Science.gov

Sample records for machine cooperative telerobotics

  1. HUMAN MACHINE COOPERATIVE TELEROBOTICS

    SciTech Connect

    William R. Hamel; Spivey Douglass; Sewoong Kim; Pamela Murray; Yang Shou; Sriram Sridharan; Ge Zhang; Scott Thayer; Rajiv V. Dubey

    2003-06-30

    described as Human Machine Cooperative Telerobotics (HMCTR). The HMCTR combines the telerobot with robotic control techniques to improve the system efficiency and reliability in teleoperation mode. In this topical report, the control strategy, configuration and experimental results of Human Machines Cooperative Telerobotics (HMCTR), which modifies and limits the commands of human operator to follow the predefined constraints in the teleoperation mode, is described. The current implementation is a laboratory-scale system that will be incorporated into an engineering-scale system at the Oak Ridge National Laboratory in the future.

  2. Human-machine cooperative telerobotics

    SciTech Connect

    Dubey, R.V.; Everett, S.E.

    1997-12-01

    Due to the increasing number of work sites that are hazardous or merely inaccessible, remote manipulation has become more and more important. Nuclear, underwater, and space applications, exemplify a few of the dangerous environments in which work may be desired, while micromanipulation, which has become of more interest lately, is an example of an inherently inaccessible environment. The past 50 yr have seen great advances in remote manipulation technology, from the pioneering work of Ray Goertz in the 1950s to the ongoing development at Oak Ridge National Laboratory (ORNL) of the modular light-duty utility arm (MLDUA), which is a long-reach manipulator for use in the cleanup of the waste storage tanks. Mainly, research has either focused on the improvement of manually operated remote manipulators or teleoperators, in which a human is an integral part of the control loop, or autonomous robots, which have the required decision-making capability and sensors. However, in the past few years, it has become increasingly evident that there are limitations in each of these modalities, which make them individually unsuited for certain tasks. While a human operator may be required to make high-level decisions, fatigue and tedium can result from repetitive tasks. On the other hand, computers can provide fast and efficient operation but are limited by their currently inadequate decision-making abilities as well as inaccuracies in the utilized sensors. An ideal teleoperator would be one in which the human is involved in the operation only to the extent that high-level decisions must be made and corrections must be made to account for inaccuracies in the sensors. Responsibilities such as gross alignment and repetitive motions would be delegated to computer control.

  3. Cooperative Telerobotic Retrieval system Phase 1 technology evaluation report

    SciTech Connect

    Hyde, R.A.; Croft, K.M.

    1995-03-01

    This document describes the results from the Cooperative Telerobotic Retrieval demonstration and testing conducted at the Idaho National Engineering Laboratory during December 1994 and January 1995. The purpose of the demonstration was to ascertain the feasibility of the system for deploying tools both independently and cooperatively for supporting remote characterization and removal of buried waste in a safe manner and in compliance with all regulatory requirements. The procedures and goals of the demonstration were previously defined in the Cooperative Telerobotic Retrieval System Test Plan for Fiscal Year 1994, which served as a guideline for evaluating the system.

  4. Hierarchical control of intelligent machines applied to space station telerobots

    NASA Technical Reports Server (NTRS)

    Albus, J. S.; Lumia, R.; Mccain, H.

    1987-01-01

    A hierarchical architecture is described which supports space station telerobots in a variety of modes. The system is divided into three hierarchies: task decomposition, world model, and sensory processing. Goals at each level of the task decomposition hierarchy are divided both spatially and temporally into simpler commands for the next lower level. This decomposition is repeated until, at the lowest level, the drive signals to the robot actuators are generated. To accomplish its goals, task decomposition modules must often use information stored in the world model. The purpose of the sensory system is to update the world model as rapidly as possible to keep the model in registration with the physical world. The architecture of the entire control system hierarchy and how it can be applied to space telerobot applications are discussed.

  5. Man-machine interface issues in space telerobotics: A JPL research and development program

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1987-01-01

    Technology issues related to the use of robots as man-extension or telerobot systems in space are discussed and exemplified. General considerations are presentd on control and information problems in space teleoperation and on the characteristics of Earth orbital teleoperation. The JPL R and D work in the area of man-machine interface devices and techniques for sensing and computer-based control is briefly summarized. The thrust of this R and D effort is to render space teleoperation efficient and safe through the use of devices and techniques which will permit integrated and task-level (intelligent) two-way control communication between human operator and telerobot machine in Earth orbit. Specific control and information display devices and techniques are discussed and exemplified with development results obtained at JPL in recent years.

  6. Operator-coached machine vision for space telerobotics

    NASA Technical Reports Server (NTRS)

    Bon, Bruce; Wilcox, Brian; Litwin, Todd; Gennery, Donald B.

    1991-01-01

    A prototype system for interactive object modeling has been developed and tested. The goal of this effort has been to create a system which would demonstrate the feasibility of high interactive operator-coached machine vision in a realistic task environment, and to provide a testbed for experimentation with various modes of operator interaction. The purpose for such a system is to use human perception where machine vision is difficult, i.e., to segment the scene into objects and to designate their features, and to use machine vision to overcome limitations of human perception, i.e., for accurate measurement of object geometry. The system captures and displays video images from a number of cameras, allows the operator to designate a polyhedral object one edge at a time by moving a 3-D cursor within these images, performs a least-squares fit of the designated edges to edge data detected with a modified Sobel operator, and combines the edges thus detected to form a wire-frame object model that matches the Sobel data.

  7. Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery.

    PubMed

    Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell

    2011-06-01

    This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information.

  8. State of the art in nuclear telerobotics: Focus on the man/machine connection

    SciTech Connect

    Greaves, E.R.

    1994-12-31

    The interface between the human controller and remote operated device is a crux of telerobotic investigation today. This human-to-machine connection is the means by which we communicate our commands to the device, as well as the medium for decision-critical feedback to the operator. The amount of information transferred through the user interface is growing. This can be seen as a direct result of our need to support added complexities, as well as a rapidly expanding domain of applications. A user interface (UI) is therefore subject to increasing demands to present information in a meaningful manner to the user. Virtual reality and multi-degree-of-freedom input devices lend us the ability to augment the man/machine interface and handle burgeoning amounts of data in a more intuitive and anthropomorphically correct manner. Along with the aid of three-dimensional input and output devices, there are several visual tools that can be employed as part of a graphical UI that enhance and accelerate our comprehension of the data being presented. Thus, an advanced UI that features these improvements would reduce the amount of fatigue on the teleoperator, increase his level of safety, facilitate learning, augment his control, and potentially reduce task time. This paper investigates the cutting edge concepts and enhancements that will lead to the next generation of telerobotic interface systems.

  9. Safety plan for the cooperative telerobotic retrieval system equipment development area

    SciTech Connect

    Haney, T.J.; Jessmore, J.J.

    1995-07-01

    This plan establishes guidelines to minimize safety risks for the cooperative telerobotic retrieval project at the North Boulevard Annex (NBA). This plan has the dual purpose of minimizing safety risks to workers and visitors and of securing sensitive equipment from inadvertent damage by nonqualified personnel. This goal will be accomplished through physical control of work zones and through assigned responsibilities for project personnel. The scope of this plan is limited to establishing the working zone boundaries and entry requirements, and assigning responsibilities for project personnel. This plan does not supersede current safety organization responsibilities for the Landfill Stabilization Focus Area Transuranic (LSFA TRU) Arid outlined in the Environment, Safety, Health, and Quality Plan for the Buried Waste Integrated Demonstration Program; Tenant Manual; Idaho Falls Building Emergency Control Plan;; applicable Company Procedures; the attached Interface Agreement (Appendix A).

  10. Trajectory generation of space telerobots

    NASA Technical Reports Server (NTRS)

    Lumia, R.; Wavering, A. J.

    1989-01-01

    The purpose is to review a variety of trajectory generation techniques which may be applied to space telerobots and to identify problems which need to be addressed in future telerobot motion control systems. As a starting point for the development of motion generation systems for space telerobots, the operation and limitations of traditional path-oriented trajectory generation approaches are discussed. This discussion leads to a description of more advanced techniques which have been demonstrated in research laboratories, and their potential applicability to space telerobots. Examples of this work include systems that incorporate sensory-interactive motion capability and optimal motion planning. Additional considerations which need to be addressed for motion control of a space telerobot are described, such as redundancy resolution and the description and generation of constrained and multi-armed cooperative motions. A task decomposition module for a hierarchical telerobot control system which will serve as a testbed for trajectory generation approaches which address these issues is also discussed briefly.

  11. Man-machine cooperation in advanced teleoperation

    NASA Technical Reports Server (NTRS)

    Fiorini, Paolo; Das, Hari; Lee, Sukhan

    1993-01-01

    Teleoperation experiments at JPL have shown that advanced features in a telerobotic system are a necessary condition for good results, but that they are not sufficient to assure consistently good performance by the operators. Two or three operators are normally used during training and experiments to maintain the desired performance. An alternative to this multi-operator control station is a man-machine interface embedding computer programs that can perform some of the operator's functions. In this paper we present our first experiments with these concepts, in which we focused on the areas of real-time task monitoring and interactive path planning. In the first case, when performing a known task, the operator has an automatic aid for setting control parameters and camera views. In the second case, an interactive path planner will rank different path alternatives so that the operator will make the correct control decision. The monitoring function has been implemented with a neural network doing the real-time task segmentation. The interactive path planner was implemented for redundant manipulators to specify arm configurations across the desired path and satisfy geometric, task, and performance constraints.

  12. Plan recognition for space telerobotics

    NASA Technical Reports Server (NTRS)

    Goodman, Bradley A.; Litman, Diane J.

    1989-01-01

    Current research on space telerobots has largely focused on two problem areas: executing remotely controlled actions (the tele part of telerobotics) or planning to execute them (the robot part). This work has largely ignored one of the key aspects of telerobots: the interaction between the machine and its operator. For this interaction to be felicitous, the machine must successfully understand what the operator is trying to accomplish with particular remote-controlled actions. Only with the understanding of the operator's purpose for performing these actions can the robot intelligently assist the operator, perhaps by warning of possible errors or taking over part of the task. There is a need for such an understanding in the telerobotics domain and an intelligent interface being developed in the chemical process design domain addresses the same issues.

  13. Cooperative EVA/Telerobotic Surface Operations in Support of Exploration Science

    NASA Astrophysics Data System (ADS)

    Akin, David L.

    2001-01-01

    The contents include: 1) Planetary Surface Robotics; 2) EVA Difficulties from Apollo; 3) Robotic Capabilities for EVA Support; 4) Astronaut Support Vehicle; 5) Three ASV Preliminary Designs; 6) Small Single-arm Assistant; 7) Dual-arm Assistant; 8) Large EVA Assistant; 9) Lessons Learned-Preliminary Designs; 10) Rover Design Assumptions; 11) Design Requirements-Terrain; 12) Design Requirements; 13) Science Payload; 14) Manipulator Arm; 15) EVA Multiple Robot Cooperation; 16) SSL Rover Body Concept; 17) Advanced EVA Support Rover Concept; 18) Robotic Access to Restricted Sites; 19) Robotic Rescue of EVA crew; and 19) Why Do We Need Humans? This paper is presented in viewgraph form.

  14. Scaling up: Distributed machine learning with cooperation

    SciTech Connect

    Provost, F.J.; Hennessy, D.N.

    1996-12-31

    Machine-learning methods are becoming increasingly popular for automated data analysis. However, standard methods do not scale up to massive scientific and business data sets without expensive hardware. This paper investigates a practical alternative for scaling up: the use of distributed processing to take advantage of the often dormant PCs and workstations available on local networks. Each workstation runs a common rule-learning program on a subset of the data. We first show that for commonly used rule-evaluation criteria, a simple form of cooperation can guarantee that a rule will look good to the set of cooperating learners if and only if it would look good to a single learner operating with the entire data set. We then show how such a system can further capitalize on different perspectives by sharing learned knowledge for significant reduction in search effort. We demonstrate the power of the method by learning from a massive data set taken from the domain of cellular fraud detection. Finally, we provide an overview of other methods for scaling up machine learning.

  15. Flight telerobotic servicer legacy

    NASA Astrophysics Data System (ADS)

    Shattuck, Paul L.; Lowrie, James W.

    1992-11-01

    The Flight Telerobotic Servicer (FTS) was developed to enhance and provide a safe alternative to human presence in space. The first step for this system was a precursor development test flight (DTF-1) on the Space Shuttle. DTF-1 was to be a pathfinder for manned flight safety of robotic systems. The broad objectives of this mission were three-fold: flight validation of telerobotic manipulator (design, control algorithms, man/machine interfaces, safety); demonstration of dexterous manipulator capabilities on specific building block tasks; and correlation of manipulator performance in space with ground predictions. The DTF-1 system is comprised of a payload bay element (7-DOF manipulator with controllers, end-of-arm gripper and camera, telerobot body with head cameras and electronics module, task panel, and MPESS truss) and an aft flight deck element (force-reflecting hand controller, crew restraint, command and display panel and monitors). The approach used to develop the DTF-1 hardware, software and operations involved flight qualification of components from commercial, military, space, and R controller, end-of-arm tooling, force/torque transducer) and the development of the telerobotic system for space applications. The system is capable of teleoperation and autonomous control (advances state of the art); reliable (two-fault tolerance); and safe (man-rated). Benefits from the development flight included space validation of critical telerobotic technologies and resolution of significant safety issues relating to telerobotic operations in the Shuttle bay or in the vicinity of other space assets. This paper discusses the lessons learned and technology evolution that stemmed from developing and integrating a dexterous robot into a manned system, the Space Shuttle. Particular emphasis is placed on the safety and reliability requirements for a man-rated system as these are the critical factors which drive the overall system architecture. Other topics focused on include

  16. Telepresence and telerobotics

    NASA Technical Reports Server (NTRS)

    Garin, John; Matteo, Joseph; Jennings, Von Ayre

    1988-01-01

    The capability for a single operator to simultaneously control complex remote multi degree of freedom robotic arms and associated dextrous end effectors is being developed. An optimal solution within the realm of current technology, can be achieved by recognizing that: (1) machines/computer systems are more effective than humans when the task is routine and specified, and (2) humans process complex data sets and deal with the unpredictable better than machines. These observations lead naturally to a philosophy in which the human's role becomes a higher level function associated with planning, teaching, initiating, monitoring, and intervening when the machine gets into trouble, while the machine performs the codifiable tasks with deliberate efficiency. This concept forms the basis for the integration of man and telerobotics, i.e., robotics with the operator in the control loop. The concept of integration of the human in the loop and maximizing the feed-forward and feed-back data flow is referred to as telepresence.

  17. Participatory telerobotics

    NASA Astrophysics Data System (ADS)

    Wissner-Gross, Alexander D.; Sullivan, Timothy M.

    2013-05-01

    We present a novel "participatory telerobotics" system that generalizes the existing concept of participatory sensing to include real-time teleoperation and telepresence by treating humans with mobile devices as ad-hoc telerobots. In our approach, operators or analysts first choose a desired location for remote surveillance or activity from a live geographic map and are then automatically connected via a coordination server to the nearest available trusted human. That human's device is then activated and begins recording and streaming back to the operator a live audiovisual feed for telepresence, while allowing the operator in turn to request complex teleoperative motions or actions from the human. Supported action requests currently include walking, running, leaning, and turning, all with controllable magnitudes and directions. Compliance with requests is automatically measured and scored in real time by fusing information received from the device's onboard sensors, including its accelerometers, gyroscope, magnetometer, GPS receiver, and cameras. Streams of action requests are visually presented by each device to its human in the form of an augmented reality game that rewards prompt physical compliance while remaining tolerant of network latency. Because of its ability to interactively elicit physical knowledge and operations through ad-hoc collaboration, we anticipate that our participatory telerobotics system will have immediate applications in the intelligence, retail, healthcare, security, and travel industries.

  18. Telerobotics for depot modernization

    NASA Technical Reports Server (NTRS)

    Leahy, M. B., Jr.; Petroski, S. B.

    1994-01-01

    Development and application of telerobotics technology for the enhancement of the quality of the Air Logistic Centers (ALC) repair and remanufacturing processes is described. Telerobotics provides the means for bridging the gap between manual operation and full automation. The Robotics and Automation Center for Excellence (RACE) initiated the Unified Telerobotics Architecture Project (UTAP) to support the development and application of telerobotics for depot operation.

  19. Proceedings of the NASA Conference on Space Telerobotics, volume 1

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty.

  20. The JPL telerobot operator control station: Operational experiences

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.

    1990-01-01

    The Operator Control Station of the JPL/NASA Telerobot Demonstration System provides an efficient man-machine interface for the performance of telerobot tasks. Its hardware and software have been designed with high flexibility. It provides a feedback-rich interactive environment in which the Operator performs teleoperation tasks, robotic tasks, and telerobotic tasks with ease. The to-date operational experiences of this system, particularly related to the Object Designate Process and the Voice Input/Output Process are discussed.

  1. Flight telerobotic servicer

    NASA Technical Reports Server (NTRS)

    Haley, Dennis

    1990-01-01

    Viewgraphs on the Space Station Flight Telerobotic Servicer (SSFTS) are presented. Topics covered include: SSFTS design; SSFTS elements; FTS mission requirements; FTS general requirements; flight telerobotic servicer - telerobot; FTS manipulator; force-torque transducer; end effector changeout mechanism; flight telerobotic servicer - end-of-arm tooling; user interfaces; FTS data management and processing; control subsystem; FTS vision subsystem and camera positioning assembly; FTS workstation display assembly panel; mini-master hand controller; and FTS NASREM system architecture.

  2. Proceedings of the NASA Conference on Space Telerobotics, volume 5

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotics technology to the space systems planned for the 1990's and beyond. Volume 5 contains papers related to the following subject areas: robot arm modeling and control, special topics in telerobotics, telerobotic space operations, manipulator control, flight experiment concepts, manipulator coordination, issues in artificial intelligence systems, and research activities at the Johnson Space Center.

  3. Cooperative human-machine fault diagnosis

    NASA Technical Reports Server (NTRS)

    Remington, Roger; Palmer, Everett

    1987-01-01

    Current expert system technology does not permit complete automatic fault diagnosis; significant levels of human intervention are still required. This requirement dictates a need for a division of labor that recognizes the strengths and weaknesses of both human and machine diagnostic skills. Relevant findings from the literature on human cognition are combined with the results of reviews of aircrew performance with highly automated systems to suggest how the interface of a fault diagnostic expert system can be designed to assist human operators in verifying machine diagnoses and guiding interactive fault diagnosis. It is argued that the needs of the human operator should play an important role in the design of the knowledge base.

  4. Cooperative Human-Machine Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Remington, Roger; Palmer, Everett

    1987-02-01

    Current expert system technology does not permit complete automatic fault diagnosis; significant levels of human intervention are still required. This requirement dictates a need for a division of labor that recognizes the strengths and weaknesses of both human and machine diagnostic skills. Relevant findings from the literature on human cognition are combined with the results of reviews of aircrew performance with highly automated systems to suggest how the interface of a fault diagnostic expert system can be designed to assist human operators in verifying machine diagnoses and guiding interactive fault diagnosis. It is argued that the needs of the human operator should play an important role in the design of the knowledge base.

  5. Designing dynamic distributed cooperative Human-Machine Systems.

    PubMed

    Lüdtke, A; Javaux, D; Tango, F; Heers, R; Bengler, K; Ronfle-Nadaud, C

    2012-01-01

    The paper presents a new approach to the development of cooperative human-machine systems in the Transportation domain which is currently researched in the European project D3CoS. A necessary precondition for the acceptance of cooperative human-machine systems with shared control is the confidence and trust of the user into the system. D3CoS tackles this important issue by addressing the cooperative system as the object and the target of the system development process. This new perspective, along with corresponding innovative methods, techniques and tools, shall allow the identification of optimal task and authority sharing approaches supported by intuitive human-machine interaction and user interfaces at an early stage of system development. This will support powerful teamwork between humans and machines or between machines and machines that is transparent, intuitive and easy to understand. The paper describes the research dimensions for the development of the methods, techniques and tools as well as first results.

  6. A vision-based telerobotic control station

    NASA Technical Reports Server (NTRS)

    Tillotson, Brian

    1990-01-01

    A telerobotic control station is described. In it, a machine vision system measures the position, orientation, and configuration of a user's hand. A robotic manipulator mirrors the status of the hand. This concept has two benefits: control actions are intuitive and easily learned, and the workstation requires little volume or mass.

  7. NASA research and development for space telerobotics

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S.

    1988-01-01

    The goal of this research is to explore and prove out robust concepts for telerobotic support of space servicing, assembly, maintenance, and telescience tasks. This goal is being addressed through a program of coordinated work in artificial intelligence, robotics, and human factors. The general research objective is the fusion of robot sensing and manipulation, teleoperation, and human and machine cognitive skills into an effective architecture for supervised task automation. NASA is evaluating results of this research program in a ground laboratory telerobot testbed under development at JPL. The testbed development activity includes integrated technology demonstrations. The demonstrations will show telerobot capabilities to perform tasks of increasing complexity, and duration in increasingly unstructured environments. The first such demonstration is the ground-based grappling, dockling, and servicing of a satellite taskboard.

  8. Telerobotic workstation design aid

    NASA Technical Reports Server (NTRS)

    Corker, K.; Hudlicka, E.; Young, D.; Cramer, N.

    1989-01-01

    Telerobot systems are being developed to support a number of space mission applications. In low earth orbit, telerobots and teleoperated manipulators will be used in shuttle operations and space station construction/maintenance. Free flying telerobotic service vehicles will be used at low and geosynchronous orbital operations. Rovers and autonomous vehicles will be equipped with telerobotic devices in planetary exploration. In all of these systems, human operators will interact with the robot system at varied levels during the scheduled operations. The human operators may be in either orbital or ground-based control systems. To assure integrated system development and maximum utility across these systems, designers must be sensitive to the constraints and capabilities that the human brings to system operation and must be assisted in applying these human factors to system development. The simulation and analysis system is intended to serve the needs of system analysis/designers as an integrated workstation in support of telerobotic design.

  9. Proceedings of the NASA Conference on Space Telerobotics, volume 3

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research.

  10. Cooperation and emergence: the missing elements of the Darwin machine.

    PubMed

    Grotuss, Jason

    2014-08-01

    The authors present a compelling argument for a science of intentional change by unifying evolutionary psychology (EP) with the standard social science model; however, since its inception, traditional EP models have not held up well to empirical scrutiny. The authors address the importance of cooperation in individuals and social systems, but the Darwin machine they propose does not adequately stress fundamental aspects of evolutionary processes.

  11. Test Bed For Telerobots

    NASA Technical Reports Server (NTRS)

    Matijevic, Jacob R.; Zimmerman, Wayne F.; Dolinsky, Shlomo

    1990-01-01

    Assembly of electromechanical and electronic equipment (including computers) constitutes test bed for development of advanced robotic systems for remote manipulation. Combines features not found in commercial systems. Its architecture allows easy growth in complexity and level of automation. System national resource for validation of new telerobotic technology. Intended primarily for robots used in outer space, test bed adapted to development of advanced terrestrial telerobotic systems for handling radioactive materials, dangerous chemicals, and explosives.

  12. Proceedings of the NASA Conference on Space Telerobotics, volume 2

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research.

  13. Proceedings of the Workshop on Space Telerobotics, volume 1

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. (Editor)

    1987-01-01

    These proceedings report the results of a workshop on space telerobotics, which was held at the Jet Propulsion Laboratory, January 20-22, 1987. Sponsored by the NASA Office of Aeronautics and Space Technology (OAST), the Workshop reflected NASA's interest in developing new telerobotics technology for automating the space systems planned for the 1990s and beyond. The workshop provided a window into NASA telerobotics research, allowing leading researchers in telerobotics to exchange ideas on manipulation, control, system architectures, artificial intelligence, and machine sensing. One of the objectives was to identify important unsolved problems of current interest. The workshop consisted of surveys, tutorials, and contributed papers of both theoretical and practical interest. Several sessions were held on the themes of sensing and perception, control execution, operator interface, planning and reasoning, and system architecture.

  14. Diverse applications of advanced man-telerobot interfaces

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas A.

    1991-01-01

    Advancements in man-machine interfaces and control technologies used in space telerobotics and teleoperators have potential application wherever human operators need to manipulate multi-dimensional spatial relationships. Bilateral six degree-of-freedom position and force cues exchanged between the user and a complex system can broaden and improve the effectiveness of several diverse man-machine interfaces.

  15. Telerobotics test bed for space structure assembly

    NASA Technical Reports Server (NTRS)

    Kitami, M.; Ogimoto, K.; Yasumoto, F.; Katsuragawa, T.; Itoko, T.; Kurosaki, Y.; Hirai, S.; Machida, K.

    1994-01-01

    A cooperative research on super long distance space telerobotics is now in progress both in Japan and USA. In this program. several key features will be tested, which can be applicable to the control of space robots as well as to terrestrial robots. Local (control) and remote (work) sites will be shared between Electrotechnical Lab (ETL) of MITI in Japan and Jet Propulsion Lab (JPL) in USA. The details of a test bed for this international program are discussed in this report.

  16. MIT research in telerobotics

    NASA Technical Reports Server (NTRS)

    Sheridan, T. B.

    1987-01-01

    Ongoing MIT research in telerobotics (vehicles capable of some autonomous sensing and manipulating, having some remote supervisory control by people) and teleoperation (vehicles for sensing and manipulating which are fully controlled remotely by people) is discussed. The current efforts mix human and artificial intelligence/control. The idea of adjustable impedance at either end of pure master-slave teleoperation, and simultaneous coordinated control of teleoperator/telerobotic systems which have more than six degrees of freedom (e.g., a combined vehicle and arm, each with five or six DOF) are discussed. A new cable-controlled parallel link arm which offers many advantages over conventional arms for space is briefly described. Predictor displays to compensate for time delay in teleoperator loops, the use of state estimation to help human control decisions in space, and ongoing research in supervisory command language are covered. Finally, efforts to build a human flyable real-time dynamic computer-graphic telerobot simulator are described. These projects represent most, but not all, of the telerobotics research in our laboratory, supported by JPL, NASA Ames and NOAA.

  17. Telerobotic research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Sliwa, Nancy E.

    1987-01-01

    An overview of Automation Technology Branch facilities and research is presented. Manipulator research includes dual-arm coordination studies, space manipulator dynamics, end-effector controller development, automatic space structure assembly, and the development of a dual-arm master-slave telerobotic manipulator system. Sensor research includes gravity-compensated force control, real-time monovision techniques, and laser ranging. Artificial intelligence techniques are being explored for supervisory task control, collision avoidance, and connectionist system architectures. A high-fidelity dynamic simulation of robotic systems, ROBSIM, is being supported and extended. Cooperative efforts with Oak Ridge National Laboratory have verified the ability of teleoperators to perform complex structural assembly tasks, and have resulted in the definition of a new dual-arm master-slave telerobotic manipulator. A bibliography of research results and a list of technical contacts are included.

  18. Telerobot operator control station requirements

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.

    1988-01-01

    The operator control station of a telerobot system has unique functional and human factors requirements. It has to satisfy the needs of a truly interactive and user-friendly complex system, a telerobot system being a hybrid between a teleoperated and an autonomous system. These functional, hardware and software requirements are discussed, with explicit reference to the design objectives and constraints of the JPL/NASA Telerobot Demonstrator System.

  19. Telerobot control system

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor); Tso, Kam S. (Inventor)

    1993-01-01

    This invention relates to an operator interface for controlling a telerobot to perform tasks in a poorly modeled environment and/or within unplanned scenarios. The telerobot control system includes a remote robot manipulator linked to an operator interface. The operator interface includes a setup terminal, simulation terminal, and execution terminal for the control of the graphics simulator and local robot actuator as well as the remote robot actuator. These terminals may be combined in a single terminal. Complex tasks are developed from sequential combinations of parameterized task primitives and recorded teleoperations, and are tested by execution on a graphics simulator and/or local robot actuator, together with adjustable time delays. The novel features of this invention include the shared and supervisory control of the remote robot manipulator via operator interface by pretested complex tasks sequences based on sequences of parameterized task primitives combined with further teleoperation and run-time binding of parameters based on task context.

  20. Telerobotic truss assembly

    NASA Technical Reports Server (NTRS)

    Sheridan, Philip L.

    1987-01-01

    The ACCESS truss was telerobotically assembled in order to gain experience with robotic assembly of hardware designed for astronaut extravehicular (EVA) assembly. Tight alignment constraints of the ACCESS hardware made telerobotic assembly difficult. A wider alignment envelope and a compliant end effector would have reduced the problem. The manipulator had no linear motion capability, but many of the assembly operations required straight line motion. The manipulator was attached to a motion table in order to provide the X, Y, and Z translations needed. A programmable robot with linear translation capability would have eliminated the need for the motion table and streamlined the assembly. Poor depth perception was a major problem. Shaded paint schemes and alignment lines were helpful in reducing this problem. The four cameras used worked well for only some operations. It was not possible to identify camera locations that worked well for all assembly steps. More cameras or movable cameras would have simplified some operations. The audio feedback system was useful.

  1. Proceedings of the NASA Conference on Space Telerobotics, volume 4

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotic technology to the space systems planned for the 1990's and beyond. Volume 4 contains papers related to the following subject areas: manipulator control; telemanipulation; flight experiments (systems and simulators); sensor-based planning; robot kinematics, dynamics, and control; robot task planning and assembly; and research activities at the NASA Langley Research Center.

  2. The JPL telerobot operator control station. Part 1: Hardware

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.; Tower, John T.; Hunka, George W.; Vansant, Glenn J.

    1989-01-01

    The Operator Control Station of the Jet Propulsion Laboratory (JPL)/NASA Telerobot Demonstrator System provides the man-machine interface between the operator and the system. It provides all the hardware and software for accepting human input for the direct and indirect (supervised) manipulation of the robot arms and tools for task execution. Hardware and software are also provided for the display and feedback of information and control data for the operator's consumption and interaction with the task being executed. The hardware design, system architecture, and its integration and interface with the rest of the Telerobot Demonstrator System are discussed.

  3. Human factors issues in telerobotic systems for Space Station Freedom servicing

    NASA Technical Reports Server (NTRS)

    Malone, Thomas B.; Permenter, Kathryn E.

    1990-01-01

    Requirements for Space Station Freedom servicing are described and the state-of-the-art for telerobotic system on-orbit servicing of spacecraft is defined. The projected requirements for the Space Station Flight Telerobotic Servicer (FTS) are identified. Finally, the human factors issues in telerobotic servicing are discussed. The human factors issues are basically three: the definition of the role of the human versus automation in system control; the identification of operator-device interface design requirements; and the requirements for development of an operator-machine interface simulation capability.

  4. Multiscale Surgical Telerobots

    SciTech Connect

    Miles, R R; Seward, K P; Benett, W J; Tendick, F; Bentley, L; Stephan, P L

    2002-01-23

    A project was undertaken to improve robotic surgical tools for telerobotic minimally invasive surgery. The major objectives were to reduce the size of the tools to permit new surgical procedures in confined spaces such as the heart and to improve control of surgical tools by locating positional sensors and actuators at the end effector rather than external to the patient as is currently the state of the technology. A new compact end-effector with wrist-like flexibility was designed. Positional sensors based on MEMS microfabrication techniques were designed.

  5. Testbed For Telerobotic Servicing

    NASA Technical Reports Server (NTRS)

    Matijevic, Jacob R.

    1991-01-01

    Telerobot testbed used to evaluate technologies for remote servicing, including assembly, maintenance, and repair. Enables study of advantages and disadvantages of modes and problems encountered in implementing them. Best technologies for implementing modes chosen. Provides delays simulating transmission delays between control stations on ground and orbiting spacecraft. Includes five major equipment subsystems, each consisting of such commercially available equipment as video cameras, computers, and robot arms. Used on Space Station and on Space Shuttle and satellites in orbit. Also used in hazardous and underwater environments on Earth.

  6. The laboratory telerobotic manipulator program

    NASA Technical Reports Server (NTRS)

    Herndon, J. N.; Babcock, S. M.; Butler, P. L.; Costello, H. M.; Glassell, R. L.; Kress, R. L.; Kuban, D. P.; Rowe, J. C.; Williams, D. M.

    1989-01-01

    New opportunities for the application of telerobotic systems to enhance human intelligence and dexterity in the hazardous environment of space are presented by the NASA Space Station Program. Because of the need for significant increases in extravehicular activity and the potential increase in hazards associated with space programs, emphasis is being heightened on telerobotic systems research and development. The Laboratory Telerobotic Manipulator (LTM) program is performed to develop and demonstrate ground-based telerobotic manipulator system hardware for research and demonstrations aimed at future NASA applications. The LTM incorporates traction drives, modularity, redundant kinematics, and state-of-the-art hierarchical control techniques to form a basis for merging the diverse technological domains of robust, high-dexterity teleoperations and autonomous robotic operation into common hardware to further NASA's research.

  7. Development and evaluation of a predictive algorithm for telerobotic task complexity

    NASA Technical Reports Server (NTRS)

    Gernhardt, M. L.; Hunter, R. C.; Hedgecock, J. C.; Stephenson, A. G.

    1993-01-01

    There is a wide range of complexity in the various telerobotic servicing tasks performed in subsea, space, and hazardous material handling environments. Experience with telerobotic servicing has evolved into a knowledge base used to design tasks to be 'telerobot friendly.' This knowledge base generally resides in a small group of people. Written documentation and requirements are limited in conveying this knowledge base to serviceable equipment designers and are subject to misinterpretation. A mathematical model of task complexity based on measurable task parameters and telerobot performance characteristics would be a valuable tool to designers and operational planners. Oceaneering Space Systems and TRW have performed an independent research and development project to develop such a tool for telerobotic orbital replacement unit (ORU) exchange. This algorithm was developed to predict an ORU exchange degree of difficulty rating (based on the Cooper-Harper rating used to assess piloted operations). It is based on measurable parameters of the ORU, attachment receptacle and quantifiable telerobotic performance characteristics (e.g., link length, joint ranges, positional accuracy, tool lengths, number of cameras, and locations). The resulting algorithm can be used to predict task complexity as the ORU parameters, receptacle parameters, and telerobotic characteristics are varied.

  8. Telerobotic activities at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Price, Charles R.

    1989-01-01

    The Johnson Space Center telerobotic efforts span three major thrusts: (1) sustaining and expanding the capability of the Shuttle manipulator; (2) developing and integrating the multiple telerobotic system of the Space Station; and (3) fostering and applying research in all areas of telerobotics technology within the government, private, and academic sectors.

  9. High performance bilateral telerobot control.

    PubMed

    Kline-Schoder, Robert; Finger, William; Hogan, Neville

    2002-01-01

    Telerobotic systems are used when the environment that requires manipulation is not easily accessible to humans, as in space, remote, hazardous, or microscopic applications or to extend the capabilities of an operator by scaling motions and forces. The Creare control algorithm and software is an enabling technology that makes possible guaranteed stability and high performance for force-feedback telerobots. We have developed the necessary theory, structure, and software design required to implement high performance telerobot systems with time delay. This includes controllers for the master and slave manipulators, the manipulator servo levels, the communication link, and impedance shaping modules. We verified the performance using both bench top hardware as well as a commercial microsurgery system.

  10. Rover and Telerobotics Technology Program

    NASA Technical Reports Server (NTRS)

    Weisbin, Charles R.

    1998-01-01

    The Jet Propulsion Laboratory's (JPL's) Rover and Telerobotics Technology Program, sponsored by the National Aeronautics and Space Administration (NASA), responds to opportunities presented by NASA space missions and systems, and seeds commerical applications of the emerging robotics technology. The scope of the JPL Rover and Telerobotics Technology Program comprises three major segments of activity: NASA robotic systems for planetary exploration, robotic technology and terrestrial spin-offs, and technology for non-NASA sponsors. Significant technical achievements have been reached in each of these areas, including complete telerobotic system prototypes that have built and tested in realistic scenarios relevant to prospective users. In addition, the program has conducted complementary basic research and created innovative technology and terrestrial applications, as well as enabled a variety of commercial spin-offs.

  11. Achievability for telerobotic systems

    NASA Astrophysics Data System (ADS)

    Kress, Reid L.; Draper, John V.; Hamel, William R.

    2001-02-01

    Methods are needed to improve the capabilities of autonomous robots to perform tasks that are difficult for contemporary robots, and to identify those tasks that robots cannot perform. Additionally, in the realm of remote handling, methods are needed to assess which tasks and/or subtasks are candidates for automation. We are developing a new approach to understanding the capability of autonomous robotic systems. This approach uses formalized methods for determining the achievability of tasks for robots, that is, the likelihood that an autonomous robot or telerobot can successfully complete a particular task. Any autonomous system may be represented in achievability space by the volume describing that system's capabilities within the 3-axis space delineated by perception, cognition, and action. This volume may be thought of as a probability density with achievability decreasing as the distance from the centroid of the volume increases. Similarly, any task may be represented within achievability space. However, as tasks have more finite requirements for perception, cognition, and action, each may be represented as a point (or, more accurately, as a small sphere) within achievability space. Analysis of achievability can serve to identify, a priori, the survivability of robotic systems and the likelihood of mission success; it can be used to plan a mission or portions of a mission; it can be used to modify a mission plan to accommodate unpredicted occurrences; it can also serve to identify needs for modifications to robotic systems or tasks to improve achievability. .

  12. Temporal logics meet telerobotics

    NASA Technical Reports Server (NTRS)

    Rutten, Eric; Marce, Lionel

    1989-01-01

    The specificity of telerobotics being the presence of a human operator, decision assistance tools are necessary for the operator, especially in hostile environments. In order to reduce execution hazards due to a degraded ability for quick and efficient recovery of unexpected dangerous situations, it is of importance to have the opportunity, amongst others, to simulate the possible consequences of a plan before its actual execution, in order to detect these problematic situations. Hence the idea of providing the operator with a simulator enabling him to verify the temporal and logical coherence of his plans. Therefore, the power of logical formalisms is used for representation and deduction purposes. Starting from the class of situations that are represented, a STRIPS (the STanford Research Institute Problem Solver)-like formalism and its underlying logic are adapted to the simulation of plans of actions in time. The choice of a temporal logic enables to build a world representation, on which the effects of plans, grouping actions into control structures, will be transcribed by the simulation, resulting in a verdict and information about the plan's coherence.

  13. The NASA/OAST telerobot testbed architecture

    NASA Technical Reports Server (NTRS)

    Matijevic, J. R.; Zimmerman, W. F.; Dolinsky, S.

    1989-01-01

    Through a phased development such as a laboratory-based research testbed, the NASA/OAST Telerobot Testbed provides an environment for system test and demonstration of the technology which will usefully complement, significantly enhance, or even replace manned space activities. By integrating advanced sensing, robotic manipulation and intelligent control under human-interactive supervision, the Testbed will ultimately demonstrate execution of a variety of generic tasks suggestive of space assembly, maintenance, repair, and telescience. The Testbed system features a hierarchical layered control structure compatible with the incorporation of evolving technologies as they become available. The Testbed system is physically implemented in a computing architecture which allows for ease of integration of these technologies while preserving the flexibility for test of a variety of man-machine modes. The development currently in progress on the functional and implementation architectures of the NASA/OAST Testbed and capabilities planned for the coming years are presented.

  14. Systems simulations supporting NASA telerobotics

    NASA Technical Reports Server (NTRS)

    Harrison, F. W., Jr.; Pennington, J. E.

    1987-01-01

    Two simulation and analysis environments have been developed to support telerobotics research at the Langley Research Center. One is a high-fidelity, nonreal-time, interactive model called ROBSIM, which combines user-generated models of workspace environment, robots, and loads into a working system and simulates the interaction among the system components. Models include user-specified actuator, sensor, and control parameters, as well as kinematic and dynamic characteristics. Kinematic, dynamic, and response analyses can be selected, with system configuration, task trajectories, and arm states displayed using computer graphics. The second environment is a real-time, manned Telerobotic Systems Simulation (TRSS) which uses the facilities of the Intelligent Systems Research Laboratory (ISRL). It utilizes a hierarchical structure of functionally distributed computers communicating over both parallel and high-speed serial data paths to enable studies of advanced telerobotic systems. Multiple processes perform motion planning, operator communications, forward and inverse kinematics, control/sensor fusion, and I/O processing while communicating via common memory. Both ROBSIM and TRSS, including their capability, status, and future plans are discussed. Also described is the architecture of ISRL and recent telerobotic system studies in ISRL.

  15. Multi-Sensor Inspection Telerobot

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Hayati, S.; Volpe, R.

    1994-01-01

    This paper describes a telerobotic multi-sensor inspection system for space platforms developed at the Jet Propulsion Laboratory. A multi-sensor inspection end-effector incorporates cameras and lighting for visual inspection, as well as temperature and gas leak-detection sensors.

  16. Analysis of human-machine cooperation when driving with different degrees of haptic shared control.

    PubMed

    Mars, Franck; Deroo, Mathieu; Hoc, Jean-Michel

    2014-01-01

    This study investigated human-machine cooperation when driving with different degrees of a shared control system. By means of a direct intervention on the steering wheel, shared control systems partially correct the vehicle's trajectory and, at the same time, provide continuous haptic guidance to the driver. A crucial point is to determine the optimal level of steering assistance for effective cooperation between the two agents. Five system settings were compared with a condition in which no assistance was present. In addition, road visibility was manipulated by means of additional fog or self-controlled visual occlusions. Several performance indicators and subjective assessments were analyzed. The results show that the best repartition of control in terms of cooperation between human and machine can be identified through an analysis of the steering wheel reversal rate, the steering effort and the mean lateral position of the vehicle. The best cooperation was achieved with systems of relatively low-level haptic authority, although more intervention may be preferable in poor visibility conditions. Increasing haptic authority did not yield higher benefits in terms of steering behavior, visual demand or subjective feeling.

  17. Telerobotics - Problems and research needs

    NASA Technical Reports Server (NTRS)

    Stark, Lawrence; Tendick, Frank; Kim, Won Soo; Anderson, Russell; Hisey, Michael

    1988-01-01

    With major emphasis on simulation, a university laboratory telerobotics facility permits problems to be approached by groups of graduate students. Helmet-mounded displays provide realism; the slaving of the display to the human operator's viewpoint gives a sense of 'telepresence' that may be useful for prolonged tasks. Using top-down three-dimensional model control of distant images allows distant images to be reduced to a few parameters to update the model used for display to the human operator in a preview mode to circumvent, in part, the communication delay. Also, the model can be used as a format for supervisory control and permit short-term local autonomous operations. Image processing algorithms can be made simpler and faster without trying to construct sensible images from the bottom. Control studies of telerobots lead to preferential manual control modes and basic paradigms for human motion and thence, perhaps, to redesign of robotic control, trajectory path planning, and rehabilitation prosthetics.

  18. The JPL/KSC telerobotic inspection demonstration

    NASA Technical Reports Server (NTRS)

    Mittman, David; Bon, Bruce; Collins, Carol; Fleischer, Gerry; Litwin, Todd; Morrison, Jack; Omeara, Jacquie; Peters, Stephen; Brogdon, John; Humeniuk, Bob

    1990-01-01

    An ASEA IRB90 robotic manipulator with attached inspection cameras was moved through a Space Shuttle Payload Assist Module (PAM) Cradle under computer control. The Operator and Operator Control Station, including graphics simulation, gross-motion spatial planning, and machine vision processing, were located at JPL. The Safety and Support personnel, PAM Cradle, IRB90, and image acquisition system, were stationed at the Kennedy Space Center (KSC). Images captured at KSC were used both for processing by a machine vision system at JPL, and for inspection by the JPL Operator. The system found collision-free paths through the PAM Cradle, demonstrated accurate knowledge of the location of both objects of interest and obstacles, and operated with a communication delay of two seconds. Safe operation of the IRB90 near Shuttle flight hardware was obtained both through the use of a gross-motion spatial planner developed at JPL using artificial intelligence techniques, and infrared beams and pressure sensitive strips mounted to the critical surfaces of the flight hardward at KSC. The Demonstration showed that telerobotics is effective for real tasks, safe for personnel and hardware, and highly productive and reliable for Shuttle payload operations and Space Station external operations.

  19. Telerobotic technology for nuclear and space applications

    SciTech Connect

    Herndon, J.N.; Hamel, W.R.

    1987-03-01

    Telerobotic development efforts at Oak Ridge National Laboratory are extensive and relatively diverse. Current efforts include development of a prototype space telerobot system for the NASA Langley Research Center and development and large-scale demonstration of nuclear fuel cycle teleoperators in the Consolidated Fuel Reprocessing Program. This paper presents an overview of the efforts in these major programs. 10 refs., 8 figs.

  20. Modular planning/control architecture for the semiautonomous control of telerobots in a hazardous environment

    NASA Astrophysics Data System (ADS)

    Tarn, Tzyh-Jong; Brady, Kevin; Xi, Ning; Love, Lonnie; Lloyd, Peter; Burks, Barry; Davis, Hurley

    1997-09-01

    The Oak Ridge National Laboratory (ORNL) has demonstrated, evaluated, and deployed a telerobotic approach for the remote retrieval of hazardous and radioactive wastes from underground storage tanks. The telerobotic system, built by Spar Aerospace Ltd., is capable of dislodging and removing sludge and gravel- like wastes without endangering the human operators through contact with the environment. Working in partnership with Washington University, ORNL has implemented an Event based planner/function based sharing control (FBSC) as an integral part of their overall telerobotic architecture. These aspects of the system enable the seamless union of the human operator and an autonomous controller in such a way to emphasize safety without any loss of performance. The cooperation between ORNL, Spar, and Washington University requires an open and modular control software architecture to enable the parallel development of various components of the system. ControlShell has been used as the underlying software architecture to help meet these criteria of generality and modularity.

  1. The JPL telerobot operator control station. Part 2: Software

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.; Landell, B. Patrick; Oxenberg, Sheldon; Morimoto, Carl

    1989-01-01

    The Operator Control Station of the Jet Propulsion Laboratory (JPL)/NASA Telerobot Demonstrator System provides the man-machine interface between the operator and the system. It provides all the hardware and software for accepting human input for the direct and indirect (supervised) manipulation of the robot arms and tools for task execution. Hardware and software are also provided for the display and feedback of information and control data for the operator's consumption and interaction with the task being executed. The software design of the operator control system is discussed.

  2. A Graphical Operator Interface for a Telerobotic Inspection System

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Tso, K. S.; Hayati, S.

    1993-01-01

    Operator interface has recently emerged as an important element for efficient and safe operatorinteractions with the telerobotic system. Recent advances in graphical user interface (GUI) andgraphics/video merging technologies enable development of more efficient, flexible operatorinterfaces. This paper describes an advanced graphical operator interface newly developed for aremote surface inspection system at Jet Propulsion Laboratory. The interface has been designed sothat remote surface inspection can be performed by a single operator with an integrated robot controland image inspection capability. It supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.

  3. An operator interface design for a telerobotic inspection system

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Tso, Kam S.; Hayati, Samad

    1993-01-01

    The operator interface has recently emerged as an important element for efficient and safe interactions between human operators and telerobotics. Advances in graphical user interface and graphics technologies enable us to produce very efficient operator interface designs. This paper describes an efficient graphical operator interface design newly developed for remote surface inspection at NASA-JPL. The interface, designed so that remote surface inspection can be performed by a single operator with an integrated robot control and image inspection capability, supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.

  4. The flight telerobotic servicer (FTS): A focus for automation and robotics on the space station

    NASA Astrophysics Data System (ADS)

    Hinkal, S. W.; Andary, J. F.; Watzin, J. G.; Provost, D. E.

    NASA has committed to the design and implementation of a robotic device to assist the astronauts in assembly, maintenance, servicing and inspection tasks in the unpressurized environment of the Space Station, substantially reducing the time required for crew extra vehicular activity (EVA). This system introduces into the Space Station program a "telerobot" adaptable to a variety of tasks and worksites. The term "telerobot" is used to indicate the combined attributes of an autonomous robot and a teleoperated manipulator. Design requirements for the telerobot are driven by a detailed analysis of the tasks which are required on the Space Station and its associated free-flying platforms. The Space Station will have several kilometers of truss structure to which are attached numerous scientific payloads, as well as functional elements and utilities of the Space Station itself. Scientific payloads require servicing of different levels of complexity. Free-flying spacecraft will be brought into the hangar-like servicing facility for repair. There will be maintenance and inspection tasks of the Space Station elements, as well as initial Space Station assembly tasks. A step-by-step analysis of candidate tasks has led to a design envelope for the telerobot. Since the telerobot is an extension or telepresence of the astronaut at the remote worksite, design of the workstation in the pressurized module has to give careful consideration to the man/machine interface, as well as the constrained volume in the pressurized modules. The flight telerobotic servicer (FTS) is designed for future growth toward more autonomy. By a careful selection of the functional architecture, and a modular approach to the hardware and software design, the FTS can accept developments in artificial intelligence and newer, more advanced sensors, such as machine vision and collision avoidance. The FTS is a focus for automation and robotics on the Space Station, as well as a baseline from which visionary

  5. The NASA telerobot technology demonstrator

    NASA Technical Reports Server (NTRS)

    Schenker, P. S.; French, R. L.; Sirota, A. R.; Matijevic, J. R.

    1987-01-01

    The ongoing development of a telerobot technology demonstrator is reported. The demonstrator is implemented as a laboratory-based research testbed, and will show proof-of-concept for supervised automation of space assembly, servicing, and repair operations. The demonstrator system features a hierarchically layered intelligent control architecture which enables automated planning and run-time sequencing of complex tasks by a supervisory human operator. The demonstrator also provides a full bilateral force-reflecting hand control teleoperations capability. The operator may switch smoothly between the automated and teleoperated tasking modes in run-time, either on a preplanned or operator-designated basis.

  6. Automated Telerobotic Inspection Of Surfaces

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Prasad, K. Venkatesh

    1996-01-01

    Method of automated telerobotic inspection of surfaces undergoing development. Apparatus implementing method includes video camera that scans over surfaces to be inspected, in manner of mine detector. Images of surfaces compared with reference images to detect flaws. Developed for inspecting external structures of Space Station Freedom for damage from micrometeorites and debris from prior artificial satellites. On Earth, applied to inspection for damage, missing parts, contamination, and/or corrosion on interior surfaces of pipes or exterior surfaces of bridges, towers, aircraft, and ships.

  7. Software For Integration Of EVA And Telerobotics

    NASA Technical Reports Server (NTRS)

    Drews, Michael L.; Smith, Jeffrey H.; Estus, Jay M.; Heneghan, Cate; Zimmerman, Wayne; Fiorini, Paolo; Schenker, Paul S.; Mcaffee, Douglas A.

    1991-01-01

    Telerobotics/EVA Joint Analysis Systems (TEJAS) computer program is hypermedia information software system using object-oriented programming to bridge gap between crew-EVA and telerobotics activities. TEJAS Version 1.0 contains 20 HyperCard stacks using visual, customizable interface of icon buttons, pop-up menus, and relational commands to store, link, and standardize related information about primitives, technologies, tasks, assumptions, and open issues involved in space-telerobot or crew-EVA tasks. Runs on any Apple MacIntosh personal computer.

  8. Telerobotic work system: Concept development and evolution

    NASA Technical Reports Server (NTRS)

    Jenkins, Lyle M.

    1987-01-01

    The basic concept of a telerobotic work system (TWS) consists of two dexterous manipulator arms controlled from a remote station. The term telerobotic describes a system that is a combination of teleoperator control and robotic operation. Work represents the function of producing physical changes. System describes the integration of components and subsystems to effectively accomplish the needed mission. Telerobotics reduces exposure to hazards for flight crewmembers and increases their productivity. The requirements for the TWS are derived from both the mission needs and the functional capabilities of existing hardware and software to meet those needs. The development of the TWS is discussed.

  9. Telerobotics design issues for space construction

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Gyamfi, Max; Volkmer, Kent; Zimmerman, Wayne

    1988-01-01

    The use of a Flight Telerobotic Servicer (FTS) in the construction of the Space Station is examined. A methodology is presented for evaluating possible construction tasks, telerobotic performance capabilities, development costs, and operational constraints. The use of telerobotics as a substitute for human EVA activities and the construction tasks which an FTS could perform in the next 8-10 years are considered. The cost-effectiveness of construction using the FTS is compared with that of construction using the STS. The trade-offs associated with using the FTS are discussed in detail.

  10. Task automation in a successful industrial telerobot

    SciTech Connect

    Spelt, P.F.; Jones, S.L.

    1994-01-01

    In this paper, we discuss cooperative work by Oak Ridge National Laboratory and Remotec{trademark}, Inc., to automate components of the operator`s workload using Remotec`s Andros telerobot, thereby providing an enhanced user interface which can be retroll to existing fielded units as well as being incorporated into now production units. Remotec`s Andros robots are presently used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists, as well as by the armed forces and numerous law enforcement agencies. The automation of task components, as well as the video graphics display of the robot`s position in the environment, will enhance all tasks performed by these users, as well as enabling performance in terrain where the robots cannot presently perform due to lack of knowledge about, for instance, the degree of tilt of the robot. Enhanced performance of a successful industrial mobile robot leads to increased safety and efficiency of performances in hazardous environments. The addition of these capabilities will greatly enhance the utility of the robot, as well as its marketability.

  11. Control enhancements in a commercial mobile telerobot

    SciTech Connect

    Jones, S.L.; Spelt, P.F.

    1994-12-31

    In this paper we discuss the cooperative research and development agreement between Oak Ridge Naitonal Laboratory and REMOTEC to automate components of the operator`s workload using REMOTEC`s ANDROS telerobot, thereby providing an enhanced user interface that can be retrofit to existing fielded units and incorporated into new production units. REMOTECs ANDROS robots are used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists and by the armed forces and numerous law enforcement agencies. The automation of task components, as well as the video graphics display of the robot`s position in the environment, will enhance all tasks performed by these users and will enable performance in terrain where the robots cannot now perform due to lack of knowledge about matters such as the degree of tilt of the robot. Enhanced performance of a successful industrial mobile robot leads to increased safety and efficiency of performance in hazardous environments. The addition of these capabilities will greatly enhance the utility and marketability of the robot.

  12. Task automation in a successful industrial telerobot

    NASA Technical Reports Server (NTRS)

    Spelt, Philip F.; Jones, Sammy L.

    1994-01-01

    In this paper, we discuss cooperative work by Oak Ridge National Laboratory and Remotec, Inc., to automate components of the operator's workload using Remotec's Andros telerobot, thereby providing an enhanced user interface which can be retrofit to existing fielded units as well as being incorporated into new production units. Remotec's Andros robots are presently used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists, as well as by the armed forces and numerous law enforcement agencies. The automation of task components, as well as the video graphics display of the robot's position in the environment, will enhance all tasks performed by these users, as well as enabling performance in terrain where the robots cannot presently perform due to lack of knowledge about, for instance, the degree of tilt of the robot. Enhanced performance of a successful industrial mobile robot leads to increased safety and efficiency of performance in hazardous environments. The addition of these capabilities will greatly enhance the utility of the robot, as well as its marketability.

  13. Computing architecture for telerobots in earth orbit

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Dotson, R. S.; Szakaly, Z.

    1987-01-01

    Based on generic operational and computational requirements associated with the control of telerobots in earth orbit, a multibus-based distributed but integrated computing architecture is proposed. An experimental system of that kind under development at the Jet Propulsion Laboratory (JPL) is briefly described. It uses Intel Multibus I at both control station and remote robot (telerobot) computing nodes. An essential element within each multibus is a Unified (or Universal) Computer Control Subsystem (UCCS) for telerobot and control station motor components. The two multibus-based computing nodes can be linked by parallel or high speed serial links for real-time data transmission and for closing the real-time bilateral (force-reflecting) control loop between telerobot and control station. The experimental system is briefly commented, followed by a brief discussion of future development plans and possibilities.

  14. Telerobotic system performance measurement - Motivation and methods

    NASA Technical Reports Server (NTRS)

    Kondraske, George V.; Khoury, George J.

    1992-01-01

    A systems performance-based strategy for modeling and conducting experiments relevant to the design and performance characterization of telerobotic systems is described. A developmental testbed consisting of a distributed telerobotics network and initial efforts to implement the strategy described is presented. Consideration is given to the general systems performance theory (GSPT) to tackle human performance problems as a basis for: measurement of overall telerobotic system (TRS) performance; task decomposition; development of a generic TRS model; and the characterization of performance of subsystems comprising the generic model. GSPT employs a resource construct to model performance and resource economic principles to govern the interface of systems to tasks. It provides a comprehensive modeling/measurement strategy applicable to complex systems including both human and artificial components. Application is presented within the framework of a distributed telerobotics network as a testbed. Insight into the design of test protocols which elicit application-independent data is described.

  15. Dexterity-Enhanced Telerobotic Microsurgery

    NASA Technical Reports Server (NTRS)

    Charles, Steve; Das, Hari; Ohm, Timothy; Boswell, Curtis; Rodriguez, Guillermo; Steele, Robert; Istrate, Dan

    1997-01-01

    The work reported in this paper is the result, of a collaboration between researchers at the Jet Propulsion Laboratory and Steve Charles, MD, a vitreo-retinal surgeon. The Robot Assisted MicroSurgery (RAMS) telerobotic workstation developed at JPL is a prototype of a system that will be completely under the manual control of a surgeon. The system has a slave robot that will hold surgical instruments. The slave robot motions replicate in six degrees of freedom those of tile. surgeon's hand measured using a master input device with a surgical instrument, shaped handle. The surgeon commands motions for the instrument by moving the handle in the desired trajectories. The trajectories are measured, filtered, and scaled down then used to drive the slave robot.

  16. Haptic device for telerobotic surgery

    SciTech Connect

    Salisbury, Curt; Salisbury, Jr., J. Kenneth

    2014-12-30

    A haptic device for telerobotic surgery, including a base; a linkage system having first and second linkage members coupled to the base; a motor that provides a motor force; a transmission including first and second driving pulleys arranged such that their faces form an angle and their axes form a plane, first and second idler pulleys offset from the plane and arranged between the first and second driving pulleys such that their axes divide the angle between the first and second driving pulleys, and a cable that traverses the first and second driving pulleys and the set of idler pulleys and transfers the motor force to the linkage system; an end effector coupled to distal ends of the first and second linkage members and maneuverable relative to the base; and a controller that modulates the motor force to simulate a body part at a point portion of the end effector.

  17. Telerobotic electronic materials processing experiment

    NASA Technical Reports Server (NTRS)

    Ollendorf, Stanford

    1991-01-01

    The Office of Commercial Programs (OCP), working in conjunction with NASA engineers at the Goddard Space Flight Center, is supporting research efforts in robot technology and microelectronics materials processing that will provide many spinoffs for science and industry. The Telerobotic Materials Processing Experiment (TRMPX) is a Shuttle-launched materials processing test payload using a Get Away Special can. The objectives of the project are to define, develop, and demonstrate an automated materials processing capability under realistic flight conditions. TRMPX will provide the capability to test the production processes that are dependent on microgravity. The processes proposed for testing include the annealing of amorphous silicon to increase grain size for more efficient solar cells, thin film deposition to demonstrate the potential of fabricating solar cells in orbit, and the annealing of radiation damaged solar cells.

  18. Telerobotics in rehabilitation: Barriers to a virtual existence

    NASA Technical Reports Server (NTRS)

    Leifer, Larry; Vanderloos, Machiel; Michalowski, Stefan

    1991-01-01

    The topics covered include the following: the need for telerobotics in rehabilitation; barriers to telerobotics technology in rehabilitation and health care; institutional barriers; technical barriers; and a partial view of the future.

  19. Cooperative optimization of reconfigurable machine tool configurations and production process plan

    NASA Astrophysics Data System (ADS)

    Xie, Nan; Li, Aiping; Xue, Wei

    2012-09-01

    The production process plan design and configurations of reconfigurable machine tool (RMT) interact with each other. Reasonable process plans with suitable configurations of RMT help to improve product quality and reduce production cost. Therefore, a cooperative strategy is needed to concurrently solve the above issue. In this paper, the cooperative optimization model for RMT configurations and production process plan is presented. Its objectives take into account both impacts of process and configuration. Moreover, a novel genetic algorithm is also developed to provide optimal or near-optimal solutions: firstly, its chromosome is redesigned which is composed of three parts, operations, process plan and configurations of RMTs, respectively; secondly, its new selection, crossover and mutation operators are also developed to deal with the process constraints from operation processes (OP) graph, otherwise these operators could generate illegal solutions violating the limits; eventually the optimal configurations for RMT under optimal process plan design can be obtained. At last, a manufacturing line case is applied which is composed of three RMTs. It is shown from the case that the optimal process plan and configurations of RMT are concurrently obtained, and the production cost decreases 6.28% and nonmonetary performance increases 22%. The proposed method can figure out both RMT configurations and production process, improve production capacity, functions and equipment utilization for RMT.

  20. Simulation of the human-telerobot interface

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Smith, Randy L.

    1988-01-01

    A part of NASA's Space Station will be a Flight Telerobotic Servicer (FTS) used to help assemble, service, and maintain the Space Station. Since the human operator will be required to control the FTS, the design of the human-telerobot interface must be optimized from a human factors perspective. Simulation has been used as an aid in the development of complex systems. Simulation has been especially useful when it has been applied to the development of complex systems. Simulation should ensure that the hardware and software components of the human-telerobot interface have been designed and selected so that the operator's capabilities and limitations have been accommodated for since this is a complex system where few direct comparisons to existent systems can be made. Three broad areas of the human-telerobot interface where simulation can be of assistance are described. The use of simulation not only can result in a well-designed human-telerobot interface, but also can be used to ensure that components have been selected to best meet system's goals, and for operator training.

  1. Integrated Design of a Telerobotic Workstation

    NASA Technical Reports Server (NTRS)

    Rochlis, Jennifer L.; Clarke, John-Paul

    2001-01-01

    The experiments described in this paper are part of a larger joint MIT/NASA research effort that focuses on the development of a methodology for designing and evaluating integrated interfaces for highly dexterous and multi-functional telerobots. Specifically, a telerobotic workstation is being designed for an Extravehicular Activity (EVA) anthropomorphic space station telerobot. Previous researchers have designed telerobotic workstations based upon performance of discrete subsets of tasks (for example, peg-in-hole, tracking, etc.) without regard for transitions that operators go through between tasks performed sequentially in the context of larger integrated tasks. The exploratory research experiments presented here took an integrated approach and assessed how subjects operating a full-immersion telerobot perform during the transitions between sub-tasks of two common EVA tasks. Preliminary results show that up to 30% of total task time is spent gaining and maintaining Situation Awareness (SA) of their task space and environment during transitions. Although task performance improves over the two trial days, the percentage of time spent on SA remains the same. This method identifies areas where workstation displays and feedback mechanisms are most needed to increase operator performance and decrease operator workload - areas that previous research methods have not been able to address.

  2. The flight telerobotic servicer and technology transfer

    NASA Technical Reports Server (NTRS)

    Andary, James F.; Bradford, Kayland Z.

    1991-01-01

    The Flight Telerobotic Servicer (FTS) project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station Freedom (SSF). The FTS will provide a telerobotic capability in the early phases of the SSF program and will be employed for assembly, maintenance, and inspection applications. The current state of space technology and the general nature of the FTS tasks dictate that the FTS be designed with sophisticated teleoperational capabilities for its internal primary operating mode. However, technologies such as advanced computer vision and autonomous planning techniques would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Another objective of the FTS program is to accelerate technology transfer from research to U.S. industry.

  3. Crew interface with a telerobotic control station

    NASA Technical Reports Server (NTRS)

    Mok, Eva

    1987-01-01

    A method for apportioning crew-telerobot tasks has been derived to facilitate the design of a crew-friendly telerobot control station. To identify the most appropriate state-of-the-art hardware for the control station, task apportionment must first be conducted to identify if an astronaut or a telerobot is best to execute the task and which displays and controls are required for monitoring and performance. Basic steps that comprise the task analysis process are: (1) identify space station tasks; (2) define tasks; (3) define task performance criteria and perform task apportionment; (4) verify task apportionment; (5) generate control station requirements; (6) develop design concepts to meet requirements; and (7) test and verify design concepts.

  4. Telerobot control mode performance assessment

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne; Backes, Paul; Chirikjian, Greg

    1992-01-01

    With the maturation of various developing robot control schemes, it is becoming extremely important that the technical community evaluate the performance of these various control technologies against an established baseline to determine which technology provides the most reliable robust, and safe on-orbit robot control. The Supervisory Telerobotics Laboratory (STELER) at JPL has developed a unique robot control capability which has been evaluated by the NASA technical community and found useful for augmenting both the operator interface and control of intended robotic systems on-board the Space Station. As part of the technology development and prototyping effort, the STELER team has been evaluating the performance of different control modes; namely, teleoperation under position, or rate, control, teleoperation with force reflection and shared control. Nine trained subjects were employed in the performance evaluation involving several high fidelity servicing tasks. Four types of operator performance data were collected; task completion time, average force, peak force, and number of operator successes and errors. This paper summarizes the results of this performance evaluation.

  5. Structural health monitoring for bolt loosening via a non-invasive vibro-haptics human-machine cooperative interface

    NASA Astrophysics Data System (ADS)

    Pekedis, Mahmut; Mascerañas, David; Turan, Gursoy; Ercan, Emre; Farrar, Charles R.; Yildiz, Hasan

    2015-08-01

    For the last two decades, developments in damage detection algorithms have greatly increased the potential for autonomous decisions about structural health. However, we are still struggling to build autonomous tools that can match the ability of a human to detect and localize the quantity of damage in structures. Therefore, there is a growing interest in merging the computational and cognitive concepts to improve the solution of structural health monitoring (SHM). The main object of this research is to apply the human-machine cooperative approach on a tower structure to detect damage. The cooperation approach includes haptic tools to create an appropriate collaboration between SHM sensor networks, statistical compression techniques and humans. Damage simulation in the structure is conducted by releasing some of the bolt loads. Accelerometers are bonded to various locations of the tower members to acquire the dynamic response of the structure. The obtained accelerometer results are encoded in three different ways to represent them as a haptic stimulus for the human subjects. Then, the participants are subjected to each of these stimuli to detect the bolt loosened damage in the tower. Results obtained from the human-machine cooperation demonstrate that the human subjects were able to recognize the damage with an accuracy of 88 ± 20.21% and response time of 5.87 ± 2.33 s. As a result, it is concluded that the currently developed human-machine cooperation SHM may provide a useful framework to interact with abstract entities such as data from a sensor network.

  6. Space Telerobotics and Rover Research at JPL

    NASA Technical Reports Server (NTRS)

    Weisbin, C.; Hayati, S.; Rodriguez, G.

    1995-01-01

    The goal of our program is to develop, integrate and demonstrate the science and technology of remote telerobotics leading to increases in operational capability, safety, cost effectiveness and probability of success of NASA missions. To that end, the program fosters the development of innovative system concepts for on-orbit servicing and planetary surface missions which use telerobotic systems as an important central component. These concepts are carried forward into develoments which are used to evaluate and demonstrate technology in realistic flight and ground experiments.

  7. Terrestrial applications of NASA space telerobotics technologies

    NASA Technical Reports Server (NTRS)

    Lavery, Dave

    1994-01-01

    In 1985 the National Aeronautics and Space Administration (NASA) instituted a research program in telerobotics to develop and provide the technology for applications of telerobotics to the United States space program. The activities of the program are intended to most effectively utilize limited astronaut time by facilitating tasks such as inspection, assembly, repair, and servicing, as well as providing extended capability for remotely conducting planetary surface operations. As the program matured, it also developed a strong heritage of working with government and industry to directly transfer the developed technology into industrial applications.

  8. Operator assistant systems - An experimental approach using a telerobotics application

    NASA Technical Reports Server (NTRS)

    Boy, Guy A.; Mathe, Nathalie

    1993-01-01

    This article presents a knowledge-based system methodology for developing operator assistant (OA) systems in dynamic and interactive environments. This is a problem both of training and design, which is the subject of this article. Design includes both design of the system to be controlled and design of procedures for operating this system. A specific knowledge representation is proposed for representing the corresponding system and operational knowledge. This representation is based on the situation recognition and analytical reasoning paradigm. It tries to make explicit common factors involved in both human and machine intelligence, including perception and reasoning. An OA system based on this representation has been developed for space telerobotics. Simulations have been carried out with astronauts and the resulting protocols have been analyzed. Results show the relevance of the approach and have been used for improving the knowledge representation and the OA architecture.

  9. Real-time cooperating motion generation for man-machine systems and its application to medical technology.

    PubMed

    Seto, Fumi; Hirata, Yasuhisa; Kosuge, Kazuhiro

    2007-01-01

    In this paper, we propose a cooperating motion generation method for man-machine cooperation systems in which the machines are controlled based on the intentional force applied by a human/humans for realizing several tasks in cooperation with a human/humans. By applying this method, the systems could avoid self-collisions, collisions with obstacles and other dangerous situations during the tasks. Proposed method consists of two parts; representation method of robots' body referred to as "RoBE (Representation of Body by Elastic elements)", and cooperating motion generation method using RoBE. As the application examples of proposed method, we focused on robots cooperating with a human/humans and surgery robot tools from the aspect of medical and welfare field. We did the experiments using human-friendly robot, referred to as MR Helper, for illustrating the validity of the proposed method. We also did the computer simulation to indicate the prospects of applications of our self-collision avoidance method to surgery robot tools.

  10. Cooperation.

    ERIC Educational Resources Information Center

    Online-Offline, 1997

    1997-01-01

    The theme of this month's issue is "cooperation"--related to animal, personal, national, and global cooperation; rules and regulations; and team efforts. K-8 resources on the theme include World Wide Web sites, CD-ROM, software, videos, books, and others. Features include cooperative living, alliances of nations, songs of cooperation, and animals…

  11. An Intelligent Simulator for Telerobotics Training

    ERIC Educational Resources Information Center

    Belghith, K.; Nkambou, R.; Kabanza, F.; Hartman, L.

    2012-01-01

    Roman Tutor is a tutoring system that uses sophisticated domain knowledge to monitor the progress of students and advise them while they are learning how to operate a space telerobotic system. It is intended to help train operators of the Space Station Remote Manipulator System (SSRMS) including astronauts, operators involved in ground-based…

  12. Planning And Reasoning For A Telerobot

    NASA Technical Reports Server (NTRS)

    Peters, Stephen F.; Mittman, David S.; Collins, Carol E.; O'Meara Callahan, Jacquelyn S.; Rokey, Mark J.

    1992-01-01

    Document discusses research and development of Telerobot Interactive Planning System (TIPS). Goal in development of TIPS is to enable it to accept instructions from operator, then command run-time controller to execute operations to execute instructions. Challenges in transferring technology from testbed to operational system discussed.

  13. Virtual environments for telerobotic shared control

    NASA Technical Reports Server (NTRS)

    Christensen, Brian K.

    1994-01-01

    The use of a virtual environment to bring about telerobotic shared control is discussed. A knowledge base, referred to as the World Model, is used to aid the system in its decision making. Information from the World Model is displayed visually in order to aid the human side of human-computer interface.

  14. Flight telerobot mechanism design: Problems and challenges

    NASA Technical Reports Server (NTRS)

    Dahlgren, John B.; Kan, Edwin P.

    1989-01-01

    Problems and challenges of designing flight telerobot mechanisms are discussed. Specific experiences are drawn from the following system developments: (1) the Force Reflecting Hand Controller, (2) the Smart End Effector, (3) the force-torque sensor, and a generic multi-degrees-of-freedom manipulator.

  15. Multi-level manual and autonomous control superposition for intelligent telerobot

    NASA Technical Reports Server (NTRS)

    Hirai, Shigeoki; Sato, T.

    1989-01-01

    Space telerobots are recognized to require cooperation with human operators in various ways. Multi-level manual and autonomous control superposition in telerobot task execution is described. The object model, the structured master-slave manipulation system, and the motion understanding system are proposed to realize the concept. The object model offers interfaces for task level and object level human intervention. The structured master-slave manipulation system offers interfaces for motion level human intervention. The motion understanding system maintains the consistency of the knowledge through all the levels which supports the robot autonomy while accepting the human intervention. The superposing execution of the teleoperational task at multi-levels realizes intuitive and robust task execution for wide variety of objects and in changeful environment. The performance of several examples of operating chemical apparatuses is shown.

  16. (abstract) An Ada Language Modular Telerobot Task Execution System

    NASA Technical Reports Server (NTRS)

    Backes, Paul; Long, Mark; Steele, Robert

    1993-01-01

    A telerobotic task execution system is described which has been developed for space flight applications. The Modular Telerobot Task Execution System (MOTES) provides the remote site task execution capability in a local-remote telerobotic system. The system provides supervised autonomous control, shared control, and teleoperation for a redundant manipulator. The system is capable of nominal task execution as well as monitoring and reflex motion.

  17. A Space Data System Standard for Telerobotic Operations

    NASA Technical Reports Server (NTRS)

    Mittman, David S.; Martinez, Lindolfo

    2014-01-01

    The Telerobotics Working Group of the Mission Operations and Information Management Services Area of the Consultative Committee for Space Data Systems is drafting a document that will help bound the scope of an eventual international standard for telerobotic operations services. This paper will present the work in progress and provide background for how the international community is beginning to define standards in telerobotic operations that will help ensure the success of complex missions to explore beyond Earth orbit.

  18. ISS Update: SPHERES with Telerobotics Project Manager Terry Fong

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean talks with Terry Fong, Telerobotics Project Manager, about how the Synchronized Position, Hold, Engage and Reorient Experimental Satellites, or SPHERES, are ...

  19. Virtual window telepresence system for telerobotic inspection

    NASA Astrophysics Data System (ADS)

    Tharp, Gregory K.; Hayati, Samad; Phan, Linh

    1995-12-01

    Telerobotic inspection can be used in environments that are too hazardous, removed, or expensive for direct human inspection. Telerobotic inspection is a complex task requiring an operator to control and coordinate a robot and sensors, while monitoring and interpreting sensor data to detect flaws. A virtual window telepresence system has been developed to aid the operator in performing these inspections. While the operator is looking at a monitor displaying stereo video from cameras mounted on the robot, the system tracks operator head position and moves the robot to create the illusion that the operator is looking out a window. This interface allows the operator to naturally specify desired viewpoint and enables him to concentrate on the visual examination of the area that may contain a flaw.

  20. NASREN: Standard reference model for telerobot control

    NASA Technical Reports Server (NTRS)

    Albus, J. S.; Lumia, R.; Mccain, H.

    1987-01-01

    A hierarchical architecture is described which supports space station telerobots in a variety of modes. The system is divided into three hierarchies: task decomposition, world model, and sensory processing. Goals at each level of the task dedomposition heirarchy are divided both spatially and temporally into simpler commands for the next lower level. This decomposition is repreated until, at the lowest level, the drive signals to the robot actuators are generated. To accomplish its goals, task decomposition modules must often use information stored it the world model. The purpose of the sensory system is to update the world model as rapidly as possible to keep the model in registration with the physical world. The architecture of the entire control system hierarch is described and how it can be applied to space telerobot applications.

  1. Manipulator control and mechanization: A telerobot subsystem

    NASA Technical Reports Server (NTRS)

    Hayati, S.; Wilcox, B.

    1987-01-01

    The short- and long-term autonomous robot control activities in the Robotics and Teleoperators Research Group at the Jet Propulsion Laboratory (JPL) are described. This group is one of several involved in robotics and is an integral part of a new NASA robotics initiative called Telerobot program. A description of the architecture, hardware and software, and the research direction in manipulator control is given.

  2. Telerobotic operation of conventional robot manipulators

    SciTech Connect

    Boissiere, P.T.; Harrigan, R.W.

    1988-01-01

    This paper discusses a new telerobotic control concept and its implementation using a PUMA-560 robot manipulator. The control concept couples human supervisory commands with computer reasoning. The control system is responsive and accomplishes an operator's commands while providing obstacle avoidance and controlled interactions with the environment where desired. This provides a system which not only assists the operator in accomplishing tasks but modifies inappropriate operator commands which can result in safety hazards and/or equipment damage. 15 refs., 6 figs.

  3. Using automatic robot programming for space telerobotics

    NASA Technical Reports Server (NTRS)

    Mazer, E.; Jones, J.; Lanusse, A.; Lozano-Perez, T.; Odonnell, P.; Tournassoud, P.

    1987-01-01

    The interpreter of a task level robot programming system called Handey is described. Handey is a system that can recognize, manipulate and assemble polyhedral parts when given only a specification of the goal. To perform an assembly, Handey makes use of a recognition module, a gross motion planner, a grasp planner, a local approach planner and is capable of planning part re-orientation. The possibility of including these modules in a telerobotics work-station is discussed.

  4. The JAU-JPL anthropomorphic telerobot

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.

    1989-01-01

    Work in progress on the new anthropomorphic telerobot is described. The initial robot configuration consists of a seven DOF arm and a sixteen DOF hand, having three fingers and a thumb. The robot has active compliance, enabling subsequent dual arm manipulations. To control the rather complex configuration of this robot, an exoskeleton master arm harness and a glove controller were built. The controller will be used for teleoperational tasks and as a research tool to efficiently teach the computer controller advanced manipulation techniques.

  5. A modular software system for distributed telerobotics

    NASA Technical Reports Server (NTRS)

    Graves, Sean; Ciscon, Larry; Wise, J. D.

    1992-01-01

    The authors describe a control architecture for telerobotics research. The architecture was object-oriented and data-driven, and can be distributed over many processors on a wide-area network (WAN). The basic capabilities of this testbed have already been demonstrated in tests distributed over four cities. The data distribution techniques of this control architecture are described, as well as details of the current implementation and experimental results.

  6. Jet Propulsion Laboratory/Kennedy Space Center telerobotic inspection and manipulation demonstration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian; Davis, Leon

    1990-01-01

    The goal of this effort is to demonstrate telerobotic inspection and mainpulation of space shuttle payloads in the presence of substantial communications time delays between the operator station and the robotic work space. The processing of space shuttle payloads provides a variety of tasks which are typical of both space shuttle ground operations and Space Station in-flight operations, and communications time delays are inevitable in space operations where the operator station will be light-seconds away from the telerobot. With this demonstration we hope to show the efficacy and safety of robotic technology for ground and space operations. Our approach is to develop an experimental telerobotic system with the remote sensing, actuation and reflex portions located at KSC in Florida, while the operator control station will be located at Jet Propulsion Laboratory (JPL) in California. The JPL portion of the system includes a high-level operator interface, intelligent spatial planning and machine vision, while the KSC portion includes the robot arm, end effectors, cameras and proximity sensors, and the necessary control and communications computers and software. The communications between JPL and KSC are over a limited-bandwidth network channel (19200 baud) with unpredictable and unrepeatable time delays. In FY89 we integrated a basic version of the robotic, communications, and computer hardware, and we developed the software to perform an operator-supervised inspection of a PAM-D satellite upper stage rocket motor and its shuttle support cradle. The demonstration, though severely limited by the bulk of the available computer arm, showed the potential of telerobotics for inspection tasks. In the future, we plan to develop additional capabilities which will allow manipulation tasks to be performed, including removal of dust covers and lens caps, insertion of connectors and batteries, and installation of payload objects.

  7. Intelligent telerobotic assistant for people with disabilities

    NASA Astrophysics Data System (ADS)

    Kazi, Zunaid; Beitler, Matthew; Salganicoff, Marcos; Chen, Shoupu; Chester, Daniel; Foulds, Richard

    1995-12-01

    The development of an assistive telerobotic system which integrates human-computer interaction with reactive planning is the goal of our research. The system is intended to operate in an unstructured environment, rather than in a structured workcell, allowing the user considerably freedom and flexibility in terms of control and operating ease. Our approach is based on the assumption that while the user's world is unstructured, objects within are reasonably predictable. We reflect this arrangement by providing a means of determining the superquadric shape representation of the scene, and an object-oriented knowledge base and reactive planner which superimposes information about common objects in the world. A multimodal user interface interprets deictic gesture and speech inputs with the goal of identifying the object that is of interest to the user. The multimodal interface performs a critical disambiguation function by binding the spoken words to a locus in the physical work space. The spoken input is also used to supplant the need for general purpose object recognition. Instead, 3D shape information is augmented by the users spoken word which may also invoke the appropriate inheritance of object properties using the adopted hierarchical object-oriented representation scheme. The underlying planning mechanism results in a reactive, intelligent and `instructible' telerobot. We describe our approach for an intelligent assistive telerobotic system (MUSIIC) for unstructured environments: speech-deictic gesture control integrated with a knowledge-driven reactive planner and a stereo-vision system.

  8. Telerobotic system performance measurement: motivation and methods

    NASA Astrophysics Data System (ADS)

    Kondraske, George V.; Khoury, George J.

    1992-11-01

    Telerobotic systems (TRSs) and shared teleautonomous systems result from the integration of multiple sophisticated modules. Procedures used in systems integration design decision-making of such systems are frequently ad hoc compared to more quantitative and systematic methods employed elsewhere in engineering. Experimental findings associated with verification and validation (V&V) are often application-specific. Furthermore, models and measurement strategies do not exist which allow prediction of overall TRS performance in a given task based on knowledge of the performance characteristics of individual subsystems. This paper introduces the use of general systems performance theory (GSPT), developed by the senior author to help resolve similar problems in human performance, as a basis for: (1) measurement of overall TRS performance (viewing all system components, including the operator, as a single entity); (2) task decomposition; (3) development of a generic TRS model; and (4) the characterization of performance of subsystems comprising the generic model. GSPT uses a resource construct to model performance and resource economic principles to govern the interface of systems to tasks. It provides a comprehensive modeling/measurement strategy applicable to complex systems including both human and artificial components. Application is presented in the context of a distributed telerobotics network (Universities Space Automation and Robotics Consortium) as a testbed. Insight into the design of test protocols which elicit application-independent data (i.e., multi-purpose or reusable) is described. Although the work is motivated by space automation and robotics challenges, it is considered to be applicable to telerobotic systems in general.

  9. Challenges of Human-Robot Communication in Telerobotics

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.

    1996-01-01

    Some general considerations are presented on bilateral human-telerobot control and information communication issues. Advances are reviewed related to the more conventional human-telerobot communication techniques, and some unconventional but promising communication methods are briefly discussed. Future needs and emerging application domains are briefly indicated.

  10. Design evolution of a telerobotic servicer through neutral buoyancy simulation

    NASA Technical Reports Server (NTRS)

    Akin, David L.; Howard, Russell D.; Smith, Jennifer A.; Graves, Joseph

    1992-01-01

    This paper briefly recounts the history of telerobotic vehicles in the Space Systems Laboratory. Based on this overview, the design of two vehicles are examined in depth, and directly compared. The Beam Assembly Teleoperator was the first true telerobot designed be the Space Systems Laboratory, and has been used extensively for six years. Ranger is the newest telerobot of the SSL, and is currently under development for operational testing in the summer of 1992. The primary focus of this paper is to compare and contrast the design details of these two telerobots, and to examine in some detail the evolution of design knowledge on some telerobots gained over the years of neutral buoyancy testing in the SSL.

  11. Construction and demonstration of a 9-string 6 DOF force reflecting joystick for telerobotics

    NASA Technical Reports Server (NTRS)

    Lindemann, Randel; Tesar, Delbert

    1989-01-01

    Confrontation with difficult manipulation tasks in hostile environments such as space, has led to the development of means to transport the human's senses, skills and cognition to the remote site. The use of advanced Telerobotics to achieve this goal is examined. A novel and universal hand controller based on a fully parallel mechanical architecture is discussed. The design and implementation of this 6 DOF force reflecting joystick is shown in relationship to the general philosophy of achieving telepresence in a man-machine system.

  12. NASA Laboratory telerobotic manipulator control system architecture

    NASA Technical Reports Server (NTRS)

    Rowe, J. C.; Butler, P. L.; Glassell, R. L.; Herndon, J. N.

    1991-01-01

    In support of the National Aeronautics and Space Administration (NASA) goals to increase the utilization of dexterous robotic systems in space, the Oak Ridge National Laboratory (ORNL) has developed the Laboratory Telerobotic Manipulator (LTM) system. It is a dexterous, dual-arm, force reflecting teleoperator system with robotic features for NASA ground-based research. This paper describes the overall control system architecture, including both the hardware and software. The control system is a distributed, modular, and hierarchical design with flexible expansion capabilities for future enhancements of both the hardware and software.

  13. Dual use display systems for telerobotics

    NASA Technical Reports Server (NTRS)

    Massimino, Michael J.; Meschler, Michael F.; Rodriguez, Alberto A.

    1994-01-01

    This paper describes a telerobotics display system, the Multi-mode Manipulator Display System (MMDS), that has applications for a variety of remotely controlled tasks. Designed primarily to assist astronauts with the control of space robotics systems, the MMDS has applications for ground control of space robotics as well as for toxic waste cleanup, undersea, remotely operated vehicles, and other environments which require remote operations. The MMDS has three modes: (1) Manipulator Position Display (MPD) mode, (2) Joint Angle Display (JAD) mode, and (3) Sensory Substitution (SS) mode. These three modes are discussed in the paper.

  14. A distributed telerobotics system for space operations

    NASA Technical Reports Server (NTRS)

    Wise, James D.; Ciscon, Lawrence A.; Graves, Sean

    1992-01-01

    Robotic systems for space operations will require a combination of teleoperation, closely supervised autonomy, and loosely supervised autonomy. They may involve multiple robots, multiple controlling sites, and long communication delays. We have constructed a distributed telerobotics system as a framework for studying these problems. Our system is based on a modular interconnection scheme which allows the components of either manual or autonomous control systems to communicate and share information. It uses a wide area network to connect robots and operators at several different sites. This presentation will describe the structure of our system, the components used in our configurations, and results of some of our teleoperation experiments.

  15. Visual Information Processing for Television and Telerobotics

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Park, Stephen K. (Editor)

    1989-01-01

    This publication is a compilation of the papers presented at the NASA conference on Visual Information Processing for Television and Telerobotics. The conference was held at the Williamsburg Hilton, Williamsburg, Virginia on May 10 to 12, 1989. The conference was sponsored jointly by NASA Offices of Aeronautics and Space Technology (OAST) and Space Science and Applications (OSSA) and the NASA Langley Research Center. The presentations were grouped into three sessions: Image Gathering, Coding, and Advanced Concepts; Systems; and Technologies. The program was organized to provide a forum in which researchers from industry, universities, and government could be brought together to discuss the state of knowledge in image gathering, coding, and processing methods.

  16. Telerobotics with whole arm collision avoidance

    SciTech Connect

    Wilhelmsen, K.; Strenn, S.

    1993-09-01

    The complexity of teleorbotic operations in a cluttered environment is exacerbated by the need to present collision information to the operator in an understandable fashion. In addition to preventing movements which will cause collisions, a system providing some form of virtual force reflection (VFR) is desirable. With this goal in mind, Lawrence Livermore National Laboratory (LLNL) has installed a kinematically master/slave system and developed a whole arm collision avoidance system which interacts directly with the telerobotic controller. LLNL has also provided a structure to allow for automated upgrades of workcell models and provide collision avoidance even in a dynamically changing workcell.

  17. Comparison of two different running models for the shock wave lithotripsy machine in Taipei City Hospital: self-support versus outsourcing cooperation.

    PubMed

    Huang, Chi-Yi; Chen, Shiou-Sheng; Chen, Li-Kuei

    2009-10-01

    To compare two different running models including self-support and outsourcing cooperation for the extracorporeal shock wave lithotripsy (SWL) machine in Taipei City Hospital, we made a retrospective study. Self-support means that the hospital has to buy an SWL machine and get all the payment from SWL. In outsourcing cooperation, the cooperative company provides an SWL machine and shares the payment with the hospital. Between January 2002 and December 2006, we used self-support for the SWL machine, and from January 2007 to December 2008, we used outsourcing cooperation. We used the method of full costing to calculate the cost of SWL, and the break-even point was the lowest number of treatment sessions of SWL to make balance of payments every month. Quality parameters including stone-free rate, retreatment rate, additional procedures and complication rate were evaluated. When outsourcing cooperation was used, there were significantly more treatment sessions of SWL every month than when utilizing self-support (36.3 +/- 5.1 vs. 48.1 +/- 8.4, P = 0.03). The cost of SWL for every treatment session was significantly higher using self-support than with outsourcing cooperation (25027.5 +/- 1789.8 NT$ vs. 21367.4 +/- 201.0 NT$). The break-even point was 28.3 (treatment sessions) for self-support, and 28.4 for outsourcing cooperation, when the hospital got 40% of the payment, which would decrease if the percentage increased. No significant differences were noticed for stone-free rate, retreatment rate, additional procedures and complication rate of SWL between the two running models. Besides, outsourcing cooperation had lower cost (every treatment session), but a greater number of treatment sessions of SWL every month than self-support.

  18. Open control/display system for a telerobotics work station

    NASA Technical Reports Server (NTRS)

    Keslowitz, Saul

    1987-01-01

    A working Advanced Space Cockpit was developed that integrated advanced control and display devices into a state-of-the-art multimicroprocessor hardware configuration, using window graphics and running under an object-oriented, multitasking real-time operating system environment. This Open Control/Display System supports the idea that the operator should be able to interactively monitor, select, control, and display information about many payloads aboard the Space Station using sets of I/O devices with a single, software-reconfigurable workstation. This is done while maintaining system consistency, yet the system is completely open to accept new additions and advances in hardware and software. The Advanced Space Cockpit, linked to Grumman's Hybrid Computing Facility and Large Amplitude Space Simulator (LASS), was used to test the Open Control/Display System via full-scale simulation of the following tasks: telerobotic truss assembly, RCS and thermal bus servicing, CMG changeout, RMS constrained motion and space constructible radiator assembly, HPA coordinated control, and OMV docking and tumbling satellite retrieval. The proposed man-machine interface standard discussed has evolved through many iterations of the tasks, and is based on feedback from NASA and Air Force personnel who performed those tasks in the LASS.

  19. Telerobotic excavation system for unexploded ordnance retrieval

    SciTech Connect

    Burks, B.L.; Killough, S.M.; Thompson, D.H.; Rossi, R.A.

    1994-12-31

    The small emplacement excavator (SEE) is a ruggedized military vehicle with backhoe and front loader used by the US Army for unexploded ordnance (UXO) retrieval and general utility excavation activities. In order to evaluate the feasibility of removing personnel from the vehicle during high-risk excavation tasks a development and demonstration project was initiated to evaluate performance capabilities of the SEE under telerobotic control. A technology demonstration of the TSEE was conducted at McKinley Range, Redstone Arsenal, Huntsville, Alabama on 13--17 September, 1993. The primary objective of the demonstration was to evaluate and demonstrate the feasibility of remote UXO retrieval. During the demonstration, explosive ordnance disposal specialists were instructed on telerobotic operation of the TSEE, and then were asked to complete a simulated UXO retrieval task. Participants then submitted an evaluation of the system including human factors performance data. This presentation will describe the TSEE, retrieval demonstration, and summarize results of the performance evaluations. Some examples of the results are given below. Seventy percent of the demonstration participants found the tasks were as easy or easier to accomplish utilizing the remote system than with an unmodified system. Similarly, eighty percent of the participants found the TSEE hand controller was as easy or easier to use than the normal manual controls.

  20. Cooperative control of visual displays for telemanipulation

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Stark, Lawrence W.

    1989-01-01

    Two cooperative control schemes for telerobot visual displays are addressed. In the first scheme, on-the-screen visual enhancements such as reference lines indicating the vertical height of the robot hand, a stick figure model of the robot hand, and its projection on the horizontal grid plane are constructed by the interactive cooperation between the human operator and the telerobotic system, and then superimposed on the video screen. Experimental results with a five-degree-of-freedom robot and a frame grabber indicate that superimposition of visual enhancements on the video screen greatly improves telemanipulation task performance. In the second scheme, the position and orientation of an object on video screens are determined interactively; these then assist the telerobotic system in executing the human operator's task-level commands autonomously.

  1. Telerobotic manipulator developments for ground-based space research

    NASA Technical Reports Server (NTRS)

    Herndon, J. N.; Babcock, S. M.; Butler, P. L.; Costello, H. M.; Glassell, R. L.; Kress, Reid L.; Kuban, D. P.; Rowe, J. C.; Williams, D. M.; Meintel, A. J.

    1988-01-01

    New opportunities for the application of telerobotic systems to enhance human intelligence and dexterity in the hazardous environment of space are presented by the National Aeronautics and Space Administration (NASA) Space Station Program. Because of the need for significant increases in extravehicular activity and the potential increase in hazards associated with space programs, emphasis is being heightened on telerobotic systems research and development. The Automation Technology Branch at NASA Langley Research Center currently is sponsoring the Laboratory Telerobotic Manipulator (LTM) program at Oak Ridge National Laboratory to develop and demonstrate ground-based telerobotic manipulator system hardware for research and demonstrations aimed at future NASA applications. The LTM incorporates traction drives, modularity, redundant kinematics, and state-of-the-art hierarchical control techniques to form a basis for merging the diverse technological domains of robust, high-dexterity teleoperations and autonomous robotic operation into common hardware to further NASA's research.

  2. A Telerobot to Extend the Skill of Microsurgeons

    NASA Technical Reports Server (NTRS)

    Das, H.; Ohm, T.; Boswell, C.; Rodriguez, G.; Steele, R.; Charles, S.

    1998-01-01

    The engineering details of the Robot Assisted MicroSurgery (RAMS) telerobotic system designed to assist microsurgeons improve the precision and dexterity with which they can position surgical instruments is described in this paper.

  3. Planning and reasoning in the JPL telerobot testbed

    NASA Technical Reports Server (NTRS)

    Peters, Stephen; Mittman, David; Collins, Carol; Omeara, Jacquie; Rokey, Mark

    1990-01-01

    The Telerobot Interactive Planning System is developed to serve as the highest autonomous-control level of the Telerobot Testbed. A recent prototype is described which integrates an operator interface for supervisory control, a task planner supporting disassembly and re-assembly operations, and a spatial planner for collision-free manipulator motion through the workspace. Each of these components is described in detail. Descriptions of the technical problem, approach, and lessons learned are included.

  4. Telerobotic rendezvous and docking vision system architecture

    NASA Technical Reports Server (NTRS)

    Gravely, Ben; Myers, Donald; Moody, David

    1992-01-01

    This research program has successfully demonstrated a new target label architecture that allows a microcomputer to determine the position, orientation, and identity of an object. It contains a CAD-like database with specific geometric information about the object for approach, grasping, and docking maneuvers. Successful demonstrations were performed selecting and docking an ORU box with either of two ORU receptacles. Small, but significant differences were seen in the two camera types used in the program, and camera sensitive program elements have been identified. The software has been formatted into a new co-autonomy system which provides various levels of operator interaction and promises to allow effective application of telerobotic systems while code improvements are continuing.

  5. Flight telerobotic servicer control from the Orbiter

    NASA Technical Reports Server (NTRS)

    Ward, Texas M.; Harlan, Don L.

    1989-01-01

    The research and work conducted on the development of a testbed for a display and control panel for the Flight Telerobotic Servicer (FTS) are presented. Research was conducted on both software and hardware needed to control the FTS. A breadboard was constructed and placed into a mockup of the aft station of the Orbiter spacecraft. This breadboard concept was then evaluated using a computer graphics representation of the Tinman FTS. Extensive research was conducted on the software requirements and implementation. The hardware selected for the breadboard was 'flight like' and in some cases fit and function evaluated. The breadboard team studied some of the concepts without pursuing in depth their impact on the Orbiter or other missions. Assumptions are made concerning payload integration.

  6. Micro-telerobotic surgical system for microsurgery.

    PubMed

    Kozlowski, D M; Morimoto, A K; Charles, S T

    1997-01-01

    Modern surgical methods which utilize microscopes have allowed medical professionals to visualize the surgical field on the order of microns. This new found visual capacity has created a performance gap between a surgeon's visual skills and manipulative skills that surgical robotics have the capability to remedy. Robotics can be used as an aid to the surgeon to help correct natural human dexterity problems such as tremor and resolution of motion. Devices that would benefit surgical dexterity at the micron scale are in development at Sandia National Laboratories. A six degree-of-freedom (DOF) force reflecting telerobotic manipulator has been designed and developed for use in microsurgical applications. The system utilizes a unique mechanical platform, actuation schemes, and controller that provides high positional precision while maintaining high frequency response for implementation of force feedback. Thus, the same device is used to form a master-slave telerobotic arrangement to assist the surgeon. This makes the system very intuitive to the surgeon and easier to implement for the engineer. The system utilizes high performance Digital Signal Processors (DSP) for control of both the master and slave platforms. Six dimensional force information is obtained from transducers located at the end effectors of both the master and slave. Two distinctly different types of motors are currently being evaluated, as well as several types of control algorithms. Position scaling, force scaling, and tremor filtering are being implemented in the DSP control software. Control parameters are based upon system frequency response testing. Results from our system identification and performance testing will be discussed.

  7. Comparison of two human-machine-interfaces for cooperative maneuver-based driving.

    PubMed

    Franz, Benjamin; Kauer, Michaela; Blanke, Anton; Schreiber, Michael; Bruder, Ralph; Geyer, Sebastian

    2012-01-01

    In the project "Conduct-by-Wire" which is founded by the German Research Foundation (DFG) cooperative maneuver based driving is examined. In this paper two different input devices (gesture recognition and tactile touch display) are compared in a simulator study with 29 participants. It shows that the major advantage of the gesture recognition is that there is no need for the driver to take his gaze off the road. In contrast, the number of gazes at the tactile touch display is significantly higher. The major advantage of the tactile touch display is that no input errors occurred during the test drives. Conversely, the gesture recognition was significantly worse. Nevertheless, further work is needed to decide which input device is the best.

  8. Telerobot local-remote control architecture for space flight program applications

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne; Backes, Paul; Steele, Robert; Long, Mark; Bon, Bruce; Beahan, John

    1993-01-01

    The JPL Supervisory Telerobotics (STELER) Laboratory has developed and demonstrated a unique local-remote robot control architecture which enables management of intermittent communication bus latencies and delays such as those expected for ground-remote operation of Space Station robotic systems via the Tracking and Data Relay Satellite System (TDRSS) communication platform. The current work at JPL in this area has focused on enhancing the technologies and transferring the control architecture to hardware and software environments which are more compatible with projected ground and space operational environments. At the local site, the operator updates the remote worksite model using stereo video and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. This capability runs on a single Silicon Graphics Inc. machine. The operator can employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the intended object. The remote site controller, called the Modular Telerobot Task Execution System (MOTES), runs in a multi-processor VME environment and performs the task sequencing, task execution, trajectory generation, closed loop force/torque control, task parameter monitoring, and reflex action. This paper describes the new STELER architecture implementation, and also documents the results of the recent autonomous docking task execution using the local site and MOTES.

  9. An expert system for planning and scheduling in a telerobotic environment

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.; Park, Eui H.

    1991-01-01

    A knowledge based approach to assigning tasks to multi-agents working cooperatively in jobs that require a telerobot in the loop was developed. The generality of the approach allows for such a concept to be applied in a nonteleoperational domain. The planning architecture known as the task oriented planner (TOP) uses the principle of flow mechanism and the concept of planning by deliberation to preserve and use knowledge about a particular task. The TOP is an open ended architecture developed with a NEXPERT expert system shell and its knowledge organization allows for indirect consultation at various levels of task abstraction. Considering that a telerobot operates in a hostile and nonstructured environment, task scheduling should respond to environmental changes. A general heuristic was developed for scheduling jobs with the TOP system. The technique is not to optimize a given scheduling criterion as in classical job and/or flow shop problems. For a teleoperation job schedule, criteria are situation dependent. A criterion selection is fuzzily embedded in the task-skill matrix computation. However, goal achievement with minimum expected risk to the human operator is emphasized.

  10. Label-free and dual-amplified detection of protein via small molecule-ligand linked DNA and a cooperative DNA machine.

    PubMed

    Li, Pei; Wang, Lei; Zhu, Jing; Wu, Yushu; Jiang, Wei

    2015-10-15

    Sensitive detection of protein is essential for both molecular diagnostics and biomedical research. Here, taking folate receptor as the model analyte, we developed a label-free and dual-amplified strategy via small molecular-ligand linked DNA and a cooperative DNA machine which could perform primary amplification and mediate secondary amplification simultaneously. Firstly, the specific binding of folate receptor to the small-molecule folate which linked to a trigger DNA could protect the trigger DNA from exonuclease I digestion, translating folate receptor detection into trigger DNA detection. Subsequently, trigger DNA initiated the DNA machine through hybridizing with the hairpin of the DNA machine, resulting in hairpin conformational change and stem open. The open stem further hybridized with a primer which initiated circular strand-displacement polymerization reaction; meanwhile the rolling circle amplification templates which were initially blocked in the DNA machine were liberated to mediate rolling circle amplification. In such a working model, the DNA machine achieved cooperatively controlling circular strand-displacement polymerization reaction and rolling circle amplification, realizing dual-amplification. Finally, the rolling circle amplification process synthesized a long repeated G-quadruplex sequence, which strongly interacted with N-methyl mesoporphyrin IX, bringing label-free fluorescence signal. This strategy could detect folate receptor as low as 0.23 pM. A recovery over 90% was obtained when folate receptor was detected in spiked human serum, demonstrating the feasibility of this detection strategy in biological samples.

  11. Ground operation of space-based telerobots will enhance productivity

    NASA Technical Reports Server (NTRS)

    Schober, Wayne R.

    1988-01-01

    Due to the limited human resources which will be available on the U.S. Space Station, automation and robotics technologies are being developed to enhance the productivity on the Space Station. The need for space telerobots which can be operated from the ground is explored, taking into consideration the resulting time delay, the technology involved, and some currently planned experiments. The proposed experiments include a remote link with the Kennedy Space Center robotics laboratory and the Telerobot Intelligent Interface Flight Experiment (TRIIFEX). It is concluded that there is a need to develop and implement ground-remote telerobotics technology which can effectively operate in the time-delay environment. This capability will enable servicing operations in polar and geosynchronous orbits and assist EVA astronauts on the Space Station.

  12. The effect of monocular target blur on simulated telerobotic manipulation

    NASA Technical Reports Server (NTRS)

    Liu, Andrew; Stark, Lawrence

    1991-01-01

    A simulation involving three types of telerobotic tasks that require information about the spatial position of objects is reported. This is similar to the results of psychophysical experiments examining the effect of blur on stereoacuity. It is suggested that other psychophysical experimental results could be used to predict operator performance for other telerobotic tasks. It is demonstrated that refractive errors in the helmet-mounted stereo display system can affect performance in the three types of telerobotic tasks. The results of two sets of experiments indicate that monocular target blur of two diopters or more degrades stereo display performance to the level of monocular displays. This indicates that moderate levels of visual degradation that affect the operator's stereoacuity may eliminate the performance advantage of stereo displays.

  13. Telerobotics: A simulation facility for university research

    NASA Technical Reports Server (NTRS)

    Stark, L.; Kim, W.; Tendick, F.; Tyler, M.; Hannaford, B.; Barakat, W.; Bergengruen, O.; Braddi, L.; Eisenberg, J.; Ellis, S.

    1987-01-01

    An experimental telerobotics (TR) simulation suitable for studying human operator (H.O.) performance is described. Simple manipulator pick-and-place and tracking tasks allowed quantitative comparison of a number of calligraphic display viewing conditions. A number of control modes could be compared in this TR simulation, including displacement, rate and acceleratory control using position and force joysticks. A homeomorphic controller turned out to be no better than joysticks; the adaptive properties of the H.O. can apparently permit quite good control over a variety of controller configurations and control modes. Training by optimal control example seemed helpful in preliminary experiments. An introduced communication delay was found to produce decrease in performance. In considerable part, this difficulty could be compensated for by preview control information. That neurological control of normal human movement contains a data period of 0.2 second may relate to this robustness of H.O. control to delay. The Ames-Berkeley enhanced perspective display was utilized in conjunction with an experimental helmet mounted display system (HMD) that provided stereoscopic enhanced views.

  14. Fuzzy logic control of telerobot manipulators

    NASA Technical Reports Server (NTRS)

    Franke, Ernest A.; Nedungadi, Ashok

    1992-01-01

    Telerobot systems for advanced applications will require manipulators with redundant 'degrees of freedom' (DOF) that are capable of adapting manipulator configurations to avoid obstacles while achieving the user specified goal. Conventional methods for control of manipulators (based on solution of the inverse kinematics) cannot be easily extended to these situations. Fuzzy logic control offers a possible solution to these needs. A current research program at SRI developed a fuzzy logic controller for a redundant, 4 DOF, planar manipulator. The manipulator end point trajectory can be specified by either a computer program (robot mode) or by manual input (teleoperator). The approach used expresses end-point error and the location of manipulator joints as fuzzy variables. Joint motions are determined by a fuzzy rule set without requiring solution of the inverse kinematics. Additional rules for sensor data, obstacle avoidance and preferred manipulator configuration, e.g., 'righty' or 'lefty', are easily accommodated. The procedure used to generate the fuzzy rules can be extended to higher DOF systems.

  15. Telerobotic on-orbit remote fluid resupply system

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The development of a telerobotic on-orbit fluid resupply demonstration system is described. A fluid transfer demonstration system was developed which functionally simulates operations required to remotely transfer fluids (liquids or gases) from a servicing spacecraft to a receiving spacecraft through the use of telerobotic manipulations. The fluid system is representative of systems used by current or planned spacecraft and propulsion stages requiring on-orbit remote resupply. The system was integrated with an existing MSFC remotely controlled manipulator arm to mate/demate couplings for demonstration and evaluation of a complete remotely operated fluid transfer system.

  16. Telerobotics for Human Exploration: Enhancing Crew Capabilities in Deep Space

    NASA Technical Reports Server (NTRS)

    Fong, Terrence

    2013-01-01

    Future space missions in Earth orbit, to the Moon, and to other distant destinations offer many new opportunities for exploration. But, astronaut time will always be limited and some work will not be feasible or efficient for humans to perform manually. Telerobots, however, can complement human explorers, performing work under remote control from Earth, orbit or nearby habitats. A central challenge, therefore, is to understand how humans and remotely operated robots can be jointly employed to maximize mission performance and success. This presentation provides an overview of the key issues with using telerobots for human exploration.

  17. Task oriented nonlinear control laws for telerobotic assembly operations

    NASA Technical Reports Server (NTRS)

    Walker, R. A.; Ward, L. S.; Elia, C. F.

    1987-01-01

    The goal of this research is to achieve very intelligent telerobotic controllers which are capable of receiving high-level commands from the human operator and implementing them in an adaptive manner in the object/task/manipulator workspace. Initiatives by the authors at Integrated Systems, Inc. to identify and develop the key technologies necessary to create such a flexible, highly programmable, telerobotic controller are presented. The focus of the discussion is on the modeling of insertion tasks in three dimensions and nonlinear implicit force feedback control laws which incorporate tool/workspace constraints. Preliminary experiments with dual arm beam assembly in 2-D are presented.

  18. Maximizing Performance Of A Telerobot With Minimal Software

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Long, Mark K.; Steele, Robert D.

    1994-01-01

    Control software system of seven-degree-of-freedom telerobot designed to elicit maximum performance from minimal, fixed-software computer at remote robot site. Includes multiple control modules, each providing parameter-driven control of specified aspect of behavior of telerobot. Software system runs in Ada language on multiple 68020 processors or potentially on single central processing unit. Conceived for use in outer space, also proves useful in underwater construction and inspection, handling of materials in nuclear facilities, and cleaning up hazardous materials.

  19. A new six-degree-of-freedom force-reflecting hand controller for space telerobotics

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas; Snow, Edward; Townsend, William; Robinson, Lee; Hanson, Joe

    1990-01-01

    A new 6 degree of freedom universal Force Reflecting Hand Controller (FRHC) was designed for use as the man-machine interface in teleoperated and telerobotic flight systems. The features of this new design include highly intuitive operation, excellent kinesthetic feedback, high fidelity force/torque feedback, a kinematically simple structure, mechanically decoupled motion in all 6 DOF, good back-drivability, and zero backlash. In addition, the new design has a much larger work envelope, smaller stowage volume, greater stiffness and responsiveness, and better overlap of the human operator's range of motion than do previous designs. The utility and basic operation of a new, flight prototype FRHC called the Model X is briefly discussed. The design heritage, general design goals, and design implementation of this advanced new generation of FRHCs are presented, followed by a discussion of basic features and the results of initial testing.

  20. Man/Machine Interaction Dynamics And Performance (MMIDAP) capability

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    1991-01-01

    The creation of an ability to study interaction dynamics between a machine and its human operator can be approached from a myriad of directions. The Man/Machine Interaction Dynamics and Performance (MMIDAP) project seeks to create an ability to study the consequences of machine design alternatives relative to the performance of both machine and operator. The class of machines to which this study is directed includes those that require the intelligent physical exertions of a human operator. While Goddard's Flight Telerobotic's program was expected to be a major user, basic engineering design and biomedical applications reach far beyond telerobotics. Ongoing efforts are outlined of the GSFC and its University and small business collaborators to integrate both human performance and musculoskeletal data bases with analysis capabilities necessary to enable the study of dynamic actions, reactions, and performance of coupled machine/operator systems.

  1. Telerobotics Workstation (TRWS) for Deep Space Habitats

    NASA Technical Reports Server (NTRS)

    Mittman, David S.; Howe, Alan S.; Tores, Recaredo J.; Rochlis, Jennifer L.; Hambuchen, Kimberly A.; Demel, Matthew; Chapman, Christopher C.

    2012-01-01

    On medium- to long-duration human spaceflight missions, latency in communications from Earth could reduce efficiency or hinder local operations, control, and monitoring of the various mission vehicles and other elements. Regardless of the degree of autonomy of any one particular element, a means of monitoring and controlling the elements in real time based on mission needs would increase efficiency and response times for their operation. Since human crews would be present locally, a local means for monitoring and controlling all the various mission elements is needed, particularly for robotic elements where response to interesting scientific features in the environment might need near- instantaneous manipulation and control. One of the elements proposed for medium- and long-duration human spaceflight missions, the Deep Space Habitat (DSH), is intended to be used as a remote residence and working volume for human crews. The proposed solution for local monitoring and control would be to provide a workstation within the DSH where local crews can operate local vehicles and robotic elements with little to no latency. The Telerobotics Workstation (TRWS) is a multi-display computer workstation mounted in a dedicated location within the DSH that can be adjusted for a variety of configurations as required. From an Intra-Vehicular Activity (IVA) location, the TRWS uses the Robot Application Programming Interface Delegate (RAPID) control environment through the local network to remotely monitor and control vehicles and robotic assets located outside the pressurized volume in the immediate vicinity or at low-latency distances from the habitat. The multiple display area of the TRWS allows the crew to have numerous windows open with live video feeds, control windows, and data browsers, as well as local monitoring and control of the DSH and associated systems.

  2. Custom electronic subsystems for the Laboratory Telerobotic Manipulator

    SciTech Connect

    Glassell, R.L.; Butler, P.L.; Rowe, J.C. ); Zimmermann, S.D. )

    1990-01-01

    The National Aeronautics and Space Administration (NASA) Space Station Program presents new opportunities for the application of telerobotic and robotic systems. The Laboratory Telerobotic Manipulator (LTM) is a highly advanced 7 degrees-of-freedom (DOF) telerobotic/robotic manipulator. It was developed and built for the Automation Technology Branch at NASA's Langley Research Center (LaRC) for work in research and to demonstrate ground-based telerobotic manipulator system hardware and software systems for future NASA applications in the hazardous environment of space. The LTM manipulator uses an embedded wiring design with all electronics, motor power, and control and communication cables passing through the pitch-yaw differential joints. This design requires the number of cables passing through the pitch/yaw joint to be kept to a minimum. To eliminate the cables needed to carry each pitch-yaw joint's sensor data to the VME control computers, a custom-embedded electronics package for each manipulator joint was developed. The electronics package collects and sends the joint's sensor data to the VME control computers over a fiber optic cable. The electronics package consist of five individual subsystems: the VME Link Processor, the Joint Processor and the Joint Processor power supply in the joint module, the fiber optics communications system, and the electronics and motor power cabling. 3 refs., 3 figs.

  3. Mars Surface Operations via Low-Latency Telerobotics from Phobos

    NASA Technical Reports Server (NTRS)

    Wright, Michael; Lupisella, Mark

    2016-01-01

    To help assess the feasibility and timing of Low-Latency Telerobotics (LLT) operations on Mars via a Phobos telecommand base, operations concepts (ops cons) and timelines for several representative sequences for Mars surface operations have been developed. A summary of these LLT sequences and timelines will be presented, along with associated assumptions, operational considerations, and challenges.

  4. Custom electronic subsystems for the laboratory telerobotic manipulator

    NASA Technical Reports Server (NTRS)

    Glassell, R. L.; Butler, P. L.; Rowe, J. C.; Zimmermann, S. D.

    1990-01-01

    The National Aeronautics and Space Administration (NASA) Space Station Program presents new opportunities for the application of telerobotic and robotic systems. The Laboratory Telerobotic Manipulator (LTM) is a highly advanced 7 degrees-of-freedom (DOF) telerobotic/robotic manipulator. It was developed and built for the Automation Technology Branch at NASA's Langley Research Center (LaRC) for work in research and to demonstrate ground-based telerobotic manipulator system hardware and software systems for future NASA applications in the hazardous environment of space. The LTM manipulator uses an embedded wiring design with all electronics, motor power, and control and communication cables passing through the pitch-yaw differential joints. This design requires the number of cables passing through the pitch/yaw joint to be kept to a minimum. To eliminate the cables needed to carry each pitch-yaw joint's sensor data to the VME control computers, a custom-embedded electronics package for each manipulator joint was developed. The electronics package collects and sends the joint's sensor data to the VME control computers over a fiber optic cable. The electronics package consist of five individual subsystems: the VME Link Processor, the Joint Processor and the Joint Processor power supply in the joint module, the fiber optics communications system, and the electronics and motor power cabling.

  5. A run-time control architecture for the JPL telerobot

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Lokshin, A.; Kreutz, K.; Beahan, J.

    1987-01-01

    An architecture for implementing the process-level decision making for a hierarchically structured telerobot currently being implemented at the Jet Propolusion Laboratory (JPL) is described. Constraints on the architecture design, architecture partitioning concepts, and a detailed description of the existing and proposed implementations are provided.

  6. Medical telerobotic systems: current status and future trends.

    PubMed

    Avgousti, Sotiris; Christoforou, Eftychios G; Panayides, Andreas S; Voskarides, Sotos; Novales, Cyril; Nouaille, Laurence; Pattichis, Constantinos S; Vieyres, Pierre

    2016-08-12

    Teleoperated medical robotic systems allow procedures such as surgeries, treatments, and diagnoses to be conducted across short or long distances while utilizing wired and/or wireless communication networks. This study presents a systematic review of the relevant literature between the years 2004 and 2015, focusing on medical teleoperated robotic systems which have witnessed tremendous growth over the examined period. A thorough insight of telerobotics systems discussing design concepts, enabling technologies (namely robotic manipulation, telecommunications, and vision systems), and potential applications in clinical practice is provided, while existing limitations and future trends are also highlighted. A representative paradigm of the short-distance case is the da Vinci Surgical System which is described in order to highlight relevant issues. The long-distance telerobotics concept is exemplified through a case study on diagnostic ultrasound scanning. Moreover, the present review provides a classification into short- and long-distance telerobotic systems, depending on the distance from which they are operated. Telerobotic systems are further categorized with respect to their application field. For the reviewed systems are also examined their engineering characteristics and the employed robotics technology. The current status of the field, its significance, the potential, as well as the challenges that lie ahead are thoroughly discussed.

  7. Experiences with the JPL telerobot testbed: Issues and insights

    NASA Technical Reports Server (NTRS)

    Stone, Henry W.; Balaram, Bob; Beahan, John

    1989-01-01

    The Jet Propulsion Laboratory's (JPL) Telerobot Testbed is an integrated robotic testbed used to develop, implement, and evaluate the performance of advanced concepts in autonomous, tele-autonomous, and tele-operated control of robotic manipulators. Using the Telerobot Testbed, researchers demonstrated several of the capabilities and technological advances in the control and integration of robotic systems which have been under development at JPL for several years. In particular, the Telerobot Testbed was recently employed to perform a near completely automated, end-to-end, satellite grapple and repair sequence. The task of integrating existing as well as new concepts in robot control into the Telerobot Testbed has been a very difficult and timely one. Now that researchers have completed the first major milestone (i.e., the end-to-end demonstration) it is important to reflect back upon experiences and to collect the knowledge that has been gained so that improvements can be made to the existing system. It is also believed that the experiences are of value to the others in the robotics community. Therefore, the primary objective here will be to use the Telerobot Testbed as a case study to identify real problems and technological gaps which exist in the areas of robotics and in particular systems integration. Such problems have surely hindered the development of what could be reasonably called an intelligent robot. In addition to identifying such problems, researchers briefly discuss what approaches have been taken to resolve them or, in several cases, to circumvent them until better approaches can be developed.

  8. The use of graphics in the design of the human-telerobot interface

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Smith, Randy L.

    1989-01-01

    The Man-Systems Telerobotics Laboratory (MSTL) of NASA's Johnson Space Center employs computer graphics tools in their design and evaluation of the Flight Telerobotic Servicer (FTS) human/telerobot interface on the Shuttle and on the Space Station. It has been determined by the MSTL that the use of computer graphics can promote more expedient and less costly design endeavors. Several specific examples of computer graphics applied to the FTS user interface by the MSTL are described.

  9. Development of a low-cost free-flying telerobotic space flight vehicle

    NASA Technical Reports Server (NTRS)

    Akin, D.; Howard, R.; Smith, J.; Graves, J.; Gefke, G.

    1992-01-01

    Ranger, a low-cost moderate-risk high-return telerobotics flight experiment, is discussed. Range incorporates two manipulators, a grappling arm, and a camera-positioning manipulator all mounted on a free-flying base with limited orbital maneuvering capability. Ranger will provide data on neutral buoyancy simulations, advanced telerobotics control and design, remote maneuvering, human factors involved in ground-based control of space telerobotics, and advanced small spacecraft technology.

  10. NASA's Space Launch System: Positioning Assets for Tele-Robotic Operations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.; Robinson, Kimberly F.

    2013-01-01

    The National Aeronautics and Space Administration (NASA) is designing and developing America's most capable launch vehicle to support high-priority human and scientific exploration beyond Earth's orbit. The Space Launch System (SLS) will initially lift 70 metric tons (t) on its first flights, slated to begin in 2017, and will be evolved after 2021 to a full 130-t capability-larger than the Saturn V Moon rocket. This superior lift and associated volume capacity will support game-changing exploration in regions that were previously unattainable, being too costly and risky to reach. On the International Space Station, astronauts are training for long-duration missions to asteroids and cis-martian regions, but have not had transportation out of Earth's orbit - until now. Simultaneously, productive rovers are sending scientists - and space fans - unprecedented information about the composition and history of Mars, the planet thought to be most like Earth. This combination of experience and information is laying the foundation for future missions, such as those outlined in NASA's "Mars Next Decade" report, that will rely on te1e-robotic operations to take exploration to the next level. Within this paradigm, NASA's Space Launch System stands ready to manifest the unique payloads that will be required for mission success. Ultimately, the ability to position assets - ranging from orbiters, to landers, to communication satellites and surface systems - is a critical step in broadening the reach of technological innovation that will benefit all Earth's people as the Space Age unfolds. This briefing will provide an overview of how the Space Launch System will support delivery of elements for tele-robotic operations at destinations such as the Moon and Mars, which will synchronize the human-machine interface to deliver hybrid on-orbit capabilities. Ultimately, telerobotic operations will open entirely new vistas and the doors of discovery. NASA's Space Launch System will be a

  11. The JPL telerobotic Manipulator Control and Mechanization (MCM) subsystem

    NASA Technical Reports Server (NTRS)

    Hayati, Samad; Lee, Thomas S.; Tso, Kam; Backes, Paul; Kan, Edwin; Lloyd, J.

    1989-01-01

    The Manipulator Control and Mechanization (MCM) subsystem of the telerobot system provides the real-time control of the robot manipulators in autonomous and teleoperated modes and real time input/output for a variety of sensors and actuators. Substantial hardware and software are included in this subsystem which interfaces in the hierarchy of the telerobot system with the other subsystems. The other subsystems are: run time control, task planning and reasoning, sensing and perception, and operator control subsystem. The architecture of the MCM subsystem, its capabilities, and details of various hardware and software elements are described. Important improvements in the MCM subsystem over the first version are: dual arm coordinated trajectory generation and control, addition of integrated teleoperation, shared control capability, replacement of the ultimate controllers with motor controllers, and substantial increase in real time processing capability.

  12. Remote excavation using the telerobotic small emplacement excavator

    SciTech Connect

    Thompson, D.H.; Burks, B.L.; Killough, S.M.

    1993-05-01

    Oak Ridge National Laboratory is developing remote excavation technologies for the Office of Technology Development, Robotics Technology Development Program. This work is being done to meet the need for remote excavation and removal of radioactive and contaminated buried waste at several DOE sites. System requirements are based on the need to uncover and remove waste from burial sites in a way that does not cause unnecessary personnel exposure or additional environmental contamination. Goals for the current project are to demonstrate dexterous control of a backhoe with force feedback and to implement robotic operations that will improve productivity. The Telerobotic Small Emplacement Excavator is a prototype system that incorporates the needed robotic and telerobotic capabilities on a commercially available platform. The ability to add remote dexterous teleoperation and robotic operating modes is intended to be adaptable to other commercially available excavator systems.

  13. Remote excavation using the telerobotic small emplacement excavator

    SciTech Connect

    Thompson, D.H.; Burks, B.L.; Killough, S.M.

    1993-01-01

    Oak Ridge National Laboratory is developing remote excavation technologies for the Office of Technology Development, Robotics Technology Development Program. This work is being done to meet the need for remote excavation and removal of radioactive and contaminated buried waste at several DOE sites. System requirements are based on the need to uncover and remove waste from burial sites in a way that does not cause unnecessary personnel exposure or additional environmental contamination. Goals for the current project are to demonstrate dexterous control of a backhoe with force feedback and to implement robotic operations that will improve productivity. The Telerobotic Small Emplacement Excavator is a prototype system that incorporates the needed robotic and telerobotic capabilities on a commercially available platform. The ability to add remote dexterous teleoperation and robotic operating modes is intended to be adaptable to other commercially available excavator systems.

  14. Designing minimal space telerobotics systems for maximum performance

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Long, Mark K.; Steele, Robert D.

    1992-01-01

    The design of the remote site of a local-remote telerobot control system is described which addresses the constraints of limited computational power available at the remote site control system while providing a large range of control capabilities. The Modular Telerobot Task Execution System (MOTES) provides supervised autonomous control, shared control and teleoperation for a redundant manipulator. The system is capable of nominal task execution as well as monitoring and reflex motion. The MOTES system is minimized while providing a large capability by limiting its functionality to only that which is necessary at the remote site and by utilizing a unified multi-sensor based impedance control scheme. A command interpreter similar to one used on robotic spacecraft is used to interpret commands received from the local site. The system is written in Ada and runs in a VME environment on 68020 processors and initially controls a Robotics Research K1207 7 degree of freedom manipulator.

  15. Thermal feedback in virtual reality and telerobotic systems

    NASA Technical Reports Server (NTRS)

    Zerkus, Mike; Becker, Bill; Ward, Jon; Halvorsen, Lars

    1994-01-01

    A new concept has been developed that allows temperature to be part of the virtual world. The Displaced Temperature Sensing System (DTSS) can 'display' temperature in a virtual reality system.The DTSS can also serve as a feedback device for telerobotics. For virtual reality applications the virtual world software would be required to have a temperature map of its world. By whatever means (magnetic tracker, ultrasound tracker, etc.) the hand and fingers, which have been instrumented with thermodes, would be tracked. The temperature associated with the current position would be transmitted to the DRSS via a serial data link. The DTSS would provide that temperature to the fingers. For telerobotic operation the function of the DTSS is to transmit a temperature from a remote location to the fingers where the temperature can be felt.

  16. The telerobot testbed: An architecture for remote servicing

    NASA Technical Reports Server (NTRS)

    Matijevic, J. R.

    1990-01-01

    The NASA/OAST Telerobot Testbed will reach its next increment in development by the end of FY-89. The testbed will have the capability for: force reflection in teleoperation, shared control, traded control, operator designate and relative update. These five capabilities will be shown in a module release and exchange operation using mockups of Orbital Replacement Units (ORU). This development of the testbed shows examples of the technologies needed for remote servicing, particularly under conditions of delay in transmissions to the servicing site. Here, the following topics are presented: the system architecture of the testbed which incorporates these telerobotic technologies for servicing, the implementation of the five capabilities and the operation of the ORU mockups.

  17. Design for a goal-oriented telerobotic system

    NASA Technical Reports Server (NTRS)

    Will, R. W.; Sliwa, N. O.

    1986-01-01

    Robotic systems will play an increasingly important role in space operations. This paper describes the objective and design of a proposed goal-oriented telerobotic system for space operations. This design effort encompasses the elements of the system executive and user interface, and the distribution and general structure of the knowledge bases, the displays, and the task sequencing. The objective of the design effort is to provide an evolutionary structure for a telerobotic system, i.e., one that can progress from strictly teleoperated through phases of serving as an assistant, a colleague, and an expert, to eventually serve as a truly autonomous unit, requiring only minimal supervision. A preliminary design for such a system involving 'mixed initiative', or the flexible shared control between the human operator and the software system, is complete and described in this paper.

  18. A smart telerobotic system driven by monocular vision

    NASA Technical Reports Server (NTRS)

    Defigueiredo, R. J. P.; Maccato, A.; Wlczek, P.; Denney, B.; Scheerer, J.

    1994-01-01

    A robotic system that accepts autonomously generated motion and control commands is described. The system provides images from the monocular vision of a camera mounted on a robot's end effector, eliminating the need for traditional guidance targets that must be predetermined and specifically identified. The telerobotic vision system presents different views of the targeted object relative to the camera, based on a single camera image and knowledge of the target's solid geometry.

  19. Test bed experiments for various telerobotic system characteristics and configurations

    NASA Technical Reports Server (NTRS)

    Duffie, Neil A.; Wiker, Steven F.; Zik, John J.

    1990-01-01

    Dexterous manipulation and grasping in telerobotic systems depends on the integration of high-performance sensors, displays, actuators and controls into systems in which careful consideration has been given to human perception and tolerance. Research underway at the Wisconsin Center for Space Automation and Robotics (WCSAR) has the objective of enhancing the performance of these systems and their components, and quantifying the effects of the many electrical, mechanical, control, and human factors that affect their performance. This will lead to a fundamental understanding of performance issues which will in turn allow designers to evaluate sensor, actuator, display, and control technologies with respect to generic measures of dexterous performance. As part of this effort, an experimental test bed was developed which has telerobotic components with exceptionally high fidelity in master/slave operation. A Telerobotic Performance Analysis System has also been developed which allows performance to be determined for various system configurations and electro-mechanical characteristics. Both this performance analysis system and test bed experiments are described.

  20. Real-time qualitative reasoning for telerobotic systems

    NASA Technical Reports Server (NTRS)

    Pin, Eancois G.

    1993-01-01

    This paper discusses the sensor-based telerobotic driving of a car in a-priori unknown environments using 'human-like' reasoning schemes implemented on custom-designed VLSI fuzzy inferencing boards. These boards use the Fuzzy Set theoretic framework to allow very vast (30 kHz) processing of full sets of information that are expressed in qualitative form using membership functions. The sensor-based and fuzzy inferencing system was incorporated on an outdoor test-bed platform to investigate two control modes for driving a car on the basis of very sparse and imprecise range data. In the first mode, the car navigates fully autonomously to a goal specified by the operator, while in the second mode, the system acts as a telerobotic driver's aid providing the driver with linguistic (fuzzy) commands to turn left or right, speed up, slow down, stop, or back up depending on the obstacles perceived by the sensors. Indoor and outdoor experiments with both modes of control are described in which the system uses only three acoustic range (sonar) sensor channels to perceive the environment. Sample results are presented that illustrate the feasibility of developing autonomous navigation modules and robust, safety-enhancing driver's aids for telerobotic systems using the new fuzzy inferencing VLSI hardware and 'human-like' reasoning schemes.

  1. Telerobotic Perception During Asteroid and Mars Regolith Operations Project

    NASA Technical Reports Server (NTRS)

    Gaddis, Steven; Zeitlin, Nancy (Compiler); Mueller, Robert (Compiler)

    2015-01-01

    Current space telerobotic systems are constrained to only operating in bright light and dust-free conditions. This project will study the effects of difficult lighting and dust conditions on telerobotic perception systems to better assess and refine regolith operations on other neighboring celestial bodies. In partnership with Embry-Riddle Aeronautical University and Caterpillar, Inc., optical, LiDAR and RADAR sensing equipment will be used in performing the study. This project will create a known dust environment in the Swamp Works Granular Mechanics & Regolith Operations (GMRO) Laboratory regolith test bin to characterize the behavior of the sensing equipment in various calibrated lighting and dust conditions. It will also identify potential methods for mitigating the impacts of these undesirable conditions on the performance of the sensing equipment. Enhancing the capability of telerobotic perception systems will help improve life on earth for those working in dangerous, dusty mining conditions, as well as help advance the same technologies used for safer self-driving automobiles in various lighting and weather conditions. It will also prove to be a critical skill needed for advancing robotic and human exploration throughout our solar system, for activities such as mining on an asteroid or pioneering the first colony on Mars.

  2. Machine Vision Tests for Spent Fuel Scrap Characteristics

    SciTech Connect

    BERGER, W.W.

    2000-04-27

    The purpose of this work is to perform a feasibility test of a Machine Vision system for potential use at the Hanford K basins during spent nuclear fuel (SNF) operations. This report documents the testing performed to establish functionality of the system including quantitative assessment of results. Fauske and Associates, Inc., which has been intimately involved in development of the SNF safety basis, has teamed with Agris-Schoen Vision Systems, experts in robotics, tele-robotics, and Machine Vision, for this work.

  3. Voice control of a dual-arm telerobot

    NASA Astrophysics Data System (ADS)

    Haberlein, Robert Arthur

    This investigation explores voice control of a dual-arm telerobot. A literature review of voice control, voice technology and work measurements is conducted. This review includes a discussion of important voice technology topics, a survey of commercial voice equipment, and a study of industrial and vocational work measurement techniques. A voice control system is created for two Kraft GRIPS Master-Slave telerobotic manipulators. This system is based upon the concept of distributed computer control using inexpensive PC-AT computers that exchange information according to special communication and command protocols. The voice control system consists of four separate sub-systems; a Camera Sub-system that controls a motorized camera mount, a Teach Pendant Sub-system that emulates two standard Termiflex teach pendants, a Switch Sub-system that controls the Kraft Master switches, and a Voice Sub-system that accepts the operator's vocal commands and broadcasts digitally-recorded messages. The Voice Sub-system utilizes a Votan VPC-2100 recognition board and a TI-Speech synthesis board. The vocal commands are organized into a hierarchical structure based upon the fire-and-forget control scheme. A visual display of the vocal command status is also detailed. In order to measure the effect of the voice control system upon the work performance of the telerobot, a formal experimental plan is described using twenty-four untrained operators divided into a voice group and a control group. Each group performs an experimental taskset using modified peg-in-hole vocational rehabilitation assessment test equipment. The experimental taskset consists of eight separate subtasks that exercise each of the four voice control sub-systems. The times to complete the subtasks are recorded to score each group's work performance. A split-plot ANOVA of the performance scores reveals significant group improvements in both the mean performance and the performance variance for those tasks which involve

  4. Haptics-based immersive telerobotic system for improvised explosive device disposal: Are two hands better than one?

    NASA Astrophysics Data System (ADS)

    Erickson, David; Lacheray, Hervé; Lambert, Jason Michel; Mantegh, Iraj; Crymble, Derry; Daly, John; Zhao, Yan

    2012-06-01

    State-of-the-art robotic explosive ordnance disposal robotics have not, in general, adopted recent advances in control technology and man-machine interfaces and lag many years behind academia. This paper describes the Haptics-based Immersive Telerobotic System project investigating an immersive telepresence envrionment incorporating advanced vehicle control systems, Augmented immersive sensory feedback, dynamic 3D visual information, and haptic feedback for explosive ordnance disposal operators. The project aim is to provide operatiors a more sophisticated interface and expand sensory input to perform complex tasks to defeat improvised explosive devices successfully. The introduction of haptics and immersive teleprescence has the potential to shift the way teleprescence systems work for explosive ordnance disposal tasks or more widely for first responders scenarios involving remote unmanned ground vehicles.

  5. Telerobotics Using a Gestural Servoing Interface

    NASA Astrophysics Data System (ADS)

    Abdelmoumene, H.; Berrached, N. E.

    2008-06-01

    Man-Machine interaction through hand gestures is a rich, natural, and intuitive tool to control virtual and real environment. This paper proposes a vision-based hand gesture interface (VBHGI) to remotely control a robot arm through the web. A VBHGI requires real time and robust hand detection and gesture recognition. This recognition is carried out in three phases: acquisition, segmentation and identification of the hand posture. Since we are not using gloves or markers, we propose appropriate motion detection and segmentation. For the identification phase, we opted for principal component analysis in order to better represent the classes of gesture in reduced spaces. Once the gesture is recognized, it is analyzed to be used as an articulation command to remotely control a robot arm end effector.

  6. NASA/University Technology Cooperation

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA is extensively engaged in cooperative technology development efforts with the nation's research universities. An example of NASA/university cooperation is the work of the Space Technology Center at the University of Kansas (KU) and the KU Center for Research, Inc. (CRINC). Directed by Professor Bill G. Barr, the Space Technology Center is one of 27 interdisciplinary centers established as part of a NASA plan to set up a network of advanced facilities across the nation. Since 1981 CRINC has been involved in a technology transfer program supported by the NASA Technology Utilization Division and by industry. The objective of the technology transfer program is to encourage industrial innovation through utilization of NASA technology through improved industry/university cooperation. At KU, research is conducted by the Industrial Innovation Laboratory and the Computer Integrated Manufacturing Laboratory which utilize graduate students in engineering and computer science as research assistants. A new project of the Space Technology Center is one designed to advance NASA objectives in "augmented telerobotics." A telerobot is programmed to respond to commands from a human operator, or to mimic the movements of its human operator. The project is being conducted under the guidance of Langley Research Center.

  7. Universal computer control system (UCCS) for space telerobots

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Szakaly, Zoltan

    1987-01-01

    A universal computer control system (UCCS) is under development for all motor elements of a space telerobot. The basic hardware architecture and software design of UCCS are described, together with the rich motor sensing, control, and self-test capabilities of this all-computerized motor control system. UCCS is integrated into a multibus computer environment with direct interface to higher level control processors, uses pulsewidth multiplier power amplifiers, and one unit can control up to sixteen different motors simultaneously at a high I/O rate. UCCS performance capabilities are illustrated by a few data.

  8. The sensing and perception subsystem of the NASA research telerobot

    NASA Technical Reports Server (NTRS)

    Wilcox, B.; Gennery, D. B.; Bon, B.; Litwin, T.

    1987-01-01

    A useful space telerobot for on-orbit assembly, maintenance, and repair tasks must have a sensing and perception subsystem which can provide the locations, orientations, and velocities of all relevant objects in the work environment. This function must be accomplished with sufficient speed and accuracy to permit effective grappling and manipulation. Appropriate symbolic names must be attached to each object for use by higher-level planning algorithms. Sensor data and inferences must be presented to the remote human operator in a way that is both comprehensible in ensuring safe autonomous operation and useful for direct teleoperation. Research at JPL toward these objectives is described.

  9. Planning assembly/disassembly operations for space telerobotics

    NASA Technical Reports Server (NTRS)

    Sanderson, Arthur C.; Homem De Mello, Luiz

    1987-01-01

    Space telerobotic systems will perform complex tasks of assembly, disassembly, and repair of space-based equipment. Planning such tasks requires reasoning about the functional, physical, and geometrical properties of the equipment, as well as a representation of the characteristics and capabilities of the manipulators and sensors available for the task. The And/Or graph is a useful approach to representation of feasible assembly/disassembly sequences and provides the basis for search among alternative strategies. The paper describes the use of parts entropy measures as evaluation criteria for search in the And/Or graph space. This approach leads to candidate task plans which minimize the complexity of intermediate geometrical states.

  10. Optimized Resolved-Rate Control Of Telerobotic Manipulator

    NASA Technical Reports Server (NTRS)

    Barker, L. Keith; Mckinney, William S., Jr.

    1994-01-01

    Laboratory Telerobotic Manipulator (LTM) is seven-degree-of-freedom robot arm built for evaluation in ground-based research to assess role of redundant-degree-of-freedom arms in outerspace operations. Each arm has three pitch/yaw joints: one at shoulder, another at elbow, and third at wrist. Seventh degree of freedom provided by wrist-roll joint. Offers advantages of more efficient use of workspaces and ability to reach around obstacles, redundant manipulators used in mobile robots and teleoperators for hazardous environments, automotive assembly, welding, and spray painting.

  11. The Space Station Freedom Flight Telerobotic Servicer - The design and evolution of a dexterous space robot

    NASA Technical Reports Server (NTRS)

    Mccain, Harry G.; Andary, James F.; Hewitt, Dennis R.; Haley, Dennis C.

    1990-01-01

    The Flight Telerobotic Servicer (FTS) will provide a telerobotic capability to the Space Station in the early assembly phases of the program and will be used for assembly, maintenance, and inspection throughout the lifetime of the Station. Here, the FTS design approach to the development of autonomous capabilities is discussed. The FTS telerobotic workstations for the Shuttle and Space Station, and facility for on-orbit storage are examined. The rationale of the FTS with regard to ease of operation, operational versatility, maintainability, safety, and control is discussed.

  12. Design of an adaptive controller for a telerobot manipulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Zhou, Zhen-Lei

    1989-01-01

    The design of a joint-space adaptive control scheme is presented for controlling the slave arm motion of a dual-arm telerobot system developed at Goddard Space Flight Center (GSFC) to study telerobotic operations in space. Each slave arm of the dual-arm system is a kinematically redundant manipulator with 7 degrees of freedom (DOF). Using the concept of model reference adaptive control (MRAC) and Lyapunov direct method, an adatation algorithm is derived which adjusts the PD controller gains of the control scheme. The development of the adaptive control scheme assumes that the slave arm motion is non-compliant and slowly-varying. The implementation of the derived control scheme does not need the computation of the manipulator dynamics, which makes the control scheme sufficiently fast for real-time applications. Computer simulation study performed for the 7-DOF slave arm shows that the developed control scheme can efficiently adapt to sudden change in payloads while tracking various test trajectories such as ramp or sinusoids with negligible position errors.

  13. Development and demonstration of a telerobotic excavation system

    NASA Technical Reports Server (NTRS)

    Burks, Barry L.; Thompson, David H.; Killough, Stephen M.; Dinkins, Marion A.

    1994-01-01

    Oak Ridge National Laboratory is developing remote excavation technologies for the Department of Energy's Office (DOE) of Technology Development, Robotics Technology Development Program, and also for the Department of Defense (DOD) Project Manager for Ammunition Logistics. This work is being done to meet the need for remote excavation and removal of radioactive and contaminated buried waste at several DOE sites and unexploded ordnance at DOD sites. System requirements are based on the need to uncover and remove waste from burial sites in a way that does not cause unnecessary personnel exposure or additional environmental contamination. Goals for the current project are to demonstrate dexterous control of a backhoe with force feedback and to implement robotic operations that will improve productivity. The Telerobotic Small Emplacement Excavator is a prototype system that incorporates the needed robotic and telerobotic capabilities on a commercially available platform. The ability to add remote dexterous teleoperation and robotic operating modes is intended to be adaptable to other commercially available excavator systems.

  14. Connectionist model-based stereo vision for telerobotics

    NASA Technical Reports Server (NTRS)

    Hoff, William; Mathis, Donald

    1989-01-01

    Autonomous stereo vision for range measurement could greatly enhance the performance of telerobotic systems. Stereo vision could be a key component for autonomous object recognition and localization, thus enabling the system to perform low-level tasks, and allowing a human operator to perform a supervisory role. The central difficulty in stereo vision is the ambiguity in matching corresponding points in the left and right images. However, if one has a priori knowledge of the characteristics of the objects in the scene, as is often the case in telerobotics, a model-based approach can be taken. Researchers describe how matching ambiguities can be resolved by ensuring that the resulting three-dimensional points are consistent with surface models of the expected objects. A four-layer neural network hierarchy is used in which surface models of increasing complexity are represented in successive layers. These models are represented using a connectionist scheme called parameter networks, in which a parametrized object (for example, a planar patch p=f(h,m sub x, m sub y) is represented by a collection of processing units, each of which corresponds to a distinct combination of parameter values. The activity level of each unit in the parameter network can be thought of as representing the confidence with which the hypothesis represented by that unit is believed. Weights in the network are set so as to implement gradient descent in an energy function.

  15. Projective virtual reality in space applications: a telerobotic ground station for a space mission

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Schluse, Michael

    2000-10-01

    Commanding complex robotic systems over long distances in an intuitive manner requires new techniques of man-machine- interaction. A first disadvantage of conventional approaches is that the user has to be a robotic expert because he directly has to command the robots. He often is part of the real-time control loop while moving the robot and thus has to cope with long delays. Experience with space robot missions showed that it is very difficult to control a robot just by camera images. At the IRF, a new approach to overcome such problems was developed. By means of Projective Virtual Reality, we introduce a new, intuitive way of man-machine communication based on a combination of action planning and Virtual Reality methods. Using data-helmet and data-glove the user can immerse into the virtual world and interact with the virtual objects as he would do in reality. The Virtual Reality System derives the user's intention from his actions and then projects the tasks in to the physical world by means of robots. The robots carry out the action physically that is equivalent to the user's action in the virtual world. The developed Projective Virtual Reality System is of especially great use for space applications. During the joint project GETEX (German ETS-VII Experiment), the IRF realized the telerobotic ground station for the free flying robot ERA on board the Japanese satellite ETS-VII. During the mission in April 1999 the Virtual Reality based command interface turned out to be an ideally suited platform for the intuitive commanding and supervision of the robot in space. During the mission, it first had to be verified that the system is fully operational, but then out Japanese colleagues allowed to take the full control over the real robot by the Projective Virtual Reality System. The final paper will describe key issues of this approach and the results and experiences gained during the GETEX mission.

  16. Simulation-modeling tool for evaluation of space telerobotic control strategies

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Cramer, Michael

    1989-01-01

    An object-oriented software graphic simulation and modeling tool is developed to explore human/autonomous control allocation for varied operational scenarios. The system provides designers with LISP workstations through which to simulate telerobotic operations, model human performance in those operations, examine task performance profiles, and investigate control and diagnostic strategies. It is suggested that the provision of such analytic tools along with the presentation of performance projections can assist designers in rapidly and conveniently exploring design alternatives for telerobotic system control.

  17. Low-Latency Lunar Surface Telerobotics from Earth-Moon Libration Points

    NASA Technical Reports Server (NTRS)

    Lester, Daniel; Thronson, Harley

    2011-01-01

    Concepts for a long-duration habitat at Earth-Moon LI or L2 have been advanced for a number of purposes. We propose here that such a facility could also have an important role for low-latency telerobotic control of lunar surface equipment, both for lunar science and development. With distances of about 60,000 km from the lunar surface, such sites offer light-time limited two-way control latencies of order 400 ms, making telerobotic control for those sites close to real time as perceived by a human operator. We point out that even for transcontinental teleoperated surgical procedures, which require operational precision and highly dexterous manipulation, control latencies of this order are considered adequate. Terrestrial telerobots that are used routinely for mining and manufacturing also involve control latencies of order several hundred milliseconds. For this reason, an Earth-Moon LI or L2 control node could build on the technology and experience base of commercially proven terrestrial ventures. A lunar libration-point telerobotic node could demonstrate exploration strategies that would eventually be used on Mars, and many other less hospitable destinations in the solar system. Libration-point telepresence for the Moon contrasts with lunar telerobotic control from the Earth, for which two-way control latencies are at least six times longer. For control latencies that long, telerobotic control efforts are of the "move-and-wait" variety, which is cognitively inferior to near real-time control.

  18. Generic extravehicular (EVA) and telerobot task primitives for analysis, design, and integration. Version 1.0: Reference compilation for the EVA and telerobotics communities

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Drews, Michael

    1990-01-01

    The results are described of an effort to establish commonality and standardization of generic crew extravehicular (crew-EVA) and telerobotic task analysis primitives used for the study of spaceborne operations. Although direct crew-EVA plans are the most visible output of spaceborne operations, significant ongoing efforts by a wide variety of projects and organizations also require tools for estimation of crew-EVA and telerobotic times. Task analysis tools provide estimates for input to technical and cost tradeoff studies. A workshop was convened to identify the issues and needs to establish a common language and syntax for task analysis primitives. In addition, the importance of such a syntax was shown to have precedence over the level to which such a syntax is applied. The syntax, lists of crew-EVA and telerobotic primitives, and the data base in diskette form are presented.

  19. Adjustable impedance, force feedback and command language aids for telerobotics (parts 1-4 of an 8-part MIT progress report)

    NASA Technical Reports Server (NTRS)

    Sheridan, Thomas B.; Raju, G. Jagganath; Buzan, Forrest T.; Yared, Wael; Park, Jong

    1989-01-01

    Projects recently completed or in progress at MIT Man-Machine Systems Laboratory are summarized. (1) A 2-part impedance network model of a single degree of freedom remote manipulation system is presented in which a human operator at the master port interacts with a task object at the slave port in a remote location is presented. (2) The extension of the predictor concept to include force feedback and dynamic modeling of the manipulator and the environment is addressed. (3) A system was constructed to infer intent from the operator's commands and the teleoperation context, and generalize this information to interpret future commands. (4) A command language system is being designed that is robust, easy to learn, and has more natural man-machine communication. A general telerobot problem selected as an important command language context is finding a collision-free path for a robot.

  20. Telerobotic minimally invasive procedures in urology--laparoscopic radical prostatectomy.

    PubMed

    Binder, Jochen; Kramer, Wolfgang

    2002-09-01

    A telerobotic device, the daVinci Surgical System (Intuitive Surgical, Inc., Mountain View, CA) is one of the recently developed, remotely operated systems for laparoscopic surgical procedures. This telemanipulation system consists of two components: a control console operated by the surgeon, and the surgical arm cart that holds a three-dimensional (3-D) 30 degrees laparoscope and two detachable laparoscopic surgical tools. The instruments are equipped with a wrist--a unique feature that provides additional dexterity. Since its clinical introduction in Europe in early 1999, this system has opened up a new era in minimally invasive surgery enhancing endoscopic vision and anastomosis suturing. For the first time, cardiac surgeons were able to perform a totally endoscopic coronary bypass procedure on a beating heart.

  1. A Modular Telerobot Control System for Accident Response

    SciTech Connect

    Anderson, Robert J.; Shirey, David L.

    1999-07-20

    The Accident Response Mobile Manipulator System (ARMMS) is a teleoperated emergency response vehicle that deploys two hydraulic manipulators, five cameras, and an array of sensors to the scene of an incident. It is operated from a remote base station that can be situated up to four kilometers away from the site. Recently, a modular telerobot control architecture called SMART (Sandia's Modular Architecture for Robotic and Teleoperation) was applied to ARMMS to improve the precision, safety, and operability of the manipulators on board. Using SMART, a prototype manipulator control system was developed in a couple of days, and an integrated working system was demonstrated within a couple of months. New capabilities such as camera teleoperation, autonomous tool changeout and dual manipulator control have been incorporated. The final system incorporates twenty-two separate modules and implements eight different behavior modes. This paper describes the integration of SMART into the ARMMS system.

  2. Technology transfer and evaluation for Space Station telerobotics

    NASA Technical Reports Server (NTRS)

    Price, Charles R.; Stokes, Lebarian; Diftler, Myron A.

    1994-01-01

    The international space station (SS) must take advantage of advanced telerobotics in order to maximize productivity and safety and to reduce maintenance costs. The Automation and Robotics Division at the NASA Lyndon B. Johnson Space Center (JSC) has designed, developed, and constructed the Automated Robotics Maintenance of Space Station (ARMSS) facility for the purpose of transferring and evaluating robotic technology that will reduce SS operation costs. Additionally, JSC had developed a process for expediting the transfer of technology from NASA research centers and evaluating these technologies in SS applications. Software and hardware system developed at the research centers and NASA sponsored universities are currently being transferred to JSC and integrated into the ARMSS for flight crew personnel testing. These technologies will be assessed relative to the SS baseline, and, after refinements, those technologies that provide significant performance improvements will be recommended as upgrades to the SS. Proximity sensors, vision algorithms, and manipulator controllers are among the systems scheduled for evaluation.

  3. Telerobotic management system: coordinating multiple human operators with multiple robots

    NASA Astrophysics Data System (ADS)

    King, Jamie W.; Pretty, Raymond; Brothers, Brendan; Gosine, Raymond G.

    2003-09-01

    This paper describes an application called the Tele-robotic management system (TMS) for coordinating multiple operators with multiple robots for applications such as underground mining. TMS utilizes several graphical interfaces to allow the user to define a partially ordered plan for multiple robots. This plan is then converted to a Petri net for execution and monitoring. TMS uses a distributed framework to allow robots and operators to easily integrate with the applications. This framework allows robots and operators to join the network and advertise their capabilities through services. TMS then decides whether tasks should be dispatched to a robot or a remote operator based on the services offered by the robots and operators.

  4. Virtual reality and telerobotics applications of an Address Recalculation Pipeline

    NASA Technical Reports Server (NTRS)

    Regan, Matthew; Pose, Ronald

    1994-01-01

    The technology described in this paper was designed to reduce latency to user interactions in immersive virtual reality environments. It is also ideally suited to telerobotic applications such as interaction with remote robotic manipulators in space or in deep sea operations. in such circumstances the significant latency is observed response to user stimulus which is due to communications delays, and the disturbing jerkiness due to low and unpredictable frame rates on compressed video user feedback or computationally limited virtual worlds, can be masked by our techniques. The user is provided with highly responsive visual feedback independent of communication or computational delays in providing physical video feedback or in rendering virtual world images. Virtual and physical environments can be combined seamlessly using these techniques.

  5. TEJAS - TELEROBOTICS/EVA JOINT ANALYSIS SYSTEM VERSION 1.0

    NASA Technical Reports Server (NTRS)

    Drews, M. L.

    1994-01-01

    The primary objective of space telerobotics as a research discipline is the augmentation and/or support of extravehicular activity (EVA) with telerobotic activity; this allows increased emplacement of on-orbit assets while providing for their "in situ" management. Development of the requisite telerobot work system requires a well-understood correspondence between EVA and telerobotics that to date has been only partially established. The Telerobotics/EVA Joint Analysis Systems (TEJAS) hypermedia information system uses object-oriented programming to bridge the gap between crew-EVA and telerobotics activities. TEJAS Version 1.0 contains twenty HyperCard stacks that use a visual, customizable interface of icon buttons, pop-up menus, and relational commands to store, link, and standardize related information about the primitives, technologies, tasks, assumptions, and open issues involved in space telerobot or crew EVA tasks. These stacks are meant to be interactive and can be used with any database system running on a Macintosh, including spreadsheets, relational databases, word-processed documents, and hypermedia utilities. The software provides a means for managing volumes of data and for communicating complex ideas, relationships, and processes inherent to task planning. The stack system contains 3MB of data and utilities to aid referencing, discussion, communication, and analysis within the EVA and telerobotics communities. The six baseline analysis stacks (EVATasks, EVAAssume, EVAIssues, TeleTasks, TeleAssume, and TeleIssues) work interactively to manage and relate basic information which you enter about the crew-EVA and telerobot tasks you wish to analyze in depth. Analysis stacks draw on information in the Reference stacks as part of a rapid point-and-click utility for building scripts of specific task primitives or for any EVA or telerobotics task. Any or all of these stacks can be completely incorporated within other hypermedia applications, or they can be

  6. Human Exploration Using Real-Time Robotic Operations (HERRO)- Crew Telerobotic Control Vehicle (CTCV) Design

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.; Burke, Laura; Chato, David; Fincannon, James; Landis, Geoff; Sandifer, Carl; Warner, Joe; Williams, Glenn; Colozza, Tony; Fittje, Jim; Martini, Mike; Packard, Tom; McCurdy, Dave; Gyekenyesi, John

    2010-01-01

    The HERRO concept allows real time investigation of planets and small bodies by sending astronauts to orbit these targets and telerobotically explore them using robotic systems. Several targets have been put forward by past studies including Mars, Venus, and near Earth asteroids. A conceptual design study was funded by the NASA Innovation Fund to explore what the HERRO concept and it's vehicles would look like and what technological challenges need to be met. This design study chose Mars as the target destination. In this way the HERRO studies can define the endpoint design concepts for an all-up telerobotic exploration of the number one target of interest Mars. This endpoint design will serve to help planners define combined precursor telerobotics science missions and technology development flights. A suggested set of these technologies and demonstrator missions is shown in Appendix B. The HERRO concept includes a crewed telerobotics orbit vehicle as well three Truck rovers, each supporting two teleoperated geologist robots Rockhounds (each truck/Rockhounds set is landed using a commercially launched aeroshell landing system.) Options include a sample ascent system teamed with an orbital telerobotic sample rendezvous and return spacecraft (S/C) (yet to be designed). Each truck rover would be landed in a science location with the ability to traverse a 100 km diameter area, carrying the Rockhounds to 100 m diameter science areas for several week science activities. The truck is not only responsible for transporting the Rockhounds to science areas, but also for relaying telecontrol and high-res communications to/from the Rockhound and powering/heating the Rockhound during the non-science times (including night-time). The Rockhounds take the place of human geologists by providing an agile robotic platform with real-time telerobotics control to the Rockhound from the crew telerobotics orbiter. The designs of the Truck rovers and Rockhounds will be described in other

  7. Simple Machines Made Simple.

    ERIC Educational Resources Information Center

    St. Andre, Ralph E.

    Simple machines have become a lost point of study in elementary schools as teachers continue to have more material to cover. This manual provides hands-on, cooperative learning activities for grades three through eight concerning the six simple machines: wheel and axle, inclined plane, screw, pulley, wedge, and lever. Most activities can be…

  8. Surface Telerobotics: Development and Testing of a Crew Controlled Planetary Rover System

    NASA Technical Reports Server (NTRS)

    Bualat, Maria G.; Fong, Terrence; Allan, Mark; Bouyssounouse, Xavier; Cohen, Tamar; Kobayashi, Linda

    2013-01-01

    In planning for future exploration missions, architecture and study teams have made numerous assumptions about how crew can be telepresent on a planetary surface by remotely operating surface robots from space (i.e. from a flight vehicle or deep space habitat). These assumptions include estimates of technology maturity, existing technology gaps, and operational risks. These assumptions, however, have not been grounded by experimental data. Moreover, to date, no crew-controlled surface telerobot has been fully tested in a high-fidelity manner. To address these issues, we developed the "Surface Telerobotics" tests to do three things: 1) Demonstrate interactive crew control of a mobile surface telerobot in the presence of short communications delay. 2) Characterize a concept of operations for a single astronaut remotely operating a planetary rover with limited support from ground control. 3) Characterize system utilization and operator work-load for a single astronaut remotely operating a planetary rover with limited support from ground control.

  9. Simulation of the human-telerobot interface on the Space Station

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Smith, Randy L.

    1993-01-01

    Many issues remain unresolved concerning the components of the human-telerobot interface presented in this work. It is critical that these components be optimally designed and arranged to ensure, not only that the overall system's goals are met, but but that the intended end-user has been optimally accommodated. With sufficient testing and evaluation throughout the development cycle, the selection of the components to use in the final telerobotic system can promote efficient, error-free performance. It is recommended that whole-system simulation with full-scale mockups be used to help design the human-telerobot interface. It is contended that the use of simulation can facilitate this design and evaluation process.

  10. HERRO Mission to Mars Using Telerobotic Surface Exploration from Orbit

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Landis, Geoffrey A.; McGuire, Melissa L.; Schmidt, George R.

    2013-01-01

    This paper presents a concept for a human mission to Mars orbit that features direct robotic exploration of the planet s surface via teleoperation from orbit. This mission is a good example of Human Exploration using Real-time Robotic Operations (HERRO), an exploration strategy that refrains from sending humans to the surfaces of planets with large gravity wells. HERRO avoids the need for complex and expensive man-rated lander/ascent vehicles and surface systems. Additionally, the humans are close enough to the surface to effectively eliminate the two-way communication latency that constrains typical robotic space missions, thus allowing real-time command and control of surface operations and experiments by the crew. Through use of state-of-the-art telecommunications and robotics, HERRO provides the cognitive and decision-making advantages of having humans at the site of study for only a fraction of the cost of conventional human surface missions. It is very similar to how oceanographers and oil companies use telerobotic submersibles to work in inaccessible areas of the ocean, and represents a more expedient, near-term step prior to landing humans on Mars and other large planetary bodies. Results suggest that a single HERRO mission with six crew members could achieve the same exploratory and scientific return as three conventional crewed missions to the Mars surface.

  11. Application of telerobotic control to remote processing of nuclear material

    SciTech Connect

    Merrill, R.D.; Grasz, E.L.; Herget, C.J.; Gavel, D.T.; Addis, R.B.; DeMinico, G.A.

    1991-07-08

    In processing radioactive material there are certain steps which have customarily required operators working at glove box enclosures. This can subject the operators to low level radiation dosages and the risk of accidental contamination, as well as generate significant radioactive waste to accommodate the human interaction. An automated system is being developed to replace the operator at the glove box and thus remove the human from these risks, and minimize waste. Although most of the processing can be automated with very little human operator interaction, there are some tasks where intelligent intervention is necessary to adapt to unexpected circumstances and events. These activities will require that the operator be able to interact with the process using a remote manipulator in a manner as natural as if the operator were actually in the work cell. This robot-based remote manipulation system, or telerobot, must provide the operator with an effective means of controlling the robot arm, gripper and tools. This paper describes the effort in progress in Lawrence Livermore National Laboratory to achieve this capability. 8 refs.

  12. Evaluation of a telerobotic system to assist surgeons in microsurgery

    NASA Technical Reports Server (NTRS)

    Das, H.; Zak, H.; Johnson, J.; Crouch, J.; Frambach, D.

    1999-01-01

    A tool was developed that assists surgeons in manipulating surgical instruments more precisely than is possible manually. The tool is a telemanipulator that scales down the surgeon's hand motion and filters tremor in the motion. The signals measured from the surgeon's hand are transformed and used to drive a six-degrees-of-freedom robot to position the surgical instrument mounted on its tip. A pilot study comparing the performance of the telemanipulator system against manual instrument positioning was conducted at the University of Southern California School of Medicine. The results show that a telerobotic tool can improve the performance of a microsurgeon by increasing the precision with which he can position surgical instruments, but this is achieved at the cost of increased time in performing the task. We believe that this technology will extend the capabilities of microsurgeons and allow more surgeons to perform highly skilled procedures currently performed only by the best surgeons. It will also enable performance of new surgical procedures that are beyond the capabilities of even the most skilled surgeons. Copyright 1999 Wiley-Liss, Inc.

  13. Development of advanced control schemes for telerobot manipulators

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Zhou, Zhen-Lei

    1991-01-01

    To study space applications of telerobotics, Goddard Space Flight Center (NASA) has recently built a testbed composed mainly of a pair of redundant slave arms having seven degrees of freedom and a master hand controller system. The mathematical developments required for the computerized simulation study and motion control of the slave arms are presented. The slave arm forward kinematic transformation is presented which is derived using the D-H notation and is then reduced to its most simplified form suitable for real-time control applications. The vector cross product method is then applied to obtain the slave arm Jacobian matrix. Using the developed forward kinematic transformation and quaternions representation of the slave arm end-effector orientation, computer simulation is conducted to evaluate the efficiency of the Jacobian in converting joint velocities into Cartesian velocities and to investigate the accuracy of the Jacobian pseudo-inverse for various sampling times. In addition, the equivalence between Cartesian velocities and quaternion is also verified using computer simulation. The motion control of the slave arm is examined. Three control schemes, the joint-space adaptive control scheme, the Cartesian adaptive control scheme, and the hybrid position/force control scheme are proposed for controlling the motion of the slave arm end-effector. Development of the Cartesian adaptive control scheme is presented and some preliminary results of the remaining control schemes are presented and discussed.

  14. Computational Virtual Reality (VR) as a human-computer interface in the operation of telerobotic systems

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.

    1995-01-01

    This presentation focuses on the application of computer graphics or 'virtual reality' (VR) techniques as a human-computer interface tool in the operation of telerobotic systems. VR techniques offer very valuable task realization aids for planning, previewing and predicting robotic actions, operator training, and for visual perception of non-visible events like contact forces in robotic tasks. The utility of computer graphics in telerobotic operation can be significantly enhanced by high-fidelity calibration of virtual reality images to actual TV camera images. This calibration will even permit the creation of artificial (synthetic) views of task scenes for which no TV camera views are available.

  15. Remote telerobotic replacement for master-slave manipulator

    SciTech Connect

    Heckendorn, F.M.; Iverson, D.C.; LaValle, D.R.

    1997-05-01

    A remotely replaceable telerobotic manipulator (TRM) has been developed and deployed at the Defense Waste Processing Facility (DWPF) in support of its radioactive operation. The TRM replaces a Master-Slave Manipulator (MSM). The TRM is in use for both routine and recovery operations for the radioactive waste vitrification melter, the primary production device within the DWPF. The arm was designed for deployment and operation using an existing MSM penetration. This replacement of an existing MSM with a high power robotic device demonstrates the capability to perform similar replacement in other operating facilities. The MSM`s were originally deployed in the DWPF to perform routine light capacity tasks. During the testing phase of the DWPF, prior to its radioactive startup in 5/96, the need to remove glass deposits that can form at the melter discharge during filling of glass containment canisters was identified. The combination of high radiation and contamination in the DWPF melter cell during radioactive operation eliminated personnel entry as a recovery option. Therefore remote cleaning methods had to be devised. The MSM`s had neither the reach nor the strength required for this task. It became apparent that a robust manipulator arm would be required for recovery from these potential melter discharge pluggage events. The existing wall penetrations, used for the MSM`s, could not be altered for seismic and radiological reasons. The new manipulator was required to be of considerable reach, due to existing physical layout, and strength, due to the glass removal requirement. Additionally, the device would have to compatible with high radiation and remote crane installation. The physical size of the manipulator and the weight of components must be consistent with the existing facilities. It was recognized early-on that a manipulator of sufficient strength to recover from a pluggage event would require robotic functions to constrain undesirable motions.

  16. Head-controlled assistive telerobot with extended physiological proprioception capability

    NASA Astrophysics Data System (ADS)

    Salganicoff, Marcos; Rahman, Tariq; Mahoney, Ricardo; Pino, D.; Jayachandran, Vijay; Kumar, Vijay; Chen, Shoupu; Harwin, William S.

    1995-12-01

    People with disabilities such as quadriplegia can use mouth-sticks and head-sticks as extension devices to perform desired manipulations. These extensions provide extended proprioception which allows users to directly feel forces and other perceptual cues such as texture present at the tip of the mouth-stick. Such devices are effective for two principle reasons: because of their close contact with the user's tactile and proprioceptive sensing abilities; and because they tend to be lightweight and very stiff, and can thus convey tactile and kinesthetic information with high-bandwidth. Unfortunately, traditional mouth-sticks and head-sticks are limited in workspace and in the mechanical power that can be transferred because of user mobility and strength limitations. We describe an alternative implementation of the head-stick device using the idea of a virtual head-stick: a head-controlled bilateral force-reflecting telerobot. In this system the end-effector of the slave robot moves as if it were at the tip of an imaginary extension of the user's head. The design goal is for the system is to have the same intuitive operation and extended proprioception as a regular mouth-stick effector but with augmentation of workspace volume and mechanical power. The input is through a specially modified six DOF master robot (a PerForceTM hand-controller) whose joints can be back-driven to apply forces at the user's head. The manipulation tasks in the environment are performed by a six degree-of-freedom slave robot (the Zebra-ZEROTM) with a built-in force sensor. We describe the prototype hardware/software implementation of the system, control system design, safety/disability issues, and initial evaluation tasks.

  17. Multimodally controlled intelligent telerobot for people with disabilities

    NASA Astrophysics Data System (ADS)

    Kazi, Zunaid; Chen, Shoupu; Beitler, Matthew; Chester, Daniel; Foulds, Richard

    1996-12-01

    This paper reports on the current status of the multimodal user supervised interface and intelligent control (MUSIIC) project, which is working towards the development of an intelligent assistive telemanipulative system for people with motor disabilities. Our MUSIIC strategy overcomes the limitations of previous approaches by integrating a multimodal RUI (robot user interface) and a semi-autonomous reactive planner that will allow users with severe motor disabilities to manipulate objects in an unstructured domain. The multimodal user interface is a speech and deictic (pointing) gesture based control that guides the operation of a semi-autonomous planner controlling the assistive telerobot. MUSIIC uses a vision system to determine the three-dimensional shape, pose and color of objects and surfaces which are in the environment, and as well as an object-oriented knowledge base and planning system which superimposes information about common objects in the three-dimensional world. This approach allows the users to identify objects and tasks via a multimodal user interface which interprets their deictic gestures and a restricted natural language like speech input. The multimodal interface eliminates the need for general purpose object recognition by binding the users speech and gesture input to a locus in the domain of interest. The underlying knowledge-driven planner, combines information obtained from the user, the stereo vision mechanism as well as the knowledge bases to adapt previously learned plans to perform new tasks and also to manipulate newly introduced objects into the workspace. Therefore, what we have is a flexible and intelligent telemanipulative system that functions as an assistive robot for people with motor disabilities.

  18. Role of computer graphics in space telerobotics - Preview and predictive displays

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Venema, Steven; Kim, Won S.

    1991-01-01

    The application of computer graphics in space telerobotics research and development work is briefly reviewed and illustrated by specific examples implemented in real time operation. The applications are discussed under the following four major categories: preview displays, predictive displays, sensor data displays, and control system status displays.

  19. Advanced data management design for autonomous telerobotic systems in space using spaceborne symbolic processors

    NASA Technical Reports Server (NTRS)

    Goforth, Andre

    1987-01-01

    The use of computers in autonomous telerobots is reaching the point where advanced distributed processing concepts and techniques are needed to support the functioning of Space Station era telerobotic systems. Three major issues that have impact on the design of data management functions in a telerobot are covered. It also presents a design concept that incorporates an intelligent systems manager (ISM) running on a spaceborne symbolic processor (SSP), to address these issues. The first issue is the support of a system-wide control architecture or control philosophy. Salient features of two candidates are presented that impose constraints on data management design. The second issue is the role of data management in terms of system integration. This referes to providing shared or coordinated data processing and storage resources to a variety of telerobotic components such as vision, mechanical sensing, real-time coordinated multiple limb and end effector control, and planning and reasoning. The third issue is hardware that supports symbolic processing in conjunction with standard data I/O and numeric processing. A SSP that currently is seen to be technologically feasible and is being developed is described and used as a baseline in the design concept.

  20. Telerobot task planning and reasoning: Introduction to JPL artificial intelligence research

    NASA Technical Reports Server (NTRS)

    Atkinson, D. J.

    1987-01-01

    A view of the capabilities and areas of artificial intelligence research which are required for autonomous space telerobotics extending through the year 2000 is given. In the coming years, JPL will be conducting directed research to achieve these capabilities, as well as drawing heavily on collaborative efforts conducted with other research laboratories.

  1. Robust telerobotics - an integrated system for waste handling, characterization and sorting

    SciTech Connect

    Couture, S.A.; Hurd, R.L.; Wilhelmsen, K.C.

    1997-01-01

    The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory was designed to serve as a national testbed to demonstrate integrated technologies for the treatment of low-level organic mixed waste at a pilot-plant scale. Pilot-scale demonstration serves to bridge the gap between mature, bench-scale proven technologies and full-scale treatment facilities by providing the infrastructure needed to evaluate technologies in an integrated, front-end to back-end facility. Consistent with the intent to focus on technologies that are ready for pilot scale deployment, the front-end handling and feed preparation of incoming waste material has been designed to demonstrate the application of emerging robotic and remotely operated handling systems. The selection of telerobotics for remote handling in MWMF was made based on a number of factors - personnel protection, waste generation, maturity, cost, flexibility and extendibility. Telerobotics, or shared control of a manipulator by an operator and a computer, provides the flexibility needed to vary the amount of automation or operator intervention according to task complexity. As part of the telerobotics design effort, the technical risk of deploying the technology was reduced through focused developments and demonstrations. The work involved integrating key tools (1) to make a robust telerobotic system that operates at speeds and reliability levels acceptable to waste handling operators and, (2) to demonstrate an efficient operator interface that minimizes the amount of special training and skills needed by the operator. This paper describes the design and operation of the prototype telerobotic waste handling and sorting system that was developed for MWMF.

  2. Human-machine interactions

    DOEpatents

    Forsythe, J. Chris; Xavier, Patrick G.; Abbott, Robert G.; Brannon, Nathan G.; Bernard, Michael L.; Speed, Ann E.

    2009-04-28

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  3. Beginnings of open-heart surgery in Gdansk – double role of the Pemco heart-lung machine and new facts about Dutch-Polish cooperation

    PubMed Central

    2016-01-01

    The first open-heart surgery in Gdansk took place in 1975. It was possible thanks to the gift of a Pemco extracorporeal circulation machine from the Netherlands to the Surgery Institute of the Medical Academy of Gdansk. The article presents additional, unpublished informations which enable a new interpretation of the previously known facts. PMID:27516801

  4. Issues, concerns, and initial implementation results for space based telerobotic control

    NASA Technical Reports Server (NTRS)

    Lawrence, D. A.; Chapel, J. D.; Depkovich, T. M.

    1987-01-01

    Telerobotic control for space based assembly and servicing tasks presents many problems in system design. Traditional force reflection teleoperation schemes are not well suited to this application, and the approaches to compliance control via computer algorithms have yet to see significant testing and comparison. These observations are discussed in detail, as well as the concerns they raise for imminent design and testing of space robotic systems. As an example of the detailed technical work yet to be done before such systems can be specified, a particular approach to providing manipulator compliance is examined experimentally and through modeling and analysis. This yields some initial insight into the limitations and design trade-offs for this class of manipulator control schemes. Implications of this investigation for space based telerobots are discussed in detail.

  5. Low-Latency Telerobotics from Mars Orbit: The Case for Synergy Between Science and Human Exploration

    NASA Technical Reports Server (NTRS)

    Valinia, A.; Garvin, J. B.; Vondrak, R.; Thronson, H.; Lester, D.; Schmidt, G.; Fong, T.; Wilcox, B.; Sellers, P.; White, N.

    2012-01-01

    Initial, science-directed human exploration of Mars will benefit from capabilities in which human explorers remain in orbit to control telerobotic systems on the surface (Figure 1). Low-latency, high-bandwidth telerobotics (LLT) from Mars orbit offers opportunities for what the terrestrial robotics community considers to be high-quality telepresence. Such telepresence would provide high quality sensory perception and situation awareness, and even capabilities for dexterous manipulation as required for adaptive, informed selection of scientific samples [1]. Astronauts on orbit in close communication proximity to a surface exploration site (in order to minimize communication latency) represent a capability that would extend human cognition to Mars (and potentially for other bodies such as asteroids, Venus, the Moon, etc.) without the challenges, expense, and risk of putting those humans on hazardous surfaces or within deep gravity wells. Such a strategy may be consistent with goals for a human space flight program that, are currently being developed within NASA.

  6. Redundancy in sensors, control and planning of a robotic system for space telerobotics

    NASA Technical Reports Server (NTRS)

    Rovetta, A.; Vodret, S.; Bianchini, M.

    1989-01-01

    The analysis and development of a manipulator redundant in structure and sensor devices controlled by a distributed multiprocessor architecture are discussed. The goal has been the realization of a modular structure of the manipulator with evident aspects of flexibility and transportability. The distributed control structure, thanks to his modularity and flexibility could be integrated in the future into an operative structure aimed to space telerobotics. The architecture is applied to the 6 DOF manipulator Gilberto.

  7. Telerobotic hand controller study of force reflection with position control mode

    NASA Technical Reports Server (NTRS)

    Willshire, Kelli F.; Hankins, Walter W.; Morris, A. Terry; Mixon, Randolph W.

    1992-01-01

    To gain further information about the effectiveness of kinesthetic force feedback or force reflection in position control mode for a telerobot, two Space Station related tasks were performed by eight subjects with and without the use of force reflection. Both time and subjective responses were measured. No differences due to force were found, however, other differences were found, e.g., gender. Comparisons of these results with other studies are discussed.

  8. The flight telerobotic servicer Tinman concept: System design drivers and task analysis

    NASA Technical Reports Server (NTRS)

    Andary, J. F.; Hewitt, D. R.; Hinkal, S. W.

    1989-01-01

    A study was conducted to develop a preliminary definition of the Flight Telerobotic Servicer (FTS) that could be used to understand the operational concepts and scenarios for the FTS. Called the Tinman, this design concept was also used to begin the process of establishing resources and interfaces for the FTS on Space Station Freedom, the National Space Transportation System shuttle orbiter, and the Orbital Maneuvering vehicle. Starting with an analysis of the requirements and task capabilities as stated in the Phase B study requirements document, the study identified eight major design drivers for the FTS. Each of these design drivers and their impacts on the Tinman design concept are described. Next, the planning that is currently underway for providing resources for the FTS on Space Station Freedom is discussed, including up to 2000 W of peak power, up to four color video channels, and command and data rates up to 500 kbps between the telerobot and the control station. Finally, an example is presented to show how the Tinman design concept was used to analyze task scenarios and explore the operational capabilities of the FTS. A structured methodology using a standard terminology consistent with the NASA/National Bureau of Standards Standard Reference Model for Telerobot Control System Architecture (NASREM) was developed for this analysis.

  9. Explosive ordinance disposal technology demonstration using the telerobotic small emplacement excavator

    SciTech Connect

    Burks, B.L.; Killough, S.M.; Thompson, D.H.; Dinkins, M.A.

    1994-06-01

    The small emplacement excavator (SEE) is a ruggedized military vehicle with backhoe and front loader used by the US Army for explosive ordinance disposal (EOD), combat engineer, and general utility excavation activities. In order to evaluate the feasibility of removing personnel from the vehicle during the high risk EOD excavation tasks a development and demonstration project was initiated to evaluate performance capabilities of the SEE under telerobotic control. This feasibility study was performed at the request of the Ordinance Missile and Munitions Center and School (OMMCS) at the Redstone Arsenal to help define requirements for further joint service development activities. Development of a telerobotic SEE (TSEE) was performed by the Oak Ridge National Laboratory (ORNL) in a project funded jointly by the US Army Project Manager for Ammunition Logistics (PM-AMMOLOG) and the Department of Energy (DOE) Office of Technology Development (OTD) Robotics Technology Development Program (RTDP). A technology demonstration of the TSEE was conducted at McKinley Range, Redstone Arsenal, Huntsville, Alabama, on September 13--17, 1993. The primary objective of the demonstration was to evaluate and demonstrate the feasibility of remote EOD. During the demonstration, approximately 40 EOD specialists were instructed on telerobotic operation of the TSEE and then were asked to complete a series of simulated EOD tasks. Upon completion of the tasks, participants completed an evaluation of the system including human factors performance data.

  10. A methodology for automation and robotics evaluation applied to the space station telerobotic servicer

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Gyanfi, Max; Volkmer, Kent; Zimmerman, Wayne

    1988-01-01

    The efforts of a recent study aimed at identifying key issues and trade-offs associated with using a Flight Telerobotic Servicer (FTS) to aid in Space Station assembly-phase tasks is described. The use of automation and robotic (A and R) technologies for large space systems would involve a substitution of automation capabilities for human extravehicular or intravehicular activities (EVA, IVA). A methodology is presented that incorporates assessment of candidate assembly-phase tasks, telerobotic performance capabilities, development costs, and effect of operational constraints (space transportation system (STS), attached payload, and proximity operations). Changes in the region of cost-effectiveness are examined under a variety of systems design assumptions. A discussion of issues is presented with focus on three roles the FTS might serve: (1) as a research-oriented testbed to learn more about space usage of telerobotics; (2) as a research based testbed having an experimental demonstration orientation with limited assembly and servicing applications; or (3) as an operational system to augment EVA and to aid the construction of the Space Station and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations.

  11. Software architecture for a distributed real-time system in Ada, with application to telerobotics

    NASA Technical Reports Server (NTRS)

    Olsen, Douglas R.; Messiora, Steve; Leake, Stephen

    1992-01-01

    The architecture structure and software design methodology presented is described in the context of telerobotic application in Ada, specifically the Engineering Test Bed (ETB), which was developed to support the Flight Telerobotic Servicer (FTS) Program at GSFC. However, the nature of the architecture is such that it has applications to any multiprocessor distributed real-time system. The ETB architecture, which is a derivation of the NASA/NBS Standard Reference Model (NASREM), defines a hierarchy for representing a telerobot system. Within this hierarchy, a module is a logical entity consisting of the software associated with a set of related hardware components in the robot system. A module is comprised of submodules, which are cyclically executing processes that each perform a specific set of functions. The submodules in a module can run on separate processors. The submodules in the system communicate via command/status (C/S) interface channels, which are used to send commands down and relay status back up the system hierarchy. Submodules also communicate via setpoint data links, which are used to transfer control data from one submodule to another. A submodule invokes submodule algorithms (SMA's) to perform algorithmic operations. Data that describe or models a physical component of the system are stored as objects in the World Model (WM). The WM is a system-wide distributed database that is accessible to submodules in all modules of the system for creating, reading, and writing objects.

  12. NASA/NBS (National Aeronautics and Space Administration/National Bureau of Standards) standard reference model for telerobot control system architecture (NASREM)

    NASA Technical Reports Server (NTRS)

    Albus, James S.; Mccain, Harry G.; Lumia, Ronald

    1989-01-01

    The document describes the NASA Standard Reference Model (NASREM) Architecture for the Space Station Telerobot Control System. It defines the functional requirements and high level specifications of the control system for the NASA space Station document for the functional specification, and a guideline for the development of the control system architecture, of the 10C Flight Telerobot Servicer. The NASREM telerobot control system architecture defines a set of standard modules and interfaces which facilitates software design, development, validation, and test, and make possible the integration of telerobotics software from a wide variety of sources. Standard interfaces also provide the software hooks necessary to incrementally upgrade future Flight Telerobot Systems as new capabilities develop in computer science, robotics, and autonomous system control.

  13. Mechanisms and economy of molecular machines

    NASA Astrophysics Data System (ADS)

    Klumpp, Stefan

    2012-11-01

    Cells contain millions of biomolecules that function as molecular machines. This paper reviews aspects of the mechanisms of these machines (alternative pathways and cooperativity) as well as the economic principles of their use in cells. The focus is on the machines that process the genetic information, in particular RNA polymerases.

  14. Hierarchical Ada robot programming system (HARPS)- A complete and working telerobot control system based on the NASREM model

    NASA Technical Reports Server (NTRS)

    Leake, Stephen; Green, Tom; Cofer, Sue; Sauerwein, Tim

    1989-01-01

    HARPS is a telerobot control system that can perform some simple but useful tasks. This capability is demonstrated by performing the ORU exchange demonstration. HARPS is based on NASREM (NASA Standard Reference Model). All software is developed in Ada, and the project incorporates a number of different CASE (computer-aided software engineering) tools. NASREM was found to be a valid and useful model for building a telerobot control system. Its hierarchical and distributed structure creates a natural and logical flow for implementing large complex robust control systems. The ability of Ada to create and enforce abstraction enhanced the implementation of such control systems.

  15. Machine Shop Grinding Machines.

    ERIC Educational Resources Information Center

    Dunn, James

    This curriculum manual is one in a series of machine shop curriculum manuals intended for use in full-time secondary and postsecondary classes, as well as part-time adult classes. The curriculum can also be adapted to open-entry, open-exit programs. Its purpose is to equip students with basic knowledge and skills that will enable them to enter the…

  16. The Space Station Freedom Flight Telerobotic Servicer: the design and evolution of a dexterous space robot

    NASA Technical Reports Server (NTRS)

    McCain, H. G.; Andary, J. F.; Hewitt, D. R.; Haley, D. C.

    1991-01-01

    The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station) Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.

  17. Telerobotic control of the seven-degree-of-freedom CESAR manipulator

    SciTech Connect

    Babcock, S.M.; Dubey, R.V.; Euler, J.A.; Glassell, R.L.; Kress, R.L.; Hamel, W.R.

    1988-01-01

    The application of a computationally efficient kinematic control scheme for manipulators with redundant degrees of freedom to the unilateral telerobotic control of seven-degree-of-freedom manipulator (CESARM) at the Oak Ridge National Laboratory Center for Engineering Systems Advanced Research is presented. The kinematic control scheme uses a gradient projection optimization method, which eliminates that need to determine the generalized inverse of the Jacobian when solving for joint velocities, given Cartesian end-effector velocities. A six-degree-of-freedom (nonreplica) master controller is used. Performance indices for redundancy resolution are discussed. 5 ref., 6 figs.

  18. DaVinci canvas: a telerobotic surgical system with integrated, robot-assisted, laparoscopic ultrasound capability.

    PubMed

    Leven, Joshua; Burschka, Darius; Kumar, Rajesh; Zhang, Gary; Blumenkranz, Steve; Dai, Xiangtian Donald; Awad, Mike; Hager, Gregory D; Marohn, Mike; Choti, Mike; Hasser, Chris; Taylor, Russell H

    2005-01-01

    We present daVinci Canvas: a telerobotic surgical system with integrated robot-assisted laparoscopic ultrasound capability. DaVinci Canvas consists of the integration of a rigid laparoscopic ultrasound probe with the daVinci robot, video tracking of ultrasound probe motions, endoscope and ultrasound calibration and registration, autonomous robot motions, and the display of registered 2D and 3D ultrasound images. Although we used laparoscopic liver cancer surgery as a focusing application, our broader aim was the development of a versatile system that would be useful for many procedures.

  19. A helmet mounted display to adapt the telerobotic environment to human vision

    NASA Technical Reports Server (NTRS)

    Tharp, Gregory; Liu, Andrew; Yamashita, Hitomi; Stark, Lawrence

    1990-01-01

    A Helmet Mounted Display system has been developed. It provides the capability to display stereo images with the viewpoint tied to subjects' head orientation. The type of display might be useful in a telerobotic environment provided the correct operating parameters are known. The effects of update frequency were tested using a 3D tracking task. The effects of blur were tested using both tracking and pick-and-place tasks. For both, researchers found that operator performance can be degraded if the correct parameters are not used. Researchers are also using the display to explore the use of head movements as part of gaze as subjects search their visual field for target objects.

  20. The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case study

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Gyamfi, Max A.; Volkmer, Kent; Zimmerman, Wayne F.

    1987-01-01

    A methodology is described for examining the feasibility of a Flight Telerobotic Servicer (FTS) using two assembly scenarios, defined at the EVA task level, for the 30 shuttle flights (beginning with MB-1) over a four-year period. Performing all EVA tasks by crew only is compared to a scenario in which crew EVA is augmented by FTS. A reference FTS concept is used as a technology baseline and life-cycle cost analysis is performed to highlight cost tradeoffs. The methodology, procedure, and data used to complete the analysis are documented in detail.

  1. Graphical Programming: A systems approach for telerobotic servicing of space assets

    SciTech Connect

    Pinkerton, J.T.; McDonald, M.J.; Palmquist, R.D.; Patten, R.

    1993-08-01

    Satellite servicing is in many ways analogous to subsea robotic servicing in the late 1970`s. A cost effective, reliable, telerobotic capability had to be demonstrated before the oil companies invested money in deep water robot serviceable production facilities. In the same sense, aeronautic engineers will not design satellites for telerobotic servicing until such a quantifiable capability has been demonstrated. New space servicing systems will be markedly different than existing space robot systems. Past space manipulator systems, including the Space Shuttle`s robot arm, have used master/slave technologies with poor fidelity, slow operating speeds and most importantly, in-orbit human operators. In contrast, new systems will be capable of precision operations, conducted at higher rates of speed, and be commanded via ground-control communication links. Challenges presented by this environment include achieving a mandated level of robustness and dependability, radiation hardening, minimum weight and power consumption, and a system which accommodates the inherent communication delay between the ground station and the satellite. There is also a need for a user interface which is easy to use, ensures collision free motions, and is capable of adjusting to an unknown workcell (for repair operations the condition of the satellite may not be known in advance). This paper describes the novel technologies required to deliver such a capability.

  2. Graphical programming: A systems approach for telerobotic servicing of space assets

    NASA Technical Reports Server (NTRS)

    Pinkerton, James T.; Mcdonald, Michael J.; Palmquist, Robert D.; Patten, Richard

    1994-01-01

    Satellite servicing is in many ways analogous to subsea robotic servicing in the late 1970's. A cost effective, reliable, telerobotic capability had to be demonstrated before the oil companies invested money in deep water robot serviceable production facilities. In the same sense, aeronautic engineers will not design satellites for telerobotic servicing until such a quantifiable capability has been demonstrated. New space servicing systems will be markedly different than existing space robot systems. Past space manipulator systems, including the Space Shuttle's robot arm, have used master/slave technologies with poor fidelity, slow operating speeds and most importantly, in-orbit human operators. In contrast, new systems will be capable of precision operations, conducted at higher rates of speed, and be commanded via ground-control communication links. Challenge presented by this environment include achieving a mandated level of robustness and dependability, radiation hardening, minimum weight and power consumption, and a system which accommodates the inherent communication delay between the ground station and the satellite. There is also a need for a user interface which is easy to use, ensures collision free motions, and is capable of adjusting to an unknown workcell (for repair operations the condition of the satellite may not be known in advance). This paper describes the novel technologies required to deliver such a capability.

  3. Applying Behavior-Based Robotics Concepts to Telerobotic Use of Power Tooling

    SciTech Connect

    Noakes, Mark W; Hamel, Dr. William R.

    2011-01-01

    While it has long been recognized that telerobotics has potential advantages to reduce operator fatigue, to permit lower skilled operators to function as if they had higher skill levels, and to protect tools and manipulators from excessive forces during operation, relatively little laboratory research in telerobotics has actually been implemented in fielded systems. Much of this has to do with the complexity of the implementation and its lack of ability to operate in complex unstructured remote systems environments. One possible solution is to approach the tooling task using an adaptation of behavior-based techniques to facilitate task decomposition to a simpler perspective and to provide sensor registration to the task target object in the field. An approach derived from behavior-based concepts has been implemented to provide automated tool operation for a teleoperated manipulator system. The generic approach is adaptable to a wide range of typical remote tools used in hot-cell and decontamination and dismantlement-type operations. Two tasks are used in this work to test the validity of the concept. First, a reciprocating saw is used to cut a pipe. The second task is bolt removal from mockup process equipment. This paper explains the technique, its implementation, and covers experimental data, analysis of results, and suggestions for implementation on fielded systems.

  4. Design of the human computer interface on the telerobotic small emplacement excavator

    SciTech Connect

    Thompson, D.H.; Killough, S.M.; Burks, B.L.; Draper, J.V.

    1995-12-31

    The small emplacement excavator (SEE) is a ruggedized military vehicle with backhoe and front loader used by the U.S. Army for explosive ordinance disposal (EOD) and general utility excavation activities. This project resulted from a joint need in the U.S. Department of Energy (DOE) for a remote controlled excavator for buried waste operations and the U.S. Department of Defense for remote EOD operations. To evaluate the feasibility of removing personnel from the SEE vehicle during high-risk excavation tasks, a development and demonstration project was initiated. Development of a telerobotic SEE (TSEE) was performed by the Oak Ridge National Laboratory in a project funded jointly by the U.S. Army and the DOE. The TSEE features teleoperated driving, a telerobotic backhoe with four degrees of freedom, and a teleoperated front loader with two degrees of freedom on the bucket. Remote capabilities include driving (forward, reverse, brake, steering), power takeoff shifting to enable digging modes, deploying stabilizers, excavation, and computer system booting.

  5. Joint-space Lyapunov-based direct adaptive control of a kinematically redundant telerobot manipulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Zhou, Zhen-Lei; Mosier, Gary E.

    1993-01-01

    This paper presents the design of a joint-space adaptive control scheme for controlling the slave arm motion of a dual-arm telerobot system developed at Goddard Space Flight Center (GSFC) to study telerobotic operations in space. Each slave arm of the dual-arm system is a kinematically redundant manipulator with seven degrees of freedom (DOF). Using the concept of model reference adaptive control (MRAC) and Liupunov direct method, we derive an adaptation algorithm that adjusts the PD controller gains of the control scheme. The development of the adaptive control scheme assumes that the slave arm motion is non-compliant and slowly varying. The implementation of the derived control scheme does not require the computation of manipulator dynamics which makes the control scheme sufficiently fast for real-time applications. Computer simulation study performed for the 7-DOF slave arm shows that the developed control scheme can efficiently adapt to sudden change in payload while tracking various test trajectories such as ramp or sinusoids with negligible position errors.

  6. Performance benefits of telerobotics and teleoperation - enhancements for an arm-based tank waste retrieval system

    SciTech Connect

    Horschel, D.S.; Gibbons, P.W.; Draper, J.V.

    1995-06-01

    This report evaluates telerobotic and teleoperational arm-based retrieval systems that require advanced robotic controls. These systems will be deployed in waste retrieval activities in Hanford`s Single Shell Tanks (SSTs). The report assumes that arm-based, retrieval systems will combine a teleoperational arm and control system enhanced by a number of advanced and telerobotic controls. The report describes many possible enhancements, spanning the full range of the control spectrum with the potential for technical maturation. The enhancements considered present a variety of choices and factors including: the enhancements to be included in the actual control system, safety, detailed task analyses, human factors, cost-benefit ratios, and availability and maturity of technology. Because the actual system will be designed by an offsite vendor, the procurement specifications must have the flexibility to allow bidders to propose a broad range of ideas, yet build in enough restrictions to filter out infeasible and undesirable approaches. At the same time they must allow selection of a technically promising proposal. Based on a preliminary analysis of the waste retrieval task, and considering factors such as operator limitations and the current state of robotics technology, the authors recommend a set of enhancements that will (1) allow the system to complete its waste retrieval mission, and (2) enable future upgrades in response to changing mission needs and technological advances.

  7. Use of control umbilicals as a deployment mode for free flying telerobotic work systems

    NASA Technical Reports Server (NTRS)

    Kuehn, J. S.; Selle, E. D.

    1987-01-01

    Work to date on telerobotic work systems for use in space generally consider two deployment modes, free flying, or fixed within a limited work envelope. Control tethers may be employed to obtain a number of operational advantages and added flexibility in the basing and deployment of telerobotic work systems. Use of a tether allows the work system to be separated into two major modules, the remote work package and the control module. The Remote Work Package (RWP) comprises the free flying portion of the work system while the Control Module (CM) remains at the work system base. The chief advantage of this configuration is that only the components required for completion of the work task must be located at the work site. Reaction mass used in free flight is stored at the Control module and supplied to the RWP through the tether, eliminating the need for the RWP to carry it. The RWP can be made less massive than a self contained free flying work system. As a result, reaction mass required for free flight is lower than for a self contained free flyer.

  8. Database machines

    NASA Technical Reports Server (NTRS)

    Stiefel, M. L.

    1983-01-01

    The functions and performance characteristics of data base machines (DBM), including machines currently being studied in research laboratories and those currently offered on a commerical basis are discussed. The cost/benefit considerations that must be recognized in selecting a DBM are discussed, as well as the future outlook for such machines.

  9. Dual Arm Work Package performance estimates and telerobot task network simulation

    SciTech Connect

    Draper, J.V.; Blair, L.M.

    1997-02-01

    This paper describes the methodology and results of a network simulation study of the Dual Arm Work Package (DAWP), to be employed for dismantling the Argonne National Laboratory CP-5 reactor. The development of the simulation model was based upon the results of a task analysis for the same system. This study was performed by the Oak Ridge National Laboratory (ORNL), in the Robotics and Process Systems Division. Funding was provided the US Department of Energy`s Office of Technology Development, Robotics Technology Development Program (RTDP). The RTDP is developing methods of computer simulation to estimate telerobotic system performance. Data were collected to provide point estimates to be used in a task network simulation model. Three skilled operators performed six repetitions of a pipe cutting task representative of typical teleoperation cutting operations.

  10. Wrist Camera Orientation for Effective Telerobotic Orbital Replaceable Unit (ORU) Changeout

    NASA Technical Reports Server (NTRS)

    Jones, Sharon Monica; Aldridge, Hal A.; Vazquez, Sixto L.

    1997-01-01

    The Hydraulic Manipulator Testbed (HMTB) is the kinematic replica of the Flight Telerobotic Servicer (FTS). One use of the HMTB is to evaluate advanced control techniques for accomplishing robotic maintenance tasks on board the Space Station. Most maintenance tasks involve the direct manipulation of the robot by a human operator when high-quality visual feedback is important for precise control. An experiment was conducted in the Systems Integration Branch at the Langley Research Center to compare several configurations of the manipulator wrist camera for providing visual feedback during an Orbital Replaceable Unit changeout task. Several variables were considered such as wrist camera angle, camera focal length, target location, lighting. Each study participant performed the maintenance task by using eight combinations of the variables based on a Latin square design. The results of this experiment and conclusions based on data collected are presented.

  11. Space robotics--DLR's telerobotic concepts, lightweight arms and articulated hands.

    PubMed

    Hirzinger, G; Brunner, B; Landzettel, K; Sporer, N; Butterfass, J; Schedl, M

    2003-01-01

    The paper briefly outlines DLR's experience with real space robot missions (ROTEX and ETS VII). It then discusses forthcoming projects, e.g., free-flying systems in low or geostationary orbit and robot systems around the space station ISS, where the telerobotic system MARCO might represent a common baseline. Finally it describes our efforts in developing a new generation of "mechatronic" ultra-light weight arms with multifingered hands. The third arm generation is operable now (approaching present-day technical limits). In a similar way DLR's four-fingered hand II was a big step towards higher reliability and yet better performance. Artificial robonauts for space are a central goal now for the Europeans as well as for NASA, and the first verification tests of DLR's joint components are supposed to fly already end of 93 on the space station.

  12. Space Station Freedom coupling tasks: An evaluation of their telerobotic and EVA compatibility

    NASA Technical Reports Server (NTRS)

    Sampaio, Carlos E.; Bierschwale, John M.; Fleming, Terence F.; Stuart, Mark A.

    1993-01-01

    Of the couplings included in this study, several design components were found to be of interest. With respect to the operation of the couplings, the various concepts resulted in differing reactions from the four subjects who participated in this study. The purpose of this study was not to conceive the final coupling design. Rather, it was intended as a step along an interactive process. The newly modified coupling will be included in a series of further controlled, as well as subjective, evaluations. This part of the ongoing work in the Remote Operator Interaction Laboratory (ROIL) designed to enhance the overall interface by improving design at both the teleoperator and telerobot ends of the system.

  13. Plan recognition and generalization in command languages with application to telerobotics

    NASA Technical Reports Server (NTRS)

    Yared, Wael I.; Sheridan, Thomas B.

    1991-01-01

    A method for pragmatic inference as a necessary accompaniment to command languages is proposed. The approach taken focuses on the modeling and recognition of the human operator's intent, which relates sequences of domain actions ('plans') to changes in some model of the task environment. The salient feature of this module is that it captures some of the physical and linguistic contextual aspects of an instruction. This provides a basis for generalization and reinterpretation of the instruction in different task environments. The theoretical development is founded on previous work in computational linguistics and some recent models in the theory of action and intention. To illustrate these ideas, an experimental command language to a telerobot is implemented. The program consists of three different components: a robot graphic simulation, the command language itself, and the domain-independent pragmatic inference module. Examples of task instruction processes are provided to demonstrate the benefits of this approach.

  14. System engineering techniques for establishing balanced design and performance guidelines for the advanced telerobotic testbed

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Matijevic, J. R.

    1987-01-01

    Novel system engineering techniques have been developed and applied to establishing structured design and performance objectives for the Telerobotics Testbed that reduce technical risk while still allowing the testbed to demonstrate an advancement in state-of-the-art robotic technologies. To estblish the appropriate tradeoff structure and balance of technology performance against technical risk, an analytical data base was developed which drew on: (1) automation/robot-technology availability projections, (2) typical or potential application mission task sets, (3) performance simulations, (4) project schedule constraints, and (5) project funding constraints. Design tradeoffs and configuration/performance iterations were conducted by comparing feasible technology/task set configurations against schedule/budget constraints as well as original program target technology objectives. The final system configuration, task set, and technology set reflected a balanced advancement in state-of-the-art robotic technologies, while meeting programmatic objectives and schedule/cost constraints.

  15. Human factors requirements for telerobotic command and control: The European Space Agency experimental programme

    NASA Technical Reports Server (NTRS)

    Stone, Robert J.

    1991-01-01

    Space Telerobotics research, performed under contract to the European Space Agency (ESA), concerning the execution of human factors experiments, and ultimately leading to the development of a telerobotics test bed, has been carried out since 1985 by a British Consortium consisting of British Aerospace, the United Kingdom Atomic Energy Authority and, more recently, the UK National Advanced Robotics Research Centre. The principal aim of the first study of the series was to derive preliminary requirements for a teleoperation servicing system, with reference to two mission model scenarios. The first scenario introduced the problem of communications time delays, and their likely effect on the ground-based operator in control of a manipulator system on board an unmanned servicing vehicle in Low Earth Orbit. In the second scenario, the operator was located on the NASA Orbiter aft flight deck, supervising the control of a prototype manipulator in the 'servicing' of an experimental payload in the cargo bay area. Human factors analyses centered on defining the requirements for the teleoperator workstation, such as identifying basic ergonomic requirements for workstation and panel layouts, defining teleoperation strategies, developing alphanumeric and graphic screen formats for the supervision or direct control of the manipulator, and the potential applications of expert system technology. The second study for ESA involved an experimental appraisal of some of the important issues highlighted in the first study, for which relevant human factors data did not exist. Of central importance during the second study was the issue of communications time delays and their effect on the manual control of a teleoperated manipulator from a ground-based command and control station.

  16. Robotic technologies of the Flight Telerobotic Servicer (FTS) including fault tolerance

    NASA Technical Reports Server (NTRS)

    Chladek, John T.; Craver, William M.

    1994-01-01

    The original FTS concept for Space Station Freedom (SSF) was to provide telerobotic assistance to enhance crew activity and safety and to reduce crew EVA (Extra Vehicular Activity) activity. The first flight of the FTS manipulator systems would demonstrate several candidate tasks and would verify manipulator performance parameters. These first flight tasks included unlocking a SSF Truss Joint, mating/demating a fluid coupling, contact following of a contour board, demonstrating peg-in-hole assembly, and grasping and moving a mass. Future tasks foreseen for the FTS system included ORU (Orbit Replaceable Unit) change-out, Hubble Space Telescope Servicing, Gamma Ray Observatory refueling, and several in-situ SSF servicing and maintenance tasks. Operation of the FTS was planned to evolve from teleoperation to fully autonomous execution of many tasks. This wide range of mission tasks combined with the desire to evolve toward fully autonomy forced several requirements which may seen extremely demanding to the telerobotics community. The FTS requirements appear to have been created to accommodate the open-ended evolution plan such that operational evolution would not be impeded by function limitations. A recommendation arising from the FTS program to remedy the possible impacts from such ambitious requirements is to analyze candidate robotic tasks. Based on these task analyses, operational impacts against development impacts were weighed prior to requirements definition. Many of the FTS requirements discussed in the following sections greatly influenced the development cost and schedule of the FTS manipulator. The FTS manipulator has been assembled at Martin Marietta and is currently in testing. Successful component tests indicate a manipulator which achieves unprecedented performance specifications.

  17. Man-Machine Communication Research.

    DTIC Science & Technology

    1977-02-01

    communication difficulty for the computer-naive; discovery of major communication structures in human communication that have been left out of man-machine...processes; creation of a new overview of how human communication functions in cooperative task-oriented activity; and assistance in ARPA policy formation on CAI equipment development.

  18. Perceptual telerobotics

    NASA Technical Reports Server (NTRS)

    Ligomenides, Panos A.

    1989-01-01

    A sensory world modeling system, congruent with a human expert's perception, is proposed. The Experiential Knowledge Base (EKB) system can provide a highly intelligible communication interface for telemonitoring and telecontrol of a real time robotic system operating in space. Paradigmatic acquisition of empirical perceptual knowledge, and real time experiential pattern recognition and knowledge integration are reviewed. The cellular architecture and operation of the EKB system are also examined.

  19. Electric machine

    DOEpatents

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  20. Cooperative intelligent robotics in space III; Proceedings of the Meeting, Boston, MA, Nov. 16-18, 1992

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D. (Editor)

    1992-01-01

    The present volume on cooperative intelligent robotics in space discusses sensing and perception, Space Station Freedom robotics, cooperative human/intelligent robot teams, and intelligent space robotics. Attention is given to space robotics reasoning and control, ground-based space applications, intelligent space robotics architectures, free-flying orbital space robotics, and cooperative intelligent robotics in space exploration. Topics addressed include proportional proximity sensing for telerobots using coherent lasar radar, ground operation of the mobile servicing system on Space Station Freedom, teleprogramming a cooperative space robotic workcell for space stations, and knowledge-based task planning for the special-purpose dextrous manipulator. Also discussed are dimensions of complexity in learning from interactive instruction, an overview of the dynamic predictive architecture for robotic assistants, recent developments at the Goddard engineering testbed, and parallel fault-tolerant robot control.

  1. Marginal Probabilistic Modeling of the Delays in the Sensory Data Transmission of Networked Telerobots

    PubMed Central

    Gago-Benítez, Ana; Fernández-Madrigal, Juan-Antonio; Cruz-Martín, Ana

    2014-01-01

    Networked telerobots are remotely controlled through general purpose networks and components, which are highly heterogeneous and exhibit stochastic response times; however their correct teleoperation requires a timely flow of information from sensors to remote stations. In order to guarantee these time requirements, a good on-line probabilistic estimation of the sensory transmission delays is needed. In many modern applications this estimation must be computationally highly efficient, e.g., when the system includes a web-based client interface. This paper studies marginal probability distributions that, under mild assumptions, can be a good approximation of the real distribution of the delays without using knowledge of their dynamics, are efficient to compute, and need minor modifications on the networked robot. Since sequences of delays exhibit strong non-linearities in these networked applications, to satisfy the iid hypothesis required by the marginal approach we apply a change detection method. The results reported here indicate that some parametrical models explain well many more real scenarios when using this change detection method, while some non-parametrical distributions have a very good rate of successful modeling in the case that non-linearity detection is not possible and that we split the total delay into its three basic terms: server, network and client times. PMID:24481232

  2. An opposition class piloted mission to Mars using telerobotics for landing site reconnaissance and exploration

    NASA Astrophysics Data System (ADS)

    Burley, Philip J.; Fredrickson, Steven E.; Magruder, Darby F.; Rask, John D.

    2001-02-01

    The authors propose a new architecture for a first piloted mission to Mars. A crew travels to and from Mars in the same type of vehicle as will be used for the first piloted landing mission. Two or three surface rovers travel to Mars separately. The rovers land at widely separated potential human landing sites within a single hemisphere. The piloted vehicle (orbiter) achieves an orbit around Mars with a period equal to one Martian day (sol), so that continuous line-of-sight communications exists between the orbiter and the rovers. The crew operates the rovers from orbit using telerobotics and telepresence technology. The rovers, which have traverse ranges measured in kilometers per day, perform extensive landing site reconnaissance, weather observations, and geological sample collection and analysis, including water detection experiments. The mission lasts approximately 40 days in Mars orbit. Major objectives include rigorous flight test of the piloted vehicle, precision landing site characterization and selection at a level of detail unattainable from orbit, and predeployment of the teleoperated rovers for later use as robotic assistants during human surface missions. All of these objectives can reduce the risk to the first crew to land on Mars. Such a mission could be launched at least one synodic period ahead of the earliest planned piloted landing. .

  3. Controlling telerobots with video data and compensating for time-delayed video using Omniview

    NASA Technical Reports Server (NTRS)

    Kuban, Dan; Zimmerman, Steve; Martin, Lee

    1994-01-01

    Remote viewing is critical for teleoperations, but the inherent limitations of standard video reduce the operator's effectiveness. These limitations have been compensated for in many ways, from using the operator's adaptability, to augmenting his capability with feedback from a variety of sensors and simulations. Omniview can overcome some of these limitations and improve the operator's efficiency without adding additional sensors or computational burden. It can minimize the potential collisions with facility equipment, provide peripheral vision, and display multiple images simultaneously from a single input device. The Omniview technology provides electronic pan, tilt, magnify, and rotational orientation within a hemispherical field-of-view without any moving parts. Image sizes, viewing directions, scale, offset, etc., may be adjusted to fit operator needs. This paper discusses the derivation of the image transformation, the design of the electronics, and two applications to telepresence that are under development. These are Video Emulated Tweening (VET), and Manipulator Guidance and Positioning (ManGAP). The VET effort uses Omniview to compensate for time-delayed video in teleoperation of remote vehicles. In ManGAP two Omniview systems are used to provide two sets of orientation vectors to points in the field-of-view (FOV). These vectors then provide absolute position information to both control the position of the telerobot, and to avoid collisions with the work sight equipment.

  4. Testing of FTS fingers and interface using a passive compliant robot manipulator. [flight telerobot servicer

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Antrazi, Sami S.

    1992-01-01

    This report deals with testing of a pair of robot fingers designed for the Flight Telerobotic Servicer (FTS) to grasp a cylinder type of Orbital Replaceable Unit (ORU) interface. The report first describes the objectives of the study and then the testbed consisting of a Stewart Platform-based manipulator equipped with a passive compliant platform which also serves as a force/torque sensor. Kinematic analysis is then performed to provide a closed-form solution for the force inverse kinematics and iterative solution for the force forward kinematics using the Newton's Raphson Method. Mathematical expressions are then derived to compute force/torques applied to the FTS fingers during the mating/demating with the interface. The report then presents the three parts of the experimental study on the feasibility and characteristics of the fingers. The first part obtains data of forces applied by the fingers to the interface under various misalignments, the second part determines the maximum allowable capture angles for mating, and the third part processes and interprets the obtained force/torque data.

  5. Telerobotic control of a mobile coordinated robotic server. M.S. Thesis Annual Technical Report

    NASA Technical Reports Server (NTRS)

    Lee, Gordon

    1993-01-01

    The annual report on telerobotic control of a mobile coordinated robotic server is presented. The goal of this effort is to develop advanced control methods for flexible space manipulator systems. As such, an adaptive fuzzy logic controller was developed in which model structure as well as parameter constraints are not required for compensation. The work builds upon previous work on fuzzy logic controllers. Fuzzy logic controllers have been growing in importance in the field of automatic feedback control. Hardware controllers using fuzzy logic have become available as an alternative to the traditional PID controllers. Software has also been introduced to aid in the development of fuzzy logic rule-bases. The advantages of using fuzzy logic controllers include the ability to merge the experience and intuition of expert operators into the rule-base and that a model of the system is not required to construct the controller. A drawback of the classical fuzzy logic controller, however, is the many parameters needed to be turned off-line prior to application in the closed-loop. In this report, an adaptive fuzzy logic controller is developed requiring no system model or model structure. The rule-base is defined to approximate a state-feedback controller while a second fuzzy logic algorithm varies, on-line, parameters of the defining controller. Results indicate the approach is viable for on-line adaptive control of systems when the model is too complex or uncertain for application of other more classical control techniques.

  6. Space flight manipulator technologies and requirements for the NASA Flight Telerobotic Servicer (FTS)

    NASA Technical Reports Server (NTRS)

    Chladek, John T.; Craver, William M.

    1994-01-01

    NASA Headquarters' Office of Advanced Concepts and Technology (OACT) joined efforts with Johnson Space Center's (JSC) Automation and Robotics Division and Langley Research Center's (LaRC) Information Systems Division to capture the technologies developed during the cancelled NASA Flight Telerobotic Servicer (FTS) program planned for use on Space Station Freedom. The recent FTS technology capture effort completed the build and testing of one flight qualifiable FTS manipulator, deliverable to JSC's Automation & Robotics Division for environmental testing. The many robotic technologies developed to meet the 30 year space environment design requirements are discussed in this paper. The manipulator properties were to allow positioning control to one thousandths of an inch, with zero actuator backlash over a temperature range of -50 to +95 C, and were to include impedance control and inertial decoupling. Safety and reliability requirements are discussed that were developed to allow a thirty year life in space with minimum maintenance. The system had to meet the safety requirements for hazardous payloads for operation in the shuttle payload bay during demonstration test flights prior to station use. A brief description is contained on an orbiter based robotic experiment and operational application using the dexterous FTS manipulator operating on the end of the shuttle remote manipulator systems (SRMS) from ground control.

  7. Design and performance evaluation of a minimally invasive telerobotic platform for transurethral surveillance and intervention.

    PubMed

    Goldman, Roger E; Bajo, Andrea; MacLachlan, Lara S; Pickens, Ryan; Herrell, S Duke; Simaan, Nabil

    2013-04-01

    Bladder cancer, a significant cause of morbidity and mortality worldwide, presents a unique opportunity for aggressive treatment due to the ease of transurethral accessibility. While the location affords advantages, transurethral resection of bladder tumors can pose a difficult challenge for surgeons encumbered by current instrumentation or difficult anatomic tumor locations. This paper presents the design and evaluation of a telerobotic system for transurethral surveillance and surgical intervention. The implementation seeks to improve current procedures and enable development of new surgical techniques by providing a platform for intravesicular dexterity and integration of novel imaging and interventional instrumentation. The system includes a dexterous continuum robot with access channels for the parallel deployment of multiple visualization and surgical instruments. This paper first presents the clinical conditions imposed by transurethral access and the limitations of the current state-of-the-art instrumentation. Motivated by the clinical requirements, the design considerations for this system are discussed and the prototype system is presented. Telemanipulation evaluation demonstrates submillimetric RMS positioning accuracy and intravesicular dexterity suitable for improving transurethral surveillance and intervention.

  8. Baseline tests of an autonomous telerobotic system for assembly of space truss structures

    NASA Technical Reports Server (NTRS)

    Rhodes, Marvin D.; Will, Ralph W.; Quach, Coung

    1994-01-01

    Several proposed space missions include precision reflectors that are larger in diameter than any current or proposed launch vehicle. Most of these reflectors will require a truss structure to accurately position the reflector panels and these reflectors will likely require assembly in orbit. A research program has been conducted at the NASA Langley Research Center to develop the technology required for the robotic assembly of truss structures. The focus of this research has been on hardware concepts, computer software control systems, and operator interfaces necessary to perform supervised autonomous assembly. A special facility was developed and four assembly and disassembly tests of a 102-strut tetrahedral truss have been conducted. The test procedures were developed around traditional 'pick-and-place' robotic techniques that rely on positioning repeatability for successful operation. The data from two of the four tests were evaluated and are presented in this report. All operations in the tests were controlled by predefined sequences stored in a command file, and the operator intervened only when the system paused because of the failure of an actuator command. The tests were successful in identifying potential pitfalls in a telerobotic system, many of which would not have been readily anticipated or incurred through simulation studies. Addressing the total integrated task, instead of bench testing the component parts, forced all aspects of the task to be evaluated. Although the test results indicate that additional developments should be pursued, no problems were encountered that would preclude automated assembly in space as a viable construction method.

  9. Demonstration of surgical telerobotics and virtual telepresence by Internet + ISDN from Monterey (USA) to Milan (Italy).

    PubMed

    Rovetta, A; Sala, R; Bressanelli, M; Garavaldi, M E; Lorini, F; Pegoraro, R; Canina, M

    1998-01-01

    This paper deals with the connection which has been held on 8th July 1997 in collaboration with the JPL of the NASA, Pasadena, California, between the Eighth International Conference on the Advanced Robotics (ICAR '97) in course at Monterey, California and the Telerobotics Laboratory of Politecnico di Milano connected in a multipoint teleconference through the MCU of Rome with the Aula Magna of the same Politecnico and the Palace Business of the Giureconsulti of the Chamber of Commerce of Milan. The demonstration has allowed to telecontrol a scara robot of the Sankyo and an ABB robot, which have affected simulations of operations of biopsy to the prostate, to the liver and to the breast, a mechanical hand and a model of a car, disposed in a space destined to reproduce the Martian ground, from Monterey to Milan by means of the INTERNET+ISDN connection from. In fact the event has taken place four days after the landing on Mars happily successful of the spatial probe Pathfinder from which it has gone out the "Sojourner" robot, telecontrolled from the JPL of the NASA, which has begun to take photos of the Martian ground and also some of these images have been transmitted in the course of the connection.

  10. Development of a vision non-contact sensing system for telerobotic applications

    NASA Astrophysics Data System (ADS)

    Karkoub, M.; Her, M.-G.; Ho, M.-I.; Huang, C.-C.

    2013-08-01

    The study presented here describes a novel vision-based motion detection system for telerobotic operations such as distant surgical procedures. The system uses a CCD camera and image processing to detect the motion of a master robot or operator. Colour tags are placed on the arm and head of a human operator to detect the up/down, right/left motion of the head as well as the right/left motion of the arm. The motion of the colour tags are used to actuate a slave robot or a remote system. The determination of the colour tags' motion is achieved through image processing using eigenvectors and colour system morphology and the relative head, shoulder and wrist rotation angles through inverse dynamics and coordinate transformation. A program is used to transform this motion data into motor control commands and transmit them to a slave robot or remote system through wireless internet. The system performed well even in complex environments with errors that did not exceed 2 pixels with a response time of about 0.1 s. The results of the experiments are available at: http://www.youtube.com/watch?v=yFxLaVWE3f8 and http://www.youtube.com/watch?v=_nvRcOzlWHw

  11. Speech versus manual control of camera functions during a telerobotic task

    NASA Technical Reports Server (NTRS)

    Bierschwale, John M.; Sampaio, Carlos E.; Stuart, Mark A.; Smith, Randy L.

    1989-01-01

    Voice input for control of camera functions was investigated in this study. Objective were to (1) assess the feasibility of a voice-commanded camera control system, and (2) identify factors that differ between voice and manual control of camera functions. Subjects participated in a remote manipulation task that required extensive camera-aided viewing. Each subject was exposed to two conditions, voice and manual input, with a counterbalanced administration order. Voice input was found to be significantly slower than manual input for this task. However, in terms of remote manipulator performance errors and subject preference, there was no difference between modalities. Voice control of continuous camera functions is not recommended. It is believed that the use of voice input for discrete functions, such as multiplexing or camera switching, could aid performance. Hybrid mixes of voice and manual input may provide the best use of both modalities. This report contributes to a better understanding of the issues that affect the design of an efficient human/telerobot interface.

  12. Evaluation of inertial devices for the control of large, flexible, space-based telerobotic arms

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.; Kenny, Sean P.; Ghosh, Dave; Shenhar, Joram

    1993-01-01

    Inertial devices, including sensors and actuators, offer the potential of improving the tracking of telerobotic commands for space-based robots by smoothing payload motions and suppressing vibrations. In this paper, inertial actuators (specifically, torque-wheels and reaction-masses) are studied for that potential application. Batch simulation studies are presented which show that torque-wheels can reduce the overshoot in abrupt stop commands by 82 percent for a two-link arm. For man-in-the-loop evaluation, a real-time simulator has been developed which samples a hand-controller, solves the nonlinear equations of motion, and graphically displays the resulting motion on a computer workstation. Currently, two manipulator models, a two-link, rigid arm and a single-link, flexible arm, have been studied. Results are presented which show that, for a single-link arm, a reaction-mass/torque-wheel combination at the payload end can yield a settling time of 3 s for disturbances in the first flexible mode as opposed to 10 s using only a hub motor. A hardware apparatus, which consists of a single-link, highly flexible arm with a hub motor and a torque-wheel, has been assembled to evaluate the concept and is described herein.

  13. Light-Directed Ranging System Implementing Single Camera System for Telerobotics Applications

    NASA Technical Reports Server (NTRS)

    Wells, Dennis L. (Inventor); Li, Larry C. (Inventor); Cox, Brian J. (Inventor)

    1997-01-01

    A laser-directed ranging system has utility for use in various fields, such as telerobotics applications and other applications involving physically handicapped individuals. The ranging system includes a single video camera and a directional light source such as a laser mounted on a camera platform, and a remotely positioned operator. In one embodiment, the position of the camera platform is controlled by three servo motors to orient the roll axis, pitch axis and yaw axis of the video cameras, based upon an operator input such as head motion. The laser is offset vertically and horizontally from the camera, and the laser/camera platform is directed by the user to point the laser and the camera toward a target device. The image produced by the video camera is processed to eliminate all background images except for the spot created by the laser. This processing is performed by creating a digital image of the target prior to illumination by the laser, and then eliminating common pixels from the subsequent digital image which includes the laser spot. A reference point is defined at a point in the video frame, which may be located outside of the image area of the camera. The disparity between the digital image of the laser spot and the reference point is calculated for use in a ranging analysis to determine range to the target.

  14. Development of a semi-autonomous service robot with telerobotic capabilities

    NASA Technical Reports Server (NTRS)

    Jones, J. E.; White, D. R.

    1987-01-01

    The importance to the United States of semi-autonomous systems for application to a large number of manufacturing and service processes is very clear. Two principal reasons emerge as the primary driving forces for development of such systems: enhanced national productivity and operation in environments whch are hazardous to humans. Completely autonomous systems may not currently be economically feasible. However, autonomous systems that operate in a limited operation domain or that are supervised by humans are within the technology capability of this decade and will likely provide reasonable return on investment. The two research and development efforts of autonomy and telerobotics are distinctly different, yet interconnected. The first addresses the communication of an intelligent electronic system with a robot while the second requires human communication and ergonomic consideration. Discussed here are work in robotic control, human/robot team implementation, expert system robot operation, and sensor development by the American Welding Institute, MTS Systems Corporation, and the Colorado School of Mines--Center for Welding Research.

  15. Demonstration of a High-Fidelity Predictive/Preview Display Technique for Telerobotic Servicing in Space

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Bejczy, Antal K.

    1993-01-01

    A highly effective predictive/preview display technique for telerobotic servicing in space under several seconds communication time delay has been demonstrated on a large laboratory scale in May 1993, involving the Jet Propulsion Laboratory as the simulated ground control station and, 2500 miles away, the Goddard Space Flight Center as the simulated satellite servicing set-up. The technique is based on a high-fidelity calibration procedure that enables a high-fidelity overlay of 3-D graphics robot arm and object models over given 2-D TV camera images of robot arm and objects. To generate robot arm motions, the operator can confidently interact in real time with the graphics models of the robot arm and objects overlaid on an actual camera view of the remote work site. The technique also enables the operator to generate high-fidelity synthetic TV camera views showing motion events that are hidden in a given TV camera view or for which no TV camera views are available. The positioning accuracy achieved by this technique for a zoomed-in camera setting was about +/-5 mm, well within the allowable +/-12 mm error margin at the insertion of a 45 cm long tool in the servicing task.

  16. Marginal probabilistic modeling of the delays in the sensory data transmission of networked telerobots.

    PubMed

    Gago-Benítez, Ana; Fernández-Madrigal, Juan-Antonio; Cruz-Martín, Ana

    2014-01-29

    Networked telerobots are remotely controlled through general purpose networks and components, which are highly heterogeneous and exhibit stochastic response times; however their correct teleoperation requires a timely flow of information from sensors to remote stations. In order to guarantee these time requirements, a good on-line probabilistic estimation of the sensory transmission delays is needed. In many modern applications this estimation must be computationally highly efficient, e.g., when the system includes a web-based client interface. This paper studies marginal probability distributions that, under mild assumptions, can be a good approximation of the real distribution of the delays without using knowledge of their dynamics, are efficient to compute, and need minor modifications on the networked robot. Since sequences of delays exhibit strong non-linearities in these networked applications, to satisfy the iid hypothesis required by the marginal approach we apply a change detection method. The results reported here indicate that some parametrical models explain well many more real scenarios when using this change detection method, while some non-parametrical distributions have a very good rate of successful modeling in the case that non-linearity detection is not possible and that we split the total delay into its three basic terms: server, network and client times.

  17. Cooperative Networks

    DTIC Science & Technology

    2009-02-23

    than the traditional direct transmission and full cooperation schemes. B. OFDM-Based Cooperation Relay and Subchannel Assignment and Combining We... subchannel assignment and combining schemes. Based on the amount of CSI, resources, such as subchannels , can be allocated to relays to improve the end-to-end...relay node uses the same subchannel to relay the information transmitted by the source node. To further improve the performance gain, subchannel

  18. Safety improvements in high pressure thermal machines

    SciTech Connect

    Otters, J.L.

    1988-02-09

    In a thermal machine of the type including a machine body having a main axis extending between a thermal end and a work end, a working fluid at relatively high pressure in a working fluid chamber defined in the body and a displacer element reciprocable within the chamber for subjecting the fluid to a thermodynamic cycle in cooperation with a reciprocable work piston, the improvement is described comprising outer shell means enclosing the machine body for maintaining a substantially sealed atmosphere about the machine body, and diffuser means arranged between the machine body and the outer shell means for diffusing a shock wave traveling towards the outer shell means resulting from explosive failure of the machine body and for shielding the outer shell means against fragments projected upon such failure.

  19. The use of computer graphic simulation in the development of on-orbit tele-robotic systems

    NASA Technical Reports Server (NTRS)

    Fernandez, Ken; Hinman, Elaine

    1987-01-01

    This paper describes the use of computer graphic simulation techniques to resolve critical design and operational issues for robotic systems used for on-orbit operations. These issues are robot motion control, robot path-planning/verification, and robot dynamics. The major design issues in developing effective telerobotic systems are discussed, and the use of ROBOSIM, a NASA-developed computer graphic simulation tool, to address these issues is presented. Simulation plans for the Space Station and the Orbital Maneuvering Vehicle are presented and discussed.

  20. Dynamic analysis of a 6 DOF CKCM robot end-effector for dual-arm telerobot systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Pooran, Farhad J.

    1989-01-01

    A dynamical analysis is performed for a six DOF robot end-effector built to study telerobotic service and maintenance of NASA hardwares in space. The design of the end-effector is based on the concept of closed-kinematic chain mechanism capable of performing precise motion in a small workspace. After presenting a closed-form solution for the inverse kinematic problem, the Lagrangian approach is used to derive a set of equations of motion for the end-effector where the generalized coordinates are selected to be the Cartesian coordinates. A computer simulation study shows that the centrifugal and Coriolis terms can be neglected for slow motion.

  1. The telerobot workstation testbed for the shuttle aft flight deck: A project plan for integrating human factors into system design

    NASA Technical Reports Server (NTRS)

    Sauerwein, Timothy

    1989-01-01

    The human factors design process in developing a shuttle orbiter aft flight deck workstation testbed is described. In developing an operator workstation to control various laboratory telerobots, strong elements of human factors engineering and ergonomics are integrated into the design process. The integration of human factors is performed by incorporating user feedback at key stages in the project life-cycle. An operator centered design approach helps insure the system users are working with the system designer in the design and operation of the system. The design methodology is presented along with the results of the design and the solutions regarding human factors design principles.

  2. Workout Machine

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Orbotron is a tri-axle exercise machine patterned after a NASA training simulator for astronaut orientation in the microgravity of space. It has three orbiting rings corresponding to roll, pitch and yaw. The user is in the middle of the inner ring with the stomach remaining in the center of all axes, eliminating dizziness. Human power starts the rings spinning, unlike the NASA air-powered system. Marketed by Fantasy Factory (formerly Orbotron, Inc.), the machine can improve aerobic capacity, strength and endurance in five to seven minute workouts.

  3. Wacky Machines

    ERIC Educational Resources Information Center

    Fendrich, Jean

    2002-01-01

    Collectors everywhere know that local antique shops and flea markets are treasure troves just waiting to be plundered. Science teachers might take a hint from these hobbyists, for the next community yard sale might be a repository of old, quirky items that are just the things to get students thinking about simple machines. By introducing some…

  4. Robotic Technology Development at Ames: The Intelligent Robotics Group and Surface Telerobotics

    NASA Technical Reports Server (NTRS)

    Bualat, Maria; Fong, Terrence

    2013-01-01

    Future human missions to the Moon, Mars, and other destinations offer many new opportunities for exploration. But, astronaut time will always be limited and some work will not be feasible for humans to do manually. Robots, however, can complement human explorers, performing work autonomously or under remote supervision from Earth. Since 2004, the Intelligent Robotics Group has been working to make human-robot interaction efficient and effective for space exploration. A central focus of our research has been to develop and field test robots that benefit human exploration. Our approach is inspired by lessons learned from the Mars Exploration Rovers, as well as human spaceflight programs, including Apollo, the Space Shuttle, and the International Space Station. We conduct applied research in computer vision, geospatial data systems, human-robot interaction, planetary mapping and robot software. In planning for future exploration missions, architecture and study teams have made numerous assumptions about how crew can be telepresent on a planetary surface by remotely operating surface robots from space (i.e. from a flight vehicle or deep space habitat). These assumptions include estimates of technology maturity, existing technology gaps, and likely operational and functional risks. These assumptions, however, are not grounded by actual experimental data. Moreover, no crew-controlled surface telerobotic system has yet been fully tested, or rigorously validated, through flight testing. During Summer 2013, we conducted a series of tests to examine how astronauts in the International Space Station (ISS) can remotely operate a planetary rover across short time delays. The tests simulated portions of a proposed human-robotic Lunar Waypoint mission, in which astronauts in lunar orbit remotely operate a planetary rover on the lunar Farside to deploy a radio telescope array. We used these tests to obtain baseline-engineering data.

  5. Telerobotic-assisted bone-drilling system using bilateral control with feed operation scaling and cutting force scaling

    PubMed Central

    Kasahara, Yusuke; Kawana, Hiromasa; Usuda, Shin; Ohnishi, Kouhei

    2012-01-01

    Background Drilling is used in the medical field, especially in oral surgery and orthopaedics. In recent years, oral surgery involving dental implants has become more common. However, the risky drilling process causes serious accidents. To prevent these accidents, supporting systems such as robotic drilling systems are required. Methods A telerobotic-assisted drilling system is proposed. An acceleration-based four-channel bilateral control system is implemented in linear actuators in a master–slave system for drill feeding. A reaction force observer is used instead of a force sensor for measuring cutting force. Cutting force transmits from a cutting material to a surgeon, who may feel a static cutting resistance force and vigorous cutting vibrations, via the master–slave system. Moreover, position scaling and force scaling are achieved. Scaling functions are used to achieve precise drilling and hazard detection via force sensation. Results Cutting accuracy and reproducibility of the cutting force were evaluated by angular velocity/position error and frequency analysis of the cutting force, respectively, and errors were > 2.0 rpm and > 0.2 mm, respectively. Spectrum peaks of the cutting vibration were at the theoretical vibration frequencies of 30, 60 and 90 Hz. Conclusions The proposed telerobotic-assisted drilling system achieved precise manipulation of the drill feed and vivid feedback from the cutting force. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22271710

  6. Machine Learning

    NASA Astrophysics Data System (ADS)

    Hoffmann, Achim; Mahidadia, Ashesh

    The purpose of this chapter is to present fundamental ideas and techniques of machine learning suitable for the field of this book, i.e., for automated scientific discovery. The chapter focuses on those symbolic machine learning methods, which produce results that are suitable to be interpreted and understood by humans. This is particularly important in the context of automated scientific discovery as the scientific theories to be produced by machines are usually meant to be interpreted by humans. This chapter contains some of the most influential ideas and concepts in machine learning research to give the reader a basic insight into the field. After the introduction in Sect. 1, general ideas of how learning problems can be framed are given in Sect. 2. The section provides useful perspectives to better understand what learning algorithms actually do. Section 3 presents the Version space model which is an early learning algorithm as well as a conceptual framework, that provides important insight into the general mechanisms behind most learning algorithms. In section 4, a family of learning algorithms, the AQ family for learning classification rules is presented. The AQ family belongs to the early approaches in machine learning. The next, Sect. 5 presents the basic principles of decision tree learners. Decision tree learners belong to the most influential class of inductive learning algorithms today. Finally, a more recent group of learning systems are presented in Sect. 6, which learn relational concepts within the framework of logic programming. This is a particularly interesting group of learning systems since the framework allows also to incorporate background knowledge which may assist in generalisation. Section 7 discusses Association Rules - a technique that comes from the related field of Data mining. Section 8 presents the basic idea of the Naive Bayesian Classifier. While this is a very popular learning technique, the learning result is not well suited for

  7. Teacher Cooperatives

    ERIC Educational Resources Information Center

    Hawkins, Beth

    2009-01-01

    Twenty years ago, when the late Albert Shanker endorsed the notion of innovative schools operating outside conventional district bureaucracies, his aim was to put teachers at the helm. Today there are nearly 80 teacher-governed charter schools around the country. Although most are legally constituted as worker cooperatives, they better resemble…

  8. Charging machine

    DOEpatents

    Medlin, John B.

    1976-05-25

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine.

  9. Three-dimensional sensing, graphics, and interactive control in a human-machine system for decontamination and decommissioning applications

    NASA Astrophysics Data System (ADS)

    Thayer, Scott M.; Gourley, Christopher S.; Butler, Philip L.; Costello, Hugh; Trivedi, Mohan M.; Chen, ChuXin; Marapane, Suresh B.

    1992-11-01

    Decontamination and Decommissioning (D important requirement of the U.S. Department of Energy''s Environmental Restoration and Waste Management (ERWM) program. Means need to be devised to minimize radiation exposure to humans involved in the D research presented in this paper describes a human-machine system which can be employed for performing radiation scan and pipe cutting operations in a typical D Advanced Servomanipulator (ASM) from the Oak Ridge National Laboratory (ORNL), we have designed a hybrid telerobotic pipe-cutting module. The module, when fully integrated, will allow users of the ASM to exploit the original functionality of the telerobot when our pipe cutting system is not in use. Comprising the pipe-cutting system are interactive three- dimensional object localization, graphical task modeler, arm control, human-machine interface, radiation sensor, and cut-tool sub-systems. Only the task modeler and interactive object localization modules are discussed in this paper. The goal of these modules is to interactively localize an object, usually a pipe, and display it in a three-dimensional rendering of the work space. Through interaction with these modules, the supervisor coordinates a task- specific sequence of actions that the lower-level sub-systems will perform.

  10. Induction machine

    DOEpatents

    Owen, Whitney H.

    1980-01-01

    A polyphase rotary induction machine for use as a motor or generator utilizing a single rotor assembly having two series connected sets of rotor windings, a first stator winding disposed around the first rotor winding and means for controlling the current induced in one set of the rotor windings compared to the current induced in the other set of the rotor windings. The rotor windings may be wound rotor windings or squirrel cage windings.

  11. Machine vision

    SciTech Connect

    Horn, D.

    1989-06-01

    To keep up with the speeds of modern production lines, most machine vision applications require very powerful computers (often parallel-processing machines), which process millions of points of data in real time. The human brain performs approximately 100 billion logical floating-point operations each second. That is 400 times the speed of a Cray-1 supercomputer. The right software must be developed for parallel-processing computers. The NSF has awarded Rensselaer Polytechnic Institute (Troy, N.Y.) a $2 million grant for parallel- and image-processing software research. Over the last 15 years, Rensselaer has been conducting image-processing research, including work with high-definition TV (HDTV) and image coding and understanding. A similar NSF grant has been awarded to Michigan State University (East Lansing, Mich.) Neural networks are supposed to emulate human learning patterns. These networks and their hardware implementations (neurocomputers) show a great deal of promise for machine vision systems because they allow the systems to understand the use sensory data input more effectively. Neurocomputers excel at pattern-recognition tasks when input data are fuzzy or the vision algorithm is not optimal and is difficult to ascertain.

  12. Laser-Directed Ranging System Implementing Single Camera System for Telerobotics Applications

    NASA Technical Reports Server (NTRS)

    Wells, Dennis L. (Inventor); Li, Larry C. (Inventor); Cox, Brian J. (Inventor)

    1995-01-01

    The invention relates generally to systems for determining the range of an object from a reference point and, in one embodiment, to laser-directed ranging systems useful in telerobotics applications. Digital processing techniques are employed which minimize the complexity and cost of the hardware and software for processing range calculations, thereby enhancing the commercial attractiveness of the system for use in relatively low-cost robotic systems. The system includes a video camera for generating images of the target, image digitizing circuitry, and an associated frame grabber circuit. The circuit first captures one of the pairs of stereo video images of the target, and then captures a second video image of the target as it is partly illuminated by the light beam, suitably generated by a laser. The two video images, taken sufficiently close together in time to minimize camera and scene motion, are converted to digital images and then compared. Common pixels are eliminated, leaving only a digital image of the laser-illuminated spot on the target. Mw centroid of the laser illuminated spot is dm obtained and compared with a predetermined reference point, predetermined by design or calibration, which represents the coordinate at the focal plane of the laser illumination at infinite range. Preferably, the laser and camera are mounted on a servo-driven platform which can be oriented to direct the camera and the laser toward the target. In one embodiment the platform is positioned in response to movement of the operator's head. Position and orientation sensors are used to monitor head movement. The disparity between the digital image of the laser spot and the reference point is calculated for determining range to the target. Commercial applications for the system relate to active range-determination systems, such as those used with robotic systems in which it is necessary to determine the, range to a workpiece or object to be grasped or acted upon by a robot arm end

  13. Telerobotic system concept for real-time soft-tissue imaging during radiotherapy beam delivery

    SciTech Connect

    Schlosser, Jeffrey; Salisbury, Kenneth; Hristov, Dimitre

    2010-12-15

    Purpose: The curative potential of external beam radiation therapy is critically dependent on having the ability to accurately aim radiation beams at intended targets while avoiding surrounding healthy tissues. However, existing technologies are incapable of real-time, volumetric, soft-tissue imaging during radiation beam delivery, when accurate target tracking is most critical. The authors address this challenge in the development and evaluation of a novel, minimally interfering, telerobotic ultrasound (U.S.) imaging system that can be integrated with existing medical linear accelerators (LINACs) for therapy guidance. Methods: A customized human-safe robotic manipulator was designed and built to control the pressure and pitch of an abdominal U.S. transducer while avoiding LINAC gantry collisions. A haptic device was integrated to remotely control the robotic manipulator motion and U.S. image acquisition outside the LINAC room. The ability of the system to continuously maintain high quality prostate images was evaluated in volunteers over extended time periods. Treatment feasibility was assessed by comparing a clinically deployed prostate treatment plan to an alternative plan in which beam directions were restricted to sectors that did not interfere with the transabdominal U.S. transducer. To demonstrate imaging capability concurrent with delivery, robot performance and U.S. target tracking in a phantom were tested with a 15 MV radiation beam active. Results: Remote image acquisition and maintenance of image quality with the haptic interface was successfully demonstrated over 10 min periods in representative treatment setups of volunteers. Furthermore, the robot's ability to maintain a constant probe force and desired pitch angle was unaffected by the LINAC beam. For a representative prostate patient, the dose-volume histogram (DVH) for a plan with restricted sectors remained virtually identical to the DVH of a clinically deployed plan. With reduced margins, as

  14. TEMPO machine

    SciTech Connect

    Rohwein, G.J.; Lancaster, K.T.; Lawson, R.N.

    1986-06-01

    TEMPO is a transformer powered megavolt pulse generator with an output pulse of 100 ns duration. The machine was designed for burst mode operation at pulse repetition rates up to 10 Hz with minimum pulse-to-pulse voltage variations. To meet the requirement for pulse duration a nd a 20-..omega.. output impedance within reasonable size constraints, the pulse forming transmission line was designed as two parallel water-insulated, strip-type Blumleins. Stray capacitance and electric fields along the edges of the line elements were controlled by lining the tank with plastic sheet.

  15. Parallel machines: Parallel machine languages

    SciTech Connect

    Iannucci, R.A. )

    1990-01-01

    This book presents a framework for understanding the tradeoffs between the conventional view and the dataflow view with the objective of discovering the critical hardware structures which must be present in any scalable, general-purpose parallel computer to effectively tolerate latency and synchronization costs. The author presents an approach to scalable general purpose parallel computation. Linguistic Concerns, Compiling Issues, Intermediate Language Issues, and hardware/technological constraints are presented as a combined approach to architectural Develoement. This book presents the notion of a parallel machine language.

  16. Interactive and cooperative sensing and control for advanced teleoperation

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan

    1993-01-01

    This paper presents the paradigm of interactive and cooperative sensing and control as a fundamental mechanism of integrating and fusing the strengths of man and machine for advanced teleoperation. The interactive and cooperative sensing and control is considered as an extended and generalized form of traded and shared control. The emphasis of interactive and cooperative sensing and control is given to the distribution of mutually nonexclusive subtasks to man and machine, the interactive invocation of subtasks under the man/machine symbiotic relationship, and the fusion of information and decisionmaking between man and machine according to their confidence measures. The proposed interactive and cooperative sensing and control system is composed of such major functional blocks as the logical sensor system, the sensor-based local autonomy, the virtual environment formation, and the cooperative decision-making between man and machine. The Sensing-Knowledge-Command (SKC) fusion network is proposed as a fundamental architecture for implementing cooperative and interactive sensing and control. Simulation results are shown.

  17. Machine musicianship

    NASA Astrophysics Data System (ADS)

    Rowe, Robert

    2002-05-01

    The training of musicians begins by teaching basic musical concepts, a collection of knowledge commonly known as musicianship. Computer programs designed to implement musical skills (e.g., to make sense of what they hear, perform music expressively, or compose convincing pieces) can similarly benefit from access to a fundamental level of musicianship. Recent research in music cognition, artificial intelligence, and music theory has produced a repertoire of techniques that can make the behavior of computer programs more musical. Many of these were presented in a recently published book/CD-ROM entitled Machine Musicianship. For use in interactive music systems, we are interested in those which are fast enough to run in real time and that need only make reference to the material as it appears in sequence. This talk will review several applications that are able to identify the tonal center of musical material during performance. Beyond this specific task, the design of real-time algorithmic listening through the concurrent operation of several connected analyzers is examined. The presentation includes discussion of a library of C++ objects that can be combined to perform interactive listening and a demonstration of their capability.

  18. Flotation machine

    SciTech Connect

    Zlobin, M.N.; Permyakov, G.P.; Nemarov, A.A.; Metsik, V.M.; Medetsky, J.V.; Taraban, N.T.

    1993-08-10

    A flotation machine is described for beneficiating minerals comprising: a vertical cylindrical chamber for circulating a flotation pulp; a downwardly tapered bottom connected to said vertical cylindrical chamber; feed pipe means for feeding the flotation pulp carrying mineral particles of fine fraction, particles of the useful ingredient of the fine fraction being capable of floating up from the volume of said aerated pulp; discharge pipe means connected to the tapered bottom near its lowest point for discharging gangue; an annular trough for collecting froth concentrate at the top of said chamber; a group of frustoconical shells each having bases of different diameters and a tapered surface secured axially in said chamber and spaced equidistantly from one another height wise of said chamber; aerator means for aerating the flotation pulp secured to the walls of said chamber and communicating therewith to provide aerated water into said chamber; means for feeding mineral particles of coarse fraction, particles of the useful ingredient of the coarse fraction being capable of floating in the froth layer of the flotation pulp, in the form of a hydrocyclone having a cylindrical casing positioned axially over said chamber and a downwardly tapering outlet directed downwardly to feed the coarse particles to said chamber; feed pipe means for feeding the flotation pulp carrying mineral particles of coarse fraction positioned tangentially at said cylindrical casing of the hydrocyclone; and evacuation means for evacuating the liquid phase of the flotation pulp positioned tangentially at said casing of the hydrocyclone over said feed pipe means and connected to said feed pipe means for feeding the flotation pulp carrying mineral particles of the fine fraction.

  19. Evolutionary explanations for cooperation.

    PubMed

    West, Stuart A; Griffin, Ashleigh S; Gardner, Andy

    2007-08-21

    Natural selection favours genes that increase an organism's ability to survive and reproduce. This would appear to lead to a world dominated by selfish behaviour. However, cooperation can be found at all levels of biological organisation: genes cooperate in genomes, organelles cooperate to form eukaryotic cells, cells cooperate to make multicellular organisms, bacterial parasites cooperate to overcome host defences, animals breed cooperatively, and humans and insects cooperate to build societies. Over the last 40 years, biologists have developed a theoretical framework that can explain cooperation at all these levels. Here, we summarise this theory, illustrate how it may be applied to real organisms and discuss future directions.

  20. 78 FR 73883 - Notice Pursuant to the National Cooperative Research and Production Act of 1993; Members of SGIP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993; Members... National Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), Members of...; Machine-to- Machine Intelligence Corporation (M2Mi), Moffett Field, CA; Inman Technology, Cambridge,...

  1. Plant cooperation.

    PubMed

    Dudley, Susan A

    2015-09-25

    The study of plant behaviour will be aided by conceptual approaches and terminology for cooperation, altruism and helping. The plant literature has a rich discussion of helping between species while the animal literature has an extensive and somewhat contentious discussion of within-species helping. Here, I identify and synthesize concepts, terminology and some practical methodology for speaking about helping in plant populations and measuring the costs and benefits. I use Lehmann and Keller's (2006) classification scheme for animal helping and McIntire and Fajardo's (2014) synthesis of facilitation to provide starting points for classifying the mechanisms of how and why organisms help each other. Contextual theory is discussed as a mechanism for understanding and measuring the fitness consequences of helping. I synthesize helping into four categories. The act of helping can be costly to the helper. If the helper gains indirect fitness by helping relatives but loses direct fitness, this is altruism, and it only occurs within species. Helpers can exchange costly help, which is called mutualism when between species, and reciprocation when within a species. The act of helping can directly benefit the helper as well as the recipient, either as an epiphenomenon resulting from behaviours under natural selection for other reasons, or because the helper is creating a mutual benefit, such as satiating predators or supporting a mutualism. Facilitation between species by stress amelioration, creation of novel ecosystems and habitat complexity often meets the definition of epiphenomenon helping. Within species, this kind of helping is called by-product mutualism. If the helping is under selection to create a mutual benefit shared by others, between species this is facilitation with service sharing or access to resources and within species, direct benefits by mutual benefits. These classifications provide a clear starting point for addressing the subject of helping behaviours.

  2. Plant cooperation

    PubMed Central

    Dudley, Susan A.

    2015-01-01

    The study of plant behaviour will be aided by conceptual approaches and terminology for cooperation, altruism and helping. The plant literature has a rich discussion of helping between species while the animal literature has an extensive and somewhat contentious discussion of within-species helping. Here, I identify and synthesize concepts, terminology and some practical methodology for speaking about helping in plant populations and measuring the costs and benefits. I use Lehmann and Keller's (2006) classification scheme for animal helping and McIntire and Fajardo's (2014) synthesis of facilitation to provide starting points for classifying the mechanisms of how and why organisms help each other. Contextual theory is discussed as a mechanism for understanding and measuring the fitness consequences of helping. I synthesize helping into four categories. The act of helping can be costly to the helper. If the helper gains indirect fitness by helping relatives but loses direct fitness, this is altruism, and it only occurs within species. Helpers can exchange costly help, which is called mutualism when between species, and reciprocation when within a species. The act of helping can directly benefit the helper as well as the recipient, either as an epiphenomenon resulting from behaviours under natural selection for other reasons, or because the helper is creating a mutual benefit, such as satiating predators or supporting a mutualism. Facilitation between species by stress amelioration, creation of novel ecosystems and habitat complexity often meets the definition of epiphenomenon helping. Within species, this kind of helping is called by-product mutualism. If the helping is under selection to create a mutual benefit shared by others, between species this is facilitation with service sharing or access to resources and within species, direct benefits by mutual benefits. These classifications provide a clear starting point for addressing the subject of helping behaviours

  3. Development of a machine vision system for automated structural assembly

    NASA Technical Reports Server (NTRS)

    Sydow, P. Daniel; Cooper, Eric G.

    1992-01-01

    Research is being conducted at the LaRC to develop a telerobotic assembly system designed to construct large space truss structures. This research program was initiated within the past several years, and a ground-based test-bed was developed to evaluate and expand the state of the art. Test-bed operations currently use predetermined ('taught') points for truss structural assembly. Total dependence on the use of taught points for joint receptacle capture and strut installation is neither robust nor reliable enough for space operations. Therefore, a machine vision sensor guidance system is being developed to locate and guide the robot to a passive target mounted on the truss joint receptacle. The vision system hardware includes a miniature video camera, passive targets mounted on the joint receptacles, target illumination hardware, and an image processing system. Discrimination of the target from background clutter is accomplished through standard digital processing techniques. Once the target is identified, a pose estimation algorithm is invoked to determine the location, in three-dimensional space, of the target relative to the robots end-effector. Preliminary test results of the vision system in the Automated Structural Assembly Laboratory with a range of lighting and background conditions indicate that it is fully capable of successfully identifying joint receptacle targets throughout the required operational range. Controlled optical bench test results indicate that the system can also provide the pose estimation accuracy to define the target position.

  4. ROTEX-TRIIFEX: Proposal for a joint FRG-USA telerobotic flight experiment

    NASA Technical Reports Server (NTRS)

    Hirzinger, G.; Bejczy, A. K.

    1989-01-01

    The concepts and main elements of a RObot Technology EXperiment (ROTEX) proposed to fly with the next German spacelab mission, D2, are presented. It provides a 1 meter size, six axis robot inside a spacelab rack, equipped with a multisensory gripper (force-torque sensors, an array of range finders, and mini stereo cameras). The robot will perform assembly and servicing tasks in a generic way, and will grasp a floating object. The man machine and supervisory control concepts for teleoperation from the spacelab and from ground are discussed. The predictive estimation schemes for an extensive use of time-delay compensating 3D computer graphics are explained.

  5. Control of man-machine system for dexterous manipulation

    NASA Astrophysics Data System (ADS)

    Kosuge, Kazuhiro; Fujisawa, Yoshio; Fukuda, Toshio

    1993-12-01

    With the development of robotic technology, many robots have been applied to various fields, such as factories, construction sites, and so on. However, most of the robots have been applied to tasks which require them to repeat the same operation for the known environment automatically. Execution of tasks with unknown environments is still a difficult problem for today's autonomous robot. A robotic system which cooperates with a human operator seems to be an effective approach to solve the problem. In this paper, we are going to discuss a control strategy for a robotic system directly maneuvered by an operator like a human amplifier. The results in this paper could be applied to a telerobotic system. We propose an alternative control algorithm based on `virtual tool' dynamics for the mechanical system. The control algorithm is designed without explicit models of the environment and the human operator. By controlling the mechanical system so as to imitate the dynamics of a tool, the algorithm specifies both the human force amplification ratio and the maneuverability of the system.

  6. PREFACE: Cooperative dynamics Cooperative dynamics

    NASA Astrophysics Data System (ADS)

    Gov, Nir

    2011-09-01

    The dynamics within living cells are dominated by non-equilibrium processes that consume chemical energy (usually in the form of ATP, adenosine triphosphate) and convert it into mechanical forces and motion. The mechanisms that allow this conversion process are mostly driven by the components of the cytoskeleton: (i) directed (polar) polymerization of filaments (either actin or microtubules) and (ii) molecular motors. The forces and motions produced by these two components of the cytoskeleton give rise to the formation of cellular shapes, and drive the intracellular transport and organization. It is clear that these systems present a multi-scale challenge, from the physics of the molecular processes to the organization of many interacting units. Understanding the physical nature of these systems will have a large impact on many fundamental problems in biology and break new grounds in the field of non-equilibrium physics. This field of research has seen a rapid development over the last ten years. Activities in this area range from theoretical and experimental work on the underlying fundamental (bio)physics at the single-molecule level, to investigations (in vivo and in vitro) of the dynamics and patterns of macroscopic pieces of 'living matter'. In this special issue we have gathered contributions that span the whole spectrum of length- and complexity-scales in this field. Some of the works demonstrate how active forces self-organize within the polymerizing cytoskeleton, on the level of cooperative cargo transport via motors or due to active fluxes at the cell membrane. On a larger scale, it is shown that polar filaments coupled to molecular motors give rise to a huge variety of surprising dynamics and patterns: spontaneously looping rings of gliding microtubules, and emergent phases of self-organized filaments and motors in different geometries. All of these articles share the common feature of being out-of-equilibrium, driven by metabolism. As demonstrated here

  7. Recommended fine positioning test for the Development Test Flight (DTF-1) of the NASA Flight Telerobotic Servicer (FTS)

    NASA Technical Reports Server (NTRS)

    Dagalakis, N.; Wavering, A. J.; Spidaliere, P.

    1991-01-01

    Test procedures are proposed for the NASA DTF (Development Test Flight)-1 positioning tests of the FTS (Flight Telerobotic Servicer). The unique problems associated with the DTF-1 mission are discussed, standard robot performance tests and terminology are reviewed and a very detailed description of flight-like testing and analysis is presented. The major technical problem associated with DTF-1 is that only one position sensor can be used, which will be fixed at one location, with a working volume which is probably smaller than some of the robot errors to be measured. Radiation heating of the arm and the sensor could also cause distortions that would interfere with the test. Two robot performance testing committees have established standard testing procedures relevant to the DTF-1. Due to the technical problems associated with DTF-1, these procedures cannot be applied directly. These standard tests call for the use of several test positions at specific locations. Only one position, that of the position sensor, can be used by DTF-1. Off-line programming accuracy might be impossible to measure and in that case it will have to be replaced by forward kinetics accuracy.

  8. Multi-arm multilateral haptics-based immersive tele-robotic system (HITS) for improvised explosive device disposal

    NASA Astrophysics Data System (ADS)

    Erickson, David; Lacheray, Hervé; Lai, Gilbert; Haddadi, Amir

    2014-06-01

    This paper presents the latest advancements of the Haptics-based Immersive Tele-robotic System (HITS) project, a next generation Improvised Explosive Device (IED) disposal (IEDD) robotic interface containing an immersive telepresence environment for a remotely-controlled three-articulated-robotic-arm system. While the haptic feedback enhances the operator's perception of the remote environment, a third teleoperated dexterous arm, equipped with multiple vision sensors and cameras, provides stereo vision with proper visual cues, and a 3D photo-realistic model of the potential IED. This decentralized system combines various capabilities including stable and scaled motion, singularity avoidance, cross-coupled hybrid control, active collision detection and avoidance, compliance control and constrained motion to provide a safe and intuitive control environment for the operators. Experimental results and validation of the current system are presented through various essential IEDD tasks. This project demonstrates that a two-armed anthropomorphic Explosive Ordnance Disposal (EOD) robot interface can achieve complex neutralization techniques against realistic IEDs without the operator approaching at any time.

  9. Stirling machine operating experience

    NASA Technical Reports Server (NTRS)

    Ross, Brad; Dudenhoefer, James E.

    1991-01-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that Stirling machines are capable of reliable and lengthy lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and were not expected to operate for any lengthy period of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered.

  10. Women, Men, and Machines.

    ERIC Educational Resources Information Center

    Form, William; McMillen, David Byron

    1983-01-01

    Data from the first national study of technological change show that proportionately more women than men operate machines, are more exposed to machines that have alienating effects, and suffer more from the negative effects of technological change. (Author/SSH)

  11. The Iowa wave machines

    NASA Astrophysics Data System (ADS)

    Daffron, John D.; Greenslade, Thomas B.; Stille, Dale

    2010-03-01

    Wave machines are a staple of demonstration lectures, and a good pair of wave machines can make the idea of transverse and longitudinal waves clearly evident to students. The demonstration apparatus collection of the University of Iowa contains examples of transverse and longitudinal wave machines that will be of interest to readers of The Physics Teacher. These machines probably date from about 1925 and may have been locally produced. You too can build them.

  12. Cable-Twisting Machine

    NASA Technical Reports Server (NTRS)

    Kurnett, S.

    1982-01-01

    New cable-twisting machine is smaller and faster than many production units. Is useful mainly in production of short-run special cables. Already-twisted cable can be fed along axis of machine. Faster operation than typical industrial cable-twisting machines possible by using smaller spools of wire.

  13. Apprentice Machine Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This volume contains outlines for 16 courses in machine theory that are designed for machine tool apprentices. Addressed in the individual course outlines are the following topics: basic concepts; lathes; milling machines; drills, saws, and shapers; heat treatment and metallurgy; grinders; quality control; hydraulics and pneumatics;…

  14. Duty ratio of cooperative molecular motors.

    PubMed

    Dharan, Nadiv; Farago, Oded

    2012-02-01

    Molecular motors are found throughout the cells of the human body and have many different and important roles. These micromachines move along filament tracks and have the ability to convert chemical energy into mechanical work that powers cellular motility. Different types of motors are characterized by different duty ratios, which is the fraction of time that a motor is attached to its filament. In the case of myosin II (a nonprocessive molecular machine with a low duty ratio), cooperativity between several motors is essential to induce motion along its actin filament track. In this work we use statistical mechanical tools to calculate the duty ratio of cooperative molecular motors. The model suggests that the effective duty ratio of nonprocessive motors that work in cooperation is lower than the duty ratio of the individual motors. The origin of this effect is the elastic tension that develops in the filament which is relieved when motors detach from the track.

  15. Duty ratio of cooperative molecular motors

    NASA Astrophysics Data System (ADS)

    Dharan, Nadiv; Farago, Oded

    2012-02-01

    Molecular motors are found throughout the cells of the human body and have many different and important roles. These micromachines move along filament tracks and have the ability to convert chemical energy into mechanical work that powers cellular motility. Different types of motors are characterized by different duty ratios, which is the fraction of time that a motor is attached to its filament. In the case of myosin II (a nonprocessive molecular machine with a low duty ratio), cooperativity between several motors is essential to induce motion along its actin filament track. In this work we use statistical mechanical tools to calculate the duty ratio of cooperative molecular motors. The model suggests that the effective duty ratio of nonprocessive motors that work in cooperation is lower than the duty ratio of the individual motors. The origin of this effect is the elastic tension that develops in the filament which is relieved when motors detach from the track.

  16. Clamping in Boltzmann machines.

    PubMed

    Livesey, M

    1991-01-01

    A certain assumption that appears in the proof of correctness of the standard Boltzmann machine learning procedure is investigated. The assumption, called the clamping assumption, concerns the behavior of a Boltzmann machine when some of its units are clamped to a fixed state. It is argued that the clamping assumption is essentially an assertion of the time reversibility of a certain Markov chain underlying the behavior of the Boltzmann machine. As such, the clamping assumption is generally false, though it is certainly true of the Boltzmann machines themselves. The author also considers how the concept of the Boltzmann machine may be generalized while retaining the validity of the clamping assumption.

  17. Choosing the cooperative option

    SciTech Connect

    English, G. )

    1999-06-01

    Cooperatives do not ask to be exempted from the law. They do ask that laws and regulations be designed to allow them to meet the needs of their consumer-owners in accordance with cooperative principles, at a time that the marginal consumers being abandoned by for-profit utilities may be ready to gravitate toward cooperatives. The cooperative principles are worth reviewing because they explain the focus on the consumer and the cooperative concept of service: cooperatives are voluntary organizations, open to all persons able to use their services and willing to accept the responsibilities of membership; cooperatives are democratic organizations controlled by their members, who actively participate in setting policies and making decisions, the elected representatives are accountable to the membership; members contribute equitably to, and democratically control, the capital of their cooperative; cooperatives are autonomous, self-help organizations controlled by their members, if they enter into agreements with other organizations, including governments, they do so on terms that ensure democratic control by their members and maintain their cooperative autonomy; cooperatives provide education and training for their members, elected representatives, managers, and employees so they can contribute effectively to the development of their cooperatives, they inform the general public, particularly young people and opinion leaders, about the nature and benefits of cooperation; cooperatives serve their members most effectively and strength the cooperative movement by working together through local, national, regional, and international structures; and while focusing on member needs, cooperatives work for the sustainable development of their communities through policies accepted by their members.

  18. Cooperation Among State Agencies

    ERIC Educational Resources Information Center

    Wattenbarger, James L.; Hansen, Dean M.

    1975-01-01

    Most states have separate agencies to deal with vocational education, adult education, and community colleges. Because current procedures for interagency cooperation are inadequate and often nonproductive, there is a need for a national or extra-state catalyst to encourage cooperation in a positive way. Five strategies for cooperation are…

  19. Perspex machine: VII. The universal perspex machine

    NASA Astrophysics Data System (ADS)

    Anderson, James A. D. W.

    2006-01-01

    The perspex machine arose from the unification of projective geometry with the Turing machine. It uses a total arithmetic, called transreal arithmetic, that contains real arithmetic and allows division by zero. Transreal arithmetic is redefined here. The new arithmetic has both a positive and a negative infinity which lie at the extremes of the number line, and a number nullity that lies off the number line. We prove that nullity, 0/0, is a number. Hence a number may have one of four signs: negative, zero, positive, or nullity. It is, therefore, impossible to encode the sign of a number in one bit, as floating-point arithmetic attempts to do, resulting in the difficulty of having both positive and negative zeros and NaNs. Transrational arithmetic is consistent with Cantor arithmetic. In an extension to real arithmetic, the product of zero, an infinity, or nullity with its reciprocal is nullity, not unity. This avoids the usual contradictions that follow from allowing division by zero. Transreal arithmetic has a fixed algebraic structure and does not admit options as IEEE, floating-point arithmetic does. Most significantly, nullity has a simple semantics that is related to zero. Zero means "no value" and nullity means "no information." We argue that nullity is as useful to a manufactured computer as zero is to a human computer. The perspex machine is intended to offer one solution to the mind-body problem by showing how the computable aspects of mind and, perhaps, the whole of mind relates to the geometrical aspects of body and, perhaps, the whole of body. We review some of Turing's writings and show that he held the view that his machine has spatial properties. In particular, that it has the property of being a 7D lattice of compact spaces. Thus, we read Turing as believing that his machine relates computation to geometrical bodies. We simplify the perspex machine by substituting an augmented Euclidean geometry for projective geometry. This leads to a general

  20. Milling Machine Operator. Coordinator's Guide. Individualized Study Guide. General Metal Trades.

    ERIC Educational Resources Information Center

    Dean, James W.

    This guide provides information to enable coordinators to direct learning activities for students using an individualized study guide on operating a milling machine. The study material is designed for students enrolled in cooperative part-time training and employed, or desiring to be employed, as milling machine operators. Contents include a…

  1. Dilemmas of partial cooperation.

    PubMed

    Stark, Hans-Ulrich

    2010-08-01

    Related to the often applied cooperation models of social dilemmas, we deal with scenarios in which defection dominates cooperation, but an intermediate fraction of cooperators, that is, "partial cooperation," would maximize the overall performance of a group of individuals. Of course, such a solution comes at the expense of cooperators that do not profit from the overall maximum. However, because there are mechanisms accounting for mutual benefits after repeated interactions or through evolutionary mechanisms, such situations can constitute "dilemmas" of partial cooperation. Among the 12 ordinally distinct, symmetrical 2 x 2 games, three (barely considered) variants are correspondents of such dilemmas. Whereas some previous studies investigated particular instances of such games, we here provide the unifying framework and concisely relate it to the broad literature on cooperation in social dilemmas. Complementing our argumentation, we study the evolution of partial cooperation by deriving the respective conditions under which coexistence of cooperators and defectors, that is, partial cooperation, can be a stable outcome of evolutionary dynamics in these scenarios. Finally, we discuss the relevance of such models for research on the large biodiversity and variation in cooperative efforts both in biological and social systems.

  2. Machine tool locator

    DOEpatents

    Hanlon, John A.; Gill, Timothy J.

    2001-01-01

    Machine tools can be accurately measured and positioned on manufacturing machines within very small tolerances by use of an autocollimator on a 3-axis mount on a manufacturing machine and positioned so as to focus on a reference tooling ball or a machine tool, a digital camera connected to the viewing end of the autocollimator, and a marker and measure generator for receiving digital images from the camera, then displaying or measuring distances between the projection reticle and the reference reticle on the monitoring screen, and relating the distances to the actual position of the autocollimator relative to the reference tooling ball. The images and measurements are used to set the position of the machine tool and to measure the size and shape of the machine tool tip, and examine cutting edge wear. patent

  3. Agent Based Computing Machine

    DTIC Science & Technology

    2005-12-09

    coordinates as in cellular automata systems. But using biology as a model suggests that the most general systems must provide for partial, but constrained...17. SECURITY CLASSIFICATION OF 118. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFICATION OF 20. LIMITATION OF ABSTRA REPORT THIS PAGE ABSTRACT...system called an "agent based computing" machine (ABC Machine). The ABC Machine is motivated by cellular biochemistry and it is based upon a concept

  4. Telerobotic Surgery: An Intelligent Systems Approach to Mitigate the Adverse Effects of Communication Delay. Chapter 4

    NASA Technical Reports Server (NTRS)

    Cardullo, Frank M.; Lewis, Harold W., III; Panfilov, Peter B.

    2007-01-01

    An extremely innovative approach has been presented, which is to have the surgeon operate through a simulator running in real-time enhanced with an intelligent controller component to enhance the safety and efficiency of a remotely conducted operation. The use of a simulator enables the surgeon to operate in a virtual environment free from the impediments of telecommunication delay. The simulator functions as a predictor and periodically the simulator state is corrected with truth data. Three major research areas must be explored in order to ensure achieving the objectives. They are: simulator as predictor, image processing, and intelligent control. Each is equally necessary for success of the project and each of these involves a significant intelligent component in it. These are diverse, interdisciplinary areas of investigation, thereby requiring a highly coordinated effort by all the members of our team, to ensure an integrated system. The following is a brief discussion of those areas. Simulator as a predictor: The delays encountered in remote robotic surgery will be greater than any encountered in human-machine systems analysis, with the possible exception of remote operations in space. Therefore, novel compensation techniques will be developed. Included will be the development of the real-time simulator, which is at the heart of our approach. The simulator will present real-time, stereoscopic images and artificial haptic stimuli to the surgeon. Image processing: Because of the delay and the possibility of insufficient bandwidth a high level of novel image processing is necessary. This image processing will include several innovative aspects, including image interpretation, video to graphical conversion, texture extraction, geometric processing, image compression and image generation at the surgeon station. Intelligent control: Since the approach we propose is in a sense predictor based, albeit a very sophisticated predictor, a controller, which not only

  5. Perspex machine II: visualization

    NASA Astrophysics Data System (ADS)

    Anderson, James A. D. W.

    2004-12-01

    We review the perspex machine and improve it by reducing its halting conditions to one condition. We also introduce a data structure, called the "access column," that can accelerate a wide class of perspex programs. We show how the perspex can be visualised as a tetrahedron, artificial neuron, computer program, and as a geometrical transformation. We discuss the temporal properties of the perspex machine, dissolve the famous time travel paradox, and present a hypothetical time machine. Finally, we discuss some mental properties and show how the perspex machine solves the mind-body problem and, specifically, how it provides one physical explanation for the occurrence of paradigm shifts.

  6. Perspex machine II: visualization

    NASA Astrophysics Data System (ADS)

    Anderson, James A. D. W.

    2005-01-01

    We review the perspex machine and improve it by reducing its halting conditions to one condition. We also introduce a data structure, called the "access column," that can accelerate a wide class of perspex programs. We show how the perspex can be visualised as a tetrahedron, artificial neuron, computer program, and as a geometrical transformation. We discuss the temporal properties of the perspex machine, dissolve the famous time travel paradox, and present a hypothetical time machine. Finally, we discuss some mental properties and show how the perspex machine solves the mind-body problem and, specifically, how it provides one physical explanation for the occurrence of paradigm shifts.

  7. Progress in machine consciousness.

    PubMed

    Gamez, David

    2008-09-01

    This paper is a review of the work that has been carried out on machine consciousness. A clear overview of this diverse field is achieved by breaking machine consciousness down into four different areas, which are used to understand its aims, discuss its relationship with other subjects and outline the work that has been carried out so far. The criticisms that have been made against machine consciousness are also covered, along with its potential benefits, and the work that has been done on analysing systems for signs of consciousness. Some of the social and ethical issues raised by machine consciousness are examined at the end of the paper.

  8. Chaotic Boltzmann machines

    NASA Astrophysics Data System (ADS)

    Suzuki, Hideyuki; Imura, Jun-Ichi; Horio, Yoshihiko; Aihara, Kazuyuki

    2013-04-01

    The chaotic Boltzmann machine proposed in this paper is a chaotic pseudo-billiard system that works as a Boltzmann machine. Chaotic Boltzmann machines are shown numerically to have computing abilities comparable to conventional (stochastic) Boltzmann machines. Since no randomness is required, efficient hardware implementation is expected. Moreover, the ferromagnetic phase transition of the Ising model is shown to be characterised by the largest Lyapunov exponent of the proposed system. In general, a method to relate probabilistic models to nonlinear dynamics by derandomising Gibbs sampling is presented.

  9. Chaotic Boltzmann machines.

    PubMed

    Suzuki, Hideyuki; Imura, Jun-ichi; Horio, Yoshihiko; Aihara, Kazuyuki

    2013-01-01

    The chaotic Boltzmann machine proposed in this paper is a chaotic pseudo-billiard system that works as a Boltzmann machine. Chaotic Boltzmann machines are shown numerically to have computing abilities comparable to conventional (stochastic) Boltzmann machines. Since no randomness is required, efficient hardware implementation is expected. Moreover, the ferromagnetic phase transition of the Ising model is shown to be characterised by the largest Lyapunov exponent of the proposed system. In general, a method to relate probabilistic models to nonlinear dynamics by derandomising Gibbs sampling is presented.

  10. Drum cutter mining machine

    SciTech Connect

    Oberste-beulmann, K.; Schupphaus, H.

    1980-02-19

    A drum cutter mining machine includes a machine frame with a winch having a drive wheel to engage a rack or chain which extends along the path of travel by the mining machine to propel the machine along a mine face. The mining machine is made up of discrete units which include a machine body and machine housings joined to opposite sides of the machine body. The winch is either coupled through a drive train with a feed drive motor or coupled to the drive motor for cutter drums. The machine housings each support a pivot shaft coupled by an arm to a drum cutter. One of these housings includes a removable end cover and a recess adapted to receive a support housing for a spur gear system used to transmit torque from a feed drive motor to a reduction gear system which is, in turn, coupled to the drive wheel of the winch. In one embodiment, a removable end cover on the machine housing provides access to the feed drive motor. The feed drive motor is arranged so that the rotational axis of its drive output shaft extends transversely to the stow side of the machine frame. In another embodiment, the reduction gear system is arranged at one side of the pivot shaft for the cutter drum while the drive motor therefor is arranged at the other side of the pivot shaft and coupled thereto through the spur gear system. In a further embodiment, the reduction gear system is disposed between the feed motor and the pivot shaft.

  11. Diamond machine tool face lapping machine

    DOEpatents

    Yetter, H.H.

    1985-05-06

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  12. 14. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific Railroad Carlin Shops, view to north (90mm lens). - Southern Pacific Railroad, Carlin Shops, Roundhouse Machine Shop Extension, Foot of Sixth Street, Carlin, Elko County, NV

  13. BRITISH MOLDING MACHINE, PBQ AUTOMATIC COPE AND DRAG MOLDING MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BRITISH MOLDING MACHINE, PBQ AUTOMATIC COPE AND DRAG MOLDING MACHINE MAKES BOTH MOLD HALVES INDIVIDUALLY WHICH ARE LATER ROTATED, ASSEMBLED, AND LOWERED TO POURING CONVEYORS BY ASSISTING MACHINES. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  14. THE TEACHING MACHINE.

    ERIC Educational Resources Information Center

    KLEIN, CHARLES; WAYNE, ELLIS

    THE ROLE OF THE TEACHING MACHINE IS COMPARED WITH THE ROLE OF THE PROGRAMED TEXTBOOK. THE TEACHING MACHINE IS USED FOR INDIVIDUAL INSTRUCTION, CONTAINS AND PRESENTS PROGRAM CONTENT IN STEPS, PROVIDES A MEANS WHEREBY THE STUDENT MAY RESPOND TO THE PROGRAM, PROVIDES THE STUDENT WITH IMMEDIATE INFORMATION OF SOME KIND CONCERNING HIS RESPONSE THAT CAN…

  15. Semantics via Machine Translation

    ERIC Educational Resources Information Center

    Culhane, P. T.

    1977-01-01

    Recent experiments in machine translation have given the semantic elements of collocation in Russian more objective criteria. Soviet linguists in search of semantic relationships have attempted to devise a semantic synthesis for construction of a basic language for machine translation. One such effort is summarized. (CHK)

  16. The Hooey Machine.

    ERIC Educational Resources Information Center

    Scarnati, James T.; Tice, Craig J.

    1992-01-01

    Describes how students can make and use Hooey Machines to learn how mechanical energy can be transferred from one object to another within a system. The Hooey Machine is made using a pencil, eight thumbtacks, one pushpin, tape, scissors, graph paper, and a plastic lid. (PR)

  17. Machining heavy plastic sections

    NASA Technical Reports Server (NTRS)

    Stalkup, O. M.

    1967-01-01

    Machining technique produces consistently satisfactory plane-parallel optical surfaces for pressure windows, made of plexiglass, required to support a photographic study of liquid rocket combustion processes. The surfaces are machined and polished to the required tolerances and show no degradation from stress relaxation over periods as long as 6 months.

  18. Technique for Machining Glass

    NASA Technical Reports Server (NTRS)

    Rice, S. H.

    1982-01-01

    Process for machining glass with conventional carbide tools requires a small quantity of a lubricant for aluminum applied to area of glass to be machined. A carbide tool is then placed against workpiece with light pressure. Tool is raised periodically to clear work of glass dust and particles. Additional lubricant is applied as it is displaced.

  19. Compound taper milling machine

    NASA Technical Reports Server (NTRS)

    Campbell, N. R.

    1969-01-01

    Simple, inexpensive milling machine tapers panels from a common apex to a uniform height at panel edge regardless of the panel perimeter configuration. The machine consists of an adjustable angled beam upon which the milling tool moves back and forth above a rotatable table upon which the workpiece is held.

  20. Stirling machine operating experience

    SciTech Connect

    Ross, B.; Dudenhoefer, J.E.

    1994-09-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that stirling machines are capable of reliable and lengthy operating lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and are not expected to operate for lengthy periods of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered. The record in this paper is not complete, due to the reluctance of some organizations to release operational data and because several organizations were not contacted. The authors intend to repeat this assessment in three years, hoping for even greater participation.

  1. Machine Translation Project

    NASA Technical Reports Server (NTRS)

    Bajis, Katie

    1993-01-01

    The characteristics and capabilities of existing machine translation systems were examined and procurement recommendations were developed. Four systems, SYSTRAN, GLOBALINK, PC TRANSLATOR, and STYLUS, were determined to meet the NASA requirements for a machine translation system. Initially, four language pairs were selected for implementation. These are Russian-English, French-English, German-English, and Japanese-English.

  2. Simple Machine Junk Cars

    ERIC Educational Resources Information Center

    Herald, Christine

    2010-01-01

    During the month of May, the author's eighth-grade physical science students study the six simple machines through hands-on activities, reading assignments, videos, and notes. At the end of the month, they can easily identify the six types of simple machine: inclined plane, wheel and axle, pulley, screw, wedge, and lever. To conclude this unit,…

  3. Introduction to machine learning.

    PubMed

    Baştanlar, Yalin; Ozuysal, Mustafa

    2014-01-01

    The machine learning field, which can be briefly defined as enabling computers make successful predictions using past experiences, has exhibited an impressive development recently with the help of the rapid increase in the storage capacity and processing power of computers. Together with many other disciplines, machine learning methods have been widely employed in bioinformatics. The difficulties and cost of biological analyses have led to the development of sophisticated machine learning approaches for this application area. In this chapter, we first review the fundamental concepts of machine learning such as feature assessment, unsupervised versus supervised learning and types of classification. Then, we point out the main issues of designing machine learning experiments and their performance evaluation. Finally, we introduce some supervised learning methods.

  4. Futures for energy cooperatives

    SciTech Connect

    1981-01-01

    A listing of Federal agencies and programs with potential funding for community-scale cooperatives using conservation measures and solar technologies is presented in Section 1. Section 2 presents profiles of existing community energy cooperatives describing their location, history, membership, services, sources of finance and technical assistance. A condensed summary from a recent conference on Energy Cooperatives featuring notes on co-op members' experiences, problems, and opportunities is presented in Section 3. Section 4 lists contacts for additional information. A National Consumer Cooperative Bank Load Application is shown in the appendix.

  5. Cellular cooperation: insights from microbes.

    PubMed

    Celiker, Hasan; Gore, Jeff

    2013-01-01

    Cooperation between cells is a widespread phenomenon in nature, found across diverse systems ranging from microbial populations to multicellular organisms. For cooperation to evolve and be maintained within a population of cells, costs due to competition have to be outweighed by the benefits gained through cooperative actions. Because cooperation generally confers a cost to the cooperating cells, defector cells that do not cooperate but reap the benefits of cooperation can thrive and eventually drive the cooperating phenotypes to extinction. Here we summarize recent advances made in understanding how cooperation and multicellularity can evolve in microbial populations in the face of such conflicts and discuss parallels with cell populations within multicellular organisms.

  6. Refractory insulation of hot end in stirling type thermal machines

    SciTech Connect

    Otters, J.L.

    1988-02-02

    A thermal machine is described comprising: a machine body comprised of axial body sections, the body having two opposite ends; means compressing the body between the opposite ends for holding the body sections in axially assembled relationship; a cylindrical displacer chamber in the body having a hot end and a cold end and containing a working fluid, a displacer reciprocable within the displacer chamber for displacing the fluid between the hot and cold ends thereby to subject the fluid to a thermodynamic cycle in cooperation with a compressor piston; refractory insulation means at least partly defining the displacer chamber and held in axial compression between a upper body sections associated with a thermal end of the machine body and lower body sections associated with a work end of the machine body, and means radially compressing the refractory insulation for pre-loading the refractory insulation means against tensile force exerted thereon by the working fluid.

  7. Machine Learning and Radiology

    PubMed Central

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  8. The Basic Anaesthesia Machine

    PubMed Central

    Gurudatt, CL

    2013-01-01

    After WTG Morton's first public demonstration in 1846 of use of ether as an anaesthetic agent, for many years anaesthesiologists did not require a machine to deliver anaesthesia to the patients. After the introduction of oxygen and nitrous oxide in the form of compressed gases in cylinders, there was a necessity for mounting these cylinders on a metal frame. This stimulated many people to attempt to construct the anaesthesia machine. HEG Boyle in the year 1917 modified the Gwathmey's machine and this became popular as Boyle anaesthesia machine. Though a lot of changes have been made for the original Boyle machine still the basic structure remains the same. All the subsequent changes which have been brought are mainly to improve the safety of the patients. Knowing the details of the basic machine will make the trainee to understand the additional improvements. It is also important for every practicing anaesthesiologist to have a thorough knowledge of the basic anaesthesia machine for safe conduct of anaesthesia. PMID:24249876

  9. The basic anaesthesia machine.

    PubMed

    Gurudatt, Cl

    2013-09-01

    After WTG Morton's first public demonstration in 1846 of use of ether as an anaesthetic agent, for many years anaesthesiologists did not require a machine to deliver anaesthesia to the patients. After the introduction of oxygen and nitrous oxide in the form of compressed gases in cylinders, there was a necessity for mounting these cylinders on a metal frame. This stimulated many people to attempt to construct the anaesthesia machine. HEG Boyle in the year 1917 modified the Gwathmey's machine and this became popular as Boyle anaesthesia machine. Though a lot of changes have been made for the original Boyle machine still the basic structure remains the same. All the subsequent changes which have been brought are mainly to improve the safety of the patients. Knowing the details of the basic machine will make the trainee to understand the additional improvements. It is also important for every practicing anaesthesiologist to have a thorough knowledge of the basic anaesthesia machine for safe conduct of anaesthesia.

  10. A Cooperative Hypertext Interface to Relational Databases

    PubMed Central

    Barsalou, Thierry; Wiederhold, Gio

    1989-01-01

    Biomedical information systems demand cooperative interfaces that maximize the flow of information between machine and user. Within the framework of the PENGUIN project—an object-oriented architecture for expert database systems—, we describe the use of hypertext tools for designing sophisticated interfaces to the relational-database component of PENGUIN. The interface designer employs HyperCard to construct a visual representation of the underlying database that requires the user to recognize rather than to recall the appropriate command name. We show that the resulting direct-manipulation style of interaction facilitates greatly information retrieval and presentation.

  11. Telerobotic control of a dextrous manipulator using master and six-DOF hand-controllers for space assembly and servicing tasks

    NASA Technical Reports Server (NTRS)

    O'Hara, John M.

    1987-01-01

    Two studies were conducted evaluating methods of controlling a telerobot; bilateral force reflecting master controllers and proportional rate six degrees of freedom (DOF) hand controllers. The first study compared the controllers on performance of single manipulator arm tasks, a peg-in-the-hole task, and simulated satellite orbital replacement unit changeout. The second study, a Space Station truss assembly task, required simultaneous operation of both manipulator arms (all 12 DOFs) and complex multiaxis slave arm movements. Task times were significantly longer and fewer errors were committed with the hand controllers. The hand controllers were also rated significantly higher in cognitive and manual control workload on the two-arm task. The master controllers were rated significantly higher in physical workload. There were no significant differences in ratings of manipulator control quality.

  12. Montana Cooperative Education Handbook.

    ERIC Educational Resources Information Center

    Harris, Ron, Ed.

    This revised handbook was developed to help teachers and administrators in Montana conduct cooperative education programs. The handbook is organized in 13 sections. In narrative style, the first 11 sections cover the following topics: introduction to cooperative education, advisory committees, related instruction, coordination of activities,…

  13. Cooperative Science Lesson Plans.

    ERIC Educational Resources Information Center

    Cooperative Learning, 1991

    1991-01-01

    Offers several elementary level cooperative science lesson plans. The article includes a recipe for cooperative class learning, instructions for making a compost pile, directions for finding evidence of energy, experiments in math and science using oranges to test density, and discussions of buoyancy using eggs. (SM)

  14. Helping Children Cooperate

    ERIC Educational Resources Information Center

    Pica, Rae

    2011-01-01

    There are occasions in life when the competitive process is appropriate. But when people consider the relationships in their lives--with friends, family members, coworkers, and the larger community--they realize the value of cooperation. When adults give children the chance to cooperate, to work together toward a solution or a common goal like…

  15. Cooperative Learning Strategies.

    ERIC Educational Resources Information Center

    Barnes, Buckley; O'Farrell, Gail

    1990-01-01

    Presents essential characteristics and types of cooperative learning strategies for use in elementary social studies. Outlines exercises for forming teams and building team spirit. Points out such methods promote group interdependence and student responsibility for learning and teaching others. Highlights two cooperative group strategies, Jigsaw…

  16. Cooperative Learning and Technology.

    ERIC Educational Resources Information Center

    Denning, Rebecca; Smith, Philip J.

    1997-01-01

    Cooperative learning has been used as an educational technique for some time, and recently researchers have been exploring technology as a mechanism to further this educational method. Presents several examples of the use of technology to support cooperative learning episodes and examines the underlying design concepts and principles embedded in…

  17. Making Cooperative Learning Powerful

    ERIC Educational Resources Information Center

    Slavin, Robert E.

    2014-01-01

    Just about everyone loves the "idea" of cooperative learning, children working productively and excitedly in groups, everyone getting along and enthusiastically helping one another learn. This article presents five strategies that teachers can use to get the greatest benefit possible from cooperative learning and ensure that…

  18. Experiments in cooperative manipulation: A system perspective

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Cannon, Robert H., Jr.

    1989-01-01

    In addition to cooperative dynamic control, the system incorporates real time vision feedback, a novel programming technique, and a graphical high level user interface. By focusing on the vertical integration problem, not only these subsystems are examined, but also their interfaces and interactions. The control system implements a multi-level hierarchical structure; the techniques developed for operator input, strategic command, and cooperative dynamic control are presented. At the highest level, a mouse-based graphical user interface allows an operator to direct the activities of the system. Strategic command is provided by a table-driven finite state machine; this methodology provides a powerful yet flexible technique for managing the concurrent system interactions. The dynamic controller implements object impedance control; an extension of Nevill Hogan's impedance control concept to cooperative arm manipulation of a single object. Experimental results are presented, showing the system locating and identifying a moving object catching it, and performing a simple cooperative assembly. Results from dynamic control experiments are also presented, showing the controller's excellent dynamic trajectory tracking performance, while also permitting control of environmental contact force.

  19. Machine Tool Software

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.

  20. Quantum Boltzmann Machine

    NASA Astrophysics Data System (ADS)

    Kulchytskyy, Bohdan; Andriyash, Evgeny; Amin, Mohammed; Melko, Roger

    The field of machine learning has been revolutionized by the recent improvements in the training of deep networks. Their architecture is based on a set of stacked layers of simpler modules. One of the most successful building blocks, known as a restricted Boltzmann machine, is an energetic model based on the classical Ising Hamiltonian. In our work, we investigate the benefits of quantum effects on the learning capacity of Boltzmann machines by extending its underlying Hamiltonian with a transverse field. For this purpose, we employ exact and stochastic training procedures on data sets with physical origins.

  1. Culture and cooperation

    PubMed Central

    Gächter, Simon; Herrmann, Benedikt; Thöni, Christian

    2010-01-01

    Does the cultural background influence the success with which genetically unrelated individuals cooperate in social dilemma situations? In this paper, we provide an answer by analysing the data of Herrmann et al. (2008a), who studied cooperation and punishment in 16 subject pools from six different world cultures (as classified by Inglehart & Baker (2000)). We use analysis of variance to disentangle the importance of cultural background relative to individual heterogeneity and group-level differences in cooperation. We find that culture has a substantial influence on the extent of cooperation, in addition to individual heterogeneity and group-level differences identified by previous research. The significance of this result is that cultural background has a substantial influence on cooperation in otherwise identical environments. This is particularly true in the presence of punishment opportunities. PMID:20679109

  2. Culture and cooperation.

    PubMed

    Gächter, Simon; Herrmann, Benedikt; Thöni, Christian

    2010-09-12

    Does the cultural background influence the success with which genetically unrelated individuals cooperate in social dilemma situations? In this paper, we provide an answer by analysing the data of Herrmann et al. (2008a), who studied cooperation and punishment in 16 subject pools from six different world cultures (as classified by Inglehart & Baker (2000)). We use analysis of variance to disentangle the importance of cultural background relative to individual heterogeneity and group-level differences in cooperation. We find that culture has a substantial influence on the extent of cooperation, in addition to individual heterogeneity and group-level differences identified by previous research. The significance of this result is that cultural background has a substantial influence on cooperation in otherwise identical environments. This is particularly true in the presence of punishment opportunities.

  3. 16. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific Railroad Carlin Shops, view to south (90mm lens). Note the large segmental-arched doorway to move locomotives in and out of Machine Shop. - Southern Pacific Railroad, Carlin Shops, Roundhouse Machine Shop Extension, Foot of Sixth Street, Carlin, Elko County, NV

  4. Tunnel boring machine

    SciTech Connect

    Snyder, L. L.

    1985-07-09

    A tunnel boring machine for controlled boring of a curvilinear tunnel including a rotating cutter wheel mounted on the forward end of a thrust cylinder assembly having a central longitudinal axis aligned with the cutter wheel axis of rotation; the thrust cylinder assembly comprising a cylinder barrel and an extendable and retractable thrust arm received therein. An anchoring assembly is pivotally attached to the rear end of the cylinder barrel for anchoring the machine during a cutting stroke and providing a rear end pivot axis during curved cutting strokes. A pair of laterally extending, extendable and retractable arms are fixedly mounted at a forward portion of the cylinder barrel for providing lateral displacement in a laterally curved cutting mode and for anchoring the machine between cutting strokes and during straight line boring. Forward and rear transverse displacement and support assemblies are provided to facilitate cutting in a transversely curved cutting mode and to facilitate machine movement between cutting strokes.

  5. Molecular Machines: Nanoscale gadgets

    NASA Astrophysics Data System (ADS)

    Garcia-Garibay, Miguel A.

    2008-06-01

    Meeting their biological counterparts halfway, artificial molecular machines embedded in liquid crystals, crystalline solids and mesoporous materials are poised to meet the demands of the next generation of functional materials.

  6. Doubly fed induction machine

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2005-10-11

    An electro-mechanical energy conversion system coupled between an energy source and an energy load including an energy converter device having a doubly fed induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer coupled to the energy converter device to control the flow of power or energy through the doubly fed induction machine.

  7. Maraging Steel Machining Improvements

    DTIC Science & Technology

    2007-04-23

    APR 2007 2. REPORT TYPE Technical, Success Story 3. DATES COVERED 01-12-2006 to 23-04-2007 4. TITLE AND SUBTITLE Maraging Steel Machining...consumers of cobalt-strengthened maraging steel . An increase in production requires them to reduce the machining time of certain operations producing... maraging steel ; Success Stories 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 1 18. NUMBER OF PAGES 1 19a. NAME OF RESPONSIBLE

  8. Sealing intersecting vane machines

    DOEpatents

    Martin, Jedd N.; Chomyszak, Stephen M.

    2005-06-07

    The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through intersecting surfaces without the need for external gearing by modifying the width of one or both tracks at the point of intermeshing. The inventions described herein relate to these improvements.

  9. Sealing intersecting vane machines

    SciTech Connect

    Martin, Jedd N.; Chomyszak, Stephen M.

    2007-06-05

    The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through intersecting surfaces without the need for external gearing by modifying the width of one or both tracks at the point of intermeshing. The inventions described herein relate to these improvements.

  10. Metalworking and machining fluids

    DOEpatents

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  11. Could a machine think

    SciTech Connect

    Churchland, P.M.; Churchland, P.S. )

    1990-01-01

    There are many reasons for saying yes. One of the earliest and deepest reason lay in two important results in computational theory. The first was Church's thesis, which states that every effectively computable function is recursively computable. The second important result was Alan M. Turing's demonstration that any recursively computable function can be computed in finite time by a maximally simple sort of symbol-manipulating machine that has come to be called a universal Turing machine. This machine is guided by a set of recursively applicable rules that are sensitive to the identity, order and arrangement of the elementary symbols it encounters as input. The authors reject the Turing test as a sufficient condition for conscious intelligence. They base their position of the specific behavioral failures of the classical SM machines and on the specific virtues of machines with a more brain-like architecture. These contrasts show that certain computational strategies have vast and decisive advantages over others where typical cognitive tasks are concerned, advantages that are empirically inescapable. Clearly, the brain is making systematic use of these computational advantage. But it need not be the only physical system capable of doing so. Artificial intelligence, in a nonbiological but massively parallel machine, remain a compelling and discernible prospect.

  12. Globalization and human cooperation

    PubMed Central

    Buchan, Nancy R.; Grimalda, Gianluca; Wilson, Rick; Brewer, Marilynn; Fatas, Enrique; Foddy, Margaret

    2009-01-01

    Globalization magnifies the problems that affect all people and that require large-scale human cooperation, for example, the overharvesting of natural resources and human-induced global warming. However, what does globalization imply for the cooperation needed to address such global social dilemmas? Two competing hypotheses are offered. One hypothesis is that globalization prompts reactionary movements that reinforce parochial distinctions among people. Large-scale cooperation then focuses on favoring one's own ethnic, racial, or language group. The alternative hypothesis suggests that globalization strengthens cosmopolitan attitudes by weakening the relevance of ethnicity, locality, or nationhood as sources of identification. In essence, globalization, the increasing interconnectedness of people worldwide, broadens the group boundaries within which individuals perceive they belong. We test these hypotheses by measuring globalization at both the country and individual levels and analyzing the relationship between globalization and individual cooperation with distal others in multilevel sequential cooperation experiments in which players can contribute to individual, local, and/or global accounts. Our samples were drawn from the general populations of the United States, Italy, Russia, Argentina, South Africa, and Iran. We find that as country and individual levels of globalization increase, so too does individual cooperation at the global level vis-à-vis the local level. In essence, “globalized” individuals draw broader group boundaries than others, eschewing parochial motivations in favor of cosmopolitan ones. Globalization may thus be fundamental in shaping contemporary large-scale cooperation and may be a positive force toward the provision of global public goods. PMID:19255433

  13. Globalization and human cooperation.

    PubMed

    Buchan, Nancy R; Grimalda, Gianluca; Wilson, Rick; Brewer, Marilynn; Fatas, Enrique; Foddy, Margaret

    2009-03-17

    Globalization magnifies the problems that affect all people and that require large-scale human cooperation, for example, the overharvesting of natural resources and human-induced global warming. However, what does globalization imply for the cooperation needed to address such global social dilemmas? Two competing hypotheses are offered. One hypothesis is that globalization prompts reactionary movements that reinforce parochial distinctions among people. Large-scale cooperation then focuses on favoring one's own ethnic, racial, or language group. The alternative hypothesis suggests that globalization strengthens cosmopolitan attitudes by weakening the relevance of ethnicity, locality, or nationhood as sources of identification. In essence, globalization, the increasing interconnectedness of people worldwide, broadens the group boundaries within which individuals perceive they belong. We test these hypotheses by measuring globalization at both the country and individual levels and analyzing the relationship between globalization and individual cooperation with distal others in multilevel sequential cooperation experiments in which players can contribute to individual, local, and/or global accounts. Our samples were drawn from the general populations of the United States, Italy, Russia, Argentina, South Africa, and Iran. We find that as country and individual levels of globalization increase, so too does individual cooperation at the global level vis-à-vis the local level. In essence, "globalized" individuals draw broader group boundaries than others, eschewing parochial motivations in favor of cosmopolitan ones. Globalization may thus be fundamental in shaping contemporary large-scale cooperation and may be a positive force toward the provision of global public goods.

  14. The Knife Machine. Module 15.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on the knife machine, one in a series dealing with industrial sewing machines, their attachments, and operation, covers one topic: performing special operations on the knife machine (a single needle or multi-needle machine which sews and cuts at the same time). These components are provided: an introduction, directions, an objective,…

  15. Use of graphics in decision aids for telerobotic control: (Parts 5-8 of an 8-part MIT progress report)

    NASA Technical Reports Server (NTRS)

    Sheridan, Thomas B.; Roseborough, James B.; Das, Hari; Chin, Kan-Ping; Inoue, Seiichi

    1989-01-01

    Four separate projects recently completed or in progress at the MIT Man-Machine Systems Laboratory are summarized. They are: a decision aid for retrieving a tumbling satellite in space; kinematic control and graphic display of redundant teleoperators; real time terrain/object generation: a quad-tree approach; and two dimensional control for three dimensional obstacle avoidance.

  16. A SUGGESTED CURRICULUM GUIDE FOR ELECTRO-MECHANICAL TECHNOLOGY ORIENTED SPECIFICALLY TO THE COMPUTER AND BUSINESS MACHINE FIELDS. INTERIM REPORT.

    ERIC Educational Resources Information Center

    LESCARBEAU, ROLAND F.; AND OTHERS

    A SUGGESTED POST-SECONDARY CURRICULUM GUIDE FOR ELECTRO-MECHANICAL TECHNOLOGY ORIENTED SPECIFICALLY TO THE COMPUTER AND BUSINESS MACHINE FIELDS WAS DEVELOPED BY A GROUP OF COOPERATING INSTITUTIONS, NOW INCORPORATED AS TECHNICAL EDUCATION CONSORTIUM, INCORPORATED. SPECIFIC NEEDS OF THE COMPUTER AND BUSINESS MACHINE INDUSTRY WERE DETERMINED FROM…

  17. Non-traditional machining techniques

    SciTech Connect

    Day, Robert D; Fierro, Frank; Garcia, Felix P; Hatch, Douglass J; Randolph, Randall B; Reardon, Patrick T; Rivera, Gerald

    2008-01-01

    During the course of machining targets for various experiments it sometimes becomes necessary to adapt fixtures or machines, which are designed for one function, to another function. When adapting a machine or fixture is not adequate, it may be necessary to acquire a machine specifically designed to produce the component required. In addition to the above scenarios, the features of a component may dictate that multi-step machining processes are necessary to produce the component. This paper discusses the machining of four components where adaptation, specialized machine design, or multi-step processes were necessary to produce the components.

  18. Assessing Multi-Person and Person-Machine Distributed Decision Making Using an Extended Psychological Distancing Model

    DTIC Science & Technology

    1990-02-01

    human-to- human communication patterns during situation assessment and cooperative problem solving tasks. The research proposed for the second URRP year...Hardware development. In order to create an environment within which to study multi-channeled human-to- human communication , a multi-media observation...that machine-to- human communication can be used to increase cohesion between humans and intelligent machines and to promote human-machine team

  19. Cooperative Purchasing Reduces Costs.

    ERIC Educational Resources Information Center

    Kula, Edwin J.

    1981-01-01

    Several suburban Chicago (Illinois) school districts are members of the South Suburban School Purchasing Cooperative, which serves as a conduit for volume purchases of educational supplies. (Author/MLF)

  20. Cooperative Learning in Statistics.

    ERIC Educational Resources Information Center

    Keeler, Carolyn M.; And Others

    1994-01-01

    Formal use of cooperative learning techniques proved effective in improving student performance and retention in a freshman level statistics course. Lectures interspersed with group activities proved effective in increasing conceptual understanding and overall class performance. (11 references) (Author)

  1. Cooperative Learning Strategies.

    ERIC Educational Resources Information Center

    Pratt, Sandra

    2003-01-01

    Describes the effectiveness of cooperative learning on discipline problems, interdependence between students, and teacher-student interactions. Explains how to group students and introduces a laboratory activity on covalent and ionic bonds. (YDS)

  2. How Myxobacteria Cooperate.

    PubMed

    Cao, Pengbo; Dey, Arup; Vassallo, Christopher N; Wall, Daniel

    2015-11-20

    Prokaryotes often reside in groups where a high degree of relatedness has allowed the evolution of cooperative behaviors. However, very few bacteria or archaea have made the successful transition from unicellular to obligate multicellular life. A notable exception is the myxobacteria, in which cells cooperate to perform group functions highlighted by fruiting body development, an obligate multicellular function. Like all multicellular organisms, myxobacteria face challenges in how to organize and maintain multicellularity. These challenges include maintaining population homeostasis, carrying out tissue repair and regulating the behavior of non-cooperators. Here, we describe the major cooperative behaviors that myxobacteria use: motility, predation and development. In addition, this review emphasizes recent discoveries in the social behavior of outer membrane exchange, wherein kin share outer membrane contents. Finally, we review evidence that outer membrane exchange may be involved in regulating population homeostasis, thus serving as a social tool for myxobacteria to make the cyclic transitions from unicellular to multicellular states.

  3. Cooperating mobile robots

    DOEpatents

    Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.

    2004-02-03

    A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.

  4. Shuttle bay telerobotics demonstration

    NASA Technical Reports Server (NTRS)

    Chun, W.; Cogeos, P.

    1987-01-01

    A demonstration of NASA's robotics capabilities should be a balanced agenda of servicing and assembly tasks combined with selected key technical experiments. The servicing tasks include refueling and module replacement. Refueling involves the mating of special fluid connectors while module replacement requires an array of robotic technologies such as special tools, the arm of a logistics tool, and the precision mating of orbital replacement units to guides. The assembly task involves the construction of a space station node and truss structure. The technological experiments will focus on a few important issues: the precision manipulation of the arms by a teleoperator, the additional use of several mono camera views in conjunction with the stereo system, the use of a general purpose end effector versus a caddy of tools, and the dynamics involved with using a robot with a stabilizer.

  5. Extreme ultraviolet lithography machine

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Haney, Steven J.; Sweeney, Donald W.

    2000-01-01

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  6. The Bearingless Electrical Machine

    NASA Technical Reports Server (NTRS)

    Bichsel, J.

    1992-01-01

    Electromagnetic bearings allow the suspension of solids. For rotary applications, the most important physical effect is the force of a magnetic circuit to a high permeable armature, called the MAXWELL force. Contrary to the commonly used MAXWELL bearings, the bearingless electrical machine will take advantage of the reaction force of a conductor carrying a current in a magnetic field. This kind of force, called Lorentz force, generates the torque in direct current, asynchronous and synchronous machines. The magnetic field, which already exists in electrical machines and helps to build up the torque, can also be used for the suspension of the rotor. Besides the normal winding of the stator, a special winding was added, which generates forces for levitation. So a radial bearing, which is integrated directly in the active part of the machine, and the motor use the laminated core simultaneously. The winding was constructed for the levitating forces in a special way so that commercially available standard ac inverters for drives can be used. Besides wholly magnetic suspended machines, there is a wide range of applications for normal drives with ball bearings. Resonances of the rotor, especially critical speeds, can be damped actively.

  7. Cooperative Learning in the Classroom.

    ERIC Educational Resources Information Center

    James, Cecile Burnett

    1989-01-01

    Discusses the rationale for cooperative learning and examines the teacher's role in creating groups. Provides examples of cooperative learning experiences in an integrated unit and as applied to computer education. Lists the advantages of using cooperative learning, while noting its pitfalls. Cautions that cooperative learning should be used in…

  8. Micro-machined resonator

    DOEpatents

    Godshall, N.A.; Koehler, D.R.; Liang, A.Y.; Smith, B.K.

    1993-03-30

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  9. Micro-machined resonator

    DOEpatents

    Godshall, Ned A.; Koehler, Dale R.; Liang, Alan Y.; Smith, Bradley K.

    1993-01-01

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  10. The Bateman Flotation Machine

    SciTech Connect

    Bezuidenhout, G.

    1995-12-31

    The newly developed Bateman Flotation Machine has proven its versatility in roughing and cleaning flotation circuits. This mechanical flotation machine has the dual performance capability of suspending solids and dispersing air at relatively low power inputs without compromising these two important fundamentals. This new development has been successfully marketed to a wide cross section of concentrator mineral processes. The mechanical design of the flotation mechanism has been optimized to reduce operational costs and to lower manufacturing costs. Production process environments were utilized for verification of the scale-up of each cell volume size rated mechanism. These thorough investigations produced performance data which could be accurately quoted. This paper is a historical account of the Batement Flotation Machine. Technical details of the development are covered with descriptions of the operational applications.

  11. Brown coal preparation machines

    SciTech Connect

    Bleckmann, H.; Sitte, W.; Kellerwessel, H.

    1981-05-01

    Lignite usually requires comminuting and screening before being used as a fuel in power plants. Reduction machines normally used for coarse crushing bituminous coal, such as jaw crushers, roll crushers, and impact crushers, are not generally suitable for lignite as they require a brittle feed and large grain size. In contrast to these requirements, lignite can be easily compressed and has a small grain size. Therefore, special crusher types have been developed for the coarse reduction of lignite. These machines resemble roll crushers but subject the feed to shearing and tearing forces rather than to compressive stress. It is often necessary to screen the lignite to remove the undersize or to limit the maximum particle size before the next comminution process. Screening the lignite is a particularly difficult operation due to the high water content and the presence of clay minerals which tend to clog the screening machines. These problems can be overcome with multi-roll sizers.

  12. Machining in Microgravity

    NASA Astrophysics Data System (ADS)

    Vincent, Graylan

    2003-01-01

    A CNC mill was flown aboard NASA's KC-135 ``Weightless Wonder'' microgravity research aircraft to investigate the effect of gravity on the machining process and to demonstrate the feasibility and functionality of a CNC mill in a weightless environment, such as aboard the International Space Station. The experiment hypothesis was that the surface roughness of milling cuts made in microgravity would be of higher quality than cuts made in a gravitational environment due to increased chip removal. The technical problems associated with microgravity machining (such as the chip removal and collection process), and the engineering solutions to these problems were also evaluated in this experiment.

  13. New photolithography stepping machine

    SciTech Connect

    Hale, L.; Klingmann, J.; Markle, D.

    1995-03-08

    A joint development project to design a new photolithography steeping machine capable of 150 nanometer overlay accuracy was completed by Ultratech Stepper and the Lawrence Livermore National Laboratory. The principal result of the project is a next-generation product that will strengthen the US position in step-and-repeat photolithography. The significant challenges addressed and solved in the project are the subject of this report. Design methods and new devices that have broader application to precision machine design are presented in greater detail while project specific information serves primarily as background and motivation.

  14. Intersecting vane machines

    SciTech Connect

    Bailey, H. Sterling; Chomyszak, Stephen M.

    2007-01-16

    The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through meshing surfaces without the need for external gearing by modifying the function of one or the other of the rotors from that of "fluid moving" to that of "valving" thereby reducing the pressure loads and associated inefficiencies at the interface of the meshing surfaces. The inventions described herein relate to these improvements.

  15. Paradigms for machine learning

    NASA Technical Reports Server (NTRS)

    Schlimmer, Jeffrey C.; Langley, Pat

    1991-01-01

    Five paradigms are described for machine learning: connectionist (neural network) methods, genetic algorithms and classifier systems, empirical methods for inducing rules and decision trees, analytic learning methods, and case-based approaches. Some dimensions are considered along with these paradigms vary in their approach to learning, and the basic methods are reviewed that are used within each framework, together with open research issues. It is argued that the similarities among the paradigms are more important than their differences, and that future work should attempt to bridge the existing boundaries. Finally, some recent developments in the field of machine learning are discussed, and their impact on both research and applications is examined.

  16. Automated fiber pigtailing machine

    DOEpatents

    Strand, Oliver T.; Lowry, Mark E.

    1999-01-01

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectonic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems.

  17. Automated fiber pigtailing machine

    DOEpatents

    Strand, O.T.; Lowry, M.E.

    1999-01-05

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectronic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems. 26 figs.

  18. Autonomous quantum thermodynamic machines

    NASA Astrophysics Data System (ADS)

    Tonner, Friedemann; Mahler, Günter

    2005-12-01

    We investigate the dynamics of a quantum system consisting of a single spin coupled to an oscillator and sandwiched between two thermal baths at different temperatures. By means of an adequately designed Lindblad equation, it is shown that this device can function as a thermodynamic machine exhibiting Carnot-type cycles. For the present model, this means that when run as a heat engine, coherent motion of the oscillator is amplified. Contrary to the quantum computer, such a machine has a quantum as well as a classical limit. Away from the classical limit, it asymptotically approaches a stationary transport scenario.

  19. Precision Robotic Assembly Machine

    ScienceCinema

    None

    2016-07-12

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  20. The blackboard model - A framework for integrating multiple cooperating expert systems

    NASA Technical Reports Server (NTRS)

    Erickson, W. K.

    1985-01-01

    The use of an artificial intelligence (AI) architecture known as the blackboard model is examined as a framework for designing and building distributed systems requiring the integration of multiple cooperating expert systems (MCXS). Aerospace vehicles provide many examples of potential systems, ranging from commercial and military aircraft to spacecraft such as satellites, the Space Shuttle, and the Space Station. One such system, free-flying, spaceborne telerobots to be used in construction, servicing, inspection, and repair tasks around NASA's Space Station, is examined. The major difficulties found in designing and integrating the individual expert system components necessary to implement such a robot are outlined. The blackboard model, a general expert system architecture which seems to address many of the problems found in designing and building such a system, is discussed. A progress report on a prototype system under development called DBB (Distributed BlackBoard model) is given. The prototype will act as a testbed for investigating the feasibility, utility, and efficiency of MCXS-based designs developed under the blackboard model.

  1. 12. Photocopied August 1978. CHANNELING MACHINES, NOVEMBER 1898. THESE MACHINES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photocopied August 1978. CHANNELING MACHINES, NOVEMBER 1898. THESE MACHINES BLOCKED OUT SECTIONS IN THE ROCK CUT IN PREPARATION FOR DRILLING AND BLASTING. (17) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  2. BRASS FOUNDRY MACHINE ROOM USED TO MACHINE CAST BRONZE PIECES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BRASS FOUNDRY MACHINE ROOM USED TO MACHINE CAST BRONZE PIECES FOR VALVES AND PREPARE BRONZE VALVE BODIES FOR ASSEMBLY. - Stockham Pipe & Fittings Company, Brass Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  3. 14. Machine in north 1922 section of Building 59. Machine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Machine in north 1922 section of Building 59. Machine is 24' Jointer made by Oliver Machinery Co. Camera pointed E. - Puget Sound Naval Shipyard, Pattern Shop, Farragut Avenue, Bremerton, Kitsap County, WA

  4. 42. MACHINE SHOP Machine shop area with small parts bins ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. MACHINE SHOP Machine shop area with small parts bins on the right and pipe storage racks on the left. Remains of the power drive system are suspended from the ceiling. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  5. International Cooperation at NASA

    NASA Astrophysics Data System (ADS)

    Tawney, Timothy; Feldstein, Karen

    International cooperation is a cornerstone principle of NASA’s activities, especially within the activities of the Science Mission Directorate. Nearly two thirds of the flight missions in which NASA leads or participates involve international cooperation. Numerous ground based activities also rely on international cooperation, whether because of unique expertise, unique geography, or the need for a global response. Going forward, in an era of tighter budgets and a more integrated global perspective, NASA and the rest of the space agencies around the world will be forced to work more closely together, in a broader array of activities than ever before, in order to be able to afford to push the boundaries of space exploration. The goal of this presentation is to provide an overview of NASA’s current international science cooperative activities. It will include a discussion of why NASA conducts international cooperation and look at the mechanisms through which international cooperation can occur at NASA, including peer-to-peer development of relationships. It will also discuss some of the limiting factors of international cooperation, such as export control, and ways in which to manage those constraints. Finally, the presentation would look at some of the present examples where NASA is working to increase international cooperation and improve coordination. Case studies will be used to demonstrate these mechanisms and concepts. For example, NASA continues to participate in international coordination groups such as the International Mars Exploration Working Group (IMEWG) and International Space Exploration Coordination Group (ISECG), but is expanding into new areas as well. NASA is one of the leaders in expanding and improving international coordination in the area of Near-Earth Object detection, characterization, and mitigation. Having participated in the first meetings of such groups as the International Asteroid Warning Network (IAWN) and Space Missions Planning

  6. Cooperative processing user interfaces for AdaNET

    NASA Technical Reports Server (NTRS)

    Gutzmann, Kurt M.

    1991-01-01

    A cooperative processing user interface (CUI) system shares the task of graphical display generation and presentation between the user's computer and a remote host. The communications link between the two computers is typically a modem or Ethernet. The two main purposes of a CUI are reduction of the amount of data transmitted between user and host machines, and provision of a graphical user interface system to make the system easier to use.

  7. Cooper Pair Insulators

    NASA Astrophysics Data System (ADS)

    Valles, James

    One of the recent advances in the field of the Superconductor to Insulator Transition (SIT) has been the discovery and characterization of the Cooper Pair Insulator phase. This bosonic insulator, which consists of localized Cooper pairs, exhibits activated transport and a giant magneto-resistance peak. These features differ markedly from the weakly localized transport that emerges as pairs break at a ``fermionic'' SIT. I will describe how our experiments on films nano-patterned with a nearly triangular array of holes have enabled us to 1) distinguish bosonic insulators from fermionic insulators, 2) show that Cooper pairs, rather than quasi-particles dominate the transport in the Cooper Pair insulator phase, 3) demonstrate that very weak, sub nano-meter thickness inhomogeneities control whether a bosonic or fermionic insulator forms at an SIT and 4) reveal that Cooper pairs disintegrate rather than becoming more tightly bound deep in the localized phase. We have also developed a method, using a magnetic field, to tune flux disorder reversibly in these films. I will present our latest results on the influence of magnetic flux disorder and random gauge fields on phenomena near bosonic SITs. This work was performed in collaboration with M. D. Stewart, Jr., Hung Q. Nguyen, Shawna M. Hollen, Jimmy Joy, Xue Zhang, Gustavo Fernandez, Jeffrey Shainline and Jimmy Xu. It was supported by NSF Grants DMR 1307290 and DMR-0907357.

  8. Machine speech and speaking about machines

    SciTech Connect

    Nye, A.

    1996-12-31

    Current philosophy of language prides itself on scientific status. It boasts of being no longer contaminated with queer mental entities or idealist essences. It theorizes language as programmable variants of formal semantic systems, reimaginable either as the properly epiphenomenal machine functions of computer science or the properly material neural networks of physiology. Whether or not such models properly capture the physical workings of a living human brain is a question that scientists will have to answer. I, as a philosopher, come at the problem from another direction. Does contemporary philosophical semantics, in its dominant truth-theoretic and related versions, capture actual living human thought as it is experienced, or does it instead reflect, regardless of (perhaps dubious) scientific credentials, pathology of thought, a pathology with a disturbing social history.

  9. Machine Aids to Translation.

    ERIC Educational Resources Information Center

    Brinkmann, Karl-Heinz

    1981-01-01

    Describes the TEAM Program System of the Siemens Language Services Department, particularly the main features of its terminology data bank. Discusses criteria to which stored terminology must conform and methods of data bank utilization. Concludes by summarizing the consequences that machine-aided translation development has had for the…

  10. Biomimetic machine vision system.

    PubMed

    Harman, William M; Barrett, Steven F; Wright, Cameron H G; Wilcox, Michael

    2005-01-01

    Real-time application of digital imaging for use in machine vision systems has proven to be prohibitive when used within control systems that employ low-power single processors without compromising the scope of vision or resolution of captured images. Development of a real-time machine analog vision system is the focus of research taking place at the University of Wyoming. This new vision system is based upon the biological vision system of the common house fly. Development of a single sensor is accomplished, representing a single facet of the fly's eye. This new sensor is then incorporated into an array of sensors capable of detecting objects and tracking motion in 2-D space. This system "preprocesses" incoming image data resulting in minimal data processing to determine the location of a target object. Due to the nature of the sensors in the array, hyperacuity is achieved thereby eliminating resolutions issues found in digital vision systems. In this paper, we will discuss the biological traits of the fly eye and the specific traits that led to the development of this machine vision system. We will also discuss the process of developing an analog based sensor that mimics the characteristics of interest in the biological vision system. This paper will conclude with a discussion of how an array of these sensors can be applied toward solving real-world machine vision issues.

  11. The Art Machine.

    ERIC Educational Resources Information Center

    Vertelney, Harry; Grossberger, Lucia

    1983-01-01

    Introduces educators to possibilities of computer graphics using an inexpensive computer system which takes advantage of existing equipment (35mm camera, super 8 movie camera, VHS video cassette recorder). The concept of the "art machine" is explained, highlighting input and output devices (X-Y plotter, graphic tablets, video…

  12. Cybernetic anthropomorphic machine systems

    NASA Technical Reports Server (NTRS)

    Gray, W. E.

    1974-01-01

    Functional descriptions are provided for a number of cybernetic man machine systems that augment the capacity of normal human beings in the areas of strength, reach or physical size, and environmental interaction, and that are also applicable to aiding the neurologically handicapped. Teleoperators, computer control, exoskeletal devices, quadruped vehicles, space maintenance systems, and communications equipment are considered.

  13. Copy Machine Art.

    ERIC Educational Resources Information Center

    Sommer, Jean

    1984-01-01

    Images created with copy machines make children feel successful, as their work acquires the authority of being printed. Students can learn advanced processes like electrostatic image-making and can get involved in projects like making collages. They acquire an appreciation of design and of two-dimensional composition. (CS)

  14. Working with Simple Machines

    ERIC Educational Resources Information Center

    Norbury, John W.

    2006-01-01

    A set of examples is provided that illustrate the use of work as applied to simple machines. The ramp, pulley, lever and hydraulic press are common experiences in the life of a student, and their theoretical analysis therefore makes the abstract concept of work more real. The mechanical advantage of each of these systems is also discussed so that…

  15. Protein thin film machines.

    PubMed

    Federici, Stefania; Oliviero, Giulio; Hamad-Schifferli, Kimberly; Bergese, Paolo

    2010-12-01

    We report the first example of microcantilever beams that are reversibly driven by protein thin film machines fueled by cycling the salt concentration of the surrounding solution. We also show that upon the same salinity stimulus the drive can be completely reversed in its direction by introducing a surface coating ligand. Experimental results are throughout discussed within a general yet simple thermodynamic model.

  16. Introduction to Exploring Machines

    ERIC Educational Resources Information Center

    Early Childhood Today, 2006

    2006-01-01

    Young children are fascinated by how things "work." They are at a stage of development where they want to experiment with the many ways to use an object or take things apart and put them back together. In the process of exploring tools and machines, children use the scientific method and problem-solving skills. They observe how things work, wonder…

  17. Support vector machines

    NASA Technical Reports Server (NTRS)

    Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri

    2004-01-01

    Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.

  18. Laser machining of explosives

    DOEpatents

    Perry, Michael D.; Stuart, Brent C.; Banks, Paul S.; Myers, Booth R.; Sefcik, Joseph A.

    2000-01-01

    The invention consists of a method for machining (cutting, drilling, sculpting) of explosives (e.g., TNT, TATB, PETN, RDX, etc.). By using pulses of a duration in the range of 5 femtoseconds to 50 picoseconds, extremely precise and rapid machining can be achieved with essentially no heat or shock affected zone. In this method, material is removed by a nonthermal mechanism. A combination of multiphoton and collisional ionization creates a critical density plasma in a time scale much shorter than electron kinetic energy is transferred to the lattice. The resulting plasma is far from thermal equilibrium. The material is in essence converted from its initial solid-state directly into a fully ionized plasma on a time scale too short for thermal equilibrium to be established with the lattice. As a result, there is negligible heat conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond a few microns from the laser machined surface. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces. There is no detonation or deflagration of the explosive in the process and the material which is removed is rendered inert.

  19. 8. VIEW OF THE MACHINE SHOP. BY 1966, THE MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF THE MACHINE SHOP. BY 1966, THE MACHINE SHOP HANDLED PRIMARILY STAINLESS STEEL COMPONENTS, WHICH WERE SENT TO THE MACHINE SHOP TO BE FORMED INTO THEIR FINAL SHAPES. (7/24/70) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  20. Cooper Pairs in Insulators?!

    ScienceCinema

    James Valles

    2016-07-12

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  1. Synchrony and cooperation.

    PubMed

    Wiltermuth, Scott S; Heath, Chip

    2009-01-01

    Armies, churches, organizations, and communities often engage in activities-for example, marching, singing, and dancing-that lead group members to act in synchrony with each other. Anthropologists and sociologists have speculated that rituals involving synchronous activity may produce positive emotions that weaken the psychological boundaries between the self and the group. This article explores whether synchronous activity may serve as a partial solution to the free-rider problem facing groups that need to motivate their members to contribute toward the collective good. Across three experiments, people acting in synchrony with others cooperated more in subsequent group economic exercises, even in situations requiring personal sacrifice. Our results also showed that positive emotions need not be generated for synchrony to foster cooperation. In total, the results suggest that acting in synchrony with others can increase cooperation by strengthening social attachment among group members.

  2. Hinged Shields for Machine Tools

    NASA Technical Reports Server (NTRS)

    Lallande, J. B.; Poland, W. W.; Tull, S.

    1985-01-01

    Flaps guard against flying chips, but fold away for tool setup. Clear plastic shield in position to intercept flying chips from machine tool and retracted to give operator access to workpiece. Machine shops readily make such shields for own use.

  3. Neural basis of conditional cooperation.

    PubMed

    Suzuki, Shinsuke; Niki, Kazuhisa; Fujisaki, Syoken; Akiyama, Eizo

    2011-06-01

    Cooperation among genetically unrelated individuals is a fundamental aspect of society, but it has been a longstanding puzzle in biological and social sciences. Recently, theoretical studies in biology and economics showed that conditional cooperation-cooperating only with those who have exhibited cooperative behavior-can spread over a society. Furthermore, experimental studies in psychology demonstrated that people are actually conditional cooperators. In this study, we used functional magnetic resonance imaging to investigate the neural system underlying conditional cooperation by scanning participants during interaction with cooperative, neutral and non-cooperative opponents in prisoner's dilemma games. The results showed that: (i) participants cooperated more frequently with both cooperative and neutral opponents than with non-cooperative opponents; and (ii) a brain area related to cognitive inhibition of pre-potent responses (right dorsolateral prefrontal cortex) showed greater activation, especially when participants confronted non-cooperative opponents. Consequently, we suggest that cognitive inhibition of the motivation to cooperate with non-cooperators drives the conditional behavior.

  4. Social penalty promotes cooperation in a cooperative society.

    PubMed

    Ito, Hiromu; Yoshimura, Jin

    2015-08-04

    Why cooperation is well developed in human society is an unsolved question in biological and human sciences. Vast studies in game theory have revealed that in non-cooperative games selfish behavior generally dominates over cooperation and cooperation can be evolved only under very limited conditions. These studies ask the origin of cooperation; whether cooperation can evolve in a group of selfish individuals. In this paper, instead of asking the origin of cooperation, we consider the enhancement of cooperation in a small already cooperative society. We ask whether cooperative behavior is further promoted in a small cooperative society in which social penalty is devised. We analyze hawk-dove game and prisoner's dilemma introducing social penalty. We then expand it for non-cooperative games in general. The results indicate that cooperation is universally favored if penalty is further imposed. We discuss the current result in terms of the moral, laws, rules and regulations in a society, e.g., criminology and traffic violation.

  5. Automatically-Programed Machine Tools

    NASA Technical Reports Server (NTRS)

    Purves, L.; Clerman, N.

    1985-01-01

    Software produces cutter location files for numerically-controlled machine tools. APT, acronym for Automatically Programed Tools, is among most widely used software systems for computerized machine tools. APT developed for explicit purpose of providing effective software system for programing NC machine tools. APT system includes specification of APT programing language and language processor, which executes APT statements and generates NC machine-tool motions specified by APT statements.

  6. Isomap based supporting vector machine

    NASA Astrophysics Data System (ADS)

    Liang, W. N.

    2015-12-01

    This research presents a new isomap based supporting vector machine method. Isomap is a dimension reduction method which is able to analyze nonlinear relationship of data on manifolds. Accordingly, support vector machine is established on the isomap manifold to classify given and predict unknown data. A case study of the isomap based supporting vector machine for environmental planning problems is conducted.

  7. Interferometer systems in machine industry

    NASA Astrophysics Data System (ADS)

    Rzepka, Janusz; Pienkowski, Janusz; Sambor, Slawomir; Budzyn, Grzegorz

    2003-10-01

    In the report the arrangements of laser interferometers for machine history are presented; the laser interferometer LSP30 for investigation of geometry of machine tools, the setup for inspection of ball screw and laser liner for CNC machine. Outstanding feature of the interferometers is the stabilization system of laser frequency using surface stabilized ferroelectric liquid cells (SSFLC).

  8. Machine Shop Fundamentals: Part I.

    ERIC Educational Resources Information Center

    Kelly, Michael G.; And Others

    These instructional materials were developed and designed for secondary and adult limited English proficient students enrolled in machine tool technology courses. Part 1 includes 24 lessons covering introduction, safety and shop rules, basic machine tools, basic machine operations, measurement, basic blueprint reading, layout, and bench tools.…

  9. To Cooperate or Not to Cooperate: Why Behavioural Mechanisms Matter

    PubMed Central

    2016-01-01

    Mutualistic cooperation often requires multiple individuals to behave in a coordinated fashion. Hence, while the evolutionary stability of mutualistic cooperation poses no particular theoretical difficulty, its evolutionary emergence faces a chicken and egg problem: an individual cannot benefit from cooperating unless other individuals already do so. Here, we use evolutionary robotic simulations to study the consequences of this problem for the evolution of cooperation. In contrast with standard game-theoretic results, we find that the transition from solitary to cooperative strategies is very unlikely, whether interacting individuals are genetically related (cooperation evolves in 20% of all simulations) or unrelated (only 3% of all simulations). We also observe that successful cooperation between individuals requires the evolution of a specific and rather complex behaviour. This behavioural complexity creates a large fitness valley between solitary and cooperative strategies, making the evolutionary transition difficult. These results reveal the need for research on biological mechanisms which may facilitate this transition. PMID:27148874

  10. Cooperative Learning and Teaching

    ERIC Educational Resources Information Center

    Jacobs, G. M.; Kimura, H.

    2013-01-01

    In and out of the classroom, life would be unthinkable without interacting with fellow humans. This book urges more cooperative and group activities in the English language classroom for all the advantages: students use the target language more, help each other with comprehension, receive attention from peers as well as the teacher, are motivated…

  11. Foundations of Cooperative Learning.

    ERIC Educational Resources Information Center

    Jacobs, George M.

    Five cooperative learning methods are described with the theories that support them. The five methods are: (1) Group Investigation (GI), developed by S. Sharan and others; (2) Jigsaw, developed by E. Aronson and others; (3) Student Teams Achievement Divisions (STAD), developed by R. E. Slavin and others; (4) Learning Together, developed by D. W.…

  12. Cooperative Performance Incentive Plans.

    ERIC Educational Resources Information Center

    Raham, Helen

    2000-01-01

    Discusses what is known about cooperative performance incentive (CPI) plans, which are award programs that offer teachers and other school staff pay bonuses for achievement of specific schoolwide educational objectives. The paper describes and compares existing CPI models worldwide, analyzes their impact on student learning and school practices,…

  13. Cooperative Electronics Program Credit.

    ERIC Educational Resources Information Center

    Johnson, Wayne

    The Cooperative Electronics Program was developed through the joint efforts of Linn-Benton Community College (LBCC), West Albany High, and Lebanon High, all of which are in the Linn-Benton Education Service District serving Albany, Oregon. The project, which was undertaken in the spring of 1988, is intended to result in a program whereby high…

  14. Combat or Cooperation?

    ERIC Educational Resources Information Center

    Tate, Thomas F.; Copas, Randall L.

    2010-01-01

    The best intentioned efforts of adults are often sabotaged by coercive climates of bullying among peers and conflict with adults. The solution is to create cultures where youth cooperate with authority and treat one another with respect. In this article, the authors stress the task of the staff to create a condition in which students see more…

  15. The Power of Cooperation

    ERIC Educational Resources Information Center

    Nevin, John A.

    2010-01-01

    In "The Power of Cooperation," Tony Nevin tells how the townspeople of Martha's Vineyard, Massachusetts, are attempting to replicate a successful alternative-energy project in Samso, Denmark, where thinking about ways to reduce fossil-fuel use "became a kind of sport." Nevin says that thinking and acting locally helps people to…

  16. Consortia and Interinstitutional Cooperation.

    ERIC Educational Resources Information Center

    Neal, Donn C., Ed.

    Opportunities for cooperation in higher education are described in this book, particularly how institutional linkages through a consortium can help colleges and universities improve the quality of instruction, deal with rising costs, meet the demands of new institutional roles, and confront such challenges as incorporating new technologies. Ways…

  17. Cooperative Education. Final Report.

    ERIC Educational Resources Information Center

    Stauber, Dick T.

    In order to investigate the feasibility of adding a cooperative education option to the curricular offerings of Moraine Park Technical Institute (MPTI), interviews were conducted with randomly selected representatives of 12 industries and 17 employers in the marketing and merchandising businesses located in the MPTI service area. In addition,…

  18. Communication, Coordination, Cooperation.

    ERIC Educational Resources Information Center

    Rose, Nancy Oft; Wiper, Kathie Tippens

    Speech communication teachers at both secondary and postsecondary school levels must cooperate to improve oral communication education. Despite the importance of oral communication skills, speech courses are rarely required in high school. Teachers must tell school boards, higher education boards, and faculties of the importance of speaking and…

  19. Cooperative Mobile Sensing Networks

    SciTech Connect

    Roberts, R S; Kent, C A; Jones, E D; Cunningham, C T; Armstrong, G W

    2003-02-10

    A cooperative control architecture is presented that allows a fleet of Unmanned Air Vehicles (UAVs) to collect data in a parallel, coordinated and optimal manner. The architecture is designed to react to a set of unpredictable events thereby allowing data collection to continue in an optimal manner.

  20. Educating for World Cooperation.

    ERIC Educational Resources Information Center

    Berman, Louise M.; Miel, Alice

    This booklet presents a variety of perspectives on educating for world cooperation. Section 1 discusses major world problems and calls for the reorientation of education as a potential solution. Section 2 deals with the design of such a reorientation and offers three approaches to teaching and curriculum development--knowing, being, and doing. In…

  1. Cooper pairs and bipolarons

    NASA Astrophysics Data System (ADS)

    Lakhno, Victor

    2016-11-01

    It is shown that Cooper pairs are a solution of the bipolaron problem for model Fröhlich Hamiltonian. The total energy of a pair for the initial Fröhlich Hamiltonian is found. Differences between the solutions for the model and initial two-particle problems are discussed.

  2. Cooperative Office Education Manual.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    This manual, intended for inexperienced and experienced coordinators, school administrators, and guidance personnel, is designed to provide practical suggestions for initiating, developing, operating, coordinating, improving, and evaluating cooperative office education programs. Major content is presented primarily in outline form under the…

  3. A decade of telerobotics in rehabilitation: Demonstrated utility blocked by the high cost of manipulation and the complexity of the user interface

    NASA Technical Reports Server (NTRS)

    Leifer, Larry; Michalowski, Stefan; Vanderloos, Machiel

    1991-01-01

    The Stanford/VA Interactive Robotics Laboratory set out in 1978 to test the hypothesis that industrial robotics technology could be applied to serve the manipulation needs of severely impaired individuals. Five generations of hardware, three generations of system software, and over 125 experimental subjects later, we believe that genuine utility is achievable. The experience includes development of over 65 task applications using voiced command, joystick control, natural language command and 3D object designation technology. A brief foray into virtual environments, using flight simulator technology, was instructive. If reality and virtuality come for comparable prices, you cannot beat reality. A detailed review of assistive robot anatomy and the performance specifications needed to achieve cost/beneficial utility will be used to support discussion of the future of rehabilitation telerobotics. Poised on the threshold of commercial viability, but constrained by the high cost of technically adequate manipulators, this worthy application domain flounders temporarily. In the long run, it will be the user interface that governs utility.

  4. An integrated systems approach to remote retrieval of buried transuranic waste using a telerobotic transport vehicle, innovative end effector, and remote excavator

    SciTech Connect

    Smith, A.M.; Rice, P.; Hyde, R.; Peterson, R.

    1995-02-01

    Between 1952 and 1970, over two million cubic feet of transuranic mixed waste was buried in shallow pits and trenches in the Subsurface Disposal Area at the Idaho National Engineering Laboratory Radioactive Waste Management Complex. Commingled with this two million cubic feet of waste is up to 10 million cubic feet of fill soil. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. The main contaminants are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides. Retrieval, treatment, and disposal is one of the options being considered for the waste. This report describes the results of a field demonstration conducted to evaluate technologies for excavating, and transporting buried transuranic wastes at the INEL, and other hazardous or radioactive waste sites throughout the US Department of Energy complex. The full-scale demonstration, conduced at RAHCO Internationals facilities in Spokane, Washington, in the summer of 1994, evaluated equipment performance and techniques for digging, dumping, and transporting buried waste. Three technologies were evaluated in the demonstration: an Innovative End Effector for dust free dumping, a Telerobotic Transport Vehicle to convey retrieved waste from the digface, and a Remote Operated Excavator to deploy the Innovative End Effector and perform waste retrieval operations. Data were gathered and analyzed to evaluate retrieval performance parameters such as retrieval rates, transportation rates, human factors, and the equipment`s capability to control contamination spread.

  5. A Boltzmann machine for the organization of intelligent machines

    NASA Technical Reports Server (NTRS)

    Moed, Michael C.; Saridis, George N.

    1989-01-01

    In the present technological society, there is a major need to build machines that would execute intelligent tasks operating in uncertain environments with minimum interaction with a human operator. Although some designers have built smart robots, utilizing heuristic ideas, there is no systematic approach to design such machines in an engineering manner. Recently, cross-disciplinary research from the fields of computers, systems AI and information theory has served to set the foundations of the emerging area of the design of intelligent machines. Since 1977 Saridis has been developing an approach, defined as Hierarchical Intelligent Control, designed to organize, coordinate and execute anthropomorphic tasks by a machine with minimum interaction with a human operator. This approach utilizes analytical (probabilistic) models to describe and control the various functions of the intelligent machine structured by the intuitively defined principle of Increasing Precision with Decreasing Intelligence (IPDI) (Saridis 1979). This principle, even though resembles the managerial structure of organizational systems (Levis 1988), has been derived on an analytic basis by Saridis (1988). The purpose is to derive analytically a Boltzmann machine suitable for optimal connection of nodes in a neural net (Fahlman, Hinton, Sejnowski, 1985). Then this machine will serve to search for the optimal design of the organization level of an intelligent machine. In order to accomplish this, some mathematical theory of the intelligent machines will be first outlined. Then some definitions of the variables associated with the principle, like machine intelligence, machine knowledge, and precision will be made (Saridis, Valavanis 1988). Then a procedure to establish the Boltzmann machine on an analytic basis will be presented and illustrated by an example in designing the organization level of an Intelligent Machine. A new search technique, the Modified Genetic Algorithm, is presented and proved

  6. [Social cooperatives in Italy].

    PubMed

    Villotti, P; Zaniboni, S; Fraccaroli, F

    2014-06-01

    This paper describes the role of social cooperatives in Italy as a type of economic, non-profit organization and their role in contributing to the economic and social growth of the country. The purpose of this paper is to learn more about the experience of the Italian social cooperatives in promoting the work integration process of disadvantaged workers, especially those suffering from mental disorders, from a theoretical and an empirical point of view. Social enterprise is the most popular and consolidated legal and organizational model for social enterprises in Italy, introduced by Law 381/91. Developed during the early 1980s, and formally recognized by law in the early 1990s, social cooperatives aim at pursuing the general interest of the community to promote the human needs and social inclusion of citizens. They are orientated towards aims that go beyond the interest of the business owners, the primary beneficiary of their activities is the community, or groups of disadvantaged people. In Italy, Law 381/91 distinguishes between two categories of social cooperatives, those producing goods of social utility, such as culture, welfare and educational services (A-type), and those providing economic activities for the integration of disadvantaged people into employment (B-type). The main purpose of B-type social cooperatives is to integrate disadvantaged people into the open labour market. This goal is reached after a period of training and working experience inside the firm, during which the staff works to improve both the social and professional abilities of disadvantaged people. During the years, B-type social co-ops acquired a particular relevance in the care of people with mental disorders by offering them with job opportunities. Having a job is central in the recovery process of people suffering from mental diseases, meaning that B-type social co-ops in Italy play an important rehabilitative and integrative role for this vulnerable population of workers. The

  7. A Course of Study in Cooperation and Cooperatives.

    ERIC Educational Resources Information Center

    Bjoraker, Walter T., Ed.

    Designed for teachers with limited experience in cooperatives, this course of study was prepared by seminar students for use in high school or adult education programs, and emphasizes the principles of cooperation, the operation and management of cooperatives, and the communication required for their effective functioning. Units requiring a total…

  8. Engineering molecular machines

    NASA Astrophysics Data System (ADS)

    Erman, Burak

    2016-04-01

    Biological molecular motors use chemical energy, mostly in the form of ATP hydrolysis, and convert it to mechanical energy. Correlated thermal fluctuations are essential for the function of a molecular machine and it is the hydrolysis of ATP that modifies the correlated fluctuations of the system. Correlations are consequences of the molecular architecture of the protein. The idea that synthetic molecular machines may be constructed by designing the proper molecular architecture is challenging. In their paper, Sarkar et al (2016 New J. Phys. 18 043006) propose a synthetic molecular motor based on the coarse grained elastic network model of proteins and show by numerical simulations that motor function is realized, ranging from deterministic to thermal, depending on temperature. This work opens up a new range of possibilities of molecular architecture based engine design.

  9. Machining fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Komanduri, Ranga

    1993-04-01

    Compared to high tool wear and high costs of tooling of fiber-reinforced composites (FRCs), noncontact material-removal processes offer attractive alternative. Noncontact machining methods can also minimize dust, noise, and extensive plastic deformation and consequent heat generation associated with conventional machining of FRCs, espacially those with an epoxy matrix. The paper describes the principles involved in and the details of machining of FRCs by laser machining, water jet-cutting and abrasive water jet-cutting, and electrical discharge machining of composites, as well as the limitations of each method.

  10. Safety features in anaesthesia machine.

    PubMed

    Subrahmanyam, M; Mohan, S

    2013-09-01

    Anaesthesia is one of the few sub-specialties of medicine, which has quickly adapted technology to improve patient safety. This application of technology can be seen in patient monitoring, advances in anaesthesia machines, intubating devices, ultrasound for visualisation of nerves and vessels, etc., Anaesthesia machines have come a long way in the last 100 years, the improvements being driven both by patient safety as well as functionality and economy of use. Incorporation of safety features in anaesthesia machines and ensuring that a proper check of the machine is done before use on a patient ensures patient safety. This review will trace all the present safety features in the machine and their evolution.

  11. Quantum Virtual Machine (QVM)

    SciTech Connect

    McCaskey, Alexander J.

    2016-11-18

    There is a lack of state-of-the-art HPC simulation tools for simulating general quantum computing. Furthermore, there are no real software tools that integrate current quantum computers into existing classical HPC workflows. This product, the Quantum Virtual Machine (QVM), solves this problem by providing an extensible framework for pluggable virtual, or physical, quantum processing units (QPUs). It enables the execution of low level quantum assembly codes and returns the results of such executions.

  12. Swinging Atwood's Machine

    NASA Astrophysics Data System (ADS)

    Tufillaro, Nicholas B.; Abbott, Tyler A.; Griffiths, David J.

    1984-10-01

    We examine the motion of an Atwood's Machine in which one of the masses is allowed to swing in a plane. Computer studies reveal a rich variety of trajectories. The orbits are classified (bounded, periodic, singular, and terminating), and formulas for the critical mass ratios are developed. Perturbative techniques yield good approximations to the computer-generated trajectories. The model constitutes a simple example of a nonlinear dynamical system with two degrees of freedom.

  13. Making Atwood's machine ``work''

    NASA Astrophysics Data System (ADS)

    Johnson, Gordon O.

    2001-03-01

    PASCO scientific's Smart Pulley™, a lightweight, low-friction pulley and a photogate, begs to be used as an Atwood's machine to determine the acceleration of gravity, g. Unfortunately ignoring the mass and friction of the pulley results in poor values of g. In this paper a procedure is outlined that includes the effects of the pulley's inertia and friction. As a result, the value of g may be determined to an accuracy of 0.1%.

  14. Machine Learning in Medicine.

    PubMed

    Deo, Rahul C

    2015-11-17

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games - tasks that would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in health care. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades, and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus, part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome.

  15. Universal Memcomputing Machines.

    PubMed

    Traversa, Fabio Lorenzo; Di Ventra, Massimiliano

    2015-11-01

    We introduce the notion of universal memcomputing machines (UMMs): a class of brain-inspired general-purpose computing machines based on systems with memory, whereby processing and storing of information occur on the same physical location. We analytically prove that the memory properties of UMMs endow them with universal computing power (they are Turing-complete), intrinsic parallelism, functional polymorphism, and information overhead, namely, their collective states can support exponential data compression directly in memory. We also demonstrate that a UMM has the same computational power as a nondeterministic Turing machine, namely, it can solve nondeterministic polynomial (NP)-complete problems in polynomial time. However, by virtue of its information overhead, a UMM needs only an amount of memory cells (memprocessors) that grows polynomially with the problem size. As an example, we provide the polynomial-time solution of the subset-sum problem and a simple hardware implementation of the same. Even though these results do not prove the statement NP = P within the Turing paradigm, the practical realization of these UMMs would represent a paradigm shift from the present von Neumann architectures, bringing us closer to brain-like neural computation.

  16. Architectures for intelligent machines

    NASA Technical Reports Server (NTRS)

    Saridis, George N.

    1991-01-01

    The theory of intelligent machines has been recently reformulated to incorporate new architectures that are using neural and Petri nets. The analytic functions of an intelligent machine are implemented by intelligent controls, using entropy as a measure. The resulting hierarchical control structure is based on the principle of increasing precision with decreasing intelligence. Each of the three levels of the intelligent control is using different architectures, in order to satisfy the requirements of the principle: the organization level is moduled after a Boltzmann machine for abstract reasoning, task planning and decision making; the coordination level is composed of a number of Petri net transducers supervised, for command exchange, by a dispatcher, which also serves as an interface to the organization level; the execution level, include the sensory, planning for navigation and control hardware which interacts one-to-one with the appropriate coordinators, while a VME bus provides a channel for database exchange among the several devices. This system is currently implemented on a robotic transporter, designed for space construction at the CIRSSE laboratories at the Rensselaer Polytechnic Institute. The progress of its development is reported.

  17. Cooperation and cheating in microbes

    NASA Astrophysics Data System (ADS)

    Gore, Jeff

    2011-03-01

    Understanding the cooperative and competitive dynamics within and between species is a central challenge in evolutionary biology. Microbial model systems represent a unique opportunity to experimentally test fundamental theories regarding the evolution of cooperative behaviors. In this talk I will describe our experiments probing cooperation in microbes. In particular, I will compare the cooperative growth of yeast in sucrose and the cooperative inactivation of antibiotics by bacteria. In both cases we find that cheater strains---which don't contribute to the public welfare---are able to take advantage of the cooperator strains. However, this ability of cheaters to out-compete cooperators occurs only when cheaters are present at low frequency, thus leading to steady-state coexistence. These microbial experiments provide fresh insight into the evolutionary origin of cooperation.

  18. CNC electrical discharge machining centers

    SciTech Connect

    Jaggars, S.R.

    1991-10-01

    Computer numerical control (CNC) electrical discharge machining (EDM) centers were investigated to evaluate the application and cost effectiveness of establishing this capability at Allied-Signal Inc., Kansas City Division (KCD). In line with this investigation, metal samples were designed, prepared, and machined on an existing 15-year-old EDM machine and on two current technology CNC EDM machining centers at outside vendors. The results were recorded and evaluated. The study revealed that CNC EDM centers are a capability that should be established at KCD. From the information gained, a machine specification was written and a shop was purchased and installed in the Engineering Shop. The older machine was exchanged for a new model. Additional machines were installed in the Tool Design and Fabrication and Precision Microfinishing departments. The Engineering Shop machine will be principally used for the following purposes: producing deep cavities in small corner radii, machining simulated casting models, machining difficult-to-machine materials, and polishing difficult-to-hand polish mold cavities. 2 refs., 18 figs., 3 tabs.

  19. Cooperative Learning: Developments in Research

    ERIC Educational Resources Information Center

    Gillies, Robyn M.

    2014-01-01

    Cooperative learning is widely recognized as a pedagogical practice that promotes socialization and learning among students from kindergarten through to college level and across different subject areas. Cooperative learning involves students working together to achieve common goals or complete group tasks. Interest in cooperative learning has…

  20. An Odyssey into Cooperative Learning.

    ERIC Educational Resources Information Center

    Lemke, Thomas L.; Basile, Carole

    1997-01-01

    An experiment using cooperative learning in a introductory pharmacy course in medicinal chemistry revealed general acceptance of the cooperative learning approach by students, and some perceived advantages for both students and teachers. Although quantitative evidence supporting superiority of the cooperative learning approach was not found,…

  1. Enlightening Advantages of Cooperative Learning

    ERIC Educational Resources Information Center

    Faryadi, Qais

    2007-01-01

    This appraisal discusses the notion that cooperative learning enhances learners' emotional and social performance. It also observes the perception that cooperative learning dramatically improves students' academic accomplishment. This review also examines the definition of cooperative learning and attempts to define it through the lens of renowned…

  2. Cooperative Learning in Elementary Schools

    ERIC Educational Resources Information Center

    Slavin, Robert E.

    2015-01-01

    Cooperative learning refers to instructional methods in which students work in small groups to help each other learn. Although cooperative learning methods are used for different age groups, they are particularly popular in elementary (primary) schools. This article discusses methods and theoretical perspectives on cooperative learning for the…

  3. Chaotic behaviour of Zeeman machines at introductory course of mechanics

    NASA Astrophysics Data System (ADS)

    Nagy, Péter; Tasnádi, Péter

    2016-05-01

    Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.

  4. Cooperative Engagement Capability (CEC)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-582 Cooperative Engagement Capability (CEC) As of FY 2017 President’s Budget Defense...RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined TY - Then...JLENS), and select coalition partners into a single fire control quality air track picture. Radar measurement data from individual CUs within a CEC

  5. Multilateral Cooperation on Nonproliferation

    DTIC Science & Technology

    2012-10-01

    scenarios.7 Coordination is required in response to “dilemmas of common aversions,” which can be represented in game theory by games like chicken or battle... chicken , both sides want to avoid a mutually destructive outcome (like a car crash), but each also wants to avoid being the only one to cooperate...and hence be labeled the chicken ). In battle of the sexes, both sides want to get together (for example, on a date), but each has slightly different

  6. Automated Cooperative Trajectories

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Pahle, Joseph; Brown, Nelson

    2015-01-01

    This presentation is an overview of the Automated Cooperative Trajectories project. An introduction to the phenomena of wake vortices is given, along with a summary of past research into the possibility of extracting energy from the wake by flying close parallel trajectories. Challenges and barriers to adoption of civilian automatic wake surfing technology are identified. A hardware-in-the-loop simulation is described that will support future research. Finally, a roadmap for future research and technology transition is proposed.

  7. Cooperation in space

    NASA Technical Reports Server (NTRS)

    Guastaferro, A.

    1992-01-01

    The topics from the Technical Interchange Meeting for the NASA Space Exploration Initiative are presented in viewgraph form. The objective is to share a perspective of a cost-effective cooperation management structure of NASA and industry as we move towards the 21st century and the national commitment to continue our exploration in space with humans. Some of the topics covered include a personal background, today's culture, new approaches, congressional oversight, programmatic impact, and recommendations.

  8. Cooperative disease management programs.

    PubMed

    Jedrey, C M; Chaurette, K A; Winn, L B

    2001-01-01

    Cooperative disease management programs sponsored by pharmaceutical companies and managed care organizations or health care providers can offer significant benefits to patients. They can be structured so as to comply with applicable OIG, FDA, and IRS regulations. Such programs must be structured for the benefit of patients, and not to require the use of or otherwise directly promote the selection of the sponsoring pharmaceutical company's products.

  9. 15. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific Railroad Carlin Shops, view to northeast (90mm lens). The arched cutouts in the bottom chords of the roof trusses were necessary to provide clearance for the smokestacks of steam locomotives, and also mark the location of the former inspection pit in the floor (now filled in and covered by a new concrete floor). - Southern Pacific Railroad, Carlin Shops, Roundhouse Machine Shop Extension, Foot of Sixth Street, Carlin, Elko County, NV

  10. Endogenous Cooperation Network Formation

    NASA Astrophysics Data System (ADS)

    Angus, S.

    This paper employs insights from Complex Systems literature to develop a computational model of endogenous strategic network formation. Artificial Adaptive Agents (AAAs), implemented as finite state automata, play a modified two-player Iterated Prisoner's Dilemma game with an option to further develop the interaction space as part of their strategy. Several insights result from this relatively minor modification: first, I find that network formation is a necessary condition for cooperation to be sustainable but that both the frequency of interaction and the degree to which edge formation impacts agent mixing are both necessary conditions for cooperative networks. Second, within the FSA-modified IPD frame-work, a rich ecology of agents and network topologies is observed, with consequent payoff symmetry and network 'purity' seen to be further contributors to robust cooperative networks. Third, the dynamics of the strategic system under network formation show that initially simple dynamics with small interaction length between agents gives way to complex, a-periodic dynamics when interaction lengths are increased by a single step.

  11. Endogenous Cooperation Network Formation

    NASA Astrophysics Data System (ADS)

    Angus, S.

    This paper employs insights from Complex Systems literature to develop a computational model of endogenous strategic network formation. Artificial Adaptive Agents (AAAs), implemented as finite state automata, play a modified two-player Iterated Prisoner's Dilemma game with an option to further develop the interaction space as part of their strategy. Several insights result from this relatively minor modification: first, I find that network formation is a necessary condition for cooperation to be sustainable but that both the frequency of interaction and the degree to which edge formation impacts agent mixing are both necessary conditions for cooperative networks. Second, within the FSA-modified IPD frame-work, a rich ecology of agents and network topologies is observed, with consequent payoff symmetry and network `purity' seen to be further contributors to robust cooperative networks. Third, the dynamics of the strategic system under network formation show that initially simple dynamics with small interaction length between agents gives way to complex, a-periodic dynamics when interaction lengths are increased by a single step.

  12. Hydrodynamics of Bacterial Cooperation

    NASA Astrophysics Data System (ADS)

    Petroff, A.; Libchaber, A.

    2012-12-01

    Over the course of the last several decades, the study of microbial communities has identified countless examples of cooperation between microorganisms. Generally—as in the case of quorum sensing—cooperation is coordinated by a chemical signal that diffuses through the community. Less well understood is a second class of cooperation that is mediated through physical interactions between individuals. To better understand how the bacteria use hydrodynamics to manipulate their environment and coordinate their actions, we study the sulfur-oxidizing bacterium Thiovulum majus. These bacteria live in the diffusive boundary layer just above the muddy bottoms of ponds. As buried organic material decays, sulfide diffuses out of the mud. Oxygen from the pond diffuses into the boundary layer from above. These bacteria form communities—called veils— which are able to transport nutrients through the boundary layer faster than diffusion, thereby increasing their metabolic rate. In these communities, bacteria attach to surfaces and swim in place. As millions of bacteria beat their flagella, the community induces a macroscopic fluid flow, which mix the boundary layer. Here we present experimental observations and mathematical models that elucidate the hydrodynamics linking the behavior of an individual bacterium to the collective dynamics of the community. We begin by characterizing the flow of water around an individual bacterium swimming in place. We then discuss the flow of water and nutrients around a small number of individuals. Finally, we present observations and models detailing the macroscopic dynamics of a Thiovulum veil.

  13. Will machines ever think

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1986-01-01

    Artificial Intelligence research has come under fire for failing to fulfill its promises. A growing number of AI researchers are reexamining the bases of AI research and are challenging the assumption that intelligent behavior can be fully explained as manipulation of symbols by algorithms. Three recent books -- Mind over Machine (H. Dreyfus and S. Dreyfus), Understanding Computers and Cognition (T. Winograd and F. Flores), and Brains, Behavior, and Robots (J. Albus) -- explore alternatives and open the door to new architectures that may be able to learn skills.

  14. Increased costs of cooperation help cooperators in the long run.

    PubMed

    Smaldino, Paul E; Schank, Jeffrey C; McElreath, Richard

    2013-04-01

    It has long been proposed that cooperation should increase in harsh environments, but this claim still lacks theoretical underpinnings. We modeled a scenario in which benefiting from altruistic behavior was essential to survival and reproduction. We used a spatial agent-based model to represent mutual cooperation enforced by environmental adversity. We studied two factors, the cost of unreciprocated cooperation and the environmental cost of living, which highlight a conflict between the short- and long-term rewards of cooperation. In the long run, cooperation is favored because only groups with a sufficient number of cooperators will survive. In the short run, however, harsh environmental costs increase the advantage of defectors in cooperator-defector interactions because the loss of resources leads to death. Our analysis sheds new light on the evolution of cooperation via interdependence and illustrates how selfish groups can incur short-term benefits at the cost of their eventual demise. We demonstrate how harsh environments select for cooperative phenotypes and suggest an explanation for the adoption of cooperative breeding strategies in human evolution. We also highlight the importance of variable population size and the role of socio-spatial organization in harsh environments.

  15. Learning thermodynamics with Boltzmann machines

    NASA Astrophysics Data System (ADS)

    Torlai, Giacomo; Melko, Roger G.

    2016-10-01

    A Boltzmann machine is a stochastic neural network that has been extensively used in the layers of deep architectures for modern machine learning applications. In this paper, we develop a Boltzmann machine that is capable of modeling thermodynamic observables for physical systems in thermal equilibrium. Through unsupervised learning, we train the Boltzmann machine on data sets constructed with spin configurations importance sampled from the partition function of an Ising Hamiltonian at different temperatures using Monte Carlo (MC) methods. The trained Boltzmann machine is then used to generate spin states, for which we compare thermodynamic observables to those computed by direct MC sampling. We demonstrate that the Boltzmann machine can faithfully reproduce the observables of the physical system. Further, we observe that the number of neurons required to obtain accurate results increases as the system is brought close to criticality.

  16. Multiple man-machine interfaces

    NASA Technical Reports Server (NTRS)

    Stanton, L.; Cook, C. W.

    1981-01-01

    The multiple man machine interfaces inherent in military pilot training, their social implications, and the issue of possible negative feedback were explored. Modern technology has produced machines which can see, hear, and touch with greater accuracy and precision than human beings. Consequently, the military pilot is more a systems manager, often doing battle against a target he never sees. It is concluded that unquantifiable human activity requires motivation that is not intrinsic in a machine.

  17. Interaction with Machine Improvisation

    NASA Astrophysics Data System (ADS)

    Assayag, Gerard; Bloch, George; Cont, Arshia; Dubnov, Shlomo

    We describe two multi-agent architectures for an improvisation oriented musician-machine interaction systems that learn in real time from human performers. The improvisation kernel is based on sequence modeling and statistical learning. We present two frameworks of interaction with this kernel. In the first, the stylistic interaction is guided by a human operator in front of an interactive computer environment. In the second framework, the stylistic interaction is delegated to machine intelligence and therefore, knowledge propagation and decision are taken care of by the computer alone. The first framework involves a hybrid architecture using two popular composition/performance environments, Max and OpenMusic, that are put to work and communicate together, each one handling the process at a different time/memory scale. The second framework shares the same representational schemes with the first but uses an Active Learning architecture based on collaborative, competitive and memory-based learning to handle stylistic interactions. Both systems are capable of processing real-time audio/video as well as MIDI. After discussing the general cognitive background of improvisation practices, the statistical modelling tools and the concurrent agent architecture are presented. Then, an Active Learning scheme is described and considered in terms of using different improvisation regimes for improvisation planning. Finally, we provide more details about the different system implementations and describe several performances with the system.

  18. Stacked Extreme Learning Machines.

    PubMed

    Zhou, Hongming; Huang, Guang-Bin; Lin, Zhiping; Wang, Han; Soh, Yeng Chai

    2015-09-01

    Extreme learning machine (ELM) has recently attracted many researchers' interest due to its very fast learning speed, good generalization ability, and ease of implementation. It provides a unified solution that can be used directly to solve regression, binary, and multiclass classification problems. In this paper, we propose a stacked ELMs (S-ELMs) that is specially designed for solving large and complex data problems. The S-ELMs divides a single large ELM network into multiple stacked small ELMs which are serially connected. The S-ELMs can approximate a very large ELM network with small memory requirement. To further improve the testing accuracy on big data problems, the ELM autoencoder can be implemented during each iteration of the S-ELMs algorithm. The simulation results show that the S-ELMs even with random hidden nodes can achieve similar testing accuracy to support vector machine (SVM) while having low memory requirements. With the help of ELM autoencoder, the S-ELMs can achieve much better testing accuracy than SVM and slightly better accuracy than deep belief network (DBN) with much faster training speed.

  19. Earth boring machine

    SciTech Connect

    Durham, M. E.

    1985-11-19

    An earth boring machine for boring straight and level elongated holes through rock-laden earth. The machine includes a stationary elongated frame upon which a first slide is carried. A second slide is carried on the first slide. An elongated auger guiding sleeve is carried adjacent one end of the first slide and has a cutting edge on a remote end thereof. A power-driven auger assembly is carried on the second slide and includes an auger which extends within the guiding sleeve. A cutting tool is carried on the end of the auger adjacent a remote end of the guiding sleeve. An hydraulic cylinder is provided for advancing the first sleeve for driving the cutting edge of the guiding sleeve into the earth while the power driven auger removes the earth as the guiding sleeve is advanced. Another set of hydraulic cylinders are provided for advancing the second slide on the first slide causing the cutting tool to extend out beyond the remote end of the guiding sleeve for cutting through obstructions in the earth when the cutting edge of the guiding sleeve is prevented from moving forward.

  20. Smart Test Machines

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Vern Wedeven, president of Wedeven Associates, developed the WAM4, a computer-aided "smart" test machine for simulating stress on equipment, based on his bearing lubrication expertise gained while working for Lewis Research Center. During his NASA years from the 1970s into the early 1980s, Wedeven initiated an "Interdisciplinary Collaboration in Tribology," an effort that involved NASA, six universities, and several university professors. The NASA-sponsored work provided foundation for Wedeven in 1983 to form his own company. Several versions of the smart test machine, the WAM1, WAM2, and WAM3, have proceeded the current version, WAM4. This computer-controlled device can provide detailed glimpses at gear and bearing points of contact. WAM4 can yield a three-dimensional view of machinery as an operator adds "what-if" thermal and lubrication conditions, contact stress, and surface motion. Along with NASA, a number of firms, including Pratt & Whitney, Caterpillar Tractor, Exxon, and Chevron have approached Wedeven for help on resolving lubrication problems.

  1. How is human cooperation different?

    PubMed

    Melis, Alicia P; Semmann, Dirk

    2010-09-12

    Although cooperation is a widespread phenomenon in nature, human cooperation exceeds that of all other species with regard to the scale and range of cooperative activities. Here we review and discuss differences between humans and non-humans in the strategies employed to maintain cooperation and control free-riders. We distinguish forms of cooperative behaviour based on their influence on the immediate payoffs of actor and recipient. If the actor has immediate costs and only the recipient obtains immediate benefits, we term this investment. If the behaviour has immediate positive effects for both actor and recipient, we call this a self-serving mutually beneficial behaviour or mutual cooperation. We argue that humans, in contrast to all other species, employ a wider range of enforcement mechanisms, which allow higher levels of cooperation to evolve and stabilize among unrelated individuals and in large groups. We also discuss proximate mechanisms underlying cooperative behaviour and focus on our experimental work with humans and our closest primate relatives. Differences in the proximate mechanisms also seem to contribute to explaining humans' greater ability to cooperate and enforce cooperation.

  2. How is human cooperation different?

    PubMed Central

    Melis, Alicia P.; Semmann, Dirk

    2010-01-01

    Although cooperation is a widespread phenomenon in nature, human cooperation exceeds that of all other species with regard to the scale and range of cooperative activities. Here we review and discuss differences between humans and non-humans in the strategies employed to maintain cooperation and control free-riders. We distinguish forms of cooperative behaviour based on their influence on the immediate payoffs of actor and recipient. If the actor has immediate costs and only the recipient obtains immediate benefits, we term this investment. If the behaviour has immediate positive effects for both actor and recipient, we call this a self-serving mutually beneficial behaviour or mutual cooperation. We argue that humans, in contrast to all other species, employ a wider range of enforcement mechanisms, which allow higher levels of cooperation to evolve and stabilize among unrelated individuals and in large groups. We also discuss proximate mechanisms underlying cooperative behaviour and focus on our experimental work with humans and our closest primate relatives. Differences in the proximate mechanisms also seem to contribute to explaining humans' greater ability to cooperate and enforce cooperation. PMID:20679110

  3. Standardized Curriculum for Machine Tool Operation/Machine Shop.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized vocational education course titles and core contents for two courses in Mississippi are provided: machine tool operation/machine shop I and II. The first course contains the following units: (1) orientation; (2) shop safety; (3) shop math; (4) measuring tools and instruments; (5) hand and bench tools; (6) blueprint reading; (7)…

  4. Machine Shop Milling Machines. Oklahoma Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Dunn, James

    This curriculum guide provides instructional materials designed to equip students with basic knowledge and skills that will enable them to enter the machine trades at the machine-operator level. The curriculum is designed for use in full-time secondary and postsecondary classes and part-time adult classes. It can also be adapted to open-entry,…

  5. Production Machine Shop Employment Competencies. Part Four: The Milling Machine.

    ERIC Educational Resources Information Center

    Bishart, Gus; Werner, Claire

    Competencies for production machine shop are provided for the fourth of four topic areas: the milling machine. Each competency appears in a one-page format. It is presented as a goal statement followed by one or more "indicator" statements, which are performance objectives describing an ability that, upon attainment, will establish…

  6. Extended cooperative control synthesis

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Schmidt, David K.

    1994-01-01

    This paper reports on research for extending the Cooperative Control Synthesis methodology to include a more accurate modeling of the pilot's controller dynamics. Cooperative Control Synthesis (CCS) is a methodology that addresses the problem of how to design control laws for piloted, high-order, multivariate systems and/or non-conventional dynamic configurations in the absence of flying qualities specifications. This is accomplished by emphasizing the parallel structure inherent in any pilot-controlled, augmented vehicle. The original CCS methodology is extended to include the Modified Optimal Control Model (MOCM), which is based upon the optimal control model of the human operator developed by Kleinman, Baron, and Levison in 1970. This model provides a modeling of the pilot's compensation dynamics that is more accurate than the simplified pilot dynamic representation currently in the CCS methodology. Inclusion of the MOCM into the CCS also enables the modeling of pilot-observation perception thresholds and pilot-observation attention allocation affects. This Extended Cooperative Control Synthesis (ECCS) allows for the direct calculation of pilot and system open- and closed-loop transfer functions in pole/zero form and is readily implemented in current software capable of analysis and design for dynamic systems. Example results based upon synthesizing an augmentation control law for an acceleration command system in a compensatory tracking task using the ECCS are compared with a similar synthesis performed by using the original CCS methodology. The ECCS is shown to provide augmentation control laws that yield more favorable, predicted closed-loop flying qualities and tracking performance than those synthesized using the original CCS methodology.

  7. Cooperativity in beryllium bonds.

    PubMed

    Alkorta, Ibon; Elguero, José; Yáñez, Manuel; Mó, Otilia

    2014-03-07

    A theoretical study of the beryllium bonded clusters of the (iminomethyl)beryllium hydride and (iminomethyl)beryllium fluoride [HC(BeX)=NH, X = H, F] molecules has been carried out at the B3LYP/6-311++G(3df,2p) level of theory. Linear and cyclic clusters have been characterized up to the decamer. The geometric, energetic, electronic and NMR properties of the clusters clearly indicate positive cooperativity. The evolution of the molecular properties, as the size of the cluster increases, is similar to those reported in polymers held together by hydrogen bonds.

  8. The Potential to Machine Superconductors with Electrochemical Machining

    NASA Astrophysics Data System (ADS)

    Leese, Rebecca J.; Ivanov, Atanas; Babu-Nadendla, Hari

    2016-01-01

    Superconductors (SCs), such as gadolinium barium copper oxide, are brittle ceramics which are very difficult to machine conventionally due to the easy propagation of cracks. The cracks formed during conventional machining destroy the superconductive properties of the material. As a result a new method to machine ceramic SCs is needed. In this paper, polarization experiments were conducted in various nonaqueous salt electrolytes to determine whether electrochemical machining (ECM) is a suitable method for machining gadolinium barium copper oxide with silver inclusions (GdBCO-Ag) for the first time. Sodium chloride in formic acid proved to be the best electrolyte for this application with higher dissolution rates and achieving a better surface finish. It was noted that GdBCO-Ag dissolved at higher rates in NaCl in formic acid than in other salt-solvent systems.

  9. Machine performance assessment and enhancement for a hexapod machine

    SciTech Connect

    Mou, J.I.; King, C.

    1998-03-19

    The focus of this study is to develop a sensor fused process modeling and control methodology to model, assess, and then enhance the performance of a hexapod machine for precision product realization. Deterministic modeling technique was used to derive models for machine performance assessment and enhancement. Sensor fusion methodology was adopted to identify the parameters of the derived models. Empirical models and computational algorithms were also derived and implemented to model, assess, and then enhance the machine performance. The developed sensor fusion algorithms can be implemented on a PC-based open architecture controller to receive information from various sensors, assess the status of the process, determine the proper action, and deliver the command to actuators for task execution. This will enhance a hexapod machine`s capability to produce workpieces within the imposed dimensional tolerances.

  10. Machining of uranium and uranium alloys

    SciTech Connect

    Morris, T.O.

    1981-12-14

    Uranium and uranium alloys can be readily machined by conventional methods in the standard machine shop when proper safety and operating techniques are used. Material properties that affect machining processes and recommended machining parameters are discussed. Safety procedures and precautions necessary in machining uranium and uranium alloys are also covered. 30 figures.

  11. The paradox of cooperation benefits.

    PubMed

    Németh, A; Takács, K

    2010-05-21

    It seems obvious that as the benefits of cooperation increase, the share of cooperators in the population should also increase. It is well known that positive assortment between cooperative types, for instance in spatially structured populations, provide better conditions for the evolution of cooperation than complete mixing. This study demonstrates that, assuming positive assortment, under most conditions higher cooperation benefits also increase the share of cooperators. On the other hand, under a specified range of payoff values, when at least two payoff parameters are modified, the reverse is true. The conditions for this paradox are determined for two-person social dilemmas: the Prisoner's Dilemma, the Hawks and Doves game, and the Stag Hunt game, assuming global selection and positive assortment.

  12. Profile machining apparatus

    SciTech Connect

    Fisher, A. J.

    1985-02-26

    The disclosure relates to a profile forming apparatus and in particular a cam grinding machine in which a cam to be ground is mounted for rotation about the axis of the cam shaft in a work-table and a drive motor rotates the cam about its axis at a speed controlled by a predetermined programme. The work-table is mounted for rocking movement about an axis parallel to the cam shaft axis to move towards and away from the rotating grinding wheel which grinds cam surfaces spaced apart along the camshaft. The work-table is driven positively about its axis by a reversible drive motor in accordance with a further programme to rock the camshaft towards and away from the axis of the grinding wheel as the camshaft rotates and thereby determine the shape and dimensions of the profile to which the cam is ground.

  13. Quantum adiabatic machine learning

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen L.; Lidar, Daniel A.

    2013-05-01

    We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. This approach consists of two quantum phases, with some amount of classical preprocessing to set up the quantum problems. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. All quantum processing is strictly limited to two-qubit interactions so as to ensure physical feasibility. We apply and illustrate this approach in detail to the problem of software verification and validation, with a specific example of the learning phase applied to a problem of interest in flight control systems. Beyond this example, the algorithm can be used to attack a broad class of anomaly detection problems.

  14. An Experimental LISP Machine

    NASA Astrophysics Data System (ADS)

    Lun, Wang

    1987-04-01

    This paper presents a multi-microprocessor LISP machine whose goal is to exploit the inherent parallelism in the LISP programs fully. The base architecture is a MIMD architecture based on a hybrid model for combinating data driven, demand driven and VoN Neumann process schemes. The basic evaluation strategy is data driven. Lazy evaluation mechanism is introduced to avoid unnecessary and unsafe computations. An experimental system with the four processor elements has been built in HIT, China. The system consists of a Z80 microcomputer and three TP8O1s interconnected through three buses. Each processor evaluates a part of programs asynchronously. The shared memory is divided into two parts: list cell area and enviroment area, each of which has the indepen-dent common bus to avoid the bus bottleneck.

  15. Extremal quantum cloning machines

    SciTech Connect

    Chiribella, G.; D'Ariano, G. M.; Perinotti, P.; Cerf, N.J.

    2005-10-15

    We investigate the problem of cloning a set of states that is invariant under the action of an irreducible group representation. We then characterize the cloners that are extremal in the convex set of group covariant cloning machines, among which one can restrict the search for optimal cloners. For a set of states that is invariant under the discrete Weyl-Heisenberg group, we show that all extremal cloners can be unitarily realized using the so-called double-Bell states, whence providing a general proof of the popular ansatz used in the literature for finding optimal cloners in a variety of settings. Our result can also be generalized to continuous-variable optimal cloning in infinite dimensions, where the covariance group is the customary Weyl-Heisenberg group of displacement000.

  16. MEMS electrostatic influence machines

    NASA Astrophysics Data System (ADS)

    Phu Le, Cuong; Halvorsen, Einar

    2016-11-01

    This paper analyses the possibility of MEMS electrostatic influence machines using electromechanical switches like the historical predecessors did two centuries ago. We find that a generator design relying entirely on standard silicon-on-insulator(SOI) micromachining is conceivable and analyze its performance by simulations. The concept appears preferable over comparable diode circuits due to its higher maximum energy, faster charging and low precharging voltage. A full electromechanical lumped-model including parasitic capacitances of the switches is built to capture the dynamic of the generator. Simulation results show that the output voltage can be exponentially bootstrapped from a very low precharging voltage so that otherwise inadequately small voltage differences or charge imbalances can be made useful.

  17. Mir Cooperative Solar Array

    NASA Technical Reports Server (NTRS)

    Skor, Mike; Hoffman, Dave J.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA), produced jointly by the United States and Russia, was deployed on the Mir Russian space station on May 25, 1996. The MCSA is a photovoltaic electrical power system that can generate up to 6 kW. The power from the MCSA is needed to extend Mir's lifetime and to support experiments conducted there by visiting U.S. astronauts. The MCSA was brought to Mir via the Space Shuttle Atlantis on the STS-74 mission, launched November 12, 1995. This cooperative venture combined the best technology of both countries: the United States provided high-efficiency, lightweight photovoltaic panel modules, whereas Russia provided the array structure and deployment mechanism. Technology developed in the Space Station Freedom Program, and now being used in the International Space Station, was used to develop MCSA's photovoltaic panel. Performance data obtained from MCSA operation on Mir will help engineers better understand the performance of the photovoltaic panel modules in orbit. This information will be used to more accurately predict the performance of the International Space Station solar arrays. Managed by the NASA Lewis Research Center for NASA's International Space Station Program Office in Houston, Texas, the MCSA Project was completed on time and under budget despite a very aggressive schedule.

  18. Financial problems and cooperation

    SciTech Connect

    Izquierdo, J.

    1994-12-31

    For a Bank, an usual way to attract new clients is by offering better interest rates depending on the amount of money that the client deposits in an account: {open_quotes}The more money you have the higher interest rate you get{close_quotes}. For a company is also a common practice to offer their clients discounts connected with the number of units of the product they order: {open_quotes}The more you order, the lower price per unit you pay{close_quotes}. From these situations arises the possibility to take profit if the clients cooperate and join their money or their orders. Hence, we define a new class of cooperative games called Financial Games. We study basic properties and necessary conditions for a game to belong to this class of games and we define the concept of duality for Financial games. The core is always non-empty and, moreover, Financial games are always totally balanced. We look at some special amputations lying in the Core and we study the reduced game on the j{sup th} player at {rvec x} where x{sub j} = b{sub j} = v(N) {minus} v(N {minus} j).

  19. Regional technical cooperation.

    PubMed

    Sullivan, P H

    1997-01-01

    The AIDS epidemic threatens economic development in Asia because Asia offers fertile conditions for unchecked transmission and because the epidemic has the most impact on young adults who make up a large sector of the work force. Prevention is still possible, however, and should be viewed as an investment in the future. Effective prevention strategies will have regional as well as domestic components and will recognize the hierarchy of interventions and spread the burden among the public sector, nongovernmental organizations (NGOs), and the private sector in each country. The public sector should 1) ensure that markets function well and do not discriminate against infected individuals; 2) provide a supportive macroeconomic framework of fiscal, trade, and credit policies; and 3) provide public and quasipublic goods, such as information and training. The contribution of NGOs should are vital for reducing the suffering involved with HIV/AIDS. Private sector contributions can include care facilities, research and development, and funding. The private sector must realize that the threat to the stock of human capital posed by HIV/AIDS will reduce profits. The regional dimensions of the HIV/AIDS epidemic relate 1) to factors that contribute to transmission and 2) to approaches that can be taken to prevent transmission and curb its impact. The Greater Mekong Subregion Work Program on HIV/AIDS is a good example of a cooperative regional effort to prevent and control HIV/AIDS. The epidemic requires cooperation among sectors and among countries.

  20. Optical Circuitry Cooperative

    NASA Astrophysics Data System (ADS)

    Gibbs, H. M.; Gibson, U.; Peyghambarian, N.; Sarid, D.; Stegeman, G.

    1985-01-01

    An Optical Circuitry Cooperative (OCC) has been formed as an NSF cooperative research center in which six or more companies contribute financial support; NSF provides support which declines to zero in five years. Companies benefit from a center by early access to research results, leverage for their research dollars, participation in research selection, and improved relations with faculty and students. The university receives support for a major research program that increases its research capability, provides reasonably stable funding, and opens more opportunities for graduate students. The potential of optical circuitry has been discussed for many years, but the excitement is growing rapidly on the strength of the success of optical fibers for optical transmission, the generation of subpicosecond opitcal pulses, and the development of promising optical logic elements, such as optical bistable devices. And yet, much research remains to be done to discover the best nonlinear optical materials and fabrication techniques. OCC will perform research to provide a data base to allow the development of optical circuitry devices. The areas encompassed by OCC include all-optical logic, picosecond decision-making, guided-wave preprocessors, opti-cal interconnects within computers (both fiber and whole-array imaging), optical storage, and optical computer architecture and devices.

  1. Anaesthesia Machine: Checklist, Hazards, Scavenging

    PubMed Central

    Goneppanavar, Umesh; Prabhu, Manjunath

    2013-01-01

    From a simple pneumatic device of the early 20th century, the anaesthesia machine has evolved to incorporate various mechanical, electrical and electronic components to be more appropriately called anaesthesia workstation. Modern machines have overcome many drawbacks associated with the older machines. However, addition of several mechanical, electronic and electric components has contributed to recurrence of some of the older problems such as leak or obstruction attributable to newer gadgets and development of newer problems. No single checklist can satisfactorily test the integrity and safety of all existing anaesthesia machines due to their complex nature as well as variations in design among manufacturers. Human factors have contributed to greater complications than machine faults. Therefore, better understanding of the basics of anaesthesia machine and checking each component of the machine for proper functioning prior to use is essential to minimise these hazards. Clear documentation of regular and appropriate servicing of the anaesthesia machine, its components and their satisfactory functioning following servicing and repair is also equally important. Trace anaesthetic gases polluting the theatre atmosphere can have several adverse effects on the health of theatre personnel. Therefore, safe disposal of these gases away from the workplace with efficiently functioning scavenging system is necessary. Other ways of minimising atmospheric pollution such as gas delivery equipment with negligible leaks, low flow anaesthesia, minimal leak around the airway equipment (facemask, tracheal tube, laryngeal mask airway, etc.) more than 15 air changes/hour and total intravenous anaesthesia should also be considered. PMID:24249887

  2. Self-Adjusting Teaching Machines.

    ERIC Educational Resources Information Center

    Dovgyallo, A. M.

    A study was made on the synthesis of teaching machine elements to ensure the stabilization of the chi indicator of the teaching process of each student. At first, a procedure was developed for calculating the chi indicator for the case when the teaching machine predicts the magnitude of this indicator based on probabilities derived from an…

  3. Anaesthesia machine: checklist, hazards, scavenging.

    PubMed

    Goneppanavar, Umesh; Prabhu, Manjunath

    2013-09-01

    From a simple pneumatic device of the early 20(th) century, the anaesthesia machine has evolved to incorporate various mechanical, electrical and electronic components to be more appropriately called anaesthesia workstation. Modern machines have overcome many drawbacks associated with the older machines. However, addition of several mechanical, electronic and electric components has contributed to recurrence of some of the older problems such as leak or obstruction attributable to newer gadgets and development of newer problems. No single checklist can satisfactorily test the integrity and safety of all existing anaesthesia machines due to their complex nature as well as variations in design among manufacturers. Human factors have contributed to greater complications than machine faults. Therefore, better understanding of the basics of anaesthesia machine and checking each component of the machine for proper functioning prior to use is essential to minimise these hazards. Clear documentation of regular and appropriate servicing of the anaesthesia machine, its components and their satisfactory functioning following servicing and repair is also equally important. Trace anaesthetic gases polluting the theatre atmosphere can have several adverse effects on the health of theatre personnel. Therefore, safe disposal of these gases away from the workplace with efficiently functioning scavenging system is necessary. Other ways of minimising atmospheric pollution such as gas delivery equipment with negligible leaks, low flow anaesthesia, minimal leak around the airway equipment (facemask, tracheal tube, laryngeal mask airway, etc.) more than 15 air changes/hour and total intravenous anaesthesia should also be considered.

  4. Two color machining of composites

    SciTech Connect

    Maher, W.

    1996-12-31

    Quality cutting and drilling of 9 composite materials is possible using diode-pumped neodymium lasers. Machining at 1.06 {mu}m is improved by optimizing the pulse format of the diode-pumped neodymium lasers of the Precision Laser Machining (PLM) Consortium. Further improvements are obtained with the PLM lasers operating at 0.53 {mu}m.

  5. The Blindstitch Machine. Module 11.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on the purpose and use of the blindstitch machine, one in a series on clothing construction for industrial sewing machine operators designed for student self-study, contains three sections. Each section includes the following parts: an introduction, directions, an objective, learning activities, student information, student self-check,…

  6. Robotics: self-reproducing machines.

    PubMed

    Zykov, Victor; Mytilinaios, Efstathios; Adams, Bryant; Lipson, Hod

    2005-05-12

    Self-reproduction is central to biological life for long-term sustainability and evolutionary adaptation. Although these traits would also be desirable in many engineered systems, the principles of self-reproduction have not been exploited in machine design. Here we create simple machines that act as autonomous modular robots and are capable of physical self-reproduction using a set of cubes.

  7. Machine Trades Lab Management Guide.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Instructional Materials Lab.

    This manual was developed to guide machine trades instructors and vocational supervisors in sequencing laboratory instruction and controlling the flow of work for a 2-year machine trades training program. The first part of the guide provides information on program management (program description, safety concerns, academic issues, implementation…

  8. Machine Accounting. An Instructor's Guide.

    ERIC Educational Resources Information Center

    Gould, E. Noah, Ed.

    Designed to prepare students to operate the types of accounting machines used in many medium-sized businesses, this instructor's guide presents a full-year high school course in machine accounting covering 120 hours of instruction. An introduction for the instructor suggests how to adapt the guide to present a 60-hour module which would be…

  9. The Machine Scoring of Writing

    ERIC Educational Resources Information Center

    McCurry, Doug

    2010-01-01

    This article provides an introduction to the kind of computer software that is used to score student writing in some high stakes testing programs, and that is being promoted as a teaching and learning tool to schools. It sketches the state of play with machines for the scoring of writing, and describes how these machines work and what they do.…

  10. The Machine Intelligence Hex Project

    ERIC Educational Resources Information Center

    Chalup, Stephan K.; Mellor, Drew; Rosamond, Fran

    2005-01-01

    Hex is a challenging strategy board game for two players. To enhance students' progress in acquiring understanding and practical experience with complex machine intelligence and programming concepts we developed the Machine Intelligence Hex (MIHex) project. The associated undergraduate student assignment is about designing and implementing Hex…

  11. Man and Machines: Three Criticisms.

    ERIC Educational Resources Information Center

    Schneider, Edward F.

    As machines have become a more common part of daily life through the passage of time, the idea that the line separating man and machine is slowly fading has become more popular as well. This paper examines three critics of change through their most famous works. One of the most popular views of Mary Shelley's "Frankenstein" is that it is a…

  12. Cleaning of Free Machining Brass

    SciTech Connect

    Shen, T

    2005-12-29

    We have investigated four brightening treatments proposed by two cleaning vendors for cleaning free machining brass. The experimental results showed that none of the proposed brightening treatments passed the swipe test. Thus, we maintain the recommendation of not using the brightening process in the cleaning of free machining brass for NIF application.

  13. Contraction-Only Exercise Machine

    NASA Technical Reports Server (NTRS)

    Doerr, Donald F.; Maples, Arthur B.; Campbell, Craig M.

    1992-01-01

    Standard knee-extension machine modified so subject experiences force only when lifting leg against stack of weights. Exerts little force on leg while being lowered. Hydraulic cylinder and reservoir mounted on frame of exercise machine. Fluid flows freely from cylinder to reservoir during contraction (lifting) but in constricted fashion from reservoir to cylinder during extension (lowering).

  14. 77 FR 73676 - Notice Pursuant to the National Cooperative Research and Production Act of 1993; Cooperative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ... National Cooperative Research and Production Act of 1993; Cooperative Research Group on Mechanical... Research Institute--Cooperative Research Group on Mechanical Stratigraphy and Natural Deformation in...

  15. 77 FR 31040 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Cooperative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ... Cooperative Research and Production Act of 1993--Cooperative Research Group on Mechanical Stratigraphy and... Institute-- Cooperative Research Group on Mechanical Stratigraphy and Natural Deformation in Eagle...

  16. Mechanisms for similarity based cooperation

    NASA Astrophysics Data System (ADS)

    Traulsen, A.

    2008-06-01

    Cooperation based on similarity has been discussed since Richard Dawkins introduced the term “green beard” effect. In these models, individuals cooperate based on an aribtrary signal (or tag) such as the famous green beard. Here, two different models for such tag based cooperation are analysed. As neutral drift is important in both models, a finite population framework is applied. The first model, which we term “cooperative tags” considers a situation in which groups of cooperators are formed by some joint signal. Defectors adopting the signal and exploiting the group can lead to a breakdown of cooperation. In this case, conditions are derived under which the average abundance of the more cooperative strategy exceeds 50%. The second model considers a situation in which individuals start defecting towards others that are not similar to them. This situation is termed “defective tags”. It is shown that in this case, individuals using tags to cooperate exclusively with their own kind dominate over unconditional cooperators.

  17. International Grants and Cooperative Agreements

    EPA Pesticide Factsheets

    EPA provides grants and enters into cooperative agreements that support protecting human health and the environment while advancing U.S. national interests through international environmental collaboration.

  18. Social heuristics shape intuitive cooperation.

    PubMed

    Rand, David G; Peysakhovich, Alexander; Kraft-Todd, Gordon T; Newman, George E; Wurzbacher, Owen; Nowak, Martin A; Greene, Joshua D

    2014-04-22

    Cooperation is central to human societies. Yet relatively little is known about the cognitive underpinnings of cooperative decision making. Does cooperation require deliberate self-restraint? Or is spontaneous prosociality reined in by calculating self-interest? Here we present a theory of why (and for whom) intuition favors cooperation: cooperation is typically advantageous in everyday life, leading to the formation of generalized cooperative intuitions. Deliberation, by contrast, adjusts behaviour towards the optimum for a given situation. Thus, in one-shot anonymous interactions where selfishness is optimal, intuitive responses tend to be more cooperative than deliberative responses. We test this 'social heuristics hypothesis' by aggregating across every cooperation experiment using time pressure that we conducted over a 2-year period (15 studies and 6,910 decisions), as well as performing a novel time pressure experiment. Doing so demonstrates a positive average effect of time pressure on cooperation. We also find substantial variation in this effect, and show that this variation is partly explained by previous experience with one-shot lab experiments.

  19. Machinability of Stellite 6 hardfacing

    NASA Astrophysics Data System (ADS)

    Benghersallah, M.; Boulanouar, L.; Le Coz, G.; Devillez, A.; Dudzinski, D.

    2010-06-01

    This paper reports some experimental findings concerning the machinability at high cutting speed of nickel-base weld-deposited hardfacings for the manufacture of hot tooling. The forging work involves extreme impacts, forces, stresses and temperatures. Thus, mould dies must be extremely resistant. The aim of the project is to create a rapid prototyping process answering to forging conditions integrating a Stellite 6 hardfacing deposed PTA process. This study talks about the dry machining of the hardfacing, using a two tips machining tool and a high speed milling machine equipped by a power consumption recorder Wattpilote. The aim is to show the machinability of the hardfacing, measuring the power and the tip wear by optical microscope and white light interferometer, using different strategies and cutting conditions.

  20. Driving gear rack cleaner for a mining machine

    SciTech Connect

    Blazewicz, A.; Krutki, M.; Mandat, K.; Sedlaczek, J.; Wozniak, T.

    1980-12-23

    A driving gear for a mining machine is described that is comprised of a coil chain wound over a driving wheel and a jockey wheel and co-operating with a rack mounted along a conveyor. A sweep-off gear is pivotably mounted in front of a slide of the machine at a level above the rack. The sweep-off gear has a sweep-off surface which is inclined both with respect to the longitudinal axis of the rack and the horizontal surface of the rack teeth for sweepingoff bodies from the rack onto the conveyor. Nozzles are provided on the gear for washing the rack with a water stream under pressure at an angle with respect to the surface of the rack.