Sample records for machine learning model

  1. AZOrange - High performance open source machine learning for QSAR modeling in a graphical programming environment

    PubMed Central

    2011-01-01

    Background Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. Results This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. Conclusions AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the efficient development of highly accurate QSAR models fulfilling regulatory requirements. PMID:21798025

  2. AZOrange - High performance open source machine learning for QSAR modeling in a graphical programming environment.

    PubMed

    Stålring, Jonna C; Carlsson, Lars A; Almeida, Pedro; Boyer, Scott

    2011-07-28

    Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the efficient development of highly accurate QSAR models fulfilling regulatory requirements.

  3. Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling

    PubMed Central

    Cuperlovic-Culf, Miroslava

    2018-01-01

    Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies. PMID:29324649

  4. Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling.

    PubMed

    Cuperlovic-Culf, Miroslava

    2018-01-11

    Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies.

  5. MLBCD: a machine learning tool for big clinical data.

    PubMed

    Luo, Gang

    2015-01-01

    Predictive modeling is fundamental for extracting value from large clinical data sets, or "big clinical data," advancing clinical research, and improving healthcare. Machine learning is a powerful approach to predictive modeling. Two factors make machine learning challenging for healthcare researchers. First, before training a machine learning model, the values of one or more model parameters called hyper-parameters must typically be specified. Due to their inexperience with machine learning, it is hard for healthcare researchers to choose an appropriate algorithm and hyper-parameter values. Second, many clinical data are stored in a special format. These data must be iteratively transformed into the relational table format before conducting predictive modeling. This transformation is time-consuming and requires computing expertise. This paper presents our vision for and design of MLBCD (Machine Learning for Big Clinical Data), a new software system aiming to address these challenges and facilitate building machine learning predictive models using big clinical data. The paper describes MLBCD's design in detail. By making machine learning accessible to healthcare researchers, MLBCD will open the use of big clinical data and increase the ability to foster biomedical discovery and improve care.

  6. On the Conditioning of Machine-Learning-Assisted Turbulence Modeling

    NASA Astrophysics Data System (ADS)

    Wu, Jinlong; Sun, Rui; Wang, Qiqi; Xiao, Heng

    2017-11-01

    Recently, several researchers have demonstrated that machine learning techniques can be used to improve the RANS modeled Reynolds stress by training on available database of high fidelity simulations. However, obtaining improved mean velocity field remains an unsolved challenge, restricting the predictive capability of current machine-learning-assisted turbulence modeling approaches. In this work we define a condition number to evaluate the model conditioning of data-driven turbulence modeling approaches, and propose a stability-oriented machine learning framework to model Reynolds stress. Two canonical flows, the flow in a square duct and the flow over periodic hills, are investigated to demonstrate the predictive capability of the proposed framework. The satisfactory prediction performance of mean velocity field for both flows demonstrates the predictive capability of the proposed framework for machine-learning-assisted turbulence modeling. With showing the capability of improving the prediction of mean flow field, the proposed stability-oriented machine learning framework bridges the gap between the existing machine-learning-assisted turbulence modeling approaches and the demand of predictive capability of turbulence models in real applications.

  7. Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View

    PubMed Central

    2016-01-01

    Background As more and more researchers are turning to big data for new opportunities of biomedical discoveries, machine learning models, as the backbone of big data analysis, are mentioned more often in biomedical journals. However, owing to the inherent complexity of machine learning methods, they are prone to misuse. Because of the flexibility in specifying machine learning models, the results are often insufficiently reported in research articles, hindering reliable assessment of model validity and consistent interpretation of model outputs. Objective To attain a set of guidelines on the use of machine learning predictive models within clinical settings to make sure the models are correctly applied and sufficiently reported so that true discoveries can be distinguished from random coincidence. Methods A multidisciplinary panel of machine learning experts, clinicians, and traditional statisticians were interviewed, using an iterative process in accordance with the Delphi method. Results The process produced a set of guidelines that consists of (1) a list of reporting items to be included in a research article and (2) a set of practical sequential steps for developing predictive models. Conclusions A set of guidelines was generated to enable correct application of machine learning models and consistent reporting of model specifications and results in biomedical research. We believe that such guidelines will accelerate the adoption of big data analysis, particularly with machine learning methods, in the biomedical research community. PMID:27986644

  8. The Efficacy of Machine Learning Programs for Navy Manpower Analysis

    DTIC Science & Technology

    1993-03-01

    This thesis investigated the efficacy of two machine learning programs for Navy manpower analysis. Two machine learning programs, AIM and IXL, were...to generate models from the two commercial machine learning programs. Using a held out sub-set of the data the capabilities of the three models were...partial effects. The author recommended further investigation of AIM’s capabilities, and testing in an operational environment.... Machine learning , AIM, IXL.

  9. Automation of energy demand forecasting

    NASA Astrophysics Data System (ADS)

    Siddique, Sanzad

    Automation of energy demand forecasting saves time and effort by searching automatically for an appropriate model in a candidate model space without manual intervention. This thesis introduces a search-based approach that improves the performance of the model searching process for econometrics models. Further improvements in the accuracy of the energy demand forecasting are achieved by integrating nonlinear transformations within the models. This thesis introduces machine learning techniques that are capable of modeling such nonlinearity. Algorithms for learning domain knowledge from time series data using the machine learning methods are also presented. The novel search based approach and the machine learning models are tested with synthetic data as well as with natural gas and electricity demand signals. Experimental results show that the model searching technique is capable of finding an appropriate forecasting model. Further experimental results demonstrate an improved forecasting accuracy achieved by using the novel machine learning techniques introduced in this thesis. This thesis presents an analysis of how the machine learning techniques learn domain knowledge. The learned domain knowledge is used to improve the forecast accuracy.

  10. A machine learning model with human cognitive biases capable of learning from small and biased datasets.

    PubMed

    Taniguchi, Hidetaka; Sato, Hiroshi; Shirakawa, Tomohiro

    2018-05-09

    Human learners can generalize a new concept from a small number of samples. In contrast, conventional machine learning methods require large amounts of data to address the same types of problems. Humans have cognitive biases that promote fast learning. Here, we developed a method to reduce the gap between human beings and machines in this type of inference by utilizing cognitive biases. We implemented a human cognitive model into machine learning algorithms and compared their performance with the currently most popular methods, naïve Bayes, support vector machine, neural networks, logistic regression and random forests. We focused on the task of spam classification, which has been studied for a long time in the field of machine learning and often requires a large amount of data to obtain high accuracy. Our models achieved superior performance with small and biased samples in comparison with other representative machine learning methods.

  11. Learning About Climate and Atmospheric Models Through Machine Learning

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.

    2017-12-01

    From the analysis of ensemble variability to improving simulation performance, machine learning algorithms can play a powerful role in understanding the behavior of atmospheric and climate models. To learn about model behavior, we create training and testing data sets through ensemble techniques that sample different model configurations and values of input parameters, and then use supervised machine learning to map the relationships between the inputs and outputs. Following this procedure, we have used support vector machines, random forests, gradient boosting and other methods to investigate a variety of atmospheric and climate model phenomena. We have used machine learning to predict simulation crashes, estimate the probability density function of climate sensitivity, optimize simulations of the Madden Julian oscillation, assess the impacts of weather and emissions uncertainty on atmospheric dispersion, and quantify the effects of model resolution changes on precipitation. This presentation highlights recent examples of our applications of machine learning to improve the understanding of climate and atmospheric models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors.

    PubMed

    Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei

    2017-09-21

    In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.

  13. Derivative Free Optimization of Complex Systems with the Use of Statistical Machine Learning Models

    DTIC Science & Technology

    2015-09-12

    AFRL-AFOSR-VA-TR-2015-0278 DERIVATIVE FREE OPTIMIZATION OF COMPLEX SYSTEMS WITH THE USE OF STATISTICAL MACHINE LEARNING MODELS Katya Scheinberg...COMPLEX SYSTEMS WITH THE USE OF STATISTICAL MACHINE LEARNING MODELS 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-11-1-0239 5c.  PROGRAM ELEMENT...developed, which has been the focus of our research. 15. SUBJECT TERMS optimization, Derivative-Free Optimization, Statistical Machine Learning 16. SECURITY

  14. Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View.

    PubMed

    Luo, Wei; Phung, Dinh; Tran, Truyen; Gupta, Sunil; Rana, Santu; Karmakar, Chandan; Shilton, Alistair; Yearwood, John; Dimitrova, Nevenka; Ho, Tu Bao; Venkatesh, Svetha; Berk, Michael

    2016-12-16

    As more and more researchers are turning to big data for new opportunities of biomedical discoveries, machine learning models, as the backbone of big data analysis, are mentioned more often in biomedical journals. However, owing to the inherent complexity of machine learning methods, they are prone to misuse. Because of the flexibility in specifying machine learning models, the results are often insufficiently reported in research articles, hindering reliable assessment of model validity and consistent interpretation of model outputs. To attain a set of guidelines on the use of machine learning predictive models within clinical settings to make sure the models are correctly applied and sufficiently reported so that true discoveries can be distinguished from random coincidence. A multidisciplinary panel of machine learning experts, clinicians, and traditional statisticians were interviewed, using an iterative process in accordance with the Delphi method. The process produced a set of guidelines that consists of (1) a list of reporting items to be included in a research article and (2) a set of practical sequential steps for developing predictive models. A set of guidelines was generated to enable correct application of machine learning models and consistent reporting of model specifications and results in biomedical research. We believe that such guidelines will accelerate the adoption of big data analysis, particularly with machine learning methods, in the biomedical research community. ©Wei Luo, Dinh Phung, Truyen Tran, Sunil Gupta, Santu Rana, Chandan Karmakar, Alistair Shilton, John Yearwood, Nevenka Dimitrova, Tu Bao Ho, Svetha Venkatesh, Michael Berk. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 16.12.2016.

  15. Next-Generation Machine Learning for Biological Networks.

    PubMed

    Camacho, Diogo M; Collins, Katherine M; Powers, Rani K; Costello, James C; Collins, James J

    2018-06-14

    Machine learning, a collection of data-analytical techniques aimed at building predictive models from multi-dimensional datasets, is becoming integral to modern biological research. By enabling one to generate models that learn from large datasets and make predictions on likely outcomes, machine learning can be used to study complex cellular systems such as biological networks. Here, we provide a primer on machine learning for life scientists, including an introduction to deep learning. We discuss opportunities and challenges at the intersection of machine learning and network biology, which could impact disease biology, drug discovery, microbiome research, and synthetic biology. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Model-based machine learning.

    PubMed

    Bishop, Christopher M

    2013-02-13

    Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation for model-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. We also describe the concept of probabilistic programming as a powerful software environment for model-based machine learning, and we discuss a specific probabilistic programming language called Infer.NET, which has been widely used in practical applications.

  17. Model-based machine learning

    PubMed Central

    Bishop, Christopher M.

    2013-01-01

    Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation for model-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. We also describe the concept of probabilistic programming as a powerful software environment for model-based machine learning, and we discuss a specific probabilistic programming language called Infer.NET, which has been widely used in practical applications. PMID:23277612

  18. Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikkagoudar, Satish; Chatterjee, Samrat; Thomas, Dennis G.

    The absence of a robust and unified theory of cyber dynamics presents challenges and opportunities for using machine learning based data-driven approaches to further the understanding of the behavior of such complex systems. Analysts can also use machine learning approaches to gain operational insights. In order to be operationally beneficial, cybersecurity machine learning based models need to have the ability to: (1) represent a real-world system, (2) infer system properties, and (3) learn and adapt based on expert knowledge and observations. Probabilistic models and Probabilistic graphical models provide these necessary properties and are further explored in this chapter. Bayesian Networksmore » and Hidden Markov Models are introduced as an example of a widely used data driven classification/modeling strategy.« less

  19. Probabilistic machine learning and artificial intelligence.

    PubMed

    Ghahramani, Zoubin

    2015-05-28

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  20. Probabilistic machine learning and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Ghahramani, Zoubin

    2015-05-01

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  1. A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors

    PubMed Central

    Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei

    2017-01-01

    In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors. PMID:28934163

  2. A Comparison of a Machine Learning Model with EuroSCORE II in Predicting Mortality after Elective Cardiac Surgery: A Decision Curve Analysis.

    PubMed

    Allyn, Jérôme; Allou, Nicolas; Augustin, Pascal; Philip, Ivan; Martinet, Olivier; Belghiti, Myriem; Provenchere, Sophie; Montravers, Philippe; Ferdynus, Cyril

    2017-01-01

    The benefits of cardiac surgery are sometimes difficult to predict and the decision to operate on a given individual is complex. Machine Learning and Decision Curve Analysis (DCA) are recent methods developed to create and evaluate prediction models. We conducted a retrospective cohort study using a prospective collected database from December 2005 to December 2012, from a cardiac surgical center at University Hospital. The different models of prediction of mortality in-hospital after elective cardiac surgery, including EuroSCORE II, a logistic regression model and a machine learning model, were compared by ROC and DCA. Of the 6,520 patients having elective cardiac surgery with cardiopulmonary bypass, 6.3% died. Mean age was 63.4 years old (standard deviation 14.4), and mean EuroSCORE II was 3.7 (4.8) %. The area under ROC curve (IC95%) for the machine learning model (0.795 (0.755-0.834)) was significantly higher than EuroSCORE II or the logistic regression model (respectively, 0.737 (0.691-0.783) and 0.742 (0.698-0.785), p < 0.0001). Decision Curve Analysis showed that the machine learning model, in this monocentric study, has a greater benefit whatever the probability threshold. According to ROC and DCA, machine learning model is more accurate in predicting mortality after elective cardiac surgery than EuroSCORE II. These results confirm the use of machine learning methods in the field of medical prediction.

  3. A comparison of machine learning and Bayesian modelling for molecular serotyping.

    PubMed

    Newton, Richard; Wernisch, Lorenz

    2017-08-11

    Streptococcus pneumoniae is a human pathogen that is a major cause of infant mortality. Identifying the pneumococcal serotype is an important step in monitoring the impact of vaccines used to protect against disease. Genomic microarrays provide an effective method for molecular serotyping. Previously we developed an empirical Bayesian model for the classification of serotypes from a molecular serotyping array. With only few samples available, a model driven approach was the only option. In the meanwhile, several thousand samples have been made available to us, providing an opportunity to investigate serotype classification by machine learning methods, which could complement the Bayesian model. We compare the performance of the original Bayesian model with two machine learning algorithms: Gradient Boosting Machines and Random Forests. We present our results as an example of a generic strategy whereby a preliminary probabilistic model is complemented or replaced by a machine learning classifier once enough data are available. Despite the availability of thousands of serotyping arrays, a problem encountered when applying machine learning methods is the lack of training data containing mixtures of serotypes; due to the large number of possible combinations. Most of the available training data comprises samples with only a single serotype. To overcome the lack of training data we implemented an iterative analysis, creating artificial training data of serotype mixtures by combining raw data from single serotype arrays. With the enhanced training set the machine learning algorithms out perform the original Bayesian model. However, for serotypes currently lacking sufficient training data the best performing implementation was a combination of the results of the Bayesian Model and the Gradient Boosting Machine. As well as being an effective method for classifying biological data, machine learning can also be used as an efficient method for revealing subtle biological insights, which we illustrate with an example.

  4. Generative Modeling for Machine Learning on the D-Wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thulasidasan, Sunil

    These are slides on Generative Modeling for Machine Learning on the D-Wave. The following topics are detailed: generative models; Boltzmann machines: a generative model; restricted Boltzmann machines; learning parameters: RBM training; practical ways to train RBM; D-Wave as a Boltzmann sampler; mapping RBM onto the D-Wave; Chimera restricted RBM; mapping binary RBM to Ising model; experiments; data; D-Wave effective temperature, parameters noise, etc.; experiments: contrastive divergence (CD) 1 step; after 50 steps of CD; after 100 steps of CD; D-Wave (experiments 1, 2, 3); D-Wave observations.

  5. Progressive sampling-based Bayesian optimization for efficient and automatic machine learning model selection.

    PubMed

    Zeng, Xueqiang; Luo, Gang

    2017-12-01

    Machine learning is broadly used for clinical data analysis. Before training a model, a machine learning algorithm must be selected. Also, the values of one or more model parameters termed hyper-parameters must be set. Selecting algorithms and hyper-parameter values requires advanced machine learning knowledge and many labor-intensive manual iterations. To lower the bar to machine learning, miscellaneous automatic selection methods for algorithms and/or hyper-parameter values have been proposed. Existing automatic selection methods are inefficient on large data sets. This poses a challenge for using machine learning in the clinical big data era. To address the challenge, this paper presents progressive sampling-based Bayesian optimization, an efficient and automatic selection method for both algorithms and hyper-parameter values. We report an implementation of the method. We show that compared to a state of the art automatic selection method, our method can significantly reduce search time, classification error rate, and standard deviation of error rate due to randomization. This is major progress towards enabling fast turnaround in identifying high-quality solutions required by many machine learning-based clinical data analysis tasks.

  6. A Critical Review for Developing Accurate and Dynamic Predictive Models Using Machine Learning Methods in Medicine and Health Care.

    PubMed

    Alanazi, Hamdan O; Abdullah, Abdul Hanan; Qureshi, Kashif Naseer

    2017-04-01

    Recently, Artificial Intelligence (AI) has been used widely in medicine and health care sector. In machine learning, the classification or prediction is a major field of AI. Today, the study of existing predictive models based on machine learning methods is extremely active. Doctors need accurate predictions for the outcomes of their patients' diseases. In addition, for accurate predictions, timing is another significant factor that influences treatment decisions. In this paper, existing predictive models in medicine and health care have critically reviewed. Furthermore, the most famous machine learning methods have explained, and the confusion between a statistical approach and machine learning has clarified. A review of related literature reveals that the predictions of existing predictive models differ even when the same dataset is used. Therefore, existing predictive models are essential, and current methods must be improved.

  7. Machine learning for medical images analysis.

    PubMed

    Criminisi, A

    2016-10-01

    This article discusses the application of machine learning for the analysis of medical images. Specifically: (i) We show how a special type of learning models can be thought of as automatically optimized, hierarchically-structured, rule-based algorithms, and (ii) We discuss how the issue of collecting large labelled datasets applies to both conventional algorithms as well as machine learning techniques. The size of the training database is a function of model complexity rather than a characteristic of machine learning methods. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  8. Machine learning in cardiovascular medicine: are we there yet?

    PubMed

    Shameer, Khader; Johnson, Kipp W; Glicksberg, Benjamin S; Dudley, Joel T; Sengupta, Partho P

    2018-01-19

    Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being explicitly programmed where to look. These include a family of operations encompassing several terms like machine learning, cognitive learning, deep learning and reinforcement learning-based methods that can be used to integrate and interpret complex biomedical and healthcare data in scenarios where traditional statistical methods may not be able to perform. In this review article, we discuss the basics of machine learning algorithms and what potential data sources exist; evaluate the need for machine learning; and examine the potential limitations and challenges of implementing machine in the context of cardiovascular medicine. The most promising avenues for AI in medicine are the development of automated risk prediction algorithms which can be used to guide clinical care; use of unsupervised learning techniques to more precisely phenotype complex disease; and the implementation of reinforcement learning algorithms to intelligently augment healthcare providers. The utility of a machine learning-based predictive model will depend on factors including data heterogeneity, data depth, data breadth, nature of modelling task, choice of machine learning and feature selection algorithms, and orthogonal evidence. A critical understanding of the strength and limitations of various methods and tasks amenable to machine learning is vital. By leveraging the growing corpus of big data in medicine, we detail pathways by which machine learning may facilitate optimal development of patient-specific models for improving diagnoses, intervention and outcome in cardiovascular medicine. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. A Comparison of a Machine Learning Model with EuroSCORE II in Predicting Mortality after Elective Cardiac Surgery: A Decision Curve Analysis

    PubMed Central

    Allyn, Jérôme; Allou, Nicolas; Augustin, Pascal; Philip, Ivan; Martinet, Olivier; Belghiti, Myriem; Provenchere, Sophie; Montravers, Philippe; Ferdynus, Cyril

    2017-01-01

    Background The benefits of cardiac surgery are sometimes difficult to predict and the decision to operate on a given individual is complex. Machine Learning and Decision Curve Analysis (DCA) are recent methods developed to create and evaluate prediction models. Methods and finding We conducted a retrospective cohort study using a prospective collected database from December 2005 to December 2012, from a cardiac surgical center at University Hospital. The different models of prediction of mortality in-hospital after elective cardiac surgery, including EuroSCORE II, a logistic regression model and a machine learning model, were compared by ROC and DCA. Of the 6,520 patients having elective cardiac surgery with cardiopulmonary bypass, 6.3% died. Mean age was 63.4 years old (standard deviation 14.4), and mean EuroSCORE II was 3.7 (4.8) %. The area under ROC curve (IC95%) for the machine learning model (0.795 (0.755–0.834)) was significantly higher than EuroSCORE II or the logistic regression model (respectively, 0.737 (0.691–0.783) and 0.742 (0.698–0.785), p < 0.0001). Decision Curve Analysis showed that the machine learning model, in this monocentric study, has a greater benefit whatever the probability threshold. Conclusions According to ROC and DCA, machine learning model is more accurate in predicting mortality after elective cardiac surgery than EuroSCORE II. These results confirm the use of machine learning methods in the field of medical prediction. PMID:28060903

  10. Machine learning modelling for predicting soil liquefaction susceptibility

    NASA Astrophysics Data System (ADS)

    Samui, P.; Sitharam, T. G.

    2011-01-01

    This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT) data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN) based on multi-layer perceptions (MLP) that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM) that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT [(N1)60] and cyclic stress ratio (CSR). Further, an attempt has been made to simplify the models, requiring only the two parameters [(N1)60 and peck ground acceleration (amax/g)], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.

  11. Using machine learning for sequence-level automated MRI protocol selection in neuroradiology.

    PubMed

    Brown, Andrew D; Marotta, Thomas R

    2018-05-01

    Incorrect imaging protocol selection can lead to important clinical findings being missed, contributing to both wasted health care resources and patient harm. We present a machine learning method for analyzing the unstructured text of clinical indications and patient demographics from magnetic resonance imaging (MRI) orders to automatically protocol MRI procedures at the sequence level. We compared 3 machine learning models - support vector machine, gradient boosting machine, and random forest - to a baseline model that predicted the most common protocol for all observations in our test set. The gradient boosting machine model significantly outperformed the baseline and demonstrated the best performance of the 3 models in terms of accuracy (95%), precision (86%), recall (80%), and Hamming loss (0.0487). This demonstrates the feasibility of automating sequence selection by applying machine learning to MRI orders. Automated sequence selection has important safety, quality, and financial implications and may facilitate improvements in the quality and safety of medical imaging service delivery.

  12. A Sustainable Model for Integrating Current Topics in Machine Learning Research into the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Georgiopoulos, M.; DeMara, R. F.; Gonzalez, A. J.; Wu, A. S.; Mollaghasemi, M.; Gelenbe, E.; Kysilka, M.; Secretan, J.; Sharma, C. A.; Alnsour, A. J.

    2009-01-01

    This paper presents an integrated research and teaching model that has resulted from an NSF-funded effort to introduce results of current Machine Learning research into the engineering and computer science curriculum at the University of Central Florida (UCF). While in-depth exposure to current topics in Machine Learning has traditionally occurred…

  13. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model

    NASA Astrophysics Data System (ADS)

    Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward

    2018-04-01

    A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.

  14. Machine Learning Algorithms Outperform Conventional Regression Models in Predicting Development of Hepatocellular Carcinoma

    PubMed Central

    Singal, Amit G.; Mukherjee, Ashin; Elmunzer, B. Joseph; Higgins, Peter DR; Lok, Anna S.; Zhu, Ji; Marrero, Jorge A; Waljee, Akbar K

    2015-01-01

    Background Predictive models for hepatocellular carcinoma (HCC) have been limited by modest accuracy and lack of validation. Machine learning algorithms offer a novel methodology, which may improve HCC risk prognostication among patients with cirrhosis. Our study's aim was to develop and compare predictive models for HCC development among cirrhotic patients, using conventional regression analysis and machine learning algorithms. Methods We enrolled 442 patients with Child A or B cirrhosis at the University of Michigan between January 2004 and September 2006 (UM cohort) and prospectively followed them until HCC development, liver transplantation, death, or study termination. Regression analysis and machine learning algorithms were used to construct predictive models for HCC development, which were tested on an independent validation cohort from the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial. Both models were also compared to the previously published HALT-C model. Discrimination was assessed using receiver operating characteristic curve analysis and diagnostic accuracy was assessed with net reclassification improvement and integrated discrimination improvement statistics. Results After a median follow-up of 3.5 years, 41 patients developed HCC. The UM regression model had a c-statistic of 0.61 (95%CI 0.56-0.67), whereas the machine learning algorithm had a c-statistic of 0.64 (95%CI 0.60–0.69) in the validation cohort. The machine learning algorithm had significantly better diagnostic accuracy as assessed by net reclassification improvement (p<0.001) and integrated discrimination improvement (p=0.04). The HALT-C model had a c-statistic of 0.60 (95%CI 0.50-0.70) in the validation cohort and was outperformed by the machine learning algorithm (p=0.047). Conclusion Machine learning algorithms improve the accuracy of risk stratifying patients with cirrhosis and can be used to accurately identify patients at high-risk for developing HCC. PMID:24169273

  15. Machine learning to predict the occurrence of bisphosphonate-related osteonecrosis of the jaw associated with dental extraction: A preliminary report.

    PubMed

    Kim, Dong Wook; Kim, Hwiyoung; Nam, Woong; Kim, Hyung Jun; Cha, In-Ho

    2018-04-23

    The aim of this study was to build and validate five types of machine learning models that can predict the occurrence of BRONJ associated with dental extraction in patients taking bisphosphonates for the management of osteoporosis. A retrospective review of the medical records was conducted to obtain cases and controls for the study. Total 125 patients consisting of 41 cases and 84 controls were selected for the study. Five machine learning prediction algorithms including multivariable logistic regression model, decision tree, support vector machine, artificial neural network, and random forest were implemented. The outputs of these models were compared with each other and also with conventional methods, such as serum CTX level. Area under the receiver operating characteristic (ROC) curve (AUC) was used to compare the results. The performance of machine learning models was significantly superior to conventional statistical methods and single predictors. The random forest model yielded the best performance (AUC = 0.973), followed by artificial neural network (AUC = 0.915), support vector machine (AUC = 0.882), logistic regression (AUC = 0.844), decision tree (AUC = 0.821), drug holiday alone (AUC = 0.810), and CTX level alone (AUC = 0.630). Machine learning methods showed superior performance in predicting BRONJ associated with dental extraction compared to conventional statistical methods using drug holiday and serum CTX level. Machine learning can thus be applied in a wide range of clinical studies. Copyright © 2017. Published by Elsevier Inc.

  16. Machine Learning, deep learning and optimization in computer vision

    NASA Astrophysics Data System (ADS)

    Canu, Stéphane

    2017-03-01

    As quoted in the Large Scale Computer Vision Systems NIPS workshop, computer vision is a mature field with a long tradition of research, but recent advances in machine learning, deep learning, representation learning and optimization have provided models with new capabilities to better understand visual content. The presentation will go through these new developments in machine learning covering basic motivations, ideas, models and optimization in deep learning for computer vision, identifying challenges and opportunities. It will focus on issues related with large scale learning that is: high dimensional features, large variety of visual classes, and large number of examples.

  17. Prediction of drug synergy in cancer using ensemble-based machine learning techniques

    NASA Astrophysics Data System (ADS)

    Singh, Harpreet; Rana, Prashant Singh; Singh, Urvinder

    2018-04-01

    Drug synergy prediction plays a significant role in the medical field for inhibiting specific cancer agents. It can be developed as a pre-processing tool for therapeutic successes. Examination of different drug-drug interaction can be done by drug synergy score. It needs efficient regression-based machine learning approaches to minimize the prediction errors. Numerous machine learning techniques such as neural networks, support vector machines, random forests, LASSO, Elastic Nets, etc., have been used in the past to realize requirement as mentioned above. However, these techniques individually do not provide significant accuracy in drug synergy score. Therefore, the primary objective of this paper is to design a neuro-fuzzy-based ensembling approach. To achieve this, nine well-known machine learning techniques have been implemented by considering the drug synergy data. Based on the accuracy of each model, four techniques with high accuracy are selected to develop ensemble-based machine learning model. These models are Random forest, Fuzzy Rules Using Genetic Cooperative-Competitive Learning method (GFS.GCCL), Adaptive-Network-Based Fuzzy Inference System (ANFIS) and Dynamic Evolving Neural-Fuzzy Inference System method (DENFIS). Ensembling is achieved by evaluating the biased weighted aggregation (i.e. adding more weights to the model with a higher prediction score) of predicted data by selected models. The proposed and existing machine learning techniques have been evaluated on drug synergy score data. The comparative analysis reveals that the proposed method outperforms others in terms of accuracy, root mean square error and coefficient of correlation.

  18. Relationships Between the External and Internal Training Load in Professional Soccer: What Can We Learn From Machine Learning?

    PubMed

    Jaspers, Arne; De Beéck, Tim Op; Brink, Michel S; Frencken, Wouter G P; Staes, Filip; Davis, Jesse J; Helsen, Werner F

    2018-05-01

    Machine learning may contribute to understanding the relationship between the external load and internal load in professional soccer. Therefore, the relationship between external load indicators (ELIs) and the rating of perceived exertion (RPE) was examined using machine learning techniques on a group and individual level. Training data were collected from 38 professional soccer players over 2 seasons. The external load was measured using global positioning system technology and accelerometry. The internal load was obtained using the RPE. Predictive models were constructed using 2 machine learning techniques, artificial neural networks and least absolute shrinkage and selection operator (LASSO) models, and 1 naive baseline method. The predictions were based on a large set of ELIs. Using each technique, 1 group model involving all players and 1 individual model for each player were constructed. These models' performance on predicting the reported RPE values for future training sessions was compared with the naive baseline's performance. Both the artificial neural network and LASSO models outperformed the baseline. In addition, the LASSO model made more accurate predictions for the RPE than did the artificial neural network model. Furthermore, decelerations were identified as important ELIs. Regardless of the applied machine learning technique, the group models resulted in equivalent or better predictions for the reported RPE values than the individual models. Machine learning techniques may have added value in predicting RPE for future sessions to optimize training design and evaluation. These techniques may also be used in conjunction with expert knowledge to select key ELIs for load monitoring.

  19. Diagnostic Machine Learning Models for Acute Abdominal Pain: Towards an e-Learning Tool for Medical Students.

    PubMed

    Khumrin, Piyapong; Ryan, Anna; Judd, Terry; Verspoor, Karin

    2017-01-01

    Computer-aided learning systems (e-learning systems) can help medical students gain more experience with diagnostic reasoning and decision making. Within this context, providing feedback that matches students' needs (i.e. personalised feedback) is both critical and challenging. In this paper, we describe the development of a machine learning model to support medical students' diagnostic decisions. Machine learning models were trained on 208 clinical cases presenting with abdominal pain, to predict five diagnoses. We assessed which of these models are likely to be most effective for use in an e-learning tool that allows students to interact with a virtual patient. The broader goal is to utilise these models to generate personalised feedback based on the specific patient information requested by students and their active diagnostic hypotheses.

  20. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach.

    PubMed

    Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong

    2017-06-19

    A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.

  1. Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges

    PubMed Central

    Goldstein, Benjamin A.; Navar, Ann Marie; Carter, Rickey E.

    2017-01-01

    Abstract Risk prediction plays an important role in clinical cardiology research. Traditionally, most risk models have been based on regression models. While useful and robust, these statistical methods are limited to using a small number of predictors which operate in the same way on everyone, and uniformly throughout their range. The purpose of this review is to illustrate the use of machine-learning methods for development of risk prediction models. Typically presented as black box approaches, most machine-learning methods are aimed at solving particular challenges that arise in data analysis that are not well addressed by typical regression approaches. To illustrate these challenges, as well as how different methods can address them, we consider trying to predicting mortality after diagnosis of acute myocardial infarction. We use data derived from our institution's electronic health record and abstract data on 13 regularly measured laboratory markers. We walk through different challenges that arise in modelling these data and then introduce different machine-learning approaches. Finally, we discuss general issues in the application of machine-learning methods including tuning parameters, loss functions, variable importance, and missing data. Overall, this review serves as an introduction for those working on risk modelling to approach the diffuse field of machine learning. PMID:27436868

  2. In vitro molecular machine learning algorithm via symmetric internal loops of DNA.

    PubMed

    Lee, Ji-Hoon; Lee, Seung Hwan; Baek, Christina; Chun, Hyosun; Ryu, Je-Hwan; Kim, Jin-Woo; Deaton, Russell; Zhang, Byoung-Tak

    2017-08-01

    Programmable biomolecules, such as DNA strands, deoxyribozymes, and restriction enzymes, have been used to solve computational problems, construct large-scale logic circuits, and program simple molecular games. Although studies have shown the potential of molecular computing, the capability of computational learning with DNA molecules, i.e., molecular machine learning, has yet to be experimentally verified. Here, we present a novel molecular learning in vitro model in which symmetric internal loops of double-stranded DNA are exploited to measure the differences between training instances, thus enabling the molecules to learn from small errors. The model was evaluated on a data set of twenty dialogue sentences obtained from the television shows Friends and Prison Break. The wet DNA-computing experiments confirmed that the molecular learning machine was able to generalize the dialogue patterns of each show and successfully identify the show from which the sentences originated. The molecular machine learning model described here opens the way for solving machine learning problems in computer science and biology using in vitro molecular computing with the data encoded in DNA molecules. Copyright © 2017. Published by Elsevier B.V.

  3. Predicting Market Impact Costs Using Nonparametric Machine Learning Models.

    PubMed

    Park, Saerom; Lee, Jaewook; Son, Youngdoo

    2016-01-01

    Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.

  4. Predicting Market Impact Costs Using Nonparametric Machine Learning Models

    PubMed Central

    Park, Saerom; Lee, Jaewook; Son, Youngdoo

    2016-01-01

    Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance. PMID:26926235

  5. Prostate Cancer Probability Prediction By Machine Learning Technique.

    PubMed

    Jović, Srđan; Miljković, Milica; Ivanović, Miljan; Šaranović, Milena; Arsić, Milena

    2017-11-26

    The main goal of the study was to explore possibility of prostate cancer prediction by machine learning techniques. In order to improve the survival probability of the prostate cancer patients it is essential to make suitable prediction models of the prostate cancer. If one make relevant prediction of the prostate cancer it is easy to create suitable treatment based on the prediction results. Machine learning techniques are the most common techniques for the creation of the predictive models. Therefore in this study several machine techniques were applied and compared. The obtained results were analyzed and discussed. It was concluded that the machine learning techniques could be used for the relevant prediction of prostate cancer.

  6. Automating Construction of Machine Learning Models With Clinical Big Data: Proposal Rationale and Methods

    PubMed Central

    Stone, Bryan L; Johnson, Michael D; Tarczy-Hornoch, Peter; Wilcox, Adam B; Mooney, Sean D; Sheng, Xiaoming; Haug, Peter J; Nkoy, Flory L

    2017-01-01

    Background To improve health outcomes and cut health care costs, we often need to conduct prediction/classification using large clinical datasets (aka, clinical big data), for example, to identify high-risk patients for preventive interventions. Machine learning has been proposed as a key technology for doing this. Machine learning has won most data science competitions and could support many clinical activities, yet only 15% of hospitals use it for even limited purposes. Despite familiarity with data, health care researchers often lack machine learning expertise to directly use clinical big data, creating a hurdle in realizing value from their data. Health care researchers can work with data scientists with deep machine learning knowledge, but it takes time and effort for both parties to communicate effectively. Facing a shortage in the United States of data scientists and hiring competition from companies with deep pockets, health care systems have difficulty recruiting data scientists. Building and generalizing a machine learning model often requires hundreds to thousands of manual iterations by data scientists to select the following: (1) hyper-parameter values and complex algorithms that greatly affect model accuracy and (2) operators and periods for temporally aggregating clinical attributes (eg, whether a patient’s weight kept rising in the past year). This process becomes infeasible with limited budgets. Objective This study’s goal is to enable health care researchers to directly use clinical big data, make machine learning feasible with limited budgets and data scientist resources, and realize value from data. Methods This study will allow us to achieve the following: (1) finish developing the new software, Automated Machine Learning (Auto-ML), to automate model selection for machine learning with clinical big data and validate Auto-ML on seven benchmark modeling problems of clinical importance; (2) apply Auto-ML and novel methodology to two new modeling problems crucial for care management allocation and pilot one model with care managers; and (3) perform simulations to estimate the impact of adopting Auto-ML on US patient outcomes. Results We are currently writing Auto-ML’s design document. We intend to finish our study by around the year 2022. Conclusions Auto-ML will generalize to various clinical prediction/classification problems. With minimal help from data scientists, health care researchers can use Auto-ML to quickly build high-quality models. This will boost wider use of machine learning in health care and improve patient outcomes. PMID:28851678

  7. Development of a drought forecasting model for the Asia-Pacific region using remote sensing and climate data: Focusing on Indonesia

    NASA Astrophysics Data System (ADS)

    Rhee, Jinyoung; Kim, Gayoung; Im, Jungho

    2017-04-01

    Three regions of Indonesia with different rainfall characteristics were chosen to develop drought forecast models based on machine learning. The 6-month Standardized Precipitation Index (SPI6) was selected as the target variable. The models' forecast skill was compared to the skill of long-range climate forecast models in terms of drought accuracy and regression mean absolute error (MAE). Indonesian droughts are known to be related to El Nino Southern Oscillation (ENSO) variability despite of regional differences as well as monsoon, local sea surface temperature (SST), other large-scale atmosphere-ocean interactions such as Indian Ocean Dipole (IOD) and Southern Pacific Convergence Zone (SPCZ), and local factors including topography and elevation. Machine learning models are thus to enhance drought forecast skill by combining local and remote SST and remote sensing information reflecting initial drought conditions to the long-range climate forecast model results. A total of 126 machine learning models were developed for the three regions of West Java (JB), West Sumatra (SB), and Gorontalo (GO) and six long-range climate forecast models of MSC_CanCM3, MSC_CanCM4, NCEP, NASA, PNU, POAMA as well as one climatology model based on remote sensing precipitation data, and 1 to 6-month lead times. When compared the results between the machine learning models and the long-range climate forecast models, West Java and Gorontalo regions showed similar characteristics in terms of drought accuracy. Drought accuracy of the long-range climate forecast models were generally higher than the machine learning models with short lead times but the opposite appeared for longer lead times. For West Sumatra, however, the machine learning models and the long-range climate forecast models showed similar drought accuracy. The machine learning models showed smaller regression errors for all three regions especially with longer lead times. Among the three regions, the machine learning models developed for Gorontalo showed the highest drought accuracy and the lowest regression error. West Java showed higher drought accuracy compared to West Sumatra, while West Sumatra showed lower regression error compared to West Java. The lower error in West Sumatra may be because of the smaller sample size used for training and evaluation for the region. Regional differences of forecast skill are determined by the effect of ENSO and the following forecast skill of the long-range climate forecast models. While shown somewhat high in West Sumatra, relative importance of remote sensing variables was mostly low in most cases. High importance of the variables based on long-range climate forecast models indicates that the forecast skill of the machine learning models are mostly determined by the forecast skill of the climate models.

  8. Language Acquisition and Machine Learning.

    DTIC Science & Technology

    1986-02-01

    machine learning and examine its implications for computational models of language acquisition. As a framework for understanding this research, the authors propose four component tasks involved in learning from experience-aggregation, clustering, characterization, and storage. They then consider four common problems studied by machine learning researchers-learning from examples, heuristics learning, conceptual clustering, and learning macro-operators-describing each in terms of our framework. After this, they turn to the problem of grammar

  9. Machine learning molecular dynamics for the simulation of infrared spectra.

    PubMed

    Gastegger, Michael; Behler, Jörg; Marquetand, Philipp

    2017-10-01

    Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness this power to predict highly accurate molecular infrared spectra with unprecedented computational efficiency. To account for vibrational anharmonic and dynamical effects - typically neglected by conventional quantum chemistry approaches - we base our machine learning strategy on ab initio molecular dynamics simulations. While these simulations are usually extremely time consuming even for small molecules, we overcome these limitations by leveraging the power of a variety of machine learning techniques, not only accelerating simulations by several orders of magnitude, but also greatly extending the size of systems that can be treated. To this end, we develop a molecular dipole moment model based on environment dependent neural network charges and combine it with the neural network potential approach of Behler and Parrinello. Contrary to the prevalent big data philosophy, we are able to obtain very accurate machine learning models for the prediction of infrared spectra based on only a few hundreds of electronic structure reference points. This is made possible through the use of molecular forces during neural network potential training and the introduction of a fully automated sampling scheme. We demonstrate the power of our machine learning approach by applying it to model the infrared spectra of a methanol molecule, n -alkanes containing up to 200 atoms and the protonated alanine tripeptide, which at the same time represents the first application of machine learning techniques to simulate the dynamics of a peptide. In all of these case studies we find an excellent agreement between the infrared spectra predicted via machine learning models and the respective theoretical and experimental spectra.

  10. Machine learning in updating predictive models of planning and scheduling transportation projects

    DOT National Transportation Integrated Search

    1997-01-01

    A method combining machine learning and regression analysis to automatically and intelligently update predictive models used in the Kansas Department of Transportations (KDOTs) internal management system is presented. The predictive models used...

  11. A strategy to apply machine learning to small datasets in materials science

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Ling, Chen

    2018-12-01

    There is growing interest in applying machine learning techniques in the research of materials science. However, although it is recognized that materials datasets are typically smaller and sometimes more diverse compared to other fields, the influence of availability of materials data on training machine learning models has not yet been studied, which prevents the possibility to establish accurate predictive rules using small materials datasets. Here we analyzed the fundamental interplay between the availability of materials data and the predictive capability of machine learning models. Instead of affecting the model precision directly, the effect of data size is mediated by the degree of freedom (DoF) of model, resulting in the phenomenon of association between precision and DoF. The appearance of precision-DoF association signals the issue of underfitting and is characterized by large bias of prediction, which consequently restricts the accurate prediction in unknown domains. We proposed to incorporate the crude estimation of property in the feature space to establish ML models using small sized materials data, which increases the accuracy of prediction without the cost of higher DoF. In three case studies of predicting the band gap of binary semiconductors, lattice thermal conductivity, and elastic properties of zeolites, the integration of crude estimation effectively boosted the predictive capability of machine learning models to state-of-art levels, demonstrating the generality of the proposed strategy to construct accurate machine learning models using small materials dataset.

  12. Machine learning approaches to the social determinants of health in the health and retirement study.

    PubMed

    Seligman, Benjamin; Tuljapurkar, Shripad; Rehkopf, David

    2018-04-01

    Social and economic factors are important predictors of health and of recognized importance for health systems. However, machine learning, used elsewhere in the biomedical literature, has not been extensively applied to study relationships between society and health. We investigate how machine learning may add to our understanding of social determinants of health using data from the Health and Retirement Study. A linear regression of age and gender, and a parsimonious theory-based regression additionally incorporating income, wealth, and education, were used to predict systolic blood pressure, body mass index, waist circumference, and telomere length. Prediction, fit, and interpretability were compared across four machine learning methods: linear regression, penalized regressions, random forests, and neural networks. All models had poor out-of-sample prediction. Most machine learning models performed similarly to the simpler models. However, neural networks greatly outperformed the three other methods. Neural networks also had good fit to the data ( R 2 between 0.4-0.6, versus <0.3 for all others). Across machine learning models, nine variables were frequently selected or highly weighted as predictors: dental visits, current smoking, self-rated health, serial-seven subtractions, probability of receiving an inheritance, probability of leaving an inheritance of at least $10,000, number of children ever born, African-American race, and gender. Some of the machine learning methods do not improve prediction or fit beyond simpler models, however, neural networks performed well. The predictors identified across models suggest underlying social factors that are important predictors of biological indicators of chronic disease, and that the non-linear and interactive relationships between variables fundamental to the neural network approach may be important to consider.

  13. A Hybrid Method for Opinion Finding Task (KUNLP at TREC 2008 Blog Track)

    DTIC Science & Technology

    2008-11-01

    retrieve relevant documents. For the Opinion Retrieval subtask, we propose a hybrid model of lexicon-based approach and machine learning approach for...estimating and ranking the opinionated documents. For the Polarized Opinion Retrieval subtask, we employ machine learning for predicting the polarity...and linear combination technique for ranking polar documents. The hybrid model which utilize both lexicon-based approach and machine learning approach

  14. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach

    PubMed Central

    Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong

    2017-01-01

    A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification. PMID:28629202

  15. Mortality risk prediction in burn injury: Comparison of logistic regression with machine learning approaches.

    PubMed

    Stylianou, Neophytos; Akbarov, Artur; Kontopantelis, Evangelos; Buchan, Iain; Dunn, Ken W

    2015-08-01

    Predicting mortality from burn injury has traditionally employed logistic regression models. Alternative machine learning methods have been introduced in some areas of clinical prediction as the necessary software and computational facilities have become accessible. Here we compare logistic regression and machine learning predictions of mortality from burn. An established logistic mortality model was compared to machine learning methods (artificial neural network, support vector machine, random forests and naïve Bayes) using a population-based (England & Wales) case-cohort registry. Predictive evaluation used: area under the receiver operating characteristic curve; sensitivity; specificity; positive predictive value and Youden's index. All methods had comparable discriminatory abilities, similar sensitivities, specificities and positive predictive values. Although some machine learning methods performed marginally better than logistic regression the differences were seldom statistically significant and clinically insubstantial. Random forests were marginally better for high positive predictive value and reasonable sensitivity. Neural networks yielded slightly better prediction overall. Logistic regression gives an optimal mix of performance and interpretability. The established logistic regression model of burn mortality performs well against more complex alternatives. Clinical prediction with a small set of strong, stable, independent predictors is unlikely to gain much from machine learning outside specialist research contexts. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  16. ML-o-Scope: A Diagnostic Visualization System for Deep Machine Learning Pipelines

    DTIC Science & Technology

    2014-05-16

    ML-o-scope: a diagnostic visualization system for deep machine learning pipelines Daniel Bruckner Electrical Engineering and Computer Sciences... machine learning pipelines 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...the system as a support for tuning large scale object-classification pipelines. 1 Introduction A new generation of pipelined machine learning models

  17. A data-driven multi-model methodology with deep feature selection for short-term wind forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Cong; Cui, Mingjian; Hodge, Bri-Mathias

    With the growing wind penetration into the power system worldwide, improving wind power forecasting accuracy is becoming increasingly important to ensure continued economic and reliable power system operations. In this paper, a data-driven multi-model wind forecasting methodology is developed with a two-layer ensemble machine learning technique. The first layer is composed of multiple machine learning models that generate individual forecasts. A deep feature selection framework is developed to determine the most suitable inputs to the first layer machine learning models. Then, a blending algorithm is applied in the second layer to create an ensemble of the forecasts produced by firstmore » layer models and generate both deterministic and probabilistic forecasts. This two-layer model seeks to utilize the statistically different characteristics of each machine learning algorithm. A number of machine learning algorithms are selected and compared in both layers. This developed multi-model wind forecasting methodology is compared to several benchmarks. The effectiveness of the proposed methodology is evaluated to provide 1-hour-ahead wind speed forecasting at seven locations of the Surface Radiation network. Numerical results show that comparing to the single-algorithm models, the developed multi-model framework with deep feature selection procedure has improved the forecasting accuracy by up to 30%.« less

  18. Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges.

    PubMed

    Goldstein, Benjamin A; Navar, Ann Marie; Carter, Rickey E

    2017-06-14

    Risk prediction plays an important role in clinical cardiology research. Traditionally, most risk models have been based on regression models. While useful and robust, these statistical methods are limited to using a small number of predictors which operate in the same way on everyone, and uniformly throughout their range. The purpose of this review is to illustrate the use of machine-learning methods for development of risk prediction models. Typically presented as black box approaches, most machine-learning methods are aimed at solving particular challenges that arise in data analysis that are not well addressed by typical regression approaches. To illustrate these challenges, as well as how different methods can address them, we consider trying to predicting mortality after diagnosis of acute myocardial infarction. We use data derived from our institution's electronic health record and abstract data on 13 regularly measured laboratory markers. We walk through different challenges that arise in modelling these data and then introduce different machine-learning approaches. Finally, we discuss general issues in the application of machine-learning methods including tuning parameters, loss functions, variable importance, and missing data. Overall, this review serves as an introduction for those working on risk modelling to approach the diffuse field of machine learning. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  19. Inverse Problems in Geodynamics Using Machine Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Shahnas, M. H.; Yuen, D. A.; Pysklywec, R. N.

    2018-01-01

    During the past few decades numerical studies have been widely employed to explore the style of circulation and mixing in the mantle of Earth and other planets. However, in geodynamical studies there are many properties from mineral physics, geochemistry, and petrology in these numerical models. Machine learning, as a computational statistic-related technique and a subfield of artificial intelligence, has rapidly emerged recently in many fields of sciences and engineering. We focus here on the application of supervised machine learning (SML) algorithms in predictions of mantle flow processes. Specifically, we emphasize on estimating mantle properties by employing machine learning techniques in solving an inverse problem. Using snapshots of numerical convection models as training samples, we enable machine learning models to determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at midmantle depths. Employing support vector machine algorithms, we show that SML techniques can successfully predict the magnitude of mantle density anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to more complex geodynamic problems in mantle dynamics by employing deep learning algorithms for putting constraints on properties such as viscosity, elastic parameters, and the nature of thermal and chemical anomalies.

  20. Contemporary machine learning: techniques for practitioners in the physical sciences

    NASA Astrophysics Data System (ADS)

    Spears, Brian

    2017-10-01

    Machine learning is the science of using computers to find relationships in data without explicitly knowing or programming those relationships in advance. Often without realizing it, we employ machine learning every day as we use our phones or drive our cars. Over the last few years, machine learning has found increasingly broad application in the physical sciences. This most often involves building a model relationship between a dependent, measurable output and an associated set of controllable, but complicated, independent inputs. The methods are applicable both to experimental observations and to databases of simulated output from large, detailed numerical simulations. In this tutorial, we will present an overview of current tools and techniques in machine learning - a jumping-off point for researchers interested in using machine learning to advance their work. We will discuss supervised learning techniques for modeling complicated functions, beginning with familiar regression schemes, then advancing to more sophisticated decision trees, modern neural networks, and deep learning methods. Next, we will cover unsupervised learning and techniques for reducing the dimensionality of input spaces and for clustering data. We'll show example applications from both magnetic and inertial confinement fusion. Along the way, we will describe methods for practitioners to help ensure that their models generalize from their training data to as-yet-unseen test data. We will finally point out some limitations to modern machine learning and speculate on some ways that practitioners from the physical sciences may be particularly suited to help. This work was performed by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Machine learning of network metrics in ATLAS Distributed Data Management

    NASA Astrophysics Data System (ADS)

    Lassnig, Mario; Toler, Wesley; Vamosi, Ralf; Bogado, Joaquin; ATLAS Collaboration

    2017-10-01

    The increasing volume of physics data poses a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from one of our ongoing automation efforts that focuses on network metrics. First, we describe our machine learning framework built atop the ATLAS Analytics Platform. This framework can automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for networkaware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our models.

  2. Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography.

    PubMed

    Narula, Sukrit; Shameer, Khader; Salem Omar, Alaa Mabrouk; Dudley, Joel T; Sengupta, Partho P

    2016-11-29

    Machine-learning models may aid cardiac phenotypic recognition by using features of cardiac tissue deformation. This study investigated the diagnostic value of a machine-learning framework that incorporates speckle-tracking echocardiographic data for automated discrimination of hypertrophic cardiomyopathy (HCM) from physiological hypertrophy seen in athletes (ATH). Expert-annotated speckle-tracking echocardiographic datasets obtained from 77 ATH and 62 HCM patients were used for developing an automated system. An ensemble machine-learning model with 3 different machine-learning algorithms (support vector machines, random forests, and artificial neural networks) was developed and a majority voting method was used for conclusive predictions with further K-fold cross-validation. Feature selection using an information gain (IG) algorithm revealed that volume was the best predictor for differentiating between HCM ands. ATH (IG = 0.24) followed by mid-left ventricular segmental (IG = 0.134) and average longitudinal strain (IG = 0.131). The ensemble machine-learning model showed increased sensitivity and specificity compared with early-to-late diastolic transmitral velocity ratio (p < 0.01), average early diastolic tissue velocity (e') (p < 0.01), and strain (p = 0.04). Because ATH were younger, adjusted analysis was undertaken in younger HCM patients and compared with ATH with left ventricular wall thickness >13 mm. In this subgroup analysis, the automated model continued to show equal sensitivity, but increased specificity relative to early-to-late diastolic transmitral velocity ratio, e', and strain. Our results suggested that machine-learning algorithms can assist in the discrimination of physiological versus pathological patterns of hypertrophic remodeling. This effort represents a step toward the development of a real-time, machine-learning-based system for automated interpretation of echocardiographic images, which may help novice readers with limited experience. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  3. The use of machine learning for the identification of peripheral artery disease and future mortality risk.

    PubMed

    Ross, Elsie Gyang; Shah, Nigam H; Dalman, Ronald L; Nead, Kevin T; Cooke, John P; Leeper, Nicholas J

    2016-11-01

    A key aspect of the precision medicine effort is the development of informatics tools that can analyze and interpret "big data" sets in an automated and adaptive fashion while providing accurate and actionable clinical information. The aims of this study were to develop machine learning algorithms for the identification of disease and the prognostication of mortality risk and to determine whether such models perform better than classical statistical analyses. Focusing on peripheral artery disease (PAD), patient data were derived from a prospective, observational study of 1755 patients who presented for elective coronary angiography. We employed multiple supervised machine learning algorithms and used diverse clinical, demographic, imaging, and genomic information in a hypothesis-free manner to build models that could identify patients with PAD and predict future mortality. Comparison was made to standard stepwise linear regression models. Our machine-learned models outperformed stepwise logistic regression models both for the identification of patients with PAD (area under the curve, 0.87 vs 0.76, respectively; P = .03) and for the prediction of future mortality (area under the curve, 0.76 vs 0.65, respectively; P = .10). Both machine-learned models were markedly better calibrated than the stepwise logistic regression models, thus providing more accurate disease and mortality risk estimates. Machine learning approaches can produce more accurate disease classification and prediction models. These tools may prove clinically useful for the automated identification of patients with highly morbid diseases for which aggressive risk factor management can improve outcomes. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  4. Comparing statistical and machine learning classifiers: alternatives for predictive modeling in human factors research.

    PubMed

    Carnahan, Brian; Meyer, Gérard; Kuntz, Lois-Ann

    2003-01-01

    Multivariate classification models play an increasingly important role in human factors research. In the past, these models have been based primarily on discriminant analysis and logistic regression. Models developed from machine learning research offer the human factors professional a viable alternative to these traditional statistical classification methods. To illustrate this point, two machine learning approaches--genetic programming and decision tree induction--were used to construct classification models designed to predict whether or not a student truck driver would pass his or her commercial driver license (CDL) examination. The models were developed and validated using the curriculum scores and CDL exam performances of 37 student truck drivers who had completed a 320-hr driver training course. Results indicated that the machine learning classification models were superior to discriminant analysis and logistic regression in terms of predictive accuracy. Actual or potential applications of this research include the creation of models that more accurately predict human performance outcomes.

  5. Machine learning: novel bioinformatics approaches for combating antimicrobial resistance.

    PubMed

    Macesic, Nenad; Polubriaginof, Fernanda; Tatonetti, Nicholas P

    2017-12-01

    Antimicrobial resistance (AMR) is a threat to global health and new approaches to combating AMR are needed. Use of machine learning in addressing AMR is in its infancy but has made promising steps. We reviewed the current literature on the use of machine learning for studying bacterial AMR. The advent of large-scale data sets provided by next-generation sequencing and electronic health records make applying machine learning to the study and treatment of AMR possible. To date, it has been used for antimicrobial susceptibility genotype/phenotype prediction, development of AMR clinical decision rules, novel antimicrobial agent discovery and antimicrobial therapy optimization. Application of machine learning to studying AMR is feasible but remains limited. Implementation of machine learning in clinical settings faces barriers to uptake with concerns regarding model interpretability and data quality.Future applications of machine learning to AMR are likely to be laboratory-based, such as antimicrobial susceptibility phenotype prediction.

  6. Human semi-supervised learning.

    PubMed

    Gibson, Bryan R; Rogers, Timothy T; Zhu, Xiaojin

    2013-01-01

    Most empirical work in human categorization has studied learning in either fully supervised or fully unsupervised scenarios. Most real-world learning scenarios, however, are semi-supervised: Learners receive a great deal of unlabeled information from the world, coupled with occasional experiences in which items are directly labeled by a knowledgeable source. A large body of work in machine learning has investigated how learning can exploit both labeled and unlabeled data provided to a learner. Using equivalences between models found in human categorization and machine learning research, we explain how these semi-supervised techniques can be applied to human learning. A series of experiments are described which show that semi-supervised learning models prove useful for explaining human behavior when exposed to both labeled and unlabeled data. We then discuss some machine learning models that do not have familiar human categorization counterparts. Finally, we discuss some challenges yet to be addressed in the use of semi-supervised models for modeling human categorization. Copyright © 2013 Cognitive Science Society, Inc.

  7. Modelling daily water temperature from air temperature for the Missouri River.

    PubMed

    Zhu, Senlin; Nyarko, Emmanuel Karlo; Hadzima-Nyarko, Marijana

    2018-01-01

    The bio-chemical and physical characteristics of a river are directly affected by water temperature, which thereby affects the overall health of aquatic ecosystems. It is a complex problem to accurately estimate water temperature. Modelling of river water temperature is usually based on a suitable mathematical model and field measurements of various atmospheric factors. In this article, the air-water temperature relationship of the Missouri River is investigated by developing three different machine learning models (Artificial Neural Network (ANN), Gaussian Process Regression (GPR), and Bootstrap Aggregated Decision Trees (BA-DT)). Standard models (linear regression, non-linear regression, and stochastic models) are also developed and compared to machine learning models. Analyzing the three standard models, the stochastic model clearly outperforms the standard linear model and nonlinear model. All the three machine learning models have comparable results and outperform the stochastic model, with GPR having slightly better results for stations No. 2 and 3, while BA-DT has slightly better results for station No. 1. The machine learning models are very effective tools which can be used for the prediction of daily river temperature.

  8. Automating Construction of Machine Learning Models With Clinical Big Data: Proposal Rationale and Methods.

    PubMed

    Luo, Gang; Stone, Bryan L; Johnson, Michael D; Tarczy-Hornoch, Peter; Wilcox, Adam B; Mooney, Sean D; Sheng, Xiaoming; Haug, Peter J; Nkoy, Flory L

    2017-08-29

    To improve health outcomes and cut health care costs, we often need to conduct prediction/classification using large clinical datasets (aka, clinical big data), for example, to identify high-risk patients for preventive interventions. Machine learning has been proposed as a key technology for doing this. Machine learning has won most data science competitions and could support many clinical activities, yet only 15% of hospitals use it for even limited purposes. Despite familiarity with data, health care researchers often lack machine learning expertise to directly use clinical big data, creating a hurdle in realizing value from their data. Health care researchers can work with data scientists with deep machine learning knowledge, but it takes time and effort for both parties to communicate effectively. Facing a shortage in the United States of data scientists and hiring competition from companies with deep pockets, health care systems have difficulty recruiting data scientists. Building and generalizing a machine learning model often requires hundreds to thousands of manual iterations by data scientists to select the following: (1) hyper-parameter values and complex algorithms that greatly affect model accuracy and (2) operators and periods for temporally aggregating clinical attributes (eg, whether a patient's weight kept rising in the past year). This process becomes infeasible with limited budgets. This study's goal is to enable health care researchers to directly use clinical big data, make machine learning feasible with limited budgets and data scientist resources, and realize value from data. This study will allow us to achieve the following: (1) finish developing the new software, Automated Machine Learning (Auto-ML), to automate model selection for machine learning with clinical big data and validate Auto-ML on seven benchmark modeling problems of clinical importance; (2) apply Auto-ML and novel methodology to two new modeling problems crucial for care management allocation and pilot one model with care managers; and (3) perform simulations to estimate the impact of adopting Auto-ML on US patient outcomes. We are currently writing Auto-ML's design document. We intend to finish our study by around the year 2022. Auto-ML will generalize to various clinical prediction/classification problems. With minimal help from data scientists, health care researchers can use Auto-ML to quickly build high-quality models. This will boost wider use of machine learning in health care and improve patient outcomes. ©Gang Luo, Bryan L Stone, Michael D Johnson, Peter Tarczy-Hornoch, Adam B Wilcox, Sean D Mooney, Xiaoming Sheng, Peter J Haug, Flory L Nkoy. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 29.08.2017.

  9. Development of the self-learning machine for creating models of microprocessor of single-phase earth fault protection devices in networks with isolated neutral voltage above 1000 V

    NASA Astrophysics Data System (ADS)

    Utegulov, B. B.; Utegulov, A. B.; Meiramova, S.

    2018-02-01

    The paper proposes the development of a self-learning machine for creating models of microprocessor-based single-phase ground fault protection devices in networks with an isolated neutral voltage higher than 1000 V. Development of a self-learning machine for creating models of microprocessor-based single-phase earth fault protection devices in networks with an isolated neutral voltage higher than 1000 V. allows to effectively implement mathematical models of automatic change of protection settings. Single-phase earth fault protection devices.

  10. Machine learning models in breast cancer survival prediction.

    PubMed

    Montazeri, Mitra; Montazeri, Mohadeseh; Montazeri, Mahdieh; Beigzadeh, Amin

    2016-01-01

    Breast cancer is one of the most common cancers with a high mortality rate among women. With the early diagnosis of breast cancer survival will increase from 56% to more than 86%. Therefore, an accurate and reliable system is necessary for the early diagnosis of this cancer. The proposed model is the combination of rules and different machine learning techniques. Machine learning models can help physicians to reduce the number of false decisions. They try to exploit patterns and relationships among a large number of cases and predict the outcome of a disease using historical cases stored in datasets. The objective of this study is to propose a rule-based classification method with machine learning techniques for the prediction of different types of Breast cancer survival. We use a dataset with eight attributes that include the records of 900 patients in which 876 patients (97.3%) and 24 (2.7%) patients were females and males respectively. Naive Bayes (NB), Trees Random Forest (TRF), 1-Nearest Neighbor (1NN), AdaBoost (AD), Support Vector Machine (SVM), RBF Network (RBFN), and Multilayer Perceptron (MLP) machine learning techniques with 10-cross fold technique were used with the proposed model for the prediction of breast cancer survival. The performance of machine learning techniques were evaluated with accuracy, precision, sensitivity, specificity, and area under ROC curve. Out of 900 patients, 803 patients and 97 patients were alive and dead, respectively. In this study, Trees Random Forest (TRF) technique showed better results in comparison to other techniques (NB, 1NN, AD, SVM and RBFN, MLP). The accuracy, sensitivity and the area under ROC curve of TRF are 96%, 96%, 93%, respectively. However, 1NN machine learning technique provided poor performance (accuracy 91%, sensitivity 91% and area under ROC curve 78%). This study demonstrates that Trees Random Forest model (TRF) which is a rule-based classification model was the best model with the highest level of accuracy. Therefore, this model is recommended as a useful tool for breast cancer survival prediction as well as medical decision making.

  11. Large-Scale Machine Learning for Classification and Search

    ERIC Educational Resources Information Center

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  12. Adaptive hidden Markov model-based online learning framework for bearing faulty detection and performance degradation monitoring

    NASA Astrophysics Data System (ADS)

    Yu, Jianbo

    2017-01-01

    This study proposes an adaptive-learning-based method for machine faulty detection and health degradation monitoring. The kernel of the proposed method is an "evolving" model that uses an unsupervised online learning scheme, in which an adaptive hidden Markov model (AHMM) is used for online learning the dynamic health changes of machines in their full life. A statistical index is developed for recognizing the new health states in the machines. Those new health states are then described online by adding of new hidden states in AHMM. Furthermore, the health degradations in machines are quantified online by an AHMM-based health index (HI) that measures the similarity between two density distributions that describe the historic and current health states, respectively. When necessary, the proposed method characterizes the distinct operating modes of the machine and can learn online both abrupt as well as gradual health changes. Our method overcomes some drawbacks of the HIs (e.g., relatively low comprehensibility and applicability) based on fixed monitoring models constructed in the offline phase. Results from its application in a bearing life test reveal that the proposed method is effective in online detection and adaptive assessment of machine health degradation. This study provides a useful guide for developing a condition-based maintenance (CBM) system that uses an online learning method without considerable human intervention.

  13. Machine learning enhanced optical distance sensor

    NASA Astrophysics Data System (ADS)

    Amin, M. Junaid; Riza, N. A.

    2018-01-01

    Presented for the first time is a machine learning enhanced optical distance sensor. The distance sensor is based on our previously demonstrated distance measurement technique that uses an Electronically Controlled Variable Focus Lens (ECVFL) with a laser source to illuminate a target plane with a controlled optical beam spot. This spot with varying spot sizes is viewed by an off-axis camera and the spot size data is processed to compute the distance. In particular, proposed and demonstrated in this paper is the use of a regularized polynomial regression based supervised machine learning algorithm to enhance the accuracy of the operational sensor. The algorithm uses the acquired features and corresponding labels that are the actual target distance values to train a machine learning model. The optimized training model is trained over a 1000 mm (or 1 m) experimental target distance range. Using the machine learning algorithm produces a training set and testing set distance measurement errors of <0.8 mm and <2.2 mm, respectively. The test measurement error is at least a factor of 4 improvement over our prior sensor demonstration without the use of machine learning. Applications for the proposed sensor include industrial scenario distance sensing where target material specific training models can be generated to realize low <1% measurement error distance measurements.

  14. Osteoporosis risk prediction using machine learning and conventional methods.

    PubMed

    Kim, Sung Kean; Yoo, Tae Keun; Oh, Ein; Kim, Deok Won

    2013-01-01

    A number of clinical decision tools for osteoporosis risk assessment have been developed to select postmenopausal women for the measurement of bone mineral density. We developed and validated machine learning models with the aim of more accurately identifying the risk of osteoporosis in postmenopausal women, and compared with the ability of a conventional clinical decision tool, osteoporosis self-assessment tool (OST). We collected medical records from Korean postmenopausal women based on the Korea National Health and Nutrition Surveys (KNHANES V-1). The training data set was used to construct models based on popular machine learning algorithms such as support vector machines (SVM), random forests (RF), artificial neural networks (ANN), and logistic regression (LR) based on various predictors associated with low bone density. The learning models were compared with OST. SVM had significantly better area under the curve (AUC) of the receiver operating characteristic (ROC) than ANN, LR, and OST. Validation on the test set showed that SVM predicted osteoporosis risk with an AUC of 0.827, accuracy of 76.7%, sensitivity of 77.8%, and specificity of 76.0%. We were the first to perform comparisons of the performance of osteoporosis prediction between the machine learning and conventional methods using population-based epidemiological data. The machine learning methods may be effective tools for identifying postmenopausal women at high risk for osteoporosis.

  15. A comparison of the stochastic and machine learning approaches in hydrologic time series forecasting

    NASA Astrophysics Data System (ADS)

    Kim, T.; Joo, K.; Seo, J.; Heo, J. H.

    2016-12-01

    Hydrologic time series forecasting is an essential task in water resources management and it becomes more difficult due to the complexity of runoff process. Traditional stochastic models such as ARIMA family has been used as a standard approach in time series modeling and forecasting of hydrological variables. Due to the nonlinearity in hydrologic time series data, machine learning approaches has been studied with the advantage of discovering relevant features in a nonlinear relation among variables. This study aims to compare the predictability between the traditional stochastic model and the machine learning approach. Seasonal ARIMA model was used as the traditional time series model, and Random Forest model which consists of decision tree and ensemble method using multiple predictor approach was applied as the machine learning approach. In the application, monthly inflow data from 1986 to 2015 of Chungju dam in South Korea were used for modeling and forecasting. In order to evaluate the performances of the used models, one step ahead and multi-step ahead forecasting was applied. Root mean squared error and mean absolute error of two models were compared.

  16. Machine learning in autistic spectrum disorder behavioral research: A review and ways forward.

    PubMed

    Thabtah, Fadi

    2018-02-13

    Autistic Spectrum Disorder (ASD) is a mental disorder that retards acquisition of linguistic, communication, cognitive, and social skills and abilities. Despite being diagnosed with ASD, some individuals exhibit outstanding scholastic, non-academic, and artistic capabilities, in such cases posing a challenging task for scientists to provide answers. In the last few years, ASD has been investigated by social and computational intelligence scientists utilizing advanced technologies such as machine learning to improve diagnostic timing, precision, and quality. Machine learning is a multidisciplinary research topic that employs intelligent techniques to discover useful concealed patterns, which are utilized in prediction to improve decision making. Machine learning techniques such as support vector machines, decision trees, logistic regressions, and others, have been applied to datasets related to autism in order to construct predictive models. These models claim to enhance the ability of clinicians to provide robust diagnoses and prognoses of ASD. However, studies concerning the use of machine learning in ASD diagnosis and treatment suffer from conceptual, implementation, and data issues such as the way diagnostic codes are used, the type of feature selection employed, the evaluation measures chosen, and class imbalances in data among others. A more serious claim in recent studies is the development of a new method for ASD diagnoses based on machine learning. This article critically analyses these recent investigative studies on autism, not only articulating the aforementioned issues in these studies but also recommending paths forward that enhance machine learning use in ASD with respect to conceptualization, implementation, and data. Future studies concerning machine learning in autism research are greatly benefitted by such proposals.

  17. The Deflector Selector: A Machine Learning Framework for Prioritizing Deflection Technology Development

    NASA Astrophysics Data System (ADS)

    Nesvold, E. R.; Erasmus, N.; Greenberg, A.; van Heerden, E.; Galache, J. L.; Dahlstrom, E.; Marchis, F.

    2017-02-01

    We present a machine learning model that can predict which asteroid deflection technology would be most effective, given the likely population of impactors. Our model can help policy and funding agencies prioritize technology development.

  18. Spiking neuron network Helmholtz machine.

    PubMed

    Sountsov, Pavel; Miller, Paul

    2015-01-01

    An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule.

  19. Spiking neuron network Helmholtz machine

    PubMed Central

    Sountsov, Pavel; Miller, Paul

    2015-01-01

    An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule. PMID:25954191

  20. Machine learning applications in genetics and genomics.

    PubMed

    Libbrecht, Maxwell W; Noble, William Stafford

    2015-06-01

    The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets. Here, we provide an overview of machine learning applications for the analysis of genome sequencing data sets, including the annotation of sequence elements and epigenetic, proteomic or metabolomic data. We present considerations and recurrent challenges in the application of supervised, semi-supervised and unsupervised machine learning methods, as well as of generative and discriminative modelling approaches. We provide general guidelines to assist in the selection of these machine learning methods and their practical application for the analysis of genetic and genomic data sets.

  1. Machine learning and medicine: book review and commentary.

    PubMed

    Koprowski, Robert; Foster, Kenneth R

    2018-02-01

    This article is a review of the book "Master machine learning algorithms, discover how they work and implement them from scratch" (ISBN: not available, 37 USD, 163 pages) edited by Jason Brownlee published by the Author, edition, v1.10 http://MachineLearningMastery.com . An accompanying commentary discusses some of the issues that are involved with use of machine learning and data mining techniques to develop predictive models for diagnosis or prognosis of disease, and to call attention to additional requirements for developing diagnostic and prognostic algorithms that are generally useful in medicine. Appendix provides examples that illustrate potential problems with machine learning that are not addressed in the reviewed book.

  2. Machine learning of molecular properties: Locality and active learning

    NASA Astrophysics Data System (ADS)

    Gubaev, Konstantin; Podryabinkin, Evgeny V.; Shapeev, Alexander V.

    2018-06-01

    In recent years, the machine learning techniques have shown great potent1ial in various problems from a multitude of disciplines, including materials design and drug discovery. The high computational speed on the one hand and the accuracy comparable to that of density functional theory on another hand make machine learning algorithms efficient for high-throughput screening through chemical and configurational space. However, the machine learning algorithms available in the literature require large training datasets to reach the chemical accuracy and also show large errors for the so-called outliers—the out-of-sample molecules, not well-represented in the training set. In the present paper, we propose a new machine learning algorithm for predicting molecular properties that addresses these two issues: it is based on a local model of interatomic interactions providing high accuracy when trained on relatively small training sets and an active learning algorithm of optimally choosing the training set that significantly reduces the errors for the outliers. We compare our model to the other state-of-the-art algorithms from the literature on the widely used benchmark tests.

  3. Progress in computational toxicology.

    PubMed

    Ekins, Sean

    2014-01-01

    Computational methods have been widely applied to toxicology across pharmaceutical, consumer product and environmental fields over the past decade. Progress in computational toxicology is now reviewed. A literature review was performed on computational models for hepatotoxicity (e.g. for drug-induced liver injury (DILI)), cardiotoxicity, renal toxicity and genotoxicity. In addition various publications have been highlighted that use machine learning methods. Several computational toxicology model datasets from past publications were used to compare Bayesian and Support Vector Machine (SVM) learning methods. The increasing amounts of data for defined toxicology endpoints have enabled machine learning models that have been increasingly used for predictions. It is shown that across many different models Bayesian and SVM perform similarly based on cross validation data. Considerable progress has been made in computational toxicology in a decade in both model development and availability of larger scale or 'big data' models. The future efforts in toxicology data generation will likely provide us with hundreds of thousands of compounds that are readily accessible for machine learning models. These models will cover relevant chemistry space for pharmaceutical, consumer product and environmental applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Machine Learning: A Crucial Tool for Sensor Design

    PubMed Central

    Zhao, Weixiang; Bhushan, Abhinav; Santamaria, Anthony D.; Simon, Melinda G.; Davis, Cristina E.

    2009-01-01

    Sensors have been widely used for disease diagnosis, environmental quality monitoring, food quality control, industrial process analysis and control, and other related fields. As a key tool for sensor data analysis, machine learning is becoming a core part of novel sensor design. Dividing a complete machine learning process into three steps: data pre-treatment, feature extraction and dimension reduction, and system modeling, this paper provides a review of the methods that are widely used for each step. For each method, the principles and the key issues that affect modeling results are discussed. After reviewing the potential problems in machine learning processes, this paper gives a summary of current algorithms in this field and provides some feasible directions for future studies. PMID:20191110

  5. Predicting Mouse Liver Microsomal Stability with “Pruned” Machine Learning Models and Public Data

    PubMed Central

    Perryman, Alexander L.; Stratton, Thomas P.; Ekins, Sean; Freundlich, Joel S.

    2015-01-01

    Purpose Mouse efficacy studies are a critical hurdle to advance translational research of potential therapeutic compounds for many diseases. Although mouse liver microsomal (MLM) stability studies are not a perfect surrogate for in vivo studies of metabolic clearance, they are the initial model system used to assess metabolic stability. Consequently, we explored the development of machine learning models that can enhance the probability of identifying compounds possessing MLM stability. Methods Published assays on MLM half-life values were identified in PubChem, reformatted, and curated to create a training set with 894 unique small molecules. These data were used to construct machine learning models assessed with internal cross-validation, external tests with a published set of antitubercular compounds, and independent validation with an additional diverse set of 571 compounds (PubChem data on percent metabolism). Results “Pruning” out the moderately unstable/moderately stable compounds from the training set produced models with superior predictive power. Bayesian models displayed the best predictive power for identifying compounds with a half-life ≥1 hour. Conclusions Our results suggest the pruning strategy may be of general benefit to improve test set enrichment and provide machine learning models with enhanced predictive value for the MLM stability of small organic molecules. This study represents the most exhaustive study to date of using machine learning approaches with MLM data from public sources. PMID:26415647

  6. Predicting Mouse Liver Microsomal Stability with "Pruned" Machine Learning Models and Public Data.

    PubMed

    Perryman, Alexander L; Stratton, Thomas P; Ekins, Sean; Freundlich, Joel S

    2016-02-01

    Mouse efficacy studies are a critical hurdle to advance translational research of potential therapeutic compounds for many diseases. Although mouse liver microsomal (MLM) stability studies are not a perfect surrogate for in vivo studies of metabolic clearance, they are the initial model system used to assess metabolic stability. Consequently, we explored the development of machine learning models that can enhance the probability of identifying compounds possessing MLM stability. Published assays on MLM half-life values were identified in PubChem, reformatted, and curated to create a training set with 894 unique small molecules. These data were used to construct machine learning models assessed with internal cross-validation, external tests with a published set of antitubercular compounds, and independent validation with an additional diverse set of 571 compounds (PubChem data on percent metabolism). "Pruning" out the moderately unstable / moderately stable compounds from the training set produced models with superior predictive power. Bayesian models displayed the best predictive power for identifying compounds with a half-life ≥1 h. Our results suggest the pruning strategy may be of general benefit to improve test set enrichment and provide machine learning models with enhanced predictive value for the MLM stability of small organic molecules. This study represents the most exhaustive study to date of using machine learning approaches with MLM data from public sources.

  7. Exploration of Machine Learning Approaches to Predict Pavement Performance

    DOT National Transportation Integrated Search

    2018-03-23

    Machine learning (ML) techniques were used to model and predict pavement condition index (PCI) for various pavement types using a variety of input variables. The primary objective of this research was to develop and assess PCI predictive models for t...

  8. Machine learning for many-body physics: The case of the Anderson impurity model

    DOE PAGES

    Arsenault, Louis-François; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole; ...

    2014-10-31

    We applied machine learning methods in order to find the Green's function of the Anderson impurity model, a basic model system of quantum many-body condensed-matter physics. Furthermore, different methods of parametrizing the Green's function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its limited number of coefficients and its applicability to state of the art methods of solution. The dependence of the errors on the size of the training set is determined. Our results indicate that a machine learning approach to dynamical mean-field theory may be feasible.

  9. Machine learning for many-body physics: The case of the Anderson impurity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsenault, Louis-François; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole

    We applied machine learning methods in order to find the Green's function of the Anderson impurity model, a basic model system of quantum many-body condensed-matter physics. Furthermore, different methods of parametrizing the Green's function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its limited number of coefficients and its applicability to state of the art methods of solution. The dependence of the errors on the size of the training set is determined. Our results indicate that a machine learning approach to dynamical mean-field theory may be feasible.

  10. Machine learning strategies for systems with invariance properties

    NASA Astrophysics Data System (ADS)

    Ling, Julia; Jones, Reese; Templeton, Jeremy

    2016-08-01

    In many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds Averaged Navier Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high performance computing has led to a growing availability of high fidelity simulation data. These data open up the possibility of using machine learning algorithms, such as random forests or neural networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these empirical models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first method, a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance at significantly reduced computational training costs.

  11. Machine learning strategies for systems with invariance properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Julia; Jones, Reese E.; Templeton, Jeremy Alan

    Here, in many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds-Averaged Navier-Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high-performance computing has led to a growing availability of high-fidelity simulation data, which open up the possibility of using machine learning algorithms, such as random forests or neuralmore » networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first , a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance with significantly reduced computational training costs.« less

  12. Machine learning strategies for systems with invariance properties

    DOE PAGES

    Ling, Julia; Jones, Reese E.; Templeton, Jeremy Alan

    2016-05-06

    Here, in many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds-Averaged Navier-Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high-performance computing has led to a growing availability of high-fidelity simulation data, which open up the possibility of using machine learning algorithms, such as random forests or neuralmore » networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first , a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance with significantly reduced computational training costs.« less

  13. From machine learning to deep learning: progress in machine intelligence for rational drug discovery.

    PubMed

    Zhang, Lu; Tan, Jianjun; Han, Dan; Zhu, Hao

    2017-11-01

    Machine intelligence, which is normally presented as artificial intelligence, refers to the intelligence exhibited by computers. In the history of rational drug discovery, various machine intelligence approaches have been applied to guide traditional experiments, which are expensive and time-consuming. Over the past several decades, machine-learning tools, such as quantitative structure-activity relationship (QSAR) modeling, were developed that can identify potential biological active molecules from millions of candidate compounds quickly and cheaply. However, when drug discovery moved into the era of 'big' data, machine learning approaches evolved into deep learning approaches, which are a more powerful and efficient way to deal with the massive amounts of data generated from modern drug discovery approaches. Here, we summarize the history of machine learning and provide insight into recently developed deep learning approaches and their applications in rational drug discovery. We suggest that this evolution of machine intelligence now provides a guide for early-stage drug design and discovery in the current big data era. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Machine Learning for Treatment Assignment: Improving Individualized Risk Attribution

    PubMed Central

    Weiss, Jeremy; Kuusisto, Finn; Boyd, Kendrick; Liu, Jie; Page, David

    2015-01-01

    Clinical studies model the average treatment effect (ATE), but apply this population-level effect to future individuals. Due to recent developments of machine learning algorithms with useful statistical guarantees, we argue instead for modeling the individualized treatment effect (ITE), which has better applicability to new patients. We compare ATE-estimation using randomized and observational analysis methods against ITE-estimation using machine learning, and describe how the ITE theoretically generalizes to new population distributions, whereas the ATE may not. On a synthetic data set of statin use and myocardial infarction (MI), we show that a learned ITE model improves true ITE estimation and outperforms the ATE. We additionally argue that ITE models should be learned with a consistent, nonparametric algorithm from unweighted examples and show experiments in favor of our argument using our synthetic data model and a real data set of D-penicillamine use for primary biliary cirrhosis. PMID:26958271

  15. Machine Learning for Treatment Assignment: Improving Individualized Risk Attribution.

    PubMed

    Weiss, Jeremy; Kuusisto, Finn; Boyd, Kendrick; Liu, Jie; Page, David

    2015-01-01

    Clinical studies model the average treatment effect (ATE), but apply this population-level effect to future individuals. Due to recent developments of machine learning algorithms with useful statistical guarantees, we argue instead for modeling the individualized treatment effect (ITE), which has better applicability to new patients. We compare ATE-estimation using randomized and observational analysis methods against ITE-estimation using machine learning, and describe how the ITE theoretically generalizes to new population distributions, whereas the ATE may not. On a synthetic data set of statin use and myocardial infarction (MI), we show that a learned ITE model improves true ITE estimation and outperforms the ATE. We additionally argue that ITE models should be learned with a consistent, nonparametric algorithm from unweighted examples and show experiments in favor of our argument using our synthetic data model and a real data set of D-penicillamine use for primary biliary cirrhosis.

  16. Comparing machine learning and logistic regression methods for predicting hypertension using a combination of gene expression and next-generation sequencing data.

    PubMed

    Held, Elizabeth; Cape, Joshua; Tintle, Nathan

    2016-01-01

    Machine learning methods continue to show promise in the analysis of data from genetic association studies because of the high number of variables relative to the number of observations. However, few best practices exist for the application of these methods. We extend a recently proposed supervised machine learning approach for predicting disease risk by genotypes to be able to incorporate gene expression data and rare variants. We then apply 2 different versions of the approach (radial and linear support vector machines) to simulated data from Genetic Analysis Workshop 19 and compare performance to logistic regression. Method performance was not radically different across the 3 methods, although the linear support vector machine tended to show small gains in predictive ability relative to a radial support vector machine and logistic regression. Importantly, as the number of genes in the models was increased, even when those genes contained causal rare variants, model predictive ability showed a statistically significant decrease in performance for both the radial support vector machine and logistic regression. The linear support vector machine showed more robust performance to the inclusion of additional genes. Further work is needed to evaluate machine learning approaches on larger samples and to evaluate the relative improvement in model prediction from the incorporation of gene expression data.

  17. Comparing and Validating Machine Learning Models for Mycobacterium tuberculosis Drug Discovery.

    PubMed

    Lane, Thomas; Russo, Daniel P; Zorn, Kimberley M; Clark, Alex M; Korotcov, Alexandru; Tkachenko, Valery; Reynolds, Robert C; Perryman, Alexander L; Freundlich, Joel S; Ekins, Sean

    2018-04-26

    Tuberculosis is a global health dilemma. In 2016, the WHO reported 10.4 million incidences and 1.7 million deaths. The need to develop new treatments for those infected with Mycobacterium tuberculosis ( Mtb) has led to many large-scale phenotypic screens and many thousands of new active compounds identified in vitro. However, with limited funding, efforts to discover new active molecules against Mtb needs to be more efficient. Several computational machine learning approaches have been shown to have good enrichment and hit rates. We have curated small molecule Mtb data and developed new models with a total of 18,886 molecules with activity cutoffs of 10 μM, 1 μM, and 100 nM. These data sets were used to evaluate different machine learning methods (including deep learning) and metrics and to generate predictions for additional molecules published in 2017. One Mtb model, a combined in vitro and in vivo data Bayesian model at a 100 nM activity yielded the following metrics for 5-fold cross validation: accuracy = 0.88, precision = 0.22, recall = 0.91, specificity = 0.88, kappa = 0.31, and MCC = 0.41. We have also curated an evaluation set ( n = 153 compounds) published in 2017, and when used to test our model, it showed the comparable statistics (accuracy = 0.83, precision = 0.27, recall = 1.00, specificity = 0.81, kappa = 0.36, and MCC = 0.47). We have also compared these models with additional machine learning algorithms showing Bayesian machine learning models constructed with literature Mtb data generated by different laboratories generally were equivalent to or outperformed deep neural networks with external test sets. Finally, we have also compared our training and test sets to show they were suitably diverse and different in order to represent useful evaluation sets. Such Mtb machine learning models could help prioritize compounds for testing in vitro and in vivo.

  18. Coupling machine learning with mechanistic models to study runoff production and river flow at the hillslope scale

    NASA Astrophysics Data System (ADS)

    Marçais, J.; Gupta, H. V.; De Dreuzy, J. R.; Troch, P. A. A.

    2016-12-01

    Geomorphological structure and geological heterogeneity of hillslopes are major controls on runoff responses. The diversity of hillslopes (morphological shapes and geological structures) on one hand, and the highly non linear runoff mechanism response on the other hand, make it difficult to transpose what has been learnt at one specific hillslope to another. Therefore, making reliable predictions on runoff appearance or river flow for a given hillslope is a challenge. Applying a classic model calibration (based on inverse problems technique) requires doing it for each specific hillslope and having some data available for calibration. When applied to thousands of cases it cannot always be promoted. Here we propose a novel modeling framework based on coupling process based models with data based approach. First we develop a mechanistic model, based on hillslope storage Boussinesq equations (Troch et al. 2003), able to model non linear runoff responses to rainfall at the hillslope scale. Second we set up a model database, representing thousands of non calibrated simulations. These simulations investigate different hillslope shapes (real ones obtained by analyzing 5m digital elevation model of Brittany and synthetic ones), different hillslope geological structures (i.e. different parametrizations) and different hydrologic forcing terms (i.e. different infiltration chronicles). Then, we use this model library to train a machine learning model on this physically based database. Machine learning model performance is then assessed by a classic validating phase (testing it on new hillslopes and comparing machine learning with mechanistic outputs). Finally we use this machine learning model to learn what are the hillslope properties controlling runoffs. This methodology will be further tested combining synthetic datasets with real ones.

  19. PredicT-ML: a tool for automating machine learning model building with big clinical data.

    PubMed

    Luo, Gang

    2016-01-01

    Predictive modeling is fundamental to transforming large clinical data sets, or "big clinical data," into actionable knowledge for various healthcare applications. Machine learning is a major predictive modeling approach, but two barriers make its use in healthcare challenging. First, a machine learning tool user must choose an algorithm and assign one or more model parameters called hyper-parameters before model training. The algorithm and hyper-parameter values used typically impact model accuracy by over 40 %, but their selection requires many labor-intensive manual iterations that can be difficult even for computer scientists. Second, many clinical attributes are repeatedly recorded over time, requiring temporal aggregation before predictive modeling can be performed. Many labor-intensive manual iterations are required to identify a good pair of aggregation period and operator for each clinical attribute. Both barriers result in time and human resource bottlenecks, and preclude healthcare administrators and researchers from asking a series of what-if questions when probing opportunities to use predictive models to improve outcomes and reduce costs. This paper describes our design of and vision for PredicT-ML (prediction tool using machine learning), a software system that aims to overcome these barriers and automate machine learning model building with big clinical data. The paper presents the detailed design of PredicT-ML. PredicT-ML will open the use of big clinical data to thousands of healthcare administrators and researchers and increase the ability to advance clinical research and improve healthcare.

  20. A general-purpose machine learning framework for predicting properties of inorganic materials

    DOE PAGES

    Ward, Logan; Agrawal, Ankit; Choudhary, Alok; ...

    2016-08-26

    A very active area of materials research is to devise methods that use machine learning to automatically extract predictive models from existing materials data. While prior examples have demonstrated successful models for some applications, many more applications exist where machine learning can make a strong impact. To enable faster development of machine-learning-based models for such applications, we have created a framework capable of being applied to a broad range of materials data. Our method works by using a chemically diverse list of attributes, which we demonstrate are suitable for describing a wide variety of properties, and a novel method formore » partitioning the data set into groups of similar materials to boost the predictive accuracy. In this manuscript, we demonstrate how this new method can be used to predict diverse properties of crystalline and amorphous materials, such as band gap energy and glass-forming ability.« less

  1. A general-purpose machine learning framework for predicting properties of inorganic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Logan; Agrawal, Ankit; Choudhary, Alok

    A very active area of materials research is to devise methods that use machine learning to automatically extract predictive models from existing materials data. While prior examples have demonstrated successful models for some applications, many more applications exist where machine learning can make a strong impact. To enable faster development of machine-learning-based models for such applications, we have created a framework capable of being applied to a broad range of materials data. Our method works by using a chemically diverse list of attributes, which we demonstrate are suitable for describing a wide variety of properties, and a novel method formore » partitioning the data set into groups of similar materials to boost the predictive accuracy. In this manuscript, we demonstrate how this new method can be used to predict diverse properties of crystalline and amorphous materials, such as band gap energy and glass-forming ability.« less

  2. Toward a Progress Indicator for Machine Learning Model Building and Data Mining Algorithm Execution: A Position Paper.

    PubMed

    Luo, Gang

    2017-12-01

    For user-friendliness, many software systems offer progress indicators for long-duration tasks. A typical progress indicator continuously estimates the remaining task execution time as well as the portion of the task that has been finished. Building a machine learning model often takes a long time, but no existing machine learning software supplies a non-trivial progress indicator. Similarly, running a data mining algorithm often takes a long time, but no existing data mining software provides a nontrivial progress indicator. In this article, we consider the problem of offering progress indicators for machine learning model building and data mining algorithm execution. We discuss the goals and challenges intrinsic to this problem. Then we describe an initial framework for implementing such progress indicators and two advanced, potential uses of them, with the goal of inspiring future research on this topic.

  3. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2.

    PubMed

    de Ávila, Maurício Boff; Xavier, Mariana Morrone; Pintro, Val Oliveira; de Azevedo, Walter Filgueira

    2017-12-09

    Here we report the development of a machine-learning model to predict binding affinity based on the crystallographic structures of protein-ligand complexes. We used an ensemble of crystallographic structures (resolution better than 1.5 Å resolution) for which half-maximal inhibitory concentration (IC 50 ) data is available. Polynomial scoring functions were built using as explanatory variables the energy terms present in the MolDock and PLANTS scoring functions. Prediction performance was tested and the supervised machine learning models showed improvement in the prediction power, when compared with PLANTS and MolDock scoring functions. In addition, the machine-learning model was applied to predict binding affinity of CDK2, which showed a better performance when compared with AutoDock4, AutoDock Vina, MolDock, and PLANTS scores. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Toward a Progress Indicator for Machine Learning Model Building and Data Mining Algorithm Execution: A Position Paper

    PubMed Central

    Luo, Gang

    2017-01-01

    For user-friendliness, many software systems offer progress indicators for long-duration tasks. A typical progress indicator continuously estimates the remaining task execution time as well as the portion of the task that has been finished. Building a machine learning model often takes a long time, but no existing machine learning software supplies a non-trivial progress indicator. Similarly, running a data mining algorithm often takes a long time, but no existing data mining software provides a nontrivial progress indicator. In this article, we consider the problem of offering progress indicators for machine learning model building and data mining algorithm execution. We discuss the goals and challenges intrinsic to this problem. Then we describe an initial framework for implementing such progress indicators and two advanced, potential uses of them, with the goal of inspiring future research on this topic. PMID:29177022

  5. A collaborative framework for Distributed Privacy-Preserving Support Vector Machine learning.

    PubMed

    Que, Jialan; Jiang, Xiaoqian; Ohno-Machado, Lucila

    2012-01-01

    A Support Vector Machine (SVM) is a popular tool for decision support. The traditional way to build an SVM model is to estimate parameters based on a centralized repository of data. However, in the field of biomedicine, patient data are sometimes stored in local repositories or institutions where they were collected, and may not be easily shared due to privacy concerns. This creates a substantial barrier for researchers to effectively learn from the distributed data using machine learning tools like SVMs. To overcome this difficulty and promote efficient information exchange without sharing sensitive raw data, we developed a Distributed Privacy Preserving Support Vector Machine (DPP-SVM). The DPP-SVM enables privacy-preserving collaborative learning, in which a trusted server integrates "privacy-insensitive" intermediary results. The globally learned model is guaranteed to be exactly the same as learned from combined data. We also provide a free web-service (http://privacy.ucsd.edu:8080/ppsvm/) for multiple participants to collaborate and complete the SVM-learning task in an efficient and privacy-preserving manner.

  6. Mechanistic models versus machine learning, a fight worth fighting for the biological community?

    PubMed

    Baker, Ruth E; Peña, Jose-Maria; Jayamohan, Jayaratnam; Jérusalem, Antoine

    2018-05-01

    Ninety per cent of the world's data have been generated in the last 5 years ( Machine learning: the power and promise of computers that learn by example Report no. DES4702. Issued April 2017. Royal Society). A small fraction of these data is collected with the aim of validating specific hypotheses. These studies are led by the development of mechanistic models focused on the causality of input-output relationships. However, the vast majority is aimed at supporting statistical or correlation studies that bypass the need for causality and focus exclusively on prediction. Along these lines, there has been a vast increase in the use of machine learning models, in particular in the biomedical and clinical sciences, to try and keep pace with the rate of data generation. Recent successes now beg the question of whether mechanistic models are still relevant in this area. Said otherwise, why should we try to understand the mechanisms of disease progression when we can use machine learning tools to directly predict disease outcome? © 2018 The Author(s).

  7. Acceleration of saddle-point searches with machine learning.

    PubMed

    Peterson, Andrew A

    2016-08-21

    In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.

  8. Acceleration of saddle-point searches with machine learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Andrew A., E-mail: andrew-peterson@brown.edu

    In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the numbermore » of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.« less

  9. Oceanic eddy detection and lifetime forecast using machine learning methods

    NASA Astrophysics Data System (ADS)

    Ashkezari, Mohammad D.; Hill, Christopher N.; Follett, Christopher N.; Forget, Gaël.; Follows, Michael J.

    2016-12-01

    We report a novel altimetry-based machine learning approach for eddy identification and characterization. The machine learning models use daily maps of geostrophic velocity anomalies and are trained according to the phase angle between the zonal and meridional components at each grid point. The trained models are then used to identify the corresponding eddy phase patterns and to predict the lifetime of a detected eddy structure. The performance of the proposed method is examined at two dynamically different regions to demonstrate its robust behavior and region independency.

  10. Machine Learning Prediction of the Energy Gap of Graphene Nanoflakes Using Topological Autocorrelation Vectors.

    PubMed

    Fernandez, Michael; Abreu, Jose I; Shi, Hongqing; Barnard, Amanda S

    2016-11-14

    The possibility of band gap engineering in graphene opens countless new opportunities for application in nanoelectronics. In this work, the energy gaps of 622 computationally optimized graphene nanoflakes were mapped to topological autocorrelation vectors using machine learning techniques. Machine learning modeling revealed that the most relevant correlations appear at topological distances in the range of 1 to 42 with prediction accuracy higher than 80%. The data-driven model can statistically discriminate between graphene nanoflakes with different energy gaps on the basis of their molecular topology.

  11. Machine Learning Based Multi-Physical-Model Blending for Enhancing Renewable Energy Forecast -- Improvement via Situation Dependent Error Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Siyuan; Hwang, Youngdeok; Khabibrakhmanov, Ildar

    With increasing penetration of solar and wind energy to the total energy supply mix, the pressing need for accurate energy forecasting has become well-recognized. Here we report the development of a machine-learning based model blending approach for statistically combining multiple meteorological models for improving the accuracy of solar/wind power forecast. Importantly, we demonstrate that in addition to parameters to be predicted (such as solar irradiance and power), including additional atmospheric state parameters which collectively define weather situations as machine learning input provides further enhanced accuracy for the blended result. Functional analysis of variance shows that the error of individual modelmore » has substantial dependence on the weather situation. The machine-learning approach effectively reduces such situation dependent error thus produces more accurate results compared to conventional multi-model ensemble approaches based on simplistic equally or unequally weighted model averaging. Validation over an extended period of time results show over 30% improvement in solar irradiance/power forecast accuracy compared to forecasts based on the best individual model.« less

  12. Quantitative approaches to energy and glucose homeostasis: machine learning and modelling for precision understanding and prediction

    PubMed Central

    Murphy, Kevin G.; Jones, Nick S.

    2018-01-01

    Obesity is a major global public health problem. Understanding how energy homeostasis is regulated, and can become dysregulated, is crucial for developing new treatments for obesity. Detailed recording of individual behaviour and new imaging modalities offer the prospect of medically relevant models of energy homeostasis that are both understandable and individually predictive. The profusion of data from these sources has led to an interest in applying machine learning techniques to gain insight from these large, relatively unstructured datasets. We review both physiological models and machine learning results across a diverse range of applications in energy homeostasis, and highlight how modelling and machine learning can work together to improve predictive ability. We collect quantitative details in a comprehensive mathematical supplement. We also discuss the prospects of forecasting homeostatic behaviour and stress the importance of characterizing stochasticity within and between individuals in order to provide practical, tailored forecasts and guidance to combat the spread of obesity. PMID:29367240

  13. Analysis of precision and accuracy in a simple model of machine learning

    NASA Astrophysics Data System (ADS)

    Lee, Julian

    2017-12-01

    Machine learning is a procedure where a model for the world is constructed from a training set of examples. It is important that the model should capture relevant features of the training set, and at the same time make correct prediction for examples not included in the training set. I consider the polynomial regression, the simplest method of learning, and analyze the accuracy and precision for different levels of the model complexity.

  14. Quantum-assisted Helmholtz machines: A quantum–classical deep learning framework for industrial datasets in near-term devices

    NASA Astrophysics Data System (ADS)

    Benedetti, Marcello; Realpe-Gómez, John; Perdomo-Ortiz, Alejandro

    2018-07-01

    Machine learning has been presented as one of the key applications for near-term quantum technologies, given its high commercial value and wide range of applicability. In this work, we introduce the quantum-assisted Helmholtz machine:a hybrid quantum–classical framework with the potential of tackling high-dimensional real-world machine learning datasets on continuous variables. Instead of using quantum computers only to assist deep learning, as previous approaches have suggested, we use deep learning to extract a low-dimensional binary representation of data, suitable for processing on relatively small quantum computers. Then, the quantum hardware and deep learning architecture work together to train an unsupervised generative model. We demonstrate this concept using 1644 quantum bits of a D-Wave 2000Q quantum device to model a sub-sampled version of the MNIST handwritten digit dataset with 16 × 16 continuous valued pixels. Although we illustrate this concept on a quantum annealer, adaptations to other quantum platforms, such as ion-trap technologies or superconducting gate-model architectures, could be explored within this flexible framework.

  15. Improving the Spatial Prediction of Soil Organic Carbon Stocks in a Complex Tropical Mountain Landscape by Methodological Specifications in Machine Learning Approaches.

    PubMed

    Ließ, Mareike; Schmidt, Johannes; Glaser, Bruno

    2016-01-01

    Tropical forests are significant carbon sinks and their soils' carbon storage potential is immense. However, little is known about the soil organic carbon (SOC) stocks of tropical mountain areas whose complex soil-landscape and difficult accessibility pose a challenge to spatial analysis. The choice of methodology for spatial prediction is of high importance to improve the expected poor model results in case of low predictor-response correlations. Four aspects were considered to improve model performance in predicting SOC stocks of the organic layer of a tropical mountain forest landscape: Different spatial predictor settings, predictor selection strategies, various machine learning algorithms and model tuning. Five machine learning algorithms: random forests, artificial neural networks, multivariate adaptive regression splines, boosted regression trees and support vector machines were trained and tuned to predict SOC stocks from predictors derived from a digital elevation model and satellite image. Topographical predictors were calculated with a GIS search radius of 45 to 615 m. Finally, three predictor selection strategies were applied to the total set of 236 predictors. All machine learning algorithms-including the model tuning and predictor selection-were compared via five repetitions of a tenfold cross-validation. The boosted regression tree algorithm resulted in the overall best model. SOC stocks ranged between 0.2 to 17.7 kg m-2, displaying a huge variability with diffuse insolation and curvatures of different scale guiding the spatial pattern. Predictor selection and model tuning improved the models' predictive performance in all five machine learning algorithms. The rather low number of selected predictors favours forward compared to backward selection procedures. Choosing predictors due to their indiviual performance was vanquished by the two procedures which accounted for predictor interaction.

  16. A machine learning approach to the accurate prediction of monitor units for a compact proton machine.

    PubMed

    Sun, Baozhou; Lam, Dao; Yang, Deshan; Grantham, Kevin; Zhang, Tiezhi; Mutic, Sasa; Zhao, Tianyu

    2018-05-01

    Clinical treatment planning systems for proton therapy currently do not calculate monitor units (MUs) in passive scatter proton therapy due to the complexity of the beam delivery systems. Physical phantom measurements are commonly employed to determine the field-specific output factors (OFs) but are often subject to limited machine time, measurement uncertainties and intensive labor. In this study, a machine learning-based approach was developed to predict output (cGy/MU) and derive MUs, incorporating the dependencies on gantry angle and field size for a single-room proton therapy system. The goal of this study was to develop a secondary check tool for OF measurements and eventually eliminate patient-specific OF measurements. The OFs of 1754 fields previously measured in a water phantom with calibrated ionization chambers and electrometers for patient-specific fields with various range and modulation width combinations for 23 options were included in this study. The training data sets for machine learning models in three different methods (Random Forest, XGBoost and Cubist) included 1431 (~81%) OFs. Ten-fold cross-validation was used to prevent "overfitting" and to validate each model. The remaining 323 (~19%) OFs were used to test the trained models. The difference between the measured and predicted values from machine learning models was analyzed. Model prediction accuracy was also compared with that of the semi-empirical model developed by Kooy (Phys. Med. Biol. 50, 2005). Additionally, gantry angle dependence of OFs was measured for three groups of options categorized on the selection of the second scatters. Field size dependence of OFs was investigated for the measurements with and without patient-specific apertures. All three machine learning methods showed higher accuracy than the semi-empirical model which shows considerably large discrepancy of up to 7.7% for the treatment fields with full range and full modulation width. The Cubist-based solution outperformed all other models (P < 0.001) with the mean absolute discrepancy of 0.62% and maximum discrepancy of 3.17% between the measured and predicted OFs. The OFs showed a small dependence on gantry angle for small and deep options while they were constant for large options. The OF decreased by 3%-4% as the field radius was reduced to 2.5 cm. Machine learning methods can be used to predict OF for double-scatter proton machines with greater prediction accuracy than the most popular semi-empirical prediction model. By incorporating the gantry angle dependence and field size dependence, the machine learning-based methods can be used for a sanity check of OF measurements and bears the potential to eliminate the time-consuming patient-specific OF measurements. © 2018 American Association of Physicists in Medicine.

  17. Learning molecular energies using localized graph kernels.

    PubMed

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-21

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  18. Learning molecular energies using localized graph kernels

    NASA Astrophysics Data System (ADS)

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-01

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  19. Modeling Geomagnetic Variations using a Machine Learning Framework

    NASA Astrophysics Data System (ADS)

    Cheung, C. M. M.; Handmer, C.; Kosar, B.; Gerules, G.; Poduval, B.; Mackintosh, G.; Munoz-Jaramillo, A.; Bobra, M.; Hernandez, T.; McGranaghan, R. M.

    2017-12-01

    We present a framework for data-driven modeling of Heliophysics time series data. The Solar Terrestrial Interaction Neural net Generator (STING) is an open source python module built on top of state-of-the-art statistical learning frameworks (traditional machine learning methods as well as deep learning). To showcase the capability of STING, we deploy it for the problem of predicting the temporal variation of geomagnetic fields. The data used includes solar wind measurements from the OMNI database and geomagnetic field data taken by magnetometers at US Geological Survey observatories. We examine the predictive capability of different machine learning techniques (recurrent neural networks, support vector machines) for a range of forecasting times (minutes to 12 hours). STING is designed to be extensible to other types of data. We show how STING can be used on large sets of data from different sensors/observatories and adapted to tackle other problems in Heliophysics.

  20. ClearTK 2.0: Design Patterns for Machine Learning in UIMA

    PubMed Central

    Bethard, Steven; Ogren, Philip; Becker, Lee

    2014-01-01

    ClearTK adds machine learning functionality to the UIMA framework, providing wrappers to popular machine learning libraries, a rich feature extraction library that works across different classifiers, and utilities for applying and evaluating machine learning models. Since its inception in 2008, ClearTK has evolved in response to feedback from developers and the community. This evolution has followed a number of important design principles including: conceptually simple annotator interfaces, readable pipeline descriptions, minimal collection readers, type system agnostic code, modules organized for ease of import, and assisting user comprehension of the complex UIMA framework. PMID:29104966

  1. ClearTK 2.0: Design Patterns for Machine Learning in UIMA.

    PubMed

    Bethard, Steven; Ogren, Philip; Becker, Lee

    2014-05-01

    ClearTK adds machine learning functionality to the UIMA framework, providing wrappers to popular machine learning libraries, a rich feature extraction library that works across different classifiers, and utilities for applying and evaluating machine learning models. Since its inception in 2008, ClearTK has evolved in response to feedback from developers and the community. This evolution has followed a number of important design principles including: conceptually simple annotator interfaces, readable pipeline descriptions, minimal collection readers, type system agnostic code, modules organized for ease of import, and assisting user comprehension of the complex UIMA framework.

  2. Studying depression using imaging and machine learning methods.

    PubMed

    Patel, Meenal J; Khalaf, Alexander; Aizenstein, Howard J

    2016-01-01

    Depression is a complex clinical entity that can pose challenges for clinicians regarding both accurate diagnosis and effective timely treatment. These challenges have prompted the development of multiple machine learning methods to help improve the management of this disease. These methods utilize anatomical and physiological data acquired from neuroimaging to create models that can identify depressed patients vs. non-depressed patients and predict treatment outcomes. This article (1) presents a background on depression, imaging, and machine learning methodologies; (2) reviews methodologies of past studies that have used imaging and machine learning to study depression; and (3) suggests directions for future depression-related studies.

  3. Machine-Learning Approach for Design of Nanomagnetic-Based Antennas

    NASA Astrophysics Data System (ADS)

    Gianfagna, Carmine; Yu, Huan; Swaminathan, Madhavan; Pulugurtha, Raj; Tummala, Rao; Antonini, Giulio

    2017-08-01

    We propose a machine-learning approach for design of planar inverted-F antennas with a magneto-dielectric nanocomposite substrate. It is shown that machine-learning techniques can be efficiently used to characterize nanomagnetic-based antennas by accurately mapping the particle radius and volume fraction of the nanomagnetic material to antenna parameters such as gain, bandwidth, radiation efficiency, and resonant frequency. A modified mixing rule model is also presented. In addition, the inverse problem is addressed through machine learning as well, where given the antenna parameters, the corresponding design space of possible material parameters is identified.

  4. Bypassing the Kohn-Sham equations with machine learning.

    PubMed

    Brockherde, Felix; Vogt, Leslie; Li, Li; Tuckerman, Mark E; Burke, Kieron; Müller, Klaus-Robert

    2017-10-11

    Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional theory to solve electronic structure problems in a wide variety of scientific fields. Machine learning holds the promise of learning the energy functional via examples, bypassing the need to solve the Kohn-Sham equations. This should yield substantial savings in computer time, allowing larger systems and/or longer time-scales to be tackled, but attempts to machine-learn this functional have been limited by the need to find its derivative. The present work overcomes this difficulty by directly learning the density-potential and energy-density maps for test systems and various molecules. We perform the first molecular dynamics simulation with a machine-learned density functional on malonaldehyde and are able to capture the intramolecular proton transfer process. Learning density models now allows the construction of accurate density functionals for realistic molecular systems.Machine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations.

  5. Risk estimation using probability machines.

    PubMed

    Dasgupta, Abhijit; Szymczak, Silke; Moore, Jason H; Bailey-Wilson, Joan E; Malley, James D

    2014-03-01

    Logistic regression has been the de facto, and often the only, model used in the description and analysis of relationships between a binary outcome and observed features. It is widely used to obtain the conditional probabilities of the outcome given predictors, as well as predictor effect size estimates using conditional odds ratios. We show how statistical learning machines for binary outcomes, provably consistent for the nonparametric regression problem, can be used to provide both consistent conditional probability estimation and conditional effect size estimates. Effect size estimates from learning machines leverage our understanding of counterfactual arguments central to the interpretation of such estimates. We show that, if the data generating model is logistic, we can recover accurate probability predictions and effect size estimates with nearly the same efficiency as a correct logistic model, both for main effects and interactions. We also propose a method using learning machines to scan for possible interaction effects quickly and efficiently. Simulations using random forest probability machines are presented. The models we propose make no assumptions about the data structure, and capture the patterns in the data by just specifying the predictors involved and not any particular model structure. So they do not run the same risks of model mis-specification and the resultant estimation biases as a logistic model. This methodology, which we call a "risk machine", will share properties from the statistical machine that it is derived from.

  6. Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T.

    PubMed

    Citak-Er, Fusun; Firat, Zeynep; Kovanlikaya, Ilhami; Ture, Ugur; Ozturk-Isik, Esin

    2018-06-15

    The objective of this study was to assess the contribution of multi-parametric (mp) magnetic resonance imaging (MRI) quantitative features in the machine learning-based grading of gliomas with a multi-region-of-interests approach. Forty-three patients who were newly diagnosed as having a glioma were included in this study. The patients were scanned prior to any therapy using a standard brain tumor magnetic resonance (MR) imaging protocol that included T1 and T2-weighted, diffusion-weighted, diffusion tensor, MR perfusion and MR spectroscopic imaging. Three different regions-of-interest were drawn for each subject to encompass tumor, immediate tumor periphery, and distant peritumoral edema/normal. The normalized mp-MRI features were used to build machine-learning models for differentiating low-grade gliomas (WHO grades I and II) from high grades (WHO grades III and IV). In order to assess the contribution of regional mp-MRI quantitative features to the classification models, a support vector machine-based recursive feature elimination method was applied prior to classification. A machine-learning model based on support vector machine algorithm with linear kernel achieved an accuracy of 93.0%, a specificity of 86.7%, and a sensitivity of 96.4% for the grading of gliomas using ten-fold cross validation based on the proposed subset of the mp-MRI features. In this study, machine-learning based on multiregional and multi-parametric MRI data has proven to be an important tool in grading glial tumors accurately even in this limited patient population. Future studies are needed to investigate the use of machine learning algorithms for brain tumor classification in a larger patient cohort. Copyright © 2018. Published by Elsevier Ltd.

  7. An Overview and Evaluation of Recent Machine Learning Imputation Methods Using Cardiac Imaging Data.

    PubMed

    Liu, Yuzhe; Gopalakrishnan, Vanathi

    2017-03-01

    Many clinical research datasets have a large percentage of missing values that directly impacts their usefulness in yielding high accuracy classifiers when used for training in supervised machine learning. While missing value imputation methods have been shown to work well with smaller percentages of missing values, their ability to impute sparse clinical research data can be problem specific. We previously attempted to learn quantitative guidelines for ordering cardiac magnetic resonance imaging during the evaluation for pediatric cardiomyopathy, but missing data significantly reduced our usable sample size. In this work, we sought to determine if increasing the usable sample size through imputation would allow us to learn better guidelines. We first review several machine learning methods for estimating missing data. Then, we apply four popular methods (mean imputation, decision tree, k-nearest neighbors, and self-organizing maps) to a clinical research dataset of pediatric patients undergoing evaluation for cardiomyopathy. Using Bayesian Rule Learning (BRL) to learn ruleset models, we compared the performance of imputation-augmented models versus unaugmented models. We found that all four imputation-augmented models performed similarly to unaugmented models. While imputation did not improve performance, it did provide evidence for the robustness of our learned models.

  8. Improving the Spatial Prediction of Soil Organic Carbon Stocks in a Complex Tropical Mountain Landscape by Methodological Specifications in Machine Learning Approaches

    PubMed Central

    Schmidt, Johannes; Glaser, Bruno

    2016-01-01

    Tropical forests are significant carbon sinks and their soils’ carbon storage potential is immense. However, little is known about the soil organic carbon (SOC) stocks of tropical mountain areas whose complex soil-landscape and difficult accessibility pose a challenge to spatial analysis. The choice of methodology for spatial prediction is of high importance to improve the expected poor model results in case of low predictor-response correlations. Four aspects were considered to improve model performance in predicting SOC stocks of the organic layer of a tropical mountain forest landscape: Different spatial predictor settings, predictor selection strategies, various machine learning algorithms and model tuning. Five machine learning algorithms: random forests, artificial neural networks, multivariate adaptive regression splines, boosted regression trees and support vector machines were trained and tuned to predict SOC stocks from predictors derived from a digital elevation model and satellite image. Topographical predictors were calculated with a GIS search radius of 45 to 615 m. Finally, three predictor selection strategies were applied to the total set of 236 predictors. All machine learning algorithms—including the model tuning and predictor selection—were compared via five repetitions of a tenfold cross-validation. The boosted regression tree algorithm resulted in the overall best model. SOC stocks ranged between 0.2 to 17.7 kg m-2, displaying a huge variability with diffuse insolation and curvatures of different scale guiding the spatial pattern. Predictor selection and model tuning improved the models’ predictive performance in all five machine learning algorithms. The rather low number of selected predictors favours forward compared to backward selection procedures. Choosing predictors due to their indiviual performance was vanquished by the two procedures which accounted for predictor interaction. PMID:27128736

  9. AutoQSAR: an automated machine learning tool for best-practice quantitative structure-activity relationship modeling.

    PubMed

    Dixon, Steven L; Duan, Jianxin; Smith, Ethan; Von Bargen, Christopher D; Sherman, Woody; Repasky, Matthew P

    2016-10-01

    We introduce AutoQSAR, an automated machine-learning application to build, validate and deploy quantitative structure-activity relationship (QSAR) models. The process of descriptor generation, feature selection and the creation of a large number of QSAR models has been automated into a single workflow within AutoQSAR. The models are built using a variety of machine-learning methods, and each model is scored using a novel approach. Effectiveness of the method is demonstrated through comparison with literature QSAR models using identical datasets for six end points: protein-ligand binding affinity, solubility, blood-brain barrier permeability, carcinogenicity, mutagenicity and bioaccumulation in fish. AutoQSAR demonstrates similar or better predictive performance as compared with published results for four of the six endpoints while requiring minimal human time and expertise.

  10. RG-inspired machine learning for lattice field theory

    NASA Astrophysics Data System (ADS)

    Foreman, Sam; Giedt, Joel; Meurice, Yannick; Unmuth-Yockey, Judah

    2018-03-01

    Machine learning has been a fast growing field of research in several areas dealing with large datasets. We report recent attempts to use renormalization group (RG) ideas in the context of machine learning. We examine coarse graining procedures for perceptron models designed to identify the digits of the MNIST data. We discuss the correspondence between principal components analysis (PCA) and RG flows across the transition for worm configurations of the 2D Ising model. Preliminary results regarding the logarithmic divergence of the leading PCA eigenvalue were presented at the conference. More generally, we discuss the relationship between PCA and observables in Monte Carlo simulations and the possibility of reducing the number of learning parameters in supervised learning based on RG inspired hierarchical ansatzes.

  11. A Machine LearningFramework to Forecast Wave Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; James, S. C.; O'Donncha, F.

    2017-12-01

    Recently, significant effort has been undertaken to quantify and extract wave energy because it is renewable, environmental friendly, abundant, and often close to population centers. However, a major challenge is the ability to accurately and quickly predict energy production, especially across a 48-hour cycle. Accurate forecasting of wave conditions is a challenging undertaking that typically involves solving the spectral action-balance equation on a discretized grid with high spatial resolution. The nature of the computations typically demands high-performance computing infrastructure. Using a case-study site at Monterey Bay, California, a machine learning framework was trained to replicate numerically simulated wave conditions at a fraction of the typical computational cost. Specifically, the physics-based Simulating WAves Nearshore (SWAN) model, driven by measured wave conditions, nowcast ocean currents, and wind data, was used to generate training data for machine learning algorithms. The model was run between April 1st, 2013 and May 31st, 2017 generating forecasts at three-hour intervals yielding 11,078 distinct model outputs. SWAN-generated fields of 3,104 wave heights and a characteristic period could be replicated through simple matrix multiplications using the mapping matrices from machine learning algorithms. In fact, wave-height RMSEs from the machine learning algorithms (9 cm) were less than those for the SWAN model-verification exercise where those simulations were compared to buoy wave data within the model domain (>40 cm). The validated machine learning approach, which acts as an accurate surrogate for the SWAN model, can now be used to perform real-time forecasts of wave conditions for the next 48 hours using available forecasted boundary wave conditions, ocean currents, and winds. This solution has obvious applications to wave-energy generation as accurate wave conditions can be forecasted with over a three-order-of-magnitude reduction in computational expense. The low computational cost (and by association low computer-power requirement) means that the machine learning algorithms could be installed on a wave-energy converter as a form of "edge computing" where a device could forecast its own 48-hour energy production.

  12. Machine Learning and Inverse Problem in Geodynamics

    NASA Astrophysics Data System (ADS)

    Shahnas, M. H.; Yuen, D. A.; Pysklywec, R.

    2017-12-01

    During the past few decades numerical modeling and traditional HPC have been widely deployed in many diverse fields for problem solutions. However, in recent years the rapid emergence of machine learning (ML), a subfield of the artificial intelligence (AI), in many fields of sciences, engineering, and finance seems to mark a turning point in the replacement of traditional modeling procedures with artificial intelligence-based techniques. The study of the circulation in the interior of Earth relies on the study of high pressure mineral physics, geochemistry, and petrology where the number of the mantle parameters is large and the thermoelastic parameters are highly pressure- and temperature-dependent. More complexity arises from the fact that many of these parameters that are incorporated in the numerical models as input parameters are not yet well established. In such complex systems the application of machine learning algorithms can play a valuable role. Our focus in this study is the application of supervised machine learning (SML) algorithms in predicting mantle properties with the emphasis on SML techniques in solving the inverse problem. As a sample problem we focus on the spin transition in ferropericlase and perovskite that may cause slab and plume stagnation at mid-mantle depths. The degree of the stagnation depends on the degree of negative density anomaly at the spin transition zone. The training and testing samples for the machine learning models are produced by the numerical convection models with known magnitudes of density anomaly (as the class labels of the samples). The volume fractions of the stagnated slabs and plumes which can be considered as measures for the degree of stagnation are assigned as sample features. The machine learning models can determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at mid-mantle depths. Employing support vector machine (SVM) algorithms we show that SML techniques can successfully predict the magnitude of the mantle density anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to more complex problems in mantle dynamics by employing deep learning algorithms for estimation of mantle properties such as viscosity, elastic parameters, and thermal and chemical anomalies.

  13. Use of Advanced Machine-Learning Techniques for Non-Invasive Monitoring of Hemorrhage

    DTIC Science & Technology

    2010-04-01

    that state-of-the-art machine learning techniques when integrated with novel non-invasive monitoring technologies could detect subtle, physiological...decompensation. Continuous, non-invasively measured hemodynamic signals (e.g., ECG, blood pressures, stroke volume) were used for the development of machine ... learning algorithms. Accuracy estimates were obtained by building models using 27 subjects and testing on the 28th. This process was repeated 28 times

  14. Clinical data miner: an electronic case report form system with integrated data preprocessing and machine-learning libraries supporting clinical diagnostic model research.

    PubMed

    Installé, Arnaud Jf; Van den Bosch, Thierry; De Moor, Bart; Timmerman, Dirk

    2014-10-20

    Using machine-learning techniques, clinical diagnostic model research extracts diagnostic models from patient data. Traditionally, patient data are often collected using electronic Case Report Form (eCRF) systems, while mathematical software is used for analyzing these data using machine-learning techniques. Due to the lack of integration between eCRF systems and mathematical software, extracting diagnostic models is a complex, error-prone process. Moreover, due to the complexity of this process, it is usually only performed once, after a predetermined number of data points have been collected, without insight into the predictive performance of the resulting models. The objective of the study of Clinical Data Miner (CDM) software framework is to offer an eCRF system with integrated data preprocessing and machine-learning libraries, improving efficiency of the clinical diagnostic model research workflow, and to enable optimization of patient inclusion numbers through study performance monitoring. The CDM software framework was developed using a test-driven development (TDD) approach, to ensure high software quality. Architecturally, CDM's design is split over a number of modules, to ensure future extendability. The TDD approach has enabled us to deliver high software quality. CDM's eCRF Web interface is in active use by the studies of the International Endometrial Tumor Analysis consortium, with over 4000 enrolled patients, and more studies planned. Additionally, a derived user interface has been used in six separate interrater agreement studies. CDM's integrated data preprocessing and machine-learning libraries simplify some otherwise manual and error-prone steps in the clinical diagnostic model research workflow. Furthermore, CDM's libraries provide study coordinators with a method to monitor a study's predictive performance as patient inclusions increase. To our knowledge, CDM is the only eCRF system integrating data preprocessing and machine-learning libraries. This integration improves the efficiency of the clinical diagnostic model research workflow. Moreover, by simplifying the generation of learning curves, CDM enables study coordinators to assess more accurately when data collection can be terminated, resulting in better models or lower patient recruitment costs.

  15. The Necessity of Machine Learning and Epistemology in the Development of Categorization Theories: A Case Study in Prototype-Exemplar Debate

    NASA Astrophysics Data System (ADS)

    Gagliardi, Francesco

    In the present paper we discuss some aspects of the development of categorization theories concerning cognitive psychology and machine learning. We consider the thirty-year debate between prototype-theory and exemplar-theory in the studies of cognitive psychology regarding the categorization processes. We propose this debate is ill-posed, because it neglects some theoretical and empirical results of machine learning about the bias-variance theorem and the existence of some instance-based classifiers which can embed models subsuming both prototype and exemplar theories. Moreover this debate lies on a epistemological error of pursuing a, so called, experimentum crucis. Then we present how an interdisciplinary approach, based on synthetic method for cognitive modelling, can be useful to progress both the fields of cognitive psychology and machine learning.

  16. Integrating Machine Learning into a Crowdsourced Model for Earthquake-Induced Damage Assessment

    NASA Technical Reports Server (NTRS)

    Rebbapragada, Umaa; Oommen, Thomas

    2011-01-01

    On January 12th, 2010, a catastrophic 7.0M earthquake devastated the country of Haiti. In the aftermath of an earthquake, it is important to rapidly assess damaged areas in order to mobilize the appropriate resources. The Haiti damage assessment effort introduced a promising model that uses crowdsourcing to map damaged areas in freely available remotely-sensed data. This paper proposes the application of machine learning methods to improve this model. Specifically, we apply work on learning from multiple, imperfect experts to the assessment of volunteer reliability, and propose the use of image segmentation to automate the detection of damaged areas. We wrap both tasks in an active learning framework in order to shift volunteer effort from mapping a full catalog of images to the generation of high-quality training data. We hypothesize that the integration of machine learning into this model improves its reliability, maintains the speed of damage assessment, and allows the model to scale to higher data volumes.

  17. Improving Satellite Observation Utilization for Model Initialization with Machine Learning: An Introduction and Tackling the "Labeled Dataset" Challenge for Cyclones Around the World

    NASA Astrophysics Data System (ADS)

    Bonfanti, C. E.; Stewart, J.; Lee, Y. J.; Govett, M.; Trailovic, L.; Etherton, B.

    2017-12-01

    One of the National Oceanic and Atmospheric Administration (NOAA) goals is to provide timely and reliable weather forecasts to support important decisions when and where people need it for safety, emergencies, planning for day-to-day activities. Satellite data is essential for areas lacking in-situ observations for use as initial conditions in Numerical Weather Prediction (NWP) Models, such as spans of the ocean or remote areas of land. Currently only about 7% of total received satellite data is selected for use and from that, an even smaller percentage ever are assimilated into NWP models. With machine learning, the computational and time costs needed for satellite data selection can be greatly reduced. We study various machine learning approaches to process orders of magnitude more satellite data in significantly less time allowing for a greater quantity and more intelligent selection of data to be used for assimilation purposes. Given the future launches of satellites in the upcoming years, machine learning is capable of being applied for better selection of Regions of Interest (ROI) in the magnitudes more of satellite data that will be received. This paper discusses the background of machine learning methods as applied to weather forecasting and the challenges of creating a "labeled dataset" for training and testing purposes. In the training stage of supervised machine learning, labeled data are important to identify a ROI as either true or false so that the model knows what signatures in satellite data to identify. Authors have selected cyclones, including tropical cyclones and mid-latitude lows, as ROI for their machine learning purposes and created a labeled dataset of true or false for ROI from Global Forecast System (GFS) reanalysis data. A dataset like this does not yet exist and given the need for a high quantity of samples, is was decided this was best done with automation. This process was done by developing a program similar to the National Center for Environmental Prediction (NCEP) tropical cyclone tracker by Marchok that was used to identify cyclones based off its physical characteristics. We will discuss the methods and challenges to creating this dataset and the dataset's use for our current supervised machine learning model as well as use for future work on events such as convection initiation.

  18. Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes - ELSA-Brasil: accuracy study.

    PubMed

    Olivera, André Rodrigues; Roesler, Valter; Iochpe, Cirano; Schmidt, Maria Inês; Vigo, Álvaro; Barreto, Sandhi Maria; Duncan, Bruce Bartholow

    2017-01-01

    Type 2 diabetes is a chronic disease associated with a wide range of serious health complications that have a major impact on overall health. The aims here were to develop and validate predictive models for detecting undiagnosed diabetes using data from the Longitudinal Study of Adult Health (ELSA-Brasil) and to compare the performance of different machine-learning algorithms in this task. Comparison of machine-learning algorithms to develop predictive models using data from ELSA-Brasil. After selecting a subset of 27 candidate variables from the literature, models were built and validated in four sequential steps: (i) parameter tuning with tenfold cross-validation, repeated three times; (ii) automatic variable selection using forward selection, a wrapper strategy with four different machine-learning algorithms and tenfold cross-validation (repeated three times), to evaluate each subset of variables; (iii) error estimation of model parameters with tenfold cross-validation, repeated ten times; and (iv) generalization testing on an independent dataset. The models were created with the following machine-learning algorithms: logistic regression, artificial neural network, naïve Bayes, K-nearest neighbor and random forest. The best models were created using artificial neural networks and logistic regression. -These achieved mean areas under the curve of, respectively, 75.24% and 74.98% in the error estimation step and 74.17% and 74.41% in the generalization testing step. Most of the predictive models produced similar results, and demonstrated the feasibility of identifying individuals with highest probability of having undiagnosed diabetes, through easily-obtained clinical data.

  19. A review on machine learning principles for multi-view biological data integration.

    PubMed

    Li, Yifeng; Wu, Fang-Xiang; Ngom, Alioune

    2018-03-01

    Driven by high-throughput sequencing techniques, modern genomic and clinical studies are in a strong need of integrative machine learning models for better use of vast volumes of heterogeneous information in the deep understanding of biological systems and the development of predictive models. How data from multiple sources (called multi-view data) are incorporated in a learning system is a key step for successful analysis. In this article, we provide a comprehensive review on omics and clinical data integration techniques, from a machine learning perspective, for various analyses such as prediction, clustering, dimension reduction and association. We shall show that Bayesian models are able to use prior information and model measurements with various distributions; tree-based methods can either build a tree with all features or collectively make a final decision based on trees learned from each view; kernel methods fuse the similarity matrices learned from individual views together for a final similarity matrix or learning model; network-based fusion methods are capable of inferring direct and indirect associations in a heterogeneous network; matrix factorization models have potential to learn interactions among features from different views; and a range of deep neural networks can be integrated in multi-modal learning for capturing the complex mechanism of biological systems.

  20. Connectionist models of conditioning: A tutorial

    PubMed Central

    Kehoe, E. James

    1989-01-01

    Models containing networks of neuron-like units have become increasingly prominent in the study of both cognitive psychology and artificial intelligence. This article describes the basic features of connectionist models and provides an illustrative application to compound-stimulus effects in respondent conditioning. Connectionist models designed specifically for operant conditioning are not yet widely available, but some current learning algorithms for machine learning indicate that such models are feasible. Conversely, designers for machine learning appear to have recognized the value of behavioral principles in producing adaptive behavior in their creations. PMID:16812604

  1. An Introduction to Topic Modeling as an Unsupervised Machine Learning Way to Organize Text Information

    ERIC Educational Resources Information Center

    Snyder, Robin M.

    2015-01-01

    The field of topic modeling has become increasingly important over the past few years. Topic modeling is an unsupervised machine learning way to organize text (or image or DNA, etc.) information such that related pieces of text can be identified. This paper/session will present/discuss the current state of topic modeling, why it is important, and…

  2. Amplifying human ability through autonomics and machine learning in IMPACT

    NASA Astrophysics Data System (ADS)

    Dzieciuch, Iryna; Reeder, John; Gutzwiller, Robert; Gustafson, Eric; Coronado, Braulio; Martinez, Luis; Croft, Bryan; Lange, Douglas S.

    2017-05-01

    Amplifying human ability for controlling complex environments featuring autonomous units can be aided by learned models of human and system performance. In developing a command and control system that allows a small number of people to control a large number of autonomous teams, we employ an autonomics framework to manage the networks that represent mission plans and the networks that are composed of human controllers and their autonomous assistants. Machine learning allows us to build models of human and system performance useful for monitoring plans and managing human attention and task loads. Machine learning also aids in the development of tactics that human supervisors can successfully monitor through the command and control system.

  3. CrossSim

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plimpton, Steven J.; Agarwal, Sapan; Schiek, Richard

    2016-09-02

    CrossSim is a simulator for modeling neural-inspired machine learning algorithms on analog hardware, such as resistive memory crossbars. It includes noise models for reading and updating the resistances, which can be based on idealized equations or experimental data. It can also introduce noise and finite precision effects when converting values from digital to analog and vice versa. All of these effects can be turned on or off as an algorithm processes a data set and attempts to learn its salient attributes so that it can be categorized in the machine learning training/classification context. CrossSim thus allows the robustness, accuracy, andmore » energy usage of a machine learning algorithm to be tested on simulated hardware.« less

  4. Assessing Continuous Operator Workload With a Hybrid Scaffolded Neuroergonomic Modeling Approach.

    PubMed

    Borghetti, Brett J; Giametta, Joseph J; Rusnock, Christina F

    2017-02-01

    We aimed to predict operator workload from neurological data using statistical learning methods to fit neurological-to-state-assessment models. Adaptive systems require real-time mental workload assessment to perform dynamic task allocations or operator augmentation as workload issues arise. Neuroergonomic measures have great potential for informing adaptive systems, and we combine these measures with models of task demand as well as information about critical events and performance to clarify the inherent ambiguity of interpretation. We use machine learning algorithms on electroencephalogram (EEG) input to infer operator workload based upon Improved Performance Research Integration Tool workload model estimates. Cross-participant models predict workload of other participants, statistically distinguishing between 62% of the workload changes. Machine learning models trained from Monte Carlo resampled workload profiles can be used in place of deterministic workload profiles for cross-participant modeling without incurring a significant decrease in machine learning model performance, suggesting that stochastic models can be used when limited training data are available. We employed a novel temporary scaffold of simulation-generated workload profile truth data during the model-fitting process. A continuous workload profile serves as the target to train our statistical machine learning models. Once trained, the workload profile scaffolding is removed and the trained model is used directly on neurophysiological data in future operator state assessments. These modeling techniques demonstrate how to use neuroergonomic methods to develop operator state assessments, which can be employed in adaptive systems.

  5. Evaluating data distribution and drift vulnerabilities of machine learning algorithms in secure and adversarial environments

    NASA Astrophysics Data System (ADS)

    Nelson, Kevin; Corbin, George; Blowers, Misty

    2014-05-01

    Machine learning is continuing to gain popularity due to its ability to solve problems that are difficult to model using conventional computer programming logic. Much of the current and past work has focused on algorithm development, data processing, and optimization. Lately, a subset of research has emerged which explores issues related to security. This research is gaining traction as systems employing these methods are being applied to both secure and adversarial environments. One of machine learning's biggest benefits, its data-driven versus logic-driven approach, is also a weakness if the data on which the models rely are corrupted. Adversaries could maliciously influence systems which address drift and data distribution changes using re-training and online learning. Our work is focused on exploring the resilience of various machine learning algorithms to these data-driven attacks. In this paper, we present our initial findings using Monte Carlo simulations, and statistical analysis, to explore the maximal achievable shift to a classification model, as well as the required amount of control over the data.

  6. Intelligent path loss prediction engine design using machine learning in the urban outdoor environment

    NASA Astrophysics Data System (ADS)

    Wang, Ruichen; Lu, Jingyang; Xu, Yiran; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik

    2018-05-01

    Due to the progressive expansion of public mobile networks and the dramatic growth of the number of wireless users in recent years, researchers are motivated to study the radio propagation in urban environments and develop reliable and fast path loss prediction models. During last decades, different types of propagation models are developed for urban scenario path loss predictions such as the Hata model and the COST 231 model. In this paper, the path loss prediction model is thoroughly investigated using machine learning approaches. Different non-linear feature selection methods are deployed and investigated to reduce the computational complexity. The simulation results are provided to demonstratethe validity of the machine learning based path loss prediction engine, which can correctly determine the signal propagation in a wireless urban setting.

  7. Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms.

    PubMed

    Barzegar, Rahim; Moghaddam, Asghar Asghari; Deo, Ravinesh; Fijani, Elham; Tziritis, Evangelos

    2018-04-15

    Constructing accurate and reliable groundwater risk maps provide scientifically prudent and strategic measures for the protection and management of groundwater. The objectives of this paper are to design and validate machine learning based-risk maps using ensemble-based modelling with an integrative approach. We employ the extreme learning machines (ELM), multivariate regression splines (MARS), M5 Tree and support vector regression (SVR) applied in multiple aquifer systems (e.g. unconfined, semi-confined and confined) in the Marand plain, North West Iran, to encapsulate the merits of individual learning algorithms in a final committee-based ANN model. The DRASTIC Vulnerability Index (VI) ranged from 56.7 to 128.1, categorized with no risk, low and moderate vulnerability thresholds. The correlation coefficient (r) and Willmott's Index (d) between NO 3 concentrations and VI were 0.64 and 0.314, respectively. To introduce improvements in the original DRASTIC method, the vulnerability indices were adjusted by NO 3 concentrations, termed as the groundwater contamination risk (GCR). Seven DRASTIC parameters utilized as the model inputs and GCR values utilized as the outputs of individual machine learning models were served in the fully optimized committee-based ANN-predictive model. The correlation indicators demonstrated that the ELM and SVR models outperformed the MARS and M5 Tree models, by virtue of a larger d and r value. Subsequently, the r and d metrics for the ANN-committee based multi-model in the testing phase were 0.8889 and 0.7913, respectively; revealing the superiority of the integrated (or ensemble) machine learning models when compared with the original DRASTIC approach. The newly designed multi-model ensemble-based approach can be considered as a pragmatic step for mapping groundwater contamination risks of multiple aquifer systems with multi-model techniques, yielding the high accuracy of the ANN committee-based model. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Machine learning, social learning and the governance of self-driving cars.

    PubMed

    Stilgoe, Jack

    2018-02-01

    Self-driving cars, a quintessentially 'smart' technology, are not born smart. The algorithms that control their movements are learning as the technology emerges. Self-driving cars represent a high-stakes test of the powers of machine learning, as well as a test case for social learning in technology governance. Society is learning about the technology while the technology learns about society. Understanding and governing the politics of this technology means asking 'Who is learning, what are they learning and how are they learning?' Focusing on the successes and failures of social learning around the much-publicized crash of a Tesla Model S in 2016, I argue that trajectories and rhetorics of machine learning in transport pose a substantial governance challenge. 'Self-driving' or 'autonomous' cars are misnamed. As with other technologies, they are shaped by assumptions about social needs, solvable problems, and economic opportunities. Governing these technologies in the public interest means improving social learning by constructively engaging with the contingencies of machine learning.

  9. Landcover Classification Using Deep Fully Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Wang, J.; Li, X.; Zhou, S.; Tang, J.

    2017-12-01

    Land cover classification has always been an essential application in remote sensing. Certain image features are needed for land cover classification whether it is based on pixel or object-based methods. Different from other machine learning methods, deep learning model not only extracts useful information from multiple bands/attributes, but also learns spatial characteristics. In recent years, deep learning methods have been developed rapidly and widely applied in image recognition, semantic understanding, and other application domains. However, there are limited studies applying deep learning methods in land cover classification. In this research, we used fully convolutional networks (FCN) as the deep learning model to classify land covers. The National Land Cover Database (NLCD) within the state of Kansas was used as training dataset and Landsat images were classified using the trained FCN model. We also applied an image segmentation method to improve the original results from the FCN model. In addition, the pros and cons between deep learning and several machine learning methods were compared and explored. Our research indicates: (1) FCN is an effective classification model with an overall accuracy of 75%; (2) image segmentation improves the classification results with better match of spatial patterns; (3) FCN has an excellent ability of learning which can attains higher accuracy and better spatial patterns compared with several machine learning methods.

  10. ICTNET at Web Track 2012 Ad-hoc Task

    DTIC Science & Technology

    2012-11-01

    Model and use it as baseline this year. 3.2 Learning to rank Learning to rank (LTR) introduces machine learning to retrieval ranking problem. It...Yoram Singer. An efficient boosting algorithm  for  combining preferences [J]. The Journal of  Machine   Learning  Research. 2003. 

  11. A Collaborative Framework for Distributed Privacy-Preserving Support Vector Machine Learning

    PubMed Central

    Que, Jialan; Jiang, Xiaoqian; Ohno-Machado, Lucila

    2012-01-01

    A Support Vector Machine (SVM) is a popular tool for decision support. The traditional way to build an SVM model is to estimate parameters based on a centralized repository of data. However, in the field of biomedicine, patient data are sometimes stored in local repositories or institutions where they were collected, and may not be easily shared due to privacy concerns. This creates a substantial barrier for researchers to effectively learn from the distributed data using machine learning tools like SVMs. To overcome this difficulty and promote efficient information exchange without sharing sensitive raw data, we developed a Distributed Privacy Preserving Support Vector Machine (DPP-SVM). The DPP-SVM enables privacy-preserving collaborative learning, in which a trusted server integrates “privacy-insensitive” intermediary results. The globally learned model is guaranteed to be exactly the same as learned from combined data. We also provide a free web-service (http://privacy.ucsd.edu:8080/ppsvm/) for multiple participants to collaborate and complete the SVM-learning task in an efficient and privacy-preserving manner. PMID:23304414

  12. A Review of Current Machine Learning Methods Used for Cancer Recurrence Modeling and Prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemphill, Geralyn M.

    Cancer has been characterized as a heterogeneous disease consisting of many different subtypes. The early diagnosis and prognosis of a cancer type has become a necessity in cancer research. A major challenge in cancer management is the classification of patients into appropriate risk groups for better treatment and follow-up. Such risk assessment is critically important in order to optimize the patient’s health and the use of medical resources, as well as to avoid cancer recurrence. This paper focuses on the application of machine learning methods for predicting the likelihood of a recurrence of cancer. It is not meant to bemore » an extensive review of the literature on the subject of machine learning techniques for cancer recurrence modeling. Other recent papers have performed such a review, and I will rely heavily on the results and outcomes from these papers. The electronic databases that were used for this review include PubMed, Google, and Google Scholar. Query terms used include “cancer recurrence modeling”, “cancer recurrence and machine learning”, “cancer recurrence modeling and machine learning”, and “machine learning for cancer recurrence and prediction”. The most recent and most applicable papers to the topic of this review have been included in the references. It also includes a list of modeling and classification methods to predict cancer recurrence.« less

  13. Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.

    PubMed

    Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi

    2013-01-01

    The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.

  14. Classification of Breast Cancer Resistant Protein (BCRP) Inhibitors and Non-Inhibitors Using Machine Learning Approaches.

    PubMed

    Belekar, Vilas; Lingineni, Karthik; Garg, Prabha

    2015-01-01

    The breast cancer resistant protein (BCRP) is an important transporter and its inhibitors play an important role in cancer treatment by improving the oral bioavailability as well as blood brain barrier (BBB) permeability of anticancer drugs. In this work, a computational model was developed to predict the compounds as BCRP inhibitors or non-inhibitors. Various machine learning approaches like, support vector machine (SVM), k-nearest neighbor (k-NN) and artificial neural network (ANN) were used to develop the models. The Matthews correlation coefficients (MCC) of developed models using ANN, k-NN and SVM are 0.67, 0.71 and 0.77, and prediction accuracies are 85.2%, 88.3% and 90.8% respectively. The developed models were tested with a test set of 99 compounds and further validated with external set of 98 compounds. Distribution plot analysis and various machine learning models were also developed based on druglikeness descriptors. Applicability domain is used to check the prediction reliability of the new molecules.

  15. Application of Machine Learning to Rotorcraft Health Monitoring

    NASA Technical Reports Server (NTRS)

    Cody, Tyler; Dempsey, Paula J.

    2017-01-01

    Machine learning is a powerful tool for data exploration and model building with large data sets. This project aimed to use machine learning techniques to explore the inherent structure of data from rotorcraft gear tests, relationships between features and damage states, and to build a system for predicting gear health for future rotorcraft transmission applications. Classical machine learning techniques are difficult, if not irresponsible to apply to time series data because many make the assumption of independence between samples. To overcome this, Hidden Markov Models were used to create a binary classifier for identifying scuffing transitions and Recurrent Neural Networks were used to leverage long distance relationships in predicting discrete damage states. When combined in a workflow, where the binary classifier acted as a filter for the fatigue monitor, the system was able to demonstrate accuracy in damage state prediction and scuffing identification. The time dependent nature of the data restricted data exploration to collecting and analyzing data from the model selection process. The limited amount of available data was unable to give useful information, and the division of training and testing sets tended to heavily influence the scores of the models across combinations of features and hyper-parameters. This work built a framework for tracking scuffing and fatigue on streaming data and demonstrates that machine learning has much to offer rotorcraft health monitoring by using Bayesian learning and deep learning methods to capture the time dependent nature of the data. Suggested future work is to implement the framework developed in this project using a larger variety of data sets to test the generalization capabilities of the models and allow for data exploration.

  16. Visible Machine Learning for Biomedicine.

    PubMed

    Yu, Michael K; Ma, Jianzhu; Fisher, Jasmin; Kreisberg, Jason F; Raphael, Benjamin J; Ideker, Trey

    2018-06-14

    A major ambition of artificial intelligence lies in translating patient data to successful therapies. Machine learning models face particular challenges in biomedicine, however, including handling of extreme data heterogeneity and lack of mechanistic insight into predictions. Here, we argue for "visible" approaches that guide model structure with experimental biology. Copyright © 2018. Published by Elsevier Inc.

  17. Refining Markov state models for conformational dynamics using ensemble-averaged data and time-series trajectories

    NASA Astrophysics Data System (ADS)

    Matsunaga, Y.; Sugita, Y.

    2018-06-01

    A data-driven modeling scheme is proposed for conformational dynamics of biomolecules based on molecular dynamics (MD) simulations and experimental measurements. In this scheme, an initial Markov State Model (MSM) is constructed from MD simulation trajectories, and then, the MSM parameters are refined using experimental measurements through machine learning techniques. The second step can reduce the bias of MD simulation results due to inaccurate force-field parameters. Either time-series trajectories or ensemble-averaged data are available as a training data set in the scheme. Using a coarse-grained model of a dye-labeled polyproline-20, we compare the performance of machine learning estimations from the two types of training data sets. Machine learning from time-series data could provide the equilibrium populations of conformational states as well as their transition probabilities. It estimates hidden conformational states in more robust ways compared to that from ensemble-averaged data although there are limitations in estimating the transition probabilities between minor states. We discuss how to use the machine learning scheme for various experimental measurements including single-molecule time-series trajectories.

  18. Recent advances in environmental data mining

    NASA Astrophysics Data System (ADS)

    Leuenberger, Michael; Kanevski, Mikhail

    2016-04-01

    Due to the large amount and complexity of data available nowadays in geo- and environmental sciences, we face the need to develop and incorporate more robust and efficient methods for their analysis, modelling and visualization. An important part of these developments deals with an elaboration and application of a contemporary and coherent methodology following the process from data collection to the justification and communication of the results. Recent fundamental progress in machine learning (ML) can considerably contribute to the development of the emerging field - environmental data science. The present research highlights and investigates the different issues that can occur when dealing with environmental data mining using cutting-edge machine learning algorithms. In particular, the main attention is paid to the description of the self-consistent methodology and two efficient algorithms - Random Forest (RF, Breiman, 2001) and Extreme Learning Machines (ELM, Huang et al., 2006), which recently gained a great popularity. Despite the fact that they are based on two different concepts, i.e. decision trees vs artificial neural networks, they both propose promising results for complex, high dimensional and non-linear data modelling. In addition, the study discusses several important issues of data driven modelling, including feature selection and uncertainties. The approach considered is accompanied by simulated and real data case studies from renewable resources assessment and natural hazards tasks. In conclusion, the current challenges and future developments in statistical environmental data learning are discussed. References - Breiman, L., 2001. Random Forests. Machine Learning 45 (1), 5-32. - Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., 2006. Extreme learning machine: theory and applications. Neurocomputing 70 (1-3), 489-501. - Kanevski, M., Pozdnoukhov, A., Timonin, V., 2009. Machine Learning for Spatial Environmental Data. EPFL Press; Lausanne, Switzerland, p.392. - Leuenberger, M., Kanevski, M., 2015. Extreme Learning Machines for spatial environmental data. Computers and Geosciences 85, 64-73.

  19. Making Individual Prognoses in Psychiatry Using Neuroimaging and Machine Learning.

    PubMed

    Janssen, Ronald J; Mourão-Miranda, Janaina; Schnack, Hugo G

    2018-04-22

    Psychiatric prognosis is a difficult problem. Making a prognosis requires looking far into the future, as opposed to making a diagnosis, which is concerned with the current state. During the follow-up period, many factors will influence the course of the disease. Combined with the usually scarcer longitudinal data and the variability in the definition of outcomes/transition, this makes prognostic predictions a challenging endeavor. Employing neuroimaging data in this endeavor introduces the additional hurdle of high dimensionality. Machine-learning techniques are especially suited to tackle this challenging problem. This review starts with a brief introduction to machine learning in the context of its application to clinical neuroimaging data. We highlight a few issues that are especially relevant for prediction of outcome and transition using neuroimaging. We then review the literature that discusses the application of machine learning for this purpose. Critical examination of the studies and their results with respect to the relevant issues revealed the following: 1) there is growing evidence for the prognostic capability of machine-learning-based models using neuroimaging; and 2) reported accuracies may be too optimistic owing to small sample sizes and the lack of independent test samples. Finally, we discuss options to improve the reliability of (prognostic) prediction models. These include new methodologies and multimodal modeling. Paramount, however, is our conclusion that future work will need to provide properly (cross-)validated accuracy estimates of models trained on sufficiently large datasets. Nevertheless, with the technological advances enabling acquisition of large databases of patients and healthy subjects, machine learning represents a powerful tool in the search for psychiatric biomarkers. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Machine learning methods as a tool to analyse incomplete or irregularly sampled radon time series data.

    PubMed

    Janik, M; Bossew, P; Kurihara, O

    2018-07-15

    Machine learning is a class of statistical techniques which has proven to be a powerful tool for modelling the behaviour of complex systems, in which response quantities depend on assumed controls or predictors in a complicated way. In this paper, as our first purpose, we propose the application of machine learning to reconstruct incomplete or irregularly sampled data of time series indoor radon ( 222 Rn). The physical assumption underlying the modelling is that Rn concentration in the air is controlled by environmental variables such as air temperature and pressure. The algorithms "learn" from complete sections of multivariate series, derive a dependence model and apply it to sections where the controls are available, but not the response (Rn), and in this way complete the Rn series. Three machine learning techniques are applied in this study, namely random forest, its extension called the gradient boosting machine and deep learning. For a comparison, we apply the classical multiple regression in a generalized linear model version. Performance of the models is evaluated through different metrics. The performance of the gradient boosting machine is found to be superior to that of the other techniques. By applying learning machines, we show, as our second purpose, that missing data or periods of Rn series data can be reconstructed and resampled on a regular grid reasonably, if data of appropriate physical controls are available. The techniques also identify to which degree the assumed controls contribute to imputing missing Rn values. Our third purpose, though no less important from the viewpoint of physics, is identifying to which degree physical, in this case environmental variables, are relevant as Rn predictors, or in other words, which predictors explain most of the temporal variability of Rn. We show that variables which contribute most to the Rn series reconstruction, are temperature, relative humidity and day of the year. The first two are physical predictors, while "day of the year" is a statistical proxy or surrogate for missing or unknown predictors. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Risk estimation using probability machines

    PubMed Central

    2014-01-01

    Background Logistic regression has been the de facto, and often the only, model used in the description and analysis of relationships between a binary outcome and observed features. It is widely used to obtain the conditional probabilities of the outcome given predictors, as well as predictor effect size estimates using conditional odds ratios. Results We show how statistical learning machines for binary outcomes, provably consistent for the nonparametric regression problem, can be used to provide both consistent conditional probability estimation and conditional effect size estimates. Effect size estimates from learning machines leverage our understanding of counterfactual arguments central to the interpretation of such estimates. We show that, if the data generating model is logistic, we can recover accurate probability predictions and effect size estimates with nearly the same efficiency as a correct logistic model, both for main effects and interactions. We also propose a method using learning machines to scan for possible interaction effects quickly and efficiently. Simulations using random forest probability machines are presented. Conclusions The models we propose make no assumptions about the data structure, and capture the patterns in the data by just specifying the predictors involved and not any particular model structure. So they do not run the same risks of model mis-specification and the resultant estimation biases as a logistic model. This methodology, which we call a “risk machine”, will share properties from the statistical machine that it is derived from. PMID:24581306

  2. Machine learning: Trends, perspectives, and prospects.

    PubMed

    Jordan, M I; Mitchell, T M

    2015-07-17

    Machine learning addresses the question of how to build computers that improve automatically through experience. It is one of today's most rapidly growing technical fields, lying at the intersection of computer science and statistics, and at the core of artificial intelligence and data science. Recent progress in machine learning has been driven both by the development of new learning algorithms and theory and by the ongoing explosion in the availability of online data and low-cost computation. The adoption of data-intensive machine-learning methods can be found throughout science, technology and commerce, leading to more evidence-based decision-making across many walks of life, including health care, manufacturing, education, financial modeling, policing, and marketing. Copyright © 2015, American Association for the Advancement of Science.

  3. Study of Environmental Data Complexity using Extreme Learning Machine

    NASA Astrophysics Data System (ADS)

    Leuenberger, Michael; Kanevski, Mikhail

    2017-04-01

    The main goals of environmental data science using machine learning algorithm deal, in a broad sense, around the calibration, the prediction and the visualization of hidden relationship between input and output variables. In order to optimize the models and to understand the phenomenon under study, the characterization of the complexity (at different levels) should be taken into account. Therefore, the identification of the linear or non-linear behavior between input and output variables adds valuable information for the knowledge of the phenomenon complexity. The present research highlights and investigates the different issues that can occur when identifying the complexity (linear/non-linear) of environmental data using machine learning algorithm. In particular, the main attention is paid to the description of a self-consistent methodology for the use of Extreme Learning Machines (ELM, Huang et al., 2006), which recently gained a great popularity. By applying two ELM models (with linear and non-linear activation functions) and by comparing their efficiency, quantification of the linearity can be evaluated. The considered approach is accompanied by simulated and real high dimensional and multivariate data case studies. In conclusion, the current challenges and future development in complexity quantification using environmental data mining are discussed. References - Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., 2006. Extreme learning machine: theory and applications. Neurocomputing 70 (1-3), 489-501. - Kanevski, M., Pozdnoukhov, A., Timonin, V., 2009. Machine Learning for Spatial Environmental Data. EPFL Press; Lausanne, Switzerland, p.392. - Leuenberger, M., Kanevski, M., 2015. Extreme Learning Machines for spatial environmental data. Computers and Geosciences 85, 64-73.

  4. Deep Learning Accurately Predicts Estrogen Receptor Status in Breast Cancer Metabolomics Data.

    PubMed

    Alakwaa, Fadhl M; Chaudhary, Kumardeep; Garmire, Lana X

    2018-01-05

    Metabolomics holds the promise as a new technology to diagnose highly heterogeneous diseases. Conventionally, metabolomics data analysis for diagnosis is done using various statistical and machine learning based classification methods. However, it remains unknown if deep neural network, a class of increasingly popular machine learning methods, is suitable to classify metabolomics data. Here we use a cohort of 271 breast cancer tissues, 204 positive estrogen receptor (ER+), and 67 negative estrogen receptor (ER-) to test the accuracies of feed-forward networks, a deep learning (DL) framework, as well as six widely used machine learning models, namely random forest (RF), support vector machines (SVM), recursive partitioning and regression trees (RPART), linear discriminant analysis (LDA), prediction analysis for microarrays (PAM), and generalized boosted models (GBM). DL framework has the highest area under the curve (AUC) of 0.93 in classifying ER+/ER- patients, compared to the other six machine learning algorithms. Furthermore, the biological interpretation of the first hidden layer reveals eight commonly enriched significant metabolomics pathways (adjusted P-value <0.05) that cannot be discovered by other machine learning methods. Among them, protein digestion and absorption and ATP-binding cassette (ABC) transporters pathways are also confirmed in integrated analysis between metabolomics and gene expression data in these samples. In summary, deep learning method shows advantages for metabolomics based breast cancer ER status classification, with both the highest prediction accuracy (AUC = 0.93) and better revelation of disease biology. We encourage the adoption of feed-forward networks based deep learning method in the metabolomics research community for classification.

  5. CHISSL: A Human-Machine Collaboration Space for Unsupervised Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arendt, Dustin L.; Komurlu, Caner; Blaha, Leslie M.

    We developed CHISSL, a human-machine interface that utilizes supervised machine learning in an unsupervised context to help the user group unlabeled instances by her own mental model. The user primarily interacts via correction (moving a misplaced instance into its correct group) or confirmation (accepting that an instance is placed in its correct group). Concurrent with the user's interactions, CHISSL trains a classification model guided by the user's grouping of the data. It then predicts the group of unlabeled instances and arranges some of these alongside the instances manually organized by the user. We hypothesize that this mode of human andmore » machine collaboration is more effective than Active Learning, wherein the machine decides for itself which instances should be labeled by the user. We found supporting evidence for this hypothesis in a pilot study where we applied CHISSL to organize a collection of handwritten digits.« less

  6. Learning molecular energies using localized graph kernels

    DOE PAGES

    Ferré, Grégoire; Haut, Terry Scot; Barros, Kipton Marcos

    2017-03-21

    We report that recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturallymore » incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. Finally, we benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.« less

  7. Learning molecular energies using localized graph kernels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferré, Grégoire; Haut, Terry Scot; Barros, Kipton Marcos

    We report that recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturallymore » incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. Finally, we benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.« less

  8. Designing Anticancer Peptides by Constructive Machine Learning.

    PubMed

    Grisoni, Francesca; Neuhaus, Claudia S; Gabernet, Gisela; Müller, Alex T; Hiss, Jan A; Schneider, Gisbert

    2018-04-21

    Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a deep machine learning model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on α-helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs by transfer learning. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Using Active Learning for Speeding up Calibration in Simulation Models.

    PubMed

    Cevik, Mucahit; Ergun, Mehmet Ali; Stout, Natasha K; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan

    2016-07-01

    Most cancer simulation models include unobservable parameters that determine disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality, and their values are typically estimated via a lengthy calibration procedure, which involves evaluating a large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We developed an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs and therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using the previously developed University of Wisconsin breast cancer simulation model (UWBCS). In a recent study, calibration of the UWBCS required the evaluation of 378 000 input parameter combinations to build a race-specific model, and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378 000 combinations. Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. © The Author(s) 2015.

  10. Using Active Learning for Speeding up Calibration in Simulation Models

    PubMed Central

    Cevik, Mucahit; Ali Ergun, Mehmet; Stout, Natasha K.; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan

    2015-01-01

    Background Most cancer simulation models include unobservable parameters that determine the disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality and their values are typically estimated via lengthy calibration procedure, which involves evaluating large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Methods Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We develop an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs, therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using previously developed University of Wisconsin Breast Cancer Simulation Model (UWBCS). Results In a recent study, calibration of the UWBCS required the evaluation of 378,000 input parameter combinations to build a race-specific model and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378,000 combinations. Conclusion Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. PMID:26471190

  11. Infrastructure and distributed learning methodology for privacy-preserving multi-centric rapid learning health care: euroCAT.

    PubMed

    Deist, Timo M; Jochems, A; van Soest, Johan; Nalbantov, Georgi; Oberije, Cary; Walsh, Seán; Eble, Michael; Bulens, Paul; Coucke, Philippe; Dries, Wim; Dekker, Andre; Lambin, Philippe

    2017-06-01

    Machine learning applications for personalized medicine are highly dependent on access to sufficient data. For personalized radiation oncology, datasets representing the variation in the entire cancer patient population need to be acquired and used to learn prediction models. Ethical and legal boundaries to ensure data privacy hamper collaboration between research institutes. We hypothesize that data sharing is possible without identifiable patient data leaving the radiation clinics and that building machine learning applications on distributed datasets is feasible. We developed and implemented an IT infrastructure in five radiation clinics across three countries (Belgium, Germany, and The Netherlands). We present here a proof-of-principle for future 'big data' infrastructures and distributed learning studies. Lung cancer patient data was collected in all five locations and stored in local databases. Exemplary support vector machine (SVM) models were learned using the Alternating Direction Method of Multipliers (ADMM) from the distributed databases to predict post-radiotherapy dyspnea grade [Formula: see text]. The discriminative performance was assessed by the area under the curve (AUC) in a five-fold cross-validation (learning on four sites and validating on the fifth). The performance of the distributed learning algorithm was compared to centralized learning where datasets of all institutes are jointly analyzed. The euroCAT infrastructure has been successfully implemented in five radiation clinics across three countries. SVM models can be learned on data distributed over all five clinics. Furthermore, the infrastructure provides a general framework to execute learning algorithms on distributed data. The ongoing expansion of the euroCAT network will facilitate machine learning in radiation oncology. The resulting access to larger datasets with sufficient variation will pave the way for generalizable prediction models and personalized medicine.

  12. Machine learning in laboratory medicine: waiting for the flood?

    PubMed

    Cabitza, Federico; Banfi, Giuseppe

    2018-03-28

    This review focuses on machine learning and on how methods and models combining data analytics and artificial intelligence have been applied to laboratory medicine so far. Although still in its infancy, the potential for applying machine learning to laboratory data for both diagnostic and prognostic purposes deserves more attention by the readership of this journal, as well as by physician-scientists who will want to take advantage of this new computer-based support in pathology and laboratory medicine.

  13. Bi Sparsity Pursuit: A Paradigm for Robust Subspace Recovery

    DTIC Science & Technology

    2016-09-27

    16. SECURITY CLASSIFICATION OF: The success of sparse models in computer vision and machine learning is due to the fact that, high dimensional data...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Signal recovery, Sparse learning , Subspace modeling REPORT DOCUMENTATION PAGE 11...vision and machine learning is due to the fact that, high dimensional data is distributed in a union of low dimensional subspaces in many real-world

  14. High-Risk Breast Lesions: A Machine Learning Model to Predict Pathologic Upgrade and Reduce Unnecessary Surgical Excision.

    PubMed

    Bahl, Manisha; Barzilay, Regina; Yedidia, Adam B; Locascio, Nicholas J; Yu, Lili; Lehman, Constance D

    2018-03-01

    Purpose To develop a machine learning model that allows high-risk breast lesions (HRLs) diagnosed with image-guided needle biopsy that require surgical excision to be distinguished from HRLs that are at low risk for upgrade to cancer at surgery and thus could be surveilled. Materials and Methods Consecutive patients with biopsy-proven HRLs who underwent surgery or at least 2 years of imaging follow-up from June 2006 to April 2015 were identified. A random forest machine learning model was developed to identify HRLs at low risk for upgrade to cancer. Traditional features such as age and HRL histologic results were used in the model, as were text features from the biopsy pathologic report. Results One thousand six HRLs were identified, with a cancer upgrade rate of 11.4% (115 of 1006). A machine learning random forest model was developed with 671 HRLs and tested with an independent set of 335 HRLs. Among the most important traditional features were age and HRL histologic results (eg, atypical ductal hyperplasia). An important text feature from the pathologic reports was "severely atypical." Instead of surgical excision of all HRLs, if those categorized with the model to be at low risk for upgrade were surveilled and the remainder were excised, then 97.4% (37 of 38) of malignancies would have been diagnosed at surgery, and 30.6% (91 of 297) of surgeries of benign lesions could have been avoided. Conclusion This study provides proof of concept that a machine learning model can be applied to predict the risk of upgrade of HRLs to cancer. Use of this model could decrease unnecessary surgery by nearly one-third and could help guide clinical decision making with regard to surveillance versus surgical excision of HRLs. © RSNA, 2017.

  15. A Hybrid Short-Term Traffic Flow Prediction Model Based on Singular Spectrum Analysis and Kernel Extreme Learning Machine.

    PubMed

    Shang, Qiang; Lin, Ciyun; Yang, Zhaosheng; Bing, Qichun; Zhou, Xiyang

    2016-01-01

    Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS). Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM) is proposed based on singular spectrum analysis (SSA) and kernel extreme learning machine (KELM). SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA). Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust.

  16. A Hybrid Short-Term Traffic Flow Prediction Model Based on Singular Spectrum Analysis and Kernel Extreme Learning Machine

    PubMed Central

    Lin, Ciyun; Yang, Zhaosheng; Bing, Qichun; Zhou, Xiyang

    2016-01-01

    Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS). Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM) is proposed based on singular spectrum analysis (SSA) and kernel extreme learning machine (KELM). SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA). Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust. PMID:27551829

  17. A comparative study of machine learning models for ethnicity classification

    NASA Astrophysics Data System (ADS)

    Trivedi, Advait; Bessie Amali, D. Geraldine

    2017-11-01

    This paper endeavours to adopt a machine learning approach to solve the problem of ethnicity recognition. Ethnicity identification is an important vision problem with its use cases being extended to various domains. Despite the multitude of complexity involved, ethnicity identification comes naturally to humans. This meta information can be leveraged to make several decisions, be it in target marketing or security. With the recent development of intelligent systems a sub module to efficiently capture ethnicity would be useful in several use cases. Several attempts to identify an ideal learning model to represent a multi-ethnic dataset have been recorded. A comparative study of classifiers such as support vector machines, logistic regression has been documented. Experimental results indicate that the logical classifier provides a much accurate classification than the support vector machine.

  18. Identifying product order with restricted Boltzmann machines

    NASA Astrophysics Data System (ADS)

    Rao, Wen-Jia; Li, Zhenyu; Zhu, Qiong; Luo, Mingxing; Wan, Xin

    2018-03-01

    Unsupervised machine learning via a restricted Boltzmann machine is a useful tool in distinguishing an ordered phase from a disordered phase. Here we study its application on the two-dimensional Ashkin-Teller model, which features a partially ordered product phase. We train the neural network with spin configuration data generated by Monte Carlo simulations and show that distinct features of the product phase can be learned from nonergodic samples resulting from symmetry breaking. Careful analysis of the weight matrices inspires us to define a nontrivial machine-learning motivated quantity of the product form, which resembles the conventional product order parameter.

  19. A distributed algorithm for machine learning

    NASA Astrophysics Data System (ADS)

    Chen, Shihong

    2018-04-01

    This paper considers a distributed learning problem in which a group of machines in a connected network, each learning its own local dataset, aim to reach a consensus at an optimal model, by exchanging information only with their neighbors but without transmitting data. A distributed algorithm is proposed to solve this problem under appropriate assumptions.

  20. Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Wenjian; Singh, Rajiv R. P.; Scalettar, Richard T.

    Here, we apply unsupervised machine learning techniques, mainly principal component analysis (PCA), to compare and contrast the phase behavior and phase transitions in several classical spin models - the square and triangular-lattice Ising models, the Blume-Capel model, a highly degenerate biquadratic-exchange spin-one Ising (BSI) model, and the 2D XY model, and examine critically what machine learning is teaching us. We find that quantified principal components from PCA not only allow exploration of different phases and symmetry-breaking, but can distinguish phase transition types and locate critical points. We show that the corresponding weight vectors have a clear physical interpretation, which ismore » particularly interesting in the frustrated models such as the triangular antiferromagnet, where they can point to incipient orders. Unlike the other well-studied models, the properties of the BSI model are less well known. Using both PCA and conventional Monte Carlo analysis, we demonstrate that the BSI model shows an absence of phase transition and macroscopic ground-state degeneracy. The failure to capture the 'charge' correlations (vorticity) in the BSI model (XY model) from raw spin configurations points to some of the limitations of PCA. Finally, we employ a nonlinear unsupervised machine learning procedure, the 'antoencoder method', and demonstrate that it too can be trained to capture phase transitions and critical points.« less

  1. Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination

    DOE PAGES

    Hu, Wenjian; Singh, Rajiv R. P.; Scalettar, Richard T.

    2017-06-19

    Here, we apply unsupervised machine learning techniques, mainly principal component analysis (PCA), to compare and contrast the phase behavior and phase transitions in several classical spin models - the square and triangular-lattice Ising models, the Blume-Capel model, a highly degenerate biquadratic-exchange spin-one Ising (BSI) model, and the 2D XY model, and examine critically what machine learning is teaching us. We find that quantified principal components from PCA not only allow exploration of different phases and symmetry-breaking, but can distinguish phase transition types and locate critical points. We show that the corresponding weight vectors have a clear physical interpretation, which ismore » particularly interesting in the frustrated models such as the triangular antiferromagnet, where they can point to incipient orders. Unlike the other well-studied models, the properties of the BSI model are less well known. Using both PCA and conventional Monte Carlo analysis, we demonstrate that the BSI model shows an absence of phase transition and macroscopic ground-state degeneracy. The failure to capture the 'charge' correlations (vorticity) in the BSI model (XY model) from raw spin configurations points to some of the limitations of PCA. Finally, we employ a nonlinear unsupervised machine learning procedure, the 'antoencoder method', and demonstrate that it too can be trained to capture phase transitions and critical points.« less

  2. Development of machine learning models for diagnosis of glaucoma.

    PubMed

    Kim, Seong Jae; Cho, Kyong Jin; Oh, Sejong

    2017-01-01

    The study aimed to develop machine learning models that have strong prediction power and interpretability for diagnosis of glaucoma based on retinal nerve fiber layer (RNFL) thickness and visual field (VF). We collected various candidate features from the examination of retinal nerve fiber layer (RNFL) thickness and visual field (VF). We also developed synthesized features from original features. We then selected the best features proper for classification (diagnosis) through feature evaluation. We used 100 cases of data as a test dataset and 399 cases of data as a training and validation dataset. To develop the glaucoma prediction model, we considered four machine learning algorithms: C5.0, random forest (RF), support vector machine (SVM), and k-nearest neighbor (KNN). We repeatedly composed a learning model using the training dataset and evaluated it by using the validation dataset. Finally, we got the best learning model that produces the highest validation accuracy. We analyzed quality of the models using several measures. The random forest model shows best performance and C5.0, SVM, and KNN models show similar accuracy. In the random forest model, the classification accuracy is 0.98, sensitivity is 0.983, specificity is 0.975, and AUC is 0.979. The developed prediction models show high accuracy, sensitivity, specificity, and AUC in classifying among glaucoma and healthy eyes. It will be used for predicting glaucoma against unknown examination records. Clinicians may reference the prediction results and be able to make better decisions. We may combine multiple learning models to increase prediction accuracy. The C5.0 model includes decision rules for prediction. It can be used to explain the reasons for specific predictions.

  3. Machine Learning for Social Services: A Study of Prenatal Case Management in Illinois.

    PubMed

    Pan, Ian; Nolan, Laura B; Brown, Rashida R; Khan, Romana; van der Boor, Paul; Harris, Daniel G; Ghani, Rayid

    2017-06-01

    To evaluate the positive predictive value of machine learning algorithms for early assessment of adverse birth risk among pregnant women as a means of improving the allocation of social services. We used administrative data for 6457 women collected by the Illinois Department of Human Services from July 2014 to May 2015 to develop a machine learning model for adverse birth prediction and improve upon the existing paper-based risk assessment. We compared different models and determined the strongest predictors of adverse birth outcomes using positive predictive value as the metric for selection. Machine learning algorithms performed similarly, outperforming the current paper-based risk assessment by up to 36%; a refined paper-based assessment outperformed the current assessment by up to 22%. We estimate that these improvements will allow 100 to 170 additional high-risk pregnant women screened for program eligibility each year to receive services that would have otherwise been unobtainable. Our analysis exhibits the potential for machine learning to move government agencies toward a more data-informed approach to evaluating risk and providing social services. Overall, such efforts will improve the efficiency of allocating resource-intensive interventions.

  4. Accuracy comparison among different machine learning techniques for detecting malicious codes

    NASA Astrophysics Data System (ADS)

    Narang, Komal

    2016-03-01

    In this paper, a machine learning based model for malware detection is proposed. It can detect newly released malware i.e. zero day attack by analyzing operation codes on Android operating system. The accuracy of Naïve Bayes, Support Vector Machine (SVM) and Neural Network for detecting malicious code has been compared for the proposed model. In the experiment 400 benign files, 100 system files and 500 malicious files have been used to construct the model. The model yields the best accuracy 88.9% when neural network is used as classifier and achieved 95% and 82.8% accuracy for sensitivity and specificity respectively.

  5. Comprehensive decision tree models in bioinformatics.

    PubMed

    Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter

    2012-01-01

    Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics.

  6. Comprehensive Decision Tree Models in Bioinformatics

    PubMed Central

    Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter

    2012-01-01

    Purpose Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. Methods This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. Results The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. Conclusions The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics. PMID:22479449

  7. On the Safety of Machine Learning: Cyber-Physical Systems, Decision Sciences, and Data Products.

    PubMed

    Varshney, Kush R; Alemzadeh, Homa

    2017-09-01

    Machine learning algorithms increasingly influence our decisions and interact with us in all parts of our daily lives. Therefore, just as we consider the safety of power plants, highways, and a variety of other engineered socio-technical systems, we must also take into account the safety of systems involving machine learning. Heretofore, the definition of safety has not been formalized in a machine learning context. In this article, we do so by defining machine learning safety in terms of risk, epistemic uncertainty, and the harm incurred by unwanted outcomes. We then use this definition to examine safety in all sorts of applications in cyber-physical systems, decision sciences, and data products. We find that the foundational principle of modern statistical machine learning, empirical risk minimization, is not always a sufficient objective. We discuss how four different categories of strategies for achieving safety in engineering, including inherently safe design, safety reserves, safe fail, and procedural safeguards can be mapped to a machine learning context. We then discuss example techniques that can be adopted in each category, such as considering interpretability and causality of predictive models, objective functions beyond expected prediction accuracy, human involvement for labeling difficult or rare examples, and user experience design of software and open data.

  8. A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation.

    PubMed

    Wang, Hongxun; Zhang, Weifang; Sun, Fuqiang; Zhang, Wei

    2017-05-18

    The relationships between the fatigue crack growth rate ( d a / d N ) and stress intensity factor range ( Δ K ) are not always linear even in the Paris region. The stress ratio effects on fatigue crack growth rate are diverse in different materials. However, most existing fatigue crack growth models cannot handle these nonlinearities appropriately. The machine learning method provides a flexible approach to the modeling of fatigue crack growth because of its excellent nonlinear approximation and multivariable learning ability. In this paper, a fatigue crack growth calculation method is proposed based on three different machine learning algorithms (MLAs): extreme learning machine (ELM), radial basis function network (RBFN) and genetic algorithms optimized back propagation network (GABP). The MLA based method is validated using testing data of different materials. The three MLAs are compared with each other as well as the classical two-parameter model ( K * approach). The results show that the predictions of MLAs are superior to those of K * approach in accuracy and effectiveness, and the ELM based algorithms show overall the best agreement with the experimental data out of the three MLAs, for its global optimization and extrapolation ability.

  9. Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults

    PubMed Central

    Verschueren, Sabine M. P.; Degens, Hans; Morse, Christopher I.; Onambélé, Gladys L.

    2017-01-01

    Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual’s physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry. PMID:29155839

  10. Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults.

    PubMed

    Wullems, Jorgen A; Verschueren, Sabine M P; Degens, Hans; Morse, Christopher I; Onambélé, Gladys L

    2017-01-01

    Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual's physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry.

  11. Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination

    NASA Astrophysics Data System (ADS)

    Hu, Wenjian; Singh, Rajiv R. P.; Scalettar, Richard T.

    2017-06-01

    We apply unsupervised machine learning techniques, mainly principal component analysis (PCA), to compare and contrast the phase behavior and phase transitions in several classical spin models—the square- and triangular-lattice Ising models, the Blume-Capel model, a highly degenerate biquadratic-exchange spin-1 Ising (BSI) model, and the two-dimensional X Y model—and we examine critically what machine learning is teaching us. We find that quantified principal components from PCA not only allow the exploration of different phases and symmetry-breaking, but they can distinguish phase-transition types and locate critical points. We show that the corresponding weight vectors have a clear physical interpretation, which is particularly interesting in the frustrated models such as the triangular antiferromagnet, where they can point to incipient orders. Unlike the other well-studied models, the properties of the BSI model are less well known. Using both PCA and conventional Monte Carlo analysis, we demonstrate that the BSI model shows an absence of phase transition and macroscopic ground-state degeneracy. The failure to capture the "charge" correlations (vorticity) in the BSI model (X Y model) from raw spin configurations points to some of the limitations of PCA. Finally, we employ a nonlinear unsupervised machine learning procedure, the "autoencoder method," and we demonstrate that it too can be trained to capture phase transitions and critical points.

  12. A Machine Learning Approach to Student Modeling.

    DTIC Science & Technology

    1984-05-01

    machine learning , and describe ACN, a student modeling system that incorporates this approach. This system begins with a set of overly general rules, which it uses to search a problem space until it arrives at the same answer as the student. The ACM computer program then uses the solution path it has discovered to determine positive and negative instances of its initial rules, and employs a discrimination learning mechanism to place additional conditions on these rules. The revised rules will reproduce the solution path without search, and constitute a cognitive model of

  13. Machine learning for neuroimaging with scikit-learn.

    PubMed

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  14. Machine learning for neuroimaging with scikit-learn

    PubMed Central

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain. PMID:24600388

  15. Confabulation Based Sentence Completion for Machine Reading

    DTIC Science & Technology

    2010-11-01

    making sentence completion an indispensible component of machine reading. Cogent confabulation is a bio-inspired computational model that mimics the...thus making sentence completion an indispensible component of machine reading. Cogent confabulation is a bio-inspired computational model that mimics...University Press, 1992. [2] H. Motoda and K. Yoshida, “Machine learning techniques to make computers easier to use,” Proceedings of the Fifteenth

  16. Spoken language identification based on the enhanced self-adjusting extreme learning machine approach.

    PubMed

    Albadr, Musatafa Abbas Abbood; Tiun, Sabrina; Al-Dhief, Fahad Taha; Sammour, Mahmoud A M

    2018-01-01

    Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%.

  17. Spoken language identification based on the enhanced self-adjusting extreme learning machine approach

    PubMed Central

    Tiun, Sabrina; AL-Dhief, Fahad Taha; Sammour, Mahmoud A. M.

    2018-01-01

    Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%. PMID:29672546

  18. Machine Learning for Biological Trajectory Classification Applications

    NASA Technical Reports Server (NTRS)

    Sbalzarini, Ivo F.; Theriot, Julie; Koumoutsakos, Petros

    2002-01-01

    Machine-learning techniques, including clustering algorithms, support vector machines and hidden Markov models, are applied to the task of classifying trajectories of moving keratocyte cells. The different algorithms axe compared to each other as well as to expert and non-expert test persons, using concepts from signal-detection theory. The algorithms performed very well as compared to humans, suggesting a robust tool for trajectory classification in biological applications.

  19. Tomography and generative training with quantum Boltzmann machines

    NASA Astrophysics Data System (ADS)

    Kieferová, Mária; Wiebe, Nathan

    2017-12-01

    The promise of quantum neural nets, which utilize quantum effects to model complex data sets, has made their development an aspirational goal for quantum machine learning and quantum computing in general. Here we provide methods of training quantum Boltzmann machines. Our work generalizes existing methods and provides additional approaches for training quantum neural networks that compare favorably to existing methods. We further demonstrate that quantum Boltzmann machines enable a form of partial quantum state tomography that further provides a generative model for the input quantum state. Classical Boltzmann machines are incapable of this. This verifies the long-conjectured connection between tomography and quantum machine learning. Finally, we prove that classical computers cannot simulate our training process in general unless BQP=BPP , provide lower bounds on the complexity of the training procedures and numerically investigate training for small nonstoquastic Hamiltonians.

  20. Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming.

    PubMed

    Wu, Stephen Gang; Wang, Yuxuan; Jiang, Wu; Oyetunde, Tolutola; Yao, Ruilian; Zhang, Xuehong; Shimizu, Kazuyuki; Tang, Yinjie J; Bao, Forrest Sheng

    2016-04-01

    13C metabolic flux analysis (13C-MFA) has been widely used to measure in vivo enzyme reaction rates (i.e., metabolic flux) in microorganisms. Mining the relationship between environmental and genetic factors and metabolic fluxes hidden in existing fluxomic data will lead to predictive models that can significantly accelerate flux quantification. In this paper, we present a web-based platform MFlux (http://mflux.org) that predicts the bacterial central metabolism via machine learning, leveraging data from approximately 100 13C-MFA papers on heterotrophic bacterial metabolisms. Three machine learning methods, namely Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), and Decision Tree, were employed to study the sophisticated relationship between influential factors and metabolic fluxes. We performed a grid search of the best parameter set for each algorithm and verified their performance through 10-fold cross validations. SVM yields the highest accuracy among all three algorithms. Further, we employed quadratic programming to adjust flux profiles to satisfy stoichiometric constraints. Multiple case studies have shown that MFlux can reasonably predict fluxomes as a function of bacterial species, substrate types, growth rate, oxygen conditions, and cultivation methods. Due to the interest of studying model organism under particular carbon sources, bias of fluxome in the dataset may limit the applicability of machine learning models. This problem can be resolved after more papers on 13C-MFA are published for non-model species.

  1. Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming

    PubMed Central

    Wu, Stephen Gang; Wang, Yuxuan; Jiang, Wu; Oyetunde, Tolutola; Yao, Ruilian; Zhang, Xuehong; Shimizu, Kazuyuki; Tang, Yinjie J.; Bao, Forrest Sheng

    2016-01-01

    13C metabolic flux analysis (13C-MFA) has been widely used to measure in vivo enzyme reaction rates (i.e., metabolic flux) in microorganisms. Mining the relationship between environmental and genetic factors and metabolic fluxes hidden in existing fluxomic data will lead to predictive models that can significantly accelerate flux quantification. In this paper, we present a web-based platform MFlux (http://mflux.org) that predicts the bacterial central metabolism via machine learning, leveraging data from approximately 100 13C-MFA papers on heterotrophic bacterial metabolisms. Three machine learning methods, namely Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), and Decision Tree, were employed to study the sophisticated relationship between influential factors and metabolic fluxes. We performed a grid search of the best parameter set for each algorithm and verified their performance through 10-fold cross validations. SVM yields the highest accuracy among all three algorithms. Further, we employed quadratic programming to adjust flux profiles to satisfy stoichiometric constraints. Multiple case studies have shown that MFlux can reasonably predict fluxomes as a function of bacterial species, substrate types, growth rate, oxygen conditions, and cultivation methods. Due to the interest of studying model organism under particular carbon sources, bias of fluxome in the dataset may limit the applicability of machine learning models. This problem can be resolved after more papers on 13C-MFA are published for non-model species. PMID:27092947

  2. A review of supervised machine learning applied to ageing research.

    PubMed

    Fabris, Fabio; Magalhães, João Pedro de; Freitas, Alex A

    2017-04-01

    Broadly speaking, supervised machine learning is the computational task of learning correlations between variables in annotated data (the training set), and using this information to create a predictive model capable of inferring annotations for new data, whose annotations are not known. Ageing is a complex process that affects nearly all animal species. This process can be studied at several levels of abstraction, in different organisms and with different objectives in mind. Not surprisingly, the diversity of the supervised machine learning algorithms applied to answer biological questions reflects the complexities of the underlying ageing processes being studied. Many works using supervised machine learning to study the ageing process have been recently published, so it is timely to review these works, to discuss their main findings and weaknesses. In summary, the main findings of the reviewed papers are: the link between specific types of DNA repair and ageing; ageing-related proteins tend to be highly connected and seem to play a central role in molecular pathways; ageing/longevity is linked with autophagy and apoptosis, nutrient receptor genes, and copper and iron ion transport. Additionally, several biomarkers of ageing were found by machine learning. Despite some interesting machine learning results, we also identified a weakness of current works on this topic: only one of the reviewed papers has corroborated the computational results of machine learning algorithms through wet-lab experiments. In conclusion, supervised machine learning has contributed to advance our knowledge and has provided novel insights on ageing, yet future work should have a greater emphasis in validating the predictions.

  3. Machine Learning Based Classification of Microsatellite Variation: An Effective Approach for Phylogeographic Characterization of Olive Populations.

    PubMed

    Torkzaban, Bahareh; Kayvanjoo, Amir Hossein; Ardalan, Arman; Mousavi, Soraya; Mariotti, Roberto; Baldoni, Luciana; Ebrahimie, Esmaeil; Ebrahimi, Mansour; Hosseini-Mazinani, Mehdi

    2015-01-01

    Finding efficient analytical techniques is overwhelmingly turning into a bottleneck for the effectiveness of large biological data. Machine learning offers a novel and powerful tool to advance classification and modeling solutions in molecular biology. However, these methods have been less frequently used with empirical population genetics data. In this study, we developed a new combined approach of data analysis using microsatellite marker data from our previous studies of olive populations using machine learning algorithms. Herein, 267 olive accessions of various origins including 21 reference cultivars, 132 local ecotypes, and 37 wild olive specimens from the Iranian plateau, together with 77 of the most represented Mediterranean varieties were investigated using a finely selected panel of 11 microsatellite markers. We organized data in two '4-targeted' and '16-targeted' experiments. A strategy of assaying different machine based analyses (i.e. data cleaning, feature selection, and machine learning classification) was devised to identify the most informative loci and the most diagnostic alleles to represent the population and the geography of each olive accession. These analyses revealed microsatellite markers with the highest differentiating capacity and proved efficiency for our method of clustering olive accessions to reflect upon their regions of origin. A distinguished highlight of this study was the discovery of the best combination of markers for better differentiating of populations via machine learning models, which can be exploited to distinguish among other biological populations.

  4. Label-free sensor for automatic identification of erythrocytes using digital in-line holographic microscopy and machine learning.

    PubMed

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2018-04-30

    Cell types of erythrocytes should be identified because they are closely related to their functionality and viability. Conventional methods for classifying erythrocytes are time consuming and labor intensive. Therefore, an automatic and accurate erythrocyte classification system is indispensable in healthcare and biomedical fields. In this study, we proposed a new label-free sensor for automatic identification of erythrocyte cell types using a digital in-line holographic microscopy (DIHM) combined with machine learning algorithms. A total of 12 features, including information on intensity distributions, morphological descriptors, and optical focusing characteristics, is quantitatively obtained from numerically reconstructed holographic images. All individual features for discocytes, echinocytes, and spherocytes are statistically different. To improve the performance of cell type identification, we adopted several machine learning algorithms, such as decision tree model, support vector machine, linear discriminant classification, and k-nearest neighbor classification. With the aid of these machine learning algorithms, the extracted features are effectively utilized to distinguish erythrocytes. Among the four tested algorithms, the decision tree model exhibits the best identification performance for the training sets (n = 440, 98.18%) and test sets (n = 190, 97.37%). This proposed methodology, which smartly combined DIHM and machine learning, would be helpful for sensing abnormal erythrocytes and computer-aided diagnosis of hematological diseases in clinic. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Evolving autonomous learning in cognitive networks.

    PubMed

    Sheneman, Leigh; Hintze, Arend

    2017-12-01

    There are two common approaches for optimizing the performance of a machine: genetic algorithms and machine learning. A genetic algorithm is applied over many generations whereas machine learning works by applying feedback until the system meets a performance threshold. These methods have been previously combined, particularly in artificial neural networks using an external objective feedback mechanism. We adapt this approach to Markov Brains, which are evolvable networks of probabilistic and deterministic logic gates. Prior to this work MB could only adapt from one generation to the other, so we introduce feedback gates which augment their ability to learn during their lifetime. We show that Markov Brains can incorporate these feedback gates in such a way that they do not rely on an external objective feedback signal, but instead can generate internal feedback that is then used to learn. This results in a more biologically accurate model of the evolution of learning, which will enable us to study the interplay between evolution and learning and could be another step towards autonomously learning machines.

  6. Cross-platform normalization of microarray and RNA-seq data for machine learning applications

    PubMed Central

    Thompson, Jeffrey A.; Tan, Jie

    2016-01-01

    Large, publicly available gene expression datasets are often analyzed with the aid of machine learning algorithms. Although RNA-seq is increasingly the technology of choice, a wealth of expression data already exist in the form of microarray data. If machine learning models built from legacy data can be applied to RNA-seq data, larger, more diverse training datasets can be created and validation can be performed on newly generated data. We developed Training Distribution Matching (TDM), which transforms RNA-seq data for use with models constructed from legacy platforms. We evaluated TDM, as well as quantile normalization, nonparanormal transformation, and a simple log2 transformation, on both simulated and biological datasets of gene expression. Our evaluation included both supervised and unsupervised machine learning approaches. We found that TDM exhibited consistently strong performance across settings and that quantile normalization also performed well in many circumstances. We also provide a TDM package for the R programming language. PMID:26844019

  7. Osteoporosis risk prediction for bone mineral density assessment of postmenopausal women using machine learning.

    PubMed

    Yoo, Tae Keun; Kim, Sung Kean; Kim, Deok Won; Choi, Joon Yul; Lee, Wan Hyung; Oh, Ein; Park, Eun-Cheol

    2013-11-01

    A number of clinical decision tools for osteoporosis risk assessment have been developed to select postmenopausal women for the measurement of bone mineral density. We developed and validated machine learning models with the aim of more accurately identifying the risk of osteoporosis in postmenopausal women compared to the ability of conventional clinical decision tools. We collected medical records from Korean postmenopausal women based on the Korea National Health and Nutrition Examination Surveys. The training data set was used to construct models based on popular machine learning algorithms such as support vector machines (SVM), random forests, artificial neural networks (ANN), and logistic regression (LR) based on simple surveys. The machine learning models were compared to four conventional clinical decision tools: osteoporosis self-assessment tool (OST), osteoporosis risk assessment instrument (ORAI), simple calculated osteoporosis risk estimation (SCORE), and osteoporosis index of risk (OSIRIS). SVM had significantly better area under the curve (AUC) of the receiver operating characteristic than ANN, LR, OST, ORAI, SCORE, and OSIRIS for the training set. SVM predicted osteoporosis risk with an AUC of 0.827, accuracy of 76.7%, sensitivity of 77.8%, and specificity of 76.0% at total hip, femoral neck, or lumbar spine for the testing set. The significant factors selected by SVM were age, height, weight, body mass index, duration of menopause, duration of breast feeding, estrogen therapy, hyperlipidemia, hypertension, osteoarthritis, and diabetes mellitus. Considering various predictors associated with low bone density, the machine learning methods may be effective tools for identifying postmenopausal women at high risk for osteoporosis.

  8. Outlier detection in contamination control

    NASA Astrophysics Data System (ADS)

    Weintraub, Jeffrey; Warrick, Scott

    2018-03-01

    A machine-learning model is presented that effectively partitions historical process data into outlier and inlier subpopulations. This is necessary in order to avoid using outlier data to build a model for detecting process instability. Exact control limits are given without recourse to approximations and the error characteristics of the control model are derived. A worked example for contamination control is presented along with the machine learning algorithm used and all the programming statements needed for implementation.

  9. Boosted Regression Trees Outperforms Support Vector Machines in Predicting (Regional) Yields of Winter Wheat from Single and Cumulated Dekadal Spot-VGT Derived Normalized Difference Vegetation Indices

    NASA Astrophysics Data System (ADS)

    Stas, Michiel; Dong, Qinghan; Heremans, Stien; Zhang, Beier; Van Orshoven, Jos

    2016-08-01

    This paper compares two machine learning techniques to predict regional winter wheat yields. The models, based on Boosted Regression Trees (BRT) and Support Vector Machines (SVM), are constructed of Normalized Difference Vegetation Indices (NDVI) derived from low resolution SPOT VEGETATION satellite imagery. Three types of NDVI-related predictors were used: Single NDVI, Incremental NDVI and Targeted NDVI. BRT and SVM were first used to select features with high relevance for predicting the yield. Although the exact selections differed between the prefectures, certain periods with high influence scores for multiple prefectures could be identified. The same period of high influence stretching from March to June was detected by both machine learning methods. After feature selection, BRT and SVM models were applied to the subset of selected features for actual yield forecasting. Whereas both machine learning methods returned very low prediction errors, BRT seems to slightly but consistently outperform SVM.

  10. Prediction and early detection of delirium in the intensive care unit by using heart rate variability and machine learning.

    PubMed

    Oh, Jooyoung; Cho, Dongrae; Park, Jaesub; Na, Se Hee; Kim, Jongin; Heo, Jaeseok; Shin, Cheung Soo; Kim, Jae-Jin; Park, Jin Young; Lee, Boreom

    2018-03-27

    Delirium is an important syndrome found in patients in the intensive care unit (ICU), however, it is usually under-recognized during treatment. This study was performed to investigate whether delirious patients can be successfully distinguished from non-delirious patients by using heart rate variability (HRV) and machine learning. Electrocardiography data of 140 patients was acquired during daily ICU care, and HRV data were analyzed. Delirium, including its type, severity, and etiologies, was evaluated daily by trained psychiatrists. HRV data and various machine learning algorithms including linear support vector machine (SVM), SVM with radial basis function (RBF) kernels, linear extreme learning machine (ELM), ELM with RBF kernels, linear discriminant analysis, and quadratic discriminant analysis were utilized to distinguish delirium patients from non-delirium patients. HRV data of 4797 ECGs were included, and 39 patients had delirium at least once during their ICU stay. The maximum classification accuracy was acquired using SVM with RBF kernels. Our prediction method based on HRV with machine learning was comparable to previous delirium prediction models using massive amounts of clinical information. Our results show that autonomic alterations could be a significant feature of patients with delirium in the ICU, suggesting the potential for the automatic prediction and early detection of delirium based on HRV with machine learning.

  11. Prediction of antiepileptic drug treatment outcomes using machine learning.

    PubMed

    Colic, Sinisa; Wither, Robert G; Lang, Min; Zhang, Liang; Eubanks, James H; Bardakjian, Berj L

    2017-02-01

    Antiepileptic drug (AED) treatments produce inconsistent outcomes, often necessitating patients to go through several drug trials until a successful treatment can be found. This study proposes the use of machine learning techniques to predict epilepsy treatment outcomes of commonly used AEDs. Machine learning algorithms were trained and evaluated using features obtained from intracranial electroencephalogram (iEEG) recordings of the epileptiform discharges observed in Mecp2-deficient mouse model of the Rett Syndrome. Previous work have linked the presence of cross-frequency coupling (I CFC ) of the delta (2-5 Hz) rhythm with the fast ripple (400-600 Hz) rhythm in epileptiform discharges. Using the I CFC to label post-treatment outcomes we compared support vector machines (SVMs) and random forest (RF) machine learning classifiers for providing likelihood scores of successful treatment outcomes. (a) There was heterogeneity in AED treatment outcomes, (b) machine learning techniques could be used to rank the efficacy of AEDs by estimating likelihood scores for successful treatment outcome, (c) I CFC features yielded the most effective a priori identification of appropriate AED treatment, and (d) both classifiers performed comparably. Machine learning approaches yielded predictions of successful drug treatment outcomes which in turn could reduce the burdens of drug trials and lead to substantial improvements in patient quality of life.

  12. Prediction of antiepileptic drug treatment outcomes using machine learning

    NASA Astrophysics Data System (ADS)

    Colic, Sinisa; Wither, Robert G.; Lang, Min; Zhang, Liang; Eubanks, James H.; Bardakjian, Berj L.

    2017-02-01

    Objective. Antiepileptic drug (AED) treatments produce inconsistent outcomes, often necessitating patients to go through several drug trials until a successful treatment can be found. This study proposes the use of machine learning techniques to predict epilepsy treatment outcomes of commonly used AEDs. Approach. Machine learning algorithms were trained and evaluated using features obtained from intracranial electroencephalogram (iEEG) recordings of the epileptiform discharges observed in Mecp2-deficient mouse model of the Rett Syndrome. Previous work have linked the presence of cross-frequency coupling (I CFC) of the delta (2-5 Hz) rhythm with the fast ripple (400-600 Hz) rhythm in epileptiform discharges. Using the I CFC to label post-treatment outcomes we compared support vector machines (SVMs) and random forest (RF) machine learning classifiers for providing likelihood scores of successful treatment outcomes. Main results. (a) There was heterogeneity in AED treatment outcomes, (b) machine learning techniques could be used to rank the efficacy of AEDs by estimating likelihood scores for successful treatment outcome, (c) I CFC features yielded the most effective a priori identification of appropriate AED treatment, and (d) both classifiers performed comparably. Significance. Machine learning approaches yielded predictions of successful drug treatment outcomes which in turn could reduce the burdens of drug trials and lead to substantial improvements in patient quality of life.

  13. An integrative machine learning strategy for improved prediction of essential genes in Escherichia coli metabolism using flux-coupled features.

    PubMed

    Nandi, Sutanu; Subramanian, Abhishek; Sarkar, Ram Rup

    2017-07-25

    Prediction of essential genes helps to identify a minimal set of genes that are absolutely required for the appropriate functioning and survival of a cell. The available machine learning techniques for essential gene prediction have inherent problems, like imbalanced provision of training datasets, biased choice of the best model for a given balanced dataset, choice of a complex machine learning algorithm, and data-based automated selection of biologically relevant features for classification. Here, we propose a simple support vector machine-based learning strategy for the prediction of essential genes in Escherichia coli K-12 MG1655 metabolism that integrates a non-conventional combination of an appropriate sample balanced training set, a unique organism-specific genotype, phenotype attributes that characterize essential genes, and optimal parameters of the learning algorithm to generate the best machine learning model (the model with the highest accuracy among all the models trained for different sample training sets). For the first time, we also introduce flux-coupled metabolic subnetwork-based features for enhancing the classification performance. Our strategy proves to be superior as compared to previous SVM-based strategies in obtaining a biologically relevant classification of genes with high sensitivity and specificity. This methodology was also trained with datasets of other recent supervised classification techniques for essential gene classification and tested using reported test datasets. The testing accuracy was always high as compared to the known techniques, proving that our method outperforms known methods. Observations from our study indicate that essential genes are conserved among homologous bacterial species, demonstrate high codon usage bias, GC content and gene expression, and predominantly possess a tendency to form physiological flux modules in metabolism.

  14. Comparison of four machine learning methods for object-oriented change detection in high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Bai, Ting; Sun, Kaimin; Deng, Shiquan; Chen, Yan

    2018-03-01

    High resolution image change detection is one of the key technologies of remote sensing application, which is of great significance for resource survey, environmental monitoring, fine agriculture, military mapping and battlefield environment detection. In this paper, for high-resolution satellite imagery, Random Forest (RF), Support Vector Machine (SVM), Deep belief network (DBN), and Adaboost models were established to verify the possibility of different machine learning applications in change detection. In order to compare detection accuracy of four machine learning Method, we applied these four machine learning methods for two high-resolution images. The results shows that SVM has higher overall accuracy at small samples compared to RF, Adaboost, and DBN for binary and from-to change detection. With the increase in the number of samples, RF has higher overall accuracy compared to Adaboost, SVM and DBN.

  15. Predicting the dissolution kinetics of silicate glasses using machine learning

    NASA Astrophysics Data System (ADS)

    Anoop Krishnan, N. M.; Mangalathu, Sujith; Smedskjaer, Morten M.; Tandia, Adama; Burton, Henry; Bauchy, Mathieu

    2018-05-01

    Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression, support vector machine regression, random forest, and artificial neural network. We observe that, although linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent predictions, thanks to its inherent ability to handle non-linear data. Overall, we suggest that a more extensive use of machine learning approaches could significantly accelerate the design of novel glasses with tailored properties.

  16. Game-powered machine learning

    PubMed Central

    Barrington, Luke; Turnbull, Douglas; Lanckriet, Gert

    2012-01-01

    Searching for relevant content in a massive amount of multimedia information is facilitated by accurately annotating each image, video, or song with a large number of relevant semantic keywords, or tags. We introduce game-powered machine learning, an integrated approach to annotating multimedia content that combines the effectiveness of human computation, through online games, with the scalability of machine learning. We investigate this framework for labeling music. First, a socially-oriented music annotation game called Herd It collects reliable music annotations based on the “wisdom of the crowds.” Second, these annotated examples are used to train a supervised machine learning system. Third, the machine learning system actively directs the annotation games to collect new data that will most benefit future model iterations. Once trained, the system can automatically annotate a corpus of music much larger than what could be labeled using human computation alone. Automatically annotated songs can be retrieved based on their semantic relevance to text-based queries (e.g., “funky jazz with saxophone,” “spooky electronica,” etc.). Based on the results presented in this paper, we find that actively coupling annotation games with machine learning provides a reliable and scalable approach to making searchable massive amounts of multimedia data. PMID:22460786

  17. Game-powered machine learning.

    PubMed

    Barrington, Luke; Turnbull, Douglas; Lanckriet, Gert

    2012-04-24

    Searching for relevant content in a massive amount of multimedia information is facilitated by accurately annotating each image, video, or song with a large number of relevant semantic keywords, or tags. We introduce game-powered machine learning, an integrated approach to annotating multimedia content that combines the effectiveness of human computation, through online games, with the scalability of machine learning. We investigate this framework for labeling music. First, a socially-oriented music annotation game called Herd It collects reliable music annotations based on the "wisdom of the crowds." Second, these annotated examples are used to train a supervised machine learning system. Third, the machine learning system actively directs the annotation games to collect new data that will most benefit future model iterations. Once trained, the system can automatically annotate a corpus of music much larger than what could be labeled using human computation alone. Automatically annotated songs can be retrieved based on their semantic relevance to text-based queries (e.g., "funky jazz with saxophone," "spooky electronica," etc.). Based on the results presented in this paper, we find that actively coupling annotation games with machine learning provides a reliable and scalable approach to making searchable massive amounts of multimedia data.

  18. What subject matter questions motivate the use of machine learning approaches compared to statistical models for probability prediction?

    PubMed

    Binder, Harald

    2014-07-01

    This is a discussion of the following papers: "Probability estimation with machine learning methods for dichotomous and multicategory outcome: Theory" by Jochen Kruppa, Yufeng Liu, Gérard Biau, Michael Kohler, Inke R. König, James D. Malley, and Andreas Ziegler; and "Probability estimation with machine learning methods for dichotomous and multicategory outcome: Applications" by Jochen Kruppa, Yufeng Liu, Hans-Christian Diener, Theresa Holste, Christian Weimar, Inke R. König, and Andreas Ziegler. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Data Mining and Machine Learning Models for Predicting Drug Likeness and their Disease or Organ Category

    NASA Astrophysics Data System (ADS)

    Yosipof, Abraham; Guedes, Rita C.; García-Sosa, Alfonso T.

    2018-05-01

    Data mining approaches can uncover underlying patterns in chemical and pharmacological property space decisive for drug discovery and development. Two of the most common approaches are visualization and machine learning methods. Visualization methods use dimensionality reduction techniques in order to reduce multi-dimension data into 2D or 3D representations with a minimal loss of information. Machine learning attempts to find correlations between specific activities or classifications for a set of compounds and their features by means of recurring mathematical models. Both models take advantage of the different and deep relationships that can exist between features of compounds, and helpfully provide classification of compounds based on such features. Drug-likeness has been studied from several viewpoints, but here we provide the first implementation in chemoinformatics of the t-Distributed Stochastic Neighbor Embedding (t-SNE) method for the visualization and the representation of chemical space, and the use of different machine learning methods separately and together to form a new ensemble learning method called AL Boost. The models obtained from AL Boost synergistically combine decision tree, random forests (RF), support vector machine (SVM), artificial neuronal network (ANN), k nearest neighbors (kNN), and logistic regression models. In this work, we show that together they form a predictive model that not only improves the predictive force but also decreases bias. This resulted in a corrected classification rate of over 0.81, as well as higher sensitivity and specificity rates for the models. In addition, separation and good models were also achieved for disease categories such as antineoplastic compounds and nervous system diseases, among others. Such models can be used to guide decision on the feature landscape of compounds and their likeness to either drugs or other characteristics, such as specific or multiple disease-category(ies) or organ(s) of action of a molecule.

  20. Data Mining and Machine Learning Models for Predicting Drug Likeness and Their Disease or Organ Category.

    PubMed

    Yosipof, Abraham; Guedes, Rita C; García-Sosa, Alfonso T

    2018-01-01

    Data mining approaches can uncover underlying patterns in chemical and pharmacological property space decisive for drug discovery and development. Two of the most common approaches are visualization and machine learning methods. Visualization methods use dimensionality reduction techniques in order to reduce multi-dimension data into 2D or 3D representations with a minimal loss of information. Machine learning attempts to find correlations between specific activities or classifications for a set of compounds and their features by means of recurring mathematical models. Both models take advantage of the different and deep relationships that can exist between features of compounds, and helpfully provide classification of compounds based on such features or in case of visualization methods uncover underlying patterns in the feature space. Drug-likeness has been studied from several viewpoints, but here we provide the first implementation in chemoinformatics of the t-Distributed Stochastic Neighbor Embedding (t-SNE) method for the visualization and the representation of chemical space, and the use of different machine learning methods separately and together to form a new ensemble learning method called AL Boost. The models obtained from AL Boost synergistically combine decision tree, random forests (RF), support vector machine (SVM), artificial neural network (ANN), k nearest neighbors (kNN), and logistic regression models. In this work, we show that together they form a predictive model that not only improves the predictive force but also decreases bias. This resulted in a corrected classification rate of over 0.81, as well as higher sensitivity and specificity rates for the models. In addition, separation and good models were also achieved for disease categories such as antineoplastic compounds and nervous system diseases, among others. Such models can be used to guide decision on the feature landscape of compounds and their likeness to either drugs or other characteristics, such as specific or multiple disease-category(ies) or organ(s) of action of a molecule.

  1. Prototype Vector Machine for Large Scale Semi-Supervised Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kai; Kwok, James T.; Parvin, Bahram

    2009-04-29

    Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of themore » kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.« less

  2. Machine-Learning Algorithms to Code Public Health Spending Accounts

    PubMed Central

    Leider, Jonathon P.; Resnick, Beth A.; Alfonso, Y. Natalia; Bishai, David

    2017-01-01

    Objectives: Government public health expenditure data sets require time- and labor-intensive manipulation to summarize results that public health policy makers can use. Our objective was to compare the performances of machine-learning algorithms with manual classification of public health expenditures to determine if machines could provide a faster, cheaper alternative to manual classification. Methods: We used machine-learning algorithms to replicate the process of manually classifying state public health expenditures, using the standardized public health spending categories from the Foundational Public Health Services model and a large data set from the US Census Bureau. We obtained a data set of 1.9 million individual expenditure items from 2000 to 2013. We collapsed these data into 147 280 summary expenditure records, and we followed a standardized method of manually classifying each expenditure record as public health, maybe public health, or not public health. We then trained 9 machine-learning algorithms to replicate the manual process. We calculated recall, precision, and coverage rates to measure the performance of individual and ensembled algorithms. Results: Compared with manual classification, the machine-learning random forests algorithm produced 84% recall and 91% precision. With algorithm ensembling, we achieved our target criterion of 90% recall by using a consensus ensemble of ≥6 algorithms while still retaining 93% coverage, leaving only 7% of the summary expenditure records unclassified. Conclusions: Machine learning can be a time- and cost-saving tool for estimating public health spending in the United States. It can be used with standardized public health spending categories based on the Foundational Public Health Services model to help parse public health expenditure information from other types of health-related spending, provide data that are more comparable across public health organizations, and evaluate the impact of evidence-based public health resource allocation. PMID:28363034

  3. Machine-Learning Algorithms to Code Public Health Spending Accounts.

    PubMed

    Brady, Eoghan S; Leider, Jonathon P; Resnick, Beth A; Alfonso, Y Natalia; Bishai, David

    Government public health expenditure data sets require time- and labor-intensive manipulation to summarize results that public health policy makers can use. Our objective was to compare the performances of machine-learning algorithms with manual classification of public health expenditures to determine if machines could provide a faster, cheaper alternative to manual classification. We used machine-learning algorithms to replicate the process of manually classifying state public health expenditures, using the standardized public health spending categories from the Foundational Public Health Services model and a large data set from the US Census Bureau. We obtained a data set of 1.9 million individual expenditure items from 2000 to 2013. We collapsed these data into 147 280 summary expenditure records, and we followed a standardized method of manually classifying each expenditure record as public health, maybe public health, or not public health. We then trained 9 machine-learning algorithms to replicate the manual process. We calculated recall, precision, and coverage rates to measure the performance of individual and ensembled algorithms. Compared with manual classification, the machine-learning random forests algorithm produced 84% recall and 91% precision. With algorithm ensembling, we achieved our target criterion of 90% recall by using a consensus ensemble of ≥6 algorithms while still retaining 93% coverage, leaving only 7% of the summary expenditure records unclassified. Machine learning can be a time- and cost-saving tool for estimating public health spending in the United States. It can be used with standardized public health spending categories based on the Foundational Public Health Services model to help parse public health expenditure information from other types of health-related spending, provide data that are more comparable across public health organizations, and evaluate the impact of evidence-based public health resource allocation.

  4. Using statistical and machine learning to help institutions detect suspicious access to electronic health records.

    PubMed

    Boxwala, Aziz A; Kim, Jihoon; Grillo, Janice M; Ohno-Machado, Lucila

    2011-01-01

    To determine whether statistical and machine-learning methods, when applied to electronic health record (EHR) access data, could help identify suspicious (ie, potentially inappropriate) access to EHRs. From EHR access logs and other organizational data collected over a 2-month period, the authors extracted 26 features likely to be useful in detecting suspicious accesses. Selected events were marked as either suspicious or appropriate by privacy officers, and served as the gold standard set for model evaluation. The authors trained logistic regression (LR) and support vector machine (SVM) models on 10-fold cross-validation sets of 1291 labeled events. The authors evaluated the sensitivity of final models on an external set of 58 events that were identified as truly inappropriate and investigated independently from this study using standard operating procedures. The area under the receiver operating characteristic curve of the models on the whole data set of 1291 events was 0.91 for LR, and 0.95 for SVM. The sensitivity of the baseline model on this set was 0.8. When the final models were evaluated on the set of 58 investigated events, all of which were determined as truly inappropriate, the sensitivity was 0 for the baseline method, 0.76 for LR, and 0.79 for SVM. The LR and SVM models may not generalize because of interinstitutional differences in organizational structures, applications, and workflows. Nevertheless, our approach for constructing the models using statistical and machine-learning techniques can be generalized. An important limitation is the relatively small sample used for the training set due to the effort required for its construction. The results suggest that statistical and machine-learning methods can play an important role in helping privacy officers detect suspicious accesses to EHRs.

  5. Using statistical and machine learning to help institutions detect suspicious access to electronic health records

    PubMed Central

    Kim, Jihoon; Grillo, Janice M; Ohno-Machado, Lucila

    2011-01-01

    Objective To determine whether statistical and machine-learning methods, when applied to electronic health record (EHR) access data, could help identify suspicious (ie, potentially inappropriate) access to EHRs. Methods From EHR access logs and other organizational data collected over a 2-month period, the authors extracted 26 features likely to be useful in detecting suspicious accesses. Selected events were marked as either suspicious or appropriate by privacy officers, and served as the gold standard set for model evaluation. The authors trained logistic regression (LR) and support vector machine (SVM) models on 10-fold cross-validation sets of 1291 labeled events. The authors evaluated the sensitivity of final models on an external set of 58 events that were identified as truly inappropriate and investigated independently from this study using standard operating procedures. Results The area under the receiver operating characteristic curve of the models on the whole data set of 1291 events was 0.91 for LR, and 0.95 for SVM. The sensitivity of the baseline model on this set was 0.8. When the final models were evaluated on the set of 58 investigated events, all of which were determined as truly inappropriate, the sensitivity was 0 for the baseline method, 0.76 for LR, and 0.79 for SVM. Limitations The LR and SVM models may not generalize because of interinstitutional differences in organizational structures, applications, and workflows. Nevertheless, our approach for constructing the models using statistical and machine-learning techniques can be generalized. An important limitation is the relatively small sample used for the training set due to the effort required for its construction. Conclusion The results suggest that statistical and machine-learning methods can play an important role in helping privacy officers detect suspicious accesses to EHRs. PMID:21672912

  6. Applications of Machine Learning for Radiation Therapy.

    PubMed

    Arimura, Hidetaka; Nakamoto, Takahiro

    2016-01-01

    Radiation therapy has been highly advanced as image guided radiation therapy (IGRT) by making advantage of image engineering technologies. Recently, novel frameworks based on image engineering technologies as well as machine learning technologies have been studied for sophisticating the radiation therapy. In this review paper, the author introduces several researches of applications of machine learning for radiation therapy. For examples, a method to determine the threshold values for standardized uptake value (SUV) for estimation of gross tumor volume (GTV) in positron emission tomography (PET) images, an approach to estimate the multileaf collimator (MLC) position errors between treatment plans and radiation delivery time, and prediction frameworks for esophageal stenosis and radiation pneumonitis risk after radiation therapy are described. Finally, the author introduces seven issues that one should consider when applying machine learning models to radiation therapy.

  7. Daily sea level prediction at Chiayi coast, Taiwan using extreme learning machine and relevance vector machine

    NASA Astrophysics Data System (ADS)

    Imani, Moslem; Kao, Huan-Chin; Lan, Wen-Hau; Kuo, Chung-Yen

    2018-02-01

    The analysis and the prediction of sea level fluctuations are core requirements of marine meteorology and operational oceanography. Estimates of sea level with hours-to-days warning times are especially important for low-lying regions and coastal zone management. The primary purpose of this study is to examine the applicability and capability of extreme learning machine (ELM) and relevance vector machine (RVM) models for predicting sea level variations and compare their performances with powerful machine learning methods, namely, support vector machine (SVM) and radial basis function (RBF) models. The input dataset from the period of January 2004 to May 2011 used in the study was obtained from the Dongshi tide gauge station in Chiayi, Taiwan. Results showed that the ELM and RVM models outperformed the other methods. The performance of the RVM approach was superior in predicting the daily sea level time series given the minimum root mean square error of 34.73 mm and the maximum determination coefficient of 0.93 (R2) during the testing periods. Furthermore, the obtained results were in close agreement with the original tide-gauge data, which indicates that RVM approach is a promising alternative method for time series prediction and could be successfully used for daily sea level forecasts.

  8. Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project.

    PubMed

    Sakr, Sherif; Elshawi, Radwa; Ahmed, Amjad M; Qureshi, Waqas T; Brawner, Clinton A; Keteyian, Steven J; Blaha, Michael J; Al-Mallah, Mouaz H

    2017-12-19

    Prior studies have demonstrated that cardiorespiratory fitness (CRF) is a strong marker of cardiovascular health. Machine learning (ML) can enhance the prediction of outcomes through classification techniques that classify the data into predetermined categories. The aim of this study is to present an evaluation and comparison of how machine learning techniques can be applied on medical records of cardiorespiratory fitness and how the various techniques differ in terms of capabilities of predicting medical outcomes (e.g. mortality). We use data of 34,212 patients free of known coronary artery disease or heart failure who underwent clinician-referred exercise treadmill stress testing at Henry Ford Health Systems Between 1991 and 2009 and had a complete 10-year follow-up. Seven machine learning classification techniques were evaluated: Decision Tree (DT), Support Vector Machine (SVM), Artificial Neural Networks (ANN), Naïve Bayesian Classifier (BC), Bayesian Network (BN), K-Nearest Neighbor (KNN) and Random Forest (RF). In order to handle the imbalanced dataset used, the Synthetic Minority Over-Sampling Technique (SMOTE) is used. Two set of experiments have been conducted with and without the SMOTE sampling technique. On average over different evaluation metrics, SVM Classifier has shown the lowest performance while other models like BN, BC and DT performed better. The RF classifier has shown the best performance (AUC = 0.97) among all models trained using the SMOTE sampling. The results show that various ML techniques can significantly vary in terms of its performance for the different evaluation metrics. It is also not necessarily that the more complex the ML model, the more prediction accuracy can be achieved. The prediction performance of all models trained with SMOTE is much better than the performance of models trained without SMOTE. The study shows the potential of machine learning methods for predicting all-cause mortality using cardiorespiratory fitness data.

  9. A Distributed Learning Method for ℓ1-Regularized Kernel Machine over Wireless Sensor Networks

    PubMed Central

    Ji, Xinrong; Hou, Cuiqin; Hou, Yibin; Gao, Fang; Wang, Shulong

    2016-01-01

    In wireless sensor networks, centralized learning methods have very high communication costs and energy consumption. These are caused by the need to transmit scattered training examples from various sensor nodes to the central fusion center where a classifier or a regression machine is trained. To reduce the communication cost, a distributed learning method for a kernel machine that incorporates ℓ1 norm regularization (ℓ1-regularized) is investigated, and a novel distributed learning algorithm for the ℓ1-regularized kernel minimum mean squared error (KMSE) machine is proposed. The proposed algorithm relies on in-network processing and a collaboration that transmits the sparse model only between single-hop neighboring nodes. This paper evaluates the proposed algorithm with respect to the prediction accuracy, the sparse rate of model, the communication cost and the number of iterations on synthetic and real datasets. The simulation results show that the proposed algorithm can obtain approximately the same prediction accuracy as that obtained by the batch learning method. Moreover, it is significantly superior in terms of the sparse rate of model and communication cost, and it can converge with fewer iterations. Finally, an experiment conducted on a wireless sensor network (WSN) test platform further shows the advantages of the proposed algorithm with respect to communication cost. PMID:27376298

  10. Uniting Cheminformatics and Chemical Theory To Predict the Intrinsic Aqueous Solubility of Crystalline Druglike Molecules

    PubMed Central

    2014-01-01

    We present four models of solution free-energy prediction for druglike molecules utilizing cheminformatics descriptors and theoretically calculated thermodynamic values. We make predictions of solution free energy using physics-based theory alone and using machine learning/quantitative structure–property relationship (QSPR) models. We also develop machine learning models where the theoretical energies and cheminformatics descriptors are used as combined input. These models are used to predict solvation free energy. While direct theoretical calculation does not give accurate results in this approach, machine learning is able to give predictions with a root mean squared error (RMSE) of ∼1.1 log S units in a 10-fold cross-validation for our Drug-Like-Solubility-100 (DLS-100) dataset of 100 druglike molecules. We find that a model built using energy terms from our theoretical methodology as descriptors is marginally less predictive than one built on Chemistry Development Kit (CDK) descriptors. Combining both sets of descriptors allows a further but very modest improvement in the predictions. However, in some cases, this is a statistically significant enhancement. These results suggest that there is little complementarity between the chemical information provided by these two sets of descriptors, despite their different sources and methods of calculation. Our machine learning models are also able to predict the well-known Solubility Challenge dataset with an RMSE value of 0.9–1.0 log S units. PMID:24564264

  11. A Machine Learning Approach to Automated Gait Analysis for the Noldus Catwalk System.

    PubMed

    Frohlich, Holger; Claes, Kasper; De Wolf, Catherine; Van Damme, Xavier; Michel, Anne

    2018-05-01

    Gait analysis of animal disease models can provide valuable insights into in vivo compound effects and thus help in preclinical drug development. The purpose of this paper is to establish a computational gait analysis approach for the Noldus Catwalk system, in which footprints are automatically captured and stored. We present a - to our knowledge - first machine learning based approach for the Catwalk system, which comprises a step decomposition, definition and extraction of meaningful features, multivariate step sequence alignment, feature selection, and training of different classifiers (gradient boosting machine, random forest, and elastic net). Using animal-wise leave-one-out cross validation we demonstrate that with our method we can reliable separate movement patterns of a putative Parkinson's disease animal model and several control groups. Furthermore, we show that we can predict the time point after and the type of different brain lesions and can even forecast the brain region, where the intervention was applied. We provide an in-depth analysis of the features involved into our classifiers via statistical techniques for model interpretation. A machine learning method for automated analysis of data from the Noldus Catwalk system was established. Our works shows the ability of machine learning to discriminate pharmacologically relevant animal groups based on their walking behavior in a multivariate manner. Further interesting aspects of the approach include the ability to learn from past experiments, improve with more data arriving and to make predictions for single animals in future studies.

  12. Comparing SVM and ANN based Machine Learning Methods for Species Identification of Food Contaminating Beetles.

    PubMed

    Bisgin, Halil; Bera, Tanmay; Ding, Hongjian; Semey, Howard G; Wu, Leihong; Liu, Zhichao; Barnes, Amy E; Langley, Darryl A; Pava-Ripoll, Monica; Vyas, Himansu J; Tong, Weida; Xu, Joshua

    2018-04-25

    Insect pests, such as pantry beetles, are often associated with food contaminations and public health risks. Machine learning has the potential to provide a more accurate and efficient solution in detecting their presence in food products, which is currently done manually. In our previous research, we demonstrated such feasibility where Artificial Neural Network (ANN) based pattern recognition techniques could be implemented for species identification in the context of food safety. In this study, we present a Support Vector Machine (SVM) model which improved the average accuracy up to 85%. Contrary to this, the ANN method yielded ~80% accuracy after extensive parameter optimization. Both methods showed excellent genus level identification, but SVM showed slightly better accuracy  for most species. Highly accurate species level identification remains a challenge, especially in distinguishing between species from the same genus which may require improvements in both imaging and machine learning techniques. In summary, our work does illustrate a new SVM based technique and provides a good comparison with the ANN model in our context. We believe such insights will pave better way forward for the application of machine learning towards species identification and food safety.

  13. Understanding the dynamics of terrorism events with multiple-discipline datasets and machine learning approach

    PubMed Central

    Ding, Fangyu; Ge, Quansheng; Fu, Jingying; Hao, Mengmeng

    2017-01-01

    Terror events can cause profound consequences for the whole society. Finding out the regularity of terrorist attacks has important meaning for the global counter-terrorism strategy. In the present study, we demonstrate a novel method using relatively popular and robust machine learning methods to simulate the risk of terrorist attacks at a global scale based on multiple resources, long time series and globally distributed datasets. Historical data from 1970 to 2015 was adopted to train and evaluate machine learning models. The model performed fairly well in predicting the places where terror events might occur in 2015, with a success rate of 96.6%. Moreover, it is noteworthy that the model with optimized tuning parameter values successfully predicted 2,037 terrorism event locations where a terrorist attack had never happened before. PMID:28591138

  14. Understanding the dynamics of terrorism events with multiple-discipline datasets and machine learning approach.

    PubMed

    Ding, Fangyu; Ge, Quansheng; Jiang, Dong; Fu, Jingying; Hao, Mengmeng

    2017-01-01

    Terror events can cause profound consequences for the whole society. Finding out the regularity of terrorist attacks has important meaning for the global counter-terrorism strategy. In the present study, we demonstrate a novel method using relatively popular and robust machine learning methods to simulate the risk of terrorist attacks at a global scale based on multiple resources, long time series and globally distributed datasets. Historical data from 1970 to 2015 was adopted to train and evaluate machine learning models. The model performed fairly well in predicting the places where terror events might occur in 2015, with a success rate of 96.6%. Moreover, it is noteworthy that the model with optimized tuning parameter values successfully predicted 2,037 terrorism event locations where a terrorist attack had never happened before.

  15. Mixed-Initiative Clustering

    ERIC Educational Resources Information Center

    Huang, Yifen

    2010-01-01

    Mixed-initiative clustering is a task where a user and a machine work collaboratively to analyze a large set of documents. We hypothesize that a user and a machine can both learn better clustering models through enriched communication and interactive learning from each other. The first contribution or this thesis is providing a framework of…

  16. Artificial intelligence expert systems with neural network machine learning may assist decision-making for extractions in orthodontic treatment planning.

    PubMed

    Takada, Kenji

    2016-09-01

    New approach for the diagnosis of extractions with neural network machine learning. Seok-Ki Jung and Tae-Woo Kim. Am J Orthod Dentofacial Orthop 2016;149:127-33. Not reported. Mathematical modeling. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Machine listening intelligence

    NASA Astrophysics Data System (ADS)

    Cella, C. E.

    2017-05-01

    This manifesto paper will introduce machine listening intelligence, an integrated research framework for acoustic and musical signals modelling, based on signal processing, deep learning and computational musicology.

  18. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography.

    PubMed

    Itu, Lucian; Rapaka, Saikiran; Passerini, Tiziano; Georgescu, Bogdan; Schwemmer, Chris; Schoebinger, Max; Flohr, Thomas; Sharma, Puneet; Comaniciu, Dorin

    2016-07-01

    Fractional flow reserve (FFR) is a functional index quantifying the severity of coronary artery lesions and is clinically obtained using an invasive, catheter-based measurement. Recently, physics-based models have shown great promise in being able to noninvasively estimate FFR from patient-specific anatomical information, e.g., obtained from computed tomography scans of the heart and the coronary arteries. However, these models have high computational demand, limiting their clinical adoption. In this paper, we present a machine-learning-based model for predicting FFR as an alternative to physics-based approaches. The model is trained on a large database of synthetically generated coronary anatomies, where the target values are computed using the physics-based model. The trained model predicts FFR at each point along the centerline of the coronary tree, and its performance was assessed by comparing the predictions against physics-based computations and against invasively measured FFR for 87 patients and 125 lesions in total. Correlation between machine-learning and physics-based predictions was excellent (0.9994, P < 0.001), and no systematic bias was found in Bland-Altman analysis: mean difference was -0.00081 ± 0.0039. Invasive FFR ≤ 0.80 was found in 38 lesions out of 125 and was predicted by the machine-learning algorithm with a sensitivity of 81.6%, a specificity of 83.9%, and an accuracy of 83.2%. The correlation was 0.729 (P < 0.001). Compared with the physics-based computation, average execution time was reduced by more than 80 times, leading to near real-time assessment of FFR. Average execution time went down from 196.3 ± 78.5 s for the CFD model to ∼2.4 ± 0.44 s for the machine-learning model on a workstation with 3.4-GHz Intel i7 8-core processor. Copyright © 2016 the American Physiological Society.

  19. Development of a machine learning potential for graphene

    NASA Astrophysics Data System (ADS)

    Rowe, Patrick; Csányi, Gábor; Alfè, Dario; Michaelides, Angelos

    2018-02-01

    We present an accurate interatomic potential for graphene, constructed using the Gaussian approximation potential (GAP) machine learning methodology. This GAP model obtains a faithful representation of a density functional theory (DFT) potential energy surface, facilitating highly accurate (approaching the accuracy of ab initio methods) molecular dynamics simulations. This is achieved at a computational cost which is orders of magnitude lower than that of comparable calculations which directly invoke electronic structure methods. We evaluate the accuracy of our machine learning model alongside that of a number of popular empirical and bond-order potentials, using both experimental and ab initio data as references. We find that whilst significant discrepancies exist between the empirical interatomic potentials and the reference data—and amongst the empirical potentials themselves—the machine learning model introduced here provides exemplary performance in all of the tested areas. The calculated properties include: graphene phonon dispersion curves at 0 K (which we predict with sub-meV accuracy), phonon spectra at finite temperature, in-plane thermal expansion up to 2500 K as compared to NPT ab initio molecular dynamics simulations and a comparison of the thermally induced dispersion of graphene Raman bands to experimental observations. We have made our potential freely available online at [http://www.libatoms.org].

  20. Application of Machine-Learning Models to Predict Tacrolimus Stable Dose in Renal Transplant Recipients

    NASA Astrophysics Data System (ADS)

    Tang, Jie; Liu, Rong; Zhang, Yue-Li; Liu, Mou-Ze; Hu, Yong-Fang; Shao, Ming-Jie; Zhu, Li-Jun; Xin, Hua-Wen; Feng, Gui-Wen; Shang, Wen-Jun; Meng, Xiang-Guang; Zhang, Li-Rong; Ming, Ying-Zi; Zhang, Wei

    2017-02-01

    Tacrolimus has a narrow therapeutic window and considerable variability in clinical use. Our goal was to compare the performance of multiple linear regression (MLR) and eight machine learning techniques in pharmacogenetic algorithm-based prediction of tacrolimus stable dose (TSD) in a large Chinese cohort. A total of 1,045 renal transplant patients were recruited, 80% of which were randomly selected as the “derivation cohort” to develop dose-prediction algorithm, while the remaining 20% constituted the “validation cohort” to test the final selected algorithm. MLR, artificial neural network (ANN), regression tree (RT), multivariate adaptive regression splines (MARS), boosted regression tree (BRT), support vector regression (SVR), random forest regression (RFR), lasso regression (LAR) and Bayesian additive regression trees (BART) were applied and their performances were compared in this work. Among all the machine learning models, RT performed best in both derivation [0.71 (0.67-0.76)] and validation cohorts [0.73 (0.63-0.82)]. In addition, the ideal rate of RT was 4% higher than that of MLR. To our knowledge, this is the first study to use machine learning models to predict TSD, which will further facilitate personalized medicine in tacrolimus administration in the future.

  1. A New Mathematical Framework for Design Under Uncertainty

    DTIC Science & Technology

    2016-05-05

    blending multiple information sources via auto-regressive stochastic modeling. A computationally efficient machine learning framework is developed based on...sion and machine learning approaches; see Fig. 1. This will lead to a comprehensive description of system performance with less uncertainty than in the...Bayesian optimization of super-cavitating hy- drofoils The goal of this study is to demonstrate the capabilities of statistical learning and

  2. Predicting Networked Strategic Behavior via Machine Learning and Game Theory

    DTIC Science & Technology

    2015-01-13

    The funding for this project was used to develop basic models, methodology and algorithms for the application of machine learning and related tools to settings in which strategic behavior is central. Among the topics studied was the development of simple behavioral models explaining and predicting human subject behavior in networked strategic experiments from prior work. These included experiments in biased voting and networked trading, among others.

  3. Coupling Matched Molecular Pairs with Machine Learning for Virtual Compound Optimization.

    PubMed

    Turk, Samo; Merget, Benjamin; Rippmann, Friedrich; Fulle, Simone

    2017-12-26

    Matched molecular pair (MMP) analyses are widely used in compound optimization projects to gain insights into structure-activity relationships (SAR). The analysis is traditionally done via statistical methods but can also be employed together with machine learning (ML) approaches to extrapolate to novel compounds. The here introduced MMP/ML method combines a fragment-based MMP implementation with different machine learning methods to obtain automated SAR decomposition and prediction. To test the prediction capabilities and model transferability, two different compound optimization scenarios were designed: (1) "new fragments" which occurs when exploring new fragments for a defined compound series and (2) "new static core and transformations" which resembles for instance the identification of a new compound series. Very good results were achieved by all employed machine learning methods especially for the new fragments case, but overall deep neural network models performed best, allowing reliable predictions also for the new static core and transformations scenario, where comprehensive SAR knowledge of the compound series is missing. Furthermore, we show that models trained on all available data have a higher generalizability compared to models trained on focused series and can extend beyond chemical space covered in the training data. Thus, coupling MMP with deep neural networks provides a promising approach to make high quality predictions on various data sets and in different compound optimization scenarios.

  4. Investigating the Link Between Radiologists Gaze, Diagnostic Decision, and Image Content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tourassi, Georgia; Voisin, Sophie; Paquit, Vincent C

    2013-01-01

    Objective: To investigate machine learning for linking image content, human perception, cognition, and error in the diagnostic interpretation of mammograms. Methods: Gaze data and diagnostic decisions were collected from six radiologists who reviewed 20 screening mammograms while wearing a head-mounted eye-tracker. Texture analysis was performed in mammographic regions that attracted radiologists attention and in all abnormal regions. Machine learning algorithms were investigated to develop predictive models that link: (i) image content with gaze, (ii) image content and gaze with cognition, and (iii) image content, gaze, and cognition with diagnostic error. Both group-based and individualized models were explored. Results: By poolingmore » the data from all radiologists machine learning produced highly accurate predictive models linking image content, gaze, cognition, and error. Merging radiologists gaze metrics and cognitive opinions with computer-extracted image features identified 59% of the radiologists diagnostic errors while confirming 96.2% of their correct diagnoses. The radiologists individual errors could be adequately predicted by modeling the behavior of their peers. However, personalized tuning appears to be beneficial in many cases to capture more accurately individual behavior. Conclusions: Machine learning algorithms combining image features with radiologists gaze data and diagnostic decisions can be effectively developed to recognize cognitive and perceptual errors associated with the diagnostic interpretation of mammograms.« less

  5. Formation enthalpies for transition metal alloys using machine learning

    NASA Astrophysics Data System (ADS)

    Ubaru, Shashanka; Miedlar, Agnieszka; Saad, Yousef; Chelikowsky, James R.

    2017-06-01

    The enthalpy of formation is an important thermodynamic property. Developing fast and accurate methods for its prediction is of practical interest in a variety of applications. Material informatics techniques based on machine learning have recently been introduced in the literature as an inexpensive means of exploiting materials data, and can be used to examine a variety of thermodynamics properties. We investigate the use of such machine learning tools for predicting the formation enthalpies of binary intermetallic compounds that contain at least one transition metal. We consider certain easily available properties of the constituting elements complemented by some basic properties of the compounds, to predict the formation enthalpies. We show how choosing these properties (input features) based on a literature study (using prior physics knowledge) seems to outperform machine learning based feature selection methods such as sensitivity analysis and LASSO (least absolute shrinkage and selection operator) based methods. A nonlinear kernel based support vector regression method is employed to perform the predictions. The predictive ability of our model is illustrated via several experiments on a dataset containing 648 binary alloys. We train and validate the model using the formation enthalpies calculated using a model by Miedema, which is a popular semiempirical model used for the prediction of formation enthalpies of metal alloys.

  6. A Novel Application of Machine Learning Methods to Model Microcontroller Upset Due to Intentional Electromagnetic Interference

    NASA Astrophysics Data System (ADS)

    Bilalic, Rusmir

    A novel application of support vector machines (SVMs), artificial neural networks (ANNs), and Gaussian processes (GPs) for machine learning (GPML) to model microcontroller unit (MCU) upset due to intentional electromagnetic interference (IEMI) is presented. In this approach, an MCU performs a counting operation (0-7) while electromagnetic interference in the form of a radio frequency (RF) pulse is direct-injected into the MCU clock line. Injection times with respect to the clock signal are the clock low, clock rising edge, clock high, and the clock falling edge periods in the clock window during which the MCU is performing initialization and executing the counting procedure. The intent is to cause disruption in the counting operation and model the probability of effect (PoE) using machine learning tools. Five experiments were executed as part of this research, each of which contained a set of 38,300 training points and 38,300 test points, for a total of 383,000 total points with the following experiment variables: injection times with respect to the clock signal, injected RF power, injected RF pulse width, and injected RF frequency. For the 191,500 training points, the average training error was 12.47%, while for the 191,500 test points the average test error was 14.85%, meaning that on average, the machine was able to predict MCU upset with an 85.15% accuracy. Leaving out the results for the worst-performing model (SVM with a linear kernel), the test prediction accuracy for the remaining machines is almost 89%. All three machine learning methods (ANNs, SVMs, and GPML) showed excellent and consistent results in their ability to model and predict the PoE on an MCU due to IEMI. The GP approach performed best during training with a 7.43% average training error, while the ANN technique was most accurate during the test with a 10.80% error.

  7. Bayesian Kernel Methods for Non-Gaussian Distributions: Binary and Multi-class Classification Problems

    DTIC Science & Technology

    2013-05-28

    those of the support vector machine and relevance vector machine, and the model runs more quickly than the other algorithms . When one class occurs...incremental support vector machine algorithm for online learning when fewer than 50 data points are available. (a) Papers published in peer-reviewed journals...learning environments, where data processing occurs one observation at a time and the classification algorithm improves over time with new

  8. Leveraging knowledge engineering and machine learning for microbial bio-manufacturing.

    PubMed

    Oyetunde, Tolutola; Bao, Forrest Sheng; Chen, Jiung-Wen; Martin, Hector Garcia; Tang, Yinjie J

    2018-05-03

    Genome scale modeling (GSM) predicts the performance of microbial workhorses and helps identify beneficial gene targets. GSM integrated with intracellular flux dynamics, omics, and thermodynamics have shown remarkable progress in both elucidating complex cellular phenomena and computational strain design (CSD). Nonetheless, these models still show high uncertainty due to a poor understanding of innate pathway regulations, metabolic burdens, and other factors (such as stress tolerance and metabolite channeling). Besides, the engineered hosts may have genetic mutations or non-genetic variations in bioreactor conditions and thus CSD rarely foresees fermentation rate and titer. Metabolic models play important role in design-build-test-learn cycles for strain improvement, and machine learning (ML) may provide a viable complementary approach for driving strain design and deciphering cellular processes. In order to develop quality ML models, knowledge engineering leverages and standardizes the wealth of information in literature (e.g., genomic/phenomic data, synthetic biology strategies, and bioprocess variables). Data driven frameworks can offer new constraints for mechanistic models to describe cellular regulations, to design pathways, to search gene targets, and to estimate fermentation titer/rate/yield under specified growth conditions (e.g., mixing, nutrients, and O 2 ). This review highlights the scope of information collections, database constructions, and machine learning techniques (such as deep learning and transfer learning), which may facilitate "Learn and Design" for strain development. Copyright © 2018. Published by Elsevier Inc.

  9. Toward Automating HIV Identification: Machine Learning for Rapid Identification of HIV-Related Social Media Data.

    PubMed

    Young, Sean D; Yu, Wenchao; Wang, Wei

    2017-02-01

    "Social big data" from technologies such as social media, wearable devices, and online searches continue to grow and can be used as tools for HIV research. Although researchers can uncover patterns and insights associated with HIV trends and transmission, the review process is time consuming and resource intensive. Machine learning methods derived from computer science might be used to assist HIV domain experts by learning how to rapidly and accurately identify patterns associated with HIV from a large set of social data. Using an existing social media data set that was associated with HIV and coded by an HIV domain expert, we tested whether 4 commonly used machine learning methods could learn the patterns associated with HIV risk behavior. We used the 10-fold cross-validation method to examine the speed and accuracy of these models in applying that knowledge to detect HIV content in social media data. Logistic regression and random forest resulted in the highest accuracy in detecting HIV-related social data (85.3%), whereas the Ridge Regression Classifier resulted in the lowest accuracy. Logistic regression yielded the fastest processing time (16.98 seconds). Machine learning can enable social big data to become a new and important tool in HIV research, helping to create a new field of "digital HIV epidemiology." If a domain expert can identify patterns in social data associated with HIV risk or HIV transmission, machine learning models could quickly and accurately learn those associations and identify potential HIV patterns in large social data sets.

  10. Benchmarking Deep Learning Models on Large Healthcare Datasets.

    PubMed

    Purushotham, Sanjay; Meng, Chuizheng; Che, Zhengping; Liu, Yan

    2018-06-04

    Deep learning models (aka Deep Neural Networks) have revolutionized many fields including computer vision, natural language processing, speech recognition, and is being increasingly used in clinical healthcare applications. However, few works exist which have benchmarked the performance of the deep learning models with respect to the state-of-the-art machine learning models and prognostic scoring systems on publicly available healthcare datasets. In this paper, we present the benchmarking results for several clinical prediction tasks such as mortality prediction, length of stay prediction, and ICD-9 code group prediction using Deep Learning models, ensemble of machine learning models (Super Learner algorithm), SAPS II and SOFA scores. We used the Medical Information Mart for Intensive Care III (MIMIC-III) (v1.4) publicly available dataset, which includes all patients admitted to an ICU at the Beth Israel Deaconess Medical Center from 2001 to 2012, for the benchmarking tasks. Our results show that deep learning models consistently outperform all the other approaches especially when the 'raw' clinical time series data is used as input features to the models. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Prediction of Return-to-original-work after an Industrial Accident Using Machine Learning and Comparison of Techniques

    PubMed Central

    2018-01-01

    Background Many studies have tried to develop predictors for return-to-work (RTW). However, since complex factors have been demonstrated to predict RTW, it is difficult to use them practically. This study investigated whether factors used in previous studies could predict whether an individual had returned to his/her original work by four years after termination of the worker's recovery period. Methods An initial logistic regression analysis of 1,567 participants of the fourth Panel Study of Worker's Compensation Insurance yielded odds ratios. The participants were divided into two subsets, a training dataset and a test dataset. Using the training dataset, logistic regression, decision tree, random forest, and support vector machine models were established, and important variables of each model were identified. The predictive abilities of the different models were compared. Results The analysis showed that only earned income and company-related factors significantly affected return-to-original-work (RTOW). The random forest model showed the best accuracy among the tested machine learning models; however, the difference was not prominent. Conclusion It is possible to predict a worker's probability of RTOW using machine learning techniques with moderate accuracy. PMID:29736160

  12. Towards large-scale FAME-based bacterial species identification using machine learning techniques.

    PubMed

    Slabbinck, Bram; De Baets, Bernard; Dawyndt, Peter; De Vos, Paul

    2009-05-01

    In the last decade, bacterial taxonomy witnessed a huge expansion. The swift pace of bacterial species (re-)definitions has a serious impact on the accuracy and completeness of first-line identification methods. Consequently, back-end identification libraries need to be synchronized with the List of Prokaryotic names with Standing in Nomenclature. In this study, we focus on bacterial fatty acid methyl ester (FAME) profiling as a broadly used first-line identification method. From the BAME@LMG database, we have selected FAME profiles of individual strains belonging to the genera Bacillus, Paenibacillus and Pseudomonas. Only those profiles resulting from standard growth conditions have been retained. The corresponding data set covers 74, 44 and 95 validly published bacterial species, respectively, represented by 961, 378 and 1673 standard FAME profiles. Through the application of machine learning techniques in a supervised strategy, different computational models have been built for genus and species identification. Three techniques have been considered: artificial neural networks, random forests and support vector machines. Nearly perfect identification has been achieved at genus level. Notwithstanding the known limited discriminative power of FAME analysis for species identification, the computational models have resulted in good species identification results for the three genera. For Bacillus, Paenibacillus and Pseudomonas, random forests have resulted in sensitivity values, respectively, 0.847, 0.901 and 0.708. The random forests models outperform those of the other machine learning techniques. Moreover, our machine learning approach also outperformed the Sherlock MIS (MIDI Inc., Newark, DE, USA). These results show that machine learning proves very useful for FAME-based bacterial species identification. Besides good bacterial identification at species level, speed and ease of taxonomic synchronization are major advantages of this computational species identification strategy.

  13. Machine Learning and Deep Learning Models to Predict Runoff Water Quantity and Quality

    NASA Astrophysics Data System (ADS)

    Bradford, S. A.; Liang, J.; Li, W.; Murata, T.; Simunek, J.

    2017-12-01

    Contaminants can be rapidly transported at the soil surface by runoff to surface water bodies. Physically-based models, which are based on the mathematical description of main hydrological processes, are key tools for predicting surface water impairment. Along with physically-based models, data-driven models are becoming increasingly popular for describing the behavior of hydrological and water resources systems since these models can be used to complement or even replace physically based-models. In this presentation we propose a new data-driven model as an alternative to a physically-based overland flow and transport model. First, we have developed a physically-based numerical model to simulate overland flow and contaminant transport (the HYDRUS-1D overland flow module). A large number of numerical simulations were carried out to develop a database containing information about the impact of various input parameters (weather patterns, surface topography, vegetation, soil conditions, contaminants, and best management practices) on runoff water quantity and quality outputs. This database was used to train data-driven models. Three different methods (Neural Networks, Support Vector Machines, and Recurrence Neural Networks) were explored to prepare input- output functional relations. Results demonstrate the ability and limitations of machine learning and deep learning models to predict runoff water quantity and quality.

  14. Machine learning derived risk prediction of anorexia nervosa.

    PubMed

    Guo, Yiran; Wei, Zhi; Keating, Brendan J; Hakonarson, Hakon

    2016-01-20

    Anorexia nervosa (AN) is a complex psychiatric disease with a moderate to strong genetic contribution. In addition to conventional genome wide association (GWA) studies, researchers have been using machine learning methods in conjunction with genomic data to predict risk of diseases in which genetics play an important role. In this study, we collected whole genome genotyping data on 3940 AN cases and 9266 controls from the Genetic Consortium for Anorexia Nervosa (GCAN), the Wellcome Trust Case Control Consortium 3 (WTCCC3), Price Foundation Collaborative Group and the Children's Hospital of Philadelphia (CHOP), and applied machine learning methods for predicting AN disease risk. The prediction performance is measured by area under the receiver operating characteristic curve (AUC), indicating how well the model distinguishes cases from unaffected control subjects. Logistic regression model with the lasso penalty technique generated an AUC of 0.693, while Support Vector Machines and Gradient Boosted Trees reached AUC's of 0.691 and 0.623, respectively. Using different sample sizes, our results suggest that larger datasets are required to optimize the machine learning models and achieve higher AUC values. To our knowledge, this is the first attempt to assess AN risk based on genome wide genotype level data. Future integration of genomic, environmental and family-based information is likely to improve the AN risk evaluation process, eventually benefitting AN patients and families in the clinical setting.

  15. Boosting Learning Algorithm for Stock Price Forecasting

    NASA Astrophysics Data System (ADS)

    Wang, Chengzhang; Bai, Xiaoming

    2018-03-01

    To tackle complexity and uncertainty of stock market behavior, more studies have introduced machine learning algorithms to forecast stock price. ANN (artificial neural network) is one of the most successful and promising applications. We propose a boosting-ANN model in this paper to predict the stock close price. On the basis of boosting theory, multiple weak predicting machines, i.e. ANNs, are assembled to build a stronger predictor, i.e. boosting-ANN model. New error criteria of the weak studying machine and rules of weights updating are adopted in this study. We select technical factors from financial markets as forecasting input variables. Final results demonstrate the boosting-ANN model works better than other ones for stock price forecasting.

  16. Discrimination of plant root zone water status in greenhouse production based on phenotyping and machine learning techniques.

    PubMed

    Guo, Doudou; Juan, Jiaxiang; Chang, Liying; Zhang, Jingjin; Huang, Danfeng

    2017-08-15

    Plant-based sensing on water stress can provide sensitive and direct reference for precision irrigation system in greenhouse. However, plant information acquisition, interpretation, and systematical application remain insufficient. This study developed a discrimination method for plant root zone water status in greenhouse by integrating phenotyping and machine learning techniques. Pakchoi plants were used and treated by three root zone moisture levels, 40%, 60%, and 80% relative water content. Three classification models, Random Forest (RF), Neural Network (NN), and Support Vector Machine (SVM) were developed and validated in different scenarios with overall accuracy over 90% for all. SVM model had the highest value, but it required the longest training time. All models had accuracy over 85% in all scenarios, and more stable performance was observed in RF model. Simplified SVM model developed by the top five most contributing traits had the largest accuracy reduction as 29.5%, while simplified RF and NN model still maintained approximately 80%. For real case application, factors such as operation cost, precision requirement, and system reaction time should be synthetically considered in model selection. Our work shows it is promising to discriminate plant root zone water status by implementing phenotyping and machine learning techniques for precision irrigation management.

  17. Learning Extended Finite State Machines

    NASA Technical Reports Server (NTRS)

    Cassel, Sofia; Howar, Falk; Jonsson, Bengt; Steffen, Bernhard

    2014-01-01

    We present an active learning algorithm for inferring extended finite state machines (EFSM)s, combining data flow and control behavior. Key to our learning technique is a novel learning model based on so-called tree queries. The learning algorithm uses the tree queries to infer symbolic data constraints on parameters, e.g., sequence numbers, time stamps, identifiers, or even simple arithmetic. We describe sufficient conditions for the properties that the symbolic constraints provided by a tree query in general must have to be usable in our learning model. We have evaluated our algorithm in a black-box scenario, where tree queries are realized through (black-box) testing. Our case studies include connection establishment in TCP and a priority queue from the Java Class Library.

  18. A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling.

    PubMed

    Leger, Stefan; Zwanenburg, Alex; Pilz, Karoline; Lohaus, Fabian; Linge, Annett; Zöphel, Klaus; Kotzerke, Jörg; Schreiber, Andreas; Tinhofer, Inge; Budach, Volker; Sak, Ali; Stuschke, Martin; Balermpas, Panagiotis; Rödel, Claus; Ganswindt, Ute; Belka, Claus; Pigorsch, Steffi; Combs, Stephanie E; Mönnich, David; Zips, Daniel; Krause, Mechthild; Baumann, Michael; Troost, Esther G C; Löck, Steffen; Richter, Christian

    2017-10-16

    Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall survival for patients with head and neck squamous cell carcinoma. The considered algorithms are able to deal with continuous time-to-event survival data. Feature selection and model building were performed on a multicentre cohort (213 patients) and validated using an independent cohort (80 patients). We found several combinations of machine learning algorithms and feature selection methods which achieve similar results, e.g. C-Index = 0.71 and BT-COX: C-Index = 0.70 in combination with Spearman feature selection. Using the best performing models, patients were stratified into groups of low and high risk of recurrence. Significant differences in LRC were obtained between both groups on the validation cohort. Based on the presented analysis, we identified a subset of algorithms which should be considered in future radiomics studies to develop stable and clinically relevant predictive models for time-to-event endpoints.

  19. Novel Breast Imaging and Machine Learning: Predicting Breast Lesion Malignancy at Cone-Beam CT Using Machine Learning Techniques.

    PubMed

    Uhlig, Johannes; Uhlig, Annemarie; Kunze, Meike; Beissbarth, Tim; Fischer, Uwe; Lotz, Joachim; Wienbeck, Susanne

    2018-05-24

    The purpose of this study is to evaluate the diagnostic performance of machine learning techniques for malignancy prediction at breast cone-beam CT (CBCT) and to compare them to human readers. Five machine learning techniques, including random forests, back propagation neural networks (BPN), extreme learning machines, support vector machines, and K-nearest neighbors, were used to train diagnostic models on a clinical breast CBCT dataset with internal validation by repeated 10-fold cross-validation. Two independent blinded human readers with profound experience in breast imaging and breast CBCT analyzed the same CBCT dataset. Diagnostic performance was compared using AUC, sensitivity, and specificity. The clinical dataset comprised 35 patients (American College of Radiology density type C and D breasts) with 81 suspicious breast lesions examined with contrast-enhanced breast CBCT. Forty-five lesions were histopathologically proven to be malignant. Among the machine learning techniques, BPNs provided the best diagnostic performance, with AUC of 0.91, sensitivity of 0.85, and specificity of 0.82. The diagnostic performance of the human readers was AUC of 0.84, sensitivity of 0.89, and specificity of 0.72 for reader 1 and AUC of 0.72, sensitivity of 0.71, and specificity of 0.67 for reader 2. AUC was significantly higher for BPN when compared with both reader 1 (p = 0.01) and reader 2 (p < 0.001). Machine learning techniques provide a high and robust diagnostic performance in the prediction of malignancy in breast lesions identified at CBCT. BPNs showed the best diagnostic performance, surpassing human readers in terms of AUC and specificity.

  20. Machine Learning for Flood Prediction in Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Kuhn, C.; Tellman, B.; Max, S. A.; Schwarz, B.

    2015-12-01

    With the increasing availability of high-resolution satellite imagery, dynamic flood mapping in near real time is becoming a reachable goal for decision-makers. This talk describes a newly developed framework for predicting biophysical flood vulnerability using public data, cloud computing and machine learning. Our objective is to define an approach to flood inundation modeling using statistical learning methods deployed in a cloud-based computing platform. Traditionally, static flood extent maps grounded in physically based hydrologic models can require hours of human expertise to construct at significant financial cost. In addition, desktop modeling software and limited local server storage can impose restraints on the size and resolution of input datasets. Data-driven, cloud-based processing holds promise for predictive watershed modeling at a wide range of spatio-temporal scales. However, these benefits come with constraints. In particular, parallel computing limits a modeler's ability to simulate the flow of water across a landscape, rendering traditional routing algorithms unusable in this platform. Our project pushes these limits by testing the performance of two machine learning algorithms, Support Vector Machine (SVM) and Random Forests, at predicting flood extent. Constructed in Google Earth Engine, the model mines a suite of publicly available satellite imagery layers to use as algorithm inputs. Results are cross-validated using MODIS-based flood maps created using the Dartmouth Flood Observatory detection algorithm. Model uncertainty highlights the difficulty of deploying unbalanced training data sets based on rare extreme events.

  1. Vowel Imagery Decoding toward Silent Speech BCI Using Extreme Learning Machine with Electroencephalogram

    PubMed Central

    Kim, Jongin; Park, Hyeong-jun

    2016-01-01

    The purpose of this study is to classify EEG data on imagined speech in a single trial. We recorded EEG data while five subjects imagined different vowels, /a/, /e/, /i/, /o/, and /u/. We divided each single trial dataset into thirty segments and extracted features (mean, variance, standard deviation, and skewness) from all segments. To reduce the dimension of the feature vector, we applied a feature selection algorithm based on the sparse regression model. These features were classified using a support vector machine with a radial basis function kernel, an extreme learning machine, and two variants of an extreme learning machine with different kernels. Because each single trial consisted of thirty segments, our algorithm decided the label of the single trial by selecting the most frequent output among the outputs of the thirty segments. As a result, we observed that the extreme learning machine and its variants achieved better classification rates than the support vector machine with a radial basis function kernel and linear discrimination analysis. Thus, our results suggested that EEG responses to imagined speech could be successfully classified in a single trial using an extreme learning machine with a radial basis function and linear kernel. This study with classification of imagined speech might contribute to the development of silent speech BCI systems. PMID:28097128

  2. Optical Coherence Tomography Machine Learning Classifiers for Glaucoma Detection: A Preliminary Study

    PubMed Central

    Burgansky-Eliash, Zvia; Wollstein, Gadi; Chu, Tianjiao; Ramsey, Joseph D.; Glymour, Clark; Noecker, Robert J.; Ishikawa, Hiroshi; Schuman, Joel S.

    2007-01-01

    Purpose Machine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis. The present study investigated whether the use of machine-learning classifiers improves optical coherence tomography (OCT) glaucoma detection. Methods Forty-seven patients with glaucoma (47 eyes) and 42 healthy subjects (42 eyes) were included in this cross-sectional study. Of the glaucoma patients, 27 had early disease (visual field mean deviation [MD] ≥ −6 dB) and 20 had advanced glaucoma (MD < −6 dB). Machine-learning classifiers were trained to discriminate between glaucomatous and healthy eyes using parameters derived from OCT output. The classifiers were trained with all 38 parameters as well as with only 8 parameters that correlated best with the visual field MD. Five classifiers were tested: linear discriminant analysis, support vector machine, recursive partitioning and regression tree, generalized linear model, and generalized additive model. For the last two classifiers, a backward feature selection was used to find the minimal number of parameters that resulted in the best and most simple prediction. The cross-validated receiver operating characteristic (ROC) curve and accuracies were calculated. Results The largest area under the ROC curve (AROC) for glaucoma detection was achieved with the support vector machine using eight parameters (0.981). The sensitivity at 80% and 95% specificity was 97.9% and 92.5%, respectively. This classifier also performed best when judged by cross-validated accuracy (0.966). The best classification between early glaucoma and advanced glaucoma was obtained with the generalized additive model using only three parameters (AROC = 0.854). Conclusions Automated machine classifiers of OCT data might be useful for enhancing the utility of this technology for detecting glaucomatous abnormality. PMID:16249492

  3. A deep learning-based multi-model ensemble method for cancer prediction.

    PubMed

    Xiao, Yawen; Wu, Jun; Lin, Zongli; Zhao, Xiaodong

    2018-01-01

    Cancer is a complex worldwide health problem associated with high mortality. With the rapid development of the high-throughput sequencing technology and the application of various machine learning methods that have emerged in recent years, progress in cancer prediction has been increasingly made based on gene expression, providing insight into effective and accurate treatment decision making. Thus, developing machine learning methods, which can successfully distinguish cancer patients from healthy persons, is of great current interest. However, among the classification methods applied to cancer prediction so far, no one method outperforms all the others. In this paper, we demonstrate a new strategy, which applies deep learning to an ensemble approach that incorporates multiple different machine learning models. We supply informative gene data selected by differential gene expression analysis to five different classification models. Then, a deep learning method is employed to ensemble the outputs of the five classifiers. The proposed deep learning-based multi-model ensemble method was tested on three public RNA-seq data sets of three kinds of cancers, Lung Adenocarcinoma, Stomach Adenocarcinoma and Breast Invasive Carcinoma. The test results indicate that it increases the prediction accuracy of cancer for all the tested RNA-seq data sets as compared to using a single classifier or the majority voting algorithm. By taking full advantage of different classifiers, the proposed deep learning-based multi-model ensemble method is shown to be accurate and effective for cancer prediction. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Building machines that learn and think like people.

    PubMed

    Lake, Brenden M; Ullman, Tomer D; Tenenbaum, Joshua B; Gershman, Samuel J

    2017-01-01

    Recent progress in artificial intelligence has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats that of humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn and how they learn it. Specifically, we argue that these machines should (1) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (2) ground learning in intuitive theories of physics and psychology to support and enrich the knowledge that is learned; and (3) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes toward these goals that can combine the strengths of recent neural network advances with more structured cognitive models.

  5. Development and validation of a machine learning algorithm and hybrid system to predict the need for life-saving interventions in trauma patients.

    PubMed

    Liu, Nehemiah T; Holcomb, John B; Wade, Charles E; Batchinsky, Andriy I; Cancio, Leopoldo C; Darrah, Mark I; Salinas, José

    2014-02-01

    Accurate and effective diagnosis of actual injury severity can be problematic in trauma patients. Inherent physiologic compensatory mechanisms may prevent accurate diagnosis and mask true severity in many circumstances. The objective of this project was the development and validation of a multiparameter machine learning algorithm and system capable of predicting the need for life-saving interventions (LSIs) in trauma patients. Statistics based on means, slopes, and maxima of various vital sign measurements corresponding to 79 trauma patient records generated over 110,000 feature sets, which were used to develop, train, and implement the system. Comparisons among several machine learning models proved that a multilayer perceptron would best implement the algorithm in a hybrid system consisting of a machine learning component and basic detection rules. Additionally, 295,994 feature sets from 82 h of trauma patient data showed that the system can obtain 89.8 % accuracy within 5 min of recorded LSIs. Use of machine learning technologies combined with basic detection rules provides a potential approach for accurately assessing the need for LSIs in trauma patients. The performance of this system demonstrates that machine learning technology can be implemented in a real-time fashion and potentially used in a critical care environment.

  6. Topic categorisation of statements in suicide notes with integrated rules and machine learning.

    PubMed

    Kovačević, Aleksandar; Dehghan, Azad; Keane, John A; Nenadic, Goran

    2012-01-01

    We describe and evaluate an automated approach used as part of the i2b2 2011 challenge to identify and categorise statements in suicide notes into one of 15 topics, including Love, Guilt, Thankfulness, Hopelessness and Instructions. The approach combines a set of lexico-syntactic rules with a set of models derived by machine learning from a training dataset. The machine learning models rely on named entities, lexical, lexico-semantic and presentation features, as well as the rules that are applicable to a given statement. On a testing set of 300 suicide notes, the approach showed the overall best micro F-measure of up to 53.36%. The best precision achieved was 67.17% when only rules are used, whereas best recall of 50.57% was with integrated rules and machine learning. While some topics (eg, Sorrow, Anger, Blame) prove challenging, the performance for relatively frequent (eg, Love) and well-scoped categories (eg, Thankfulness) was comparatively higher (precision between 68% and 79%), suggesting that automated text mining approaches can be effective in topic categorisation of suicide notes.

  7. Secure and Efficient Regression Analysis Using a Hybrid Cryptographic Framework: Development and Evaluation

    PubMed Central

    Jiang, Xiaoqian; Aziz, Md Momin Al; Wang, Shuang; Mohammed, Noman

    2018-01-01

    Background Machine learning is an effective data-driven tool that is being widely used to extract valuable patterns and insights from data. Specifically, predictive machine learning models are very important in health care for clinical data analysis. The machine learning algorithms that generate predictive models often require pooling data from different sources to discover statistical patterns or correlations among different attributes of the input data. The primary challenge is to fulfill one major objective: preserving the privacy of individuals while discovering knowledge from data. Objective Our objective was to develop a hybrid cryptographic framework for performing regression analysis over distributed data in a secure and efficient way. Methods Existing secure computation schemes are not suitable for processing the large-scale data that are used in cutting-edge machine learning applications. We designed, developed, and evaluated a hybrid cryptographic framework, which can securely perform regression analysis, a fundamental machine learning algorithm using somewhat homomorphic encryption and a newly introduced secure hardware component of Intel Software Guard Extensions (Intel SGX) to ensure both privacy and efficiency at the same time. Results Experimental results demonstrate that our proposed method provides a better trade-off in terms of security and efficiency than solely secure hardware-based methods. Besides, there is no approximation error. Computed model parameters are exactly similar to plaintext results. Conclusions To the best of our knowledge, this kind of secure computation model using a hybrid cryptographic framework, which leverages both somewhat homomorphic encryption and Intel SGX, is not proposed or evaluated to this date. Our proposed framework ensures data security and computational efficiency at the same time. PMID:29506966

  8. Secure and Efficient Regression Analysis Using a Hybrid Cryptographic Framework: Development and Evaluation.

    PubMed

    Sadat, Md Nazmus; Jiang, Xiaoqian; Aziz, Md Momin Al; Wang, Shuang; Mohammed, Noman

    2018-03-05

    Machine learning is an effective data-driven tool that is being widely used to extract valuable patterns and insights from data. Specifically, predictive machine learning models are very important in health care for clinical data analysis. The machine learning algorithms that generate predictive models often require pooling data from different sources to discover statistical patterns or correlations among different attributes of the input data. The primary challenge is to fulfill one major objective: preserving the privacy of individuals while discovering knowledge from data. Our objective was to develop a hybrid cryptographic framework for performing regression analysis over distributed data in a secure and efficient way. Existing secure computation schemes are not suitable for processing the large-scale data that are used in cutting-edge machine learning applications. We designed, developed, and evaluated a hybrid cryptographic framework, which can securely perform regression analysis, a fundamental machine learning algorithm using somewhat homomorphic encryption and a newly introduced secure hardware component of Intel Software Guard Extensions (Intel SGX) to ensure both privacy and efficiency at the same time. Experimental results demonstrate that our proposed method provides a better trade-off in terms of security and efficiency than solely secure hardware-based methods. Besides, there is no approximation error. Computed model parameters are exactly similar to plaintext results. To the best of our knowledge, this kind of secure computation model using a hybrid cryptographic framework, which leverages both somewhat homomorphic encryption and Intel SGX, is not proposed or evaluated to this date. Our proposed framework ensures data security and computational efficiency at the same time. ©Md Nazmus Sadat, Xiaoqian Jiang, Md Momin Al Aziz, Shuang Wang, Noman Mohammed. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 05.03.2018.

  9. Potential application of machine learning in health outcomes research and some statistical cautions.

    PubMed

    Crown, William H

    2015-03-01

    Traditional analytic methods are often ill-suited to the evolving world of health care big data characterized by massive volume, complexity, and velocity. In particular, methods are needed that can estimate models efficiently using very large datasets containing healthcare utilization data, clinical data, data from personal devices, and many other sources. Although very large, such datasets can also be quite sparse (e.g., device data may only be available for a small subset of individuals), which creates problems for traditional regression models. Many machine learning methods address such limitations effectively but are still subject to the usual sources of bias that commonly arise in observational studies. Researchers using machine learning methods such as lasso or ridge regression should assess these models using conventional specification tests. Copyright © 2015 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  10. Machine Learning Methods to Extract Documentation of Breast Cancer Symptoms From Electronic Health Records.

    PubMed

    Forsyth, Alexander W; Barzilay, Regina; Hughes, Kevin S; Lui, Dickson; Lorenz, Karl A; Enzinger, Andrea; Tulsky, James A; Lindvall, Charlotta

    2018-06-01

    Clinicians document cancer patients' symptoms in free-text format within electronic health record visit notes. Although symptoms are critically important to quality of life and often herald clinical status changes, computational methods to assess the trajectory of symptoms over time are woefully underdeveloped. To create machine learning algorithms capable of extracting patient-reported symptoms from free-text electronic health record notes. The data set included 103,564 sentences obtained from the electronic clinical notes of 2695 breast cancer patients receiving paclitaxel-containing chemotherapy at two academic cancer centers between May 1996 and May 2015. We manually annotated 10,000 sentences and trained a conditional random field model to predict words indicating an active symptom (positive label), absence of a symptom (negative label), or no symptom at all (neutral label). Sentences labeled by human coder were divided into training, validation, and test data sets. Final model performance was determined on 20% test data unused in model development or tuning. The final model achieved precision of 0.82, 0.86, and 0.99 and recall of 0.56, 0.69, and 1.00 for positive, negative, and neutral symptom labels, respectively. The most common positive symptoms were pain, fatigue, and nausea. Machine-based labeling of 103,564 sentences took two minutes. We demonstrate the potential of machine learning to gather, track, and analyze symptoms experienced by cancer patients during chemotherapy. Although our initial model requires further optimization to improve the performance, further model building may yield machine learning methods suitable to be deployed in routine clinical care, quality improvement, and research applications. Copyright © 2018 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  11. Machine Learning Approaches for Predicting Radiation Therapy Outcomes: A Clinician's Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, John; Schwartz, Russell; Flickinger, John

    Radiation oncology has always been deeply rooted in modeling, from the early days of isoeffect curves to the contemporary Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) initiative. In recent years, medical modeling for both prognostic and therapeutic purposes has exploded thanks to increasing availability of electronic data and genomics. One promising direction that medical modeling is moving toward is adopting the same machine learning methods used by companies such as Google and Facebook to combat disease. Broadly defined, machine learning is a branch of computer science that deals with making predictions from complex data through statistical models.more » These methods serve to uncover patterns in data and are actively used in areas such as speech recognition, handwriting recognition, face recognition, “spam” filtering (junk email), and targeted advertising. Although multiple radiation oncology research groups have shown the value of applied machine learning (ML), clinical adoption has been slow due to the high barrier to understanding these complex models by clinicians. Here, we present a review of the use of ML to predict radiation therapy outcomes from the clinician's point of view with the hope that it lowers the “barrier to entry” for those without formal training in ML. We begin by describing 7 principles that one should consider when evaluating (or creating) an ML model in radiation oncology. We next introduce 3 popular ML methods—logistic regression (LR), support vector machine (SVM), and artificial neural network (ANN)—and critique 3 seminal papers in the context of these principles. Although current studies are in exploratory stages, the overall methodology has progressively matured, and the field is ready for larger-scale further investigation.« less

  12. Feasibility of Active Machine Learning for Multiclass Compound Classification.

    PubMed

    Lang, Tobias; Flachsenberg, Florian; von Luxburg, Ulrike; Rarey, Matthias

    2016-01-25

    A common task in the hit-to-lead process is classifying sets of compounds into multiple, usually structural classes, which build the groundwork for subsequent SAR studies. Machine learning techniques can be used to automate this process by learning classification models from training compounds of each class. Gathering class information for compounds can be cost-intensive as the required data needs to be provided by human experts or experiments. This paper studies whether active machine learning can be used to reduce the required number of training compounds. Active learning is a machine learning method which processes class label data in an iterative fashion. It has gained much attention in a broad range of application areas. In this paper, an active learning method for multiclass compound classification is proposed. This method selects informative training compounds so as to optimally support the learning progress. The combination with human feedback leads to a semiautomated interactive multiclass classification procedure. This method was investigated empirically on 15 compound classification tasks containing 86-2870 compounds in 3-38 classes. The empirical results show that active learning can solve these classification tasks using 10-80% of the data which would be necessary for standard learning techniques.

  13. A hybrid machine learning model to estimate nitrate contamination of production zone groundwater in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Ransom, K.; Nolan, B. T.; Faunt, C. C.; Bell, A.; Gronberg, J.; Traum, J.; Wheeler, D. C.; Rosecrans, C.; Belitz, K.; Eberts, S.; Harter, T.

    2016-12-01

    A hybrid, non-linear, machine learning statistical model was developed within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500 m below ground surface in the Central Valley, California. A database of 213 predictor variables representing well characteristics, historical and current field and county scale nitrogen mass balance, historical and current landuse, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6,000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The machine learning method, gradient boosting machine (GBM) was used to screen predictor variables and rank them in order of importance in relation to the groundwater nitrate measurements. The top five most important predictor variables included oxidation/reduction characteristics, historical field scale nitrogen mass balance, climate, and depth to 60 year old water. Twenty-two variables were selected for the final model and final model errors for log-transformed hold-out data were R squared of 0.45 and root mean square error (RMSE) of 1.124. Modeled mean groundwater age was tested separately for error improvement in the model and when included decreased model RMSE by 0.5% compared to the same model without age and by 0.20% compared to the model with all 213 variables. 1D and 2D partial plots were examined to determine how variables behave individually and interact in the model. Some variables behaved as expected: log nitrate decreased with increasing probability of anoxic conditions and depth to 60 year old water, generally decreased with increasing natural landuse surrounding wells and increasing mean groundwater age, generally increased with increased minimum depth to high water table and with increased base flow index value. Other variables exhibited much more erratic or noisy behavior in the model making them more difficult to interpret but highlighting the usefulness of the non-linear machine learning method. 2D interaction plots show probability of anoxic groundwater conditions largely control estimated nitrate concentrations compared to the other predictors.

  14. Sensitivity analysis of machine-learning models of hydrologic time series

    NASA Astrophysics Data System (ADS)

    O'Reilly, A. M.

    2017-12-01

    Sensitivity analysis traditionally has been applied to assessing model response to perturbations in model parameters, where the parameters are those model input variables adjusted during calibration. Unlike physics-based models where parameters represent real phenomena, the equivalent of parameters for machine-learning models are simply mathematical "knobs" that are automatically adjusted during training/testing/verification procedures. Thus the challenge of extracting knowledge of hydrologic system functionality from machine-learning models lies in their very nature, leading to the label "black box." Sensitivity analysis of the forcing-response behavior of machine-learning models, however, can provide understanding of how the physical phenomena represented by model inputs affect the physical phenomena represented by model outputs.As part of a previous study, hybrid spectral-decomposition artificial neural network (ANN) models were developed to simulate the observed behavior of hydrologic response contained in multidecadal datasets of lake water level, groundwater level, and spring flow. Model inputs used moving window averages (MWA) to represent various frequencies and frequency-band components of time series of rainfall and groundwater use. Using these forcing time series, the MWA-ANN models were trained to predict time series of lake water level, groundwater level, and spring flow at 51 sites in central Florida, USA. A time series of sensitivities for each MWA-ANN model was produced by perturbing forcing time-series and computing the change in response time-series per unit change in perturbation. Variations in forcing-response sensitivities are evident between types (lake, groundwater level, or spring), spatially (among sites of the same type), and temporally. Two generally common characteristics among sites are more uniform sensitivities to rainfall over time and notable increases in sensitivities to groundwater usage during significant drought periods.

  15. Machine Learning to Improve Energy Expenditure Estimation in Children With Disabilities: A Pilot Study in Duchenne Muscular Dystrophy.

    PubMed

    Pande, Amit; Mohapatra, Prasant; Nicorici, Alina; Han, Jay J

    2016-07-19

    Children with physical impairments are at a greater risk for obesity and decreased physical activity. A better understanding of physical activity pattern and energy expenditure (EE) would lead to a more targeted approach to intervention. This study focuses on studying the use of machine-learning algorithms for EE estimation in children with disabilities. A pilot study was conducted on children with Duchenne muscular dystrophy (DMD) to identify important factors for determining EE and develop a novel algorithm to accurately estimate EE from wearable sensor-collected data. There were 7 boys with DMD, 6 healthy control boys, and 22 control adults recruited. Data were collected using smartphone accelerometer and chest-worn heart rate sensors. The gold standard EE values were obtained from the COSMED K4b2 portable cardiopulmonary metabolic unit worn by boys (aged 6-10 years) with DMD and controls. Data from this sensor setup were collected simultaneously during a series of concurrent activities. Linear regression and nonlinear machine-learning-based approaches were used to analyze the relationship between accelerometer and heart rate readings and COSMED values. Existing calorimetry equations using linear regression and nonlinear machine-learning-based models, developed for healthy adults and young children, give low correlation to actual EE values in children with disabilities (14%-40%). The proposed model for boys with DMD uses ensemble machine learning techniques and gives a 91% correlation with actual measured EE values (root mean square error of 0.017). Our results confirm that the methods developed to determine EE using accelerometer and heart rate sensor values in normal adults are not appropriate for children with disabilities and should not be used. A much more accurate model is obtained using machine-learning-based nonlinear regression specifically developed for this target population. ©Amit Pande, Prasant Mohapatra, Alina Nicorici, Jay J Han. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 19.07.2016.

  16. Hierarchical extreme learning machine based reinforcement learning for goal localization

    NASA Astrophysics Data System (ADS)

    AlDahoul, Nouar; Zaw Htike, Zaw; Akmeliawati, Rini

    2017-03-01

    The objective of goal localization is to find the location of goals in noisy environments. Simple actions are performed to move the agent towards the goal. The goal detector should be capable of minimizing the error between the predicted locations and the true ones. Few regions need to be processed by the agent to reduce the computational effort and increase the speed of convergence. In this paper, reinforcement learning (RL) method was utilized to find optimal series of actions to localize the goal region. The visual data, a set of images, is high dimensional unstructured data and needs to be represented efficiently to get a robust detector. Different deep Reinforcement models have already been used to localize a goal but most of them take long time to learn the model. This long learning time results from the weights fine tuning stage that is applied iteratively to find an accurate model. Hierarchical Extreme Learning Machine (H-ELM) was used as a fast deep model that doesn’t fine tune the weights. In other words, hidden weights are generated randomly and output weights are calculated analytically. H-ELM algorithm was used in this work to find good features for effective representation. This paper proposes a combination of Hierarchical Extreme learning machine and Reinforcement learning to find an optimal policy directly from visual input. This combination outperforms other methods in terms of accuracy and learning speed. The simulations and results were analysed by using MATLAB.

  17. Improved Saturated Hydraulic Conductivity Pedotransfer Functions Using Machine Learning Methods

    NASA Astrophysics Data System (ADS)

    Araya, S. N.; Ghezzehei, T. A.

    2017-12-01

    Saturated hydraulic conductivity (Ks) is one of the fundamental hydraulic properties of soils. Its measurement, however, is cumbersome and instead pedotransfer functions (PTFs) are often used to estimate it. Despite a lot of progress over the years, generic PTFs that estimate hydraulic conductivity generally don't have a good performance. We develop significantly improved PTFs by applying state of the art machine learning techniques coupled with high-performance computing on a large database of over 20,000 soils—USKSAT and the Florida Soil Characterization databases. We compared the performance of four machine learning algorithms (k-nearest neighbors, gradient boosted model, support vector machine, and relevance vector machine) and evaluated the relative importance of several soil properties in explaining Ks. An attempt is also made to better account for soil structural properties; we evaluated the importance of variables derived from transformations of soil water retention characteristics and other soil properties. The gradient boosted models gave the best performance with root mean square errors less than 0.7 and mean errors in the order of 0.01 on a log scale of Ks [cm/h]. The effective particle size, D10, was found to be the single most important predictor. Other important predictors included percent clay, bulk density, organic carbon percent, coefficient of uniformity and values derived from water retention characteristics. Model performances were consistently better for Ks values greater than 10 cm/h. This study maximizes the extraction of information from a large database to develop generic machine learning based PTFs to estimate Ks. The study also evaluates the importance of various soil properties and their transformations in explaining Ks.

  18. Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Yin, Kunlong; Cao, Ying; Ahmed, Bayes; Li, Yuanyao; Catani, Filippo; Pourghasemi, Hamid Reza

    2018-03-01

    Landslide is a common natural hazard and responsible for extensive damage and losses in mountainous areas. In this study, Longju in the Three Gorges Reservoir area in China was taken as a case study for landslide susceptibility assessment in order to develop effective risk prevention and mitigation strategies. To begin, 202 landslides were identified, including 95 colluvial landslides and 107 rockfalls. Twelve landslide causal factor maps were prepared initially, and the relationship between these factors and each landslide type was analyzed using the information value model. Later, the unimportant factors were selected and eliminated using the information gain ratio technique. The landslide locations were randomly divided into two groups: 70% for training and 30% for verifying. Two machine learning models: the support vector machine (SVM) and artificial neural network (ANN), and a multivariate statistical model: the logistic regression (LR), were applied for landslide susceptibility modeling (LSM) for each type. The LSM index maps, obtained from combining the assessment results of the two landslide types, were classified into five levels. The performance of the LSMs was evaluated using the receiver operating characteristics curve and Friedman test. Results show that the elimination of noise-generating factors and the separated modeling of each landslide type have significantly increased the prediction accuracy. The machine learning models outperformed the multivariate statistical model and SVM model was found ideal for the case study area.

  19. A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information.

    PubMed

    Chen, Gongbo; Li, Shanshan; Knibbs, Luke D; Hamm, N A S; Cao, Wei; Li, Tiantian; Guo, Jianping; Ren, Hongyan; Abramson, Michael J; Guo, Yuming

    2018-09-15

    Machine learning algorithms have very high predictive ability. However, no study has used machine learning to estimate historical concentrations of PM 2.5 (particulate matter with aerodynamic diameter ≤ 2.5 μm) at daily time scale in China at a national level. To estimate daily concentrations of PM 2.5 across China during 2005-2016. Daily ground-level PM 2.5 data were obtained from 1479 stations across China during 2014-2016. Data on aerosol optical depth (AOD), meteorological conditions and other predictors were downloaded. A random forests model (non-parametric machine learning algorithms) and two traditional regression models were developed to estimate ground-level PM 2.5 concentrations. The best-fit model was then utilized to estimate the daily concentrations of PM 2.5 across China with a resolution of 0.1° (≈10 km) during 2005-2016. The daily random forests model showed much higher predictive accuracy than the other two traditional regression models, explaining the majority of spatial variability in daily PM 2.5 [10-fold cross-validation (CV) R 2  = 83%, root mean squared prediction error (RMSE) = 28.1 μg/m 3 ]. At the monthly and annual time-scale, the explained variability of average PM 2.5 increased up to 86% (RMSE = 10.7 μg/m 3 and 6.9 μg/m 3 , respectively). Taking advantage of a novel application of modeling framework and the most recent ground-level PM 2.5 observations, the machine learning method showed higher predictive ability than previous studies. Random forests approach can be used to estimate historical exposure to PM 2.5 in China with high accuracy. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Machine Learning Force Field Parameters from Ab Initio Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Li, Hui; Pickard, Frank C.

    Machine learning (ML) techniques with the genetic algorithm (GA) have been applied to determine a polarizable force field parameters using only ab initio data from quantum mechanics (QM) calculations of molecular clusters at the MP2/6-31G(d,p), DFMP2(fc)/jul-cc-pVDZ, and DFMP2(fc)/jul-cc-pVTZ levels to predict experimental condensed phase properties (i.e., density and heat of vaporization). The performance of this ML/GA approach is demonstrated on 4943 dimer electrostatic potentials and 1250 cluster interaction energies for methanol. Excellent agreement between the training data set from QM calculations and the optimized force field model was achieved. The results were further improved by introducing an offset factor duringmore » the machine learning process to compensate for the discrepancy between the QM calculated energy and the energy reproduced by optimized force field, while maintaining the local “shape” of the QM energy surface. Throughout the machine learning process, experimental observables were not involved in the objective function, but were only used for model validation. The best model, optimized from the QM data at the DFMP2(fc)/jul-cc-pVTZ level, appears to perform even better than the original AMOEBA force field (amoeba09.prm), which was optimized empirically to match liquid properties. The present effort shows the possibility of using machine learning techniques to develop descriptive polarizable force field using only QM data. The ML/GA strategy to optimize force fields parameters described here could easily be extended to other molecular systems.« less

  1. Evaluation of machine learning algorithms for improved risk assessment for Down's syndrome.

    PubMed

    Koivu, Aki; Korpimäki, Teemu; Kivelä, Petri; Pahikkala, Tapio; Sairanen, Mikko

    2018-05-04

    Prenatal screening generates a great amount of data that is used for predicting risk of various disorders. Prenatal risk assessment is based on multiple clinical variables and overall performance is defined by how well the risk algorithm is optimized for the population in question. This article evaluates machine learning algorithms to improve performance of first trimester screening of Down syndrome. Machine learning algorithms pose an adaptive alternative to develop better risk assessment models using the existing clinical variables. Two real-world data sets were used to experiment with multiple classification algorithms. Implemented models were tested with a third, real-world, data set and performance was compared to a predicate method, a commercial risk assessment software. Best performing deep neural network model gave an area under the curve of 0.96 and detection rate of 78% with 1% false positive rate with the test data. Support vector machine model gave area under the curve of 0.95 and detection rate of 61% with 1% false positive rate with the same test data. When compared with the predicate method, the best support vector machine model was slightly inferior, but an optimized deep neural network model was able to give higher detection rates with same false positive rate or similar detection rate but with markedly lower false positive rate. This finding could further improve the first trimester screening for Down syndrome, by using existing clinical variables and a large training data derived from a specific population. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines.

    PubMed

    Neftci, Emre O; Pedroni, Bruno U; Joshi, Siddharth; Al-Shedivat, Maruan; Cauwenberghs, Gert

    2016-01-01

    Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines (S2Ms), a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. S2Ms perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate and fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based S2Ms outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware.

  3. Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines

    PubMed Central

    Neftci, Emre O.; Pedroni, Bruno U.; Joshi, Siddharth; Al-Shedivat, Maruan; Cauwenberghs, Gert

    2016-01-01

    Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines (S2Ms), a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. S2Ms perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate and fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based S2Ms outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware. PMID:27445650

  4. Effective Information Extraction Framework for Heterogeneous Clinical Reports Using Online Machine Learning and Controlled Vocabularies.

    PubMed

    Zheng, Shuai; Lu, James J; Ghasemzadeh, Nima; Hayek, Salim S; Quyyumi, Arshed A; Wang, Fusheng

    2017-05-09

    Extracting structured data from narrated medical reports is challenged by the complexity of heterogeneous structures and vocabularies and often requires significant manual effort. Traditional machine-based approaches lack the capability to take user feedbacks for improving the extraction algorithm in real time. Our goal was to provide a generic information extraction framework that can support diverse clinical reports and enables a dynamic interaction between a human and a machine that produces highly accurate results. A clinical information extraction system IDEAL-X has been built on top of online machine learning. It processes one document at a time, and user interactions are recorded as feedbacks to update the learning model in real time. The updated model is used to predict values for extraction in subsequent documents. Once prediction accuracy reaches a user-acceptable threshold, the remaining documents may be batch processed. A customizable controlled vocabulary may be used to support extraction. Three datasets were used for experiments based on report styles: 100 cardiac catheterization procedure reports, 100 coronary angiographic reports, and 100 integrated reports-each combines history and physical report, discharge summary, outpatient clinic notes, outpatient clinic letter, and inpatient discharge medication report. Data extraction was performed by 3 methods: online machine learning, controlled vocabularies, and a combination of these. The system delivers results with F1 scores greater than 95%. IDEAL-X adopts a unique online machine learning-based approach combined with controlled vocabularies to support data extraction for clinical reports. The system can quickly learn and improve, thus it is highly adaptable. ©Shuai Zheng, James J Lu, Nima Ghasemzadeh, Salim S Hayek, Arshed A Quyyumi, Fusheng Wang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 09.05.2017.

  5. Sci-Fri AM: Quality, Safety, and Professional Issues 04: Predicting waiting times in Radiation Oncology using machine learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Ackeem; Herrera, David; Hijal, Tarek

    We describe a method for predicting waiting times in radiation oncology. Machine learning is a powerful predictive modelling tool that benefits from large, potentially complex, datasets. The essence of machine learning is to predict future outcomes by learning from previous experience. The patient waiting experience remains one of the most vexing challenges facing healthcare. Waiting time uncertainty can cause patients, who are already sick and in pain, to worry about when they will receive the care they need. In radiation oncology, patients typically experience three types of waiting: Waiting at home for their treatment plan to be prepared Waiting inmore » the waiting room for daily radiotherapy Waiting in the waiting room to see a physician in consultation or follow-up These waiting periods are difficult for staff to predict and only rough estimates are typically provided, based on personal experience. In the present era of electronic health records, waiting times need not be so uncertain. At our centre, we have incorporated the electronic treatment records of all previously-treated patients into our machine learning model. We found that the Random Forest Regression model provides the best predictions for daily radiotherapy treatment waiting times (type 2). Using this model, we achieved a median residual (actual minus predicted value) of 0.25 minutes and a standard deviation residual of 6.5 minutes. The main features that generated the best fit model (from most to least significant) are: Allocated time, median past duration, fraction number and the number of treatment fields.« less

  6. Machine learning for predicting soil classes in three semi-arid landscapes

    USGS Publications Warehouse

    Brungard, Colby W.; Boettinger, Janis L.; Duniway, Michael C.; Wills, Skye A.; Edwards, Thomas C.

    2015-01-01

    Mapping the spatial distribution of soil taxonomic classes is important for informing soil use and management decisions. Digital soil mapping (DSM) can quantitatively predict the spatial distribution of soil taxonomic classes. Key components of DSM are the method and the set of environmental covariates used to predict soil classes. Machine learning is a general term for a broad set of statistical modeling techniques. Many different machine learning models have been applied in the literature and there are different approaches for selecting covariates for DSM. However, there is little guidance as to which, if any, machine learning model and covariate set might be optimal for predicting soil classes across different landscapes. Our objective was to compare multiple machine learning models and covariate sets for predicting soil taxonomic classes at three geographically distinct areas in the semi-arid western United States of America (southern New Mexico, southwestern Utah, and northeastern Wyoming). All three areas were the focus of digital soil mapping studies. Sampling sites at each study area were selected using conditioned Latin hypercube sampling (cLHS). We compared models that had been used in other DSM studies, including clustering algorithms, discriminant analysis, multinomial logistic regression, neural networks, tree based methods, and support vector machine classifiers. Tested machine learning models were divided into three groups based on model complexity: simple, moderate, and complex. We also compared environmental covariates derived from digital elevation models and Landsat imagery that were divided into three different sets: 1) covariates selected a priori by soil scientists familiar with each area and used as input into cLHS, 2) the covariates in set 1 plus 113 additional covariates, and 3) covariates selected using recursive feature elimination. Overall, complex models were consistently more accurate than simple or moderately complex models. Random forests (RF) using covariates selected via recursive feature elimination was consistently the most accurate, or was among the most accurate, classifiers between study areas and between covariate sets within each study area. We recommend that for soil taxonomic class prediction, complex models and covariates selected by recursive feature elimination be used. Overall classification accuracy in each study area was largely dependent upon the number of soil taxonomic classes and the frequency distribution of pedon observations between taxonomic classes. Individual subgroup class accuracy was generally dependent upon the number of soil pedon observations in each taxonomic class. The number of soil classes is related to the inherent variability of a given area. The imbalance of soil pedon observations between classes is likely related to cLHS. Imbalanced frequency distributions of soil pedon observations between classes must be addressed to improve model accuracy. Solutions include increasing the number of soil pedon observations in classes with few observations or decreasing the number of classes. Spatial predictions using the most accurate models generally agree with expected soil–landscape relationships. Spatial prediction uncertainty was lowest in areas of relatively low relief for each study area.

  7. Using Machine Learning as a fast emulator of physical processes within the Met Office's Unified Model

    NASA Astrophysics Data System (ADS)

    Prudden, R.; Arribas, A.; Tomlinson, J.; Robinson, N.

    2017-12-01

    The Unified Model is a numerical model of the atmosphere used at the UK Met Office (and numerous partner organisations including Korean Meteorological Agency, Australian Bureau of Meteorology and US Air Force) for both weather and climate applications.Especifically, dynamical models such as the Unified Model are now a central part of weather forecasting. Starting from basic physical laws, these models make it possible to predict events such as storms before they have even begun to form. The Unified Model can be simply described as having two components: one component solves the navier-stokes equations (usually referred to as the "dynamics"); the other solves relevant sub-grid physical processes (usually referred to as the "physics"). Running weather forecasts requires substantial computing resources - for example, the UK Met Office operates the largest operational High Performance Computer in Europe - and the cost of a typical simulation is spent roughly 50% in the "dynamics" and 50% in the "physics". Therefore there is a high incentive to reduce cost of weather forecasts and Machine Learning is a possible option because, once a machine learning model has been trained, it is often much faster to run than a full simulation. This is the motivation for a technique called model emulation, the idea being to build a fast statistical model which closely approximates a far more expensive simulation. In this paper we discuss the use of Machine Learning as an emulator to replace the "physics" component of the Unified Model. Various approaches and options will be presented and the implications for further model development, operational running of forecasting systems, development of data assimilation schemes, and development of ensemble prediction techniques will be discussed.

  8. Nonlinear programming for classification problems in machine learning

    NASA Astrophysics Data System (ADS)

    Astorino, Annabella; Fuduli, Antonio; Gaudioso, Manlio

    2016-10-01

    We survey some nonlinear models for classification problems arising in machine learning. In the last years this field has become more and more relevant due to a lot of practical applications, such as text and web classification, object recognition in machine vision, gene expression profile analysis, DNA and protein analysis, medical diagnosis, customer profiling etc. Classification deals with separation of sets by means of appropriate separation surfaces, which is generally obtained by solving a numerical optimization model. While linear separability is the basis of the most popular approach to classification, the Support Vector Machine (SVM), in the recent years using nonlinear separating surfaces has received some attention. The objective of this work is to recall some of such proposals, mainly in terms of the numerical optimization models. In particular we tackle the polyhedral, ellipsoidal, spherical and conical separation approaches and, for some of them, we also consider the semisupervised versions.

  9. Splendidly blended: a machine learning set up for CDU control

    NASA Astrophysics Data System (ADS)

    Utzny, Clemens

    2017-06-01

    As the concepts of machine learning and artificial intelligence continue to grow in importance in the context of internet related applications it is still in its infancy when it comes to process control within the semiconductor industry. Especially the branch of mask manufacturing presents a challenge to the concepts of machine learning since the business process intrinsically induces pronounced product variability on the background of small plate numbers. In this paper we present the architectural set up of a machine learning algorithm which successfully deals with the demands and pitfalls of mask manufacturing. A detailed motivation of this basic set up followed by an analysis of its statistical properties is given. The machine learning set up for mask manufacturing involves two learning steps: an initial step which identifies and classifies the basic global CD patterns of a process. These results form the basis for the extraction of an optimized training set via balanced sampling. A second learning step uses this training set to obtain the local as well as global CD relationships induced by the manufacturing process. Using two production motivated examples we show how this approach is flexible and powerful enough to deal with the exacting demands of mask manufacturing. In one example we show how dedicated covariates can be used in conjunction with increased spatial resolution of the CD map model in order to deal with pathological CD effects at the mask boundary. The other example shows how the model set up enables strategies for dealing tool specific CD signature differences. In this case the balanced sampling enables a process control scheme which allows usage of the full tool park within the specified tight tolerance budget. Overall, this paper shows that the current rapid developments off the machine learning algorithms can be successfully used within the context of semiconductor manufacturing.

  10. Active machine learning-driven experimentation to determine compound effects on protein patterns.

    PubMed

    Naik, Armaghan W; Kangas, Joshua D; Sullivan, Devin P; Murphy, Robert F

    2016-02-03

    High throughput screening determines the effects of many conditions on a given biological target. Currently, to estimate the effects of those conditions on other targets requires either strong modeling assumptions (e.g. similarities among targets) or separate screens. Ideally, data-driven experimentation could be used to learn accurate models for many conditions and targets without doing all possible experiments. We have previously described an active machine learning algorithm that can iteratively choose small sets of experiments to learn models of multiple effects. We now show that, with no prior knowledge and with liquid handling robotics and automated microscopy under its control, this learner accurately learned the effects of 48 chemical compounds on the subcellular localization of 48 proteins while performing only 29% of all possible experiments. The results represent the first practical demonstration of the utility of active learning-driven biological experimentation in which the set of possible phenotypes is unknown in advance.

  11. Exploring the potential of machine learning to break deadlock in convection parameterization

    NASA Astrophysics Data System (ADS)

    Pritchard, M. S.; Gentine, P.

    2017-12-01

    We explore the potential of modern machine learning tools (via TensorFlow) to replace parameterization of deep convection in climate models. Our strategy begins by generating a large ( 1 Tb) training dataset from time-step level (30-min) output harvested from a one-year integration of a zonally symmetric, uniform-SST aquaplanet integration of the SuperParameterized Community Atmosphere Model (SPCAM). We harvest the inputs and outputs connecting each of SPCAM's 8,192 embedded cloud-resolving model (CRM) arrays to its host climate model's arterial thermodynamic state variables to afford 143M independent training instances. We demonstrate that this dataset is sufficiently large to induce preliminary convergence for neural network prediction of desired outputs of SP, i.e. CRM-mean convective heating and moistening profiles. Sensitivity of the machine learning convergence to the nuances of the TensorFlow implementation are discussed, as well as results from pilot tests from the neural network operating inline within the SPCAM as a replacement to the (super)parameterization of convection.

  12. Machine learning phases of matter

    NASA Astrophysics Data System (ADS)

    Carrasquilla, Juan; Stoudenmire, Miles; Melko, Roger

    We show how the technology that allows automatic teller machines read hand-written digits in cheques can be used to encode and recognize phases of matter and phase transitions in many-body systems. In particular, we analyze the (quasi-)order-disorder transitions in the classical Ising and XY models. Furthermore, we successfully use machine learning to study classical Z2 gauge theories that have important technological application in the coming wave of quantum information technologies and whose phase transitions have no conventional order parameter.

  13. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features

    PubMed Central

    Hu, Yu-Chuan; Li, Gang; Yang, Yang; Han, Yu; Sun, Ying-Zhi; Liu, Zhi-Cheng; Tian, Qiang; Han, Zi-Yang; Liu, Le-De; Hu, Bin-Quan; Qiu, Zi-Yu; Wang, Wen; Cui, Guang-Bin

    2017-01-01

    Current machine learning techniques provide the opportunity to develop noninvasive and automated glioma grading tools, by utilizing quantitative parameters derived from multi-modal magnetic resonance imaging (MRI) data. However, the efficacies of different machine learning methods in glioma grading have not been investigated.A comprehensive comparison of varied machine learning methods in differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well as WHO grade II, III and IV gliomas based on multi-parametric MRI images was proposed in the current study. The parametric histogram and image texture attributes of 120 glioma patients were extracted from the perfusion, diffusion and permeability parametric maps of preoperative MRI. Then, 25 commonly used machine learning classifiers combined with 8 independent attribute selection methods were applied and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the influences of parameter selection on the classifying performances were investigated. We found that support vector machine (SVM) exhibited superior performance to other classifiers. By combining all tumor attributes with synthetic minority over-sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive Feature Elimination (RFE) attribute selection strategy further improved the classifying accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising tool in developing automated preoperative glioma grading system, especially when being combined with RFE strategy. Model parameters should be considered in glioma grading model optimization. PMID:28599282

  14. Effective Information Extraction Framework for Heterogeneous Clinical Reports Using Online Machine Learning and Controlled Vocabularies

    PubMed Central

    Zheng, Shuai; Ghasemzadeh, Nima; Hayek, Salim S; Quyyumi, Arshed A

    2017-01-01

    Background Extracting structured data from narrated medical reports is challenged by the complexity of heterogeneous structures and vocabularies and often requires significant manual effort. Traditional machine-based approaches lack the capability to take user feedbacks for improving the extraction algorithm in real time. Objective Our goal was to provide a generic information extraction framework that can support diverse clinical reports and enables a dynamic interaction between a human and a machine that produces highly accurate results. Methods A clinical information extraction system IDEAL-X has been built on top of online machine learning. It processes one document at a time, and user interactions are recorded as feedbacks to update the learning model in real time. The updated model is used to predict values for extraction in subsequent documents. Once prediction accuracy reaches a user-acceptable threshold, the remaining documents may be batch processed. A customizable controlled vocabulary may be used to support extraction. Results Three datasets were used for experiments based on report styles: 100 cardiac catheterization procedure reports, 100 coronary angiographic reports, and 100 integrated reports—each combines history and physical report, discharge summary, outpatient clinic notes, outpatient clinic letter, and inpatient discharge medication report. Data extraction was performed by 3 methods: online machine learning, controlled vocabularies, and a combination of these. The system delivers results with F1 scores greater than 95%. Conclusions IDEAL-X adopts a unique online machine learning–based approach combined with controlled vocabularies to support data extraction for clinical reports. The system can quickly learn and improve, thus it is highly adaptable. PMID:28487265

  15. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features.

    PubMed

    Zhang, Xin; Yan, Lin-Feng; Hu, Yu-Chuan; Li, Gang; Yang, Yang; Han, Yu; Sun, Ying-Zhi; Liu, Zhi-Cheng; Tian, Qiang; Han, Zi-Yang; Liu, Le-De; Hu, Bin-Quan; Qiu, Zi-Yu; Wang, Wen; Cui, Guang-Bin

    2017-07-18

    Current machine learning techniques provide the opportunity to develop noninvasive and automated glioma grading tools, by utilizing quantitative parameters derived from multi-modal magnetic resonance imaging (MRI) data. However, the efficacies of different machine learning methods in glioma grading have not been investigated.A comprehensive comparison of varied machine learning methods in differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well as WHO grade II, III and IV gliomas based on multi-parametric MRI images was proposed in the current study. The parametric histogram and image texture attributes of 120 glioma patients were extracted from the perfusion, diffusion and permeability parametric maps of preoperative MRI. Then, 25 commonly used machine learning classifiers combined with 8 independent attribute selection methods were applied and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the influences of parameter selection on the classifying performances were investigated. We found that support vector machine (SVM) exhibited superior performance to other classifiers. By combining all tumor attributes with synthetic minority over-sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive Feature Elimination (RFE) attribute selection strategy further improved the classifying accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising tool in developing automated preoperative glioma grading system, especially when being combined with RFE strategy. Model parameters should be considered in glioma grading model optimization.

  16. A Model-Free Machine Learning Method for Risk Classification and Survival Probability Prediction.

    PubMed

    Geng, Yuan; Lu, Wenbin; Zhang, Hao Helen

    2014-01-01

    Risk classification and survival probability prediction are two major goals in survival data analysis since they play an important role in patients' risk stratification, long-term diagnosis, and treatment selection. In this article, we propose a new model-free machine learning framework for risk classification and survival probability prediction based on weighted support vector machines. The new procedure does not require any specific parametric or semiparametric model assumption on data, and is therefore capable of capturing nonlinear covariate effects. We use numerous simulation examples to demonstrate finite sample performance of the proposed method under various settings. Applications to a glioma tumor data and a breast cancer gene expression survival data are shown to illustrate the new methodology in real data analysis.

  17. Drag Reduction of an Airfoil Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Jiang, Chiyu; Sun, Anzhu; Marcus, Philip

    2017-11-01

    We reduced the drag of a 2D airfoil by starting with a NACA-0012 airfoil and used deep learning methods. We created a database which consists of simulations of 2D external flow over randomly generated shapes. We then developed a machine learning framework for external flow field inference given input shapes. Past work which utilized machine learning in Computational Fluid Dynamics focused on estimations of specific flow parameters, but this work is novel in the inference of entire flow fields. We further showed that learned flow patterns are transferable to cases that share certain similarities. This study illustrates the prospects of deeper integration of data-based modeling into current CFD simulation frameworks for faster flow inference and more accurate flow modeling.

  18. Optimisation of GaN LEDs and the reduction of efficiency droop using active machine learning

    DOE PAGES

    Rouet-Leduc, Bertrand; Barros, Kipton Marcos; Lookman, Turab; ...

    2016-04-26

    A fundamental challenge in the design of LEDs is to maximise electro-luminescence efficiency at high current densities. We simulate GaN-based LED structures that delay the onset of efficiency droop by spreading carrier concentrations evenly across the active region. Statistical analysis and machine learning effectively guide the selection of the next LED structure to be examined based upon its expected efficiency as well as model uncertainty. This active learning strategy rapidly constructs a model that predicts Poisson-Schrödinger simulations of devices, and that simultaneously produces structures with higher simulated efficiencies.

  19. Calibrating Building Energy Models Using Supercomputer Trained Machine Learning Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanyal, Jibonananda; New, Joshua Ryan; Edwards, Richard

    2014-01-01

    Building Energy Modeling (BEM) is an approach to model the energy usage in buildings for design and retrofit purposes. EnergyPlus is the flagship Department of Energy software that performs BEM for different types of buildings. The input to EnergyPlus can often extend in the order of a few thousand parameters which have to be calibrated manually by an expert for realistic energy modeling. This makes it challenging and expensive thereby making building energy modeling unfeasible for smaller projects. In this paper, we describe the Autotune research which employs machine learning algorithms to generate agents for the different kinds of standardmore » reference buildings in the U.S. building stock. The parametric space and the variety of building locations and types make this a challenging computational problem necessitating the use of supercomputers. Millions of EnergyPlus simulations are run on supercomputers which are subsequently used to train machine learning algorithms to generate agents. These agents, once created, can then run in a fraction of the time thereby allowing cost-effective calibration of building models.« less

  20. Machine Learning Techniques for Prediction of Early Childhood Obesity.

    PubMed

    Dugan, T M; Mukhopadhyay, S; Carroll, A; Downs, S

    2015-01-01

    This paper aims to predict childhood obesity after age two, using only data collected prior to the second birthday by a clinical decision support system called CHICA. Analyses of six different machine learning methods: RandomTree, RandomForest, J48, ID3, Naïve Bayes, and Bayes trained on CHICA data show that an accurate, sensitive model can be created. Of the methods analyzed, the ID3 model trained on the CHICA dataset proved the best overall performance with accuracy of 85% and sensitivity of 89%. Additionally, the ID3 model had a positive predictive value of 84% and a negative predictive value of 88%. The structure of the tree also gives insight into the strongest predictors of future obesity in children. Many of the strongest predictors seen in the ID3 modeling of the CHICA dataset have been independently validated in the literature as correlated with obesity, thereby supporting the validity of the model. This study demonstrated that data from a production clinical decision support system can be used to build an accurate machine learning model to predict obesity in children after age two.

  1. Quantum annealing versus classical machine learning applied to a simplified computational biology problem

    PubMed Central

    Li, Richard Y.; Di Felice, Rosa; Rohs, Remo; Lidar, Daniel A.

    2018-01-01

    Transcription factors regulate gene expression, but how these proteins recognize and specifically bind to their DNA targets is still debated. Machine learning models are effective means to reveal interaction mechanisms. Here we studied the ability of a quantum machine learning approach to predict binding specificity. Using simplified datasets of a small number of DNA sequences derived from actual binding affinity experiments, we trained a commercially available quantum annealer to classify and rank transcription factor binding. The results were compared to state-of-the-art classical approaches for the same simplified datasets, including simulated annealing, simulated quantum annealing, multiple linear regression, LASSO, and extreme gradient boosting. Despite technological limitations, we find a slight advantage in classification performance and nearly equal ranking performance using the quantum annealer for these fairly small training data sets. Thus, we propose that quantum annealing might be an effective method to implement machine learning for certain computational biology problems. PMID:29652405

  2. Machine learning methods in chemoinformatics

    PubMed Central

    Mitchell, John B O

    2014-01-01

    Machine learning algorithms are generally developed in computer science or adjacent disciplines and find their way into chemical modeling by a process of diffusion. Though particular machine learning methods are popular in chemoinformatics and quantitative structure–activity relationships (QSAR), many others exist in the technical literature. This discussion is methods-based and focused on some algorithms that chemoinformatics researchers frequently use. It makes no claim to be exhaustive. We concentrate on methods for supervised learning, predicting the unknown property values of a test set of instances, usually molecules, based on the known values for a training set. Particularly relevant approaches include Artificial Neural Networks, Random Forest, Support Vector Machine, k-Nearest Neighbors and naïve Bayes classifiers. WIREs Comput Mol Sci 2014, 4:468–481. How to cite this article: WIREs Comput Mol Sci 2014, 4:468–481. doi:10.1002/wcms.1183 PMID:25285160

  3. Deep Restricted Kernel Machines Using Conjugate Feature Duality.

    PubMed

    Suykens, Johan A K

    2017-08-01

    The aim of this letter is to propose a theory of deep restricted kernel machines offering new foundations for deep learning with kernel machines. From the viewpoint of deep learning, it is partially related to restricted Boltzmann machines, which are characterized by visible and hidden units in a bipartite graph without hidden-to-hidden connections and deep learning extensions as deep belief networks and deep Boltzmann machines. From the viewpoint of kernel machines, it includes least squares support vector machines for classification and regression, kernel principal component analysis (PCA), matrix singular value decomposition, and Parzen-type models. A key element is to first characterize these kernel machines in terms of so-called conjugate feature duality, yielding a representation with visible and hidden units. It is shown how this is related to the energy form in restricted Boltzmann machines, with continuous variables in a nonprobabilistic setting. In this new framework of so-called restricted kernel machine (RKM) representations, the dual variables correspond to hidden features. Deep RKM are obtained by coupling the RKMs. The method is illustrated for deep RKM, consisting of three levels with a least squares support vector machine regression level and two kernel PCA levels. In its primal form also deep feedforward neural networks can be trained within this framework.

  4. SU-F-P-20: Predicting Waiting Times in Radiation Oncology Using Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, A; Herrera, D; Hijal, T

    Purpose: Waiting times remain one of the most vexing patient satisfaction challenges facing healthcare. Waiting time uncertainty can cause patients, who are already sick or in pain, to worry about when they will receive the care they need. These waiting periods are often difficult for staff to predict and only rough estimates are typically provided based on personal experience. This level of uncertainty leaves most patients unable to plan their calendar, making the waiting experience uncomfortable, even painful. In the present era of electronic health records (EHRs), waiting times need not be so uncertain. Extensive EHRs provide unprecedented amounts ofmore » data that can statistically cluster towards representative values when appropriate patient cohorts are selected. Predictive modelling, such as machine learning, is a powerful approach that benefits from large, potentially complex, datasets. The essence of machine learning is to predict future outcomes by learning from previous experience. The application of a machine learning algorithm to waiting time data has the potential to produce personalized waiting time predictions such that the uncertainty may be removed from the patient’s waiting experience. Methods: In radiation oncology, patients typically experience several types of waiting (eg waiting at home for treatment planning, waiting in the waiting room for oncologist appointments and daily waiting in the waiting room for radiotherapy treatments). A daily treatment wait time model is discussed in this report. To develop a prediction model using our large dataset (with more than 100k sample points) a variety of machine learning algorithms from the Python package sklearn were tested. Results: We found that the Random Forest Regressor model provides the best predictions for daily radiotherapy treatment waiting times. Using this model, we achieved a median residual (actual value minus predicted value) of 0.25 minutes and a standard deviation residual of 6.5 minutes. This means that the majority of our estimates are within 6.5 minutes of the actual wait time. Conclusion: The goal of this project was to define an appropriate machine learning algorithm to estimate waiting times based on the collective knowledge and experience learned from previous patients. Our results offer an opportunity to improve the information that is provided to patients and family members regarding the amount of time they can expect to wait for radiotherapy treatment at our centre. AJ acknowledges support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290) and from the 2014 Q+ Initiative of the McGill University Health Centre.« less

  5. Active learning machine learns to create new quantum experiments.

    PubMed

    Melnikov, Alexey A; Poulsen Nautrup, Hendrik; Krenn, Mario; Dunjko, Vedran; Tiersch, Markus; Zeilinger, Anton; Briegel, Hans J

    2018-02-06

    How useful can machine learning be in a quantum laboratory? Here we raise the question of the potential of intelligent machines in the context of scientific research. A major motivation for the present work is the unknown reachability of various entanglement classes in quantum experiments. We investigate this question by using the projective simulation model, a physics-oriented approach to artificial intelligence. In our approach, the projective simulation system is challenged to design complex photonic quantum experiments that produce high-dimensional entangled multiphoton states, which are of high interest in modern quantum experiments. The artificial intelligence system learns to create a variety of entangled states and improves the efficiency of their realization. In the process, the system autonomously (re)discovers experimental techniques which are only now becoming standard in modern quantum optical experiments-a trait which was not explicitly demanded from the system but emerged through the process of learning. Such features highlight the possibility that machines could have a significantly more creative role in future research.

  6. Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models

    NASA Astrophysics Data System (ADS)

    Benedetti, Marcello; Realpe-Gómez, John; Biswas, Rupak; Perdomo-Ortiz, Alejandro

    2017-10-01

    Mainstream machine-learning techniques such as deep learning and probabilistic programming rely heavily on sampling from generally intractable probability distributions. There is increasing interest in the potential advantages of using quantum computing technologies as sampling engines to speed up these tasks or to make them more effective. However, some pressing challenges in state-of-the-art quantum annealers have to be overcome before we can assess their actual performance. The sparse connectivity, resulting from the local interaction between quantum bits in physical hardware implementations, is considered the most severe limitation to the quality of constructing powerful generative unsupervised machine-learning models. Here, we use embedding techniques to add redundancy to data sets, allowing us to increase the modeling capacity of quantum annealers. We illustrate our findings by training hardware-embedded graphical models on a binarized data set of handwritten digits and two synthetic data sets in experiments with up to 940 quantum bits. Our model can be trained in quantum hardware without full knowledge of the effective parameters specifying the corresponding quantum Gibbs-like distribution; therefore, this approach avoids the need to infer the effective temperature at each iteration, speeding up learning; it also mitigates the effect of noise in the control parameters, making it robust to deviations from the reference Gibbs distribution. Our approach demonstrates the feasibility of using quantum annealers for implementing generative models, and it provides a suitable framework for benchmarking these quantum technologies on machine-learning-related tasks.

  7. Data mining in bioinformatics using Weka.

    PubMed

    Frank, Eibe; Hall, Mark; Trigg, Len; Holmes, Geoffrey; Witten, Ian H

    2004-10-12

    The Weka machine learning workbench provides a general-purpose environment for automatic classification, regression, clustering and feature selection-common data mining problems in bioinformatics research. It contains an extensive collection of machine learning algorithms and data pre-processing methods complemented by graphical user interfaces for data exploration and the experimental comparison of different machine learning techniques on the same problem. Weka can process data given in the form of a single relational table. Its main objectives are to (a) assist users in extracting useful information from data and (b) enable them to easily identify a suitable algorithm for generating an accurate predictive model from it. http://www.cs.waikato.ac.nz/ml/weka.

  8. Effect of Bayesian Student Modeling on Academic Achievement in Foreign Language Teaching (University Level English Preparatory School Example)

    ERIC Educational Resources Information Center

    Aslan, Burak Galip; Öztürk, Özlem; Inceoglu, Mustafa Murat

    2014-01-01

    Considering the increasing importance of adaptive approaches in CALL systems, this study implemented a machine learning based student modeling middleware with Bayesian networks. The profiling approach of the student modeling system is based on Felder and Silverman's Learning Styles Model and Felder and Soloman's Index of Learning Styles…

  9. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules.

    PubMed

    Schroeter, Timon Sebastian; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert

    2007-12-01

    We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model. Here, we investigate error bars from a Bayesian model (Gaussian Process (GP)), an ensemble based approach (Random Forest), and approaches based on the Mahalanobis distance to training data (for Support Vector Machine and Ridge Regression models). We evaluate all approaches in terms of their prediction accuracy (in cross-validation, and on an external validation set of 536 molecules) and in how far the individual error bars can faithfully represent the actual prediction error.

  10. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules.

    PubMed

    Schroeter, Timon Sebastian; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert

    2007-09-01

    We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model. Here, we investigate error bars from a Bayesian model (Gaussian Process (GP)), an ensemble based approach (Random Forest), and approaches based on the Mahalanobis distance to training data (for Support Vector Machine and Ridge Regression models). We evaluate all approaches in terms of their prediction accuracy (in cross-validation, and on an external validation set of 536 molecules) and in how far the individual error bars can faithfully represent the actual prediction error.

  11. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules

    NASA Astrophysics Data System (ADS)

    Schroeter, Timon Sebastian; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert

    2007-12-01

    We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model. Here, we investigate error bars from a Bayesian model (Gaussian Process (GP)), an ensemble based approach (Random Forest), and approaches based on the Mahalanobis distance to training data (for Support Vector Machine and Ridge Regression models). We evaluate all approaches in terms of their prediction accuracy (in cross-validation, and on an external validation set of 536 molecules) and in how far the individual error bars can faithfully represent the actual prediction error.

  12. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules

    NASA Astrophysics Data System (ADS)

    Schroeter, Timon Sebastian; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert

    2007-09-01

    We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model. Here, we investigate error bars from a Bayesian model (Gaussian Process (GP)), an ensemble based approach (Random Forest), and approaches based on the Mahalanobis distance to training data (for Support Vector Machine and Ridge Regression models). We evaluate all approaches in terms of their prediction accuracy (in cross-validation, and on an external validation set of 536 molecules) and in how far the individual error bars can faithfully represent the actual prediction error.

  13. Big data integration for regional hydrostratigraphic mapping

    NASA Astrophysics Data System (ADS)

    Friedel, M. J.

    2013-12-01

    Numerical models provide a way to evaluate groundwater systems, but determining the hydrostratigraphic units (HSUs) used in devising these models remains subjective, nonunique, and uncertain. A novel geophysical-hydrogeologic data integration scheme is proposed to constrain the estimation of continuous HSUs. First, machine-learning and multivariate statistical techniques are used to simultaneously integrate borehole hydrogeologic (lithology, hydraulic conductivity, aqueous field parameters, dissolved constituents) and geophysical (gamma, spontaneous potential, and resistivity) measurements. Second, airborne electromagnetic measurements are numerically inverted to obtain subsurface resistivity structure at randomly selected locations. Third, the machine-learning algorithm is trained using the borehole hydrostratigraphic units and inverted airborne resistivity profiles. The trained machine-learning algorithm is then used to estimate HSUs at independent resistivity profile locations. We demonstrate efficacy of the proposed approach to map the hydrostratigraphy of a heterogeneous surficial aquifer in northwestern Nebraska.

  14. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning.

    PubMed

    Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego

    2016-06-17

    Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults.

  15. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning

    PubMed Central

    Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego

    2016-01-01

    Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults. PMID:27322273

  16. Hidden physics models: Machine learning of nonlinear partial differential equations

    NASA Astrophysics Data System (ADS)

    Raissi, Maziar; Karniadakis, George Em

    2018-03-01

    While there is currently a lot of enthusiasm about "big data", useful data is usually "small" and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schrödinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.

  17. Prediction of mortality after radical cystectomy for bladder cancer by machine learning techniques.

    PubMed

    Wang, Guanjin; Lam, Kin-Man; Deng, Zhaohong; Choi, Kup-Sze

    2015-08-01

    Bladder cancer is a common cancer in genitourinary malignancy. For muscle invasive bladder cancer, surgical removal of the bladder, i.e. radical cystectomy, is in general the definitive treatment which, unfortunately, carries significant morbidities and mortalities. Accurate prediction of the mortality of radical cystectomy is therefore needed. Statistical methods have conventionally been used for this purpose, despite the complex interactions of high-dimensional medical data. Machine learning has emerged as a promising technique for handling high-dimensional data, with increasing application in clinical decision support, e.g. cancer prediction and prognosis. Its ability to reveal the hidden nonlinear interactions and interpretable rules between dependent and independent variables is favorable for constructing models of effective generalization performance. In this paper, seven machine learning methods are utilized to predict the 5-year mortality of radical cystectomy, including back-propagation neural network (BPN), radial basis function (RBFN), extreme learning machine (ELM), regularized ELM (RELM), support vector machine (SVM), naive Bayes (NB) classifier and k-nearest neighbour (KNN), on a clinicopathological dataset of 117 patients of the urology unit of a hospital in Hong Kong. The experimental results indicate that RELM achieved the highest average prediction accuracy of 0.8 at a fast learning speed. The research findings demonstrate the potential of applying machine learning techniques to support clinical decision making. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Support-vector-machine tree-based domain knowledge learning toward automated sports video classification

    NASA Astrophysics Data System (ADS)

    Xiao, Guoqiang; Jiang, Yang; Song, Gang; Jiang, Jianmin

    2010-12-01

    We propose a support-vector-machine (SVM) tree to hierarchically learn from domain knowledge represented by low-level features toward automatic classification of sports videos. The proposed SVM tree adopts a binary tree structure to exploit the nature of SVM's binary classification, where each internal node is a single SVM learning unit, and each external node represents the classified output type. Such a SVM tree presents a number of advantages, which include: 1. low computing cost; 2. integrated learning and classification while preserving individual SVM's learning strength; and 3. flexibility in both structure and learning modules, where different numbers of nodes and features can be added to address specific learning requirements, and various learning models can be added as individual nodes, such as neural networks, AdaBoost, hidden Markov models, dynamic Bayesian networks, etc. Experiments support that the proposed SVM tree achieves good performances in sports video classifications.

  19. Shark: SQL and Rich Analytics at Scale

    DTIC Science & Technology

    2012-11-26

    learning programs up to 100 faster than Hadoop. Unlike previous systems, Shark shows that it is possible to achieve these speedups while retaining a...Shark to run SQL queries up to 100× faster than Apache Hive, and machine learning programs up to 100× faster than Hadoop. Unlike previous systems, Shark...so using a runtime that is optimized for such workloads and a programming model that is designed to express machine learn - ing algorithms. 4.1

  20. Machine learning of frustrated classical spin models. I. Principal component analysis

    NASA Astrophysics Data System (ADS)

    Wang, Ce; Zhai, Hui

    2017-10-01

    This work aims at determining whether artificial intelligence can recognize a phase transition without prior human knowledge. If this were successful, it could be applied to, for instance, analyzing data from the quantum simulation of unsolved physical models. Toward this goal, we first need to apply the machine learning algorithm to well-understood models and see whether the outputs are consistent with our prior knowledge, which serves as the benchmark for this approach. In this work, we feed the computer data generated by the classical Monte Carlo simulation for the X Y model in frustrated triangular and union jack lattices, which has two order parameters and exhibits two phase transitions. We show that the outputs of the principal component analysis agree very well with our understanding of different orders in different phases, and the temperature dependences of the major components detect the nature and the locations of the phase transitions. Our work offers promise for using machine learning techniques to study sophisticated statistical models, and our results can be further improved by using principal component analysis with kernel tricks and the neural network method.

  1. The applications of machine learning algorithms in the modeling of estrogen-like chemicals.

    PubMed

    Liu, Huanxiang; Yao, Xiaojun; Gramatica, Paola

    2009-06-01

    Increasing concern is being shown by the scientific community, government regulators, and the public about endocrine-disrupting chemicals that, in the environment, are adversely affecting human and wildlife health through a variety of mechanisms, mainly estrogen receptor-mediated mechanisms of toxicity. Because of the large number of such chemicals in the environment, there is a great need for an effective means of rapidly assessing endocrine-disrupting activity in the toxicology assessment process. When faced with the challenging task of screening large libraries of molecules for biological activity, the benefits of computational predictive models based on quantitative structure-activity relationships to identify possible estrogens become immediately obvious. Recently, in order to improve the accuracy of prediction, some machine learning techniques were introduced to build more effective predictive models. In this review we will focus our attention on some recent advances in the use of these methods in modeling estrogen-like chemicals. The advantages and disadvantages of the machine learning algorithms used in solving this problem, the importance of the validation and performance assessment of the built models as well as their applicability domains will be discussed.

  2. Classifying the Indication for Colonoscopy Procedures: A Comparison of NLP Approaches in a Diverse National Healthcare System.

    PubMed

    Patterson, Olga V; Forbush, Tyler B; Saini, Sameer D; Moser, Stephanie E; DuVall, Scott L

    2015-01-01

    In order to measure the level of utilization of colonoscopy procedures, identifying the primary indication for the procedure is required. Colonoscopies may be utilized not only for screening, but also for diagnostic or therapeutic purposes. To determine whether a colonoscopy was performed for screening, we created a natural language processing system to identify colonoscopy reports in the electronic medical record system and extract indications for the procedure. A rule-based model and three machine-learning models were created using 2,000 manually annotated clinical notes of patients cared for in the Department of Veterans Affairs. Performance of the models was measured and compared. Analysis of the models on a test set of 1,000 documents indicates that the rule-based system performance stays fairly constant as evaluated on training and testing sets. However, the machine learning model without feature selection showed significant decrease in performance. Therefore, rule-based classification system appears to be more robust than a machine-learning system in cases when no feature selection is performed.

  3. Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data

    NASA Astrophysics Data System (ADS)

    Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-05-01

    A variety of compartment models are used for the quantitative analysis of dynamic positron emission tomography (PET) data. Traditionally, these models use an iterative fitting (IF) method to find the least squares between the measured and calculated values over time, which may encounter some problems such as the overfitting of model parameters and a lack of reproducibility, especially when handling noisy data or error data. In this paper, a machine learning (ML) based kinetic modeling method is introduced, which can fully utilize a historical reference database to build a moderate kinetic model directly dealing with noisy data but not trying to smooth the noise in the image. Also, due to the database, the presented method is capable of automatically adjusting the models using a multi-thread grid parameter searching technique. Furthermore, a candidate competition concept is proposed to combine the advantages of the ML and IF modeling methods, which could find a balance between fitting to historical data and to the unseen target curve. The machine learning based method provides a robust and reproducible solution that is user-independent for VOI-based and pixel-wise quantitative analysis of dynamic PET data.

  4. Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data.

    PubMed

    Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-05-07

    A variety of compartment models are used for the quantitative analysis of dynamic positron emission tomography (PET) data. Traditionally, these models use an iterative fitting (IF) method to find the least squares between the measured and calculated values over time, which may encounter some problems such as the overfitting of model parameters and a lack of reproducibility, especially when handling noisy data or error data. In this paper, a machine learning (ML) based kinetic modeling method is introduced, which can fully utilize a historical reference database to build a moderate kinetic model directly dealing with noisy data but not trying to smooth the noise in the image. Also, due to the database, the presented method is capable of automatically adjusting the models using a multi-thread grid parameter searching technique. Furthermore, a candidate competition concept is proposed to combine the advantages of the ML and IF modeling methods, which could find a balance between fitting to historical data and to the unseen target curve. The machine learning based method provides a robust and reproducible solution that is user-independent for VOI-based and pixel-wise quantitative analysis of dynamic PET data.

  5. Enhancing understanding and improving prediction of severe weather through spatiotemporal relational learning.

    PubMed

    McGovern, Amy; Gagne, David J; Williams, John K; Brown, Rodger A; Basara, Jeffrey B

    Severe weather, including tornadoes, thunderstorms, wind, and hail annually cause significant loss of life and property. We are developing spatiotemporal machine learning techniques that will enable meteorologists to improve the prediction of these events by improving their understanding of the fundamental causes of the phenomena and by building skillful empirical predictive models. In this paper, we present significant enhancements of our Spatiotemporal Relational Probability Trees that enable autonomous discovery of spatiotemporal relationships as well as learning with arbitrary shapes. We focus our evaluation on two real-world case studies using our technique: predicting tornadoes in Oklahoma and predicting aircraft turbulence in the United States. We also discuss how to evaluate success for a machine learning algorithm in the severe weather domain, which will enable new methods such as ours to transfer from research to operations, provide a set of lessons learned for embedded machine learning applications, and discuss how to field our technique.

  6. Variable complexity online sequential extreme learning machine, with applications to streamflow prediction

    NASA Astrophysics Data System (ADS)

    Lima, Aranildo R.; Hsieh, William W.; Cannon, Alex J.

    2017-12-01

    In situations where new data arrive continually, online learning algorithms are computationally much less costly than batch learning ones in maintaining the model up-to-date. The extreme learning machine (ELM), a single hidden layer artificial neural network with random weights in the hidden layer, is solved by linear least squares, and has an online learning version, the online sequential ELM (OSELM). As more data become available during online learning, information on the longer time scale becomes available, so ideally the model complexity should be allowed to change, but the number of hidden nodes (HN) remains fixed in OSELM. A variable complexity VC-OSELM algorithm is proposed to dynamically add or remove HN in the OSELM, allowing the model complexity to vary automatically as online learning proceeds. The performance of VC-OSELM was compared with OSELM in daily streamflow predictions at two hydrological stations in British Columbia, Canada, with VC-OSELM significantly outperforming OSELM in mean absolute error, root mean squared error and Nash-Sutcliffe efficiency at both stations.

  7. Using Multiple Indicators of Cognitive State in Logistic Models that Predict Individual Performance in Machine-Mediated Learning Environments.

    ERIC Educational Resources Information Center

    Hancock, Thomas E.; And Others

    1995-01-01

    In machine-mediated learning environments, there is a need for more reliable methods of calculating the probability that a learner's response will be correct in future trials. A combination of domain-independent response-state measures of cognition along with two instructional variables for maximum predictive ability are demonstrated. (Author/LRW)

  8. Machine-learning-assisted materials discovery using failed experiments

    NASA Astrophysics Data System (ADS)

    Raccuglia, Paul; Elbert, Katherine C.; Adler, Philip D. F.; Falk, Casey; Wenny, Malia B.; Mollo, Aurelio; Zeller, Matthias; Friedler, Sorelle A.; Schrier, Joshua; Norquist, Alexander J.

    2016-05-01

    Inorganic-organic hybrid materials such as organically templated metal oxides, metal-organic frameworks (MOFs) and organohalide perovskites have been studied for decades, and hydrothermal and (non-aqueous) solvothermal syntheses have produced thousands of new materials that collectively contain nearly all the metals in the periodic table. Nevertheless, the formation of these compounds is not fully understood, and development of new compounds relies primarily on exploratory syntheses. Simulation- and data-driven approaches (promoted by efforts such as the Materials Genome Initiative) provide an alternative to experimental trial-and-error. Three major strategies are: simulation-based predictions of physical properties (for example, charge mobility, photovoltaic properties, gas adsorption capacity or lithium-ion intercalation) to identify promising target candidates for synthetic efforts; determination of the structure-property relationship from large bodies of experimental data, enabled by integration with high-throughput synthesis and measurement tools; and clustering on the basis of similar crystallographic structure (for example, zeolite structure classification or gas adsorption properties). Here we demonstrate an alternative approach that uses machine-learning algorithms trained on reaction data to predict reaction outcomes for the crystallization of templated vanadium selenites. We used information on ‘dark’ reactions—failed or unsuccessful hydrothermal syntheses—collected from archived laboratory notebooks from our laboratory, and added physicochemical property descriptions to the raw notebook information using cheminformatics techniques. We used the resulting data to train a machine-learning model to predict reaction success. When carrying out hydrothermal synthesis experiments using previously untested, commercially available organic building blocks, our machine-learning model outperformed traditional human strategies, and successfully predicted conditions for new organically templated inorganic product formation with a success rate of 89 per cent. Inverting the machine-learning model reveals new hypotheses regarding the conditions for successful product formation.

  9. Optimization of classification and regression analysis of four monoclonal antibodies from Raman spectra using collaborative machine learning approach.

    PubMed

    Le, Laetitia Minh Maï; Kégl, Balázs; Gramfort, Alexandre; Marini, Camille; Nguyen, David; Cherti, Mehdi; Tfaili, Sana; Tfayli, Ali; Baillet-Guffroy, Arlette; Prognon, Patrice; Chaminade, Pierre; Caudron, Eric

    2018-07-01

    The use of monoclonal antibodies (mAbs) constitutes one of the most important strategies to treat patients suffering from cancers such as hematological malignancies and solid tumors. These antibodies are prescribed by the physician and prepared by hospital pharmacists. An analytical control enables the quality of the preparations to be ensured. The aim of this study was to explore the development of a rapid analytical method for quality control. The method used four mAbs (Infliximab, Bevacizumab, Rituximab and Ramucirumab) at various concentrations and was based on recording Raman data and coupling them to a traditional chemometric and machine learning approach for data analysis. Compared to conventional linear approach, prediction errors are reduced with a data-driven approach using statistical machine learning methods. In the latter, preprocessing and predictive models are jointly optimized. An additional original aspect of the work involved on submitting the problem to a collaborative data challenge platform called Rapid Analytics and Model Prototyping (RAMP). This allowed using solutions from about 300 data scientists in collaborative work. Using machine learning, the prediction of the four mAbs samples was considerably improved. The best predictive model showed a combined error of 2.4% versus 14.6% using linear approach. The concentration and classification errors were 5.8% and 0.7%, only three spectra were misclassified over the 429 spectra of the test set. This large improvement obtained with machine learning techniques was uniform for all molecules but maximal for Bevacizumab with an 88.3% reduction on combined errors (2.1% versus 17.9%). Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Modeling Electronic Quantum Transport with Machine Learning

    DOE PAGES

    Lopez Bezanilla, Alejandro; von Lilienfeld Toal, Otto A.

    2014-06-11

    We present a machine learning approach to solve electronic quantum transport equations of one-dimensional nanostructures. The transmission coefficients of disordered systems were computed to provide training and test data sets to the machine. The system’s representation encodes energetic as well as geometrical information to characterize similarities between disordered configurations, while the Euclidean norm is used as a measure of similarity. Errors for out-of-sample predictions systematically decrease with training set size, enabling the accurate and fast prediction of new transmission coefficients. The remarkable performance of our model to capture the complexity of interference phenomena lends further support to its viability inmore » dealing with transport problems of undulatory nature.« less

  11. Supervised machine learning for analysing spectra of exoplanetary atmospheres

    NASA Astrophysics Data System (ADS)

    Márquez-Neila, Pablo; Fisher, Chloe; Sznitman, Raphael; Heng, Kevin

    2018-06-01

    The use of machine learning is becoming ubiquitous in astronomy1-3, but remains rare in the study of the atmospheres of exoplanets. Given the spectrum of an exoplanetary atmosphere, a multi-parameter space is swept through in real time to find the best-fit model4-6. Known as atmospheric retrieval, this technique originates in the Earth and planetary sciences7. Such methods are very time-consuming, and by necessity there is a compromise between physical and chemical realism and computational feasibility. Machine learning has previously been used to determine which molecules to include in the model, but the retrieval itself was still performed using standard methods8. Here, we report an adaptation of the `random forest' method of supervised machine learning9,10, trained on a precomputed grid of atmospheric models, which retrieves full posterior distributions of the abundances of molecules and the cloud opacity. The use of a precomputed grid allows a large part of the computational burden to be shifted offline. We demonstrate our technique on a transmission spectrum of the hot gas-giant exoplanet WASP-12b using a five-parameter model (temperature, a constant cloud opacity and the volume mixing ratios or relative abundances of molecules of water, ammonia and hydrogen cyanide)11. We obtain results consistent with the standard nested-sampling retrieval method. We also estimate the sensitivity of the measured spectrum to the model parameters, and we are able to quantify the information content of the spectrum. Our method can be straightforwardly applied using more sophisticated atmospheric models to interpret an ensemble of spectra without having to retrain the random forest.

  12. Global assessment of soil organic carbon stocks and spatial distribution of histosols: the Machine Learning approach

    NASA Astrophysics Data System (ADS)

    Hengl, Tomislav

    2016-04-01

    Preliminary results of predicting distribution of soil organic soils (Histosols) and soil organic carbon stock (in tonnes per ha) using global compilations of soil profiles (about 150,000 points) and covariates at 250 m spatial resolution (about 150 covariates; mainly MODIS seasonal land products, SRTM DEM derivatives, climatic images, lithological and land cover and landform maps) are presented. We focus on using a data-driven approach i.e. Machine Learning techniques that often require no knowledge about the distribution of the target variable or knowledge about the possible relationships. Other advantages of using machine learning are (DOI: 10.1371/journal.pone.0125814): All rules required to produce outputs are formalized. The whole procedure is documented (the statistical model and associated computer script), enabling reproducible research. Predicted surfaces can make use of various information sources and can be optimized relative to all available quantitative point and covariate data. There is more flexibility in terms of the spatial extent, resolution and support of requested maps. Automated mapping is also more cost-effective: once the system is operational, maintenance and production of updates are an order of magnitude faster and cheaper. Consequently, prediction maps can be updated and improved at shorter and shorter time intervals. Some disadvantages of automated soil mapping based on Machine Learning are: Models are data-driven and any serious blunders or artifacts in the input data can propagate to order-of-magnitude larger errors than in the case of expert-based systems. Fitting machine learning models is at the order of magnitude computationally more demanding. Computing effort can be even tens of thousands higher than if e.g. linear geostatistics is used. Many machine learning models are fairly complex often abstract and any interpretation of such models is not trivial and require special multidimensional / multivariable plotting and data mining tools. Results of model fitting using the R packages nnet, randomForest and the h2o software (machine learning functions) show that significant models can be fitted for soil classes, bulk density (R-square 0.76), soil organic carbon (R-square 0.62) and coarse fragments (R-square 0.59). Consequently, we were able to estimate soil organic carbon stock for majority of the land mask (excluding permanent ice) and detect patches of landscape containing mainly organic soils (peat and similar). Our results confirm that hotspots of soil organic carbon in Tropics are peatlands in Indonesia, north of Peru, west Amazon and Congo river basin. Majority of world soil organic carbon stock is likely in the Northern latitudes (tundra and taiga of the north). Distribution of histosols seems to be mainly controlled by climatic conditions (especially temperature regime and water vapor) and hydrologic position in the landscape. Predicted distributions of organic soils (probability of occurrence) and total soil organic carbon stock at resolutions of 1 km and 250 m are available via the SoilGrids.org project homepage.

  13. Relative optical navigation around small bodies via Extreme Learning Machine

    NASA Astrophysics Data System (ADS)

    Law, Andrew M.

    To perform close proximity operations under a low-gravity environment, relative and absolute positions are vital information to the maneuver. Hence navigation is inseparably integrated in space travel. Extreme Learning Machine (ELM) is presented as an optical navigation method around small celestial bodies. Optical Navigation uses visual observation instruments such as a camera to acquire useful data and determine spacecraft position. The required input data for operation is merely a single image strip and a nadir image. ELM is a machine learning Single Layer feed-Forward Network (SLFN), a type of neural network (NN). The algorithm is developed on the predicate that input weights and biases can be randomly assigned and does not require back-propagation. The learned model is the output layer weights which are used to calculate a prediction. Together, Extreme Learning Machine Optical Navigation (ELM OpNav) utilizes optical images and ELM algorithm to train the machine to navigate around a target body. In this thesis the asteroid, Vesta, is the designated celestial body. The trained ELMs estimate the position of the spacecraft during operation with a single data set. The results show the approach is promising and potentially suitable for on-board navigation.

  14. Model-based and Model-free Machine Learning Techniques for Diagnostic Prediction and Classification of Clinical Outcomes in Parkinson's Disease.

    PubMed

    Gao, Chao; Sun, Hanbo; Wang, Tuo; Tang, Ming; Bohnen, Nicolaas I; Müller, Martijn L T M; Herman, Talia; Giladi, Nir; Kalinin, Alexandr; Spino, Cathie; Dauer, William; Hausdorff, Jeffrey M; Dinov, Ivo D

    2018-05-08

    In this study, we apply a multidisciplinary approach to investigate falls in PD patients using clinical, demographic and neuroimaging data from two independent initiatives (University of Michigan and Tel Aviv Sourasky Medical Center). Using machine learning techniques, we construct predictive models to discriminate fallers and non-fallers. Through controlled feature selection, we identified the most salient predictors of patient falls including gait speed, Hoehn and Yahr stage, postural instability and gait difficulty-related measurements. The model-based and model-free analytical methods we employed included logistic regression, random forests, support vector machines, and XGboost. The reliability of the forecasts was assessed by internal statistical (5-fold) cross validation as well as by external out-of-bag validation. Four specific challenges were addressed in the study: Challenge 1, develop a protocol for harmonizing and aggregating complex, multisource, and multi-site Parkinson's disease data; Challenge 2, identify salient predictive features associated with specific clinical traits, e.g., patient falls; Challenge 3, forecast patient falls and evaluate the classification performance; and Challenge 4, predict tremor dominance (TD) vs. posture instability and gait difficulty (PIGD). Our findings suggest that, compared to other approaches, model-free machine learning based techniques provide a more reliable clinical outcome forecasting of falls in Parkinson's patients, for example, with a classification accuracy of about 70-80%.

  15. Recurrent neural networks with specialized word embeddings for health-domain named-entity recognition.

    PubMed

    Jauregi Unanue, Iñigo; Zare Borzeshi, Ehsan; Piccardi, Massimo

    2017-12-01

    Previous state-of-the-art systems on Drug Name Recognition (DNR) and Clinical Concept Extraction (CCE) have focused on a combination of text "feature engineering" and conventional machine learning algorithms such as conditional random fields and support vector machines. However, developing good features is inherently heavily time-consuming. Conversely, more modern machine learning approaches such as recurrent neural networks (RNNs) have proved capable of automatically learning effective features from either random assignments or automated word "embeddings". (i) To create a highly accurate DNR and CCE system that avoids conventional, time-consuming feature engineering. (ii) To create richer, more specialized word embeddings by using health domain datasets such as MIMIC-III. (iii) To evaluate our systems over three contemporary datasets. Two deep learning methods, namely the Bidirectional LSTM and the Bidirectional LSTM-CRF, are evaluated. A CRF model is set as the baseline to compare the deep learning systems to a traditional machine learning approach. The same features are used for all the models. We have obtained the best results with the Bidirectional LSTM-CRF model, which has outperformed all previously proposed systems. The specialized embeddings have helped to cover unusual words in DrugBank and MedLine, but not in the i2b2/VA dataset. We present a state-of-the-art system for DNR and CCE. Automated word embeddings has allowed us to avoid costly feature engineering and achieve higher accuracy. Nevertheless, the embeddings need to be retrained over datasets that are adequate for the domain, in order to adequately cover the domain-specific vocabulary. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Machine Learning Algorithm Predicts Cardiac Resynchronization Therapy Outcomes: Lessons From the COMPANION Trial.

    PubMed

    Kalscheur, Matthew M; Kipp, Ryan T; Tattersall, Matthew C; Mei, Chaoqun; Buhr, Kevin A; DeMets, David L; Field, Michael E; Eckhardt, Lee L; Page, C David

    2018-01-01

    Cardiac resynchronization therapy (CRT) reduces morbidity and mortality in heart failure patients with reduced left ventricular function and intraventricular conduction delay. However, individual outcomes vary significantly. This study sought to use a machine learning algorithm to develop a model to predict outcomes after CRT. Models were developed with machine learning algorithms to predict all-cause mortality or heart failure hospitalization at 12 months post-CRT in the COMPANION trial (Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure). The best performing model was developed with the random forest algorithm. The ability of this model to predict all-cause mortality or heart failure hospitalization and all-cause mortality alone was compared with discrimination obtained using a combination of bundle branch block morphology and QRS duration. In the 595 patients with CRT-defibrillator in the COMPANION trial, 105 deaths occurred (median follow-up, 15.7 months). The survival difference across subgroups differentiated by bundle branch block morphology and QRS duration did not reach significance ( P =0.08). The random forest model produced quartiles of patients with an 8-fold difference in survival between those with the highest and lowest predicted probability for events (hazard ratio, 7.96; P <0.0001). The model also discriminated the risk of the composite end point of all-cause mortality or heart failure hospitalization better than subgroups based on bundle branch block morphology and QRS duration. In the COMPANION trial, a machine learning algorithm produced a model that predicted clinical outcomes after CRT. Applied before device implant, this model may better differentiate outcomes over current clinical discriminators and improve shared decision-making with patients. © 2018 American Heart Association, Inc.

  17. Resident Space Object Characterization and Behavior Understanding via Machine Learning and Ontology-based Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Furfaro, R.; Linares, R.; Gaylor, D.; Jah, M.; Walls, R.

    2016-09-01

    In this paper, we present an end-to-end approach that employs machine learning techniques and Ontology-based Bayesian Networks (BN) to characterize the behavior of resident space objects. State-of-the-Art machine learning architectures (e.g. Extreme Learning Machines, Convolutional Deep Networks) are trained on physical models to learn the Resident Space Object (RSO) features in the vectorized energy and momentum states and parameters. The mapping from measurements to vectorized energy and momentum states and parameters enables behavior characterization via clustering in the features space and subsequent RSO classification. Additionally, Space Object Behavioral Ontologies (SOBO) are employed to define and capture the domain knowledge-base (KB) and BNs are constructed from the SOBO in a semi-automatic fashion to execute probabilistic reasoning over conclusions drawn from trained classifiers and/or directly from processed data. Such an approach enables integrating machine learning classifiers and probabilistic reasoning to support higher-level decision making for space domain awareness applications. The innovation here is to use these methods (which have enjoyed great success in other domains) in synergy so that it enables a "from data to discovery" paradigm by facilitating the linkage and fusion of large and disparate sources of information via a Big Data Science and Analytics framework.

  18. Predicting Survival From Large Echocardiography and Electronic Health Record Datasets: Optimization With Machine Learning.

    PubMed

    Samad, Manar D; Ulloa, Alvaro; Wehner, Gregory J; Jing, Linyuan; Hartzel, Dustin; Good, Christopher W; Williams, Brent A; Haggerty, Christopher M; Fornwalt, Brandon K

    2018-06-09

    The goal of this study was to use machine learning to more accurately predict survival after echocardiography. Predicting patient outcomes (e.g., survival) following echocardiography is primarily based on ejection fraction (EF) and comorbidities. However, there may be significant predictive information within additional echocardiography-derived measurements combined with clinical electronic health record data. Mortality was studied in 171,510 unselected patients who underwent 331,317 echocardiograms in a large regional health system. We investigated the predictive performance of nonlinear machine learning models compared with that of linear logistic regression models using 3 different inputs: 1) clinical variables, including 90 cardiovascular-relevant International Classification of Diseases, Tenth Revision, codes, and age, sex, height, weight, heart rate, blood pressures, low-density lipoprotein, high-density lipoprotein, and smoking; 2) clinical variables plus physician-reported EF; and 3) clinical variables and EF, plus 57 additional echocardiographic measurements. Missing data were imputed with a multivariate imputation by using a chained equations algorithm (MICE). We compared models versus each other and baseline clinical scoring systems by using a mean area under the curve (AUC) over 10 cross-validation folds and across 10 survival durations (6 to 60 months). Machine learning models achieved significantly higher prediction accuracy (all AUC >0.82) over common clinical risk scores (AUC = 0.61 to 0.79), with the nonlinear random forest models outperforming logistic regression (p < 0.01). The random forest model including all echocardiographic measurements yielded the highest prediction accuracy (p < 0.01 across all models and survival durations). Only 10 variables were needed to achieve 96% of the maximum prediction accuracy, with 6 of these variables being derived from echocardiography. Tricuspid regurgitation velocity was more predictive of survival than LVEF. In a subset of studies with complete data for the top 10 variables, multivariate imputation by chained equations yielded slightly reduced predictive accuracies (difference in AUC of 0.003) compared with the original data. Machine learning can fully utilize large combinations of disparate input variables to predict survival after echocardiography with superior accuracy. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  19. Towards a generalized energy prediction model for machine tools

    PubMed Central

    Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H.; Dornfeld, David A.; Helu, Moneer; Rachuri, Sudarsan

    2017-01-01

    Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process. PMID:28652687

  20. Towards a generalized energy prediction model for machine tools.

    PubMed

    Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H; Dornfeld, David A; Helu, Moneer; Rachuri, Sudarsan

    2017-04-01

    Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process.

  1. Toward accelerating landslide mapping with interactive machine learning techniques

    NASA Astrophysics Data System (ADS)

    Stumpf, André; Lachiche, Nicolas; Malet, Jean-Philippe; Kerle, Norman; Puissant, Anne

    2013-04-01

    Despite important advances in the development of more automated methods for landslide mapping from optical remote sensing images, the elaboration of inventory maps after major triggering events still remains a tedious task. Image classification with expert defined rules typically still requires significant manual labour for the elaboration and adaption of rule sets for each particular case. Machine learning algorithm, on the contrary, have the ability to learn and identify complex image patterns from labelled examples but may require relatively large amounts of training data. In order to reduce the amount of required training data active learning has evolved as key concept to guide the sampling for applications such as document classification, genetics and remote sensing. The general underlying idea of most active learning approaches is to initialize a machine learning model with a small training set, and to subsequently exploit the model state and/or the data structure to iteratively select the most valuable samples that should be labelled by the user and added in the training set. With relatively few queries and labelled samples, an active learning strategy should ideally yield at least the same accuracy than an equivalent classifier trained with many randomly selected samples. Our study was dedicated to the development of an active learning approach for landslide mapping from VHR remote sensing images with special consideration of the spatial distribution of the samples. The developed approach is a region-based query heuristic that enables to guide the user attention towards few compact spatial batches rather than distributed points resulting in time savings of 50% and more compared to standard active learning techniques. The approach was tested with multi-temporal and multi-sensor satellite images capturing recent large scale triggering events in Brazil and China and demonstrated balanced user's and producer's accuracies between 74% and 80%. The assessment also included an experimental evaluation of the uncertainties of manual mappings from multiple experts and demonstrated strong relationships between the uncertainty of the experts and the machine learning model.

  2. Development of machine learning models to predict inhibition of 3-dehydroquinate dehydratase.

    PubMed

    de Ávila, Maurício Boff; de Azevedo, Walter Filgueira

    2018-04-20

    In this study, we describe the development of new machine learning models to predict inhibition of the enzyme 3-dehydroquinate dehydratase (DHQD). This enzyme is the third step of the shikimate pathway and is responsible for the synthesis of chorismate, which is a natural precursor of aromatic amino acids. The enzymes of shikimate pathway are absent in humans, which make them protein targets for the design of antimicrobial drugs. We focus our study on the crystallographic structures of DHQD in complex with competitive inhibitors, for which experimental inhibition constant data is available. Application of supervised machine learning techniques was able to elaborate a robust DHQD-targeted model to predict binding affinity. Combination of high-resolution crystallographic structures and binding information indicates that the prevalence of intermolecular electrostatic interactions between DHQD and competitive inhibitors is of pivotal importance for the binding affinity against this enzyme. The present findings can be used to speed up virtual screening studies focused on the DHQD structure. © 2018 John Wiley & Sons A/S.

  3. Understanding of anesthesia machine function is enhanced with a transparent reality simulation.

    PubMed

    Fischler, Ira S; Kaschub, Cynthia E; Lizdas, David E; Lampotang, Samsun

    2008-01-01

    Photorealistic simulations may provide efficient transfer of certain skills to the real system, but by being opaque may fail to encourage deeper learning of the structure and function of the system. Schematic simulations that are more abstract, with less visual fidelity but make system structure and function transparent, may enhance deeper learning and optimize retention and transfer of learning. We compared learning effectiveness of these 2 modes of externalizing the output of a common simulation engine (the Virtual Anesthesia Machine, VAM) that models machine function and dynamics and responds in real time to user interventions such as changes in gas flow or ventilation. Undergraduate students (n = 39) and medical students (n = 35) were given a single, 1-hour guided learning session with either a Transparent or an Opaque version of the VAM simulation. The following day, the learners' knowledge of machine components, function, and dynamics was tested. The Transparent-VAM groups scored higher than the Opaque-VAM groups on a set of multiple-choice questions concerning conceptual knowledge about anesthesia machines (P = 0.009), provided better and more complete explanations of component function (P = 0.003), and were more accurate in remembering and inferring cause-and-effect dynamics of the machine and relations among components (P = 0.003). Although the medical students outperformed undergraduates on all measures, a similar pattern of benefits for the Transparent VAM was observed for these 2 groups. Schematic simulations that transparently allow learners to visualize, and explore, underlying system dynamics and relations among components may provide a more effective mental model for certain systems. This may lead to a deeper understanding of how the system works, and therefore, we believe, how to detect and respond to potentially adverse situations.

  4. Explosion Monitoring with Machine Learning: A LSTM Approach to Seismic Event Discrimination

    NASA Astrophysics Data System (ADS)

    Magana-Zook, S. A.; Ruppert, S. D.

    2017-12-01

    The streams of seismic data that analysts look at to discriminate natural from man- made events will soon grow from gigabytes of data per day to exponentially larger rates. This is an interesting problem as the requirement for real-time answers to questions of non-proliferation will remain the same, and the analyst pool cannot grow as fast as the data volume and velocity will. Machine learning is a tool that can solve the problem of seismic explosion monitoring at scale. Using machine learning, and Long Short-term Memory (LSTM) models in particular, analysts can become more efficient by focusing their attention on signals of interest. From a global dataset of earthquake and explosion events, a model was trained to recognize the different classes of events, given their spectrograms. Optimal recurrent node count and training iterations were found, and cross validation was performed to evaluate model performance. A 10-fold mean accuracy of 96.92% was achieved on a balanced dataset of 30,002 instances. Given that the model is 446.52 MB it can be used to simultaneously characterize all incoming signals by researchers looking at events in isolation on desktop machines, as well as at scale on all of the nodes of a real-time streaming platform. LLNL-ABS-735911

  5. Automatic Earthquake Detection by Active Learning

    NASA Astrophysics Data System (ADS)

    Bergen, K.; Beroza, G. C.

    2017-12-01

    In recent years, advances in machine learning have transformed fields such as image recognition, natural language processing and recommender systems. Many of these performance gains have relied on the availability of large, labeled data sets to train high-accuracy models; labeled data sets are those for which each sample includes a target class label, such as waveforms tagged as either earthquakes or noise. Earthquake seismologists are increasingly leveraging machine learning and data mining techniques to detect and analyze weak earthquake signals in large seismic data sets. One of the challenges in applying machine learning to seismic data sets is the limited labeled data problem; learning algorithms need to be given examples of earthquake waveforms, but the number of known events, taken from earthquake catalogs, may be insufficient to build an accurate detector. Furthermore, earthquake catalogs are known to be incomplete, resulting in training data that may be biased towards larger events and contain inaccurate labels. This challenge is compounded by the class imbalance problem; the events of interest, earthquakes, are infrequent relative to noise in continuous data sets, and many learning algorithms perform poorly on rare classes. In this work, we investigate the use of active learning for automatic earthquake detection. Active learning is a type of semi-supervised machine learning that uses a human-in-the-loop approach to strategically supplement a small initial training set. The learning algorithm incorporates domain expertise through interaction between a human expert and the algorithm, with the algorithm actively posing queries to the user to improve detection performance. We demonstrate the potential of active machine learning to improve earthquake detection performance with limited available training data.

  6. Theories for Deep Change in Affect-sensitive Cognitive Machines: A Constructivist Model.

    ERIC Educational Resources Information Center

    Kort, Barry; Reilly, Rob

    2002-01-01

    There is an interplay between emotions and learning, but this interaction is far more complex than previous learning theories have articulated. This article proffers a novel model by which to regard the interplay of emotions upon learning and discusses the larger practical aim of crafting computer-based models that will recognize a learner's…

  7. Machine Learning

    NASA Astrophysics Data System (ADS)

    Hoffmann, Achim; Mahidadia, Ashesh

    The purpose of this chapter is to present fundamental ideas and techniques of machine learning suitable for the field of this book, i.e., for automated scientific discovery. The chapter focuses on those symbolic machine learning methods, which produce results that are suitable to be interpreted and understood by humans. This is particularly important in the context of automated scientific discovery as the scientific theories to be produced by machines are usually meant to be interpreted by humans. This chapter contains some of the most influential ideas and concepts in machine learning research to give the reader a basic insight into the field. After the introduction in Sect. 1, general ideas of how learning problems can be framed are given in Sect. 2. The section provides useful perspectives to better understand what learning algorithms actually do. Section 3 presents the Version space model which is an early learning algorithm as well as a conceptual framework, that provides important insight into the general mechanisms behind most learning algorithms. In section 4, a family of learning algorithms, the AQ family for learning classification rules is presented. The AQ family belongs to the early approaches in machine learning. The next, Sect. 5 presents the basic principles of decision tree learners. Decision tree learners belong to the most influential class of inductive learning algorithms today. Finally, a more recent group of learning systems are presented in Sect. 6, which learn relational concepts within the framework of logic programming. This is a particularly interesting group of learning systems since the framework allows also to incorporate background knowledge which may assist in generalisation. Section 7 discusses Association Rules - a technique that comes from the related field of Data mining. Section 8 presents the basic idea of the Naive Bayesian Classifier. While this is a very popular learning technique, the learning result is not well suited for human comprehension as it is essentially a large collection of probability values. In Sect. 9, we present a generic method for improving accuracy of a given learner by generatingmultiple classifiers using variations of the training data. While this works well in most cases, the resulting classifiers have significantly increased complexity and, hence, tend to destroy the human readability of the learning result that a single learner may produce. Section 10 contains a summary, mentions briefly other techniques not discussed in this chapter and presents outlook on the potential of machine learning in the future.

  8. Interpreting linear support vector machine models with heat map molecule coloring

    PubMed Central

    2011-01-01

    Background Model-based virtual screening plays an important role in the early drug discovery stage. The outcomes of high-throughput screenings are a valuable source for machine learning algorithms to infer such models. Besides a strong performance, the interpretability of a machine learning model is a desired property to guide the optimization of a compound in later drug discovery stages. Linear support vector machines showed to have a convincing performance on large-scale data sets. The goal of this study is to present a heat map molecule coloring technique to interpret linear support vector machine models. Based on the weights of a linear model, the visualization approach colors each atom and bond of a compound according to its importance for activity. Results We evaluated our approach on a toxicity data set, a chromosome aberration data set, and the maximum unbiased validation data sets. The experiments show that our method sensibly visualizes structure-property and structure-activity relationships of a linear support vector machine model. The coloring of ligands in the binding pocket of several crystal structures of a maximum unbiased validation data set target indicates that our approach assists to determine the correct ligand orientation in the binding pocket. Additionally, the heat map coloring enables the identification of substructures important for the binding of an inhibitor. Conclusions In combination with heat map coloring, linear support vector machine models can help to guide the modification of a compound in later stages of drug discovery. Particularly substructures identified as important by our method might be a starting point for optimization of a lead compound. The heat map coloring should be considered as complementary to structure based modeling approaches. As such, it helps to get a better understanding of the binding mode of an inhibitor. PMID:21439031

  9. Toward Intelligent Machine Learning Algorithms

    DTIC Science & Technology

    1988-05-01

    Machine learning is recognized as a tool for improving the performance of many kinds of systems, yet most machine learning systems themselves are not...directed systems, and with the addition of a knowledge store for organizing and maintaining knowledge to assist learning, a learning machine learning (L...ML) algorithm is possible. The necessary components of L-ML systems are presented along with several case descriptions of existing machine learning systems

  10. Modeling Music Emotion Judgments Using Machine Learning Methods

    PubMed Central

    Vempala, Naresh N.; Russo, Frank A.

    2018-01-01

    Emotion judgments and five channels of physiological data were obtained from 60 participants listening to 60 music excerpts. Various machine learning (ML) methods were used to model the emotion judgments inclusive of neural networks, linear regression, and random forests. Input for models of perceived emotion consisted of audio features extracted from the music recordings. Input for models of felt emotion consisted of physiological features extracted from the physiological recordings. Models were trained and interpreted with consideration of the classic debate in music emotion between cognitivists and emotivists. Our models supported a hybrid position wherein emotion judgments were influenced by a combination of perceived and felt emotions. In comparing the different ML approaches that were used for modeling, we conclude that neural networks were optimal, yielding models that were flexible as well as interpretable. Inspection of a committee machine, encompassing an ensemble of networks, revealed that arousal judgments were predominantly influenced by felt emotion, whereas valence judgments were predominantly influenced by perceived emotion. PMID:29354080

  11. Modeling Music Emotion Judgments Using Machine Learning Methods.

    PubMed

    Vempala, Naresh N; Russo, Frank A

    2017-01-01

    Emotion judgments and five channels of physiological data were obtained from 60 participants listening to 60 music excerpts. Various machine learning (ML) methods were used to model the emotion judgments inclusive of neural networks, linear regression, and random forests. Input for models of perceived emotion consisted of audio features extracted from the music recordings. Input for models of felt emotion consisted of physiological features extracted from the physiological recordings. Models were trained and interpreted with consideration of the classic debate in music emotion between cognitivists and emotivists. Our models supported a hybrid position wherein emotion judgments were influenced by a combination of perceived and felt emotions. In comparing the different ML approaches that were used for modeling, we conclude that neural networks were optimal, yielding models that were flexible as well as interpretable. Inspection of a committee machine, encompassing an ensemble of networks, revealed that arousal judgments were predominantly influenced by felt emotion, whereas valence judgments were predominantly influenced by perceived emotion.

  12. Data-driven advice for applying machine learning to bioinformatics problems

    PubMed Central

    Olson, Randal S.; La Cava, William; Mustahsan, Zairah; Varik, Akshay; Moore, Jason H.

    2017-01-01

    As the bioinformatics field grows, it must keep pace not only with new data but with new algorithms. Here we contribute a thorough analysis of 13 state-of-the-art, commonly used machine learning algorithms on a set of 165 publicly available classification problems in order to provide data-driven algorithm recommendations to current researchers. We present a number of statistical and visual comparisons of algorithm performance and quantify the effect of model selection and algorithm tuning for each algorithm and dataset. The analysis culminates in the recommendation of five algorithms with hyperparameters that maximize classifier performance across the tested problems, as well as general guidelines for applying machine learning to supervised classification problems. PMID:29218881

  13. Big Data and machine learning in radiation oncology: State of the art and future prospects.

    PubMed

    Bibault, Jean-Emmanuel; Giraud, Philippe; Burgun, Anita

    2016-11-01

    Precision medicine relies on an increasing amount of heterogeneous data. Advances in radiation oncology, through the use of CT Scan, dosimetry and imaging performed before each fraction, have generated a considerable flow of data that needs to be integrated. In the same time, Electronic Health Records now provide phenotypic profiles of large cohorts of patients that could be correlated to this information. In this review, we describe methods that could be used to create integrative predictive models in radiation oncology. Potential uses of machine learning methods such as support vector machine, artificial neural networks, and deep learning are also discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Supervised Machine Learning for Regionalization of Environmental Data: Distribution of Uranium in Groundwater in Ukraine

    NASA Astrophysics Data System (ADS)

    Govorov, Michael; Gienko, Gennady; Putrenko, Viktor

    2018-05-01

    In this paper, several supervised machine learning algorithms were explored to define homogeneous regions of con-centration of uranium in surface waters in Ukraine using multiple environmental parameters. The previous study was focused on finding the primary environmental parameters related to uranium in ground waters using several methods of spatial statistics and unsupervised classification. At this step, we refined the regionalization using Artifi-cial Neural Networks (ANN) techniques including Multilayer Perceptron (MLP), Radial Basis Function (RBF), and Convolutional Neural Network (CNN). The study is focused on building local ANN models which may significantly improve the prediction results of machine learning algorithms by taking into considerations non-stationarity and autocorrelation in spatial data.

  15. Web Mining: Machine Learning for Web Applications.

    ERIC Educational Resources Information Center

    Chen, Hsinchun; Chau, Michael

    2004-01-01

    Presents an overview of machine learning research and reviews methods used for evaluating machine learning systems. Ways that machine-learning algorithms were used in traditional information retrieval systems in the "pre-Web" era are described, and the field of Web mining and how machine learning has been used in different Web mining…

  16. A Machine Learning Approach for Business Intelligence Analysis using Commercial Shipping Transaction Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramer, Lisa M.; Chatterjee, Samrat; Holmes, Aimee E.

    Business intelligence problems are particularly challenging due to the use of large volume and high velocity data in attempts to model and explain complex underlying phenomena. Incremental machine learning based approaches for summarizing trends and identifying anomalous behavior are often desirable in such conditions to assist domain experts in characterizing their data. The overall goal of this research is to develop a machine learning algorithm that enables predictive analysis on streaming data, detects changes and anomalies in the data, and can evolve based on the dynamic behavior of the data. Commercial shipping transaction data for the U.S. is used tomore » develop and test a Naïve Bayes model that classifies several companies into lines of businesses and demonstrates an ability to predict when the behavior of these companies changes by venturing into other lines of businesses.« less

  17. In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts

    NASA Astrophysics Data System (ADS)

    Yang, Hongbin; Sun, Lixia; Li, Weihua; Liu, Guixia; Tang, Yun

    2018-02-01

    For a drug, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future.

  18. Machine Learning Estimates of Natural Product Conformational Energies

    PubMed Central

    Rupp, Matthias; Bauer, Matthias R.; Wilcken, Rainer; Lange, Andreas; Reutlinger, Michael; Boeckler, Frank M.; Schneider, Gisbert

    2014-01-01

    Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking the natural product Archazolid A, a potent inhibitor of vacuolar-type ATPase, from the myxobacterium Archangium gephyra as an example. Our model estimates energies of new conformations by exploiting information from previous calculations via Gaussian process regression. Predictive variance is used to assess whether a conformation is in the interpolation region, allowing a controlled trade-off between prediction accuracy and computational speed-up. For energies of relaxed conformations at the density functional level of theory (implicit solvent, DFT/BLYP-disp3/def2-TZVP), mean absolute errors of less than 1 kcal/mol were achieved. The study demonstrates that predictive machine learning models can be developed for structurally complex, pharmaceutically relevant compounds, potentially enabling considerable speed-ups in simulations of larger molecular structures. PMID:24453952

  19. Detection of Cheating by Decimation Algorithm

    NASA Astrophysics Data System (ADS)

    Yamanaka, Shogo; Ohzeki, Masayuki; Decelle, Aurélien

    2015-02-01

    We expand the item response theory to study the case of "cheating students" for a set of exams, trying to detect them by applying a greedy algorithm of inference. This extended model is closely related to the Boltzmann machine learning. In this paper we aim to infer the correct biases and interactions of our model by considering a relatively small number of sets of training data. Nevertheless, the greedy algorithm that we employed in the present study exhibits good performance with a few number of training data. The key point is the sparseness of the interactions in our problem in the context of the Boltzmann machine learning: the existence of cheating students is expected to be very rare (possibly even in real world). We compare a standard approach to infer the sparse interactions in the Boltzmann machine learning to our greedy algorithm and we find the latter to be superior in several aspects.

  20. In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts

    PubMed Central

    Yang, Hongbin; Sun, Lixia; Li, Weihua; Liu, Guixia; Tang, Yun

    2018-01-01

    During drug development, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future. PMID:29515993

  1. Temperature based Restricted Boltzmann Machines

    NASA Astrophysics Data System (ADS)

    Li, Guoqi; Deng, Lei; Xu, Yi; Wen, Changyun; Wang, Wei; Pei, Jing; Shi, Luping

    2016-01-01

    Restricted Boltzmann machines (RBMs), which apply graphical models to learning probability distribution over a set of inputs, have attracted much attention recently since being proposed as building blocks of multi-layer learning systems called deep belief networks (DBNs). Note that temperature is a key factor of the Boltzmann distribution that RBMs originate from. However, none of existing schemes have considered the impact of temperature in the graphical model of DBNs. In this work, we propose temperature based restricted Boltzmann machines (TRBMs) which reveals that temperature is an essential parameter controlling the selectivity of the firing neurons in the hidden layers. We theoretically prove that the effect of temperature can be adjusted by setting the parameter of the sharpness of the logistic function in the proposed TRBMs. The performance of RBMs can be improved by adjusting the temperature parameter of TRBMs. This work provides a comprehensive insights into the deep belief networks and deep learning architectures from a physical point of view.

  2. Classifying Acute Ischemic Stroke Onset Time using Deep Imaging Features

    PubMed Central

    Ho, King Chung; Speier, William; El-Saden, Suzie; Arnold, Corey W.

    2017-01-01

    Models have been developed to predict stroke outcomes (e.g., mortality) in attempt to provide better guidance for stroke treatment. However, there is little work in developing classification models for the problem of unknown time-since-stroke (TSS), which determines a patient’s treatment eligibility based on a clinical defined cutoff time point (i.e., <4.5hrs). In this paper, we construct and compare machine learning methods to classify TSS<4.5hrs using magnetic resonance (MR) imaging features. We also propose a deep learning model to extract hidden representations from the MR perfusion-weighted images and demonstrate classification improvement by incorporating these additional imaging features. Finally, we discuss a strategy to visualize the learned features from the proposed deep learning model. The cross-validation results show that our best classifier achieved an area under the curve of 0.68, which improves significantly over current clinical methods (0.58), demonstrating the potential benefit of using advanced machine learning methods in TSS classification. PMID:29854156

  3. Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy

    PubMed Central

    Mani, Subramani; Chen, Yukun; Li, Xia; Arlinghaus, Lori; Chakravarthy, A Bapsi; Abramson, Vandana; Bhave, Sandeep R; Levy, Mia A; Xu, Hua; Yankeelov, Thomas E

    2013-01-01

    Objective To employ machine learning methods to predict the eventual therapeutic response of breast cancer patients after a single cycle of neoadjuvant chemotherapy (NAC). Materials and methods Quantitative dynamic contrast-enhanced MRI and diffusion-weighted MRI data were acquired on 28 patients before and after one cycle of NAC. A total of 118 semiquantitative and quantitative parameters were derived from these data and combined with 11 clinical variables. We used Bayesian logistic regression in combination with feature selection using a machine learning framework for predictive model building. Results The best predictive models using feature selection obtained an area under the curve of 0.86 and an accuracy of 0.86, with a sensitivity of 0.88 and a specificity of 0.82. Discussion With the numerous options for NAC available, development of a method to predict response early in the course of therapy is needed. Unfortunately, by the time most patients are found not to be responding, their disease may no longer be surgically resectable, and this situation could be avoided by the development of techniques to assess response earlier in the treatment regimen. The method outlined here is one possible solution to this important clinical problem. Conclusions Predictive modeling approaches based on machine learning using readily available clinical and quantitative MRI data show promise in distinguishing breast cancer responders from non-responders after the first cycle of NAC. PMID:23616206

  4. Comparison between Two Linear Supervised Learning Machines' Methods with Principle Component Based Methods for the Spectrofluorimetric Determination of Agomelatine and Its Degradants.

    PubMed

    Elkhoudary, Mahmoud M; Naguib, Ibrahim A; Abdel Salam, Randa A; Hadad, Ghada M

    2017-05-01

    Four accurate, sensitive and reliable stability indicating chemometric methods were developed for the quantitative determination of Agomelatine (AGM) whether in pure form or in pharmaceutical formulations. Two supervised learning machines' methods; linear artificial neural networks (PC-linANN) preceded by principle component analysis and linear support vector regression (linSVR), were compared with two principle component based methods; principle component regression (PCR) as well as partial least squares (PLS) for the spectrofluorimetric determination of AGM and its degradants. The results showed the benefits behind using linear learning machines' methods and the inherent merits of their algorithms in handling overlapped noisy spectral data especially during the challenging determination of AGM alkaline and acidic degradants (DG1 and DG2). Relative mean squared error of prediction (RMSEP) for the proposed models in the determination of AGM were 1.68, 1.72, 0.68 and 0.22 for PCR, PLS, SVR and PC-linANN; respectively. The results showed the superiority of supervised learning machines' methods over principle component based methods. Besides, the results suggested that linANN is the method of choice for determination of components in low amounts with similar overlapped spectra and narrow linearity range. Comparison between the proposed chemometric models and a reported HPLC method revealed the comparable performance and quantification power of the proposed models.

  5. Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia

    NASA Astrophysics Data System (ADS)

    Deo, Ravinesh C.; Şahin, Mehmet

    2015-02-01

    The prediction of future drought is an effective mitigation tool for assessing adverse consequences of drought events on vital water resources, agriculture, ecosystems and hydrology. Data-driven model predictions using machine learning algorithms are promising tenets for these purposes as they require less developmental time, minimal inputs and are relatively less complex than the dynamic or physical model. This paper authenticates a computationally simple, fast and efficient non-linear algorithm known as extreme learning machine (ELM) for the prediction of Effective Drought Index (EDI) in eastern Australia using input data trained from 1957-2008 and the monthly EDI predicted over the period 2009-2011. The predictive variables for the ELM model were the rainfall and mean, minimum and maximum air temperatures, supplemented by the large-scale climate mode indices of interest as regression covariates, namely the Southern Oscillation Index, Pacific Decadal Oscillation, Southern Annular Mode and the Indian Ocean Dipole moment. To demonstrate the effectiveness of the proposed data-driven model a performance comparison in terms of the prediction capabilities and learning speeds was conducted between the proposed ELM algorithm and the conventional artificial neural network (ANN) algorithm trained with Levenberg-Marquardt back propagation. The prediction metrics certified an excellent performance of the ELM over the ANN model for the overall test sites, thus yielding Mean Absolute Errors, Root-Mean Square Errors, Coefficients of Determination and Willmott's Indices of Agreement of 0.277, 0.008, 0.892 and 0.93 (for ELM) and 0.602, 0.172, 0.578 and 0.92 (for ANN) models. Moreover, the ELM model was executed with learning speed 32 times faster and training speed 6.1 times faster than the ANN model. An improvement in the prediction capability of the drought duration and severity by the ELM model was achieved. Based on these results we aver that out of the two machine learning algorithms tested, the ELM was the more expeditious tool for prediction of drought and its related properties.

  6. On-the-Fly Machine Learning of Atomic Potential in Density Functional Theory Structure Optimization

    NASA Astrophysics Data System (ADS)

    Jacobsen, T. L.; Jørgensen, M. S.; Hammer, B.

    2018-01-01

    Machine learning (ML) is used to derive local stability information for density functional theory calculations of systems in relation to the recently discovered SnO2 (110 )-(4 ×1 ) reconstruction. The ML model is trained on (structure, total energy) relations collected during global minimum energy search runs with an evolutionary algorithm (EA). While being built, the ML model is used to guide the EA, thereby speeding up the overall rate by which the EA succeeds. Inspection of the local atomic potentials emerging from the model further shows chemically intuitive patterns.

  7. Combining macula clinical signs and patient characteristics for age-related macular degeneration diagnosis: a machine learning approach.

    PubMed

    Fraccaro, Paolo; Nicolo, Massimo; Bonetto, Monica; Giacomini, Mauro; Weller, Peter; Traverso, Carlo Enrico; Prosperi, Mattia; OSullivan, Dympna

    2015-01-27

    To investigate machine learning methods, ranging from simpler interpretable techniques to complex (non-linear) "black-box" approaches, for automated diagnosis of Age-related Macular Degeneration (AMD). Data from healthy subjects and patients diagnosed with AMD or other retinal diseases were collected during routine visits via an Electronic Health Record (EHR) system. Patients' attributes included demographics and, for each eye, presence/absence of major AMD-related clinical signs (soft drusen, retinal pigment epitelium, defects/pigment mottling, depigmentation area, subretinal haemorrhage, subretinal fluid, macula thickness, macular scar, subretinal fibrosis). Interpretable techniques known as white box methods including logistic regression and decision trees as well as less interpreitable techniques known as black box methods, such as support vector machines (SVM), random forests and AdaBoost, were used to develop models (trained and validated on unseen data) to diagnose AMD. The gold standard was confirmed diagnosis of AMD by physicians. Sensitivity, specificity and area under the receiver operating characteristic (AUC) were used to assess performance. Study population included 487 patients (912 eyes). In terms of AUC, random forests, logistic regression and adaboost showed a mean performance of (0.92), followed by SVM and decision trees (0.90). All machine learning models identified soft drusen and age as the most discriminating variables in clinicians' decision pathways to diagnose AMD. Both black-box and white box methods performed well in identifying diagnoses of AMD and their decision pathways. Machine learning models developed through the proposed approach, relying on clinical signs identified by retinal specialists, could be embedded into EHR to provide physicians with real time (interpretable) support.

  8. Manifold learning in machine vision and robotics

    NASA Astrophysics Data System (ADS)

    Bernstein, Alexander

    2017-02-01

    Smart algorithms are used in Machine vision and Robotics to organize or extract high-level information from the available data. Nowadays, Machine learning is an essential and ubiquitous tool to automate extraction patterns or regularities from data (images in Machine vision; camera, laser, and sonar sensors data in Robotics) in order to solve various subject-oriented tasks such as understanding and classification of images content, navigation of mobile autonomous robot in uncertain environments, robot manipulation in medical robotics and computer-assisted surgery, and other. Usually such data have high dimensionality, however, due to various dependencies between their components and constraints caused by physical reasons, all "feasible and usable data" occupy only a very small part in high dimensional "observation space" with smaller intrinsic dimensionality. Generally accepted model of such data is manifold model in accordance with which the data lie on or near an unknown manifold (surface) of lower dimensionality embedded in an ambient high dimensional observation space; real-world high-dimensional data obtained from "natural" sources meet, as a rule, this model. The use of Manifold learning technique in Machine vision and Robotics, which discovers a low-dimensional structure of high dimensional data and results in effective algorithms for solving of a large number of various subject-oriented tasks, is the content of the conference plenary speech some topics of which are in the paper.

  9. New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random Forest perform better than Regression Tree Analysis

    Treesearch

    L.R. Iverson; A.M. Prasad; A. Liaw

    2004-01-01

    More and better machine learning tools are becoming available for landscape ecologists to aid in understanding species-environment relationships and to map probable species occurrence now and potentially into the future. To thal end, we evaluated three statistical models: Regression Tree Analybib (RTA), Bagging Trees (BT) and Random Forest (RF) for their utility in...

  10. Conditional High-Order Boltzmann Machines for Supervised Relation Learning.

    PubMed

    Huang, Yan; Wang, Wei; Wang, Liang; Tan, Tieniu

    2017-09-01

    Relation learning is a fundamental problem in many vision tasks. Recently, high-order Boltzmann machine and its variants have shown their great potentials in learning various types of data relation in a range of tasks. But most of these models are learned in an unsupervised way, i.e., without using relation class labels, which are not very discriminative for some challenging tasks, e.g., face verification. In this paper, with the goal to perform supervised relation learning, we introduce relation class labels into conventional high-order multiplicative interactions with pairwise input samples, and propose a conditional high-order Boltzmann Machine (CHBM), which can learn to classify the data relation in a binary classification way. To be able to deal with more complex data relation, we develop two improved variants of CHBM: 1) latent CHBM, which jointly performs relation feature learning and classification, by using a set of latent variables to block the pathway from pairwise input samples to output relation labels and 2) gated CHBM, which untangles factors of variation in data relation, by exploiting a set of latent variables to multiplicatively gate the classification of CHBM. To reduce the large number of model parameters generated by the multiplicative interactions, we approximately factorize high-order parameter tensors into multiple matrices. Then, we develop efficient supervised learning algorithms, by first pretraining the models using joint likelihood to provide good parameter initialization, and then finetuning them using conditional likelihood to enhance the discriminant ability. We apply the proposed models to a series of tasks including invariant recognition, face verification, and action similarity labeling. Experimental results demonstrate that by exploiting supervised relation labels, our models can greatly improve the performance.

  11. Machine learning approaches for estimation of prediction interval for the model output.

    PubMed

    Shrestha, Durga L; Solomatine, Dimitri P

    2006-03-01

    A novel method for estimating prediction uncertainty using machine learning techniques is presented. Uncertainty is expressed in the form of the two quantiles (constituting the prediction interval) of the underlying distribution of prediction errors. The idea is to partition the input space into different zones or clusters having similar model errors using fuzzy c-means clustering. The prediction interval is constructed for each cluster on the basis of empirical distributions of the errors associated with all instances belonging to the cluster under consideration and propagated from each cluster to the examples according to their membership grades in each cluster. Then a regression model is built for in-sample data using computed prediction limits as targets, and finally, this model is applied to estimate the prediction intervals (limits) for out-of-sample data. The method was tested on artificial and real hydrologic data sets using various machine learning techniques. Preliminary results show that the method is superior to other methods estimating the prediction interval. A new method for evaluating performance for estimating prediction interval is proposed as well.

  12. Machine learning-, rule- and pharmacophore-based classification on the inhibition of P-glycoprotein and NorA.

    PubMed

    Ngo, T-D; Tran, T-D; Le, M-T; Thai, K-M

    2016-09-01

    The efflux pumps P-glycoprotein (P-gp) in humans and NorA in Staphylococcus aureus are of great interest for medicinal chemists because of their important roles in multidrug resistance (MDR). The high polyspecificity as well as the unavailability of high-resolution X-ray crystal structures of these transmembrane proteins lead us to combining ligand-based approaches, which in the case of this study were machine learning, perceptual mapping and pharmacophore modelling. For P-gp inhibitory activity, individual models were developed using different machine learning algorithms and subsequently combined into an ensemble model which showed a good discrimination between inhibitors and noninhibitors (acctrain-diverse = 84%; accinternal-test = 92% and accexternal-test = 100%). For ligand promiscuity between P-gp and NorA, perceptual maps and pharmacophore models were generated for the detection of rules and features. Based on these in silico tools, hit compounds for reversing MDR were discovered from the in-house and DrugBank databases through virtual screening in an attempt to restore drug sensitivity in cancer cells and bacteria.

  13. Failure Analysis of a Complex Learning Framework Incorporating Multi-Modal and Semi-Supervised Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pullum, Laura L; Symons, Christopher T

    2011-01-01

    Machine learning is used in many applications, from machine vision to speech recognition to decision support systems, and is used to test applications. However, though much has been done to evaluate the performance of machine learning algorithms, little has been done to verify the algorithms or examine their failure modes. Moreover, complex learning frameworks often require stepping beyond black box evaluation to distinguish between errors based on natural limits on learning and errors that arise from mistakes in implementation. We present a conceptual architecture, failure model and taxonomy, and failure modes and effects analysis (FMEA) of a semi-supervised, multi-modal learningmore » system, and provide specific examples from its use in a radiological analysis assistant system. The goal of the research described in this paper is to provide a foundation from which dependability analysis of systems using semi-supervised, multi-modal learning can be conducted. The methods presented provide a first step towards that overall goal.« less

  14. Machine Learning Methods for Attack Detection in the Smart Grid.

    PubMed

    Ozay, Mete; Esnaola, Inaki; Yarman Vural, Fatos Tunay; Kulkarni, Sanjeev R; Poor, H Vincent

    2016-08-01

    Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.

  15. Exploring cluster Monte Carlo updates with Boltzmann machines

    NASA Astrophysics Data System (ADS)

    Wang, Lei

    2017-11-01

    Boltzmann machines are physics informed generative models with broad applications in machine learning. They model the probability distribution of an input data set with latent variables and generate new samples accordingly. Applying the Boltzmann machines back to physics, they are ideal recommender systems to accelerate the Monte Carlo simulation of physical systems due to their flexibility and effectiveness. More intriguingly, we show that the generative sampling of the Boltzmann machines can even give different cluster Monte Carlo algorithms. The latent representation of the Boltzmann machines can be designed to mediate complex interactions and identify clusters of the physical system. We demonstrate these findings with concrete examples of the classical Ising model with and without four-spin plaquette interactions. In the future, automatic searches in the algorithm space parametrized by Boltzmann machines may discover more innovative Monte Carlo updates.

  16. Active machine learning-driven experimentation to determine compound effects on protein patterns

    PubMed Central

    Naik, Armaghan W; Kangas, Joshua D; Sullivan, Devin P; Murphy, Robert F

    2016-01-01

    High throughput screening determines the effects of many conditions on a given biological target. Currently, to estimate the effects of those conditions on other targets requires either strong modeling assumptions (e.g. similarities among targets) or separate screens. Ideally, data-driven experimentation could be used to learn accurate models for many conditions and targets without doing all possible experiments. We have previously described an active machine learning algorithm that can iteratively choose small sets of experiments to learn models of multiple effects. We now show that, with no prior knowledge and with liquid handling robotics and automated microscopy under its control, this learner accurately learned the effects of 48 chemical compounds on the subcellular localization of 48 proteins while performing only 29% of all possible experiments. The results represent the first practical demonstration of the utility of active learning-driven biological experimentation in which the set of possible phenotypes is unknown in advance. DOI: http://dx.doi.org/10.7554/eLife.10047.001 PMID:26840049

  17. A Novel Approach for Lie Detection Based on F-Score and Extreme Learning Machine

    PubMed Central

    Gao, Junfeng; Wang, Zhao; Yang, Yong; Zhang, Wenjia; Tao, Chunyi; Guan, Jinan; Rao, Nini

    2013-01-01

    A new machine learning method referred to as F-score_ELM was proposed to classify the lying and truth-telling using the electroencephalogram (EEG) signals from 28 guilty and innocent subjects. Thirty-one features were extracted from the probe responses from these subjects. Then, a recently-developed classifier called extreme learning machine (ELM) was combined with F-score, a simple but effective feature selection method, to jointly optimize the number of the hidden nodes of ELM and the feature subset by a grid-searching training procedure. The method was compared to two classification models combining principal component analysis with back-propagation network and support vector machine classifiers. We thoroughly assessed the performance of these classification models including the training and testing time, sensitivity and specificity from the training and testing sets, as well as network size. The experimental results showed that the number of the hidden nodes can be effectively optimized by the proposed method. Also, F-score_ELM obtained the best classification accuracy and required the shortest training and testing time. PMID:23755136

  18. Voice based gender classification using machine learning

    NASA Astrophysics Data System (ADS)

    Raahul, A.; Sapthagiri, R.; Pankaj, K.; Vijayarajan, V.

    2017-11-01

    Gender identification is one of the major problem speech analysis today. Tracing the gender from acoustic data i.e., pitch, median, frequency etc. Machine learning gives promising results for classification problem in all the research domains. There are several performance metrics to evaluate algorithms of an area. Our Comparative model algorithm for evaluating 5 different machine learning algorithms based on eight different metrics in gender classification from acoustic data. Agenda is to identify gender, with five different algorithms: Linear Discriminant Analysis (LDA), K-Nearest Neighbour (KNN), Classification and Regression Trees (CART), Random Forest (RF), and Support Vector Machine (SVM) on basis of eight different metrics. The main parameter in evaluating any algorithms is its performance. Misclassification rate must be less in classification problems, which says that the accuracy rate must be high. Location and gender of the person have become very crucial in economic markets in the form of AdSense. Here with this comparative model algorithm, we are trying to assess the different ML algorithms and find the best fit for gender classification of acoustic data.

  19. Machine learning for the New York City power grid.

    PubMed

    Rudin, Cynthia; Waltz, David; Anderson, Roger N; Boulanger, Albert; Salleb-Aouissi, Ansaf; Chow, Maggie; Dutta, Haimonti; Gross, Philip N; Huang, Bert; Ierome, Steve; Isaac, Delfina F; Kressner, Arthur; Passonneau, Rebecca J; Radeva, Axinia; Wu, Leon

    2012-02-01

    Power companies can benefit from the use of knowledge discovery methods and statistical machine learning for preventive maintenance. We introduce a general process for transforming historical electrical grid data into models that aim to predict the risk of failures for components and systems. These models can be used directly by power companies to assist with prioritization of maintenance and repair work. Specialized versions of this process are used to produce 1) feeder failure rankings, 2) cable, joint, terminator, and transformer rankings, 3) feeder Mean Time Between Failure (MTBF) estimates, and 4) manhole events vulnerability rankings. The process in its most general form can handle diverse, noisy, sources that are historical (static), semi-real-time, or realtime, incorporates state-of-the-art machine learning algorithms for prioritization (supervised ranking or MTBF), and includes an evaluation of results via cross-validation and blind test. Above and beyond the ranked lists and MTBF estimates are business management interfaces that allow the prediction capability to be integrated directly into corporate planning and decision support; such interfaces rely on several important properties of our general modeling approach: that machine learning features are meaningful to domain experts, that the processing of data is transparent, and that prediction results are accurate enough to support sound decision making. We discuss the challenges in working with historical electrical grid data that were not designed for predictive purposes. The “rawness” of these data contrasts with the accuracy of the statistical models that can be obtained from the process; these models are sufficiently accurate to assist in maintaining New York City’s electrical grid.

  20. Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project.

    PubMed

    Alghamdi, Manal; Al-Mallah, Mouaz; Keteyian, Steven; Brawner, Clinton; Ehrman, Jonathan; Sakr, Sherif

    2017-01-01

    Machine learning is becoming a popular and important approach in the field of medical research. In this study, we investigate the relative performance of various machine learning methods such as Decision Tree, Naïve Bayes, Logistic Regression, Logistic Model Tree and Random Forests for predicting incident diabetes using medical records of cardiorespiratory fitness. In addition, we apply different techniques to uncover potential predictors of diabetes. This FIT project study used data of 32,555 patients who are free of any known coronary artery disease or heart failure who underwent clinician-referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 5-year follow-up. At the completion of the fifth year, 5,099 of those patients have developed diabetes. The dataset contained 62 attributes classified into four categories: demographic characteristics, disease history, medication use history, and stress test vital signs. We developed an Ensembling-based predictive model using 13 attributes that were selected based on their clinical importance, Multiple Linear Regression, and Information Gain Ranking methods. The negative effect of the imbalance class of the constructed model was handled by Synthetic Minority Oversampling Technique (SMOTE). The overall performance of the predictive model classifier was improved by the Ensemble machine learning approach using the Vote method with three Decision Trees (Naïve Bayes Tree, Random Forest, and Logistic Model Tree) and achieved high accuracy of prediction (AUC = 0.92). The study shows the potential of ensembling and SMOTE approaches for predicting incident diabetes using cardiorespiratory fitness data.

  1. Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets.

    PubMed

    Korotcov, Alexandru; Tkachenko, Valery; Russo, Daniel P; Ekins, Sean

    2017-12-04

    Machine learning methods have been applied to many data sets in pharmaceutical research for several decades. The relative ease and availability of fingerprint type molecular descriptors paired with Bayesian methods resulted in the widespread use of this approach for a diverse array of end points relevant to drug discovery. Deep learning is the latest machine learning algorithm attracting attention for many of pharmaceutical applications from docking to virtual screening. Deep learning is based on an artificial neural network with multiple hidden layers and has found considerable traction for many artificial intelligence applications. We have previously suggested the need for a comparison of different machine learning methods with deep learning across an array of varying data sets that is applicable to pharmaceutical research. End points relevant to pharmaceutical research include absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties, as well as activity against pathogens and drug discovery data sets. In this study, we have used data sets for solubility, probe-likeness, hERG, KCNQ1, bubonic plague, Chagas, tuberculosis, and malaria to compare different machine learning methods using FCFP6 fingerprints. These data sets represent whole cell screens, individual proteins, physicochemical properties as well as a data set with a complex end point. Our aim was to assess whether deep learning offered any improvement in testing when assessed using an array of metrics including AUC, F1 score, Cohen's kappa, Matthews correlation coefficient and others. Based on ranked normalized scores for the metrics or data sets Deep Neural Networks (DNN) ranked higher than SVM, which in turn was ranked higher than all the other machine learning methods. Visualizing these properties for training and test sets using radar type plots indicates when models are inferior or perhaps over trained. These results also suggest the need for assessing deep learning further using multiple metrics with much larger scale comparisons, prospective testing as well as assessment of different fingerprints and DNN architectures beyond those used.

  2. Predicting Solar Activity Using Machine-Learning Methods

    NASA Astrophysics Data System (ADS)

    Bobra, M.

    2017-12-01

    Of all the activity observed on the Sun, two of the most energetic events are flares and coronal mass ejections. However, we do not, as of yet, fully understand the physical mechanism that triggers solar eruptions. A machine-learning algorithm, which is favorable in cases where the amount of data is large, is one way to [1] empirically determine the signatures of this mechanism in solar image data and [2] use them to predict solar activity. In this talk, we discuss the application of various machine learning algorithms - specifically, a Support Vector Machine, a sparse linear regression (Lasso), and Convolutional Neural Network - to image data from the photosphere, chromosphere, transition region, and corona taken by instruments aboard the Solar Dynamics Observatory in order to predict solar activity on a variety of time scales. Such an approach may be useful since, at the present time, there are no physical models of flares available for real-time prediction. We discuss our results (Bobra and Couvidat, 2015; Bobra and Ilonidis, 2016; Jonas et al., 2017) as well as other attempts to predict flares using machine-learning (e.g. Ahmed et al., 2013; Nishizuka et al. 2017) and compare these results with the more traditional techniques used by the NOAA Space Weather Prediction Center (Crown, 2012). We also discuss some of the challenges in using machine-learning algorithms for space science applications.

  3. Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy.

    PubMed

    Asadi, Hamed; Dowling, Richard; Yan, Bernard; Mitchell, Peter

    2014-01-01

    Stroke is a major cause of death and disability. Accurately predicting stroke outcome from a set of predictive variables may identify high-risk patients and guide treatment approaches, leading to decreased morbidity. Logistic regression models allow for the identification and validation of predictive variables. However, advanced machine learning algorithms offer an alternative, in particular, for large-scale multi-institutional data, with the advantage of easily incorporating newly available data to improve prediction performance. Our aim was to design and compare different machine learning methods, capable of predicting the outcome of endovascular intervention in acute anterior circulation ischaemic stroke. We conducted a retrospective study of a prospectively collected database of acute ischaemic stroke treated by endovascular intervention. Using SPSS®, MATLAB®, and Rapidminer®, classical statistics as well as artificial neural network and support vector algorithms were applied to design a supervised machine capable of classifying these predictors into potential good and poor outcomes. These algorithms were trained, validated and tested using randomly divided data. We included 107 consecutive acute anterior circulation ischaemic stroke patients treated by endovascular technique. Sixty-six were male and the mean age of 65.3. All the available demographic, procedural and clinical factors were included into the models. The final confusion matrix of the neural network, demonstrated an overall congruency of ∼ 80% between the target and output classes, with favourable receiving operative characteristics. However, after optimisation, the support vector machine had a relatively better performance, with a root mean squared error of 2.064 (SD: ± 0.408). We showed promising accuracy of outcome prediction, using supervised machine learning algorithms, with potential for incorporation of larger multicenter datasets, likely further improving prediction. Finally, we propose that a robust machine learning system can potentially optimise the selection process for endovascular versus medical treatment in the management of acute stroke.

  4. Quantum annealing versus classical machine learning applied to a simplified computational biology problem

    NASA Astrophysics Data System (ADS)

    Li, Richard Y.; Di Felice, Rosa; Rohs, Remo; Lidar, Daniel A.

    2018-03-01

    Transcription factors regulate gene expression, but how these proteins recognize and specifically bind to their DNA targets is still debated. Machine learning models are effective means to reveal interaction mechanisms. Here we studied the ability of a quantum machine learning approach to classify and rank binding affinities. Using simplified data sets of a small number of DNA sequences derived from actual binding affinity experiments, we trained a commercially available quantum annealer to classify and rank transcription factor binding. The results were compared to state-of-the-art classical approaches for the same simplified data sets, including simulated annealing, simulated quantum annealing, multiple linear regression, LASSO, and extreme gradient boosting. Despite technological limitations, we find a slight advantage in classification performance and nearly equal ranking performance using the quantum annealer for these fairly small training data sets. Thus, we propose that quantum annealing might be an effective method to implement machine learning for certain computational biology problems.

  5. Texture Analysis and Machine Learning for Detecting Myocardial Infarction in Noncontrast Low-Dose Computed Tomography: Unveiling the Invisible.

    PubMed

    Mannil, Manoj; von Spiczak, Jochen; Manka, Robert; Alkadhi, Hatem

    2018-06-01

    The aim of this study was to test whether texture analysis and machine learning enable the detection of myocardial infarction (MI) on non-contrast-enhanced low radiation dose cardiac computed tomography (CCT) images. In this institutional review board-approved retrospective study, we included non-contrast-enhanced electrocardiography-gated low radiation dose CCT image data (effective dose, 0.5 mSv) acquired for the purpose of calcium scoring of 27 patients with acute MI (9 female patients; mean age, 60 ± 12 years), 30 patients with chronic MI (8 female patients; mean age, 68 ± 13 years), and in 30 subjects (9 female patients; mean age, 44 ± 6 years) without cardiac abnormality, hereafter termed controls. Texture analysis of the left ventricle was performed using free-hand regions of interest, and texture features were classified twice (Model I: controls versus acute MI versus chronic MI; Model II: controls versus acute and chronic MI). For both classifications, 6 commonly used machine learning classifiers were used: decision tree C4.5 (J48), k-nearest neighbors, locally weighted learning, RandomForest, sequential minimal optimization, and an artificial neural network employing deep learning. In addition, 2 blinded, independent readers visually assessed noncontrast CCT images for the presence or absence of MI. In Model I, best classification results were obtained using the k-nearest neighbors classifier (sensitivity, 69%; specificity, 85%; false-positive rate, 0.15). In Model II, the best classification results were found with the locally weighted learning classification (sensitivity, 86%; specificity, 81%; false-positive rate, 0.19) with an area under the curve from receiver operating characteristics analysis of 0.78. In comparison, both readers were not able to identify MI in any of the noncontrast, low radiation dose CCT images. This study indicates the ability of texture analysis and machine learning in detecting MI on noncontrast low radiation dose CCT images being not visible for the radiologists' eye.

  6. Using Machine Learning to Advance Personality Assessment and Theory.

    PubMed

    Bleidorn, Wiebke; Hopwood, Christopher James

    2018-05-01

    Machine learning has led to important advances in society. One of the most exciting applications of machine learning in psychological science has been the development of assessment tools that can powerfully predict human behavior and personality traits. Thus far, machine learning approaches to personality assessment have focused on the associations between social media and other digital records with established personality measures. The goal of this article is to expand the potential of machine learning approaches to personality assessment by embedding it in a more comprehensive construct validation framework. We review recent applications of machine learning to personality assessment, place machine learning research in the broader context of fundamental principles of construct validation, and provide recommendations for how to use machine learning to advance our understanding of personality.

  7. Improving diagnostic recognition of primary hyperparathyroidism with machine learning.

    PubMed

    Somnay, Yash R; Craven, Mark; McCoy, Kelly L; Carty, Sally E; Wang, Tracy S; Greenberg, Caprice C; Schneider, David F

    2017-04-01

    Parathyroidectomy offers the only cure for primary hyperparathyroidism, but today only 50% of primary hyperparathyroidism patients are referred for operation, in large part, because the condition is widely under-recognized. The diagnosis of primary hyperparathyroidism can be especially challenging with mild biochemical indices. Machine learning is a collection of methods in which computers build predictive algorithms based on labeled examples. With the aim of facilitating diagnosis, we tested the ability of machine learning to distinguish primary hyperparathyroidism from normal physiology using clinical and laboratory data. This retrospective cohort study used a labeled training set and 10-fold cross-validation to evaluate accuracy of the algorithm. Measures of accuracy included area under the receiver operating characteristic curve, precision (sensitivity), and positive and negative predictive value. Several different algorithms and ensembles of algorithms were tested using the Weka platform. Among 11,830 patients managed operatively at 3 high-volume endocrine surgery programs from March 2001 to August 2013, 6,777 underwent parathyroidectomy for confirmed primary hyperparathyroidism, and 5,053 control patients without primary hyperparathyroidism underwent thyroidectomy. Test-set accuracies for machine learning models were determined using 10-fold cross-validation. Age, sex, and serum levels of preoperative calcium, phosphate, parathyroid hormone, vitamin D, and creatinine were defined as potential predictors of primary hyperparathyroidism. Mild primary hyperparathyroidism was defined as primary hyperparathyroidism with normal preoperative calcium or parathyroid hormone levels. After testing a variety of machine learning algorithms, Bayesian network models proved most accurate, classifying correctly 95.2% of all primary hyperparathyroidism patients (area under receiver operating characteristic = 0.989). Omitting parathyroid hormone from the model did not decrease the accuracy significantly (area under receiver operating characteristic = 0.985). In mild disease cases, however, the Bayesian network model classified correctly 71.1% of patients with normal calcium and 92.1% with normal parathyroid hormone levels preoperatively. Bayesian networking and AdaBoost improved the accuracy of all parathyroid hormone patients to 97.2% cases (area under receiver operating characteristic = 0.994), and 91.9% of primary hyperparathyroidism patients with mild disease. This was significantly improved relative to Bayesian networking alone (P < .0001). Machine learning can diagnose accurately primary hyperparathyroidism without human input even in mild disease. Incorporation of this tool into electronic medical record systems may aid in recognition of this under-diagnosed disorder. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Computational prediction of multidisciplinary team decision-making for adjuvant breast cancer drug therapies: a machine learning approach.

    PubMed

    Lin, Frank P Y; Pokorny, Adrian; Teng, Christina; Dear, Rachel; Epstein, Richard J

    2016-12-01

    Multidisciplinary team (MDT) meetings are used to optimise expert decision-making about treatment options, but such expertise is not digitally transferable between centres. To help standardise medical decision-making, we developed a machine learning model designed to predict MDT decisions about adjuvant breast cancer treatments. We analysed MDT decisions regarding adjuvant systemic therapy for 1065 breast cancer cases over eight years. Machine learning classifiers with and without bootstrap aggregation were correlated with MDT decisions (recommended, not recommended, or discussable) regarding adjuvant cytotoxic, endocrine and biologic/targeted therapies, then tested for predictability using stratified ten-fold cross-validations. The predictions so derived were duly compared with those based on published (ESMO and NCCN) cancer guidelines. Machine learning more accurately predicted adjuvant chemotherapy MDT decisions than did simple application of guidelines. No differences were found between MDT- vs. ESMO/NCCN- based decisions to prescribe either adjuvant endocrine (97%, p = 0.44/0.74) or biologic/targeted therapies (98%, p = 0.82/0.59). In contrast, significant discrepancies were evident between MDT- and guideline-based decisions to prescribe chemotherapy (87%, p < 0.01, representing 43% and 53% variations from ESMO/NCCN guidelines, respectively). Using ten-fold cross-validation, the best classifiers achieved areas under the receiver operating characteristic curve (AUC) of 0.940 for chemotherapy (95% C.I., 0.922-0.958), 0.899 for the endocrine therapy (95% C.I., 0.880-0.918), and 0.977 for trastuzumab therapy (95% C.I., 0.955-0.999) respectively. Overall, bootstrap aggregated classifiers performed better among all evaluated machine learning models. A machine learning approach based on clinicopathologic characteristics can predict MDT decisions about adjuvant breast cancer drug therapies. The discrepancy between MDT- and guideline-based decisions regarding adjuvant chemotherapy implies that certain non-clincopathologic criteria, such as patient preference and resource availability, are factored into clinical decision-making by local experts but not captured by guidelines.

  9. Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms

    NASA Astrophysics Data System (ADS)

    Nishizuka, N.; Sugiura, K.; Kubo, Y.; Den, M.; Watari, S.; Ishii, M.

    2017-02-01

    We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 hr. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010-2015, such as vector magnetograms, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite. We detected active regions (ARs) from the full-disk magnetogram, from which ˜60 features were extracted with their time differentials, including magnetic neutral lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine-learning algorithms: the support vector machine, k-nearest neighbors (k-NN), and extremely randomized trees. The prediction score, the true skill statistic, was higher than 0.9 with a fully shuffled data set, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 hr, all of which are strongly correlated with the flux emergence dynamics in an AR.

  10. Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishizuka, N.; Kubo, Y.; Den, M.

    We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 hr. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010–2015, such as vector magnetograms, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite . We detected active regions (ARs) from the full-disk magnetogram, from which ∼60 features were extracted with their time differentials, including magnetic neutralmore » lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine-learning algorithms: the support vector machine, k-nearest neighbors (k-NN), and extremely randomized trees. The prediction score, the true skill statistic, was higher than 0.9 with a fully shuffled data set, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 hr, all of which are strongly correlated with the flux emergence dynamics in an AR.« less

  11. A Computer Model of Simple Forms of Learning.

    ERIC Educational Resources Information Center

    Jones, Thomas L.

    A basic unsolved problem in science is that of understanding learning, the process by which people and machines use their experience in a situation to guide future action in similar situations. The ideas of Piaget, Pavlov, Hull, and other learning theorists, as well as previous heuristic programing models of human intelligence, stimulated this…

  12. Exploring a potential energy surface by machine learning for characterizing atomic transport

    NASA Astrophysics Data System (ADS)

    Kanamori, Kenta; Toyoura, Kazuaki; Honda, Junya; Hattori, Kazuki; Seko, Atsuto; Karasuyama, Masayuki; Shitara, Kazuki; Shiga, Motoki; Kuwabara, Akihide; Takeuchi, Ichiro

    2018-03-01

    We propose a machine-learning method for evaluating the potential barrier governing atomic transport based on the preferential selection of dominant points for atomic transport. The proposed method generates numerous random samples of the entire potential energy surface (PES) from a probabilistic Gaussian process model of the PES, which enables defining the likelihood of the dominant points. The robustness and efficiency of the method are demonstrated on a dozen model cases for proton diffusion in oxides, in comparison with a conventional nudge elastic band method.

  13. Optimal and Adaptive Online Learning

    ERIC Educational Resources Information Center

    Luo, Haipeng

    2016-01-01

    Online learning is one of the most important and well-established machine learning models. Generally speaking, the goal of online learning is to make a sequence of accurate predictions "on the fly," given some information of the correct answers to previous prediction tasks. Online learning has been extensively studied in recent years,…

  14. Use of a Machine-learning Method for Predicting Highly Cited Articles Within General Radiology Journals.

    PubMed

    Rosenkrantz, Andrew B; Doshi, Ankur M; Ginocchio, Luke A; Aphinyanaphongs, Yindalon

    2016-12-01

    This study aimed to assess the performance of a text classification machine-learning model in predicting highly cited articles within the recent radiological literature and to identify the model's most influential article features. We downloaded from PubMed the title, abstract, and medical subject heading terms for 10,065 articles published in 25 general radiology journals in 2012 and 2013. Three machine-learning models were applied to predict the top 10% of included articles in terms of the number of citations to the article in 2014 (reflecting the 2-year time window in conventional impact factor calculations). The model having the highest area under the curve was selected to derive a list of article features (words) predicting high citation volume, which was iteratively reduced to identify the smallest possible core feature list maintaining predictive power. Overall themes were qualitatively assigned to the core features. The regularized logistic regression (Bayesian binary regression) model had highest performance, achieving an area under the curve of 0.814 in predicting articles in the top 10% of citation volume. We reduced the initial 14,083 features to 210 features that maintain predictivity. These features corresponded with topics relating to various imaging techniques (eg, diffusion-weighted magnetic resonance imaging, hyperpolarized magnetic resonance imaging, dual-energy computed tomography, computed tomography reconstruction algorithms, tomosynthesis, elastography, and computer-aided diagnosis), particular pathologies (prostate cancer; thyroid nodules; hepatic adenoma, hepatocellular carcinoma, non-alcoholic fatty liver disease), and other topics (radiation dose, electroporation, education, general oncology, gadolinium, statistics). Machine learning can be successfully applied to create specific feature-based models for predicting articles likely to achieve high influence within the radiological literature. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  15. Improving virtual screening predictive accuracy of Human kallikrein 5 inhibitors using machine learning models.

    PubMed

    Fang, Xingang; Bagui, Sikha; Bagui, Subhash

    2017-08-01

    The readily available high throughput screening (HTS) data from the PubChem database provides an opportunity for mining of small molecules in a variety of biological systems using machine learning techniques. From the thousands of available molecular descriptors developed to encode useful chemical information representing the characteristics of molecules, descriptor selection is an essential step in building an optimal quantitative structural-activity relationship (QSAR) model. For the development of a systematic descriptor selection strategy, we need the understanding of the relationship between: (i) the descriptor selection; (ii) the choice of the machine learning model; and (iii) the characteristics of the target bio-molecule. In this work, we employed the Signature descriptor to generate a dataset on the Human kallikrein 5 (hK 5) inhibition confirmatory assay data and compared multiple classification models including logistic regression, support vector machine, random forest and k-nearest neighbor. Under optimal conditions, the logistic regression model provided extremely high overall accuracy (98%) and precision (90%), with good sensitivity (65%) in the cross validation test. In testing the primary HTS screening data with more than 200K molecular structures, the logistic regression model exhibited the capability of eliminating more than 99.9% of the inactive structures. As part of our exploration of the descriptor-model-target relationship, the excellent predictive performance of the combination of the Signature descriptor and the logistic regression model on the assay data of the Human kallikrein 5 (hK 5) target suggested a feasible descriptor/model selection strategy on similar targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Transfer Learning beyond Text Classification

    NASA Astrophysics Data System (ADS)

    Yang, Qiang

    Transfer learning is a new machine learning and data mining framework that allows the training and test data to come from different distributions or feature spaces. We can find many novel applications of machine learning and data mining where transfer learning is necessary. While much has been done in transfer learning in text classification and reinforcement learning, there has been a lack of documented success stories of novel applications of transfer learning in other areas. In this invited article, I will argue that transfer learning is in fact quite ubiquitous in many real world applications. In this article, I will illustrate this point through an overview of a broad spectrum of applications of transfer learning that range from collaborative filtering to sensor based location estimation and logical action model learning for AI planning. I will also discuss some potential future directions of transfer learning.

  17. Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty

    DOE PAGES

    Ling, Julia; Templeton, Jeremy Alan

    2015-08-04

    Reynolds Averaged Navier Stokes (RANS) models are widely used in industry to predict fluid flows, despite their acknowledged deficiencies. Not only do RANS models often produce inaccurate flow predictions, but there are very limited diagnostics available to assess RANS accuracy for a given flow configuration. If experimental or higher fidelity simulation results are not available for RANS validation, there is no reliable method to evaluate RANS accuracy. This paper explores the potential of utilizing machine learning algorithms to identify regions of high RANS uncertainty. Three different machine learning algorithms were evaluated: support vector machines, Adaboost decision trees, and random forests.more » The algorithms were trained on a database of canonical flow configurations for which validated direct numerical simulation or large eddy simulation results were available, and were used to classify RANS results on a point-by-point basis as having either high or low uncertainty, based on the breakdown of specific RANS modeling assumptions. Classifiers were developed for three different basic RANS eddy viscosity model assumptions: the isotropy of the eddy viscosity, the linearity of the Boussinesq hypothesis, and the non-negativity of the eddy viscosity. It is shown that these classifiers are able to generalize to flows substantially different from those on which they were trained. As a result, feature selection techniques, model evaluation, and extrapolation detection are discussed in the context of turbulence modeling applications.« less

  18. Deep Recurrent Neural Networks for Human Activity Recognition

    PubMed Central

    Murad, Abdulmajid

    2017-01-01

    Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs. PMID:29113103

  19. Deep Recurrent Neural Networks for Human Activity Recognition.

    PubMed

    Murad, Abdulmajid; Pyun, Jae-Young

    2017-11-06

    Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs.

  20. A machine learning-based framework to identify type 2 diabetes through electronic health records

    PubMed Central

    Zheng, Tao; Xie, Wei; Xu, Liling; He, Xiaoying; Zhang, Ya; You, Mingrong; Yang, Gong; Chen, You

    2016-01-01

    Objective To discover diverse genotype-phenotype associations affiliated with Type 2 Diabetes Mellitus (T2DM) via genome-wide association study (GWAS) and phenome-wide association study (PheWAS), more cases (T2DM subjects) and controls (subjects without T2DM) are required to be identified (e.g., via Electronic Health Records (EHR)). However, existing expert based identification algorithms often suffer in a low recall rate and could miss a large number of valuable samples under conservative filtering standards. The goal of this work is to develop a semi-automated framework based on machine learning as a pilot study to liberalize filtering criteria to improve recall rate with a keeping of low false positive rate. Materials and methods We propose a data informed framework for identifying subjects with and without T2DM from EHR via feature engineering and machine learning. We evaluate and contrast the identification performance of widely-used machine learning models within our framework, including k-Nearest-Neighbors, Naïve Bayes, Decision Tree, Random Forest, Support Vector Machine and Logistic Regression. Our framework was conducted on 300 patient samples (161 cases, 60 controls and 79 unconfirmed subjects), randomly selected from 23,281 diabetes related cohort retrieved from a regional distributed EHR repository ranging from 2012 to 2014. Results We apply top-performing machine learning algorithms on the engineered features. We benchmark and contrast the accuracy, precision, AUC, sensitivity and specificity of classification models against the state-of-the-art expert algorithm for identification of T2DM subjects. Our results indicate that the framework achieved high identification performances (∼0.98 in average AUC), which are much higher than the state-of-the-art algorithm (0.71 in AUC). Discussion Expert algorithm-based identification of T2DM subjects from EHR is often hampered by the high missing rates due to their conservative selection criteria. Our framework leverages machine learning and feature engineering to loosen such selection criteria to achieve a high identification rate of cases and controls. Conclusions Our proposed framework demonstrates a more accurate and efficient approach for identifying subjects with and without T2DM from EHR. PMID:27919371

  1. A machine learning-based framework to identify type 2 diabetes through electronic health records.

    PubMed

    Zheng, Tao; Xie, Wei; Xu, Liling; He, Xiaoying; Zhang, Ya; You, Mingrong; Yang, Gong; Chen, You

    2017-01-01

    To discover diverse genotype-phenotype associations affiliated with Type 2 Diabetes Mellitus (T2DM) via genome-wide association study (GWAS) and phenome-wide association study (PheWAS), more cases (T2DM subjects) and controls (subjects without T2DM) are required to be identified (e.g., via Electronic Health Records (EHR)). However, existing expert based identification algorithms often suffer in a low recall rate and could miss a large number of valuable samples under conservative filtering standards. The goal of this work is to develop a semi-automated framework based on machine learning as a pilot study to liberalize filtering criteria to improve recall rate with a keeping of low false positive rate. We propose a data informed framework for identifying subjects with and without T2DM from EHR via feature engineering and machine learning. We evaluate and contrast the identification performance of widely-used machine learning models within our framework, including k-Nearest-Neighbors, Naïve Bayes, Decision Tree, Random Forest, Support Vector Machine and Logistic Regression. Our framework was conducted on 300 patient samples (161 cases, 60 controls and 79 unconfirmed subjects), randomly selected from 23,281 diabetes related cohort retrieved from a regional distributed EHR repository ranging from 2012 to 2014. We apply top-performing machine learning algorithms on the engineered features. We benchmark and contrast the accuracy, precision, AUC, sensitivity and specificity of classification models against the state-of-the-art expert algorithm for identification of T2DM subjects. Our results indicate that the framework achieved high identification performances (∼0.98 in average AUC), which are much higher than the state-of-the-art algorithm (0.71 in AUC). Expert algorithm-based identification of T2DM subjects from EHR is often hampered by the high missing rates due to their conservative selection criteria. Our framework leverages machine learning and feature engineering to loosen such selection criteria to achieve a high identification rate of cases and controls. Our proposed framework demonstrates a more accurate and efficient approach for identifying subjects with and without T2DM from EHR. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Assessing patient risk of central line-associated bacteremia via machine learning.

    PubMed

    Beeler, Cole; Dbeibo, Lana; Kelley, Kristen; Thatcher, Levi; Webb, Douglas; Bah, Amadou; Monahan, Patrick; Fowler, Nicole R; Nicol, Spencer; Judy-Malcolm, Alisa; Azar, Jose

    2018-04-13

    Central line-associated bloodstream infections (CLABSIs) contribute to increased morbidity, length of hospital stay, and cost. Despite progress in understanding the risk factors, there remains a need to accurately predict the risk of CLABSIs and, in real time, prevent them from occurring. A predictive model was developed using retrospective data from a large academic healthcare system. Models were developed with machine learning via construction of random forests using validated input variables. Fifteen variables accounted for the most significant effect on CLABSI prediction based on a retrospective study of 70,218 unique patient encounters between January 1, 2013, and May 31, 2016. The area under the receiver operating characteristic curve for the best-performing model was 0.82 in production. This model has multiple applications for resource allocation for CLABSI prevention, including serving as a tool to target patients at highest risk for potentially cost-effective but otherwise time-limited interventions. Machine learning can be used to develop accurate models to predict the risk of CLABSI in real time prior to the development of infection. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  3. Advanced Online Survival Analysis Tool for Predictive Modelling in Clinical Data Science.

    PubMed

    Montes-Torres, Julio; Subirats, José Luis; Ribelles, Nuria; Urda, Daniel; Franco, Leonardo; Alba, Emilio; Jerez, José Manuel

    2016-01-01

    One of the prevailing applications of machine learning is the use of predictive modelling in clinical survival analysis. In this work, we present our view of the current situation of computer tools for survival analysis, stressing the need of transferring the latest results in the field of machine learning to biomedical researchers. We propose a web based software for survival analysis called OSA (Online Survival Analysis), which has been developed as an open access and user friendly option to obtain discrete time, predictive survival models at individual level using machine learning techniques, and to perform standard survival analysis. OSA employs an Artificial Neural Network (ANN) based method to produce the predictive survival models. Additionally, the software can easily generate survival and hazard curves with multiple options to personalise the plots, obtain contingency tables from the uploaded data to perform different tests, and fit a Cox regression model from a number of predictor variables. In the Materials and Methods section, we depict the general architecture of the application and introduce the mathematical background of each of the implemented methods. The study concludes with examples of use showing the results obtained with public datasets.

  4. Advanced Online Survival Analysis Tool for Predictive Modelling in Clinical Data Science

    PubMed Central

    Montes-Torres, Julio; Subirats, José Luis; Ribelles, Nuria; Urda, Daniel; Franco, Leonardo; Alba, Emilio; Jerez, José Manuel

    2016-01-01

    One of the prevailing applications of machine learning is the use of predictive modelling in clinical survival analysis. In this work, we present our view of the current situation of computer tools for survival analysis, stressing the need of transferring the latest results in the field of machine learning to biomedical researchers. We propose a web based software for survival analysis called OSA (Online Survival Analysis), which has been developed as an open access and user friendly option to obtain discrete time, predictive survival models at individual level using machine learning techniques, and to perform standard survival analysis. OSA employs an Artificial Neural Network (ANN) based method to produce the predictive survival models. Additionally, the software can easily generate survival and hazard curves with multiple options to personalise the plots, obtain contingency tables from the uploaded data to perform different tests, and fit a Cox regression model from a number of predictor variables. In the Materials and Methods section, we depict the general architecture of the application and introduce the mathematical background of each of the implemented methods. The study concludes with examples of use showing the results obtained with public datasets. PMID:27532883

  5. Concrete Condition Assessment Using Impact-Echo Method and Extreme Learning Machines

    PubMed Central

    Zhang, Jing-Kui; Yan, Weizhong; Cui, De-Mi

    2016-01-01

    The impact-echo (IE) method is a popular non-destructive testing (NDT) technique widely used for measuring the thickness of plate-like structures and for detecting certain defects inside concrete elements or structures. However, the IE method is not effective for full condition assessment (i.e., defect detection, defect diagnosis, defect sizing and location), because the simple frequency spectrum analysis involved in the existing IE method is not sufficient to capture the IE signal patterns associated with different conditions. In this paper, we attempt to enhance the IE technique and enable it for full condition assessment of concrete elements by introducing advanced machine learning techniques for performing comprehensive analysis and pattern recognition of IE signals. Specifically, we use wavelet decomposition for extracting signatures or features out of the raw IE signals and apply extreme learning machine, one of the recently developed machine learning techniques, as classification models for full condition assessment. To validate the capabilities of the proposed method, we build a number of specimens with various types, sizes, and locations of defects and perform IE testing on these specimens in a lab environment. Based on analysis of the collected IE signals using the proposed machine learning based IE method, we demonstrate that the proposed method is effective in performing full condition assessment of concrete elements or structures. PMID:27023563

  6. Machine learning approach for the outcome prediction of temporal lobe epilepsy surgery.

    PubMed

    Armañanzas, Rubén; Alonso-Nanclares, Lidia; Defelipe-Oroquieta, Jesús; Kastanauskaite, Asta; de Sola, Rafael G; Defelipe, Javier; Bielza, Concha; Larrañaga, Pedro

    2013-01-01

    Epilepsy surgery is effective in reducing both the number and frequency of seizures, particularly in temporal lobe epilepsy (TLE). Nevertheless, a significant proportion of these patients continue suffering seizures after surgery. Here we used a machine learning approach to predict the outcome of epilepsy surgery based on supervised classification data mining taking into account not only the common clinical variables, but also pathological and neuropsychological evaluations. We have generated models capable of predicting whether a patient with TLE secondary to hippocampal sclerosis will fully recover from epilepsy or not. The machine learning analysis revealed that outcome could be predicted with an estimated accuracy of almost 90% using some clinical and neuropsychological features. Importantly, not all the features were needed to perform the prediction; some of them proved to be irrelevant to the prognosis. Personality style was found to be one of the key features to predict the outcome. Although we examined relatively few cases, findings were verified across all data, showing that the machine learning approach described in the present study may be a powerful method. Since neuropsychological assessment of epileptic patients is a standard protocol in the pre-surgical evaluation, we propose to include these specific psychological tests and machine learning tools to improve the selection of candidates for epilepsy surgery.

  7. Machine Learning Approach for the Outcome Prediction of Temporal Lobe Epilepsy Surgery

    PubMed Central

    DeFelipe-Oroquieta, Jesús; Kastanauskaite, Asta; de Sola, Rafael G.; DeFelipe, Javier; Bielza, Concha; Larrañaga, Pedro

    2013-01-01

    Epilepsy surgery is effective in reducing both the number and frequency of seizures, particularly in temporal lobe epilepsy (TLE). Nevertheless, a significant proportion of these patients continue suffering seizures after surgery. Here we used a machine learning approach to predict the outcome of epilepsy surgery based on supervised classification data mining taking into account not only the common clinical variables, but also pathological and neuropsychological evaluations. We have generated models capable of predicting whether a patient with TLE secondary to hippocampal sclerosis will fully recover from epilepsy or not. The machine learning analysis revealed that outcome could be predicted with an estimated accuracy of almost 90% using some clinical and neuropsychological features. Importantly, not all the features were needed to perform the prediction; some of them proved to be irrelevant to the prognosis. Personality style was found to be one of the key features to predict the outcome. Although we examined relatively few cases, findings were verified across all data, showing that the machine learning approach described in the present study may be a powerful method. Since neuropsychological assessment of epileptic patients is a standard protocol in the pre-surgical evaluation, we propose to include these specific psychological tests and machine learning tools to improve the selection of candidates for epilepsy surgery. PMID:23646148

  8. Statistical mechanics of unsupervised feature learning in a restricted Boltzmann machine with binary synapses

    NASA Astrophysics Data System (ADS)

    Huang, Haiping

    2017-05-01

    Revealing hidden features in unlabeled data is called unsupervised feature learning, which plays an important role in pretraining a deep neural network. Here we provide a statistical mechanics analysis of the unsupervised learning in a restricted Boltzmann machine with binary synapses. A message passing equation to infer the hidden feature is derived, and furthermore, variants of this equation are analyzed. A statistical analysis by replica theory describes the thermodynamic properties of the model. Our analysis confirms an entropy crisis preceding the non-convergence of the message passing equation, suggesting a discontinuous phase transition as a key characteristic of the restricted Boltzmann machine. Continuous phase transition is also confirmed depending on the embedded feature strength in the data. The mean-field result under the replica symmetric assumption agrees with that obtained by running message passing algorithms on single instances of finite sizes. Interestingly, in an approximate Hopfield model, the entropy crisis is absent, and a continuous phase transition is observed instead. We also develop an iterative equation to infer the hyper-parameter (temperature) hidden in the data, which in physics corresponds to iteratively imposing Nishimori condition. Our study provides insights towards understanding the thermodynamic properties of the restricted Boltzmann machine learning, and moreover important theoretical basis to build simplified deep networks.

  9. Using machine learning to identify factors that govern amorphization of irradiated pyrochlores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilania, Ghanshyam; Whittle, Karl R.; Jiang, Chao

    Structure–property relationships are a key materials science concept that enables the design of new materials. In the case of materials for application in radiation environments, correlating radiation tolerance with fundamental structural features of a material enables materials discovery. Here, we use a machine learning model to examine the factors that govern amorphization resistance in the complex oxide pyrochlore (A 2B 2O 7) in a regime in which amorphization occurs as a consequence of defect accumulation. We examine the fidelity of predictions based on cation radii and electronegativities, the oxygen positional parameter, and the energetics of disordering and amorphizing the material.more » No one factor alone adequately predicts amorphization resistance. We find that when multiple families of pyrochlores (with different B cations) are considered, radii and electronegativities provide the best prediction, but when the machine learning model is restricted to only the B = Ti pyrochlores, the energetics of disordering and amorphization are critical factors. We discuss how these static quantities provide insight into an inherently kinetic property such as amorphization resistance at finite temperature. Lastly, this work provides new insight into the factors that govern the amorphization susceptibility and highlights the ability of machine learning approaches to generate that insight.« less

  10. Using machine learning to identify factors that govern amorphization of irradiated pyrochlores

    DOE PAGES

    Pilania, Ghanshyam; Whittle, Karl R.; Jiang, Chao; ...

    2017-02-10

    Structure–property relationships are a key materials science concept that enables the design of new materials. In the case of materials for application in radiation environments, correlating radiation tolerance with fundamental structural features of a material enables materials discovery. Here, we use a machine learning model to examine the factors that govern amorphization resistance in the complex oxide pyrochlore (A 2B 2O 7) in a regime in which amorphization occurs as a consequence of defect accumulation. We examine the fidelity of predictions based on cation radii and electronegativities, the oxygen positional parameter, and the energetics of disordering and amorphizing the material.more » No one factor alone adequately predicts amorphization resistance. We find that when multiple families of pyrochlores (with different B cations) are considered, radii and electronegativities provide the best prediction, but when the machine learning model is restricted to only the B = Ti pyrochlores, the energetics of disordering and amorphization are critical factors. We discuss how these static quantities provide insight into an inherently kinetic property such as amorphization resistance at finite temperature. Lastly, this work provides new insight into the factors that govern the amorphization susceptibility and highlights the ability of machine learning approaches to generate that insight.« less

  11. Parameterizing Phrase Based Statistical Machine Translation Models: An Analytic Study

    ERIC Educational Resources Information Center

    Cer, Daniel

    2011-01-01

    The goal of this dissertation is to determine the best way to train a statistical machine translation system. I first develop a state-of-the-art machine translation system called Phrasal and then use it to examine a wide variety of potential learning algorithms and optimization criteria and arrive at two very surprising results. First, despite the…

  12. Molecular graph convolutions: moving beyond fingerprints

    NASA Astrophysics Data System (ADS)

    Kearnes, Steven; McCloskey, Kevin; Berndl, Marc; Pande, Vijay; Riley, Patrick

    2016-08-01

    Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph—atoms, bonds, distances, etc.—which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.

  13. Molecular graph convolutions: moving beyond fingerprints.

    PubMed

    Kearnes, Steven; McCloskey, Kevin; Berndl, Marc; Pande, Vijay; Riley, Patrick

    2016-08-01

    Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph-atoms, bonds, distances, etc.-which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.

  14. Extracting laboratory test information from biomedical text

    PubMed Central

    Kang, Yanna Shen; Kayaalp, Mehmet

    2013-01-01

    Background: No previous study reported the efficacy of current natural language processing (NLP) methods for extracting laboratory test information from narrative documents. This study investigates the pathology informatics question of how accurately such information can be extracted from text with the current tools and techniques, especially machine learning and symbolic NLP methods. The study data came from a text corpus maintained by the U.S. Food and Drug Administration, containing a rich set of information on laboratory tests and test devices. Methods: The authors developed a symbolic information extraction (SIE) system to extract device and test specific information about four types of laboratory test entities: Specimens, analytes, units of measures and detection limits. They compared the performance of SIE and three prominent machine learning based NLP systems, LingPipe, GATE and BANNER, each implementing a distinct supervised machine learning method, hidden Markov models, support vector machines and conditional random fields, respectively. Results: Machine learning systems recognized laboratory test entities with moderately high recall, but low precision rates. Their recall rates were relatively higher when the number of distinct entity values (e.g., the spectrum of specimens) was very limited or when lexical morphology of the entity was distinctive (as in units of measures), yet SIE outperformed them with statistically significant margins on extracting specimen, analyte and detection limit information in both precision and F-measure. Its high recall performance was statistically significant on analyte information extraction. Conclusions: Despite its shortcomings against machine learning methods, a well-tailored symbolic system may better discern relevancy among a pile of information of the same type and may outperform a machine learning system by tapping into lexically non-local contextual information such as the document structure. PMID:24083058

  15. Mathematical Models of Elementary Mathematics Learning and Performance. Final Report.

    ERIC Educational Resources Information Center

    Suppes, Patrick

    This project was concerned with the development of mathematical models of elementary mathematics learning and performance. Probabilistic finite automata and register machines with a finite number of registers were developed as models and extensively tested with data arising from the elementary-mathematics strand curriculum developed by the…

  16. Autonomous Scanning Probe Microscopy in Situ Tip Conditioning through Machine Learning.

    PubMed

    Rashidi, Mohammad; Wolkow, Robert A

    2018-05-23

    Atomic-scale characterization and manipulation with scanning probe microscopy rely upon the use of an atomically sharp probe. Here we present automated methods based on machine learning to automatically detect and recondition the quality of the probe of a scanning tunneling microscope. As a model system, we employ these techniques on the technologically relevant hydrogen-terminated silicon surface, training the network to recognize abnormalities in the appearance of surface dangling bonds. Of the machine learning methods tested, a convolutional neural network yielded the greatest accuracy, achieving a positive identification of degraded tips in 97% of the test cases. By using multiple points of comparison and majority voting, the accuracy of the method is improved beyond 99%.

  17. The Trail Making test: a study of its ability to predict falls in the acute neurological in-patient population.

    PubMed

    Mateen, Bilal Akhter; Bussas, Matthias; Doogan, Catherine; Waller, Denise; Saverino, Alessia; Király, Franz J; Playford, E Diane

    2018-05-01

    To determine whether tests of cognitive function and patient-reported outcome measures of motor function can be used to create a machine learning-based predictive tool for falls. Prospective cohort study. Tertiary neurological and neurosurgical center. In all, 337 in-patients receiving neurosurgical, neurological, or neurorehabilitation-based care. Binary (Y/N) for falling during the in-patient episode, the Trail Making Test (a measure of attention and executive function) and the Walk-12 (a patient-reported measure of physical function). The principal outcome was a fall during the in-patient stay ( n = 54). The Trail test was identified as the best predictor of falls. Moreover, addition of other variables, did not improve the prediction (Wilcoxon signed-rank P < 0.001). Classical linear statistical modeling methods were then compared with more recent machine learning based strategies, for example, random forests, neural networks, support vector machines. The random forest was the best modeling strategy when utilizing just the Trail Making Test data (Wilcoxon signed-rank P < 0.001) with 68% (± 7.7) sensitivity, and 90% (± 2.3) specificity. This study identifies a simple yet powerful machine learning (Random Forest) based predictive model for an in-patient neurological population, utilizing a single neuropsychological test of cognitive function, the Trail Making test.

  18. Simulated Students and Classroom Use of Model-Based Intelligent Tutoring

    NASA Technical Reports Server (NTRS)

    Koedinger, Kenneth R.

    2008-01-01

    Two educational uses of models and simulations: 1) Students create models and use simulations ; and 2) Researchers create models of learners to guide development of reliably effective materials. Cognitive tutors simulate and support tutoring - data is crucial to create effective model. Pittsburgh Science of Learning Center: Resources for modeling, authoring, experimentation. Repository of data and theory. Examples of advanced modeling efforts: SimStudent learns rule-based model. Help-seeking model: Tutors metacognition. Scooter uses machine learning detectors of student engagement.

  19. Quality prediction modeling for sintered ores based on mechanism models of sintering and extreme learning machine based error compensation

    NASA Astrophysics Data System (ADS)

    Tiebin, Wu; Yunlian, Liu; Xinjun, Li; Yi, Yu; Bin, Zhang

    2018-06-01

    Aiming at the difficulty in quality prediction of sintered ores, a hybrid prediction model is established based on mechanism models of sintering and time-weighted error compensation on the basis of the extreme learning machine (ELM). At first, mechanism models of drum index, total iron, and alkalinity are constructed according to the chemical reaction mechanism and conservation of matter in the sintering process. As the process is simplified in the mechanism models, these models are not able to describe high nonlinearity. Therefore, errors are inevitable. For this reason, the time-weighted ELM based error compensation model is established. Simulation results verify that the hybrid model has a high accuracy and can meet the requirement for industrial applications.

  20. Evaluation of an Integrated Multi-Task Machine Learning System with Humans in the Loop

    DTIC Science & Technology

    2007-01-01

    machine learning components natural language processing, and optimization...was examined with a test explicitly developed to measure the impact of integrated machine learning when used by a human user in a real world setting...study revealed that integrated machine learning does produce a positive impact on overall performance. This paper also discusses how specific machine learning components contributed to human-system

  1. Quantifying surgical complexity with machine learning: looking beyond patient factors to improve surgical models.

    PubMed

    Van Esbroeck, Alexander; Rubinfeld, Ilan; Hall, Bruce; Syed, Zeeshan

    2014-11-01

    To investigate the use of machine learning to empirically determine the risk of individual surgical procedures and to improve surgical models with this information. American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) data from 2005 to 2009 were used to train support vector machine (SVM) classifiers to learn the relationship between textual constructs in current procedural terminology (CPT) descriptions and mortality, morbidity, Clavien 4 complications, and surgical-site infections (SSI) within 30 days of surgery. The procedural risk scores produced by the SVM classifiers were validated on data from 2010 in univariate and multivariate analyses. The procedural risk scores produced by the SVM classifiers achieved moderate-to-high levels of discrimination in univariate analyses (area under receiver operating characteristic curve: 0.871 for mortality, 0.789 for morbidity, 0.791 for SSI, 0.845 for Clavien 4 complications). Addition of these scores also substantially improved multivariate models comprising patient factors and previously proposed correlates of procedural risk (net reclassification improvement and integrated discrimination improvement: 0.54 and 0.001 for mortality, 0.46 and 0.011 for morbidity, 0.68 and 0.022 for SSI, 0.44 and 0.001 for Clavien 4 complications; P < .05 for all comparisons). Similar improvements were noted in discrimination and calibration for other statistical measures, and in subcohorts comprising patients with general or vascular surgery. Machine learning provides clinically useful estimates of surgical risk for individual procedures. This information can be measured in an entirely data-driven manner and substantially improves multifactorial models to predict postoperative complications. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Using machine learning to model dose-response relationships.

    PubMed

    Linden, Ariel; Yarnold, Paul R; Nallamothu, Brahmajee K

    2016-12-01

    Establishing the relationship between various doses of an exposure and a response variable is integral to many studies in health care. Linear parametric models, widely used for estimating dose-response relationships, have several limitations. This paper employs the optimal discriminant analysis (ODA) machine-learning algorithm to determine the degree to which exposure dose can be distinguished based on the distribution of the response variable. By framing the dose-response relationship as a classification problem, machine learning can provide the same functionality as conventional models, but can additionally make individual-level predictions, which may be helpful in practical applications like establishing responsiveness to prescribed drug regimens. Using data from a study measuring the responses of blood flow in the forearm to the intra-arterial administration of isoproterenol (separately for 9 black and 13 white men, and pooled), we compare the results estimated from a generalized estimating equations (GEE) model with those estimated using ODA. Generalized estimating equations and ODA both identified many statistically significant dose-response relationships, separately by race and for pooled data. Post hoc comparisons between doses indicated ODA (based on exact P values) was consistently more conservative than GEE (based on estimated P values). Compared with ODA, GEE produced twice as many instances of paradoxical confounding (findings from analysis of pooled data that are inconsistent with findings from analyses stratified by race). Given its unique advantages and greater analytic flexibility, maximum-accuracy machine-learning methods like ODA should be considered as the primary analytic approach in dose-response applications. © 2016 John Wiley & Sons, Ltd.

  3. Can Statistical Machine Learning Algorithms Help for Classification of Obstructive Sleep Apnea Severity to Optimal Utilization of Polysomnography Resources?

    PubMed

    Bozkurt, Selen; Bostanci, Asli; Turhan, Murat

    2017-08-11

    The goal of this study is to evaluate the results of machine learning methods for the classification of OSA severity of patients with suspected sleep disorder breathing as normal, mild, moderate and severe based on non-polysomnographic variables: 1) clinical data, 2) symptoms and 3) physical examination. In order to produce classification models for OSA severity, five different machine learning methods (Bayesian network, Decision Tree, Random Forest, Neural Networks and Logistic Regression) were trained while relevant variables and their relationships were derived empirically from observed data. Each model was trained and evaluated using 10-fold cross-validation and to evaluate classification performances of all methods, true positive rate (TPR), false positive rate (FPR), Positive Predictive Value (PPV), F measure and Area Under Receiver Operating Characteristics curve (ROC-AUC) were used. Results of 10-fold cross validated tests with different variable settings promisingly indicated that the OSA severity of suspected OSA patients can be classified, using non-polysomnographic features, with 0.71 true positive rate as the highest and, 0.15 false positive rate as the lowest, respectively. Moreover, the test results of different variables settings revealed that the accuracy of the classification models was significantly improved when physical examination variables were added to the model. Study results showed that machine learning methods can be used to estimate the probabilities of no, mild, moderate, and severe obstructive sleep apnea and such approaches may improve accurate initial OSA screening and help referring only the suspected moderate or severe OSA patients to sleep laboratories for the expensive tests.

  4. Evaluation of supervised machine-learning algorithms to distinguish between inflammatory bowel disease and alimentary lymphoma in cats.

    PubMed

    Awaysheh, Abdullah; Wilcke, Jeffrey; Elvinger, François; Rees, Loren; Fan, Weiguo; Zimmerman, Kurt L

    2016-11-01

    Inflammatory bowel disease (IBD) and alimentary lymphoma (ALA) are common gastrointestinal diseases in cats. The very similar clinical signs and histopathologic features of these diseases make the distinction between them diagnostically challenging. We tested the use of supervised machine-learning algorithms to differentiate between the 2 diseases using data generated from noninvasive diagnostic tests. Three prediction models were developed using 3 machine-learning algorithms: naive Bayes, decision trees, and artificial neural networks. The models were trained and tested on data from complete blood count (CBC) and serum chemistry (SC) results for the following 3 groups of client-owned cats: normal, inflammatory bowel disease (IBD), or alimentary lymphoma (ALA). Naive Bayes and artificial neural networks achieved higher classification accuracy (sensitivities of 70.8% and 69.2%, respectively) than the decision tree algorithm (63%, p < 0.0001). The areas under the receiver-operating characteristic curve for classifying cases into the 3 categories was 83% by naive Bayes, 79% by decision tree, and 82% by artificial neural networks. Prediction models using machine learning provided a method for distinguishing between ALA-IBD, ALA-normal, and IBD-normal. The naive Bayes and artificial neural networks classifiers used 10 and 4 of the CBC and SC variables, respectively, to outperform the C4.5 decision tree, which used 5 CBC and SC variables in classifying cats into the 3 classes. These models can provide another noninvasive diagnostic tool to assist clinicians with differentiating between IBD and ALA, and between diseased and nondiseased cats. © 2016 The Author(s).

  5. Rare events modeling with support vector machine: Application to forecasting large-amplitude geomagnetic substorms and extreme events in financial markets.

    NASA Astrophysics Data System (ADS)

    Gavrishchaka, V. V.; Ganguli, S. B.

    2001-12-01

    Reliable forecasting of rare events in a complex dynamical system is a challenging problem that is important for many practical applications. Due to the nature of rare events, data set available for construction of the statistical and/or machine learning model is often very limited and incomplete. Therefore many widely used approaches including such robust algorithms as neural networks can easily become inadequate for rare events prediction. Moreover in many practical cases models with high-dimensional inputs are required. This limits applications of the existing rare event modeling techniques (e.g., extreme value theory) that focus on univariate cases. These approaches are not easily extended to multivariate cases. Support vector machine (SVM) is a machine learning system that can provide an optimal generalization using very limited and incomplete training data sets and can efficiently handle high-dimensional data. These features may allow to use SVM to model rare events in some applications. We have applied SVM-based system to the problem of large-amplitude substorm prediction and extreme event forecasting in stock and currency exchange markets. Encouraging preliminary results will be presented and other possible applications of the system will be discussed.

  6. Obtaining Global Picture From Single Point Observations by Combining Data Assimilation and Machine Learning Tools

    NASA Astrophysics Data System (ADS)

    Shprits, Y.; Zhelavskaya, I. S.; Kellerman, A. C.; Spasojevic, M.; Kondrashov, D. A.; Ghil, M.; Aseev, N.; Castillo Tibocha, A. M.; Cervantes Villa, J. S.; Kletzing, C.; Kurth, W. S.

    2017-12-01

    Increasing volume of satellite measurements requires deployment of new tools that can utilize such vast amount of data. Satellite measurements are usually limited to a single location in space, which complicates the data analysis geared towards reproducing the global state of the space environment. In this study we show how measurements can be combined by means of data assimilation and how machine learning can help analyze large amounts of data and can help develop global models that are trained on single point measurement. Data Assimilation: Manual analysis of the satellite measurements is a challenging task, while automated analysis is complicated by the fact that measurements are given at various locations in space, have different instrumental errors, and often vary by orders of magnitude. We show results of the long term reanalysis of radiation belt measurements along with fully operational real-time predictions using data assimilative VERB code. Machine Learning: We present application of the machine learning tools for the analysis of NASA Van Allen Probes upper-hybrid frequency measurements. Using the obtained data set we train a new global predictive neural network. The results for the Van Allen Probes based neural network are compared with historical IMAGE satellite observations. We also show examples of predictions of geomagnetic indices using neural networks. Combination of machine learning and data assimilation: We discuss how data assimilation tools and machine learning tools can be combine so that physics-based insight into the dynamics of the particular system can be combined with empirical knowledge of it's non-linear behavior.

  7. The influence of negative training set size on machine learning-based virtual screening.

    PubMed

    Kurczab, Rafał; Smusz, Sabina; Bojarski, Andrzej J

    2014-01-01

    The paper presents a thorough analysis of the influence of the number of negative training examples on the performance of machine learning methods. The impact of this rather neglected aspect of machine learning methods application was examined for sets containing a fixed number of positive and a varying number of negative examples randomly selected from the ZINC database. An increase in the ratio of positive to negative training instances was found to greatly influence most of the investigated evaluating parameters of ML methods in simulated virtual screening experiments. In a majority of cases, substantial increases in precision and MCC were observed in conjunction with some decreases in hit recall. The analysis of dynamics of those variations let us recommend an optimal composition of training data. The study was performed on several protein targets, 5 machine learning algorithms (SMO, Naïve Bayes, Ibk, J48 and Random Forest) and 2 types of molecular fingerprints (MACCS and CDK FP). The most effective classification was provided by the combination of CDK FP with SMO or Random Forest algorithms. The Naïve Bayes models appeared to be hardly sensitive to changes in the number of negative instances in the training set. In conclusion, the ratio of positive to negative training instances should be taken into account during the preparation of machine learning experiments, as it might significantly influence the performance of particular classifier. What is more, the optimization of negative training set size can be applied as a boosting-like approach in machine learning-based virtual screening.

  8. The influence of negative training set size on machine learning-based virtual screening

    PubMed Central

    2014-01-01

    Background The paper presents a thorough analysis of the influence of the number of negative training examples on the performance of machine learning methods. Results The impact of this rather neglected aspect of machine learning methods application was examined for sets containing a fixed number of positive and a varying number of negative examples randomly selected from the ZINC database. An increase in the ratio of positive to negative training instances was found to greatly influence most of the investigated evaluating parameters of ML methods in simulated virtual screening experiments. In a majority of cases, substantial increases in precision and MCC were observed in conjunction with some decreases in hit recall. The analysis of dynamics of those variations let us recommend an optimal composition of training data. The study was performed on several protein targets, 5 machine learning algorithms (SMO, Naïve Bayes, Ibk, J48 and Random Forest) and 2 types of molecular fingerprints (MACCS and CDK FP). The most effective classification was provided by the combination of CDK FP with SMO or Random Forest algorithms. The Naïve Bayes models appeared to be hardly sensitive to changes in the number of negative instances in the training set. Conclusions In conclusion, the ratio of positive to negative training instances should be taken into account during the preparation of machine learning experiments, as it might significantly influence the performance of particular classifier. What is more, the optimization of negative training set size can be applied as a boosting-like approach in machine learning-based virtual screening. PMID:24976867

  9. Machine learning models for lipophilicity and their domain of applicability.

    PubMed

    Schroeter, Timon; Schwaighofer, Anton; Mika, Sebastian; Laak, Antonius Ter; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert

    2007-01-01

    Unfavorable lipophilicity and water solubility cause many drug failures; therefore these properties have to be taken into account early on in lead discovery. Commercial tools for predicting lipophilicity usually have been trained on small and neutral molecules, and are thus often unable to accurately predict in-house data. Using a modern Bayesian machine learning algorithm--a Gaussian process model--this study constructs a log D7 model based on 14,556 drug discovery compounds of Bayer Schering Pharma. Performance is compared with support vector machines, decision trees, ridge regression, and four commercial tools. In a blind test on 7013 new measurements from the last months (including compounds from new projects) 81% were predicted correctly within 1 log unit, compared to only 44% achieved by commercial software. Additional evaluations using public data are presented. We consider error bars for each method (model based error bars, ensemble based, and distance based approaches), and investigate how well they quantify the domain of applicability of each model.

  10. Machine learning-based dual-energy CT parametric mapping

    NASA Astrophysics Data System (ADS)

    Su, Kuan-Hao; Kuo, Jung-Wen; Jordan, David W.; Van Hedent, Steven; Klahr, Paul; Wei, Zhouping; Helo, Rose Al; Liang, Fan; Qian, Pengjiang; Pereira, Gisele C.; Rassouli, Negin; Gilkeson, Robert C.; Traughber, Bryan J.; Cheng, Chee-Wai; Muzic, Raymond F., Jr.

    2018-06-01

    The aim is to develop and evaluate machine learning methods for generating quantitative parametric maps of effective atomic number (Zeff), relative electron density (ρ e), mean excitation energy (I x ), and relative stopping power (RSP) from clinical dual-energy CT data. The maps could be used for material identification and radiation dose calculation. Machine learning methods of historical centroid (HC), random forest (RF), and artificial neural networks (ANN) were used to learn the relationship between dual-energy CT input data and ideal output parametric maps calculated for phantoms from the known compositions of 13 tissue substitutes. After training and model selection steps, the machine learning predictors were used to generate parametric maps from independent phantom and patient input data. Precision and accuracy were evaluated using the ideal maps. This process was repeated for a range of exposure doses, and performance was compared to that of the clinically-used dual-energy, physics-based method which served as the reference. The machine learning methods generated more accurate and precise parametric maps than those obtained using the reference method. Their performance advantage was particularly evident when using data from the lowest exposure, one-fifth of a typical clinical abdomen CT acquisition. The RF method achieved the greatest accuracy. In comparison, the ANN method was only 1% less accurate but had much better computational efficiency than RF, being able to produce parametric maps in 15 s. Machine learning methods outperformed the reference method in terms of accuracy and noise tolerance when generating parametric maps, encouraging further exploration of the techniques. Among the methods we evaluated, ANN is the most suitable for clinical use due to its combination of accuracy, excellent low-noise performance, and computational efficiency.

  11. Machine learning-based dual-energy CT parametric mapping.

    PubMed

    Su, Kuan-Hao; Kuo, Jung-Wen; Jordan, David W; Van Hedent, Steven; Klahr, Paul; Wei, Zhouping; Al Helo, Rose; Liang, Fan; Qian, Pengjiang; Pereira, Gisele C; Rassouli, Negin; Gilkeson, Robert C; Traughber, Bryan J; Cheng, Chee-Wai; Muzic, Raymond F

    2018-06-08

    The aim is to develop and evaluate machine learning methods for generating quantitative parametric maps of effective atomic number (Z eff ), relative electron density (ρ e ), mean excitation energy (I x ), and relative stopping power (RSP) from clinical dual-energy CT data. The maps could be used for material identification and radiation dose calculation. Machine learning methods of historical centroid (HC), random forest (RF), and artificial neural networks (ANN) were used to learn the relationship between dual-energy CT input data and ideal output parametric maps calculated for phantoms from the known compositions of 13 tissue substitutes. After training and model selection steps, the machine learning predictors were used to generate parametric maps from independent phantom and patient input data. Precision and accuracy were evaluated using the ideal maps. This process was repeated for a range of exposure doses, and performance was compared to that of the clinically-used dual-energy, physics-based method which served as the reference. The machine learning methods generated more accurate and precise parametric maps than those obtained using the reference method. Their performance advantage was particularly evident when using data from the lowest exposure, one-fifth of a typical clinical abdomen CT acquisition. The RF method achieved the greatest accuracy. In comparison, the ANN method was only 1% less accurate but had much better computational efficiency than RF, being able to produce parametric maps in 15 s. Machine learning methods outperformed the reference method in terms of accuracy and noise tolerance when generating parametric maps, encouraging further exploration of the techniques. Among the methods we evaluated, ANN is the most suitable for clinical use due to its combination of accuracy, excellent low-noise performance, and computational efficiency.

  12. Using Machine Learning in Adversarial Environments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren Leon Davis

    Intrusion/anomaly detection systems are among the first lines of cyber defense. Commonly, they either use signatures or machine learning (ML) to identify threats, but fail to account for sophisticated attackers trying to circumvent them. We propose to embed machine learning within a game theoretic framework that performs adversarial modeling, develops methods for optimizing operational response based on ML, and integrates the resulting optimization codebase into the existing ML infrastructure developed by the Hybrid LDRD. Our approach addresses three key shortcomings of ML in adversarial settings: 1) resulting classifiers are typically deterministic and, therefore, easy to reverse engineer; 2) ML approachesmore » only address the prediction problem, but do not prescribe how one should operationalize predictions, nor account for operational costs and constraints; and 3) ML approaches do not model attackers’ response and can be circumvented by sophisticated adversaries. The principal novelty of our approach is to construct an optimization framework that blends ML, operational considerations, and a model predicting attackers reaction, with the goal of computing optimal moving target defense. One important challenge is to construct a realistic model of an adversary that is tractable, yet realistic. We aim to advance the science of attacker modeling by considering game-theoretic methods, and by engaging experimental subjects with red teaming experience in trying to actively circumvent an intrusion detection system, and learning a predictive model of such circumvention activities. In addition, we will generate metrics to test that a particular model of an adversary is consistent with available data.« less

  13. A Pythonic Approach for Computational Geosciences and Geo-Data Processing

    NASA Astrophysics Data System (ADS)

    Morra, G.; Yuen, D. A.; Lee, S. M.

    2016-12-01

    Computational methods and data analysis play a constantly increasing role in Earth Sciences however students and professionals need to climb a steep learning curve before reaching a sufficient level that allows them to run effective models. Furthermore the recent arrival and new powerful machine learning tools such as Torch and Tensor Flow has opened new possibilities but also created a new realm of complications related to the completely different technology employed. We present here a series of examples entirely written in Python, a language that combines the simplicity of Matlab with the power and speed of compiled languages such as C, and apply them to a wide range of geological processes such as porous media flow, multiphase fluid-dynamics, creeping flow and many-faults interaction. We also explore ways in which machine learning can be employed in combination with numerical modelling. From immediately interpreting a large number of modeling results to optimizing a set of modeling parameters to obtain a desired optimal simulation. We show that by using Python undergraduate and graduate can learn advanced numerical technologies with a minimum dedicated effort, which in turn encourages them to develop more numerical tools and quickly progress in their computational abilities. We also show how Python allows combining modeling with machine learning as pieces of LEGO, therefore simplifying the transition towards a new kind of scientific geo-modelling. The conclusion is that Python is an ideal tool to create an infrastructure for geosciences that allows users to quickly develop tools, reuse techniques and encourage collaborative efforts to interpret and integrate geo-data in profound new ways.

  14. Machine Learning for Mapping Groundwater Salinity with Oil Well Log Data

    NASA Astrophysics Data System (ADS)

    Chang, W. H.; Shimabukuro, D.; Gillespie, J. M.; Stephens, M.

    2016-12-01

    An oil field may have thousands of wells with detailed petrophysical logs, and far fewer direct measurements of groundwater salinity. Can the former be used to extrapolate the latter into a detailed map of groundwater salinity? California Senate Bill 4, with its requirement to identify Underground Sources of Drinking Water, makes this a question worth answering. A well-known obstacle is that the basic petrophysical equations describe ideal scenarios ("clean wet sand") and even these equations contain many parameters that may vary with location and depth. Accounting for other common scenarios such as high-conductivity shaly sands or low-permeability diatomite (both characteristic of California's Central Valley) causes parameters to proliferate to the point where the model is underdetermined by the data. When parameters outnumber data points, however, is when machine learning methods are most advantageous. We present a method for modeling a generic oil field, where groundwater salinity and lithology are depth series parameters, and the constants in petrophysical equations are scalar parameters. The data are well log measurements (resistivity, porosity, spontaneous potential, and gamma ray) and a small number of direct groundwater salinity measurements. Embedded in the model are petrophysical equations that account for shaly sand and diatomite formations. As a proof of concept, we feed in well logs and salinity measurements from the Lost Hills Oil Field in Kern County, California, and show that with proper regularization and validation the model makes reasonable predictions of groundwater salinity despite the large number of parameters. The model is implemented using Tensorflow, which is an open-source software released by Google in November, 2015 that has been rapidly and widely adopted by machine learning researchers. The code will be made available on Github, and we encourage scrutiny and modification by machine learning researchers and hydrogeologists alike.

  15. A review of machine learning methods to predict the solubility of overexpressed recombinant proteins in Escherichia coli.

    PubMed

    Habibi, Narjeskhatoon; Mohd Hashim, Siti Z; Norouzi, Alireza; Samian, Mohammed Razip

    2014-05-08

    Over the last 20 years in biotechnology, the production of recombinant proteins has been a crucial bioprocess in both biopharmaceutical and research arena in terms of human health, scientific impact and economic volume. Although logical strategies of genetic engineering have been established, protein overexpression is still an art. In particular, heterologous expression is often hindered by low level of production and frequent fail due to opaque reasons. The problem is accentuated because there is no generic solution available to enhance heterologous overexpression. For a given protein, the extent of its solubility can indicate the quality of its function. Over 30% of synthesized proteins are not soluble. In certain experimental circumstances, including temperature, expression host, etc., protein solubility is a feature eventually defined by its sequence. Until now, numerous methods based on machine learning are proposed to predict the solubility of protein merely from its amino acid sequence. In spite of the 20 years of research on the matter, no comprehensive review is available on the published methods. This paper presents an extensive review of the existing models to predict protein solubility in Escherichia coli recombinant protein overexpression system. The models are investigated and compared regarding the datasets used, features, feature selection methods, machine learning techniques and accuracy of prediction. A discussion on the models is provided at the end. This study aims to investigate extensively the machine learning based methods to predict recombinant protein solubility, so as to offer a general as well as a detailed understanding for researches in the field. Some of the models present acceptable prediction performances and convenient user interfaces. These models can be considered as valuable tools to predict recombinant protein overexpression results before performing real laboratory experiments, thus saving labour, time and cost.

  16. Machine Learning Principles Can Improve Hip Fracture Prediction.

    PubMed

    Kruse, Christian; Eiken, Pia; Vestergaard, Peter

    2017-04-01

    Apply machine learning principles to predict hip fractures and estimate predictor importance in Dual-energy X-ray absorptiometry (DXA)-scanned men and women. Dual-energy X-ray absorptiometry data from two Danish regions between 1996 and 2006 were combined with national Danish patient data to comprise 4722 women and 717 men with 5 years of follow-up time (original cohort n = 6606 men and women). Twenty-four statistical models were built on 75% of data points through k-5, 5-repeat cross-validation, and then validated on the remaining 25% of data points to calculate area under the curve (AUC) and calibrate probability estimates. The best models were retrained with restricted predictor subsets to estimate the best subsets. For women, bootstrap aggregated flexible discriminant analysis ("bagFDA") performed best with a test AUC of 0.92 [0.89; 0.94] and well-calibrated probabilities following Naïve Bayes adjustments. A "bagFDA" model limited to 11 predictors (among them bone mineral densities (BMD), biochemical glucose measurements, general practitioner and dentist use) achieved a test AUC of 0.91 [0.88; 0.93]. For men, eXtreme Gradient Boosting ("xgbTree") performed best with a test AUC of 0.89 [0.82; 0.95], but with poor calibration in higher probabilities. A ten predictor subset (BMD, biochemical cholesterol and liver function tests, penicillin use and osteoarthritis diagnoses) achieved a test AUC of 0.86 [0.78; 0.94] using an "xgbTree" model. Machine learning can improve hip fracture prediction beyond logistic regression using ensemble models. Compiling data from international cohorts of longer follow-up and performing similar machine learning procedures has the potential to further improve discrimination and calibration.

  17. Integrated machine learning, molecular docking and 3D-QSAR based approach for identification of potential inhibitors of trypanosomal N-myristoyltransferase.

    PubMed

    Singh, Nidhi; Shah, Priyanka; Dwivedi, Hemlata; Mishra, Shikha; Tripathi, Renu; Sahasrabuddhe, Amogh A; Siddiqi, Mohammad Imran

    2016-11-15

    N-Myristoyltransferase (NMT) catalyzes the transfer of myristate to the amino-terminal glycine of a subset of proteins, a co-translational modification involved in trafficking substrate proteins to membrane locations, stabilization and protein-protein interactions. It is a studied and validated pre-clinical drug target for fungal and parasitic infections. In the present study, a machine learning approach, docking studies and CoMFA analysis have been integrated with the objective of translation of knowledge into a pipelined workflow towards the identification of putative hits through the screening of large compound libraries. In the proposed pipeline, the reported parasitic NMT inhibitors have been used to develop predictive machine learning classification models. Simultaneously, a TbNMT complex model was generated to establish the relationship between the binding mode of the inhibitors for LmNMT and TbNMT through molecular dynamics simulation studies. A 3D-QSAR model was developed and used to predict the activity of the proposed hits in the subsequent step. The hits classified as active based on the machine learning model were assessed as the potential anti-trypanosomal NMT inhibitors through molecular docking studies, predicted activity using a QSAR model and visual inspection. In the final step, the proposed pipeline was validated through in vitro experiments. A total of seven hits have been proposed and tested in vitro for evaluation of dual inhibitory activity against Leishmania donovani and Trypanosoma brucei. Out of these five compounds showed significant inhibition against both of the organisms. The common topmost active compound SEW04173 belongs to a pyrazole carboxylate scaffold and is anticipated to enrich the chemical space with enhanced potency through optimization.

  18. Forecasting daily streamflow using online sequential extreme learning machines

    NASA Astrophysics Data System (ADS)

    Lima, Aranildo R.; Cannon, Alex J.; Hsieh, William W.

    2016-06-01

    While nonlinear machine methods have been widely used in environmental forecasting, in situations where new data arrive continually, the need to make frequent model updates can become cumbersome and computationally costly. To alleviate this problem, an online sequential learning algorithm for single hidden layer feedforward neural networks - the online sequential extreme learning machine (OSELM) - is automatically updated inexpensively as new data arrive (and the new data can then be discarded). OSELM was applied to forecast daily streamflow at two small watersheds in British Columbia, Canada, at lead times of 1-3 days. Predictors used were weather forecast data generated by the NOAA Global Ensemble Forecasting System (GEFS), and local hydro-meteorological observations. OSELM forecasts were tested with daily, monthly or yearly model updates. More frequent updating gave smaller forecast errors, including errors for data above the 90th percentile. Larger datasets used in the initial training of OSELM helped to find better parameters (number of hidden nodes) for the model, yielding better predictions. With the online sequential multiple linear regression (OSMLR) as benchmark, we concluded that OSELM is an attractive approach as it easily outperformed OSMLR in forecast accuracy.

  19. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches.

    PubMed

    Lei, Tailong; Sun, Huiyong; Kang, Yu; Zhu, Feng; Liu, Hui; Zhou, Wenfang; Wang, Zhe; Li, Dan; Li, Youyong; Hou, Tingjun

    2017-11-06

    Xenobiotic chemicals and their metabolites are mainly excreted out of our bodies by the urinary tract through the urine. Chemical-induced urinary tract toxicity is one of the main reasons that cause failure during drug development, and it is a common adverse event for medications, natural supplements, and environmental chemicals. Despite its importance, there are only a few in silico models for assessing urinary tract toxicity for a large number of compounds with diverse chemical structures. Here, we developed a series of qualitative and quantitative structure-activity relationship (QSAR) models for predicting urinary tract toxicity. In our study, the recursive feature elimination method incorporated with random forests (RFE-RF) was used for dimension reduction, and then eight machine learning approaches were used for QSAR modeling, i.e., relevance vector machine (RVM), support vector machine (SVM), regularized random forest (RRF), C5.0 trees, eXtreme gradient boosting (XGBoost), AdaBoost.M1, SVM boosting (SVMBoost), and RVM boosting (RVMBoost). For building classification models, the synthetic minority oversampling technique was used to handle the imbalance data set problem. Among all the machine learning approaches, SVMBoost based on the RBF kernel achieves both the best quantitative (q ext 2 = 0.845) and qualitative predictions for the test set (MCC of 0.787, AUC of 0.893, sensitivity of 89.6%, specificity of 94.1%, and global accuracy of 90.8%). The application domains were then analyzed, and all of the tested chemicals fall within the application domain coverage. We also examined the structure features of the chemicals with large prediction errors. In brief, both the regression and classification models developed by the SVMBoost approach have reliable prediction capability for assessing chemical-induced urinary tract toxicity.

  20. Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards.

    PubMed

    Churpek, Matthew M; Yuen, Trevor C; Winslow, Christopher; Meltzer, David O; Kattan, Michael W; Edelson, Dana P

    2016-02-01

    Machine learning methods are flexible prediction algorithms that may be more accurate than conventional regression. We compared the accuracy of different techniques for detecting clinical deterioration on the wards in a large, multicenter database. Observational cohort study. Five hospitals, from November 2008 until January 2013. Hospitalized ward patients None Demographic variables, laboratory values, and vital signs were utilized in a discrete-time survival analysis framework to predict the combined outcome of cardiac arrest, intensive care unit transfer, or death. Two logistic regression models (one using linear predictor terms and a second utilizing restricted cubic splines) were compared to several different machine learning methods. The models were derived in the first 60% of the data by date and then validated in the next 40%. For model derivation, each event time window was matched to a non-event window. All models were compared to each other and to the Modified Early Warning score, a commonly cited early warning score, using the area under the receiver operating characteristic curve (AUC). A total of 269,999 patients were admitted, and 424 cardiac arrests, 13,188 intensive care unit transfers, and 2,840 deaths occurred in the study. In the validation dataset, the random forest model was the most accurate model (AUC, 0.80 [95% CI, 0.80-0.80]). The logistic regression model with spline predictors was more accurate than the model utilizing linear predictors (AUC, 0.77 vs 0.74; p < 0.01), and all models were more accurate than the MEWS (AUC, 0.70 [95% CI, 0.70-0.70]). In this multicenter study, we found that several machine learning methods more accurately predicted clinical deterioration than logistic regression. Use of detection algorithms derived from these techniques may result in improved identification of critically ill patients on the wards.

  1. Multi-fidelity machine learning models for accurate bandgap predictions of solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilania, Ghanshyam; Gubernatis, James E.; Lookman, Turab

    Here, we present a multi-fidelity co-kriging statistical learning framework that combines variable-fidelity quantum mechanical calculations of bandgaps to generate a machine-learned model that enables low-cost accurate predictions of the bandgaps at the highest fidelity level. Additionally, the adopted Gaussian process regression formulation allows us to predict the underlying uncertainties as a measure of our confidence in the predictions. In using a set of 600 elpasolite compounds as an example dataset and using semi-local and hybrid exchange correlation functionals within density functional theory as two levels of fidelities, we demonstrate the excellent learning performance of the method against actual high fidelitymore » quantum mechanical calculations of the bandgaps. The presented statistical learning method is not restricted to bandgaps or electronic structure methods and extends the utility of high throughput property predictions in a significant way.« less

  2. Multi-fidelity machine learning models for accurate bandgap predictions of solids

    DOE PAGES

    Pilania, Ghanshyam; Gubernatis, James E.; Lookman, Turab

    2016-12-28

    Here, we present a multi-fidelity co-kriging statistical learning framework that combines variable-fidelity quantum mechanical calculations of bandgaps to generate a machine-learned model that enables low-cost accurate predictions of the bandgaps at the highest fidelity level. Additionally, the adopted Gaussian process regression formulation allows us to predict the underlying uncertainties as a measure of our confidence in the predictions. In using a set of 600 elpasolite compounds as an example dataset and using semi-local and hybrid exchange correlation functionals within density functional theory as two levels of fidelities, we demonstrate the excellent learning performance of the method against actual high fidelitymore » quantum mechanical calculations of the bandgaps. The presented statistical learning method is not restricted to bandgaps or electronic structure methods and extends the utility of high throughput property predictions in a significant way.« less

  3. Quantum machine learning.

    PubMed

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-13

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  4. Quantum machine learning

    NASA Astrophysics Data System (ADS)

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-01

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  5. Predicting High Imaging Utilization Based on Initial Radiology Reports: A Feasibility Study of Machine Learning.

    PubMed

    Hassanpour, Saeed; Langlotz, Curtis P

    2016-01-01

    Imaging utilization has significantly increased over the last two decades, and is only recently showing signs of moderating. To help healthcare providers identify patients at risk for high imaging utilization, we developed a prediction model to recognize high imaging utilizers based on their initial imaging reports. The prediction model uses a machine learning text classification framework. In this study, we used radiology reports from 18,384 patients with at least one abdomen computed tomography study in their imaging record at Stanford Health Care as the training set. We modeled the radiology reports in a vector space and trained a support vector machine classifier for this prediction task. We evaluated our model on a separate test set of 4791 patients. In addition to high prediction accuracy, in our method, we aimed at achieving high specificity to identify patients at high risk for high imaging utilization. Our results (accuracy: 94.0%, sensitivity: 74.4%, specificity: 97.9%, positive predictive value: 87.3%, negative predictive value: 95.1%) show that a prediction model can enable healthcare providers to identify in advance patients who are likely to be high utilizers of imaging services. Machine learning classifiers developed from narrative radiology reports are feasible methods to predict imaging utilization. Such systems can be used to identify high utilizers, inform future image ordering behavior, and encourage judicious use of imaging. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  6. An integer batch scheduling model considering learning, forgetting, and deterioration effects for a single machine to minimize total inventory holding cost

    NASA Astrophysics Data System (ADS)

    Yusriski, R.; Sukoyo; Samadhi, T. M. A. A.; Halim, A. H.

    2018-03-01

    This research deals with a single machine batch scheduling model considering the influenced of learning, forgetting, and machine deterioration effects. The objective of the model is to minimize total inventory holding cost, and the decision variables are the number of batches (N), batch sizes (Q[i], i = 1, 2, .., N) and the sequence of processing the resulting batches. The parts to be processed are received at the right time and the right quantities, and all completed parts must be delivered at a common due date. We propose a heuristic procedure based on the Lagrange method to solve the problem. The effectiveness of the procedure is evaluated by comparing the resulting solution to the optimal solution obtained from the enumeration procedure using the integer composition technique and shows that the average effectiveness is 94%.

  7. Predicting Flavonoid UGT Regioselectivity

    PubMed Central

    Jackson, Rhydon; Knisley, Debra; McIntosh, Cecilia; Pfeiffer, Phillip

    2011-01-01

    Machine learning was applied to a challenging and biologically significant protein classification problem: the prediction of avonoid UGT acceptor regioselectivity from primary sequence. Novel indices characterizing graphical models of residues were proposed and found to be widely distributed among existing amino acid indices and to cluster residues appropriately. UGT subsequences biochemically linked to regioselectivity were modeled as sets of index sequences. Several learning techniques incorporating these UGT models were compared with classifications based on standard sequence alignment scores. These techniques included an application of time series distance functions to protein classification. Time series distances defined on the index sequences were used in nearest neighbor and support vector machine classifiers. Additionally, Bayesian neural network classifiers were applied to the index sequences. The experiments identified improvements over the nearest neighbor and support vector machine classifications relying on standard alignment similarity scores, as well as strong correlations between specific subsequences and regioselectivities. PMID:21747849

  8. Comparison of Natural Language Processing Rules-based and Machine-learning Systems to Identify Lumbar Spine Imaging Findings Related to Low Back Pain.

    PubMed

    Tan, W Katherine; Hassanpour, Saeed; Heagerty, Patrick J; Rundell, Sean D; Suri, Pradeep; Huhdanpaa, Hannu T; James, Kathryn; Carrell, David S; Langlotz, Curtis P; Organ, Nancy L; Meier, Eric N; Sherman, Karen J; Kallmes, David F; Luetmer, Patrick H; Griffith, Brent; Nerenz, David R; Jarvik, Jeffrey G

    2018-03-28

    To evaluate a natural language processing (NLP) system built with open-source tools for identification of lumbar spine imaging findings related to low back pain on magnetic resonance and x-ray radiology reports from four health systems. We used a limited data set (de-identified except for dates) sampled from lumbar spine imaging reports of a prospectively assembled cohort of adults. From N = 178,333 reports, we randomly selected N = 871 to form a reference-standard dataset, consisting of N = 413 x-ray reports and N = 458 MR reports. Using standardized criteria, four spine experts annotated the presence of 26 findings, where 71 reports were annotated by all four experts and 800 were each annotated by two experts. We calculated inter-rater agreement and finding prevalence from annotated data. We randomly split the annotated data into development (80%) and testing (20%) sets. We developed an NLP system from both rule-based and machine-learned models. We validated the system using accuracy metrics such as sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). The multirater annotated dataset achieved inter-rater agreement of Cohen's kappa > 0.60 (substantial agreement) for 25 of 26 findings, with finding prevalence ranging from 3% to 89%. In the testing sample, rule-based and machine-learned predictions both had comparable average specificity (0.97 and 0.95, respectively). The machine-learned approach had a higher average sensitivity (0.94, compared to 0.83 for rules-based), and a higher overall AUC (0.98, compared to 0.90 for rules-based). Our NLP system performed well in identifying the 26 lumbar spine findings, as benchmarked by reference-standard annotation by medical experts. Machine-learned models provided substantial gains in model sensitivity with slight loss of specificity, and overall higher AUC. Copyright © 2018 The Association of University Radiologists. All rights reserved.

  9. Characterizing the SEMG patterns with myofascial pain using a multi-scale wavelet model through machine learning approaches.

    PubMed

    Lin, Yu-Ching; Yu, Nan-Ying; Jiang, Ching-Fen; Chang, Shao-Hsia

    2018-06-02

    In this paper, we introduce a newly developed multi-scale wavelet model for the interpretation of surface electromyography (SEMG) signals and validate the model's capability to characterize changes in neuromuscular activation in cases with myofascial pain syndrome (MPS) via machine learning methods. The SEMG data collected from normal (N = 30; 27 women, 3 men) and MPS subjects (N = 26; 22 women, 4 men) were adopted for this retrospective analysis. SMEGs were measured from the taut-band loci on both sides of the trapezius muscle on the upper back while he/she conducted a cyclic bilateral backward shoulder extension movement within 1 min. Classification accuracy of the SEMG model to differentiate MPS patients from normal subjects was 77% using template matching and 60% using K-means clustering. Classification consistency between the two machine learning methods was 87% in the normal group and 93% in the MPS group. The 2D feature graphs derived from the proposed multi-scale model revealed distinct patterns between normal subjects and MPS patients. The classification consistency using template matching and K-means clustering suggests the potential of using the proposed model to characterize interference pattern changes induced by MPS. Copyright © 2018. Published by Elsevier Ltd.

  10. The potential for machine learning algorithms to improve and reduce the cost of 3-dimensional printing for surgical planning.

    PubMed

    Huff, Trevor J; Ludwig, Parker E; Zuniga, Jorge M

    2018-05-01

    3D-printed anatomical models play an important role in medical and research settings. The recent successes of 3D anatomical models in healthcare have led many institutions to adopt the technology. However, there remain several issues that must be addressed before it can become more wide-spread. Of importance are the problems of cost and time of manufacturing. Machine learning (ML) could be utilized to solve these issues by streamlining the 3D modeling process through rapid medical image segmentation and improved patient selection and image acquisition. The current challenges, potential solutions, and future directions for ML and 3D anatomical modeling in healthcare are discussed. Areas covered: This review covers research articles in the field of machine learning as related to 3D anatomical modeling. Topics discussed include automated image segmentation, cost reduction, and related time constraints. Expert commentary: ML-based segmentation of medical images could potentially improve the process of 3D anatomical modeling. However, until more research is done to validate these technologies in clinical practice, their impact on patient outcomes will remain unknown. We have the necessary computational tools to tackle the problems discussed. The difficulty now lies in our ability to collect sufficient data.

  11. Dropout Prediction in E-Learning Courses through the Combination of Machine Learning Techniques

    ERIC Educational Resources Information Center

    Lykourentzou, Ioanna; Giannoukos, Ioannis; Nikolopoulos, Vassilis; Mpardis, George; Loumos, Vassili

    2009-01-01

    In this paper, a dropout prediction method for e-learning courses, based on three popular machine learning techniques and detailed student data, is proposed. The machine learning techniques used are feed-forward neural networks, support vector machines and probabilistic ensemble simplified fuzzy ARTMAP. Since a single technique may fail to…

  12. Prediction task guided representation learning of medical codes in EHR.

    PubMed

    Cui, Liwen; Xie, Xiaolei; Shen, Zuojun

    2018-06-18

    There have been rapidly growing applications using machine learning models for predictive analytics in Electronic Health Records (EHR) to improve the quality of hospital services and the efficiency of healthcare resource utilization. A fundamental and crucial step in developing such models is to convert medical codes in EHR to feature vectors. These medical codes are used to represent diagnoses or procedures. Their vector representations have a tremendous impact on the performance of machine learning models. Recently, some researchers have utilized representation learning methods from Natural Language Processing (NLP) to learn vector representations of medical codes. However, most previous approaches are unsupervised, i.e. the generation of medical code vectors is independent from prediction tasks. Thus, the obtained feature vectors may be inappropriate for a specific prediction task. Moreover, unsupervised methods often require a lot of samples to obtain reliable results, but most practical problems have very limited patient samples. In this paper, we develop a new method called Prediction Task Guided Health Record Aggregation (PTGHRA), which aggregates health records guided by prediction tasks, to construct training corpus for various representation learning models. Compared with unsupervised approaches, representation learning models integrated with PTGHRA yield a significant improvement in predictive capability of generated medical code vectors, especially for limited training samples. Copyright © 2018. Published by Elsevier Inc.

  13. Solving a Higgs optimization problem with quantum annealing for machine learning.

    PubMed

    Mott, Alex; Job, Joshua; Vlimant, Jean-Roch; Lidar, Daniel; Spiropulu, Maria

    2017-10-18

    The discovery of Higgs-boson decays in a background of standard-model processes was assisted by machine learning methods. The classifiers used to separate signals such as these from background are trained using highly unerring but not completely perfect simulations of the physical processes involved, often resulting in incorrect labelling of background processes or signals (label noise) and systematic errors. Here we use quantum and classical annealing (probabilistic techniques for approximating the global maximum or minimum of a given function) to solve a Higgs-signal-versus-background machine learning optimization problem, mapped to a problem of finding the ground state of a corresponding Ising spin model. We build a set of weak classifiers based on the kinematic observables of the Higgs decay photons, which we then use to construct a strong classifier. This strong classifier is highly resilient against overtraining and against errors in the correlations of the physical observables in the training data. We show that the resulting quantum and classical annealing-based classifier systems perform comparably to the state-of-the-art machine learning methods that are currently used in particle physics. However, in contrast to these methods, the annealing-based classifiers are simple functions of directly interpretable experimental parameters with clear physical meaning. The annealer-trained classifiers use the excited states in the vicinity of the ground state and demonstrate some advantage over traditional machine learning methods for small training datasets. Given the relative simplicity of the algorithm and its robustness to error, this technique may find application in other areas of experimental particle physics, such as real-time decision making in event-selection problems and classification in neutrino physics.

  14. Solving a Higgs optimization problem with quantum annealing for machine learning

    NASA Astrophysics Data System (ADS)

    Mott, Alex; Job, Joshua; Vlimant, Jean-Roch; Lidar, Daniel; Spiropulu, Maria

    2017-10-01

    The discovery of Higgs-boson decays in a background of standard-model processes was assisted by machine learning methods. The classifiers used to separate signals such as these from background are trained using highly unerring but not completely perfect simulations of the physical processes involved, often resulting in incorrect labelling of background processes or signals (label noise) and systematic errors. Here we use quantum and classical annealing (probabilistic techniques for approximating the global maximum or minimum of a given function) to solve a Higgs-signal-versus-background machine learning optimization problem, mapped to a problem of finding the ground state of a corresponding Ising spin model. We build a set of weak classifiers based on the kinematic observables of the Higgs decay photons, which we then use to construct a strong classifier. This strong classifier is highly resilient against overtraining and against errors in the correlations of the physical observables in the training data. We show that the resulting quantum and classical annealing-based classifier systems perform comparably to the state-of-the-art machine learning methods that are currently used in particle physics. However, in contrast to these methods, the annealing-based classifiers are simple functions of directly interpretable experimental parameters with clear physical meaning. The annealer-trained classifiers use the excited states in the vicinity of the ground state and demonstrate some advantage over traditional machine learning methods for small training datasets. Given the relative simplicity of the algorithm and its robustness to error, this technique may find application in other areas of experimental particle physics, such as real-time decision making in event-selection problems and classification in neutrino physics.

  15. Quantum ensembles of quantum classifiers.

    PubMed

    Schuld, Maria; Petruccione, Francesco

    2018-02-09

    Quantum machine learning witnesses an increasing amount of quantum algorithms for data-driven decision making, a problem with potential applications ranging from automated image recognition to medical diagnosis. Many of those algorithms are implementations of quantum classifiers, or models for the classification of data inputs with a quantum computer. Following the success of collective decision making with ensembles in classical machine learning, this paper introduces the concept of quantum ensembles of quantum classifiers. Creating the ensemble corresponds to a state preparation routine, after which the quantum classifiers are evaluated in parallel and their combined decision is accessed by a single-qubit measurement. This framework naturally allows for exponentially large ensembles in which - similar to Bayesian learning - the individual classifiers do not have to be trained. As an example, we analyse an exponentially large quantum ensemble in which each classifier is weighed according to its performance in classifying the training data, leading to new results for quantum as well as classical machine learning.

  16. Gradient boosting machine for modeling the energy consumption of commercial buildings

    DOE PAGES

    Touzani, Samir; Granderson, Jessica; Fernandes, Samuel

    2017-11-26

    Accurate savings estimations are important to promote energy efficiency projects and demonstrate their cost-effectiveness. The increasing presence of advanced metering infrastructure (AMI) in commercial buildings has resulted in a rising availability of high frequency interval data. These data can be used for a variety of energy efficiency applications such as demand response, fault detection and diagnosis, and heating, ventilation, and air conditioning (HVAC) optimization. This large amount of data has also opened the door to the use of advanced statistical learning models, which hold promise for providing accurate building baseline energy consumption predictions, and thus accurate saving estimations. The gradientmore » boosting machine is a powerful machine learning algorithm that is gaining considerable traction in a wide range of data driven applications, such as ecology, computer vision, and biology. In the present work an energy consumption baseline modeling method based on a gradient boosting machine was proposed. To assess the performance of this method, a recently published testing procedure was used on a large dataset of 410 commercial buildings. The model training periods were varied and several prediction accuracy metrics were used to evaluate the model's performance. The results show that using the gradient boosting machine model improved the R-squared prediction accuracy and the CV(RMSE) in more than 80 percent of the cases, when compared to an industry best practice model that is based on piecewise linear regression, and to a random forest algorithm.« less

  17. Gradient boosting machine for modeling the energy consumption of commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touzani, Samir; Granderson, Jessica; Fernandes, Samuel

    Accurate savings estimations are important to promote energy efficiency projects and demonstrate their cost-effectiveness. The increasing presence of advanced metering infrastructure (AMI) in commercial buildings has resulted in a rising availability of high frequency interval data. These data can be used for a variety of energy efficiency applications such as demand response, fault detection and diagnosis, and heating, ventilation, and air conditioning (HVAC) optimization. This large amount of data has also opened the door to the use of advanced statistical learning models, which hold promise for providing accurate building baseline energy consumption predictions, and thus accurate saving estimations. The gradientmore » boosting machine is a powerful machine learning algorithm that is gaining considerable traction in a wide range of data driven applications, such as ecology, computer vision, and biology. In the present work an energy consumption baseline modeling method based on a gradient boosting machine was proposed. To assess the performance of this method, a recently published testing procedure was used on a large dataset of 410 commercial buildings. The model training periods were varied and several prediction accuracy metrics were used to evaluate the model's performance. The results show that using the gradient boosting machine model improved the R-squared prediction accuracy and the CV(RMSE) in more than 80 percent of the cases, when compared to an industry best practice model that is based on piecewise linear regression, and to a random forest algorithm.« less

  18. Machine learning of molecular electronic properties in chemical compound space

    NASA Astrophysics Data System (ADS)

    Montavon, Grégoire; Rupp, Matthias; Gobre, Vivekanand; Vazquez-Mayagoitia, Alvaro; Hansen, Katja; Tkatchenko, Alexandre; Müller, Klaus-Robert; Anatole von Lilienfeld, O.

    2013-09-01

    The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a ‘quantum machine’ is similar, and sometimes superior, to modern quantum-chemical methods—at negligible computational cost.

  19. Machine learning methods enable predictive modeling of antibody feature:function relationships in RV144 vaccinees.

    PubMed

    Choi, Ickwon; Chung, Amy W; Suscovich, Todd J; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayaphan, Sorachai; Kaewkungwal, Jaranit; O'Connell, Robert J; Francis, Donald; Robb, Merlin L; Michael, Nelson L; Kim, Jerome H; Alter, Galit; Ackerman, Margaret E; Bailey-Kellogg, Chris

    2015-04-01

    The adaptive immune response to vaccination or infection can lead to the production of specific antibodies to neutralize the pathogen or recruit innate immune effector cells for help. The non-neutralizing role of antibodies in stimulating effector cell responses may have been a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive investigation of a rich set of data collected from RV144 vaccine recipients, we here employ machine learning methods to identify and model associations between antibody features (IgG subclass and antigen specificity) and effector function activities (antibody dependent cellular phagocytosis, cellular cytotoxicity, and cytokine release). We demonstrate via cross-validation that classification and regression approaches can effectively use the antibody features to robustly predict qualitative and quantitative functional outcomes. This integration of antibody feature and function data within a machine learning framework provides a new, objective approach to discovering and assessing multivariate immune correlates.

  20. Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture.

    PubMed

    Fernandez, Michael; Boyd, Peter G; Daff, Thomas D; Aghaji, Mohammad Zein; Woo, Tom K

    2014-09-04

    In this work, we have developed quantitative structure-property relationship (QSPR) models using advanced machine learning algorithms that can rapidly and accurately recognize high-performing metal organic framework (MOF) materials for CO2 capture. More specifically, QSPR classifiers have been developed that can, in a fraction of a section, identify candidate MOFs with enhanced CO2 adsorption capacity (>1 mmol/g at 0.15 bar and >4 mmol/g at 1 bar). The models were tested on a large set of 292 050 MOFs that were not part of the training set. The QSPR classifier could recover 945 of the top 1000 MOFs in the test set while flagging only 10% of the whole library for compute intensive screening. Thus, using the machine learning classifiers as part of a high-throughput screening protocol would result in an order of magnitude reduction in compute time and allow intractably large structure libraries and search spaces to be screened.

  1. Automated Data Assimilation and Flight Planning for Multi-Platform Observation Missions

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj; Morris, Robert A.; Strawa, Anthony; Kurklu, Elif; Keely, Leslie

    2008-01-01

    This is a progress report on an effort in which our goal is to demonstrate the effectiveness of automated data mining and planning for the daily management of Earth Science missions. Currently, data mining and machine learning technologies are being used by scientists at research labs for validating Earth science models. However, few if any of these advanced techniques are currently being integrated into daily mission operations. Consequently, there are significant gaps in the knowledge that can be derived from the models and data that are used each day for guiding mission activities. The result can be sub-optimal observation plans, lack of useful data, and wasteful use of resources. Recent advances in data mining, machine learning, and planning make it feasible to migrate these technologies into the daily mission planning cycle. We describe the design of a closed loop system for data acquisition, processing, and flight planning that integrates the results of machine learning into the flight planning process.

  2. Change detection and classification of land cover in multispectral satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.

    Neuromimetic machine vision and pattern recognition algorithms are of great interest for landscape characterization and change detection in satellite imagery in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methods to the environmental sciences, using adaptive sparse signal processing combined with machine learning. A Hebbian learning rule is used to build multispectral, multiresolution dictionaries from regional satellite normalized band difference index data. Land cover labels are automatically generated via our CoSA algorithm: Clustering of Sparse Approximations, using a clustering distance metric that combines spectral and spatial textural characteristics tomore » help separate geologic, vegetative, and hydrologie features. We demonstrate our method on example Worldview-2 satellite images of an Arctic region, and use CoSA labels to detect seasonal surface changes. In conclusion, our results suggest that neuroscience-based models are a promising approach to practical pattern recognition and change detection problems in remote sensing.« less

  3. Change detection and classification of land cover in multispectral satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    DOE PAGES

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...

    2014-10-01

    Neuromimetic machine vision and pattern recognition algorithms are of great interest for landscape characterization and change detection in satellite imagery in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methods to the environmental sciences, using adaptive sparse signal processing combined with machine learning. A Hebbian learning rule is used to build multispectral, multiresolution dictionaries from regional satellite normalized band difference index data. Land cover labels are automatically generated via our CoSA algorithm: Clustering of Sparse Approximations, using a clustering distance metric that combines spectral and spatial textural characteristics tomore » help separate geologic, vegetative, and hydrologie features. We demonstrate our method on example Worldview-2 satellite images of an Arctic region, and use CoSA labels to detect seasonal surface changes. In conclusion, our results suggest that neuroscience-based models are a promising approach to practical pattern recognition and change detection problems in remote sensing.« less

  4. Machine Learning Methods Enable Predictive Modeling of Antibody Feature:Function Relationships in RV144 Vaccinees

    PubMed Central

    Choi, Ickwon; Chung, Amy W.; Suscovich, Todd J.; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayaphan, Sorachai; Kaewkungwal, Jaranit; O'Connell, Robert J.; Francis, Donald; Robb, Merlin L.; Michael, Nelson L.; Kim, Jerome H.; Alter, Galit; Ackerman, Margaret E.; Bailey-Kellogg, Chris

    2015-01-01

    The adaptive immune response to vaccination or infection can lead to the production of specific antibodies to neutralize the pathogen or recruit innate immune effector cells for help. The non-neutralizing role of antibodies in stimulating effector cell responses may have been a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive investigation of a rich set of data collected from RV144 vaccine recipients, we here employ machine learning methods to identify and model associations between antibody features (IgG subclass and antigen specificity) and effector function activities (antibody dependent cellular phagocytosis, cellular cytotoxicity, and cytokine release). We demonstrate via cross-validation that classification and regression approaches can effectively use the antibody features to robustly predict qualitative and quantitative functional outcomes. This integration of antibody feature and function data within a machine learning framework provides a new, objective approach to discovering and assessing multivariate immune correlates. PMID:25874406

  5. Learning to represent spatial transformations with factored higher-order Boltzmann machines.

    PubMed

    Memisevic, Roland; Hinton, Geoffrey E

    2010-06-01

    To allow the hidden units of a restricted Boltzmann machine to model the transformation between two successive images, Memisevic and Hinton (2007) introduced three-way multiplicative interactions that use the intensity of a pixel in the first image as a multiplicative gain on a learned, symmetric weight between a pixel in the second image and a hidden unit. This creates cubically many parameters, which form a three-dimensional interaction tensor. We describe a low-rank approximation to this interaction tensor that uses a sum of factors, each of which is a three-way outer product. This approximation allows efficient learning of transformations between larger image patches. Since each factor can be viewed as an image filter, the model as a whole learns optimal filter pairs for efficiently representing transformations. We demonstrate the learning of optimal filter pairs from various synthetic and real image sequences. We also show how learning about image transformations allows the model to perform a simple visual analogy task, and we show how a completely unsupervised network trained on transformations perceives multiple motions of transparent dot patterns in the same way as humans.

  6. Seizure Classification From EEG Signals Using Transfer Learning, Semi-Supervised Learning and TSK Fuzzy System.

    PubMed

    Jiang, Yizhang; Wu, Dongrui; Deng, Zhaohong; Qian, Pengjiang; Wang, Jun; Wang, Guanjin; Chung, Fu-Lai; Choi, Kup-Sze; Wang, Shitong

    2017-12-01

    Recognition of epileptic seizures from offline EEG signals is very important in clinical diagnosis of epilepsy. Compared with manual labeling of EEG signals by doctors, machine learning approaches can be faster and more consistent. However, the classification accuracy is usually not satisfactory for two main reasons: the distributions of the data used for training and testing may be different, and the amount of training data may not be enough. In addition, most machine learning approaches generate black-box models that are difficult to interpret. In this paper, we integrate transductive transfer learning, semi-supervised learning and TSK fuzzy system to tackle these three problems. More specifically, we use transfer learning to reduce the discrepancy in data distribution between the training and testing data, employ semi-supervised learning to use the unlabeled testing data to remedy the shortage of training data, and adopt TSK fuzzy system to increase model interpretability. Two learning algorithms are proposed to train the system. Our experimental results show that the proposed approaches can achieve better performance than many state-of-the-art seizure classification algorithms.

  7. Classification of suicide attempters in schizophrenia using sociocultural and clinical features: A machine learning approach.

    PubMed

    Hettige, Nuwan C; Nguyen, Thai Binh; Yuan, Chen; Rajakulendran, Thanara; Baddour, Jermeen; Bhagwat, Nikhil; Bani-Fatemi, Ali; Voineskos, Aristotle N; Mallar Chakravarty, M; De Luca, Vincenzo

    2017-07-01

    Suicide is a major concern for those afflicted by schizophrenia. Identifying patients at the highest risk for future suicide attempts remains a complex problem for psychiatric interventions. Machine learning models allow for the integration of many risk factors in order to build an algorithm that predicts which patients are likely to attempt suicide. Currently it is unclear how to integrate previously identified risk factors into a clinically relevant predictive tool to estimate the probability of a patient with schizophrenia for attempting suicide. We conducted a cross-sectional assessment on a sample of 345 participants diagnosed with schizophrenia spectrum disorders. Suicide attempters and non-attempters were clearly identified using the Columbia Suicide Severity Rating Scale (C-SSRS) and the Beck Suicide Ideation Scale (BSS). We developed four classification algorithms using a regularized regression, random forest, elastic net and support vector machine models with sociocultural and clinical variables as features to train the models. All classification models performed similarly in identifying suicide attempters and non-attempters. Our regularized logistic regression model demonstrated an accuracy of 67% and an area under the curve (AUC) of 0.71, while the random forest model demonstrated 66% accuracy and an AUC of 0.67. Support vector classifier (SVC) model demonstrated an accuracy of 67% and an AUC of 0.70, and the elastic net model demonstrated and accuracy of 65% and an AUC of 0.71. Machine learning algorithms offer a relatively successful method for incorporating many clinical features to predict individuals at risk for future suicide attempts. Increased performance of these models using clinically relevant variables offers the potential to facilitate early treatment and intervention to prevent future suicide attempts. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Prediction of skin sensitization potency using machine learning approaches.

    PubMed

    Zang, Qingda; Paris, Michael; Lehmann, David M; Bell, Shannon; Kleinstreuer, Nicole; Allen, David; Matheson, Joanna; Jacobs, Abigail; Casey, Warren; Strickland, Judy

    2017-07-01

    The replacement of animal use in testing for regulatory classification of skin sensitizers is a priority for US federal agencies that use data from such testing. Machine learning models that classify substances as sensitizers or non-sensitizers without using animal data have been developed and evaluated. Because some regulatory agencies require that sensitizers be further classified into potency categories, we developed statistical models to predict skin sensitization potency for murine local lymph node assay (LLNA) and human outcomes. Input variables for our models included six physicochemical properties and data from three non-animal test methods: direct peptide reactivity assay; human cell line activation test; and KeratinoSens™ assay. Models were built to predict three potency categories using four machine learning approaches and were validated using external test sets and leave-one-out cross-validation. A one-tiered strategy modeled all three categories of response together while a two-tiered strategy modeled sensitizer/non-sensitizer responses and then classified the sensitizers as strong or weak sensitizers. The two-tiered model using the support vector machine with all assay and physicochemical data inputs provided the best performance, yielding accuracy of 88% for prediction of LLNA outcomes (120 substances) and 81% for prediction of human test outcomes (87 substances). The best one-tiered model predicted LLNA outcomes with 78% accuracy and human outcomes with 75% accuracy. By comparison, the LLNA predicts human potency categories with 69% accuracy (60 of 87 substances correctly categorized). These results suggest that computational models using non-animal methods may provide valuable information for assessing skin sensitization potency. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Glucose Oxidase Biosensor Modeling and Predictors Optimization by Machine Learning Methods.

    PubMed

    Gonzalez-Navarro, Felix F; Stilianova-Stoytcheva, Margarita; Renteria-Gutierrez, Livier; Belanche-Muñoz, Lluís A; Flores-Rios, Brenda L; Ibarra-Esquer, Jorge E

    2016-10-26

    Biosensors are small analytical devices incorporating a biological recognition element and a physico-chemical transducer to convert a biological signal into an electrical reading. Nowadays, their technological appeal resides in their fast performance, high sensitivity and continuous measuring capabilities; however, a full understanding is still under research. This paper aims to contribute to this growing field of biotechnology, with a focus on Glucose-Oxidase Biosensor (GOB) modeling through statistical learning methods from a regression perspective. We model the amperometric response of a GOB with dependent variables under different conditions, such as temperature, benzoquinone, pH and glucose concentrations, by means of several machine learning algorithms. Since the sensitivity of a GOB response is strongly related to these dependent variables, their interactions should be optimized to maximize the output signal, for which a genetic algorithm and simulated annealing are used. We report a model that shows a good generalization error and is consistent with the optimization.

  10. The Security of Machine Learning

    DTIC Science & Technology

    2008-04-24

    Machine learning has become a fundamental tool for computer security, since it can rapidly evolve to changing and complex situations. That...adaptability is also a vulnerability: attackers can exploit machine learning systems. We present a taxonomy identifying and analyzing attacks against machine ...We use our framework to survey and analyze the literature of attacks against machine learning systems. We also illustrate our taxonomy by showing

  11. Force Sensor Based Tool Condition Monitoring Using a Heterogeneous Ensemble Learning Model

    PubMed Central

    Wang, Guofeng; Yang, Yinwei; Li, Zhimeng

    2014-01-01

    Tool condition monitoring (TCM) plays an important role in improving machining efficiency and guaranteeing workpiece quality. In order to realize reliable recognition of the tool condition, a robust classifier needs to be constructed to depict the relationship between tool wear states and sensory information. However, because of the complexity of the machining process and the uncertainty of the tool wear evolution, it is hard for a single classifier to fit all the collected samples without sacrificing generalization ability. In this paper, heterogeneous ensemble learning is proposed to realize tool condition monitoring in which the support vector machine (SVM), hidden Markov model (HMM) and radius basis function (RBF) are selected as base classifiers and a stacking ensemble strategy is further used to reflect the relationship between the outputs of these base classifiers and tool wear states. Based on the heterogeneous ensemble learning classifier, an online monitoring system is constructed in which the harmonic features are extracted from force signals and a minimal redundancy and maximal relevance (mRMR) algorithm is utilized to select the most prominent features. To verify the effectiveness of the proposed method, a titanium alloy milling experiment was carried out and samples with different tool wear states were collected to build the proposed heterogeneous ensemble learning classifier. Moreover, the homogeneous ensemble learning model and majority voting strategy are also adopted to make a comparison. The analysis and comparison results show that the proposed heterogeneous ensemble learning classifier performs better in both classification accuracy and stability. PMID:25405514

  12. Force sensor based tool condition monitoring using a heterogeneous ensemble learning model.

    PubMed

    Wang, Guofeng; Yang, Yinwei; Li, Zhimeng

    2014-11-14

    Tool condition monitoring (TCM) plays an important role in improving machining efficiency and guaranteeing workpiece quality. In order to realize reliable recognition of the tool condition, a robust classifier needs to be constructed to depict the relationship between tool wear states and sensory information. However, because of the complexity of the machining process and the uncertainty of the tool wear evolution, it is hard for a single classifier to fit all the collected samples without sacrificing generalization ability. In this paper, heterogeneous ensemble learning is proposed to realize tool condition monitoring in which the support vector machine (SVM), hidden Markov model (HMM) and radius basis function (RBF) are selected as base classifiers and a stacking ensemble strategy is further used to reflect the relationship between the outputs of these base classifiers and tool wear states. Based on the heterogeneous ensemble learning classifier, an online monitoring system is constructed in which the harmonic features are extracted from force signals and a minimal redundancy and maximal relevance (mRMR) algorithm is utilized to select the most prominent features. To verify the effectiveness of the proposed method, a titanium alloy milling experiment was carried out and samples with different tool wear states were collected to build the proposed heterogeneous ensemble learning classifier. Moreover, the homogeneous ensemble learning model and majority voting strategy are also adopted to make a comparison. The analysis and comparison results show that the proposed heterogeneous ensemble learning classifier performs better in both classification accuracy and stability.

  13. Molecular graph convolutions: moving beyond fingerprints

    PubMed Central

    Kearnes, Steven; McCloskey, Kevin; Berndl, Marc; Pande, Vijay; Riley, Patrick

    2016-01-01

    Molecular “fingerprints” encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph—atoms, bonds, distances, etc.—which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement. PMID:27558503

  14. exprso: an R-package for the rapid implementation of machine learning algorithms.

    PubMed

    Quinn, Thomas; Tylee, Daniel; Glatt, Stephen

    2016-01-01

    Machine learning plays a major role in many scientific investigations. However, non-expert programmers may struggle to implement the elaborate pipelines necessary to build highly accurate and generalizable models. We introduce exprso , a new R package that is an intuitive machine learning suite designed specifically for non-expert programmers. Built initially for the classification of high-dimensional data, exprso uses an object-oriented framework to encapsulate a number of common analytical methods into a series of interchangeable modules. This includes modules for feature selection, classification, high-throughput parameter grid-searching, elaborate cross-validation schemes (e.g., Monte Carlo and nested cross-validation), ensemble classification, and prediction. In addition, exprso also supports multi-class classification (through the 1-vs-all generalization of binary classifiers) and the prediction of continuous outcomes.

  15. Entanglement-Based Machine Learning on a Quantum Computer

    NASA Astrophysics Data System (ADS)

    Cai, X.-D.; Wu, D.; Su, Z.-E.; Chen, M.-C.; Wang, X.-L.; Li, Li; Liu, N.-L.; Lu, C.-Y.; Pan, J.-W.

    2015-03-01

    Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.

  16. Online Sequential Projection Vector Machine with Adaptive Data Mean Update

    PubMed Central

    Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei

    2016-01-01

    We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM. PMID:27143958

  17. Online Sequential Projection Vector Machine with Adaptive Data Mean Update.

    PubMed

    Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei

    2016-01-01

    We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM.

  18. A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning

    NASA Astrophysics Data System (ADS)

    Houborg, Rasmus; McCabe, Matthew F.

    2018-01-01

    With an increasing volume and dimensionality of Earth observation data, enhanced integration of machine-learning methodologies is needed to effectively analyze and utilize these information rich datasets. In machine-learning, a training dataset is required to establish explicit associations between a suite of explanatory 'predictor' variables and the target property. The specifics of this learning process can significantly influence model validity and portability, with a higher generalization level expected with an increasing number of observable conditions being reflected in the training dataset. Here we propose a hybrid training approach for leaf area index (LAI) estimation, which harnesses synergistic attributes of scattered in-situ measurements and systematically distributed physically based model inversion results to enhance the information content and spatial representativeness of the training data. To do this, a complimentary training dataset of independent LAI was derived from a regularized model inversion of RapidEye surface reflectances and subsequently used to guide the development of LAI regression models via Cubist and random forests (RF) decision tree methods. The application of the hybrid training approach to a broad set of Landsat 8 vegetation index (VI) predictor variables resulted in significantly improved LAI prediction accuracies and spatial consistencies, relative to results relying on in-situ measurements alone for model training. In comparing the prediction capacity and portability of the two machine-learning algorithms, a pair of relatively simple multi-variate regression models established by Cubist performed best, with an overall relative mean absolute deviation (rMAD) of ∼11%, determined based on a stringent scene-specific cross-validation approach. In comparison, the portability of RF regression models was less effective (i.e., an overall rMAD of ∼15%), which was attributed partly to model saturation at high LAI in association with inherent extrapolation and transferability limitations. Explanatory VIs formed from bands in the near-infrared (NIR) and shortwave infrared domains (e.g., NDWI) were associated with the highest predictive ability, whereas Cubist models relying entirely on VIs based on NIR and red band combinations (e.g., NDVI) were associated with comparatively high uncertainties (i.e., rMAD ∼ 21%). The most transferable and best performing models were based on combinations of several predictor variables, which included both NDWI- and NDVI-like variables. In this process, prior screening of input VIs based on an assessment of variable relevance served as an effective mechanism for optimizing prediction accuracies from both Cubist and RF. While this study demonstrated benefit in combining data mining operations with physically based constraints via a hybrid training approach, the concept of transferability and portability warrants further investigations in order to realize the full potential of emerging machine-learning techniques for regression purposes.

  19. Elicitation of neurological knowledge with argument-based machine learning.

    PubMed

    Groznik, Vida; Guid, Matej; Sadikov, Aleksander; Možina, Martin; Georgiev, Dejan; Kragelj, Veronika; Ribarič, Samo; Pirtošek, Zvezdan; Bratko, Ivan

    2013-02-01

    The paper describes the use of expert's knowledge in practice and the efficiency of a recently developed technique called argument-based machine learning (ABML) in the knowledge elicitation process. We are developing a neurological decision support system to help the neurologists differentiate between three types of tremors: Parkinsonian, essential, and mixed tremor (comorbidity). The system is intended to act as a second opinion for the neurologists, and most importantly to help them reduce the number of patients in the "gray area" that require a very costly further examination (DaTSCAN). We strive to elicit comprehensible and medically meaningful knowledge in such a way that it does not come at the cost of diagnostic accuracy. To alleviate the difficult problem of knowledge elicitation from data and domain experts, we used ABML. ABML guides the expert to explain critical special cases which cannot be handled automatically by machine learning. This very efficiently reduces the expert's workload, and combines expert's knowledge with learning data. 122 patients were enrolled into the study. The classification accuracy of the final model was 91%. Equally important, the initial and the final models were also evaluated for their comprehensibility by the neurologists. All 13 rules of the final model were deemed as appropriate to be able to support its decisions with good explanations. The paper demonstrates ABML's advantage in combining machine learning and expert knowledge. The accuracy of the system is very high with respect to the current state-of-the-art in clinical practice, and the system's knowledge base is assessed to be very consistent from a medical point of view. This opens up the possibility to use the system also as a teaching tool. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Prediction of residue-residue contact matrix for protein-protein interaction with Fisher score features and deep learning.

    PubMed

    Du, Tianchuan; Liao, Li; Wu, Cathy H; Sun, Bilin

    2016-11-01

    Protein-protein interactions play essential roles in many biological processes. Acquiring knowledge of the residue-residue contact information of two interacting proteins is not only helpful in annotating functions for proteins, but also critical for structure-based drug design. The prediction of the protein residue-residue contact matrix of the interfacial regions is challenging. In this work, we introduced deep learning techniques (specifically, stacked autoencoders) to build deep neural network models to tackled the residue-residue contact prediction problem. In tandem with interaction profile Hidden Markov Models, which was used first to extract Fisher score features from protein sequences, stacked autoencoders were deployed to extract and learn hidden abstract features. The deep learning model showed significant improvement over the traditional machine learning model, Support Vector Machines (SVM), with the overall accuracy increased by 15% from 65.40% to 80.82%. We showed that the stacked autoencoders could extract novel features, which can be utilized by deep neural networks and other classifiers to enhance learning, out of the Fisher score features. It is further shown that deep neural networks have significant advantages over SVM in making use of the newly extracted features. Copyright © 2016. Published by Elsevier Inc.

  1. Efficient Prediction of Low-Visibility Events at Airports Using Machine-Learning Regression

    NASA Astrophysics Data System (ADS)

    Cornejo-Bueno, L.; Casanova-Mateo, C.; Sanz-Justo, J.; Cerro-Prada, E.; Salcedo-Sanz, S.

    2017-11-01

    We address the prediction of low-visibility events at airports using machine-learning regression. The proposed model successfully forecasts low-visibility events in terms of the runway visual range at the airport, with the use of support-vector regression, neural networks (multi-layer perceptrons and extreme-learning machines) and Gaussian-process algorithms. We assess the performance of these algorithms based on real data collected at the Valladolid airport, Spain. We also propose a study of the atmospheric variables measured at a nearby tower related to low-visibility atmospheric conditions, since they are considered as the inputs of the different regressors. A pre-processing procedure of these input variables with wavelet transforms is also described. The results show that the proposed machine-learning algorithms are able to predict low-visibility events well. The Gaussian process is the best algorithm among those analyzed, obtaining over 98% of the correct classification rate in low-visibility events when the runway visual range is {>}1000 m, and about 80% under this threshold. The performance of all the machine-learning algorithms tested is clearly affected in extreme low-visibility conditions ({<}500 m). However, we show improved results of all the methods when data from a neighbouring meteorological tower are included, and also with a pre-processing scheme using a wavelet transform. Also presented are results of the algorithm performance in daytime and nighttime conditions, and for different prediction time horizons.

  2. Using Perturbed Physics Ensembles and Machine Learning to Select Parameters for Reducing Regional Biases in a Global Climate Model

    NASA Astrophysics Data System (ADS)

    Li, S.; Rupp, D. E.; Hawkins, L.; Mote, P.; McNeall, D. J.; Sarah, S.; Wallom, D.; Betts, R. A.

    2017-12-01

    This study investigates the potential to reduce known summer hot/dry biases over Pacific Northwest in the UK Met Office's atmospheric model (HadAM3P) by simultaneously varying multiple model parameters. The bias-reduction process is done through a series of steps: 1) Generation of perturbed physics ensemble (PPE) through the volunteer computing network weather@home; 2) Using machine learning to train "cheap" and fast statistical emulators of climate model, to rule out regions of parameter spaces that lead to model variants that do not satisfy observational constraints, where the observational constraints (e.g., top-of-atmosphere energy flux, magnitude of annual temperature cycle, summer/winter temperature and precipitation) are introduced sequentially; 3) Designing a new PPE by "pre-filtering" using the emulator results. Steps 1) through 3) are repeated until results are considered to be satisfactory (3 times in our case). The process includes a sensitivity analysis to find dominant parameters for various model output metrics, which reduces the number of parameters to be perturbed with each new PPE. Relative to observational uncertainty, we achieve regional improvements without introducing large biases in other parts of the globe. Our results illustrate the potential of using machine learning to train cheap and fast statistical emulators of climate model, in combination with PPEs in systematic model improvement.

  3. Building machines that adapt and compute like brains.

    PubMed

    Kriegeskorte, Nikolaus; Mok, Robert M

    2017-01-01

    Building machines that learn and think like humans is essential not only for cognitive science, but also for computational neuroscience, whose ultimate goal is to understand how cognition is implemented in biological brains. A new cognitive computational neuroscience should build cognitive-level and neural-level models, understand their relationships, and test both types of models with both brain and behavioral data.

  4. Applications of Support Vector Machines In Chemo And Bioinformatics

    NASA Astrophysics Data System (ADS)

    Jayaraman, V. K.; Sundararajan, V.

    2010-10-01

    Conventional linear & nonlinear tools for classification, regression & data driven modeling are being replaced on a rapid scale by newer techniques & tools based on artificial intelligence and machine learning. While the linear techniques are not applicable for inherently nonlinear problems, newer methods serve as attractive alternatives for solving real life problems. Support Vector Machine (SVM) classifiers are a set of universal feed-forward network based classification algorithms that have been formulated from statistical learning theory and structural risk minimization principle. SVM regression closely follows the classification methodology. In this work recent applications of SVM in Chemo & Bioinformatics will be described with suitable illustrative examples.

  5. An Analysis of Machine- and Human-Analytics in Classification.

    PubMed

    Tam, Gary K L; Kothari, Vivek; Chen, Min

    2017-01-01

    In this work, we present a study that traces the technical and cognitive processes in two visual analytics applications to a common theoretic model of soft knowledge that may be added into a visual analytics process for constructing a decision-tree model. Both case studies involved the development of classification models based on the "bag of features" approach. Both compared a visual analytics approach using parallel coordinates with a machine-learning approach using information theory. Both found that the visual analytics approach had some advantages over the machine learning approach, especially when sparse datasets were used as the ground truth. We examine various possible factors that may have contributed to such advantages, and collect empirical evidence for supporting the observation and reasoning of these factors. We propose an information-theoretic model as a common theoretic basis to explain the phenomena exhibited in these two case studies. Together we provide interconnected empirical and theoretical evidence to support the usefulness of visual analytics.

  6. A Digital Liquid State Machine With Biologically Inspired Learning and Its Application to Speech Recognition.

    PubMed

    Zhang, Yong; Li, Peng; Jin, Yingyezhe; Choe, Yoonsuck

    2015-11-01

    This paper presents a bioinspired digital liquid-state machine (LSM) for low-power very-large-scale-integration (VLSI)-based machine learning applications. To the best of the authors' knowledge, this is the first work that employs a bioinspired spike-based learning algorithm for the LSM. With the proposed online learning, the LSM extracts information from input patterns on the fly without needing intermediate data storage as required in offline learning methods such as ridge regression. The proposed learning rule is local such that each synaptic weight update is based only upon the firing activities of the corresponding presynaptic and postsynaptic neurons without incurring global communications across the neural network. Compared with the backpropagation-based learning, the locality of computation in the proposed approach lends itself to efficient parallel VLSI implementation. We use subsets of the TI46 speech corpus to benchmark the bioinspired digital LSM. To reduce the complexity of the spiking neural network model without performance degradation for speech recognition, we study the impacts of synaptic models on the fading memory of the reservoir and hence the network performance. Moreover, we examine the tradeoffs between synaptic weight resolution, reservoir size, and recognition performance and present techniques to further reduce the overhead of hardware implementation. Our simulation results show that in terms of isolated word recognition evaluated using the TI46 speech corpus, the proposed digital LSM rivals the state-of-the-art hidden Markov-model-based recognizer Sphinx-4 and outperforms all other reported recognizers including the ones that are based upon the LSM or neural networks.

  7. Prediction of Protein-Protein Interaction Sites with Machine-Learning-Based Data-Cleaning and Post-Filtering Procedures.

    PubMed

    Liu, Guang-Hui; Shen, Hong-Bin; Yu, Dong-Jun

    2016-04-01

    Accurately predicting protein-protein interaction sites (PPIs) is currently a hot topic because it has been demonstrated to be very useful for understanding disease mechanisms and designing drugs. Machine-learning-based computational approaches have been broadly utilized and demonstrated to be useful for PPI prediction. However, directly applying traditional machine learning algorithms, which often assume that samples in different classes are balanced, often leads to poor performance because of the severe class imbalance that exists in the PPI prediction problem. In this study, we propose a novel method for improving PPI prediction performance by relieving the severity of class imbalance using a data-cleaning procedure and reducing predicted false positives with a post-filtering procedure: First, a machine-learning-based data-cleaning procedure is applied to remove those marginal targets, which may potentially have a negative effect on training a model with a clear classification boundary, from the majority samples to relieve the severity of class imbalance in the original training dataset; then, a prediction model is trained on the cleaned dataset; finally, an effective post-filtering procedure is further used to reduce potential false positive predictions. Stringent cross-validation and independent validation tests on benchmark datasets demonstrated the efficacy of the proposed method, which exhibits highly competitive performance compared with existing state-of-the-art sequence-based PPIs predictors and should supplement existing PPI prediction methods.

  8. A cooperative approach among methods for photometric redshifts estimation: an application to KiDS data

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Tortora, C.; Brescia, M.; Longo, G.; Radovich, M.; Napolitano, N. R.; Amaro, V.; Vellucci, C.; La Barbera, F.; Getman, F.; Grado, A.

    2017-04-01

    Photometric redshifts (photo-z) are fundamental in galaxy surveys to address different topics, from gravitational lensing and dark matter distribution to galaxy evolution. The Kilo Degree Survey (KiDS), I.e. the European Southern Observatory (ESO) public survey on the VLT Survey Telescope (VST), provides the unprecedented opportunity to exploit a large galaxy data set with an exceptional image quality and depth in the optical wavebands. Using a KiDS subset of about 25000 galaxies with measured spectroscopic redshifts, we have derived photo-z using (I) three different empirical methods based on supervised machine learning; (II) the Bayesian photometric redshift model (or BPZ); and (III) a classical spectral energy distribution (SED) template fitting procedure (LE PHARE). We confirm that, in the regions of the photometric parameter space properly sampled by the spectroscopic templates, machine learning methods provide better redshift estimates, with a lower scatter and a smaller fraction of outliers. SED fitting techniques, however, provide useful information on the galaxy spectral type, which can be effectively used to constrain systematic errors and to better characterize potential catastrophic outliers. Such classification is then used to specialize the training of regression machine learning models, by demonstrating that a hybrid approach, involving SED fitting and machine learning in a single collaborative framework, can be effectively used to improve the accuracy of photo-z estimates.

  9. Probabilistic and machine learning-based retrieval approaches for biomedical dataset retrieval

    PubMed Central

    Karisani, Payam; Qin, Zhaohui S; Agichtein, Eugene

    2018-01-01

    Abstract The bioCADDIE dataset retrieval challenge brought together different approaches to retrieval of biomedical datasets relevant to a user’s query, expressed as a text description of a needed dataset. We describe experiments in applying a data-driven, machine learning-based approach to biomedical dataset retrieval as part of this challenge. We report on a series of experiments carried out to evaluate the performance of both probabilistic and machine learning-driven techniques from information retrieval, as applied to this challenge. Our experiments with probabilistic information retrieval methods, such as query term weight optimization, automatic query expansion and simulated user relevance feedback, demonstrate that automatically boosting the weights of important keywords in a verbose query is more effective than other methods. We also show that although there is a rich space of potential representations and features available in this domain, machine learning-based re-ranking models are not able to improve on probabilistic information retrieval techniques with the currently available training data. The models and algorithms presented in this paper can serve as a viable implementation of a search engine to provide access to biomedical datasets. The retrieval performance is expected to be further improved by using additional training data that is created by expert annotation, or gathered through usage logs, clicks and other processes during natural operation of the system. Database URL: https://github.com/emory-irlab/biocaddie PMID:29688379

  10. Fast machine-learning online optimization of ultra-cold-atom experiments.

    PubMed

    Wigley, P B; Everitt, P J; van den Hengel, A; Bastian, J W; Sooriyabandara, M A; McDonald, G D; Hardman, K S; Quinlivan, C D; Manju, P; Kuhn, C C N; Petersen, I R; Luiten, A N; Hope, J J; Robins, N P; Hush, M R

    2016-05-16

    We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our 'learner' discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system.

  11. Fast machine-learning online optimization of ultra-cold-atom experiments

    PubMed Central

    Wigley, P. B.; Everitt, P. J.; van den Hengel, A.; Bastian, J. W.; Sooriyabandara, M. A.; McDonald, G. D.; Hardman, K. S.; Quinlivan, C. D.; Manju, P.; Kuhn, C. C. N.; Petersen, I. R.; Luiten, A. N.; Hope, J. J.; Robins, N. P.; Hush, M. R.

    2016-01-01

    We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our ‘learner’ discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system. PMID:27180805

  12. Study on Temperature and Synthetic Compensation of Piezo-Resistive Differential Pressure Sensors by Coupled Simulated Annealing and Simplex Optimized Kernel Extreme Learning Machine

    PubMed Central

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam SM, Jahangir

    2017-01-01

    As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems. PMID:28422080

  13. Study on Temperature and Synthetic Compensation of Piezo-Resistive Differential Pressure Sensors by Coupled Simulated Annealing and Simplex Optimized Kernel Extreme Learning Machine.

    PubMed

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir

    2017-04-19

    As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems.

  14. Informing the Human Plasma Protein Binding of Environmental Chemicals by Machine Learning in the Pharmaceutical Space: Applicability Domain and Limits of Predictability.

    PubMed

    Ingle, Brandall L; Veber, Brandon C; Nichols, John W; Tornero-Velez, Rogelio

    2016-11-28

    The free fraction of a xenobiotic in plasma (F ub ) is an important determinant of chemical adsorption, distribution, metabolism, elimination, and toxicity, yet experimental plasma protein binding data are scarce for environmentally relevant chemicals. The presented work explores the merit of utilizing available pharmaceutical data to predict F ub for environmentally relevant chemicals via machine learning techniques. Quantitative structure-activity relationship (QSAR) models were constructed with k nearest neighbors (kNN), support vector machines (SVM), and random forest (RF) machine learning algorithms from a training set of 1045 pharmaceuticals. The models were then evaluated with independent test sets of pharmaceuticals (200 compounds) and environmentally relevant ToxCast chemicals (406 total, in two groups of 238 and 168 compounds). The selection of a minimal feature set of 10-15 2D molecular descriptors allowed for both informative feature interpretation and practical applicability domain assessment via a bounded box of descriptor ranges and principal component analysis. The diverse pharmaceutical and environmental chemical sets exhibit similarities in terms of chemical space (99-82% overlap), as well as comparable bias and variance in constructed learning curves. All the models exhibit significant predictability with mean absolute errors (MAE) in the range of 0.10-0.18F ub . The models performed best for highly bound chemicals (MAE 0.07-0.12), neutrals (MAE 0.11-0.14), and acids (MAE 0.14-0.17). A consensus model had the highest accuracy across both pharmaceuticals (MAE 0.151-0.155) and environmentally relevant chemicals (MAE 0.110-0.131). The inclusion of the majority of the ToxCast test sets within the AD of the consensus model, coupled with high prediction accuracy for these chemicals, indicates the model provides a QSAR for F ub that is broadly applicable to both pharmaceuticals and environmentally relevant chemicals.

  15. Predicting Pre-planting Risk of Stagonospora nodorum blotch in Winter Wheat Using Machine Learning Models.

    PubMed

    Mehra, Lucky K; Cowger, Christina; Gross, Kevin; Ojiambo, Peter S

    2016-01-01

    Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum). The relative importance of these factors in the risk of SNB has not been determined and this knowledge can facilitate disease management decisions prior to planting of the wheat crop. In this study, we examined the performance of multiple regression (MR) and three machine learning algorithms namely artificial neural networks, categorical and regression trees, and random forests (RF), in predicting the pre-planting risk of SNB in wheat. Pre-planting factors tested as potential predictor variables were cultivar resistance, latitude, longitude, previous crop, seeding rate, seed treatment, tillage type, and wheat residue. Disease severity assessed at the end of the growing season was used as the response variable. The models were developed using 431 disease cases (unique combinations of predictors) collected from 2012 to 2014 and these cases were randomly divided into training, validation, and test datasets. Models were evaluated based on the regression of observed against predicted severity values of SNB, sensitivity-specificity ROC analysis, and the Kappa statistic. A strong relationship was observed between late-season severity of SNB and specific pre-planting factors in which latitude, longitude, wheat residue, and cultivar resistance were the most important predictors. The MR model explained 33% of variability in the data, while machine learning models explained 47 to 79% of the total variability. Similarly, the MR model correctly classified 74% of the disease cases, while machine learning models correctly classified 81 to 83% of these cases. Results show that the RF algorithm, which explained 79% of the variability within the data, was the most accurate in predicting the risk of SNB, with an accuracy rate of 93%. The RF algorithm could allow early assessment of the risk of SNB, facilitating sound disease management decisions prior to planting of wheat.

  16. Defense Logistics Standard Systems Functional Requirements.

    DTIC Science & Technology

    1987-03-01

    Artificial Intelligence - the development of a machine capability to perform functions normally concerned with human intelligence, such as learning , adapting...Basic Data Base Machine Configurations .... ......... D- 18 xx ~ ?f~~~vX PART I: MODELS - DEFENSE LOGISTICS STANDARD SYSTEMS FUNCTIONAL REQUIREMENTS...On-line, Interactive Access. Integrating user input and machine output in a dynamic, real-time, give-and- take process is considered the optimum mode

  17. Robert Spencer | NREL

    Science.gov Websites

    & Simulation Research Interests Remote Sensing Natural Resource Modeling Machine Learning Education Analysis Center. Areas of Expertise Geospatial Analysis Data Visualization Algorithm Development Modeling

  18. Obtaining Accurate Probabilities Using Classifier Calibration

    ERIC Educational Resources Information Center

    Pakdaman Naeini, Mahdi

    2016-01-01

    Learning probabilistic classification and prediction models that generate accurate probabilities is essential in many prediction and decision-making tasks in machine learning and data mining. One way to achieve this goal is to post-process the output of classification models to obtain more accurate probabilities. These post-processing methods are…

  19. Machine learning vortices at the Kosterlitz-Thouless transition

    NASA Astrophysics Data System (ADS)

    Beach, Matthew J. S.; Golubeva, Anna; Melko, Roger G.

    2018-01-01

    Efficient and automated classification of phases from minimally processed data is one goal of machine learning in condensed-matter and statistical physics. Supervised algorithms trained on raw samples of microstates can successfully detect conventional phase transitions via learning a bulk feature such as an order parameter. In this paper, we investigate whether neural networks can learn to classify phases based on topological defects. We address this question on the two-dimensional classical XY model which exhibits a Kosterlitz-Thouless transition. We find significant feature engineering of the raw spin states is required to convincingly claim that features of the vortex configurations are responsible for learning the transition temperature. We further show a single-layer network does not correctly classify the phases of the XY model, while a convolutional network easily performs classification by learning the global magnetization. Finally, we design a deep network capable of learning vortices without feature engineering. We demonstrate the detection of vortices does not necessarily result in the best classification accuracy, especially for lattices of less than approximately 1000 spins. For larger systems, it remains a difficult task to learn vortices.

  20. A Machine Learning and Optimization Toolkit for the Swarm

    DTIC Science & Technology

    2014-11-17

    Machine   Learning  and  Op0miza0on   Toolkit  for  the  Swarm   Ilge  Akkaya,  Shuhei  Emoto...3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE A Machine Learning and Optimization Toolkit for the Swarm 5a. CONTRACT NUMBER... machine   learning   methodologies  by  providing  the  right  interfaces  between   machine   learning  tools  and

Top