of the 10C Flight Telerobot Servicer. The NASREM telerobot control system architecture defines a set of standard modules and interfaces which facilitates software design, development, validation, and test, and make possible the integration of telerobotics software from a wide variety of sources. Standard interfaces also provide the software hooks necessary to incrementally upgrade future Flight Telerobot Systems as new capabilities develop in computer science, robotics, and autonomous system control.

  4. Machine intelligence and autonomy for aerospace systems

    NASA Technical Reports Server (NTRS)

    Heer, Ewald (Editor); Lum, Henry (Editor)

    1988-01-01

    The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.

  5. Machine Shop Grinding Machines.

    ERIC Educational Resources Information Center

    Dunn, James

    This curriculum manual is one in a series of machine shop curriculum manuals intended for use in full-time secondary and postsecondary classes, as well as part-time adult classes. The curriculum can also be adapted to open-entry, open-exit programs. Its purpose is to equip students with basic knowledge and skills that will enable them to enter the…

  6. Hierarchical Ada robot programming system (HARPS)- A complete and working telerobot control system based on the NASREM model

    NASA Technical Reports Server (NTRS)

    Leake, Stephen; Green, Tom; Cofer, Sue; Sauerwein, Tim

    1989-01-01

    HARPS is a telerobot control system that can perform some simple but useful tasks. This capability is demonstrated by performing the ORU exchange demonstration. HARPS is based on NASREM (NASA Standard Reference Model). All software is developed in Ada, and the project incorporates a number of different CASE (computer-aided software engineering) tools. NASREM was found to be a valid and useful model for building a telerobot control system. Its hierarchical and distributed structure creates a natural and logical flow for implementing large complex robust control systems. The ability of Ada to create and enforce abstraction enhanced the implementation of such control systems.

  7. The Space Station Freedom Flight Telerobotic Servicer: the design and evolution of a dexterous space robot.

    PubMed

    McCain, H G; Andary, J F; Hewitt, D R; Haley, D C

    1991-01-01

    The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station) Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper. PMID:11540062

  8. The Space Station Freedom Flight Telerobotic Servicer: the design and evolution of a dexterous space robot.

    PubMed

    McCain, H G; Andary, J F; Hewitt, D R; Haley, D C

    1991-01-01

    The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station) Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.

  9. The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case study

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Gyamfi, Max A.; Volkmer, Kent; Zimmerman, Wayne F.

    1987-01-01

    A methodology is described for examining the feasibility of a Flight Telerobotic Servicer (FTS) using two assembly scenarios, defined at the EVA task level, for the 30 shuttle flights (beginning with MB-1) over a four-year period. Performing all EVA tasks by crew only is compared to a scenario in which crew EVA is augmented by FTS. A reference FTS concept is used as a technology baseline and life-cycle cost analysis is performed to highlight cost tradeoffs. The methodology, procedure, and data used to complete the analysis are documented in detail.

  10. Semi-autonomous telerobotic manipulation : a viable approach for space structure deployment and maintenance.

    SciTech Connect

    Park, Y. S.; Kang, H.; Ewing, T. F.; Colgate, J. E.; Peshkin, M. A.; DeJong, B. P.; Faurling, E. L.; Nuclear Engineering Division; Northwestern Univ.

    2005-01-01

    Future space explorations necessitate manipulation of space structures in support of extra vehicular activities or extraterrestrial resource exploitation. In these tasks robots are expected to assist or replace human crew to alleviate human risk and enhance task performance. However due to the vastly unstructured and unpredictable environmental conditions, automation of robotic task is virtually impossible and thus teleoperation is expected to be employed. However teleoperation is extremely slow and inefficient. To improve task efficiency of teleoperation, this work introduces semi-autonomous telerobotic operation technology. Key technological innovations include implementation of reactive agent based robotic architecture and enhanced operator interface that renders virtual fixture.

  11. A helmet mounted display to adapt the telerobotic environment to human vision

    NASA Technical Reports Server (NTRS)

    Tharp, Gregory; Liu, Andrew; Yamashita, Hitomi; Stark, Lawrence

    1990-01-01

    A Helmet Mounted Display system has been developed. It provides the capability to display stereo images with the viewpoint tied to subjects' head orientation. The type of display might be useful in a telerobotic environment provided the correct operating parameters are known. The effects of update frequency were tested using a 3D tracking task. The effects of blur were tested using both tracking and pick-and-place tasks. For both, researchers found that operator performance can be degraded if the correct parameters are not used. Researchers are also using the display to explore the use of head movements as part of gaze as subjects search their visual field for target objects.

  12. Semi-autonomous Telerobotic Manipulation: A Viable Approach for Space Structure Deployment and Maintenance

    NASA Astrophysics Data System (ADS)

    Park, Young S.; Kang, Hyosig; Ewing, Thomas F.; Faulring, Eric L.; DeJong, Brian P.; Peshkin, Michael A.; Colgate, J. Edward

    2005-02-01

    Future space explorations necessitate manipulation of space structures in support of extra vehicular activities or extraterrestrial resource exploitation. In these tasks robots are expected to assist or replace human crew to alleviate human risk and enhance task performance. However due to the vastly unstructured and unpredictable environmental conditions, automation of robotic task is virtually impossible and thus teleoperation is expected to be employed. However teleoperation is extremely slow and inefficient. To improve task efficiency of teleoperation, this work introduces semi-autonomous telerobotic operation technology. Key technological innovations include implementation of reactive agent based robotic architecture and enhanced operator interface that renders virtual fixture.

  13. The NASA (National Aeronautics and Space Administration) Laboratory Telerobotic Manipulator control system architecture

    SciTech Connect

    Rowe, J.C.; Butler, P.L.; Glassell, R.L.; Herndon, J.N.

    1991-01-01

    In support of the National Aeronautics and Space Administration (NASA) goals to increase the utilization of dexterous robotic systems in space, the Oak Ridge National Laboratory (ORNL) has developed the Laboratory Telerobotic Manipulator (LTM) system. It is a dexterous, dual-arm, force reflecting teleoperator system with robotic features for NASA ground-based research. This paper describes the overall control system architecture, including both the hardware and software. The control system is a distributed, modular, and hierarchical design with flexible expansion capabilities for future enhancements of both the hardware and software. 6 refs., 4 figs.

  14. Graphical programming: A systems approach for telerobotic servicing of space assets

    NASA Technical Reports Server (NTRS)

    Pinkerton, James T.; Mcdonald, Michael J.; Palmquist, Robert D.; Patten, Richard

    1994-01-01

    Satellite servicing is in many ways analogous to subsea robotic servicing in the late 1970's. A cost effective, reliable, telerobotic capability had to be demonstrated before the oil companies invested money in deep water robot serviceable production facilities. In the same sense, aeronautic engineers will not design satellites for telerobotic servicing until such a quantifiable capability has been demonstrated. New space servicing systems will be markedly different than existing space robot systems. Past space manipulator systems, including the Space Shuttle's robot arm, have used master/slave technologies with poor fidelity, slow operating speeds and most importantly, in-orbit human operators. In contrast, new systems will be capable of precision operations, conducted at higher rates of speed, and be commanded via ground-control communication links. Challenge presented by this environment include achieving a mandated level of robustness and dependability, radiation hardening, minimum weight and power consumption, and a system which accommodates the inherent communication delay between the ground station and the satellite. There is also a need for a user interface which is easy to use, ensures collision free motions, and is capable of adjusting to an unknown workcell (for repair operations the condition of the satellite may not be known in advance). This paper describes the novel technologies required to deliver such a capability.

  15. Performance benefits of telerobotics and teleoperation - enhancements for an arm-based tank waste retrieval system

    SciTech Connect

    Horschel, D.S.; Gibbons, P.W.; Draper, J.V.

    1995-06-01

    This report evaluates telerobotic and teleoperational arm-based retrieval systems that require advanced robotic controls. These systems will be deployed in waste retrieval activities in Hanford`s Single Shell Tanks (SSTs). The report assumes that arm-based, retrieval systems will combine a teleoperational arm and control system enhanced by a number of advanced and telerobotic controls. The report describes many possible enhancements, spanning the full range of the control spectrum with the potential for technical maturation. The enhancements considered present a variety of choices and factors including: the enhancements to be included in the actual control system, safety, detailed task analyses, human factors, cost-benefit ratios, and availability and maturity of technology. Because the actual system will be designed by an offsite vendor, the procurement specifications must have the flexibility to allow bidders to propose a broad range of ideas, yet build in enough restrictions to filter out infeasible and undesirable approaches. At the same time they must allow selection of a technically promising proposal. Based on a preliminary analysis of the waste retrieval task, and considering factors such as operator limitations and the current state of robotics technology, the authors recommend a set of enhancements that will (1) allow the system to complete its waste retrieval mission, and (2) enable future upgrades in response to changing mission needs and technological advances.

  16. Graphical Programming: A systems approach for telerobotic servicing of space assets

    SciTech Connect

    Pinkerton, J.T.; McDonald, M.J.; Palmquist, R.D.; Patten, R.

    1993-08-01

    Satellite servicing is in many ways analogous to subsea robotic servicing in the late 1970`s. A cost effective, reliable, telerobotic capability had to be demonstrated before the oil companies invested money in deep water robot serviceable production facilities. In the same sense, aeronautic engineers will not design satellites for telerobotic servicing until such a quantifiable capability has been demonstrated. New space servicing systems will be markedly different than existing space robot systems. Past space manipulator systems, including the Space Shuttle`s robot arm, have used master/slave technologies with poor fidelity, slow operating speeds and most importantly, in-orbit human operators. In contrast, new systems will be capable of precision operations, conducted at higher rates of speed, and be commanded via ground-control communication links. Challenges presented by this environment include achieving a mandated level of robustness and dependability, radiation hardening, minimum weight and power consumption, and a system which accommodates the inherent communication delay between the ground station and the satellite. There is also a need for a user interface which is easy to use, ensures collision free motions, and is capable of adjusting to an unknown workcell (for repair operations the condition of the satellite may not be known in advance). This paper describes the novel technologies required to deliver such a capability.

  17. Applying Behavior-Based Robotics Concepts to Telerobotic Use of Power Tooling

    SciTech Connect

    Noakes, Mark W; Hamel, Dr. William R.

    2011-01-01

    While it has long been recognized that telerobotics has potential advantages to reduce operator fatigue, to permit lower skilled operators to function as if they had higher skill levels, and to protect tools and manipulators from excessive forces during operation, relatively little laboratory research in telerobotics has actually been implemented in fielded systems. Much of this has to do with the complexity of the implementation and its lack of ability to operate in complex unstructured remote systems environments. One possible solution is to approach the tooling task using an adaptation of behavior-based techniques to facilitate task decomposition to a simpler perspective and to provide sensor registration to the task target object in the field. An approach derived from behavior-based concepts has been implemented to provide automated tool operation for a teleoperated manipulator system. The generic approach is adaptable to a wide range of typical remote tools used in hot-cell and decontamination and dismantlement-type operations. Two tasks are used in this work to test the validity of the concept. First, a reciprocating saw is used to cut a pipe. The second task is bolt removal from mockup process equipment. This paper explains the technique, its implementation, and covers experimental data, analysis of results, and suggestions for implementation on fielded systems.

  18. Use of control umbilicals as a deployment mode for free flying telerobotic work systems

    NASA Technical Reports Server (NTRS)

    Kuehn, J. S.; Selle, E. D.

    1987-01-01

    Work to date on telerobotic work systems for use in space generally consider two deployment modes, free flying, or fixed within a limited work envelope. Control tethers may be employed to obtain a number of operational advantages and added flexibility in the basing and deployment of telerobotic work systems. Use of a tether allows the work system to be separated into two major modules, the remote work package and the control module. The Remote Work Package (RWP) comprises the free flying portion of the work system while the Control Module (CM) remains at the work system base. The chief advantage of this configuration is that only the components required for completion of the work task must be located at the work site. Reaction mass used in free flight is stored at the Control module and supplied to the RWP through the tether, eliminating the need for the RWP to carry it. The RWP can be made less massive than a self contained free flying work system. As a result, reaction mass required for free flight is lower than for a self contained free flyer.

  19. Model control of image processing for telerobotics and biomedical instrumentation

    NASA Astrophysics Data System (ADS)

    Nguyen, An Huu

    1993-06-01

    This thesis has model control of image processing (MCIP) as its major theme. By this it is meant that there is a top-down model approach which already knows the structure of the image to be processed. This top-down image processing under model control is used further as visual feedback to control robots and as feedforward information for biomedical instrumentation. The software engineering of the bioengineering instrumentation image processing is defined in terms of the task and the tools available. Early bottom-up image processing such as thresholding occurs only within the top-down control regions of interest (ROI's) or operating windows. Moment computation is an important bottom-up procedure as well as pyramiding to attain rapid computation, among other considerations in attaining programming efficiencies. A distinction is made between initialization procedures and stripped down run time operations. Even more detailed engineering design considerations are considered with respect to the ellipsoidal modeling of objects. Here the major axis orientation is an important additional piece of information, beyond the centroid moments. Careful analysis of various sources of errors and considerable benchmarking characterized the detailed considerations of the software engineering of the image processing procedures. Image processing for robotic control involves a great deal of 3D calibration of the robot working environment (RWE). Of special interest is the idea of adapting the machine scanpath to the current task. It was important to pay careful attention to the hardware aspects of the control of the toy robots that were used to demonstrate the general methodology. It was necessary to precalibrate the open loop gains for all motors so that after initialization the visual feedback, which depends on MCIP, would be able to supply enough information quickly enough to the control algorithms to govern the robots under a variety of control configurations and task operations

  20. Plan recognition and generalization in command languages with application to telerobotics

    NASA Technical Reports Server (NTRS)

    Yared, Wael I.; Sheridan, Thomas B.

    1991-01-01

    A method for pragmatic inference as a necessary accompaniment to command languages is proposed. The approach taken focuses on the modeling and recognition of the human operator's intent, which relates sequences of domain actions ('plans') to changes in some model of the task environment. The salient feature of this module is that it captures some of the physical and linguistic contextual aspects of an instruction. This provides a basis for generalization and reinterpretation of the instruction in different task environments. The theoretical development is founded on previous work in computational linguistics and some recent models in the theory of action and intention. To illustrate these ideas, an experimental command language to a telerobot is implemented. The program consists of three different components: a robot graphic simulation, the command language itself, and the domain-independent pragmatic inference module. Examples of task instruction processes are provided to demonstrate the benefits of this approach.

  1. Wrist Camera Orientation for Effective Telerobotic Orbital Replaceable Unit (ORU) Changeout

    NASA Technical Reports Server (NTRS)

    Jones, Sharon Monica; Aldridge, Hal A.; Vazquez, Sixto L.

    1997-01-01

    The Hydraulic Manipulator Testbed (HMTB) is the kinematic replica of the Flight Telerobotic Servicer (FTS). One use of the HMTB is to evaluate advanced control techniques for accomplishing robotic maintenance tasks on board the Space Station. Most maintenance tasks involve the direct manipulation of the robot by a human operator when high-quality visual feedback is important for precise control. An experiment was conducted in the Systems Integration Branch at the Langley Research Center to compare several configurations of the manipulator wrist camera for providing visual feedback during an Orbital Replaceable Unit changeout task. Several variables were considered such as wrist camera angle, camera focal length, target location, lighting. Each study participant performed the maintenance task by using eight combinations of the variables based on a Latin square design. The results of this experiment and conclusions based on data collected are presented.

  2. A kinematic analysis of the modified flight telerobotic servicer manipulator system

    NASA Technical Reports Server (NTRS)

    Crane, Carl; Carnahan, Tim; Duffy, Joseph

    1992-01-01

    A reverse kinematic analysis is presented of a six-DOF subchain of a modified seven-DOF flight telerobotic servicer manipulator system. The six-DOF subchain is designated as a TR-RT chain, which describes the sequence of manipulator joints beginning with the first grounded hook joint (universal joint) T, where the sequence R-R designates a pair of revolute joints with parallel axes. At the outset, it had been thought that the reverse kinematic analysis would be similar to a TTT manipulator previously analyzed, in which the third and fourth joints intersected at a finite point. However, this is shown not the case, and a 16th-degree tan-half-angle polynomial is derived for the TR-RT manipulator.

  3. Dual Arm Work Package performance estimates and telerobot task network simulation

    SciTech Connect

    Draper, J.V.; Blair, L.M.

    1997-02-01

    This paper describes the methodology and results of a network simulation study of the Dual Arm Work Package (DAWP), to be employed for dismantling the Argonne National Laboratory CP-5 reactor. The development of the simulation model was based upon the results of a task analysis for the same system. This study was performed by the Oak Ridge National Laboratory (ORNL), in the Robotics and Process Systems Division. Funding was provided the US Department of Energy`s Office of Technology Development, Robotics Technology Development Program (RTDP). The RTDP is developing methods of computer simulation to estimate telerobotic system performance. Data were collected to provide point estimates to be used in a task network simulation model. Three skilled operators performed six repetitions of a pipe cutting task representative of typical teleoperation cutting operations.

  4. Human factors requirements for telerobotic command and control: The European Space Agency experimental programme

    NASA Technical Reports Server (NTRS)

    Stone, Robert J.

    1991-01-01

    Space Telerobotics research, performed under contract to the European Space Agency (ESA), concerning the execution of human factors experiments, and ultimately leading to the development of a telerobotics test bed, has been carried out since 1985 by a British Consortium consisting of British Aerospace, the United Kingdom Atomic Energy Authority and, more recently, the UK National Advanced Robotics Research Centre. The principal aim of the first study of the series was to derive preliminary requirements for a teleoperation servicing system, with reference to two mission model scenarios. The first scenario introduced the problem of communications time delays, and their likely effect on the ground-based operator in control of a manipulator system on board an unmanned servicing vehicle in Low Earth Orbit. In the second scenario, the operator was located on the NASA Orbiter aft flight deck, supervising the control of a prototype manipulator in the 'servicing' of an experimental payload in the cargo bay area. Human factors analyses centered on defining the requirements for the teleoperator workstation, such as identifying basic ergonomic requirements for workstation and panel layouts, defining teleoperation strategies, developing alphanumeric and graphic screen formats for the supervision or direct control of the manipulator, and the potential applications of expert system technology. The second study for ESA involved an experimental appraisal of some of the important issues highlighted in the first study, for which relevant human factors data did not exist. Of central importance during the second study was the issue of communications time delays and their effect on the manual control of a teleoperated manipulator from a ground-based command and control station.

  5. Robotic technologies of the Flight Telerobotic Servicer (FTS) including fault tolerance

    NASA Technical Reports Server (NTRS)

    Chladek, John T.; Craver, William M.

    1994-01-01

    The original FTS concept for Space Station Freedom (SSF) was to provide telerobotic assistance to enhance crew activity and safety and to reduce crew EVA (Extra Vehicular Activity) activity. The first flight of the FTS manipulator systems would demonstrate several candidate tasks and would verify manipulator performance parameters. These first flight tasks included unlocking a SSF Truss Joint, mating/demating a fluid coupling, contact following of a contour board, demonstrating peg-in-hole assembly, and grasping and moving a mass. Future tasks foreseen for the FTS system included ORU (Orbit Replaceable Unit) change-out, Hubble Space Telescope Servicing, Gamma Ray Observatory refueling, and several in-situ SSF servicing and maintenance tasks. Operation of the FTS was planned to evolve from teleoperation to fully autonomous execution of many tasks. This wide range of mission tasks combined with the desire to evolve toward fully autonomy forced several requirements which may seen extremely demanding to the telerobotics community. The FTS requirements appear to have been created to accommodate the open-ended evolution plan such that operational evolution would not be impeded by function limitations. A recommendation arising from the FTS program to remedy the possible impacts from such ambitious requirements is to analyze candidate robotic tasks. Based on these task analyses, operational impacts against development impacts were weighed prior to requirements definition. Many of the FTS requirements discussed in the following sections greatly influenced the development cost and schedule of the FTS manipulator. The FTS manipulator has been assembled at Martin Marietta and is currently in testing. Successful component tests indicate a manipulator which achieves unprecedented performance specifications.

  6. Development and verification of ground-based tele-robotics operations concept for Dextre

    NASA Astrophysics Data System (ADS)

    Aziz, Sarmad

    2013-05-01

    The Special Purpose Dextreous Manipulator (Dextre) is the latest addition to the on-orbit segment of the Mobile Servicing System (MSS); Canada's contribution to the International Space Station (ISS). Launched in March 2008, the advanced two-armed robot is designed to perform various ISS maintenance tasks on robotically compatible elements and on-orbit replaceable units using a wide variety of tools and interfaces. The addition of Dextre has increased the capabilities of the MSS, and has introduced significant complexity to ISS robotics operations. While the initial operations concept for Dextre was based on human-in-the-loop control by the on-orbit astronauts, the complexities of robotic maintenance and the associated costs of training and maintaining the operator skills required for Dextre operations demanded a reexamination of the old concepts. A new approach to ISS robotic maintenance was developed in order to utilize the capabilities of Dextre safely and efficiently, while at the same time reducing the costs of on-orbit operations. This paper will describe the development, validation, and on-orbit demonstration of the operations concept for ground-based tele-robotics control of Dextre. It will describe the evolution of the new concepts from the experience gained from the development and implementation of the ground control capability for the Space Station Remote Manipulator System; Canadarm 2. It will discuss the various technical challenges faced during the development effort, such as requirements for high positioning accuracy, force/moment sensing and accommodation, failure tolerance, complex tool operations, and the novel operational tools and techniques developed to overcome them. The paper will also describe the work performed to validate the new concepts on orbit and will discuss the results and lessons learned from the on-orbit checkout and commissioning of Dextre using the newly developed tele-robotics techniques and capabilities.

  7. Cooperative Poetry.

    ERIC Educational Resources Information Center

    McEwen, Pam

    1989-01-01

    Describes "cooperative poetry," a group poetry-writing exercise combining brainstorming, rehearsing, choral reading, assisted reading, memorization, sequencing, and vocabulary development, as well as providing an opportunity for group cooperation. (MM)

  8. Electric machine

    SciTech Connect

    El-Refaie, Ayman Mohamed Fawzi; Reddy, Patel Bhageerath

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  9. Nonplanar machines

    SciTech Connect

    Ritson, D. )

    1989-05-01

    This talk examines methods available to minimize, but never entirely eliminate, degradation of machine performance caused by terrain following. Breaking of planar machine symmetry for engineering convenience and/or monetary savings must be balanced against small performance degradation, and can only be decided on a case-by-case basis. 5 refs.

  10. Permutation Machines.

    PubMed

    Bhatia, Swapnil; LaBoda, Craig; Yanez, Vanessa; Haddock-Angelli, Traci; Densmore, Douglas

    2016-08-19

    We define a new inversion-based machine called a permuton of n genetic elements, which allows the n elements to be rearranged in any of the n·(n - 1)·(n - 2)···2 = n! distinct orderings. We present two design algorithms for architecting such a machine. We define a notion of a feasible design and use the framework to discuss the feasibility of the permuton architectures. We have implemented our design algorithms in a freely usable web-accessible software for exploration of these machines. Permutation machines could be used as memory elements or state machines and explicitly illustrate a rational approach to designing biological systems.

  11. Permutation Machines.

    PubMed

    Bhatia, Swapnil; LaBoda, Craig; Yanez, Vanessa; Haddock-Angelli, Traci; Densmore, Douglas

    2016-08-19

    We define a new inversion-based machine called a permuton of n genetic elements, which allows the n elements to be rearranged in any of the n·(n - 1)·(n - 2)···2 = n! distinct orderings. We present two design algorithms for architecting such a machine. We define a notion of a feasible design and use the framework to discuss the feasibility of the permuton architectures. We have implemented our design algorithms in a freely usable web-accessible software for exploration of these machines. Permutation machines could be used as memory elements or state machines and explicitly illustrate a rational approach to designing biological systems. PMID:27383067

  12. Feasibility of intercity and trans-Atlantic telerobotic remote ultrasound: assessment facilitated by a nondedicated bandwidth connection.

    PubMed

    Sengupta, Partho P; Narula, Nupoor; Modesto, Karen; Doukky, Rami; Doherty, Sarah; Soble, Jeffery; Narula, Jagat

    2014-08-01

    We discuss the concept of ultrasound imaging at a distance by presenting the evaluation of a customized, lightweight, human-safe robotic arm for low-force, long-distance, telerobotic ultrasonography. We undertook intercity and trans-Atlantic telerobotic ultrasound simulation from master stations located in New York, New York and Munich, Germany, and imaged a phantom and a human volunteer located at a slave station in Burlington, Massachusetts, using standard Internet bandwidth <100 Mbps and <50 Mbps, respectively. The data from the robotic arm were tracked for understanding the time efficiency of the human interactions at the master stations. Comparison of a beginner in ultrasound operation with a professional sonographer revealed that although proficiency in using ultrasound was not a prerequisite for operating the robotic arm, previous experience in using clinical ultrasound was associated with progressively lower probe maneuvering time and speed due to an enhanced ability of the veteran operator in adjusting the finer angular motions of the probe. These results suggest that long-distance telerobotic echocardiography over a local nondedicated Internet bandwidth is feasible and can be rapidly learned by sonographers for cost-effective resource utilization. PMID:25124012

  13. Monel Machining

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Castle Industries, Inc. is a small machine shop manufacturing replacement plumbing repair parts, such as faucet, tub and ballcock seats. Therese Castley, president of Castle decided to introduce Monel because it offered a chance to improve competitiveness and expand the product line. Before expanding, Castley sought NERAC assistance on Monel technology. NERAC (New England Research Application Center) provided an information package which proved very helpful. The NASA database was included in NERAC's search and yielded a wealth of information on machining Monel.

  14. Baseline tests of an autonomous telerobotic system for assembly of space truss structures

    NASA Technical Reports Server (NTRS)

    Rhodes, Marvin D.; Will, Ralph W.; Quach, Coung

    1994-01-01

    Several proposed space missions include precision reflectors that are larger in diameter than any current or proposed launch vehicle. Most of these reflectors will require a truss structure to accurately position the reflector panels and these reflectors will likely require assembly in orbit. A research program has been conducted at the NASA Langley Research Center to develop the technology required for the robotic assembly of truss structures. The focus of this research has been on hardware concepts, computer software control systems, and operator interfaces necessary to perform supervised autonomous assembly. A special facility was developed and four assembly and disassembly tests of a 102-strut tetrahedral truss have been conducted. The test procedures were developed around traditional 'pick-and-place' robotic techniques that rely on positioning repeatability for successful operation. The data from two of the four tests were evaluated and are presented in this report. All operations in the tests were controlled by predefined sequences stored in a command file, and the operator intervened only when the system paused because of the failure of an actuator command. The tests were successful in identifying potential pitfalls in a telerobotic system, many of which would not have been readily anticipated or incurred through simulation studies. Addressing the total integrated task, instead of bench testing the component parts, forced all aspects of the task to be evaluated. Although the test results indicate that additional developments should be pursued, no problems were encountered that would preclude automated assembly in space as a viable construction method.

  15. The pitfalls of laparoscopic surgery: challenges for robotics and telerobotic surgery.

    PubMed

    Ballantyne, Garth H

    2002-02-01

    After its debut in 1988, laparoscopic cholecystectomy rapidly became the standard of care for cholelithiasis, yet very few surgeons use minimally invasive techniques for other abdominal operations. Why do most surgeons continue to perform traditional open gastrointestinal operations? We believe that the answer to this question lies in the fact that advanced laparoscopic operations are difficult to learn, perform, and master. A number of inherent pitfalls of laparoscopy hinder the performance of these operations even after the surgeon has accumulated years of experience. These pitfalls include an unstable video camera platform, limited motion (degrees of freedom) of straight laparoscopic instruments, two-dimensional imaging, and poor ergonomics for the surgeon. Inexperienced or bored laparoscopic camera-holders move the camera frequently and rotate it away from the horizon. The long, straight laparoscopic instruments are limited in their motion by the fixation enforced by the abdominal wall trocars. Similarly, the standard two-dimensional video imaging used in most laparoscopic operations impedes the surgeon's depth perception, compounding the limitations of laparoscopic instruments. In addition, surgeons are forced to assume ergonomically awkward stances in performing many laparoscopic operations. These four factors hinder a surgeon's efforts to learn and to perform advanced laparoscopic operations, significantly lengthening the learning curve. The articles presented in this issue suggest that robotics and telerobotics offer solutions to these nagging pitfalls of laparoscopic surgery.

  16. Marginal Probabilistic Modeling of the Delays in the Sensory Data Transmission of Networked Telerobots

    PubMed Central

    Gago-Benítez, Ana; Fernández-Madrigal, Juan-Antonio; Cruz-Martín, Ana

    2014-01-01

    Networked telerobots are remotely controlled through general purpose networks and components, which are highly heterogeneous and exhibit stochastic response times; however their correct teleoperation requires a timely flow of information from sensors to remote stations. In order to guarantee these time requirements, a good on-line probabilistic estimation of the sensory transmission delays is needed. In many modern applications this estimation must be computationally highly efficient, e.g., when the system includes a web-based client interface. This paper studies marginal probability distributions that, under mild assumptions, can be a good approximation of the real distribution of the delays without using knowledge of their dynamics, are efficient to compute, and need minor modifications on the networked robot. Since sequences of delays exhibit strong non-linearities in these networked applications, to satisfy the iid hypothesis required by the marginal approach we apply a change detection method. The results reported here indicate that some parametrical models explain well many more real scenarios when using this change detection method, while some non-parametrical distributions have a very good rate of successful modeling in the case that non-linearity detection is not possible and that we split the total delay into its three basic terms: server, network and client times. PMID:24481232

  17. Testing of FTS fingers and interface using a passive compliant robot manipulator. [flight telerobot servicer

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Antrazi, Sami S.

    1992-01-01

    This report deals with testing of a pair of robot fingers designed for the Flight Telerobotic Servicer (FTS) to grasp a cylinder type of Orbital Replaceable Unit (ORU) interface. The report first describes the objectives of the study and then the testbed consisting of a Stewart Platform-based manipulator equipped with a passive compliant platform which also serves as a force/torque sensor. Kinematic analysis is then performed to provide a closed-form solution for the force inverse kinematics and iterative solution for the force forward kinematics using the Newton's Raphson Method. Mathematical expressions are then derived to compute force/torques applied to the FTS fingers during the mating/demating with the interface. The report then presents the three parts of the experimental study on the feasibility and characteristics of the fingers. The first part obtains data of forces applied by the fingers to the interface under various misalignments, the second part determines the maximum allowable capture angles for mating, and the third part processes and interprets the obtained force/torque data.

  18. First trial results of ATES: Advanced telerobotic system for underwater complex operations

    SciTech Connect

    Brambilla, M.; Maddalena, D.; McCavanagh, G.

    1995-12-31

    This paper describes the purposes, the technical approaches, and the first trials results of the ATES system. This R and D project aims at the improvement and the adaptation of innovative robotic technologies and the integration of these technologies with an industrial ROV to set up an advanced underwater telerobot capable of efficiently replacing divers in performing a large spread of complex tasks related to the offshore industry, such as construction support, platform maintenance, subsea plant servicing, etc. The key robotic technologies considered are: supervisory control, scene reconstruction and telepresence. The supervisory control includes also the manipulator force control while the scene reconstruction techniques based on computer vision are able to compensate for the ROV motion during manipulation. To evaluate the technical and economical validity of the system, extensive trials have been carried out, where typical submerged scenario comprising a real node and a well head mock-up has been used. This paper reports the first results of this trial activity demonstrating the improvements in complex task execution and accuracy and the feasibility of such tasks even with a loose docking. The tests are still going in protected water using a work ROV.

  19. Development of a semi-autonomous service robot with telerobotic capabilities

    NASA Technical Reports Server (NTRS)

    Jones, J. E.; White, D. R.

    1987-01-01

    The importance to the United States of semi-autonomous systems for application to a large number of manufacturing and service processes is very clear. Two principal reasons emerge as the primary driving forces for development of such systems: enhanced national productivity and operation in environments whch are hazardous to humans. Completely autonomous systems may not currently be economically feasible. However, autonomous systems that operate in a limited operation domain or that are supervised by humans are within the technology capability of this decade and will likely provide reasonable return on investment. The two research and development efforts of autonomy and telerobotics are distinctly different, yet interconnected. The first addresses the communication of an intelligent electronic system with a robot while the second requires human communication and ergonomic consideration. Discussed here are work in robotic control, human/robot team implementation, expert system robot operation, and sensor development by the American Welding Institute, MTS Systems Corporation, and the Colorado School of Mines--Center for Welding Research.

  20. Interactive Scene Analysis Module - A sensor-database fusion system for telerobotic environments

    NASA Technical Reports Server (NTRS)

    Cooper, Eric G.; Vazquez, Sixto L.; Goode, Plesent W.

    1992-01-01

    Accomplishing a task with telerobotics typically involves a combination of operator control/supervision and a 'script' of preprogrammed commands. These commands usually assume that the location of various objects in the task space conform to some internal representation (database) of that task space. The ability to quickly and accurately verify the task environment against the internal database would improve the robustness of these preprogrammed commands. In addition, the on-line initialization and maintenance of a task space database is difficult for operators using Cartesian coordinates alone. This paper describes the Interactive Scene' Analysis Module (ISAM) developed to provide taskspace database initialization and verification utilizing 3-D graphic overlay modelling, video imaging, and laser radar based range imaging. Through the fusion of taskspace database information and image sensor data, a verifiable taskspace model is generated providing location and orientation data for objects in a task space. This paper also describes applications of the ISAM in the Intelligent Systems Research Laboratory (ISRL) at NASA Langley Research Center, and discusses its performance relative to representation accuracy and operator interface efficiency.

  1. Controlling telerobots with video data and compensating for time-delayed video using Omniview

    NASA Technical Reports Server (NTRS)

    Kuban, Dan; Zimmerman, Steve; Martin, Lee

    1994-01-01

    Remote viewing is critical for teleoperations, but the inherent limitations of standard video reduce the operator's effectiveness. These limitations have been compensated for in many ways, from using the operator's adaptability, to augmenting his capability with feedback from a variety of sensors and simulations. Omniview can overcome some of these limitations and improve the operator's efficiency without adding additional sensors or computational burden. It can minimize the potential collisions with facility equipment, provide peripheral vision, and display multiple images simultaneously from a single input device. The Omniview technology provides electronic pan, tilt, magnify, and rotational orientation within a hemispherical field-of-view without any moving parts. Image sizes, viewing directions, scale, offset, etc., may be adjusted to fit operator needs. This paper discusses the derivation of the image transformation, the design of the electronics, and two applications to telepresence that are under development. These are Video Emulated Tweening (VET), and Manipulator Guidance and Positioning (ManGAP). The VET effort uses Omniview to compensate for time-delayed video in teleoperation of remote vehicles. In ManGAP two Omniview systems are used to provide two sets of orientation vectors to points in the field-of-view (FOV). These vectors then provide absolute position information to both control the position of the telerobot, and to avoid collisions with the work sight equipment.

  2. Speech versus manual control of camera functions during a telerobotic task

    NASA Technical Reports Server (NTRS)

    Bierschwale, John M.; Sampaio, Carlos E.; Stuart, Mark A.; Smith, Randy L.

    1989-01-01

    Voice input for control of camera functions was investigated in this study. Objective were to (1) assess the feasibility of a voice-commanded camera control system, and (2) identify factors that differ between voice and manual control of camera functions. Subjects participated in a remote manipulation task that required extensive camera-aided viewing. Each subject was exposed to two conditions, voice and manual input, with a counterbalanced administration order. Voice input was found to be significantly slower than manual input for this task. However, in terms of remote manipulator performance errors and subject preference, there was no difference between modalities. Voice control of continuous camera functions is not recommended. It is believed that the use of voice input for discrete functions, such as multiplexing or camera switching, could aid performance. Hybrid mixes of voice and manual input may provide the best use of both modalities. This report contributes to a better understanding of the issues that affect the design of an efficient human/telerobot interface.

  3. Light-Directed Ranging System Implementing Single Camera System for Telerobotics Applications

    NASA Technical Reports Server (NTRS)

    Wells, Dennis L. (Inventor); Li, Larry C. (Inventor); Cox, Brian J. (Inventor)

    1997-01-01

    A laser-directed ranging system has utility for use in various fields, such as telerobotics applications and other applications involving physically handicapped individuals. The ranging system includes a single video camera and a directional light source such as a laser mounted on a camera platform, and a remotely positioned operator. In one embodiment, the position of the camera platform is controlled by three servo motors to orient the roll axis, pitch axis and yaw axis of the video cameras, based upon an operator input such as head motion. The laser is offset vertically and horizontally from the camera, and the laser/camera platform is directed by the user to point the laser and the camera toward a target device. The image produced by the video camera is processed to eliminate all background images except for the spot created by the laser. This processing is performed by creating a digital image of the target prior to illumination by the laser, and then eliminating common pixels from the subsequent digital image which includes the laser spot. A reference point is defined at a point in the video frame, which may be located outside of the image area of the camera. The disparity between the digital image of the laser spot and the reference point is calculated for use in a ranging analysis to determine range to the target.

  4. Development of a vision non-contact sensing system for telerobotic applications

    NASA Astrophysics Data System (ADS)

    Karkoub, M.; Her, M.-G.; Ho, M.-I.; Huang, C.-C.

    2013-08-01

    The study presented here describes a novel vision-based motion detection system for telerobotic operations such as distant surgical procedures. The system uses a CCD camera and image processing to detect the motion of a master robot or operator. Colour tags are placed on the arm and head of a human operator to detect the up/down, right/left motion of the head as well as the right/left motion of the arm. The motion of the colour tags are used to actuate a slave robot or a remote system. The determination of the colour tags' motion is achieved through image processing using eigenvectors and colour system morphology and the relative head, shoulder and wrist rotation angles through inverse dynamics and coordinate transformation. A program is used to transform this motion data into motor control commands and transmit them to a slave robot or remote system through wireless internet. The system performed well even in complex environments with errors that did not exceed 2 pixels with a response time of about 0.1 s. The results of the experiments are available at: http://www.youtube.com/watch?v=yFxLaVWE3f8 and http://www.youtube.com/watch?v=_nvRcOzlWHw

  5. Demonstration of a High-Fidelity Predictive/Preview Display Technique for Telerobotic Servicing in Space

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Bejczy, Antal K.

    1993-01-01

    A highly effective predictive/preview display technique for telerobotic servicing in space under several seconds communication time delay has been demonstrated on a large laboratory scale in May 1993, involving the Jet Propulsion Laboratory as the simulated ground control station and, 2500 miles away, the Goddard Space Flight Center as the simulated satellite servicing set-up. The technique is based on a high-fidelity calibration procedure that enables a high-fidelity overlay of 3-D graphics robot arm and object models over given 2-D TV camera images of robot arm and objects. To generate robot arm motions, the operator can confidently interact in real time with the graphics models of the robot arm and objects overlaid on an actual camera view of the remote work site. The technique also enables the operator to generate high-fidelity synthetic TV camera views showing motion events that are hidden in a given TV camera view or for which no TV camera views are available. The positioning accuracy achieved by this technique for a zoomed-in camera setting was about +/-5 mm, well within the allowable +/-12 mm error margin at the insertion of a 45 cm long tool in the servicing task.

  6. Demonstration of surgical telerobotics and virtual telepresence by Internet + ISDN from Monterey (USA) to Milan (Italy).

    PubMed

    Rovetta, A; Sala, R; Bressanelli, M; Garavaldi, M E; Lorini, F; Pegoraro, R; Canina, M

    1998-01-01

    This paper deals with the connection which has been held on 8th July 1997 in collaboration with the JPL of the NASA, Pasadena, California, between the Eighth International Conference on the Advanced Robotics (ICAR '97) in course at Monterey, California and the Telerobotics Laboratory of Politecnico di Milano connected in a multipoint teleconference through the MCU of Rome with the Aula Magna of the same Politecnico and the Palace Business of the Giureconsulti of the Chamber of Commerce of Milan. The demonstration has allowed to telecontrol a scara robot of the Sankyo and an ABB robot, which have affected simulations of operations of biopsy to the prostate, to the liver and to the breast, a mechanical hand and a model of a car, disposed in a space destined to reproduce the Martian ground, from Monterey to Milan by means of the INTERNET+ISDN connection from. In fact the event has taken place four days after the landing on Mars happily successful of the spatial probe Pathfinder from which it has gone out the "Sojourner" robot, telecontrolled from the JPL of the NASA, which has begun to take photos of the Martian ground and also some of these images have been transmitted in the course of the connection.

  7. Telerobotic control of a mobile coordinated robotic server. M.S. Thesis Annual Technical Report

    NASA Technical Reports Server (NTRS)

    Lee, Gordon

    1993-01-01

    The annual report on telerobotic control of a mobile coordinated robotic server is presented. The goal of this effort is to develop advanced control methods for flexible space manipulator systems. As such, an adaptive fuzzy logic controller was developed in which model structure as well as parameter constraints are not required for compensation. The work builds upon previous work on fuzzy logic controllers. Fuzzy logic controllers have been growing in importance in the field of automatic feedback control. Hardware controllers using fuzzy logic have become available as an alternative to the traditional PID controllers. Software has also been introduced to aid in the development of fuzzy logic rule-bases. The advantages of using fuzzy logic controllers include the ability to merge the experience and intuition of expert operators into the rule-base and that a model of the system is not required to construct the controller. A drawback of the classical fuzzy logic controller, however, is the many parameters needed to be turned off-line prior to application in the closed-loop. In this report, an adaptive fuzzy logic controller is developed requiring no system model or model structure. The rule-base is defined to approximate a state-feedback controller while a second fuzzy logic algorithm varies, on-line, parameters of the defining controller. Results indicate the approach is viable for on-line adaptive control of systems when the model is too complex or uncertain for application of other more classical control techniques.

  8. Evaluation of inertial devices for the control of large, flexible, space-based telerobotic arms

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.; Kenny, Sean P.; Ghosh, Dave; Shenhar, Joram

    1993-01-01

    Inertial devices, including sensors and actuators, offer the potential of improving the tracking of telerobotic commands for space-based robots by smoothing payload motions and suppressing vibrations. In this paper, inertial actuators (specifically, torque-wheels and reaction-masses) are studied for that potential application. Batch simulation studies are presented which show that torque-wheels can reduce the overshoot in abrupt stop commands by 82 percent for a two-link arm. For man-in-the-loop evaluation, a real-time simulator has been developed which samples a hand-controller, solves the nonlinear equations of motion, and graphically displays the resulting motion on a computer workstation. Currently, two manipulator models, a two-link, rigid arm and a single-link, flexible arm, have been studied. Results are presented which show that, for a single-link arm, a reaction-mass/torque-wheel combination at the payload end can yield a settling time of 3 s for disturbances in the first flexible mode as opposed to 10 s using only a hub motor. A hardware apparatus, which consists of a single-link, highly flexible arm with a hub motor and a torque-wheel, has been assembled to evaluate the concept and is described herein.

  9. Cooperative intelligent robotics in space III; Proceedings of the Meeting, Boston, MA, Nov. 16-18, 1992

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D. (Editor)

    1992-01-01

    The present volume on cooperative intelligent robotics in space discusses sensing and perception, Space Station Freedom robotics, cooperative human/intelligent robot teams, and intelligent space robotics. Attention is given to space robotics reasoning and control, ground-based space applications, intelligent space robotics architectures, free-flying orbital space robotics, and cooperative intelligent robotics in space exploration. Topics addressed include proportional proximity sensing for telerobots using coherent lasar radar, ground operation of the mobile servicing system on Space Station Freedom, teleprogramming a cooperative space robotic workcell for space stations, and knowledge-based task planning for the special-purpose dextrous manipulator. Also discussed are dimensions of complexity in learning from interactive instruction, an overview of the dynamic predictive architecture for robotic assistants, recent developments at the Goddard engineering testbed, and parallel fault-tolerant robot control.

  10. Cooperative Education.

    ERIC Educational Resources Information Center

    Office of Education (DHEW), Washington, DC.

    Cooperative education programs, a nontraditional blending of practice and theory, have become an important feature of current higher education. Some educators estimate that by 1984 half of the higher education institutions in the United States will have developed some form of cooperative education. The Federal government's recent involvement in…

  11. Workout Machine

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Orbotron is a tri-axle exercise machine patterned after a NASA training simulator for astronaut orientation in the microgravity of space. It has three orbiting rings corresponding to roll, pitch and yaw. The user is in the middle of the inner ring with the stomach remaining in the center of all axes, eliminating dizziness. Human power starts the rings spinning, unlike the NASA air-powered system. Marketed by Fantasy Factory (formerly Orbotron, Inc.), the machine can improve aerobic capacity, strength and endurance in five to seven minute workouts.

  12. The telerobot workstation testbed for the shuttle aft flight deck: A project plan for integrating human factors into system design

    NASA Technical Reports Server (NTRS)

    Sauerwein, Timothy

    1989-01-01

    The human factors design process in developing a shuttle orbiter aft flight deck workstation testbed is described. In developing an operator workstation to control various laboratory telerobots, strong elements of human factors engineering and ergonomics are integrated into the design process. The integration of human factors is performed by incorporating user feedback at key stages in the project life-cycle. An operator centered design approach helps insure the system users are working with the system designer in the design and operation of the system. The design methodology is presented along with the results of the design and the solutions regarding human factors design principles.

  13. The use of computer graphic simulation in the development of on-orbit tele-robotic systems

    NASA Technical Reports Server (NTRS)

    Fernandez, Ken; Hinman, Elaine

    1987-01-01

    This paper describes the use of computer graphic simulation techniques to resolve critical design and operational issues for robotic systems used for on-orbit operations. These issues are robot motion control, robot path-planning/verification, and robot dynamics. The major design issues in developing effective telerobotic systems are discussed, and the use of ROBOSIM, a NASA-developed computer graphic simulation tool, to address these issues is presented. Simulation plans for the Space Station and the Orbital Maneuvering Vehicle are presented and discussed.

  14. Safety improvements in high pressure thermal machines

    SciTech Connect

    Otters, J.L.

    1988-02-09

    In a thermal machine of the type including a machine body having a main axis extending between a thermal end and a work end, a working fluid at relatively high pressure in a working fluid chamber defined in the body and a displacer element reciprocable within the chamber for subjecting the fluid to a thermodynamic cycle in cooperation with a reciprocable work piston, the improvement is described comprising outer shell means enclosing the machine body for maintaining a substantially sealed atmosphere about the machine body, and diffuser means arranged between the machine body and the outer shell means for diffusing a shock wave traveling towards the outer shell means resulting from explosive failure of the machine body and for shielding the outer shell means against fragments projected upon such failure.

  15. Wacky Machines

    ERIC Educational Resources Information Center

    Fendrich, Jean

    2002-01-01

    Collectors everywhere know that local antique shops and flea markets are treasure troves just waiting to be plundered. Science teachers might take a hint from these hobbyists, for the next community yard sale might be a repository of old, quirky items that are just the things to get students thinking about simple machines. By introducing some…

  16. Machine Learning

    NASA Astrophysics Data System (ADS)

    Hoffmann, Achim; Mahidadia, Ashesh

    The purpose of this chapter is to present fundamental ideas and techniques of machine learning suitable for the field of this book, i.e., for automated scientific discovery. The chapter focuses on those symbolic machine learning methods, which produce results that are suitable to be interpreted and understood by humans. This is particularly important in the context of automated scientific discovery as the scientific theories to be produced by machines are usually meant to be interpreted by humans. This chapter contains some of the most influential ideas and concepts in machine learning research to give the reader a basic insight into the field. After the introduction in Sect. 1, general ideas of how learning problems can be framed are given in Sect. 2. The section provides useful perspectives to better understand what learning algorithms actually do. Section 3 presents the Version space model which is an early learning algorithm as well as a conceptual framework, that provides important insight into the general mechanisms behind most learning algorithms. In section 4, a family of learning algorithms, the AQ family for learning classification rules is presented. The AQ family belongs to the early approaches in machine learning. The next, Sect. 5 presents the basic principles of decision tree learners. Decision tree learners belong to the most influential class of inductive learning algorithms today. Finally, a more recent group of learning systems are presented in Sect. 6, which learn relational concepts within the framework of logic programming. This is a particularly interesting group of learning systems since the framework allows also to incorporate background knowledge which may assist in generalisation. Section 7 discusses Association Rules - a technique that comes from the related field of Data mining. Section 8 presents the basic idea of the Naive Bayesian Classifier. While this is a very popular learning technique, the learning result is not well suited for

  17. Charging machine

    DOEpatents

    Medlin, John B.

    1976-05-25

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine.

  18. Fullerene Machines

    NASA Technical Reports Server (NTRS)

    Globus, Al; Saini, Subhash

    1998-01-01

    Recent computational efforts at NASA Ames Research Center and computation and experiment elsewhere suggest that a nanotechnology of machine phase functionalized fullerenes may be synthetically accessible and of great interest. We have computationally demonstrated that molecular gears fashioned from (14,0) single-walled carbon nanotubes and benzyne teeth should operate well at 50-100 gigahertz. Preliminary results suggest that these gears can be cooled by a helium atmosphere and a laser motor can power fullerene gears if a positive and negative charge have been added to form a dipole. In addition, we have unproven concepts based on experimental and computational evidence for support structures, computer control, a system architecture, a variety of components, and manufacture. Combining fullerene machines with the remarkable mechanical properties of carbon nanotubes, there is some reason to believe that a focused effort to develop fullerene nanotechnology could yield materials with tremendous properties.

  19. Induction machine

    DOEpatents

    Owen, Whitney H.

    1980-01-01

    A polyphase rotary induction machine for use as a motor or generator utilizing a single rotor assembly having two series connected sets of rotor windings, a first stator winding disposed around the first rotor winding and means for controlling the current induced in one set of the rotor windings compared to the current induced in the other set of the rotor windings. The rotor windings may be wound rotor windings or squirrel cage windings.

  20. Telerobotic-assisted bone-drilling system using bilateral control with feed operation scaling and cutting force scaling

    PubMed Central

    Kasahara, Yusuke; Kawana, Hiromasa; Usuda, Shin; Ohnishi, Kouhei

    2012-01-01

    Background Drilling is used in the medical field, especially in oral surgery and orthopaedics. In recent years, oral surgery involving dental implants has become more common. However, the risky drilling process causes serious accidents. To prevent these accidents, supporting systems such as robotic drilling systems are required. Methods A telerobotic-assisted drilling system is proposed. An acceleration-based four-channel bilateral control system is implemented in linear actuators in a master–slave system for drill feeding. A reaction force observer is used instead of a force sensor for measuring cutting force. Cutting force transmits from a cutting material to a surgeon, who may feel a static cutting resistance force and vigorous cutting vibrations, via the master–slave system. Moreover, position scaling and force scaling are achieved. Scaling functions are used to achieve precise drilling and hazard detection via force sensation. Results Cutting accuracy and reproducibility of the cutting force were evaluated by angular velocity/position error and frequency analysis of the cutting force, respectively, and errors were > 2.0 rpm and > 0.2 mm, respectively. Spectrum peaks of the cutting vibration were at the theoretical vibration frequencies of 30, 60 and 90 Hz. Conclusions The proposed telerobotic-assisted drilling system achieved precise manipulation of the drill feed and vivid feedback from the cutting force. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22271710

  1. Brain theory and cooperative computation.

    PubMed

    Arbib, M A

    1985-01-01

    "Top-down" brain theory, based upon functional analysis of cognitive processes in terms of interacting schemas, is distinguished from "bottom-up" brain theory based on analysis of the dynamics of neural nets. "Cooperative computation" is proposed as the style of interaction of neural subsystems at various levels. Perceptual schemas are introduced as the building blocks for the representation of the perceived environment, and motor schemas serve as control systems to be coordinated into programs for the control of movement. A cooperative computation view of the design of machine vision systems is exemplified both by an algorithm for computing optic flow which offers interesting insights into the evolution of hierarchical neural structures, and by an analysis of knowledge representation for machine interpretation of visual scenes. The interaction between top-down analysis and detailed neural modelling is illustrated by the study of visuomotor coordination in frogs and toads.

  2. Electrical machine

    DOEpatents

    De Bock, Hendrik Pieter Jacobus; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Gerstler, William Dwight; Shah, Manoj Ramprasad; Shen, Xiaochun

    2016-06-21

    An apparatus, such as an electrical machine, is provided. The apparatus can include a rotor defining a rotor bore and a conduit disposed in and extending axially along the rotor bore. The conduit can have an annular conduit body defining a plurality of orifices disposed axially along the conduit and extending through the conduit body. The rotor can have an inner wall that at least partially defines the rotor bore. The orifices can extend through the conduit body along respective orifice directions, and the rotor and conduit can be configured to provide a line of sight along the orifice direction from the respective orifices to the inner wall.

  3. TEMPO machine

    SciTech Connect

    Rohwein, G.J.; Lancaster, K.T.; Lawson, R.N.

    1986-06-01

    TEMPO is a transformer powered megavolt pulse generator with an output pulse of 100 ns duration. The machine was designed for burst mode operation at pulse repetition rates up to 10 Hz with minimum pulse-to-pulse voltage variations. To meet the requirement for pulse duration a nd a 20-..omega.. output impedance within reasonable size constraints, the pulse forming transmission line was designed as two parallel water-insulated, strip-type Blumleins. Stray capacitance and electric fields along the edges of the line elements were controlled by lining the tank with plastic sheet.

  4. Neural network machine vision

    SciTech Connect

    Fox, R.O.; Czerniejewski, F.; Fluet, F.; Mitchell, E.

    1988-09-01

    Gould, Inc. and Nestor, Inc. cooperated on a joint development project to combine machine vision technology with neural network technology. The result is a machine vision system which can be trained by an inexperienced operator to perform qualitative classification. The hardware preprocessor reduces the information in the 2D camera image from 122,880 (i.e. 512 x 240) bytes to several hundred bytes in 64 milliseconds. The output of the preprocessor, which is in the format of connected lines, is fed to the first neural network. This neural network performs feature recognition. The output of the first neural network is a probability map. This map is fed to the input of the second neural network which performs object verification. The output of the second neural network is the object location and classification in the field of view. This information can optionally be fed into a third neural network which analyzes spatial relationships of objects in the field of view. The final output is a classification, by quality level, or by style. The system has been tested on applications ranging from the grading of plywood and the grading of paper to the sorting of fabricated metal parts. Specific application examples are presented.

  5. Laser-Directed Ranging System Implementing Single Camera System for Telerobotics Applications

    NASA Technical Reports Server (NTRS)

    Wells, Dennis L. (Inventor); Li, Larry C. (Inventor); Cox, Brian J. (Inventor)

    1995-01-01

    The invention relates generally to systems for determining the range of an object from a reference point and, in one embodiment, to laser-directed ranging systems useful in telerobotics applications. Digital processing techniques are employed which minimize the complexity and cost of the hardware and software for processing range calculations, thereby enhancing the commercial attractiveness of the system for use in relatively low-cost robotic systems. The system includes a video camera for generating images of the target, image digitizing circuitry, and an associated frame grabber circuit. The circuit first captures one of the pairs of stereo video images of the target, and then captures a second video image of the target as it is partly illuminated by the light beam, suitably generated by a laser. The two video images, taken sufficiently close together in time to minimize camera and scene motion, are converted to digital images and then compared. Common pixels are eliminated, leaving only a digital image of the laser-illuminated spot on the target. Mw centroid of the laser illuminated spot is dm obtained and compared with a predetermined reference point, predetermined by design or calibration, which represents the coordinate at the focal plane of the laser illumination at infinite range. Preferably, the laser and camera are mounted on a servo-driven platform which can be oriented to direct the camera and the laser toward the target. In one embodiment the platform is positioned in response to movement of the operator's head. Position and orientation sensors are used to monitor head movement. The disparity between the digital image of the laser spot and the reference point is calculated for determining range to the target. Commercial applications for the system relate to active range-determination systems, such as those used with robotic systems in which it is necessary to determine the, range to a workpiece or object to be grasped or acted upon by a robot arm end

  6. Telerobotic system concept for real-time soft-tissue imaging during radiotherapy beam delivery

    SciTech Connect

    Schlosser, Jeffrey; Salisbury, Kenneth; Hristov, Dimitre

    2010-12-15

    Purpose: The curative potential of external beam radiation therapy is critically dependent on having the ability to accurately aim radiation beams at intended targets while avoiding surrounding healthy tissues. However, existing technologies are incapable of real-time, volumetric, soft-tissue imaging during radiation beam delivery, when accurate target tracking is most critical. The authors address this challenge in the development and evaluation of a novel, minimally interfering, telerobotic ultrasound (U.S.) imaging system that can be integrated with existing medical linear accelerators (LINACs) for therapy guidance. Methods: A customized human-safe robotic manipulator was designed and built to control the pressure and pitch of an abdominal U.S. transducer while avoiding LINAC gantry collisions. A haptic device was integrated to remotely control the robotic manipulator motion and U.S. image acquisition outside the LINAC room. The ability of the system to continuously maintain high quality prostate images was evaluated in volunteers over extended time periods. Treatment feasibility was assessed by comparing a clinically deployed prostate treatment plan to an alternative plan in which beam directions were restricted to sectors that did not interfere with the transabdominal U.S. transducer. To demonstrate imaging capability concurrent with delivery, robot performance and U.S. target tracking in a phantom were tested with a 15 MV radiation beam active. Results: Remote image acquisition and maintenance of image quality with the haptic interface was successfully demonstrated over 10 min periods in representative treatment setups of volunteers. Furthermore, the robot's ability to maintain a constant probe force and desired pitch angle was unaffected by the LINAC beam. For a representative prostate patient, the dose-volume histogram (DVH) for a plan with restricted sectors remained virtually identical to the DVH of a clinically deployed plan. With reduced margins, as

  7. Teacher Cooperatives

    ERIC Educational Resources Information Center

    Hawkins, Beth

    2009-01-01

    Twenty years ago, when the late Albert Shanker endorsed the notion of innovative schools operating outside conventional district bureaucracies, his aim was to put teachers at the helm. Today there are nearly 80 teacher-governed charter schools around the country. Although most are legally constituted as worker cooperatives, they better resemble…

  8. Cooperative Education.

    ERIC Educational Resources Information Center

    Brown, Robert L.

    Cooperative education involves on-campus instruction and off-campus work experience. These programs can be referred to as work study, field work, or work experience. The student has the advantage of applying his knowledge in a work situation; the college gains financial benefits; and the employer has the opportunity to influence the student to…

  9. Cooperative Learning.

    ERIC Educational Resources Information Center

    Slavin, Robert E.

    1980-01-01

    Small-group cooperative learning methods have improved achievement, low and high level cognitive learning, race relations and mutual student concern. Most of the research focuses on four approaches: Teams Games Tournament (DeVries), Student Teams Achievement Divisions (Slavin), Jigsaw (Aronson) and Small Group Teaching (Sharan). (Author/CP)

  10. Mining machine

    SciTech Connect

    Becker, H.R.

    1984-12-04

    A mining machine is disclosed comprising a mobile base and a cutting head assembly at a forward end of the mobile base having a cutter drum rotatable about an output shaft disposed along the longitudinal axis of the cutter drum. A drive system for the cutting head assembly comprises at least one motor for driving at least one toothed motor pinion and a generally cylindrical combination gear having generally circular end surfaces. A bevel or face gear is formed in at least one of the end surfaces, having teeth adapted to mate with and be driven by the toothed motor pinion. The combination gear has a worm gear formed in the outside cylindrical surface, which is disposed in driving engagement with the teeth of an output gear integrally and coaxially connected to the output shaft of the cutter drum.

  11. Cooperative pulses

    NASA Astrophysics Data System (ADS)

    Braun, Michael; Glaser, Steffen J.

    2010-11-01

    We introduce the concept of cooperative (COOP) pulses which are designed to compensate each other's imperfections. In multi-scan experiments, COOP pulses can cancel undesired signal contributions, complementing and generalizing phase cycles. COOP pulses can be efficiently optimized using an extended version of the optimal-control-based gradient ascent pulse engineering (GRAPE) algorithm. The advantage of the COOP approach is experimentally demonstrated for broadband and band-selective pulses.

  12. International cooperation.

    PubMed

    1999-04-01

    As the most densely populated country in the world, China actively conducts international exchanges and cooperation. It takes every opportunity to publicize its family planning policies and practices during international forums. Moreover, the country's State Family Planning Commission has been collaborating with the United Nations Population Fund in implementing health and family planning programs. This program covers public awareness campaigns, technical services, sex education for the youth, and social marketing. For years, China has also been cooperating with WHO in the area of family planning and reproductive health, and has established partnership with the Japanese Organization for International Cooperation in Family Planning. In addition, the State Family Planning Commission has worked with the Public Media Center of the US as well as with the Rockefeller Foundation and Ford Foundation in introducing "contraceptive methods by informed choice" and "male participation in family planning" in the rural areas of the country. China has also worked closely with many other developing countries on population issues. In October 1998, China collaborated with the Partners in Population and Development for a reporting mission that was attended by journalists from 11 countries.

  13. Machine wanting.

    PubMed

    McShea, Daniel W

    2013-12-01

    Wants, preferences, and cares are physical things or events, not ideas or propositions, and therefore no chain of pure logic can conclude with a want, preference, or care. It follows that no pure-logic machine will ever want, prefer, or care. And its behavior will never be driven in the way that deliberate human behavior is driven, in other words, it will not be motivated or goal directed. Therefore, if we want to simulate human-style interactions with the world, we will need to first understand the physical structure of goal-directed systems. I argue that all such systems share a common nested structure, consisting of a smaller entity that moves within and is driven by a larger field that contains it. In such systems, the smaller contained entity is directed by the field, but also moves to some degree independently of it, allowing the entity to deviate and return, to show the plasticity and persistence that is characteristic of goal direction. If all this is right, then human want-driven behavior probably involves a behavior-generating mechanism that is contained within a neural field of some kind. In principle, for goal directedness generally, the containment can be virtual, raising the possibility that want-driven behavior could be simulated in standard computational systems. But there are also reasons to believe that goal-direction works better when containment is also physical, suggesting that a new kind of hardware may be necessary. PMID:23792091

  14. Machine wanting.

    PubMed

    McShea, Daniel W

    2013-12-01

    Wants, preferences, and cares are physical things or events, not ideas or propositions, and therefore no chain of pure logic can conclude with a want, preference, or care. It follows that no pure-logic machine will ever want, prefer, or care. And its behavior will never be driven in the way that deliberate human behavior is driven, in other words, it will not be motivated or goal directed. Therefore, if we want to simulate human-style interactions with the world, we will need to first understand the physical structure of goal-directed systems. I argue that all such systems share a common nested structure, consisting of a smaller entity that moves within and is driven by a larger field that contains it. In such systems, the smaller contained entity is directed by the field, but also moves to some degree independently of it, allowing the entity to deviate and return, to show the plasticity and persistence that is characteristic of goal direction. If all this is right, then human want-driven behavior probably involves a behavior-generating mechanism that is contained within a neural field of some kind. In principle, for goal directedness generally, the containment can be virtual, raising the possibility that want-driven behavior could be simulated in standard computational systems. But there are also reasons to believe that goal-direction works better when containment is also physical, suggesting that a new kind of hardware may be necessary.

  15. Interactive and cooperative sensing and control for advanced teleoperation

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan

    1993-01-01

    This paper presents the paradigm of interactive and cooperative sensing and control as a fundamental mechanism of integrating and fusing the strengths of man and machine for advanced teleoperation. The interactive and cooperative sensing and control is considered as an extended and generalized form of traded and shared control. The emphasis of interactive and cooperative sensing and control is given to the distribution of mutually nonexclusive subtasks to man and machine, the interactive invocation of subtasks under the man/machine symbiotic relationship, and the fusion of information and decisionmaking between man and machine according to their confidence measures. The proposed interactive and cooperative sensing and control system is composed of such major functional blocks as the logical sensor system, the sensor-based local autonomy, the virtual environment formation, and the cooperative decision-making between man and machine. The Sensing-Knowledge-Command (SKC) fusion network is proposed as a fundamental architecture for implementing cooperative and interactive sensing and control. Simulation results are shown.

  16. Interactive and cooperative sensing and control for advanced teleoperation

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan; Zapata, Eduardo; Schenker, Paul S.

    1992-01-01

    This paper presents the paradigm of interactive and cooperative sensing and control as a fundamental mechanism of integrating and fusing the strengths of man and machine for advanced teleoperation. The interactive and cooperative sensing and control is considered as an extended and generalized form of traded and shared control. The emphasis of interactive and cooperative sensing and control is given to the distribution of mutually nonexclusive subtasks to man and machine, the interactive invocation of subtasks under the man/machine symbiotic relationship, and the fusion of information and decision-making between man and machine according to their confidence measures. The proposed interactive and cooperative sensing and control system is composed of such major functional blocks as the logical sensor system, the sensor-based local autonomy, the virtual environment formation, and the cooperative decision-making between man and machine. A case study is performed to demonstrate the feasibility of implementing the fundamental theory and system architecture of interactive and cooperative sensing and control, proposed for the new generation of teleoperation.

  17. ROTEX-TRIIFEX: Proposal for a joint FRG-USA telerobotic flight experiment

    NASA Technical Reports Server (NTRS)

    Hirzinger, G.; Bejczy, A. K.

    1989-01-01

    The concepts and main elements of a RObot Technology EXperiment (ROTEX) proposed to fly with the next German spacelab mission, D2, are presented. It provides a 1 meter size, six axis robot inside a spacelab rack, equipped with a multisensory gripper (force-torque sensors, an array of range finders, and mini stereo cameras). The robot will perform assembly and servicing tasks in a generic way, and will grasp a floating object. The man machine and supervisory control concepts for teleoperation from the spacelab and from ground are discussed. The predictive estimation schemes for an extensive use of time-delay compensating 3D computer graphics are explained.

  18. Development of a machine vision system for automated structural assembly

    NASA Technical Reports Server (NTRS)

    Sydow, P. Daniel; Cooper, Eric G.

    1992-01-01

    Research is being conducted at the LaRC to develop a telerobotic assembly system designed to construct large space truss structures. This research program was initiated within the past several years, and a ground-based test-bed was developed to evaluate and expand the state of the art. Test-bed operations currently use predetermined ('taught') points for truss structural assembly. Total dependence on the use of taught points for joint receptacle capture and strut installation is neither robust nor reliable enough for space operations. Therefore, a machine vision sensor guidance system is being developed to locate and guide the robot to a passive target mounted on the truss joint receptacle. The vision system hardware includes a miniature video camera, passive targets mounted on the joint receptacles, target illumination hardware, and an image processing system. Discrimination of the target from background clutter is accomplished through standard digital processing techniques. Once the target is identified, a pose estimation algorithm is invoked to determine the location, in three-dimensional space, of the target relative to the robots end-effector. Preliminary test results of the vision system in the Automated Structural Assembly Laboratory with a range of lighting and background conditions indicate that it is fully capable of successfully identifying joint receptacle targets throughout the required operational range. Controlled optical bench test results indicate that the system can also provide the pose estimation accuracy to define the target position.

  19. Recommended fine positioning test for the Development Test Flight (DTF-1) of the NASA Flight Telerobotic Servicer (FTS)

    NASA Technical Reports Server (NTRS)

    Dagalakis, N.; Wavering, A. J.; Spidaliere, P.

    1991-01-01

    Test procedures are proposed for the NASA DTF (Development Test Flight)-1 positioning tests of the FTS (Flight Telerobotic Servicer). The unique problems associated with the DTF-1 mission are discussed, standard robot performance tests and terminology are reviewed and a very detailed description of flight-like testing and analysis is presented. The major technical problem associated with DTF-1 is that only one position sensor can be used, which will be fixed at one location, with a working volume which is probably smaller than some of the robot errors to be measured. Radiation heating of the arm and the sensor could also cause distortions that would interfere with the test. Two robot performance testing committees have established standard testing procedures relevant to the DTF-1. Due to the technical problems associated with DTF-1, these procedures cannot be applied directly. These standard tests call for the use of several test positions at specific locations. Only one position, that of the position sensor, can be used by DTF-1. Off-line programming accuracy might be impossible to measure and in that case it will have to be replaced by forward kinetics accuracy.

  20. Multi-arm multilateral haptics-based immersive tele-robotic system (HITS) for improvised explosive device disposal

    NASA Astrophysics Data System (ADS)

    Erickson, David; Lacheray, Hervé; Lai, Gilbert; Haddadi, Amir

    2014-06-01

    This paper presents the latest advancements of the Haptics-based Immersive Tele-robotic System (HITS) project, a next generation Improvised Explosive Device (IED) disposal (IEDD) robotic interface containing an immersive telepresence environment for a remotely-controlled three-articulated-robotic-arm system. While the haptic feedback enhances the operator's perception of the remote environment, a third teleoperated dexterous arm, equipped with multiple vision sensors and cameras, provides stereo vision with proper visual cues, and a 3D photo-realistic model of the potential IED. This decentralized system combines various capabilities including stable and scaled motion, singularity avoidance, cross-coupled hybrid control, active collision detection and avoidance, compliance control and constrained motion to provide a safe and intuitive control environment for the operators. Experimental results and validation of the current system are presented through various essential IEDD tasks. This project demonstrates that a two-armed anthropomorphic Explosive Ordnance Disposal (EOD) robot interface can achieve complex neutralization techniques against realistic IEDs without the operator approaching at any time.

  1. Plant cooperation

    PubMed Central

    Dudley, Susan A.

    2015-01-01

    The study of plant behaviour will be aided by conceptual approaches and terminology for cooperation, altruism and helping. The plant literature has a rich discussion of helping between species while the animal literature has an extensive and somewhat contentious discussion of within-species helping. Here, I identify and synthesize concepts, terminology and some practical methodology for speaking about helping in plant populations and measuring the costs and benefits. I use Lehmann and Keller's (2006) classification scheme for animal helping and McIntire and Fajardo's (2014) synthesis of facilitation to provide starting points for classifying the mechanisms of how and why organisms help each other. Contextual theory is discussed as a mechanism for understanding and measuring the fitness consequences of helping. I synthesize helping into four categories. The act of helping can be costly to the helper. If the helper gains indirect fitness by helping relatives but loses direct fitness, this is altruism, and it only occurs within species. Helpers can exchange costly help, which is called mutualism when between species, and reciprocation when within a species. The act of helping can directly benefit the helper as well as the recipient, either as an epiphenomenon resulting from behaviours under natural selection for other reasons, or because the helper is creating a mutual benefit, such as satiating predators or supporting a mutualism. Facilitation between species by stress amelioration, creation of novel ecosystems and habitat complexity often meets the definition of epiphenomenon helping. Within species, this kind of helping is called by-product mutualism. If the helping is under selection to create a mutual benefit shared by others, between species this is facilitation with service sharing or access to resources and within species, direct benefits by mutual benefits. These classifications provide a clear starting point for addressing the subject of helping behaviours

  2. Plant cooperation.

    PubMed

    Dudley, Susan A

    2015-01-01

    The study of plant behaviour will be aided by conceptual approaches and terminology for cooperation, altruism and helping. The plant literature has a rich discussion of helping between species while the animal literature has an extensive and somewhat contentious discussion of within-species helping. Here, I identify and synthesize concepts, terminology and some practical methodology for speaking about helping in plant populations and measuring the costs and benefits. I use Lehmann and Keller's (2006) classification scheme for animal helping and McIntire and Fajardo's (2014) synthesis of facilitation to provide starting points for classifying the mechanisms of how and why organisms help each other. Contextual theory is discussed as a mechanism for understanding and measuring the fitness consequences of helping. I synthesize helping into four categories. The act of helping can be costly to the helper. If the helper gains indirect fitness by helping relatives but loses direct fitness, this is altruism, and it only occurs within species. Helpers can exchange costly help, which is called mutualism when between species, and reciprocation when within a species. The act of helping can directly benefit the helper as well as the recipient, either as an epiphenomenon resulting from behaviours under natural selection for other reasons, or because the helper is creating a mutual benefit, such as satiating predators or supporting a mutualism. Facilitation between species by stress amelioration, creation of novel ecosystems and habitat complexity often meets the definition of epiphenomenon helping. Within species, this kind of helping is called by-product mutualism. If the helping is under selection to create a mutual benefit shared by others, between species this is facilitation with service sharing or access to resources and within species, direct benefits by mutual benefits. These classifications provide a clear starting point for addressing the subject of helping behaviours

  3. Tube Alinement for Machining

    NASA Technical Reports Server (NTRS)

    Garcia, J.

    1984-01-01

    Tool with stepped shoulders alines tubes for machining in preparation for welding. Alinement with machine tool axis accurate to within 5 mils (0.13mm) and completed much faster than visual setup by machinist.

  4. Stirling machine operating experience

    NASA Technical Reports Server (NTRS)

    Ross, Brad; Dudenhoefer, James E.

    1991-01-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that Stirling machines are capable of reliable and lengthy lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and were not expected to operate for any lengthy period of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered.

  5. Women, Men, and Machines.

    ERIC Educational Resources Information Center

    Form, William; McMillen, David Byron

    1983-01-01

    Data from the first national study of technological change show that proportionately more women than men operate machines, are more exposed to machines that have alienating effects, and suffer more from the negative effects of technological change. (Author/SSH)

  6. Cable-Twisting Machine

    NASA Technical Reports Server (NTRS)

    Kurnett, S.

    1982-01-01

    New cable-twisting machine is smaller and faster than many production units. Is useful mainly in production of short-run special cables. Already-twisted cable can be fed along axis of machine. Faster operation than typical industrial cable-twisting machines possible by using smaller spools of wire.

  7. Your Sewing Machine.

    ERIC Educational Resources Information Center

    Peacock, Marion E.

    The programed instruction manual is designed to aid the student in learning the parts, uses, and operation of the sewing machine. Drawings of sewing machine parts are presented, and space is provided for the student's written responses. Following an introductory section identifying sewing machine parts, the manual deals with each part and its…

  8. Automatic Inspection During Machining

    NASA Technical Reports Server (NTRS)

    Ransom, Clyde L.

    1988-01-01

    In experimental manufacturing process, numerically-controlled machine tool temporarily converts into inspection machine by installing electronic touch probes and specially-developed numerical-control software. Software drives probes in paths to and on newly machined parts and collects data on dimensions of parts.

  9. Apprentice Machine Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This volume contains outlines for 16 courses in machine theory that are designed for machine tool apprentices. Addressed in the individual course outlines are the following topics: basic concepts; lathes; milling machines; drills, saws, and shapers; heat treatment and metallurgy; grinders; quality control; hydraulics and pneumatics;…

  10. Continuous mining machine

    SciTech Connect

    Kiefer, H.E.

    1992-02-11

    This patent describes a continuous mining machine for excavating a longitudinal shaft or tunnel underneath the surface of the earth, the mining machine. It comprises: transport means for moving the machine over a floor of the shaft or tunnel that is being excavated; a working platform having forward and trailing ends.

  11. Cooperation of mobile robots for accident scene inspection

    NASA Astrophysics Data System (ADS)

    Byrne, R. H.; Harrington, J.

    A telerobotic system demonstration was developed for the Department of Energy's Accident Response group to highlight the applications of telerobotic vehicles to accident site inspection. The proof-of-principle system employs two mobile robots, Dixie and RAYBOT, to inspect a simulated accident site. Both robots are controlled serially from a single driving station, allowing an operator to take advantage of having multiple robots at the scene. The telerobotic system is described and some of the advantages of having more than one robot present are discussed. Future plans for the system are also presented.

  12. PREFACE: Cooperative dynamics Cooperative dynamics

    NASA Astrophysics Data System (ADS)

    Gov, Nir

    2011-09-01

    The dynamics within living cells are dominated by non-equilibrium processes that consume chemical energy (usually in the form of ATP, adenosine triphosphate) and convert it into mechanical forces and motion. The mechanisms that allow this conversion process are mostly driven by the components of the cytoskeleton: (i) directed (polar) polymerization of filaments (either actin or microtubules) and (ii) molecular motors. The forces and motions produced by these two components of the cytoskeleton give rise to the formation of cellular shapes, and drive the intracellular transport and organization. It is clear that these systems present a multi-scale challenge, from the physics of the molecular processes to the organization of many interacting units. Understanding the physical nature of these systems will have a large impact on many fundamental problems in biology and break new grounds in the field of non-equilibrium physics. This field of research has seen a rapid development over the last ten years. Activities in this area range from theoretical and experimental work on the underlying fundamental (bio)physics at the single-molecule level, to investigations (in vivo and in vitro) of the dynamics and patterns of macroscopic pieces of 'living matter'. In this special issue we have gathered contributions that span the whole spectrum of length- and complexity-scales in this field. Some of the works demonstrate how active forces self-organize within the polymerizing cytoskeleton, on the level of cooperative cargo transport via motors or due to active fluxes at the cell membrane. On a larger scale, it is shown that polar filaments coupled to molecular motors give rise to a huge variety of surprising dynamics and patterns: spontaneously looping rings of gliding microtubules, and emergent phases of self-organized filaments and motors in different geometries. All of these articles share the common feature of being out-of-equilibrium, driven by metabolism. As demonstrated here

  13. Cyclodextrin-based molecular machines.

    PubMed

    Hashidzume, Akihito; Yamaguchi, Hiroyasu; Harada, Akira

    2014-01-01

    This chapter overviews molecular machines based on cyclodextrins (CDs). The categories of CD-based molecular machines, external stimuli for CD-based molecular machines, and typical examples of CD-based molecular machines are briefly described.

  14. Force feedback system using magneto-rheological fluids for telerobotic surgery

    NASA Astrophysics Data System (ADS)

    Neelakantan, Vijay A.; Washington, Gregory N.; Wolf, Randall K.

    2002-07-01

    Force feedback is a new technology that has great potential in human-machine interfaces. While guiding the end effector of a robot through an environment using a hand-held actuator, force feedback is needed to make the user feel the environment conditions like stiffness along which the end effector moves. This along with the already available visual feedback will allow the user to guide the robot exactly along the path that he or she intends thereby enhancing the performance. Easily controllable actuators that give quick response at the user end are needed here. This paper demonstrates the effectiveness of MR fluid devices in such force feedback applications. The force-feedback experiment includes a simple setup that depicts a typical situation wherein a user controls the movement of an external linear hydraulic actuator using a MR sponge damper. Force and displacement sensors sense the environment conditions along which the end effector of the hydraulic actuator moves. This information is then used to control the MR damper to provide appropriate force feedback to the user. The setup is tested with different environments like springs with various stiffnesses and for extreme cases with mechanical stops thereby demonstrating the flexibility in using MR sponge dampers for various force feedback applications.

  15. Machine tool locator

    DOEpatents

    Hanlon, John A.; Gill, Timothy J.

    2001-01-01

    Machine tools can be accurately measured and positioned on manufacturing machines within very small tolerances by use of an autocollimator on a 3-axis mount on a manufacturing machine and positioned so as to focus on a reference tooling ball or a machine tool, a digital camera connected to the viewing end of the autocollimator, and a marker and measure generator for receiving digital images from the camera, then displaying or measuring distances between the projection reticle and the reference reticle on the monitoring screen, and relating the distances to the actual position of the autocollimator relative to the reference tooling ball. The images and measurements are used to set the position of the machine tool and to measure the size and shape of the machine tool tip, and examine cutting edge wear. patent

  16. Fault Tolerant State Machines

    NASA Technical Reports Server (NTRS)

    Burke, Gary R.; Taft, Stephanie

    2004-01-01

    State machines are commonly used to control sequential logic in FPGAs and ASKS. An errant state machine can cause considerable damage to the device it is controlling. For example in space applications, the FPGA might be controlling Pyros, which when fired at the wrong time will cause a mission failure. Even a well designed state machine can be subject to random errors us a result of SEUs from the radiation environment in space. There are various ways to encode the states of a state machine, and the type of encoding makes a large difference in the susceptibility of the state machine to radiation. In this paper we compare 4 methods of state machine encoding and find which method gives the best fault tolerance, as well as determining the resources needed for each method.

  17. Ultra precision machining

    NASA Astrophysics Data System (ADS)

    Debra, Daniel B.; Hesselink, Lambertus; Binford, Thomas

    1990-05-01

    There are a number of fields that require or can use to advantage very high precision in machining. For example, further development of high energy lasers and x ray astronomy depend critically on the manufacture of light weight reflecting metal optical components. To fabricate these optical components with machine tools they will be made of metal with mirror quality surface finish. By mirror quality surface finish, it is meant that the dimensions tolerances on the order of 0.02 microns and surface roughness of 0.07. These accuracy targets fall in the category of ultra precision machining. They cannot be achieved by a simple extension of conventional machining processes and techniques. They require single crystal diamond tools, special attention to vibration isolation, special isolation of machine metrology, and on line correction of imperfection in the motion of the machine carriages on their way.

  18. Perspex machine II: visualization

    NASA Astrophysics Data System (ADS)

    Anderson, James A. D. W.

    2005-01-01

    We review the perspex machine and improve it by reducing its halting conditions to one condition. We also introduce a data structure, called the "access column," that can accelerate a wide class of perspex programs. We show how the perspex can be visualised as a tetrahedron, artificial neuron, computer program, and as a geometrical transformation. We discuss the temporal properties of the perspex machine, dissolve the famous time travel paradox, and present a hypothetical time machine. Finally, we discuss some mental properties and show how the perspex machine solves the mind-body problem and, specifically, how it provides one physical explanation for the occurrence of paradigm shifts.

  19. Perspex machine II: visualization

    NASA Astrophysics Data System (ADS)

    Anderson, James A. D. W.

    2004-12-01

    We review the perspex machine and improve it by reducing its halting conditions to one condition. We also introduce a data structure, called the "access column," that can accelerate a wide class of perspex programs. We show how the perspex can be visualised as a tetrahedron, artificial neuron, computer program, and as a geometrical transformation. We discuss the temporal properties of the perspex machine, dissolve the famous time travel paradox, and present a hypothetical time machine. Finally, we discuss some mental properties and show how the perspex machine solves the mind-body problem and, specifically, how it provides one physical explanation for the occurrence of paradigm shifts.

  20. On-Machine Acceptance

    SciTech Connect

    Arnold, K.F.

    2000-02-14

    Probing processes are used intermittently and not effectively as an on-line measurement device. This project was needed to evolve machine probing from merely a setup aid to an on-the-machine inspection system. Use of probing for on-machine inspection would significantly decrease cycle time by elimination of the need for first-piece inspection (at a remote location). Federal Manufacturing and Technologies (FM and T) had the manufacturing facility and the ability to integrate the system into production. The Contractor had a system that could optimize the machine tool to compensate for thermal growth and related error.

  1. Telerobotic Surgery: An Intelligent Systems Approach to Mitigate the Adverse Effects of Communication Delay. Chapter 4

    NASA Technical Reports Server (NTRS)

    Cardullo, Frank M.; Lewis, Harold W., III; Panfilov, Peter B.

    2007-01-01

    An extremely innovative approach has been presented, which is to have the surgeon operate through a simulator running in real-time enhanced with an intelligent controller component to enhance the safety and efficiency of a remotely conducted operation. The use of a simulator enables the surgeon to operate in a virtual environment free from the impediments of telecommunication delay. The simulator functions as a predictor and periodically the simulator state is corrected with truth data. Three major research areas must be explored in order to ensure achieving the objectives. They are: simulator as predictor, image processing, and intelligent control. Each is equally necessary for success of the project and each of these involves a significant intelligent component in it. These are diverse, interdisciplinary areas of investigation, thereby requiring a highly coordinated effort by all the members of our team, to ensure an integrated system. The following is a brief discussion of those areas. Simulator as a predictor: The delays encountered in remote robotic surgery will be greater than any encountered in human-machine systems analysis, with the possible exception of remote operations in space. Therefore, novel compensation techniques will be developed. Included will be the development of the real-time simulator, which is at the heart of our approach. The simulator will present real-time, stereoscopic images and artificial haptic stimuli to the surgeon. Image processing: Because of the delay and the possibility of insufficient bandwidth a high level of novel image processing is necessary. This image processing will include several innovative aspects, including image interpretation, video to graphical conversion, texture extraction, geometric processing, image compression and image generation at the surgeon station. Intelligent control: Since the approach we propose is in a sense predictor based, albeit a very sophisticated predictor, a controller, which not only

  2. Milling Machine Operator. Coordinator's Guide. Individualized Study Guide. General Metal Trades.

    ERIC Educational Resources Information Center

    Dean, James W.

    This guide provides information to enable coordinators to direct learning activities for students using an individualized study guide on operating a milling machine. The study material is designed for students enrolled in cooperative part-time training and employed, or desiring to be employed, as milling machine operators. Contents include a…

  3. Linear combinations of nonlinear models for predicting human-machine interface forces.

    PubMed

    Patton, James L; Mussa-Ivaldi, Ferdinando A

    2002-01-01

    This study presents a computational framework that capitalizes on known human neuromechanical characteristics during limb movements in order to predict human-machine interactions. A parallel-distributed approach, the mixture of nonlinear models, fits the relationship between the measured kinematics and kinetics at the handle of a robot. Each element of the mixture represented the arm and its controller as a feedforward nonlinear model of inverse dynamics plus a linear approximation of musculotendonous impedance. We evaluated this approach with data from experiments where subjects held the handle of a planar manipulandum robot and attempted to make point-to-point reaching movements. We compared the performance to the more conventional approach of a constrained, nonlinear optimization of the parameters. The mixture of nonlinear models accounted for 79 +/- 11% (mean +/- SD) of the variance in measured force, and force errors were 0.73 +/- 0.20% of the maximum exerted force. Solutions were acquired in half the time with a significantly better fit. However, both approaches suffered equally from the simplifying assumptions, namely that the human neuromechanical system consisted of a feedforward controller coupled with linear impedances and a moving state equilibrium. Hence, predictability was best limited to the first half of the movement. The mixture of nonlinear models may be useful in human-machine tasks such as in telerobotics, fly-by-wire vehicles, robotic training, and rehabilitation.

  4. Diamond machine tool face lapping machine

    DOEpatents

    Yetter, H.H.

    1985-05-06

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  5. Implementing Cooperative Learning Methods.

    ERIC Educational Resources Information Center

    Lyons, Paul R.

    This paper identifies the bases and rationale for the concept of cooperative learning; describes the dynamics of the cooperative learning approach; and proposes methods that college faculty can use to enhance student motivation and learning. Cooperative learning is defined and is reported to have positive effects on student achievement, human…

  6. Advising People about Cooperatives.

    ERIC Educational Resources Information Center

    Kirkman, C. H., Jr.; Mohn, Paul O.

    This document provides background and references for educational programs on cooperatives. Seven major topics are covered: Cooperatives Are Distinctive Business Corporations, Types of Cooperatives (such as agricultural, credit, housing, crafts, health, memorial association, fishing, forestry, recreation, labor, buying clubs, consumer, student, and…

  7. Learning to Learn Cooperatively

    ERIC Educational Resources Information Center

    Byrd, Anne Hammond

    2009-01-01

    Cooperative learning, put quite simply, is a type of instruction whereby students work together in small groups to achieve a common goal. Cooperative learning has become increasingly popular as a feature of Communicative Language Teaching (CLT) with benefits that include increased student interest due to the quick pace of cooperative tasks,…

  8. Cooperative Agreements Study Report.

    ERIC Educational Resources Information Center

    Lawton, R. E.; Magruder, D.

    During the 1983 meeting of the Florida Legislature, action was taken to begin a systematic study of the level of cooperation between the Florida public schools K-12 program and the community and junior colleges. The goals and objectives of the Cooperative Agreements Study were to review and compile a list of the cooperative agreements and identify…

  9. Simple Machine Junk Cars

    ERIC Educational Resources Information Center

    Herald, Christine

    2010-01-01

    During the month of May, the author's eighth-grade physical science students study the six simple machines through hands-on activities, reading assignments, videos, and notes. At the end of the month, they can easily identify the six types of simple machine: inclined plane, wheel and axle, pulley, screw, wedge, and lever. To conclude this unit,…

  10. Semantics via Machine Translation

    ERIC Educational Resources Information Center

    Culhane, P. T.

    1977-01-01

    Recent experiments in machine translation have given the semantic elements of collocation in Russian more objective criteria. Soviet linguists in search of semantic relationships have attempted to devise a semantic synthesis for construction of a basic language for machine translation. One such effort is summarized. (CHK)

  11. An asymptotical machine

    NASA Astrophysics Data System (ADS)

    Cristallini, Achille

    2016-07-01

    A new and intriguing machine may be obtained replacing the moving pulley of a gun tackle with a fixed point in the rope. Its most important feature is the asymptotic efficiency. Here we obtain a satisfactory description of this machine by means of vector calculus and elementary trigonometry. The mathematical model has been compared with experimental data and briefly discussed.

  12. Technique for Machining Glass

    NASA Technical Reports Server (NTRS)

    Rice, S. H.

    1982-01-01

    Process for machining glass with conventional carbide tools requires a small quantity of a lubricant for aluminum applied to area of glass to be machined. A carbide tool is then placed against workpiece with light pressure. Tool is raised periodically to clear work of glass dust and particles. Additional lubricant is applied as it is displaced.

  13. Compound taper milling machine

    NASA Technical Reports Server (NTRS)

    Campbell, N. R.

    1969-01-01

    Simple, inexpensive milling machine tapers panels from a common apex to a uniform height at panel edge regardless of the panel perimeter configuration. The machine consists of an adjustable angled beam upon which the milling tool moves back and forth above a rotatable table upon which the workpiece is held.

  14. Stirling machine operating experience

    SciTech Connect

    Ross, B.; Dudenhoefer, J.E.

    1994-09-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that stirling machines are capable of reliable and lengthy operating lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and are not expected to operate for lengthy periods of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered. The record in this paper is not complete, due to the reluctance of some organizations to release operational data and because several organizations were not contacted. The authors intend to repeat this assessment in three years, hoping for even greater participation.

  15. Machining heavy plastic sections

    NASA Technical Reports Server (NTRS)

    Stalkup, O. M.

    1967-01-01

    Machining technique produces consistently satisfactory plane-parallel optical surfaces for pressure windows, made of plexiglass, required to support a photographic study of liquid rocket combustion processes. The surfaces are machined and polished to the required tolerances and show no degradation from stress relaxation over periods as long as 6 months.

  16. THE TEACHING MACHINE.

    ERIC Educational Resources Information Center

    KLEIN, CHARLES; WAYNE, ELLIS

    THE ROLE OF THE TEACHING MACHINE IS COMPARED WITH THE ROLE OF THE PROGRAMED TEXTBOOK. THE TEACHING MACHINE IS USED FOR INDIVIDUAL INSTRUCTION, CONTAINS AND PRESENTS PROGRAM CONTENT IN STEPS, PROVIDES A MEANS WHEREBY THE STUDENT MAY RESPOND TO THE PROGRAM, PROVIDES THE STUDENT WITH IMMEDIATE INFORMATION OF SOME KIND CONCERNING HIS RESPONSE THAT CAN…

  17. Machine Translation Project

    NASA Technical Reports Server (NTRS)

    Bajis, Katie

    1993-01-01

    The characteristics and capabilities of existing machine translation systems were examined and procurement recommendations were developed. Four systems, SYSTRAN, GLOBALINK, PC TRANSLATOR, and STYLUS, were determined to meet the NASA requirements for a machine translation system. Initially, four language pairs were selected for implementation. These are Russian-English, French-English, German-English, and Japanese-English.

  18. 14. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific Railroad Carlin Shops, view to north (90mm lens). - Southern Pacific Railroad, Carlin Shops, Roundhouse Machine Shop Extension, Foot of Sixth Street, Carlin, Elko County, NV

  19. BRITISH MOLDING MACHINE, PBQ AUTOMATIC COPE AND DRAG MOLDING MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BRITISH MOLDING MACHINE, PBQ AUTOMATIC COPE AND DRAG MOLDING MACHINE MAKES BOTH MOLD HALVES INDIVIDUALLY WHICH ARE LATER ROTATED, ASSEMBLED, AND LOWERED TO POURING CONVEYORS BY ASSISTING MACHINES. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  20. Introduction to machine learning.

    PubMed

    Baştanlar, Yalin; Ozuysal, Mustafa

    2014-01-01

    The machine learning field, which can be briefly defined as enabling computers make successful predictions using past experiences, has exhibited an impressive development recently with the help of the rapid increase in the storage capacity and processing power of computers. Together with many other disciplines, machine learning methods have been widely employed in bioinformatics. The difficulties and cost of biological analyses have led to the development of sophisticated machine learning approaches for this application area. In this chapter, we first review the fundamental concepts of machine learning such as feature assessment, unsupervised versus supervised learning and types of classification. Then, we point out the main issues of designing machine learning experiments and their performance evaluation. Finally, we introduce some supervised learning methods. PMID:24272434

  1. Introduction to machine learning.

    PubMed

    Baştanlar, Yalin; Ozuysal, Mustafa

    2014-01-01

    The machine learning field, which can be briefly defined as enabling computers make successful predictions using past experiences, has exhibited an impressive development recently with the help of the rapid increase in the storage capacity and processing power of computers. Together with many other disciplines, machine learning methods have been widely employed in bioinformatics. The difficulties and cost of biological analyses have led to the development of sophisticated machine learning approaches for this application area. In this chapter, we first review the fundamental concepts of machine learning such as feature assessment, unsupervised versus supervised learning and types of classification. Then, we point out the main issues of designing machine learning experiments and their performance evaluation. Finally, we introduce some supervised learning methods.

  2. Micro-machining.

    PubMed

    Brinksmeier, Ekkard; Preuss, Werner

    2012-08-28

    Manipulating bulk material at the atomic level is considered to be the domain of physics, chemistry and nanotechnology. However, precision engineering, especially micro-machining, has become a powerful tool for controlling the surface properties and sub-surface integrity of the optical, electronic and mechanical functional parts in a regime where continuum mechanics is left behind and the quantum nature of matter comes into play. The surprising subtlety of micro-machining results from the extraordinary precision of tools, machines and controls expanding into the nanometre range-a hundred times more precise than the wavelength of light. In this paper, we will outline the development of precision engineering, highlight modern achievements of ultra-precision machining and discuss the necessity of a deeper physical understanding of micro-machining.

  3. 15 CFR 700.31 - Metalworking machines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... machinery and hammers Gear cutting and finishing machines Grinding machines Hydraulic and pneumatic presses, power driven Machining centers and way-type machines Manual presses Mechanical presses, power...

  4. 15 CFR 700.31 - Metalworking machines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... machinery and hammers Gear cutting and finishing machines Grinding machines Hydraulic and pneumatic presses, power driven Machining centers and way-type machines Manual presses Mechanical presses, power...

  5. The basic anaesthesia machine.

    PubMed

    Gurudatt, Cl

    2013-09-01

    After WTG Morton's first public demonstration in 1846 of use of ether as an anaesthetic agent, for many years anaesthesiologists did not require a machine to deliver anaesthesia to the patients. After the introduction of oxygen and nitrous oxide in the form of compressed gases in cylinders, there was a necessity for mounting these cylinders on a metal frame. This stimulated many people to attempt to construct the anaesthesia machine. HEG Boyle in the year 1917 modified the Gwathmey's machine and this became popular as Boyle anaesthesia machine. Though a lot of changes have been made for the original Boyle machine still the basic structure remains the same. All the subsequent changes which have been brought are mainly to improve the safety of the patients. Knowing the details of the basic machine will make the trainee to understand the additional improvements. It is also important for every practicing anaesthesiologist to have a thorough knowledge of the basic anaesthesia machine for safe conduct of anaesthesia.

  6. Machine learning and radiology.

    PubMed

    Wang, Shijun; Summers, Ronald M

    2012-07-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers.

  7. Machine Learning and Radiology

    PubMed Central

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  8. The Basic Anaesthesia Machine

    PubMed Central

    Gurudatt, CL

    2013-01-01

    After WTG Morton's first public demonstration in 1846 of use of ether as an anaesthetic agent, for many years anaesthesiologists did not require a machine to deliver anaesthesia to the patients. After the introduction of oxygen and nitrous oxide in the form of compressed gases in cylinders, there was a necessity for mounting these cylinders on a metal frame. This stimulated many people to attempt to construct the anaesthesia machine. HEG Boyle in the year 1917 modified the Gwathmey's machine and this became popular as Boyle anaesthesia machine. Though a lot of changes have been made for the original Boyle machine still the basic structure remains the same. All the subsequent changes which have been brought are mainly to improve the safety of the patients. Knowing the details of the basic machine will make the trainee to understand the additional improvements. It is also important for every practicing anaesthesiologist to have a thorough knowledge of the basic anaesthesia machine for safe conduct of anaesthesia. PMID:24249876

  9. DNA-based machines.

    PubMed

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications.

  10. DNA-based machines.

    PubMed

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications. PMID:24647836

  11. Quantum Boltzmann Machine

    NASA Astrophysics Data System (ADS)

    Kulchytskyy, Bohdan; Andriyash, Evgeny; Amin, Mohammed; Melko, Roger

    The field of machine learning has been revolutionized by the recent improvements in the training of deep networks. Their architecture is based on a set of stacked layers of simpler modules. One of the most successful building blocks, known as a restricted Boltzmann machine, is an energetic model based on the classical Ising Hamiltonian. In our work, we investigate the benefits of quantum effects on the learning capacity of Boltzmann machines by extending its underlying Hamiltonian with a transverse field. For this purpose, we employ exact and stochastic training procedures on data sets with physical origins.

  12. Machine Tool Software

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.

  13. Wind motor machine

    SciTech Connect

    Goedecke, A.

    1984-12-25

    An improved wind motor machine having a wind rotor rotatable about a vertical axis. The rotor core body of the machine is provided with convexly curved wind application surfaces and coacting outer wing bodies having load supporting airplane wing-shaped cross-sections. The efficiency of the machine is improved by means of stream guiding bodies disposed in the intermediate space between the rotor core body and the wing bodies. These stream guiding bodies extend in a desired streaming direction, that is normal to the rotational axis of the wind body, which insures substantially laminar air streaming within the intermediate space.

  14. Machine tools get smarter

    SciTech Connect

    Valenti, M.

    1995-11-01

    This article describes how, using software, sensors, and controllers, a new generation of intelligent machine tools are optimizing grinding, milling, and molding processes. A paradox of manufacturing parts is that the faster the parts are made, the less accurate they are--and vice versa. However, a combination of software, sensors, controllers, and mechanical innovations are being used to create a new generation of intelligent machine tools capable of optimizing their own grinding, milling, and molding processes. These brainy tools are allowing manufacturers to machine more-complex, higher-quality parts in shorter cycle times. The technology also lowers scrap rates and reduces or eliminates the need for polishing inadequately finished parts.

  15. Optimized resolved rate control of seven-degree-of-freedom Laboratory Telerobotic Manipulator (LTM) with application to three-dimensional graphics simulation

    NASA Technical Reports Server (NTRS)

    Barker, L. Keith; Mckinney, William S., Jr.

    1989-01-01

    The Laboratory Telerobotic Manipulator (LTM) is a seven-degree-of-freedom robot arm. Two of the arms were delivered to Langley Research Center for ground-based research to assess the use of redundant degree-of-freedom robot arms in space operations. Resolved-rate control equations for the LTM are derived. The equations are based on a scheme developed at the Oak Ridge National Laboratory for computing optimized joint angle rates in real time. The optimized joint angle rates actually represent a trade-off, as the hand moves, between small rates (least-squares solution) and those rates which work toward satisfying a specified performance criterion of joint angles. In singularities where the optimization scheme cannot be applied, alternate control equations are devised. The equations developed were evaluated using a real-time computer simulation to control a 3-D graphics model of the LTM.

  16. Refractory insulation of hot end in stirling type thermal machines

    SciTech Connect

    Otters, J.L.

    1988-02-02

    A thermal machine is described comprising: a machine body comprised of axial body sections, the body having two opposite ends; means compressing the body between the opposite ends for holding the body sections in axially assembled relationship; a cylindrical displacer chamber in the body having a hot end and a cold end and containing a working fluid, a displacer reciprocable within the displacer chamber for displacing the fluid between the hot and cold ends thereby to subject the fluid to a thermodynamic cycle in cooperation with a compressor piston; refractory insulation means at least partly defining the displacer chamber and held in axial compression between a upper body sections associated with a thermal end of the machine body and lower body sections associated with a work end of the machine body, and means radially compressing the refractory insulation for pre-loading the refractory insulation means against tensile force exerted thereon by the working fluid.

  17. Machining of beryllium with the LLNL Precision Engineering Research Lathe

    SciTech Connect

    Foley, R.J.

    1985-04-01

    In August 1984, six flat samples of beryllium, which were prepared by Brush-Wellmen Corp. using various pressing and sintering processes, were machined at LLNL on the recently completed Precision Engineering Research Lathe (PERL). The purpose of this study, which was conducted in cooperation with the Hughes Aircraft Corporation and partially funded by that organization, was to determine the optical properties of machined beryllium surfaces when prepared under highly controlled conditions using high quality machine tools and CBN (cubic boron nitrite) cutting tools. This report will summarize the materials properties, the machining conditions used on the PERL and a comparison of the completed samples using optical measuring techniques and scanning electron microscopy (SEM). The mirror surface reflecting measurements in the IR region are to be made by the group at Hughes Aircraft and will be exchanged with LLNL as a part of this joint technical effort. 3 refs., 14 figs.

  18. Data Machine Independence

    1994-12-30

    Data-machine independence achieved by using four technologies (ASN.1, XDR, SDS, and ZEBRA) has been evaluated by encoding two different applications in each of the above; and their results compared against the standard programming method using C.

  19. The TUM walking machines.

    PubMed

    Pfeiffer, Friedrich

    2007-01-15

    This paper presents some aspects of walking machine design with a special emphasis on the three machines MAX, MORITZ and JOHNNIE, having been developed at the Technical University of Munich within the last 20 years. The design of such machines is discussed as an iterative process improving the layout with every iteration. The control concepts are event-driven and follow logical rules, which have largely been transferred from neurobiological findings. At least for the six-legged machine MAX, a nearly perfect autonomy could be achieved, whereas for the biped JOHNNIE, a certain degree of autonomy could be realized by a vision system with appropriate decision algorithms. This vision system was developed by the group of Prof. G. Schmidt, TU-München. A more detailed description of the design and realization is presented for the biped JOHNNIE.

  20. Laser machining of ceramic

    SciTech Connect

    Laudel, A.

    1980-01-01

    The Kansas City Division of The Bendix Corporation manufactures hybrid microcircuits (HMCs) using both thin film and thick film technologies. Laser machining is used to contour the ceramic substrates and to drill holes in the ceramic for frontside-backside interconnections (vias) and holes for mounting components. A 1000 W CO/sub 2/ type laser is used. The laser machining process, and methods used for removing protruding debris and debris from holes, for cleaning the machined surfaces, and for refiring are described. The laser machining process described consistently produces vias, component holes and contours with acceptable surface quality, hole locations, diameter, flatness and metallization adhesion. There are no cracks indicated by dipping in fluorescent dye penetrant and the substances are resistant to repeated thermal shock.

  1. 16. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific Railroad Carlin Shops, view to south (90mm lens). Note the large segmental-arched doorway to move locomotives in and out of Machine Shop. - Southern Pacific Railroad, Carlin Shops, Roundhouse Machine Shop Extension, Foot of Sixth Street, Carlin, Elko County, NV

  2. Doubly fed induction machine

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2005-10-11

    An electro-mechanical energy conversion system coupled between an energy source and an energy load including an energy converter device having a doubly fed induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer coupled to the energy converter device to control the flow of power or energy through the doubly fed induction machine.

  3. Flexible machining systems described

    NASA Astrophysics Data System (ADS)

    Butters, H. J.

    1985-03-01

    The rationalization and gradual automation of short rotationally symmetric parts in the Saalfeld VEB Machine Tool Factory was carried out in three stages: (1) part-specific manufacturing; (2) automated production line for manufacturing toothed gears; and (3) automated manufacturing section for short rotationally symmetric parts. The development of numerically controlled machine tools and of industrial robot technology made possible automated manufacturing. The design of current facilities is explored, manufacturing control is examined, experience is reported.

  4. Metalworking and machining fluids

    DOEpatents

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  5. Sealing intersecting vane machines

    DOEpatents

    Martin, Jedd N.; Chomyszak, Stephen M.

    2007-06-05

    The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through intersecting surfaces without the need for external gearing by modifying the width of one or both tracks at the point of intermeshing. The inventions described herein relate to these improvements.

  6. Sealing intersecting vane machines

    DOEpatents

    Martin, Jedd N.; Chomyszak, Stephen M.

    2005-06-07

    The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through intersecting surfaces without the need for external gearing by modifying the width of one or both tracks at the point of intermeshing. The inventions described herein relate to these improvements.

  7. A Function Machine

    ERIC Educational Resources Information Center

    Hewitt, Dave

    2008-01-01

    In this article, the author describes a lesson he observed involving a function machine. This function machine was a box with a slot at the top of one side and a large cut-out hole at the bottom of the opposite side. A card with a number written on it (the input) was pushed into the slot and the teacher put their hand through the hole of the other…

  8. Opticam PM machine design

    NASA Astrophysics Data System (ADS)

    Liedes, Jyrki T.

    1992-12-01

    Rank Pneumo has worked with the Center for Optics Manufacturing and the Center's Manufacturing Advisory Board to design a multi-axis prism grinding machine. The Opticam PM is a three axis, high precision CNC reciprocating grinder. It is designed for the automated manufacturing of glass prisms. Unique features of the design incorporate electrolytic in- process dressing of the finishing wheel, nested grinding wheels and machine resident metrology to provide RQM (Real-time Quality Management).

  9. Could a machine think

    SciTech Connect

    Churchland, P.M.; Churchland, P.S. )

    1990-01-01

    There are many reasons for saying yes. One of the earliest and deepest reason lay in two important results in computational theory. The first was Church's thesis, which states that every effectively computable function is recursively computable. The second important result was Alan M. Turing's demonstration that any recursively computable function can be computed in finite time by a maximally simple sort of symbol-manipulating machine that has come to be called a universal Turing machine. This machine is guided by a set of recursively applicable rules that are sensitive to the identity, order and arrangement of the elementary symbols it encounters as input. The authors reject the Turing test as a sufficient condition for conscious intelligence. They base their position of the specific behavioral failures of the classical SM machines and on the specific virtues of machines with a more brain-like architecture. These contrasts show that certain computational strategies have vast and decisive advantages over others where typical cognitive tasks are concerned, advantages that are empirically inescapable. Clearly, the brain is making systematic use of these computational advantage. But it need not be the only physical system capable of doing so. Artificial intelligence, in a nonbiological but massively parallel machine, remain a compelling and discernible prospect.

  10. Futures for energy cooperatives

    SciTech Connect

    1981-01-01

    A listing of Federal agencies and programs with potential funding for community-scale cooperatives using conservation measures and solar technologies is presented in Section 1. Section 2 presents profiles of existing community energy cooperatives describing their location, history, membership, services, sources of finance and technical assistance. A condensed summary from a recent conference on Energy Cooperatives featuring notes on co-op members' experiences, problems, and opportunities is presented in Section 3. Section 4 lists contacts for additional information. A National Consumer Cooperative Bank Load Application is shown in the appendix.

  11. Synthetic Yeast Cooperation

    NASA Astrophysics Data System (ADS)

    Shou, Wenying; Burton, Justin

    2010-03-01

    Cooperation is wide-spread and has been postulated to drive major transitions in evolution. However, Darwinian selection favors ``cheaters'' that consume benefits without paying a fair cost. How did cooperation evolve against the threat of cheaters? To investigate the evolutionary trajectories of cooperation, we created a genetically tractable system that can be observed as it evolves from inception. The system consists of two engineered yeast strains -- a red-fluorescent strain that requires adenine and releases lysine and a yellow-fluorescent strain that requires lysine and releases adenine. Cells that consume but not supply metabolites would be cheaters. From the properties of two cooperating strains, we calculated and experimentally verified the minimal initial cell densities required for the viability of the cooperative system in the absence of exogenously added adenine and lysine. Strikingly, evolved cooperative systems were viable at 100-fold lower initial cell densities than their ancestors. We are investigating the nature and diversity of pro-cooperation changes, the dynamics of cooperator-cheater cocultures, and the effects of spatial environment on cooperation and cheating.

  12. The Knife Machine. Module 15.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on the knife machine, one in a series dealing with industrial sewing machines, their attachments, and operation, covers one topic: performing special operations on the knife machine (a single needle or multi-needle machine which sews and cuts at the same time). These components are provided: an introduction, directions, an objective,…

  13. Feedback in sequential machine realizations.

    NASA Technical Reports Server (NTRS)

    Harlow, C. A.; Coates, C. L., Jr.

    1972-01-01

    A method is described for determining the realizability of a sequential machine with trigger or set-reset flip-flop memory elements when the feedback of the machine is given by a Boolean function. Feedbacks in several types of sequential machines with different memory elements are compared, showing the memory specifications allowing the realization of such machines.

  14. Non-traditional machining techniques

    SciTech Connect

    Day, Robert D; Fierro, Frank; Garcia, Felix P; Hatch, Douglass J; Randolph, Randall B; Reardon, Patrick T; Rivera, Gerald

    2008-01-01

    During the course of machining targets for various experiments it sometimes becomes necessary to adapt fixtures or machines, which are designed for one function, to another function. When adapting a machine or fixture is not adequate, it may be necessary to acquire a machine specifically designed to produce the component required. In addition to the above scenarios, the features of a component may dictate that multi-step machining processes are necessary to produce the component. This paper discusses the machining of four components where adaptation, specialized machine design, or multi-step processes were necessary to produce the components.

  15. A Cooperative Hypertext Interface to Relational Databases

    PubMed Central

    Barsalou, Thierry; Wiederhold, Gio

    1989-01-01

    Biomedical information systems demand cooperative interfaces that maximize the flow of information between machine and user. Within the framework of the PENGUIN project—an object-oriented architecture for expert database systems—, we describe the use of hypertext tools for designing sophisticated interfaces to the relational-database component of PENGUIN. The interface designer employs HyperCard to construct a visual representation of the underlying database that requires the user to recognize rather than to recall the appropriate command name. We show that the resulting direct-manipulation style of interaction facilitates greatly information retrieval and presentation.

  16. Educational Cooperatives. PREP-23

    ERIC Educational Resources Information Center

    National Center for Educational Communication (DHEW/OE), Washington, DC.

    Dr. Larry W. Hughes and Dr. C. M. Achilles of the University of Tennessee, Knoxville, conducted a national survey for the Office of Education on educational cooperatives--studying and reporting on the nature and kind of cooperative endeavors, their organization, governance, financial arrangements, services, and personnel. Their study focused upon…

  17. Making Cooperative Learning Powerful

    ERIC Educational Resources Information Center

    Slavin, Robert E.

    2014-01-01

    Just about everyone loves the "idea" of cooperative learning, children working productively and excitedly in groups, everyone getting along and enthusiastically helping one another learn. This article presents five strategies that teachers can use to get the greatest benefit possible from cooperative learning and ensure that…

  18. Cooperative Science Lesson Plans.

    ERIC Educational Resources Information Center

    Cooperative Learning, 1991

    1991-01-01

    Offers several elementary level cooperative science lesson plans. The article includes a recipe for cooperative class learning, instructions for making a compost pile, directions for finding evidence of energy, experiments in math and science using oranges to test density, and discussions of buoyancy using eggs. (SM)

  19. Montana Cooperative Education Handbook.

    ERIC Educational Resources Information Center

    Harris, Ron, Ed.

    This revised handbook was developed to help teachers and administrators in Montana conduct cooperative education programs. The handbook is organized in 13 sections. In narrative style, the first 11 sections cover the following topics: introduction to cooperative education, advisory committees, related instruction, coordination of activities,…

  20. Cooperative Vocational Education Programs.

    ERIC Educational Resources Information Center

    Bureau of Adult, Vocational, and Technical Education (DHEW/OE), Washington, DC. Div. of Vocational and Technical Education.

    Cooperative education, said to be a "sleeping giant" in vocational education, received special authorization in Public Law 90 576 and was made a priority in vocational education. This publication summarizes information to assist the states in planning development of cooperative vocational education: definitions, funding sources, program content,…

  1. Evaluating Cooperative Education Programs.

    ERIC Educational Resources Information Center

    Alvir, Howard P.

    This document defines cooperative education as any form of occupational or professional activity that required the cooperation of both school and the labor market. In some cases, this might be the school and industry or business. In this process, evaluation is defined as the improvement of learner success through measurement of program components.…

  2. Cooperative Learning Strategies.

    ERIC Educational Resources Information Center

    Barnes, Buckley; O'Farrell, Gail

    1990-01-01

    Presents essential characteristics and types of cooperative learning strategies for use in elementary social studies. Outlines exercises for forming teams and building team spirit. Points out such methods promote group interdependence and student responsibility for learning and teaching others. Highlights two cooperative group strategies, Jigsaw…

  3. The cooperative brain.

    PubMed

    Stallen, Mirre; Sanfey, Alan G

    2013-06-01

    Cooperation is essential for the functioning of human societies. To better understand how cooperation both succeeds and fails, recent research in cognitive neuroscience has begun to explore novel paradigms to examine how cooperative mechanisms may be encoded in the brain. By combining functional neuroimaging techniques with simple but realistic tasks adapted from experimental economics, this approach allows for the discrimination and modeling of processes that are important in cooperative behavior. Here, we review evidence demonstrating that many of the processes underlying cooperation overlap with rather fundamental brain mechanisms, such as, for example, those involved in reward, punishment and learning. In addition, we review how social expectations induced by an interactive context and the experience of social emotions may influence cooperation and its associated underlying neural circuitry, and we describe factors that appear important for generating cooperation, such as the provision of incentives. These findings illustrate how cognitive neuroscience can contribute to the development of more accurate, brain-based, models of cooperative decision making.

  4. The cooperative brain.

    PubMed

    Stallen, Mirre; Sanfey, Alan G

    2013-06-01

    Cooperation is essential for the functioning of human societies. To better understand how cooperation both succeeds and fails, recent research in cognitive neuroscience has begun to explore novel paradigms to examine how cooperative mechanisms may be encoded in the brain. By combining functional neuroimaging techniques with simple but realistic tasks adapted from experimental economics, this approach allows for the discrimination and modeling of processes that are important in cooperative behavior. Here, we review evidence demonstrating that many of the processes underlying cooperation overlap with rather fundamental brain mechanisms, such as, for example, those involved in reward, punishment and learning. In addition, we review how social expectations induced by an interactive context and the experience of social emotions may influence cooperation and its associated underlying neural circuitry, and we describe factors that appear important for generating cooperation, such as the provision of incentives. These findings illustrate how cognitive neuroscience can contribute to the development of more accurate, brain-based, models of cooperative decision making. PMID:23300215

  5. Managing Cooperative Education.

    ERIC Educational Resources Information Center

    National Child Labor Committee, New York, NY.

    This manual presents concepts, tools, and techniques that are useful in the management of cooperative education programs at the state department of education, school district, and secondary school levels. Section I is a general discussion of the management role in cooperative education. In section II focus is on the nature of the internal and…

  6. Readings in Cooperative Education.

    ERIC Educational Resources Information Center

    Leventhal, Jerome I.

    Twenty-three journal articles on cooperative education were selected in a review of the literature by two Temple University graduate classes in the fall of 1975 and the spring of 1976 for those interested in the role of coordinating cooperative education programs. The journal readings consist of articles on theory/planning (6), implementation…

  7. Helping Children Cooperate

    ERIC Educational Resources Information Center

    Pica, Rae

    2011-01-01

    There are occasions in life when the competitive process is appropriate. But when people consider the relationships in their lives--with friends, family members, coworkers, and the larger community--they realize the value of cooperation. When adults give children the chance to cooperate, to work together toward a solution or a common goal like…

  8. Culture and cooperation

    PubMed Central

    Gächter, Simon; Herrmann, Benedikt; Thöni, Christian

    2010-01-01

    Does the cultural background influence the success with which genetically unrelated individuals cooperate in social dilemma situations? In this paper, we provide an answer by analysing the data of Herrmann et al. (2008a), who studied cooperation and punishment in 16 subject pools from six different world cultures (as classified by Inglehart & Baker (2000)). We use analysis of variance to disentangle the importance of cultural background relative to individual heterogeneity and group-level differences in cooperation. We find that culture has a substantial influence on the extent of cooperation, in addition to individual heterogeneity and group-level differences identified by previous research. The significance of this result is that cultural background has a substantial influence on cooperation in otherwise identical environments. This is particularly true in the presence of punishment opportunities. PMID:20679109

  9. Culture and cooperation.

    PubMed

    Gächter, Simon; Herrmann, Benedikt; Thöni, Christian

    2010-09-12

    Does the cultural background influence the success with which genetically unrelated individuals cooperate in social dilemma situations? In this paper, we provide an answer by analysing the data of Herrmann et al. (2008a), who studied cooperation and punishment in 16 subject pools from six different world cultures (as classified by Inglehart & Baker (2000)). We use analysis of variance to disentangle the importance of cultural background relative to individual heterogeneity and group-level differences in cooperation. We find that culture has a substantial influence on the extent of cooperation, in addition to individual heterogeneity and group-level differences identified by previous research. The significance of this result is that cultural background has a substantial influence on cooperation in otherwise identical environments. This is particularly true in the presence of punishment opportunities.

  10. Shuttle bay telerobotics demonstration

    NASA Technical Reports Server (NTRS)

    Chun, W.; Cogeos, P.

    1987-01-01

    A demonstration of NASA's robotics capabilities should be a balanced agenda of servicing and assembly tasks combined with selected key technical experiments. The servicing tasks include refueling and module replacement. Refueling involves the mating of special fluid connectors while module replacement requires an array of robotic technologies such as special tools, the arm of a logistics tool, and the precision mating of orbital replacement units to guides. The assembly task involves the construction of a space station node and truss structure. The technological experiments will focus on a few important issues: the precision manipulation of the arms by a teleoperator, the additional use of several mono camera views in conjunction with the stereo system, the use of a general purpose end effector versus a caddy of tools, and the dynamics involved with using a robot with a stabilizer.

  11. The Bearingless Electrical Machine

    NASA Technical Reports Server (NTRS)

    Bichsel, J.

    1992-01-01

    Electromagnetic bearings allow the suspension of solids. For rotary applications, the most important physical effect is the force of a magnetic circuit to a high permeable armature, called the MAXWELL force. Contrary to the commonly used MAXWELL bearings, the bearingless electrical machine will take advantage of the reaction force of a conductor carrying a current in a magnetic field. This kind of force, called Lorentz force, generates the torque in direct current, asynchronous and synchronous machines. The magnetic field, which already exists in electrical machines and helps to build up the torque, can also be used for the suspension of the rotor. Besides the normal winding of the stator, a special winding was added, which generates forces for levitation. So a radial bearing, which is integrated directly in the active part of the machine, and the motor use the laminated core simultaneously. The winding was constructed for the levitating forces in a special way so that commercially available standard ac inverters for drives can be used. Besides wholly magnetic suspended machines, there is a wide range of applications for normal drives with ball bearings. Resonances of the rotor, especially critical speeds, can be damped actively.

  12. Non Contact Measuring Machine

    NASA Astrophysics Data System (ADS)

    Carvalho, Fernando D.; Sebastiao, Pedro; Henriques, Bernardo G.

    1989-01-01

    One of the problems of the production of cables is the measurement of the thickness plastic cover at the production line. If for some reason the thickness of the plastic is smaller than the minimum necessary several meters of cable may be lost. If the problem exists in the middle of a long cable and the default is not detected in time, the loss will be significant. To solve this problem it is possible to use automatic measuring machines which may detect a default as soon as it happens. It is also possible to interact with the production line in order to avoid any losses. In this paper it is presented a non contact measuring machine, developed for this purpose. The machine uses a laser which is scanned through a field of 80 mm. The interruption of the beam gives information about the external dimension of the object. The technical study of the resolution, sensitivity and precision are presented on the paper. Also the hardware solution and the software are presented. The machine has an interface which allows communication with a PC. The PC may receive information from several measuring units and to interact with machines installed at the production line. The prototype is finished and is going to be tested in the industry.

  13. Extreme ultraviolet lithography machine

    SciTech Connect

    Tichenor, D.A.; Kubiak, G.D.; Haney, S.J.; Sweeney, D.W.

    2000-02-29

    An extreme ultraviolet lithography (EUVL) machine or system is disclosed for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10--14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  14. Extreme ultraviolet lithography machine

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Haney, Steven J.; Sweeney, Donald W.

    2000-01-01

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  15. Meso-Machining Capabilities

    SciTech Connect

    BENAVIDES,GILBERT L.; ADAMS,DAVID P.; YANG,PIN

    2001-06-01

    Meso-scale manufacturing processes are bridging the gap between silicon-based MEMS processes and conventional miniature machining. These processes can fabricate two and three-dimensional parts having micron size features in traditional materials such as stainless steels, rare earth magnets, ceramics, and glass. Meso-scale processes that are currently available include, focused ion beam sputtering, micro-milling, micro-turning, excimer laser ablation, femtosecond laser ablation, and micro electro discharge machining. These meso-scale processes employ subtractive machining technologies (i.e., material removal), unlike LIGA, which is an additive meso-scale process. Meso-scale processes have different material capabilities and machining performance specifications. Machining performance specifications of interest include minimum feature size, feature tolerance, feature location accuracy, surface finish, and material removal rate. Sandia National Laboratories is developing meso-scale mechanical components and actuators which require meso-scale parts fabricated in a variety of materials. Subtractive meso-scale manufacturing processes expand the functionality of meso-scale components and complement silicon based MEMS and LIGA technologies.

  16. Machinable oxide ceramic

    SciTech Connect

    Rayne, R.J.; Toth, L.E.; Jones, L.D.; Soulen, R.J. Jr.; Bender, B.A.

    1993-06-01

    A method of forming a machinable bulk superconductor by melt-casting the described comprising the steps of: weighing out amounts of powdered SrCO[sub 3], CuO, CaCO[sub 3], and Bi[sub 2]O[sub 3] for the desired stoichiometry of the superconductor; combining the amounts of Bi[sub 2]O[sub 3], SrCO[sub 3], CuO and CaCO[sub 3] to form a mixture of uniform color; removing the carbonates in the mixture; heating the mixture until the mixture melts completely, to form a melt; pouring the melt into a preheated, non-reactive mold; cooling the melted mixture in the mold to room temperature, to form a casting; inducing a superconducting phase having randomly oriented platelets within the casting; and machining, by a metal cutting technique, said casting having said induced superconducting phase; wherein said machining step is performed with a steel tool.

  17. Micro-machined resonator

    DOEpatents

    Godshall, Ned A.; Koehler, Dale R.; Liang, Alan Y.; Smith, Bradley K.

    1993-01-01

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  18. Micro-machined resonator

    DOEpatents

    Godshall, N.A.; Koehler, D.R.; Liang, A.Y.; Smith, B.K.

    1993-03-30

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  19. A SUGGESTED CURRICULUM GUIDE FOR ELECTRO-MECHANICAL TECHNOLOGY ORIENTED SPECIFICALLY TO THE COMPUTER AND BUSINESS MACHINE FIELDS. INTERIM REPORT.

    ERIC Educational Resources Information Center

    LESCARBEAU, ROLAND F.; AND OTHERS

    A SUGGESTED POST-SECONDARY CURRICULUM GUIDE FOR ELECTRO-MECHANICAL TECHNOLOGY ORIENTED SPECIFICALLY TO THE COMPUTER AND BUSINESS MACHINE FIELDS WAS DEVELOPED BY A GROUP OF COOPERATING INSTITUTIONS, NOW INCORPORATED AS TECHNICAL EDUCATION CONSORTIUM, INCORPORATED. SPECIFIC NEEDS OF THE COMPUTER AND BUSINESS MACHINE INDUSTRY WERE DETERMINED FROM…

  20. Automated fiber pigtailing machine

    DOEpatents

    Strand, O.T.; Lowry, M.E.

    1999-01-05

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectronic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems. 26 figs.

  1. Automated fiber pigtailing machine

    DOEpatents

    Strand, Oliver T.; Lowry, Mark E.

    1999-01-01

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectonic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems.

  2. New photolithography stepping machine

    SciTech Connect

    Hale, L.; Klingmann, J.; Markle, D.

    1995-03-08

    A joint development project to design a new photolithography steeping machine capable of 150 nanometer overlay accuracy was completed by Ultratech Stepper and the Lawrence Livermore National Laboratory. The principal result of the project is a next-generation product that will strengthen the US position in step-and-repeat photolithography. The significant challenges addressed and solved in the project are the subject of this report. Design methods and new devices that have broader application to precision machine design are presented in greater detail while project specific information serves primarily as background and motivation.

  3. Precision Robotic Assembly Machine

    ScienceCinema

    None

    2016-07-12

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  4. Precision Robotic Assembly Machine

    SciTech Connect

    2009-08-14

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  5. Intersecting vane machines

    DOEpatents

    Bailey, H. Sterling; Chomyszak, Stephen M.

    2007-01-16

    The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through meshing surfaces without the need for external gearing by modifying the function of one or the other of the rotors from that of "fluid moving" to that of "valving" thereby reducing the pressure loads and associated inefficiencies at the interface of the meshing surfaces. The inventions described herein relate to these improvements.

  6. Paradigms for machine learning

    NASA Technical Reports Server (NTRS)

    Schlimmer, Jeffrey C.; Langley, Pat

    1991-01-01

    Five paradigms are described for machine learning: connectionist (neural network) methods, genetic algorithms and classifier systems, empirical methods for inducing rules and decision trees, analytic learning methods, and case-based approaches. Some dimensions are considered along with these paradigms vary in their approach to learning, and the basic methods are reviewed that are used within each framework, together with open research issues. It is argued that the similarities among the paradigms are more important than their differences, and that future work should attempt to bridge the existing boundaries. Finally, some recent developments in the field of machine learning are discussed, and their impact on both research and applications is examined.

  7. Persistent cooperators in nature.

    PubMed

    Liu, Xinsheng; Guo, Wanlin

    2010-12-21

    The evolution and maintenance of cooperation fascinated researchers for several decades. Recently, theoretical models and experimental evidence show that costly punishment may facilitate cooperation in human societies. The puzzle how the costly punishment behaviour evolves can be solved under voluntary participation. Could the punishers emerge if participation is compulsory? Is the punishment inevitably a selfish behaviour or an altruistic behaviour? The motivations behind punishment are still an enigma. Based on public goods interactions, we present a model in which just a certain portion of the public good is divided equally among all members. The other portion is distributed to contributors when paying a second cost. The contributors who are willing to pay a second cost are called the persistent cooperators (PC), indicating their desire to retrieve the proportion of the payoff derived from their own contributions with persistent efforts. We show that the persistent cooperators can be costly punishers, which may account for the origin of human costly punishment behaviour under compulsory participation. In this sense our models may show theoretically that the original motivation behind punishment is to retrieve deserved payoff from their own contributions, a selfish incentive. But the persistent cooperators can also flourish or dominate the population in other situations. We list many real examples in which contributors are the persistent cooperators, and they benefit. This indicates a simple norm promoting cooperation: contributing more and gaining more.

  8. Globalization and human cooperation.

    PubMed

    Buchan, Nancy R; Grimalda, Gianluca; Wilson, Rick; Brewer, Marilynn; Fatas, Enrique; Foddy, Margaret

    2009-03-17

    Globalization magnifies the problems that affect all people and that require large-scale human cooperation, for example, the overharvesting of natural resources and human-induced global warming. However, what does globalization imply for the cooperation needed to address such global social dilemmas? Two competing hypotheses are offered. One hypothesis is that globalization prompts reactionary movements that reinforce parochial distinctions among people. Large-scale cooperation then focuses on favoring one's own ethnic, racial, or language group. The alternative hypothesis suggests that globalization strengthens cosmopolitan attitudes by weakening the relevance of ethnicity, locality, or nationhood as sources of identification. In essence, globalization, the increasing interconnectedness of people worldwide, broadens the group boundaries within which individuals perceive they belong. We test these hypotheses by measuring globalization at both the country and individual levels and analyzing the relationship between globalization and individual cooperation with distal others in multilevel sequential cooperation experiments in which players can contribute to individual, local, and/or global accounts. Our samples were drawn from the general populations of the United States, Italy, Russia, Argentina, South Africa, and Iran. We find that as country and individual levels of globalization increase, so too does individual cooperation at the global level vis-à-vis the local level. In essence, "globalized" individuals draw broader group boundaries than others, eschewing parochial motivations in favor of cosmopolitan ones. Globalization may thus be fundamental in shaping contemporary large-scale cooperation and may be a positive force toward the provision of global public goods. PMID:19255433

  9. Network modularity promotes cooperation.

    PubMed

    Marcoux, Marianne; Lusseau, David

    2013-05-01

    Cooperation in animals and humans is widely observed even if evolutionary biology theories predict the evolution of selfish individuals. Previous game theory models have shown that cooperation can evolve when the game takes place in a structured population such as a social network because it limits interactions between individuals. Modularity, the natural division of a network into groups, is a key characteristic of all social networks but the influence of this crucial social feature on the evolution of cooperation has never been investigated. Here, we provide novel pieces of evidence that network modularity promotes the evolution of cooperation in 2-person prisoner's dilemma games. By simulating games on social networks of different structures, we show that modularity shapes interactions between individuals favouring the evolution of cooperation. Modularity provides a simple mechanism for the evolution of cooperation without having to invoke complicated mechanisms such as reputation or punishment, or requiring genetic similarity among individuals. Thus, cooperation can evolve over wider social contexts than previously reported.

  10. Globalization and human cooperation.

    PubMed

    Buchan, Nancy R; Grimalda, Gianluca; Wilson, Rick; Brewer, Marilynn; Fatas, Enrique; Foddy, Margaret

    2009-03-17

    Globalization magnifies the problems that affect all people and that require large-scale human cooperation, for example, the overharvesting of natural resources and human-induced global warming. However, what does globalization imply for the cooperation needed to address such global social dilemmas? Two competing hypotheses are offered. One hypothesis is that globalization prompts reactionary movements that reinforce parochial distinctions among people. Large-scale cooperation then focuses on favoring one's own ethnic, racial, or language group. The alternative hypothesis suggests that globalization strengthens cosmopolitan attitudes by weakening the relevance of ethnicity, locality, or nationhood as sources of identification. In essence, globalization, the increasing interconnectedness of people worldwide, broadens the group boundaries within which individuals perceive they belong. We test these hypotheses by measuring globalization at both the country and individual levels and analyzing the relationship between globalization and individual cooperation with distal others in multilevel sequential cooperation experiments in which players can contribute to individual, local, and/or global accounts. Our samples were drawn from the general populations of the United States, Italy, Russia, Argentina, South Africa, and Iran. We find that as country and individual levels of globalization increase, so too does individual cooperation at the global level vis-à-vis the local level. In essence, "globalized" individuals draw broader group boundaries than others, eschewing parochial motivations in favor of cosmopolitan ones. Globalization may thus be fundamental in shaping contemporary large-scale cooperation and may be a positive force toward the provision of global public goods.

  11. Machine speech and speaking about machines

    SciTech Connect

    Nye, A.

    1996-12-31

    Current philosophy of language prides itself on scientific status. It boasts of being no longer contaminated with queer mental entities or idealist essences. It theorizes language as programmable variants of formal semantic systems, reimaginable either as the properly epiphenomenal machine functions of computer science or the properly material neural networks of physiology. Whether or not such models properly capture the physical workings of a living human brain is a question that scientists will have to answer. I, as a philosopher, come at the problem from another direction. Does contemporary philosophical semantics, in its dominant truth-theoretic and related versions, capture actual living human thought as it is experienced, or does it instead reflect, regardless of (perhaps dubious) scientific credentials, pathology of thought, a pathology with a disturbing social history.

  12. 12. Photocopied August 1978. CHANNELING MACHINES, NOVEMBER 1898. THESE MACHINES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photocopied August 1978. CHANNELING MACHINES, NOVEMBER 1898. THESE MACHINES BLOCKED OUT SECTIONS IN THE ROCK CUT IN PREPARATION FOR DRILLING AND BLASTING. (17) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  13. BRASS FOUNDRY MACHINE ROOM USED TO MACHINE CAST BRONZE PIECES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BRASS FOUNDRY MACHINE ROOM USED TO MACHINE CAST BRONZE PIECES FOR VALVES AND PREPARE BRONZE VALVE BODIES FOR ASSEMBLY. - Stockham Pipe & Fittings Company, Brass Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  14. 14. Machine in north 1922 section of Building 59. Machine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Machine in north 1922 section of Building 59. Machine is 24' Jointer made by Oliver Machinery Co. Camera pointed E. - Puget Sound Naval Shipyard, Pattern Shop, Farragut Avenue, Bremerton, Kitsap County, WA

  15. A Turing Machine Simulator.

    ERIC Educational Resources Information Center

    Navarro, Aaron B.

    1981-01-01

    Presents a program in Level II BASIC for a TRS-80 computer that simulates a Turing machine and discusses the nature of the device. The program is run interactively and is designed to be used as an educational tool by computer science or mathematics students studying computational or automata theory. (MP)

  16. Support vector machines

    NASA Technical Reports Server (NTRS)

    Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri

    2004-01-01

    Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.

  17. Electrical discharge machining.

    PubMed

    LaBarge, K W

    1997-11-01

    This article describes a laboratory technique of achieving the highest degree of passive fit of an implant-retained restoration using electric discharge machining (EDM). This process can save time by eliminating the need for conventional soldering procedures, increase the longevity of the restoration, and when used along with the clinical technique of fabricating a verification index, eliminate the clinical try-in phase.

  18. Laser machining of explosives

    SciTech Connect

    Perry, Michael D.; Stuart, Brent C.; Banks, Paul S.; Myers, Booth R.; Sefcik, Joseph A.

    2000-01-01

    The invention consists of a method for machining (cutting, drilling, sculpting) of explosives (e.g., TNT, TATB, PETN, RDX, etc.). By using pulses of a duration in the range of 5 femtoseconds to 50 picoseconds, extremely precise and rapid machining can be achieved with essentially no heat or shock affected zone. In this method, material is removed by a nonthermal mechanism. A combination of multiphoton and collisional ionization creates a critical density plasma in a time scale much shorter than electron kinetic energy is transferred to the lattice. The resulting plasma is far from thermal equilibrium. The material is in essence converted from its initial solid-state directly into a fully ionized plasma on a time scale too short for thermal equilibrium to be established with the lattice. As a result, there is negligible heat conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond a few microns from the laser machined surface. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces. There is no detonation or deflagration of the explosive in the process and the material which is removed is rendered inert.

  19. Cybernetic anthropomorphic machine systems

    NASA Technical Reports Server (NTRS)

    Gray, W. E.

    1974-01-01

    Functional descriptions are provided for a number of cybernetic man machine systems that augment the capacity of normal human beings in the areas of strength, reach or physical size, and environmental interaction, and that are also applicable to aiding the neurologically handicapped. Teleoperators, computer control, exoskeletal devices, quadruped vehicles, space maintenance systems, and communications equipment are considered.

  20. Working with Simple Machines

    ERIC Educational Resources Information Center

    Norbury, John W.

    2006-01-01

    A set of examples is provided that illustrate the use of work as applied to simple machines. The ramp, pulley, lever and hydraulic press are common experiences in the life of a student, and their theoretical analysis therefore makes the abstract concept of work more real. The mechanical advantage of each of these systems is also discussed so that…

  1. Biomimetic machine vision system.

    PubMed

    Harman, William M; Barrett, Steven F; Wright, Cameron H G; Wilcox, Michael

    2005-01-01

    Real-time application of digital imaging for use in machine vision systems has proven to be prohibitive when used within control systems that employ low-power single processors without compromising the scope of vision or resolution of captured images. Development of a real-time machine analog vision system is the focus of research taking place at the University of Wyoming. This new vision system is based upon the biological vision system of the common house fly. Development of a single sensor is accomplished, representing a single facet of the fly's eye. This new sensor is then incorporated into an array of sensors capable of detecting objects and tracking motion in 2-D space. This system "preprocesses" incoming image data resulting in minimal data processing to determine the location of a target object. Due to the nature of the sensors in the array, hyperacuity is achieved thereby eliminating resolutions issues found in digital vision systems. In this paper, we will discuss the biological traits of the fly eye and the specific traits that led to the development of this machine vision system. We will also discuss the process of developing an analog based sensor that mimics the characteristics of interest in the biological vision system. This paper will conclude with a discussion of how an array of these sensors can be applied toward solving real-world machine vision issues.

  2. Electrical Discharge Machining.

    ERIC Educational Resources Information Center

    Montgomery, C. M.

    The manual is for use by students learning electrical discharge machining (EDM). It consists of eight units divided into several lessons, each designed to meet one of the stated objectives for the unit. The units deal with: introduction to and advantages of EDM, the EDM process, basic components of EDM, reaction between forming tool and workpiece,…

  3. Machine-Aided Indexing.

    ERIC Educational Resources Information Center

    Jacobs, Charles R.

    Progress is reported at the 1,000,000 word level on the development of a partial syntatic analysis technique for indexing text. A new indexing subroutine for hyphens is provided. New grammars written and programmed for Machine Aided Indexing (MAI) are discussed. (ED 069 290 is a related document) (Author)

  4. The Art Machine.

    ERIC Educational Resources Information Center

    Vertelney, Harry; Grossberger, Lucia

    1983-01-01

    Introduces educators to possibilities of computer graphics using an inexpensive computer system which takes advantage of existing equipment (35mm camera, super 8 movie camera, VHS video cassette recorder). The concept of the "art machine" is explained, highlighting input and output devices (X-Y plotter, graphic tablets, video digitizers). (EJS)

  5. The Answer Machine.

    ERIC Educational Resources Information Center

    Feldman, Susan

    2000-01-01

    Discusses information retrieval systems and the need to have them adapt to user needs, integrate information in any format, reveal patterns and trends in information, and answer questions. Topics include statistics and probability; natural language processing; intelligent agents; concept mapping; machine-aided indexing; text mining; filtering;…

  6. Giving Machines the Vision

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Amherst Systems manufactures foveal machine vision technology and systems commercially available to end-users and system integrators. This technology was initially developed under NASA contracts NAS9-19335 (Johnson Space Center) and NAS1-20841 (Langley Research Center). This technology is currently being delivered to university research facilities and military sites. More information may be found in www.amherst.com.

  7. Cooperative Learning Strategies.

    ERIC Educational Resources Information Center

    Pratt, Sandra

    2003-01-01

    Describes the effectiveness of cooperative learning on discipline problems, interdependence between students, and teacher-student interactions. Explains how to group students and introduces a laboratory activity on covalent and ionic bonds. (YDS)

  8. Cooperative processing data bases

    NASA Technical Reports Server (NTRS)

    Hasta, Juzar

    1991-01-01

    Cooperative processing for the 1990's using client-server technology is addressed. The main theme is concepts of downsizing from mainframes and minicomputers to workstations on a local area network (LAN). This document is presented in view graph form.

  9. Cooperative Education: Industry Involvement.

    ERIC Educational Resources Information Center

    Davies, Geoffrey; McClelland, Alan L.

    1980-01-01

    Contains information from three large chemical companies having a long-standing interest in cooperative education with chemistry students. Questions and answers are provided for specific information regarding DuPont, 3M, and Dow Chemical. (CS)

  10. How Myxobacteria Cooperate.

    PubMed

    Cao, Pengbo; Dey, Arup; Vassallo, Christopher N; Wall, Daniel

    2015-11-20

    Prokaryotes often reside in groups where a high degree of relatedness has allowed the evolution of cooperative behaviors. However, very few bacteria or archaea have made the successful transition from unicellular to obligate multicellular life. A notable exception is the myxobacteria, in which cells cooperate to perform group functions highlighted by fruiting body development, an obligate multicellular function. Like all multicellular organisms, myxobacteria face challenges in how to organize and maintain multicellularity. These challenges include maintaining population homeostasis, carrying out tissue repair and regulating the behavior of non-cooperators. Here, we describe the major cooperative behaviors that myxobacteria use: motility, predation and development. In addition, this review emphasizes recent discoveries in the social behavior of outer membrane exchange, wherein kin share outer membrane contents. Finally, we review evidence that outer membrane exchange may be involved in regulating population homeostasis, thus serving as a social tool for myxobacteria to make the cyclic transitions from unicellular to multicellular states. PMID:26254571

  11. Cooperative Education Abroad.

    ERIC Educational Resources Information Center

    Knowles, Asa S.

    1978-01-01

    Although cooperative education may be uniquely American, other nations place great importance on relating work and education. Types of programs, calendars and schedules are reviewed, and global patterns are described. (Author/LBH)

  12. Cooperative Learning in Statistics.

    ERIC Educational Resources Information Center

    Keeler, Carolyn M.; And Others

    1994-01-01

    Formal use of cooperative learning techniques proved effective in improving student performance and retention in a freshman level statistics course. Lectures interspersed with group activities proved effective in increasing conceptual understanding and overall class performance. (11 references) (Author)

  13. 8. VIEW OF THE MACHINE SHOP. BY 1966, THE MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF THE MACHINE SHOP. BY 1966, THE MACHINE SHOP HANDLED PRIMARILY STAINLESS STEEL COMPONENTS, WHICH WERE SENT TO THE MACHINE SHOP TO BE FORMED INTO THEIR FINAL SHAPES. (7/24/70) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  14. Progress in Documentation: Machine Translation and Machine-Aided Translation.

    ERIC Educational Resources Information Center

    Hutchins, W. J.

    1978-01-01

    Discusses the prospects for fully automatic machine translation of good quality. Sections include history and background, operational and experimental machine translation systems of recent years, descriptions of interactive systems and machine-assisted translation, and a general survey of present problems and future possibilities. (VT)

  15. Cooperating mobile robots

    DOEpatents

    Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.

    2004-02-03

    A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.

  16. Tattoo machines, needles and utilities.

    PubMed

    Rosenkilde, Frank

    2015-01-01

    Starting out as a professional tattooist back in 1977 in Copenhagen, Denmark, Frank Rosenkilde has personally experienced the remarkable development of tattoo machines, needles and utilities: all the way from home-made equipment to industrial products of substantially improved quality. Machines can be constructed like the traditional dual-coil and single-coil machines or can be e-coil, rotary and hybrid machines, with the more convenient and precise rotary machines being the recent trend. This development has resulted in disposable needles and utilities. Newer machines are more easily kept clean and protected with foil to prevent crosscontaminations and infections. The machines and the tattooists' knowledge and awareness about prevention of infection have developed hand-in-hand. For decades, Frank Rosenkilde has been collecting tattoo machines. Part of his collection is presented here, supplemented by his personal notes. PMID:25833620

  17. Automatically-Programed Machine Tools

    NASA Technical Reports Server (NTRS)

    Purves, L.; Clerman, N.

    1985-01-01

    Software produces cutter location files for numerically-controlled machine tools. APT, acronym for Automatically Programed Tools, is among most widely used software systems for computerized machine tools. APT developed for explicit purpose of providing effective software system for programing NC machine tools. APT system includes specification of APT programing language and language processor, which executes APT statements and generates NC machine-tool motions specified by APT statements.

  18. Machine Shop Fundamentals: Part I.

    ERIC Educational Resources Information Center

    Kelly, Michael G.; And Others

    These instructional materials were developed and designed for secondary and adult limited English proficient students enrolled in machine tool technology courses. Part 1 includes 24 lessons covering introduction, safety and shop rules, basic machine tools, basic machine operations, measurement, basic blueprint reading, layout, and bench tools.…

  19. Hydraulic Fatigue-Testing Machine

    NASA Technical Reports Server (NTRS)

    Hodo, James D.; Moore, Dennis R.; Morris, Thomas F.; Tiller, Newton G.

    1987-01-01

    Fatigue-testing machine applies fluctuating tension to number of specimens at same time. When sample breaks, machine continues to test remaining specimens. Series of tensile tests needed to determine fatigue properties of materials performed more rapidly than in conventional fatigue-testing machine.

  20. Association installs condom machine.

    PubMed

    1994-08-01

    On the occasion of World Population Day (11 July), India installed its first condom vending machine. The machine was inaugurated by Mr. Eruch Lala, an official of the Family Planning Association of India, as part of the association's campaign to help the country curb its rapid population growth rate and stem the spread of AIDS (acquired immune deficiency syndrome). Each condom, called sangam ("union" in English) costs Rupees 2 (about 6.5 US cents). The machine is located at a textile mill in Bombay. The Association said it would install at least 60 such machines in Bombay over the coming months. "A psychological advantage of the machine is that the user need not personally meet the dispenser and can collect a condom without any embarrassment," Mr. Lala said. "The machine is expected to promote efforts at curbing population growth and prevent the spread of AIDS," he said. In a separate report, AIDS has been found to be racing through India just eight years after the first case was detected. Prostitutes, drug addicts and untested blood supplies are the conduits. More than half of the prostitutes in cities such as Bombay have HIV (human immunodeficiency virus), which causes AIDS. The truck drivers and itinerant workers they serve carry it to their own villages, according to the report by Mr. Thomas Wagner writing for the Associated Press. There are 43 million cases of sexually transmitted diseases reported each year in the country, according to the report. The HIV virus has been reported in all 25 states of India. Although the AIDS pandemic came to India later than most large countries, the National AIDS Control Organization estimates there are 1.62 million cases in the population, up 60% from 1993, according to the report. "AIDS is no longer just a problem of high-risk groups; it has spread to every area of India," Dr. P.R. Das Gupta of the national AIDS agency said in an interview. "So many people are migrating from their villages in search of jobs that this

  1. Prediction of Machine Tool Condition Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Wang, Peigong; Meng, Qingfeng; Zhao, Jian; Li, Junjie; Wang, Xiufeng

    2011-07-01

    Condition monitoring and predicting of CNC machine tools are investigated in this paper. Considering the CNC machine tools are often small numbers of samples, a condition predicting method for CNC machine tools based on support vector machines (SVMs) is proposed, then one-step and multi-step condition prediction models are constructed. The support vector machines prediction models are used to predict the trends of working condition of a certain type of CNC worm wheel and gear grinding machine by applying sequence data of vibration signal, which is collected during machine processing. And the relationship between different eigenvalue in CNC vibration signal and machining quality is discussed. The test result shows that the trend of vibration signal Peak-to-peak value in surface normal direction is most relevant to the trend of surface roughness value. In trends prediction of working condition, support vector machine has higher prediction accuracy both in the short term ('One-step') and long term (multi-step) prediction compared to autoregressive (AR) model and the RBF neural network. Experimental results show that it is feasible to apply support vector machine to CNC machine tool condition prediction.

  2. Effect of Machining Velocity in Nanoscale Machining Operations

    NASA Astrophysics Data System (ADS)

    Islam, Sumaiya; Ibrahim, Raafat; Khondoker, Noman

    2015-04-01

    The aim of this study is to investigate the generated forces and deformations of single crystal Cu with (100), (110) and (111) crystallographic orientations at nanoscale machining operation. A nanoindenter equipped with nanoscratching attachment was used for machining operations and in-situ observation of a nano scale groove. As a machining parameter, the machining velocity was varied to measure the normal and cutting forces. At a fixed machining velocity, different levels of normal and cutting forces were generated due to different crystallographic orientations of the specimens. Moreover, after machining operation percentage of elastic recovery was measured and it was found that both the elastic and plastic deformations were responsible for producing a nano scale groove within the range of machining velocities from 250-1000 nm/s.

  3. The blackboard model - A framework for integrating multiple cooperating expert systems

    NASA Technical Reports Server (NTRS)

    Erickson, W. K.

    1985-01-01

    The use of an artificial intelligence (AI) architecture known as the blackboard model is examined as a framework for designing and building distributed systems requiring the integration of multiple cooperating expert systems (MCXS). Aerospace vehicles provide many examples of potential systems, ranging from commercial and military aircraft to spacecraft such as satellites, the Space Shuttle, and the Space Station. One such system, free-flying, spaceborne telerobots to be used in construction, servicing, inspection, and repair tasks around NASA's Space Station, is examined. The major difficulties found in designing and integrating the individual expert system components necessary to implement such a robot are outlined. The blackboard model, a general expert system architecture which seems to address many of the problems found in designing and building such a system, is discussed. A progress report on a prototype system under development called DBB (Distributed BlackBoard model) is given. The prototype will act as a testbed for investigating the feasibility, utility, and efficiency of MCXS-based designs developed under the blackboard model.

  4. Engineering molecular machines

    NASA Astrophysics Data System (ADS)

    Erman, Burak

    2016-04-01

    Biological molecular motors use chemical energy, mostly in the form of ATP hydrolysis, and convert it to mechanical energy. Correlated thermal fluctuations are essential for the function of a molecular machine and it is the hydrolysis of ATP that modifies the correlated fluctuations of the system. Correlations are consequences of the molecular architecture of the protein. The idea that synthetic molecular machines may be constructed by designing the proper molecular architecture is challenging. In their paper, Sarkar et al (2016 New J. Phys. 18 043006) propose a synthetic molecular motor based on the coarse grained elastic network model of proteins and show by numerical simulations that motor function is realized, ranging from deterministic to thermal, depending on temperature. This work opens up a new range of possibilities of molecular architecture based engine design.

  5. Wholly Synthetic Molecular Machines.

    PubMed

    Cheng, Chuyang; Stoddart, J Fraser

    2016-06-17

    The past quarter of a century has witnessed an increasing engagement on the part of physicists and chemists in the design and synthesis of molecular machines de novo. This minireview traces the development of artificial molecular machines from their prototypes in the form of shuttles and switches to their emergence as motors and pumps where supplies of energy in the form of chemical fuel, electrochemical potential and light activation become a minimum requirement for them to function away from equilibrium. The challenge facing this rapidly growing community of scientists and engineers today is one of putting wholly synthetic molecules to work, both individually and as collections. Here, we highlight some of the recent conceptual and practical advances relating to the operation of wholly synthetic rotary and linear motors.

  6. Machinations of thought

    SciTech Connect

    Waldrop, M.M.

    1985-03-01

    After three decades of frustrating work, artificial intelligence is coming of age--moving out of the laboratories and into the marketplace. Expert systems, computer programs that give advice like a human specialist, are pinpointing mineral deposits and diagnosing diseases. Programs are taking shape that can do a pretty fair job of understanding plain English or French. Robotics will soon benefit from computer vision systems able to store a digitized photograph of an object or scene and recognize a good bit of what is there. As the more exuberant enthusiasts see it, we might soon have machines to advise us about our income taxes or the baby's fever; silicon tutors could help a child master the enthralling possibilities of geometry and numbers; trucks might drive themselves through the night and unload themselves at their destination. In short, we could one day have machines to do almost anything that now requires intelligence in a human.

  7. A Boltzmann machine for the organization of intelligent machines

    NASA Technical Reports Server (NTRS)

    Moed, Michael C.; Saridis, George N.

    1989-01-01

    In the present technological society, there is a major need to build machines that would execute intelligent tasks operating in uncertain environments with minimum interaction with a human operator. Although some designers have built smart robots, utilizing heuristic ideas, there is no systematic approach to design such machines in an engineering manner. Recently, cross-disciplinary research from the fields of computers, systems AI and information theory has served to set the foundations of the emerging area of the design of intelligent machines. Since 1977 Saridis has been developing an approach, defined as Hierarchical Intelligent Control, designed to organize, coordinate and execute anthropomorphic tasks by a machine with minimum interaction with a human operator. This approach utilizes analytical (probabilistic) models to describe and control the various functions of the intelligent machine structured by the intuitively defined principle of Increasing Precision with Decreasing Intelligence (IPDI) (Saridis 1979). This principle, even though resembles the managerial structure of organizational systems (Levis 1988), has been derived on an analytic basis by Saridis (1988). The purpose is to derive analytically a Boltzmann machine suitable for optimal connection of nodes in a neural net (Fahlman, Hinton, Sejnowski, 1985). Then this machine will serve to search for the optimal design of the organization level of an intelligent machine. In order to accomplish this, some mathematical theory of the intelligent machines will be first outlined. Then some definitions of the variables associated with the principle, like machine intelligence, machine knowledge, and precision will be made (Saridis, Valavanis 1988). Then a procedure to establish the Boltzmann machine on an analytic basis will be presented and illustrated by an example in designing the organization level of an Intelligent Machine. A new search technique, the Modified Genetic Algorithm, is presented and proved

  8. Machine Translation from Text

    NASA Astrophysics Data System (ADS)

    Habash, Nizar; Olive, Joseph; Christianson, Caitlin; McCary, John

    Machine translation (MT) from text, the topic of this chapter, is perhaps the heart of the GALE project. Beyond being a well defined application that stands on its own, MT from text is the link between the automatic speech recognition component and the distillation component. The focus of MT in GALE is on translating from Arabic or Chinese to English. The three languages represent a wide range of linguistic diversity and make the GALE MT task rather challenging and exciting.

  9. Copying Machine Improvement

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Manufacturer of the Model 2210 copying machine was looking for a plastic valve bushing material that could be produced by a low-cost injection molding process to replace the unsuitable valve bushing they were using. NERAC conducted a computer search of the NASA database and was able to supply Nashua Corporation with several technical reports in their area of interest. Information aided the company's development of a urethane valve bushing which solved the problem and created a dramatic reduction in unit cost.

  10. Austempered Ductile Iron Machining

    NASA Astrophysics Data System (ADS)

    Pilc, Jozef; Šajgalík, Michal; Holubják, Jozef; Piešová, Marianna; Zaušková, Lucia; Babík, Ondrej; Kuždák, Viktor; Rákoci, Jozef

    2015-12-01

    This article deals with the machining of cast iron. In industrial practice, Austempered Ductile Iron began to be used relatively recently. ADI is ductile iron that has gone through austempering to get improved properties, among which we can include strength, wear resistance or noise damping. This specific material is defined also by other properties, such as high elasticity, ductility and endurance against tenigue, which are the properties, that considerably make the tooling characteristic worse.

  11. Machine Learning in Medicine.

    PubMed

    Deo, Rahul C

    2015-11-17

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games - tasks that would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in health care. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades, and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus, part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome. PMID:26572668

  12. Machine Learning in Medicine.

    PubMed

    Deo, Rahul C

    2015-11-17

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games - tasks that would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in health care. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades, and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus, part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome.

  13. Architectures for intelligent machines

    NASA Technical Reports Server (NTRS)

    Saridis, George N.

    1991-01-01

    The theory of intelligent machines has been recently reformulated to incorporate new architectures that are using neural and Petri nets. The analytic functions of an intelligent machine are implemented by intelligent controls, using entropy as a measure. The resulting hierarchical control structure is based on the principle of increasing precision with decreasing intelligence. Each of the three levels of the intelligent control is using different architectures, in order to satisfy the requirements of the principle: the organization level is moduled after a Boltzmann machine for abstract reasoning, task planning and decision making; the coordination level is composed of a number of Petri net transducers supervised, for command exchange, by a dispatcher, which also serves as an interface to the organization level; the execution level, include the sensory, planning for navigation and control hardware which interacts one-to-one with the appropriate coordinators, while a VME bus provides a channel for database exchange among the several devices. This system is currently implemented on a robotic transporter, designed for space construction at the CIRSSE laboratories at the Rensselaer Polytechnic Institute. The progress of its development is reported.

  14. Laser machining - Theory and practice

    SciTech Connect

    Chryssolouris, G.

    1991-01-01

    Recent developments and the state of the art in the field of laser machining are reviewed with emphasis on practical applications. First, an overview of conventional material removing processes is presented. Laser machining systems are then described, and an overview is provided of the necessary knowledge from heat transfer and fluid mechanics required in order to understand the physical mechanisms and thermal processes associated with laser machining. The applications of laser machining discussed include drilling, cutting, marking, and three-dimensional machining of metals, ceramics, plastics, composites, and other materials, and micromachining. 209 refs.

  15. International Cooperation at NASA

    NASA Astrophysics Data System (ADS)

    Tawney, Timothy; Feldstein, Karen

    International cooperation is a cornerstone principle of NASA’s activities, especially within the activities of the Science Mission Directorate. Nearly two thirds of the flight missions in which NASA leads or participates involve international cooperation. Numerous ground based activities also rely on international cooperation, whether because of unique expertise, unique geography, or the need for a global response. Going forward, in an era of tighter budgets and a more integrated global perspective, NASA and the rest of the space agencies around the world will be forced to work more closely together, in a broader array of activities than ever before, in order to be able to afford to push the boundaries of space exploration. The goal of this presentation is to provide an overview of NASA’s current international science cooperative activities. It will include a discussion of why NASA conducts international cooperation and look at the mechanisms through which international cooperation can occur at NASA, including peer-to-peer development of relationships. It will also discuss some of the limiting factors of international cooperation, such as export control, and ways in which to manage those constraints. Finally, the presentation would look at some of the present examples where NASA is working to increase international cooperation and improve coordination. Case studies will be used to demonstrate these mechanisms and concepts. For example, NASA continues to participate in international coordination groups such as the International Mars Exploration Working Group (IMEWG) and International Space Exploration Coordination Group (ISECG), but is expanding into new areas as well. NASA is one of the leaders in expanding and improving international coordination in the area of Near-Earth Object detection, characterization, and mitigation. Having participated in the first meetings of such groups as the International Asteroid Warning Network (IAWN) and Space Missions Planning

  16. An integrated systems approach to remote retrieval of buried transuranic waste using a telerobotic transport vehicle, innovative end effector, and remote excavator

    SciTech Connect

    Smith, A.M.; Rice, P.; Hyde, R.; Peterson, R.

    1995-02-01

    Between 1952 and 1970, over two million cubic feet of transuranic mixed waste was buried in shallow pits and trenches in the Subsurface Disposal Area at the Idaho National Engineering Laboratory Radioactive Waste Management Complex. Commingled with this two million cubic feet of waste is up to 10 million cubic feet of fill soil. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. The main contaminants are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides. Retrieval, treatment, and disposal is one of the options being considered for the waste. This report describes the results of a field demonstration conducted to evaluate technologies for excavating, and transporting buried transuranic wastes at the INEL, and other hazardous or radioactive waste sites throughout the US Department of Energy complex. The full-scale demonstration, conduced at RAHCO Internationals facilities in Spokane, Washington, in the summer of 1994, evaluated equipment performance and techniques for digging, dumping, and transporting buried waste. Three technologies were evaluated in the demonstration: an Innovative End Effector for dust free dumping, a Telerobotic Transport Vehicle to convey retrieved waste from the digface, and a Remote Operated Excavator to deploy the Innovative End Effector and perform waste retrieval operations. Data were gathered and analyzed to evaluate retrieval performance parameters such as retrieval rates, transportation rates, human factors, and the equipment`s capability to control contamination spread.

  17. A decade of telerobotics in rehabilitation: Demonstrated utility blocked by the high cost of manipulation and the complexity of the user interface

    NASA Technical Reports Server (NTRS)

    Leifer, Larry; Michalowski, Stefan; Vanderloos, Machiel

    1991-01-01

    The Stanford/VA Interactive Robotics Laboratory set out in 1978 to test the hypothesis that industrial robotics technology could be applied to serve the manipulation needs of severely impaired individuals. Five generations of hardware, three generations of system software, and over 125 experimental subjects later, we believe that genuine utility is achievable. The experience includes development of over 65 task applications using voiced command, joystick control, natural language command and 3D object designation technology. A brief foray into virtual environments, using flight simulator technology, was instructive. If reality and virtuality come for comparable prices, you cannot beat reality. A detailed review of assistive robot anatomy and the performance specifications needed to achieve cost/beneficial utility will be used to support discussion of the future of rehabilitation telerobotics. Poised on the threshold of commercial viability, but constrained by the high cost of technically adequate manipulators, this worthy application domain flounders temporarily. In the long run, it will be the user interface that governs utility.

  18. Cooper Pair Insulators

    NASA Astrophysics Data System (ADS)

    Valles, James

    One of the recent advances in the field of the Superconductor to Insulator Transition (SIT) has been the discovery and characterization of the Cooper Pair Insulator phase. This bosonic insulator, which consists of localized Cooper pairs, exhibits activated transport and a giant magneto-resistance peak. These features differ markedly from the weakly localized transport that emerges as pairs break at a ``fermionic'' SIT. I will describe how our experiments on films nano-patterned with a nearly triangular array of holes have enabled us to 1) distinguish bosonic insulators from fermionic insulators, 2) show that Cooper pairs, rather than quasi-particles dominate the transport in the Cooper Pair insulator phase, 3) demonstrate that very weak, sub nano-meter thickness inhomogeneities control whether a bosonic or fermionic insulator forms at an SIT and 4) reveal that Cooper pairs disintegrate rather than becoming more tightly bound deep in the localized phase. We have also developed a method, using a magnetic field, to tune flux disorder reversibly in these films. I will present our latest results on the influence of magnetic flux disorder and random gauge fields on phenomena near bosonic SITs. This work was performed in collaboration with M. D. Stewart, Jr., Hung Q. Nguyen, Shawna M. Hollen, Jimmy Joy, Xue Zhang, Gustavo Fernandez, Jeffrey Shainline and Jimmy Xu. It was supported by NSF Grants DMR 1307290 and DMR-0907357.

  19. Cooperative processing user interfaces for AdaNET

    NASA Technical Reports Server (NTRS)

    Gutzmann, Kurt M.

    1991-01-01

    A cooperative processing user interface (CUI) system shares the task of graphical display generation and presentation between the user's computer and a remote host. The communications link between the two computers is typically a modem or Ethernet. The two main purposes of a CUI are reduction of the amount of data transmitted between user and host machines, and provision of a graphical user interface system to make the system easier to use.

  20. Cooper Pairs in Insulators?!

    SciTech Connect

    James Valles

    2008-07-23

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  1. Cooper Pairs in Insulators?!

    ScienceCinema

    James Valles

    2016-07-12

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  2. Dynamic impact testing with servohydraulic testing machines

    NASA Astrophysics Data System (ADS)

    Bardenheier, R.; Rogers, G.

    2006-08-01

    The design concept of “Crashworthiness” requires the information on material behaviour under dynamic impact loading in order to describe and predict the crash behaviour of structures. Especially the transport related industries, like car, railway or aircraft industry, pursue the concept of lightweight design for a while now. The materials' maximum constraint during loading is pushed to permanently increasing figures. This means in terms of crashworthiness that the process of energy absorption in structures and the mechanical behaviour of materials must well understood and can be described appropriately by material models. In close cooperation with experts from various industries and research institutes Instron has developed throughout the past years a new family of servohydraulic testing machines specifically designed to cope with the dynamics of high rate testing. Main development steps are reflected versus their experimental necessities.

  3. Neural basis of conditional cooperation.

    PubMed

    Suzuki, Shinsuke; Niki, Kazuhisa; Fujisaki, Syoken; Akiyama, Eizo

    2011-06-01

    Cooperation among genetically unrelated individuals is a fundamental aspect of society, but it has been a longstanding puzzle in biological and social sciences. Recently, theoretical studies in biology and economics showed that conditional cooperation-cooperating only with those who have exhibited cooperative behavior-can spread over a society. Furthermore, experimental studies in psychology demonstrated that people are actually conditional cooperators. In this study, we used functional magnetic resonance imaging to investigate the neural system underlying conditional cooperation by scanning participants during interaction with cooperative, neutral and non-cooperative opponents in prisoner's dilemma games. The results showed that: (i) participants cooperated more frequently with both cooperative and neutral opponents than with non-cooperative opponents; and (ii) a brain area related to cognitive inhibition of pre-potent responses (right dorsolateral prefrontal cortex) showed greater activation, especially when participants confronted non-cooperative opponents. Consequently, we suggest that cognitive inhibition of the motivation to cooperate with non-cooperators drives the conditional behavior.

  4. Social penalty promotes cooperation in a cooperative society.

    PubMed

    Ito, Hiromu; Yoshimura, Jin

    2015-01-01

    Why cooperation is well developed in human society is an unsolved question in biological and human sciences. Vast studies in game theory have revealed that in non-cooperative games selfish behavior generally dominates over cooperation and cooperation can be evolved only under very limited conditions. These studies ask the origin of cooperation; whether cooperation can evolve in a group of selfish individuals. In this paper, instead of asking the origin of cooperation, we consider the enhancement of cooperation in a small already cooperative society. We ask whether cooperative behavior is further promoted in a small cooperative society in which social penalty is devised. We analyze hawk-dove game and prisoner's dilemma introducing social penalty. We then expand it for non-cooperative games in general. The results indicate that cooperation is universally favored if penalty is further imposed. We discuss the current result in terms of the moral, laws, rules and regulations in a society, e.g., criminology and traffic violation. PMID:26238521

  5. Social penalty promotes cooperation in a cooperative society.

    PubMed

    Ito, Hiromu; Yoshimura, Jin

    2015-08-04

    Why cooperation is well developed in human society is an unsolved question in biological and human sciences. Vast studies in game theory have revealed that in non-cooperative games selfish behavior generally dominates over cooperation and cooperation can be evolved only under very limited conditions. These studies ask the origin of cooperation; whether cooperation can evolve in a group of selfish individuals. In this paper, instead of asking the origin of cooperation, we consider the enhancement of cooperation in a small already cooperative society. We ask whether cooperative behavior is further promoted in a small cooperative society in which social penalty is devised. We analyze hawk-dove game and prisoner's dilemma introducing social penalty. We then expand it for non-cooperative games in general. The results indicate that cooperation is universally favored if penalty is further imposed. We discuss the current result in terms of the moral, laws, rules and regulations in a society, e.g., criminology and traffic violation.

  6. Social penalty promotes cooperation in a cooperative society

    PubMed Central

    Ito, Hiromu; Yoshimura, Jin

    2015-01-01

    Why cooperation is well developed in human society is an unsolved question in biological and human sciences. Vast studies in game theory have revealed that in non-cooperative games selfish behavior generally dominates over cooperation and cooperation can be evolved only under very limited conditions. These studies ask the origin of cooperation; whether cooperation can evolve in a group of selfish individuals. In this paper, instead of asking the origin of cooperation, we consider the enhancement of cooperation in a small already cooperative society. We ask whether cooperative behavior is further promoted in a small cooperative society in which social penalty is devised. We analyze hawk-dove game and prisoner’s dilemma introducing social penalty. We then expand it for non-cooperative games in general. The results indicate that cooperation is universally favored if penalty is further imposed. We discuss the current result in terms of the moral, laws, rules and regulations in a society, e.g., criminology and traffic violation. PMID:26238521

  7. 15. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific Railroad Carlin Shops, view to northeast (90mm lens). The arched cutouts in the bottom chords of the roof trusses were necessary to provide clearance for the smokestacks of steam locomotives, and also mark the location of the former inspection pit in the floor (now filled in and covered by a new concrete floor). - Southern Pacific Railroad, Carlin Shops, Roundhouse Machine Shop Extension, Foot of Sixth Street, Carlin, Elko County, NV

  8. Diamond Measuring Machine

    SciTech Connect

    Krstulic, J.F.

    2000-01-27

    The fundamental goal of this project was to develop additional capabilities to the diamond measuring prototype, work out technical difficulties associated with the original device, and perform automated measurements which are accurate and repeatable. For this project, FM and T was responsible for the overall system design, edge extraction, and defect extraction and identification. AccuGem provided a lab and computer equipment in Lawrence, 3D modeling, industry expertise, and sets of diamonds for testing. The system executive software which controls stone positioning, lighting, focusing, report generation, and data acquisition was written in Microsoft Visual Basic 6, while data analysis and modeling were compiled in C/C++ DLLs. All scanning parameters and extracted data are stored in a central database and available for automated analysis and reporting. The Phase 1 study showed that data can be extracted and measured from diamond scans, but most of the information had to be manually extracted. In this Phase 2 project, all data required for geometric modeling and defect identification were automatically extracted and passed to a 3D modeling module for analysis. Algorithms were developed which automatically adjusted both light levels and stone focus positioning for each diamond-under-test. After a diamond is analyzed and measurements are completed, a report is printed for the customer which shows carat weight, summarizes stone geometry information, lists defects and their size, displays a picture of the diamond, and shows a plot of defects on a top view drawing of the stone. Initial emphasis of defect extraction was on identification of feathers, pinpoints, and crystals. Defects were plotted color-coded by industry standards for inclusions (red), blemishes (green), and unknown defects (blue). Diamonds with a wide variety of cut quality, size, and number of defects were tested in the machine. Edge extraction, defect extraction, and modeling code were tested for

  9. Will machines ever think

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1986-01-01

    Artificial Intelligence research has come under fire for failing to fulfill its promises. A growing number of AI researchers are reexamining the bases of AI research and are challenging the assumption that intelligent behavior can be fully explained as manipulation of symbols by algorithms. Three recent books -- Mind over Machine (H. Dreyfus and S. Dreyfus), Understanding Computers and Cognition (T. Winograd and F. Flores), and Brains, Behavior, and Robots (J. Albus) -- explore alternatives and open the door to new architectures that may be able to learn skills.

  10. CENTRIFUGAL CASTING MACHINE

    DOEpatents

    Shuck, A.B.

    1958-04-01

    A device is described that is specifically designed to cast uraniumn fuel rods in a vacuunn, in order to obtain flawless, nonoxidized castings which subsequently require a maximum of machining or wastage of the expensive processed material. A chamber surrounded with heating elements is connected to the molds, and the entire apparatus is housed in an airtight container. A charge of uranium is placed in the chamber, heated, then is allowed to flow into the molds While being rotated. Water circulating through passages in the molds chills the casting to form a fine grained fuel rod in nearly finished form.

  11. Chaotic behaviour of Zeeman machines at introductory course of mechanics

    NASA Astrophysics Data System (ADS)

    Nagy, Péter; Tasnádi, Péter

    2016-05-01

    Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.

  12. The Power of Cooperation

    ERIC Educational Resources Information Center

    Nevin, John A.

    2010-01-01

    In "The Power of Cooperation," Tony Nevin tells how the townspeople of Martha's Vineyard, Massachusetts, are attempting to replicate a successful alternative-energy project in Samso, Denmark, where thinking about ways to reduce fossil-fuel use "became a kind of sport." Nevin says that thinking and acting locally helps people to identify and pursue…

  13. Cooperative Education. Final Report.

    ERIC Educational Resources Information Center

    Stauber, Dick T.

    In order to investigate the feasibility of adding a cooperative education option to the curricular offerings of Moraine Park Technical Institute (MPTI), interviews were conducted with randomly selected representatives of 12 industries and 17 employers in the marketing and merchandising businesses located in the MPTI service area. In addition,…

  14. Superpower cooperation often overlooked

    SciTech Connect

    Jamgotch, N. Jr.

    1986-02-01

    At the conclusion of the Geneva summit in November 1985, President Reagan and General Secretary Gorbachev signed an Agreement on Contacts and Exchanges in Scientific, Educational, and Cultural Fields. Since details of the agreements must still be worked out, it remains to be seen whether these statements signal a new era of US-Soviet cooperation. Still, the lack of media or even official attention to these broad areas of agreement repeats a pattern that has contributed to the continuing pervasive hostility and mistrust between the two nations. There are understandable reasons for the tendency to concentrate on conflict and crises rather than cooperation. While a cooperative agreement may be noted by an occasional news story, it is outshone be the more flash newsworthiness of political confrontation. The author points to the considerable successes of past US/USSR wide-ranging agreements, and notes that cooperative activities must be reported and analyzed more fully to counteract distrust and to overcome outmoded ideologies. 6 references.

  15. Cooperative Mobile Sensing Networks

    SciTech Connect

    Roberts, R S; Kent, C A; Jones, E D; Cunningham, C T; Armstrong, G W

    2003-02-10

    A cooperative control architecture is presented that allows a fleet of Unmanned Air Vehicles (UAVs) to collect data in a parallel, coordinated and optimal manner. The architecture is designed to react to a set of unpredictable events thereby allowing data collection to continue in an optimal manner.

  16. Combat or Cooperation?

    ERIC Educational Resources Information Center

    Tate, Thomas F.; Copas, Randall L.

    2010-01-01

    The best intentioned efforts of adults are often sabotaged by coercive climates of bullying among peers and conflict with adults. The solution is to create cultures where youth cooperate with authority and treat one another with respect. In this article, the authors stress the task of the staff to create a condition in which students see more…

  17. Predicting Human Cooperation.

    PubMed

    Nay, John J; Vorobeychik, Yevgeniy

    2016-01-01

    The Prisoner's Dilemma has been a subject of extensive research due to its importance in understanding the ever-present tension between individual self-interest and social benefit. A strictly dominant strategy in a Prisoner's Dilemma (defection), when played by both players, is mutually harmful. Repetition of the Prisoner's Dilemma can give rise to cooperation as an equilibrium, but defection is as well, and this ambiguity is difficult to resolve. The numerous behavioral experiments investigating the Prisoner's Dilemma highlight that players often cooperate, but the level of cooperation varies significantly with the specifics of the experimental predicament. We present the first computational model of human behavior in repeated Prisoner's Dilemma games that unifies the diversity of experimental observations in a systematic and quantitatively reliable manner. Our model relies on data we integrated from many experiments, comprising 168,386 individual decisions. The model is composed of two pieces: the first predicts the first-period action using solely the structural game parameters, while the second predicts dynamic actions using both game parameters and history of play. Our model is successful not merely at fitting the data, but in predicting behavior at multiple scales in experimental designs not used for calibration, using only information about the game structure. We demonstrate the power of our approach through a simulation analysis revealing how to best promote human cooperation. PMID:27171417

  18. Predicting Human Cooperation

    PubMed Central

    Nay, John J.; Vorobeychik, Yevgeniy

    2016-01-01

    The Prisoner’s Dilemma has been a subject of extensive research due to its importance in understanding the ever-present tension between individual self-interest and social benefit. A strictly dominant strategy in a Prisoner’s Dilemma (defection), when played by both players, is mutually harmful. Repetition of the Prisoner’s Dilemma can give rise to cooperation as an equilibrium, but defection is as well, and this ambiguity is difficult to resolve. The numerous behavioral experiments investigating the Prisoner’s Dilemma highlight that players often cooperate, but the level of cooperation varies significantly with the specifics of the experimental predicament. We present the first computational model of human behavior in repeated Prisoner’s Dilemma games that unifies the diversity of experimental observations in a systematic and quantitatively reliable manner. Our model relies on data we integrated from many experiments, comprising 168,386 individual decisions. The model is composed of two pieces: the first predicts the first-period action using solely the structural game parameters, while the second predicts dynamic actions using both game parameters and history of play. Our model is successful not merely at fitting the data, but in predicting behavior at multiple scales in experimental designs not used for calibration, using only information about the game structure. We demonstrate the power of our approach through a simulation analysis revealing how to best promote human cooperation. PMID:27171417

  19. Cooperative Learning and Teaching

    ERIC Educational Resources Information Center

    Jacobs, G. M.; Kimura, H.

    2013-01-01

    In and out of the classroom, life would be unthinkable without interacting with fellow humans. This book urges more cooperative and group activities in the English language classroom for all the advantages: students use the target language more, help each other with comprehension, receive attention from peers as well as the teacher, are motivated…

  20. International Cooperation in Engineering.

    ERIC Educational Resources Information Center

    Willenbrock, F. Karl

    1987-01-01

    Reports on a study by the National Academy of Engineering (NAE) into various relationships in engineering that the United States has with countries that have comparable or superior levels of technology. Discusses competition, cooperation, information flow, symmetry, language and cultural barriers, research opportunities, and professional…

  1. Cooper Egressing 'Faith 7'

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper is assisted in backing out of his Mecury capsule 'Faith 7' after a 600,000 mile, 22.9 orbit journey around the Earth. He elected to remain in the spacecraft until it was hoisted to the deck of the Kearsarge, as did Astronaut Walter Schirra during the previous mission.

  2. To Cooperate or Not to Cooperate: Why Behavioural Mechanisms Matter

    PubMed Central

    2016-01-01

    Mutualistic cooperation often requires multiple individuals to behave in a coordinated fashion. Hence, while the evolutionary stability of mutualistic cooperation poses no particular theoretical difficulty, its evolutionary emergence faces a chicken and egg problem: an individual cannot benefit from cooperating unless other individuals already do so. Here, we use evolutionary robotic simulations to study the consequences of this problem for the evolution of cooperation. In contrast with standard game-theoretic results, we find that the transition from solitary to cooperative strategies is very unlikely, whether interacting individuals are genetically related (cooperation evolves in 20% of all simulations) or unrelated (only 3% of all simulations). We also observe that successful cooperation between individuals requires the evolution of a specific and rather complex behaviour. This behavioural complexity creates a large fitness valley between solitary and cooperative strategies, making the evolutionary transition difficult. These results reveal the need for research on biological mechanisms which may facilitate this transition. PMID:27148874

  3. [Social cooperatives in Italy].

    PubMed

    Villotti, P; Zaniboni, S; Fraccaroli, F

    2014-06-01

    This paper describes the role of social cooperatives in Italy as a type of economic, non-profit organization and their role in contributing to the economic and social growth of the country. The purpose of this paper is to learn more about the experience of the Italian social cooperatives in promoting the work integration process of disadvantaged workers, especially those suffering from mental disorders, from a theoretical and an empirical point of view. Social enterprise is the most popular and consolidated legal and organizational model for social enterprises in Italy, introduced by Law 381/91. Developed during the early 1980s, and formally recognized by law in the early 1990s, social cooperatives aim at pursuing the general interest of the community to promote the human needs and social inclusion of citizens. They are orientated towards aims that go beyond the interest of the business owners, the primary beneficiary of their activities is the community, or groups of disadvantaged people. In Italy, Law 381/91 distinguishes between two categories of social cooperatives, those producing goods of social utility, such as culture, welfare and educational services (A-type), and those providing economic activities for the integration of disadvantaged people into employment (B-type). The main purpose of B-type social cooperatives is to integrate disadvantaged people into the open labour market. This goal is reached after a period of training and working experience inside the firm, during which the staff works to improve both the social and professional abilities of disadvantaged people. During the years, B-type social co-ops acquired a particular relevance in the care of people with mental disorders by offering them with job opportunities. Having a job is central in the recovery process of people suffering from mental diseases, meaning that B-type social co-ops in Italy play an important rehabilitative and integrative role for this vulnerable population of workers. The

  4. [Social cooperatives in Italy].

    PubMed

    Villotti, P; Zaniboni, S; Fraccaroli, F

    2014-06-01

    This paper describes the role of social cooperatives in Italy as a type of economic, non-profit organization and their role in contributing to the economic and social growth of the country. The purpose of this paper is to learn more about the experience of the Italian social cooperatives in promoting the work integration process of disadvantaged workers, especially those suffering from mental disorders, from a theoretical and an empirical point of view. Social enterprise is the most popular and consolidated legal and organizational model for social enterprises in Italy, introduced by Law 381/91. Developed during the early 1980s, and formally recognized by law in the early 1990s, social cooperatives aim at pursuing the general interest of the community to promote the human needs and social inclusion of citizens. They are orientated towards aims that go beyond the interest of the business owners, the primary beneficiary of their activities is the community, or groups of disadvantaged people. In Italy, Law 381/91 distinguishes between two categories of social cooperatives, those producing goods of social utility, such as culture, welfare and educational services (A-type), and those providing economic activities for the integration of disadvantaged people into employment (B-type). The main purpose of B-type social cooperatives is to integrate disadvantaged people into the open labour market. This goal is reached after a period of training and working experience inside the firm, during which the staff works to improve both the social and professional abilities of disadvantaged people. During the years, B-type social co-ops acquired a particular relevance in the care of people with mental disorders by offering them with job opportunities. Having a job is central in the recovery process of people suffering from mental diseases, meaning that B-type social co-ops in Italy play an important rehabilitative and integrative role for this vulnerable population of workers. The

  5. Neural basis of conditional cooperation

    PubMed Central

    Niki, Kazuhisa; Fujisaki, Syoken; Akiyama, Eizo

    2011-01-01

    Cooperation among genetically unrelated individuals is a fundamental aspect of society, but it has been a longstanding puzzle in biological and social sciences. Recently, theoretical studies in biology and economics showed that conditional cooperation—cooperating only with those who have exhibited cooperative behavior—can spread over a society. Furthermore, experimental studies in psychology demonstrated that people are actually conditional cooperators. In this study, we used functional magnetic resonance imaging to investigate the neural system underlying conditional cooperation by scanning participants during interaction with cooperative, neutral and non-cooperative opponents in prisoner's dilemma games. The results showed that: (i) participants cooperated more frequently with both cooperative and neutral opponents than with non-cooperative opponents; and (ii) a brain area related to cognitive inhibition of pre-potent responses (right dorsolateral prefrontal cortex) showed greater activation, especially when participants confronted non-cooperative opponents. Consequently, we suggest that cognitive inhibition of the motivation to cooperate with non-cooperators drives the conditional behavior. PMID:20501484

  6. Formal modeling of virtual machines

    NASA Technical Reports Server (NTRS)

    Cremers, A. B.; Hibbard, T. N.

    1978-01-01

    Systematic software design can be based on the development of a 'hierarchy of virtual machines', each representing a 'level of abstraction' of the design process. The reported investigation presents the concept of 'data space' as a formal model for virtual machines. The presented model of a data space combines the notions of data type and mathematical machine to express the close interaction between data and control structures which takes place in a virtual machine. One of the main objectives of the investigation is to show that control-independent data type implementation is only of limited usefulness as an isolated tool of program development, and that the representation of data is generally dictated by the control context of a virtual machine. As a second objective, a better understanding is to be developed of virtual machine state structures than was heretofore provided by the view of the state space as a Cartesian product.

  7. A Course of Study in Cooperation and Cooperatives.

    ERIC Educational Resources Information Center

    Bjoraker, Walter T., Ed.

    Designed for teachers with limited experience in cooperatives, this course of study was prepared by seminar students for use in high school or adult education programs, and emphasizes the principles of cooperation, the operation and management of cooperatives, and the communication required for their effective functioning. Units requiring a total…

  8. Interaction with Machine Improvisation

    NASA Astrophysics Data System (ADS)

    Assayag, Gerard; Bloch, George; Cont, Arshia; Dubnov, Shlomo

    We describe two multi-agent architectures for an improvisation oriented musician-machine interaction systems that learn in real time from human performers. The improvisation kernel is based on sequence modeling and statistical learning. We present two frameworks of interaction with this kernel. In the first, the stylistic interaction is guided by a human operator in front of an interactive computer environment. In the second framework, the stylistic interaction is delegated to machine intelligence and therefore, knowledge propagation and decision are taken care of by the computer alone. The first framework involves a hybrid architecture using two popular composition/performance environments, Max and OpenMusic, that are put to work and communicate together, each one handling the process at a different time/memory scale. The second framework shares the same representational schemes with the first but uses an Active Learning architecture based on collaborative, competitive and memory-based learning to handle stylistic interactions. Both systems are capable of processing real-time audio/video as well as MIDI. After discussing the general cognitive background of improvisation practices, the statistical modelling tools and the concurrent agent architecture are presented. Then, an Active Learning scheme is described and considered in terms of using different improvisation regimes for improvisation planning. Finally, we provide more details about the different system implementations and describe several performances with the system.

  9. Smart Test Machines

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Vern Wedeven, president of Wedeven Associates, developed the WAM4, a computer-aided "smart" test machine for simulating stress on equipment, based on his bearing lubrication expertise gained while working for Lewis Research Center. During his NASA years from the 1970s into the early 1980s, Wedeven initiated an "Interdisciplinary Collaboration in Tribology," an effort that involved NASA, six universities, and several university professors. The NASA-sponsored work provided foundation for Wedeven in 1983 to form his own company. Several versions of the smart test machine, the WAM1, WAM2, and WAM3, have proceeded the current version, WAM4. This computer-controlled device can provide detailed glimpses at gear and bearing points of contact. WAM4 can yield a three-dimensional view of machinery as an operator adds "what-if" thermal and lubrication conditions, contact stress, and surface motion. Along with NASA, a number of firms, including Pratt & Whitney, Caterpillar Tractor, Exxon, and Chevron have approached Wedeven for help on resolving lubrication problems.

  10. Large Surface Measuring Machine

    NASA Astrophysics Data System (ADS)

    Egdall, Mark; Breidenthal, Robert S.

    1983-09-01

    A new surface measuring concept developed under government contract at Itek Optical Systems has been previously reported by Allen Greenleaf. The method uses four steerable distance-measuring interferometers at the corners of a tetrahedron to determine the posi-tions of a retroreflecting target at various locations on the surface being measured. A small wooden breadboard had been built and tested, demonstrating the feasibility of the concept. This paper reports the building of a scaled-up prototype surface measuring machine to allow the measurement of large aspheric surfaces. A major advantage of the device is that, unlike conventional interferometry, it provides surface measurement in absolute coordinates, thus allowing direct determination of radius of curvature. In addition, the device is self-calibrating. Measurements of a 24-inch mirror have been made with the new machine, giving repeatability of 4 µ m peak sag in the curvature and accuracy of 0.7 μm rms in the surface figure at best focus. The device is currently being used in the production grinding of large aspheric mirrors at Itek. The device is potentially scalable to other industries where highly accurate measurement of unusual surfaces is required.

  11. Multiple man-machine interfaces

    NASA Technical Reports Server (NTRS)

    Stanton, L.; Cook, C. W.

    1981-01-01

    The multiple man machine interfaces inherent in military pilot training, their social implications, and the issue of possible negative feedback were explored. Modern technology has produced machines which can see, hear, and touch with greater accuracy and precision than human beings. Consequently, the military pilot is more a systems manager, often doing battle against a target he never sees. It is concluded that unquantifiable human activity requires motivation that is not intrinsic in a machine.

  12. Diamond Machining Applications And Capabilities

    NASA Astrophysics Data System (ADS)

    Benjamin, Roland J.

    1983-12-01

    Aspheric surface generation and precision machining have been important technologies at Hughes Optical Products, Inc. (formerly Optical Division, Bell & Howell Company) for over twenty years. Present machining capabilities and supporting services which are available on a custom basis are described. A variety of applications of diamond machining are illustrated, involving not only the usual reflective materials such as aluminum, copper, and electroless nickel but also such IR refractive materials as germanium, silicon, and chalcogenide glasses.

  13. Cooperation and cheating in microbes

    NASA Astrophysics Data System (ADS)

    Gore, Jeff

    2011-03-01

    Understanding the cooperative and competitive dynamics within and between species is a central challenge in evolutionary biology. Microbial model systems represent a unique opportunity to experimentally test fundamental theories regarding the evolution of cooperative behaviors. In this talk I will describe our experiments probing cooperation in microbes. In particular, I will compare the cooperative growth of yeast in sucrose and the cooperative inactivation of antibiotics by bacteria. In both cases we find that cheater strains---which don't contribute to the public welfare---are able to take advantage of the cooperator strains. However, this ability of cheaters to out-compete cooperators occurs only when cheaters are present at low frequency, thus leading to steady-state coexistence. These microbial experiments provide fresh insight into the evolutionary origin of cooperation.

  14. Standardized Curriculum for Machine Tool Operation/Machine Shop.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized vocational education course titles and core contents for two courses in Mississippi are provided: machine tool operation/machine shop I and II. The first course contains the following units: (1) orientation; (2) shop safety; (3) shop math; (4) measuring tools and instruments; (5) hand and bench tools; (6) blueprint reading; (7)…

  15. Machine Shop Milling Machines. Oklahoma Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Dunn, James

    This curriculum guide provides instructional materials designed to equip students with basic knowledge and skills that will enable them to enter the machine trades at the machine-operator level. The curriculum is designed for use in full-time secondary and postsecondary classes and part-time adult classes. It can also be adapted to open-entry,…

  16. Production Machine Shop Employment Competencies. Part Four: The Milling Machine.

    ERIC Educational Resources Information Center

    Bishart, Gus; Werner, Claire

    Competencies for production machine shop are provided for the fourth of four topic areas: the milling machine. Each competency appears in a one-page format. It is presented as a goal statement followed by one or more "indicator" statements, which are performance objectives describing an ability that, upon attainment, will establish competency for…

  17. An Odyssey into Cooperative Learning.

    ERIC Educational Resources Information Center

    Lemke, Thomas L.; Basile, Carole

    1997-01-01

    An experiment using cooperative learning in a introductory pharmacy course in medicinal chemistry revealed general acceptance of the cooperative learning approach by students, and some perceived advantages for both students and teachers. Although quantitative evidence supporting superiority of the cooperative learning approach was not found,…

  18. Cooperative Learning for LEP Students.

    ERIC Educational Resources Information Center

    Calderon, Margarita

    1989-01-01

    Substantial evidence suggests that students working together in small cooperative groups can master material better than students working on their own, and that cooperative learning structures higher self-esteem and learning motivation. Cooperative learning (CL) has been proposed for use with language minority children, as well as with other…

  19. Enlightening Advantages of Cooperative Learning

    ERIC Educational Resources Information Center

    Faryadi, Qais

    2007-01-01

    This appraisal discusses the notion that cooperative learning enhances learners' emotional and social performance. It also observes the perception that cooperative learning dramatically improves students' academic accomplishment. This review also examines the definition of cooperative learning and attempts to define it through the lens of renowned…

  20. Communication in Cooperative Learning Groups.

    ERIC Educational Resources Information Center

    Kalkowski, Page

    This study explores aspects of the hypothesis that communication in cooperative learning groups mediates effects of cooperative learning. The study develops a taxonomy of the cooperative communications of groups of predominantly Anglo and Hispanic elementary school students attending a public school where teachers were being trained to implement…

  1. Cooperative Learning in Elementary Schools

    ERIC Educational Resources Information Center

    Slavin, Robert E.

    2015-01-01

    Cooperative learning refers to instructional methods in which students work in small groups to help each other learn. Although cooperative learning methods are used for different age groups, they are particularly popular in elementary (primary) schools. This article discusses methods and theoretical perspectives on cooperative learning for the…

  2. Cooperative Learning: Developments in Research

    ERIC Educational Resources Information Center

    Gillies, Robyn M.

    2014-01-01

    Cooperative learning is widely recognized as a pedagogical practice that promotes socialization and learning among students from kindergarten through to college level and across different subject areas. Cooperative learning involves students working together to achieve common goals or complete group tasks. Interest in cooperative learning has…

  3. International Cooperation: A Positive Response.

    ERIC Educational Resources Information Center

    Soria, Oscar

    Conditions for developing international university cooperation are identified, along with stages of international cooperation in education. Guidelines to promote cooperation are provided. The dominant focus and new role of universities has become problem-solving and community development, as distinct from the previous institutional-building…

  4. The Potential to Machine Superconductors with Electrochemical Machining

    NASA Astrophysics Data System (ADS)

    Leese, Rebecca J.; Ivanov, Atanas; Babu-Nadendla, Hari

    2016-01-01

    Superconductors (SCs), such as gadolinium barium copper oxide, are brittle ceramics which are very difficult to machine conventionally due to the easy propagation of cracks. The cracks formed during conventional machining destroy the superconductive properties of the material. As a result a new method to machine ceramic SCs is needed. In this paper, polarization experiments were conducted in various nonaqueous salt electrolytes to determine whether electrochemical machining (ECM) is a suitable method for machining gadolinium barium copper oxide with silver inclusions (GdBCO-Ag) for the first time. Sodium chloride in formic acid proved to be the best electrolyte for this application with higher dissolution rates and achieving a better surface finish. It was noted that GdBCO-Ag dissolved at higher rates in NaCl in formic acid than in other salt-solvent systems.

  5. Cooperative transport in nanochannels.

    PubMed

    Bauer, Wolfgang R; Nadler, Walter

    2013-07-01

    Channel transport of different species of particles is viewed usually only in terms of competition and selectivity. In this paper we show that transport of one species may be promoted by the presence of another and that both may even mutually cooperate. We investigate a discretized Markovian model of nanochannel transport via in-channel sites, allowing for the simultaneous transport of several different species of particles; interaction between transported particles is included via the condition of single occupancy on a channel site. By numerically solving the model exactly, particularly an analysis of situations of crowding in the channel is possible and we observe three situations: mutual cooperation, promotion of one species at the cost of the other, and mutual competition. The physical situation has a strong nonequilibrium character as Onsager's relations on coupled flows do not hold.

  6. Cooperative photoredox catalysis.

    PubMed

    Lang, Xianjun; Zhao, Jincai; Chen, Xiaodong

    2016-05-31

    Visible-light photoredox catalysis has been experiencing a renaissance in response to topical interest in renewable energy and green chemistry. The latest progress in this area indicates that cooperation between photoredox catalysis and other domains of catalysis could provide effective results. Thus, we advance the concept of cooperative photoredox catalysis for organic transformations. It is important to note that this concept can bridge the gap between visible-light photoredox catalysis and other types of redox catalysis such as transition-metal catalysis, biocatalysis or electrocatalysis. In doing so, one can take advantage of the best of both worlds in establishing organic synthesis with visible-light-induced redox reaction as a crucial step. PMID:27094803

  7. Squaring cooperative binding circles

    PubMed Central

    Deutman, Alexander B. C.; Monnereau, Cyrille; Moalin, Mohamed; Coumans, Ruud G. E.; Veling, Nico; Coenen, Michiel; Smits, Jan M. M.; de Gelder, René; Elemans, Johannes A. A. W.; Ercolani, Gianfranco; Nolte, Roeland J. M.; Rowan, Alan E.

    2009-01-01

    The cooperative binding effects of viologens and pyridines to a synthetic bivalent porphyrin receptor are used as a model system to study how the magnitudes of these effects relate to the experimentally obtained values. The full thermodynamic and kinetic circles concerning both activation and inhibition of the cage of the receptor for the binding of viologens were measured and evaluated. The results strongly emphasize the apparent character of measured binding and rate constants, in which the fractional saturation of receptors with other guests is linearly expressed in these constants. The presented method can be used as a simple tool to better analyze and comprehend the experimentally observed kinetics and thermodynamics of natural and artificial cooperative systems. PMID:19470643

  8. Extremal quantum cloning machines

    SciTech Connect

    Chiribella, G.; D'Ariano, G. M.; Perinotti, P.; Cerf, N.J.

    2005-10-15

    We investigate the problem of cloning a set of states that is invariant under the action of an irreducible group representation. We then characterize the cloners that are extremal in the convex set of group covariant cloning machines, among which one can restrict the search for optimal cloners. For a set of states that is invariant under the discrete Weyl-Heisenberg group, we show that all extremal cloners can be unitarily realized using the so-called double-Bell states, whence providing a general proof of the popular ansatz used in the literature for finding optimal cloners in a variety of settings. Our result can also be generalized to continuous-variable optimal cloning in infinite dimensions, where the covariance group is the customary Weyl-Heisenberg group of displacement000.

  9. Electropulse chemical machining

    SciTech Connect

    Allen, T.A.; Rospopo, S.D.

    1984-08-01

    Electropulse Chemical Machining is a new technique in chemical milling, and we have applied it to the photoforming of molybdenum. We apply direct current in short pulses at current densities of thousands of amperes per square foot with little thermal degradation of resists or workpieces. We have achieved etch rates an order of magnitude faster than those of existing methods, with a corresponding improvement in surface finish. Equipment designed for pulse plating can be used and is readily available from plating suppliers. Chemicals are commercially available and may be diluted to levels that protect resist images, reduce hazards to personnel, and simplify disposal. We speculate that this process can be applied to other refractory metals and noble metals.

  10. Cooperation in space

    NASA Technical Reports Server (NTRS)

    Guastaferro, A.

    1992-01-01

    The topics from the Technical Interchange Meeting for the NASA Space Exploration Initiative are presented in viewgraph form. The objective is to share a perspective of a cost-effective cooperation management structure of NASA and industry as we move towards the 21st century and the national commitment to continue our exploration in space with humans. Some of the topics covered include a personal background, today's culture, new approaches, congressional oversight, programmatic impact, and recommendations.

  11. Automated Cooperative Trajectories

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Pahle, Joseph; Brown, Nelson

    2015-01-01

    This presentation is an overview of the Automated Cooperative Trajectories project. An introduction to the phenomena of wake vortices is given, along with a summary of past research into the possibility of extracting energy from the wake by flying close parallel trajectories. Challenges and barriers to adoption of civilian automatic wake surfing technology are identified. A hardware-in-the-loop simulation is described that will support future research. Finally, a roadmap for future research and technology transition is proposed.

  12. Cooperativity in Tetrel Bonds.

    PubMed

    Marín-Luna, Marta; Alkorta, Ibon; Elguero, José

    2016-02-01

    A theoretical study of the cooperativity in linear chains of (H3SiCN)n and (H3SiNC)n complexes connected by tetrel bonds has been carried out by means of MP2 and CCSD(T) computational methods. In all cases, a favorable cooperativity is observed, especially in some of the largest linear chains of (H3SiNC)n, where the effect is so large that the SiH3 group is almost equidistant to the two surrounding CN groups and it becomes planar. In addition, the combination of tetrel bonds with other weak interactions (halogen, chalcogen, pnicogen, triel, beryllium, lithium, and hydrogen bond) has been explored using ternary complexes, (H3SiCN)2:XY and (H3SiNC)2:XY. In all cases, positive cooperativity is obtained, especially in the (H3SiNC)2:ClF and (H3SiNC)2:SHF ternary complexes, where, respectively, halogen and chalcogen shared complexes are formed. PMID:26756083

  13. Hydrodynamics of Bacterial Cooperation

    NASA Astrophysics Data System (ADS)

    Petroff, A.; Libchaber, A.

    2012-12-01

    Over the course of the last several decades, the study of microbial communities has identified countless examples of cooperation between microorganisms. Generally—as in the case of quorum sensing—cooperation is coordinated by a chemical signal that diffuses through the community. Less well understood is a second class of cooperation that is mediated through physical interactions between individuals. To better understand how the bacteria use hydrodynamics to manipulate their environment and coordinate their actions, we study the sulfur-oxidizing bacterium Thiovulum majus. These bacteria live in the diffusive boundary layer just above the muddy bottoms of ponds. As buried organic material decays, sulfide diffuses out of the mud. Oxygen from the pond diffuses into the boundary layer from above. These bacteria form communities—called veils— which are able to transport nutrients through the boundary layer faster than diffusion, thereby increasing their metabolic rate. In these communities, bacteria attach to surfaces and swim in place. As millions of bacteria beat their flagella, the community induces a macroscopic fluid flow, which mix the boundary layer. Here we present experimental observations and mathematical models that elucidate the hydrodynamics linking the behavior of an individual bacterium to the collective dynamics of the community. We begin by characterizing the flow of water around an individual bacterium swimming in place. We then discuss the flow of water and nutrients around a small number of individuals. Finally, we present observations and models detailing the macroscopic dynamics of a Thiovulum veil.

  14. Machining of uranium and uranium alloys

    SciTech Connect

    Morris, T.O.

    1981-12-14

    Uranium and uranium alloys can be readily machined by conventional methods in the standard machine shop when proper safety and operating techniques are used. Material properties that affect machining processes and recommended machining parameters are discussed. Safety procedures and precautions necessary in machining uranium and uranium alloys are also covered. 30 figures.

  15. The Machine Scoring of Writing

    ERIC Educational Resources Information Center

    McCurry, Doug

    2010-01-01

    This article provides an introduction to the kind of computer software that is used to score student writing in some high stakes testing programs, and that is being promoted as a teaching and learning tool to schools. It sketches the state of play with machines for the scoring of writing, and describes how these machines work and what they do.…

  16. Cleaning of Free Machining Brass

    SciTech Connect

    Shen, T

    2005-12-29

    We have investigated four brightening treatments proposed by two cleaning vendors for cleaning free machining brass. The experimental results showed that none of the proposed brightening treatments passed the swipe test. Thus, we maintain the recommendation of not using the brightening process in the cleaning of free machining brass for NIF application.

  17. Self-Adjusting Teaching Machines.

    ERIC Educational Resources Information Center

    Dovgyallo, A. M.

    A study was made on the synthesis of teaching machine elements to ensure the stabilization of the chi indicator of the teaching process of each student. At first, a procedure was developed for calculating the chi indicator for the case when the teaching machine predicts the magnitude of this indicator based on probabilities derived from an…

  18. Contraction-Only Exercise Machine

    NASA Technical Reports Server (NTRS)

    Doerr, Donald F.; Maples, Arthur B.; Campbell, Craig M.

    1992-01-01

    Standard knee-extension machine modified so subject experiences force only when lifting leg against stack of weights. Exerts little force on leg while being lowered. Hydraulic cylinder and reservoir mounted on frame of exercise machine. Fluid flows freely from cylinder to reservoir during contraction (lifting) but in constricted fashion from reservoir to cylinder during extension (lowering).

  19. The Machine Intelligence Hex Project

    ERIC Educational Resources Information Center

    Chalup, Stephan K.; Mellor, Drew; Rosamond, Fran

    2005-01-01

    Hex is a challenging strategy board game for two players. To enhance students' progress in acquiring understanding and practical experience with complex machine intelligence and programming concepts we developed the Machine Intelligence Hex (MIHex) project. The associated undergraduate student assignment is about designing and implementing Hex…

  20. Machine Trades Lab Management Guide.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Instructional Materials Lab.

    This manual was developed to guide machine trades instructors and vocational supervisors in sequencing laboratory instruction and controlling the flow of work for a 2-year machine trades training program. The first part of the guide provides information on program management (program description, safety concerns, academic issues, implementation…