Toward Intelligent Machine Learning Algorithms
1988-05-01
Machine learning is recognized as a tool for improving the performance of many kinds of systems, yet most machine learning systems themselves are not...directed systems, and with the addition of a knowledge store for organizing and maintaining knowledge to assist learning, a learning machine learning (L...ML) algorithm is possible. The necessary components of L-ML systems are presented along with several case descriptions of existing machine learning systems
Web Mining: Machine Learning for Web Applications.
ERIC Educational Resources Information Center
Chen, Hsinchun; Chau, Michael
2004-01-01
Presents an overview of machine learning research and reviews methods used for evaluating machine learning systems. Ways that machine-learning algorithms were used in traditional information retrieval systems in the "pre-Web" era are described, and the field of Web mining and how machine learning has been used in different Web mining…
Evaluation of an Integrated Multi-Task Machine Learning System with Humans in the Loop
2007-01-01
machine learning components natural language processing, and optimization...was examined with a test explicitly developed to measure the impact of integrated machine learning when used by a human user in a real world setting...study revealed that integrated machine learning does produce a positive impact on overall performance. This paper also discusses how specific machine learning components contributed to human-system
The Security of Machine Learning
2008-04-24
Machine learning has become a fundamental tool for computer security, since it can rapidly evolve to changing and complex situations. That...adaptability is also a vulnerability: attackers can exploit machine learning systems. We present a taxonomy identifying and analyzing attacks against machine ...We use our framework to survey and analyze the literature of attacks against machine learning systems. We also illustrate our taxonomy by showing
Toward Harnessing User Feedback For Machine Learning
2006-10-02
machine learning systems. If this resource-the users themselves-could somehow work hand-in-hand with machine learning systems, the accuracy of learning systems could be improved and the users? understanding and trust of the system could improve as well. We conducted a think-aloud study to see how willing users were to provide feedback and to understand what kinds of feedback users could give. Users were shown explanations of machine learning predictions and asked to provide feedback to improve the predictions. We found that users
Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth
2017-09-13
Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.
NASA Astrophysics Data System (ADS)
Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth
2017-09-01
Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.
Human Machine Learning Symbiosis
ERIC Educational Resources Information Center
Walsh, Kenneth R.; Hoque, Md Tamjidul; Williams, Kim H.
2017-01-01
Human Machine Learning Symbiosis is a cooperative system where both the human learner and the machine learner learn from each other to create an effective and efficient learning environment adapted to the needs of the human learner. Such a system can be used in online learning modules so that the modules adapt to each learner's learning state both…
2016-08-10
AFRL-AFOSR-JP-TR-2016-0073 Large-scale Linear Optimization through Machine Learning: From Theory to Practical System Design and Implementation ...2016 4. TITLE AND SUBTITLE Large-scale Linear Optimization through Machine Learning: From Theory to Practical System Design and Implementation 5a...performances on various machine learning tasks and it naturally lends itself to fast parallel implementations . Despite this, very little work has been
ML-o-Scope: A Diagnostic Visualization System for Deep Machine Learning Pipelines
2014-05-16
ML-o-scope: a diagnostic visualization system for deep machine learning pipelines Daniel Bruckner Electrical Engineering and Computer Sciences... machine learning pipelines 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...the system as a support for tuning large scale object-classification pipelines. 1 Introduction A new generation of pipelined machine learning models
Machine vision systems using machine learning for industrial product inspection
NASA Astrophysics Data System (ADS)
Lu, Yi; Chen, Tie Q.; Chen, Jie; Zhang, Jian; Tisler, Anthony
2002-02-01
Machine vision inspection requires efficient processing time and accurate results. In this paper, we present a machine vision inspection architecture, SMV (Smart Machine Vision). SMV decomposes a machine vision inspection problem into two stages, Learning Inspection Features (LIF), and On-Line Inspection (OLI). The LIF is designed to learn visual inspection features from design data and/or from inspection products. During the OLI stage, the inspection system uses the knowledge learnt by the LIF component to inspect the visual features of products. In this paper we will present two machine vision inspection systems developed under the SMV architecture for two different types of products, Printed Circuit Board (PCB) and Vacuum Florescent Displaying (VFD) boards. In the VFD board inspection system, the LIF component learns inspection features from a VFD board and its displaying patterns. In the PCB board inspection system, the LIF learns the inspection features from the CAD file of a PCB board. In both systems, the LIF component also incorporates interactive learning to make the inspection system more powerful and efficient. The VFD system has been deployed successfully in three different manufacturing companies and the PCB inspection system is the process of being deployed in a manufacturing plant.
Derivative Free Optimization of Complex Systems with the Use of Statistical Machine Learning Models
2015-09-12
AFRL-AFOSR-VA-TR-2015-0278 DERIVATIVE FREE OPTIMIZATION OF COMPLEX SYSTEMS WITH THE USE OF STATISTICAL MACHINE LEARNING MODELS Katya Scheinberg...COMPLEX SYSTEMS WITH THE USE OF STATISTICAL MACHINE LEARNING MODELS 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-11-1-0239 5c. PROGRAM ELEMENT...developed, which has been the focus of our research. 15. SUBJECT TERMS optimization, Derivative-Free Optimization, Statistical Machine Learning 16. SECURITY
Bypassing the Kohn-Sham equations with machine learning.
Brockherde, Felix; Vogt, Leslie; Li, Li; Tuckerman, Mark E; Burke, Kieron; Müller, Klaus-Robert
2017-10-11
Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional theory to solve electronic structure problems in a wide variety of scientific fields. Machine learning holds the promise of learning the energy functional via examples, bypassing the need to solve the Kohn-Sham equations. This should yield substantial savings in computer time, allowing larger systems and/or longer time-scales to be tackled, but attempts to machine-learn this functional have been limited by the need to find its derivative. The present work overcomes this difficulty by directly learning the density-potential and energy-density maps for test systems and various molecules. We perform the first molecular dynamics simulation with a machine-learned density functional on malonaldehyde and are able to capture the intramolecular proton transfer process. Learning density models now allows the construction of accurate density functionals for realistic molecular systems.Machine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations.
Machine Learning and Radiology
Wang, Shijun; Summers, Ronald M.
2012-01-01
In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077
On the Safety of Machine Learning: Cyber-Physical Systems, Decision Sciences, and Data Products.
Varshney, Kush R; Alemzadeh, Homa
2017-09-01
Machine learning algorithms increasingly influence our decisions and interact with us in all parts of our daily lives. Therefore, just as we consider the safety of power plants, highways, and a variety of other engineered socio-technical systems, we must also take into account the safety of systems involving machine learning. Heretofore, the definition of safety has not been formalized in a machine learning context. In this article, we do so by defining machine learning safety in terms of risk, epistemic uncertainty, and the harm incurred by unwanted outcomes. We then use this definition to examine safety in all sorts of applications in cyber-physical systems, decision sciences, and data products. We find that the foundational principle of modern statistical machine learning, empirical risk minimization, is not always a sufficient objective. We discuss how four different categories of strategies for achieving safety in engineering, including inherently safe design, safety reserves, safe fail, and procedural safeguards can be mapped to a machine learning context. We then discuss example techniques that can be adopted in each category, such as considering interpretability and causality of predictive models, objective functions beyond expected prediction accuracy, human involvement for labeling difficult or rare examples, and user experience design of software and open data.
Evaluating the Security of Machine Learning Algorithms
2008-05-20
Two far-reaching trends in computing have grown in significance in recent years. First, statistical machine learning has entered the mainstream as a...computing applications. The growing intersection of these trends compels us to investigate how well machine learning performs under adversarial conditions... machine learning has a structure that we can use to build secure learning systems. This thesis makes three high-level contributions. First, we develop a
Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling
Cuperlovic-Culf, Miroslava
2018-01-01
Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies. PMID:29324649
Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling.
Cuperlovic-Culf, Miroslava
2018-01-11
Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies.
Applications of Machine Learning and Rule Induction,
1995-02-15
An important area of application for machine learning is in automating the acquisition of knowledge bases required for expert systems. In this paper...we review the major paradigms for machine learning , including neural networks, instance-based methods, genetic learning, rule induction, and analytic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chikkagoudar, Satish; Chatterjee, Samrat; Thomas, Dennis G.
The absence of a robust and unified theory of cyber dynamics presents challenges and opportunities for using machine learning based data-driven approaches to further the understanding of the behavior of such complex systems. Analysts can also use machine learning approaches to gain operational insights. In order to be operationally beneficial, cybersecurity machine learning based models need to have the ability to: (1) represent a real-world system, (2) infer system properties, and (3) learn and adapt based on expert knowledge and observations. Probabilistic models and Probabilistic graphical models provide these necessary properties and are further explored in this chapter. Bayesian Networksmore » and Hidden Markov Models are introduced as an example of a widely used data driven classification/modeling strategy.« less
NASA Astrophysics Data System (ADS)
Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward
2018-04-01
A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.
Machine Learning for Medical Imaging
Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy L.
2017-01-01
Machine learning is a technique for recognizing patterns that can be applied to medical images. Although it is a powerful tool that can help in rendering medical diagnoses, it can be misapplied. Machine learning typically begins with the machine learning algorithm system computing the image features that are believed to be of importance in making the prediction or diagnosis of interest. The machine learning algorithm system then identifies the best combination of these image features for classifying the image or computing some metric for the given image region. There are several methods that can be used, each with different strengths and weaknesses. There are open-source versions of most of these machine learning methods that make them easy to try and apply to images. Several metrics for measuring the performance of an algorithm exist; however, one must be aware of the possible associated pitfalls that can result in misleading metrics. More recently, deep learning has started to be used; this method has the benefit that it does not require image feature identification and calculation as a first step; rather, features are identified as part of the learning process. Machine learning has been used in medical imaging and will have a greater influence in the future. Those working in medical imaging must be aware of how machine learning works. ©RSNA, 2017 PMID:28212054
Machine Learning for Medical Imaging.
Erickson, Bradley J; Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy L
2017-01-01
Machine learning is a technique for recognizing patterns that can be applied to medical images. Although it is a powerful tool that can help in rendering medical diagnoses, it can be misapplied. Machine learning typically begins with the machine learning algorithm system computing the image features that are believed to be of importance in making the prediction or diagnosis of interest. The machine learning algorithm system then identifies the best combination of these image features for classifying the image or computing some metric for the given image region. There are several methods that can be used, each with different strengths and weaknesses. There are open-source versions of most of these machine learning methods that make them easy to try and apply to images. Several metrics for measuring the performance of an algorithm exist; however, one must be aware of the possible associated pitfalls that can result in misleading metrics. More recently, deep learning has started to be used; this method has the benefit that it does not require image feature identification and calculation as a first step; rather, features are identified as part of the learning process. Machine learning has been used in medical imaging and will have a greater influence in the future. Those working in medical imaging must be aware of how machine learning works. © RSNA, 2017.
Machine learning and radiology.
Wang, Shijun; Summers, Ronald M
2012-07-01
In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. Copyright © 2012. Published by Elsevier B.V.
Man Machine Systems in Education.
ERIC Educational Resources Information Center
Sall, Malkit S.
This review of the research literature on the interaction between humans and computers discusses how man machine systems can be utilized effectively in the learning-teaching process, especially in secondary education. Beginning with a definition of man machine systems and comments on the poor quality of much of the computer-based learning material…
Liu, Nehemiah T; Holcomb, John B; Wade, Charles E; Batchinsky, Andriy I; Cancio, Leopoldo C; Darrah, Mark I; Salinas, José
2014-02-01
Accurate and effective diagnosis of actual injury severity can be problematic in trauma patients. Inherent physiologic compensatory mechanisms may prevent accurate diagnosis and mask true severity in many circumstances. The objective of this project was the development and validation of a multiparameter machine learning algorithm and system capable of predicting the need for life-saving interventions (LSIs) in trauma patients. Statistics based on means, slopes, and maxima of various vital sign measurements corresponding to 79 trauma patient records generated over 110,000 feature sets, which were used to develop, train, and implement the system. Comparisons among several machine learning models proved that a multilayer perceptron would best implement the algorithm in a hybrid system consisting of a machine learning component and basic detection rules. Additionally, 295,994 feature sets from 82 h of trauma patient data showed that the system can obtain 89.8 % accuracy within 5 min of recorded LSIs. Use of machine learning technologies combined with basic detection rules provides a potential approach for accurately assessing the need for LSIs in trauma patients. The performance of this system demonstrates that machine learning technology can be implemented in a real-time fashion and potentially used in a critical care environment.
ERIC Educational Resources Information Center
Kirrane, Diane E.
1990-01-01
As scientists seek to develop machines that can "learn," that is, solve problems by imitating the human brain, a gold mine of information on the processes of human learning is being discovered, expert systems are being improved, and human-machine interactions are being enhanced. (SK)
Next-Generation Machine Learning for Biological Networks.
Camacho, Diogo M; Collins, Katherine M; Powers, Rani K; Costello, James C; Collins, James J
2018-06-14
Machine learning, a collection of data-analytical techniques aimed at building predictive models from multi-dimensional datasets, is becoming integral to modern biological research. By enabling one to generate models that learn from large datasets and make predictions on likely outcomes, machine learning can be used to study complex cellular systems such as biological networks. Here, we provide a primer on machine learning for life scientists, including an introduction to deep learning. We discuss opportunities and challenges at the intersection of machine learning and network biology, which could impact disease biology, drug discovery, microbiome research, and synthetic biology. Copyright © 2018 Elsevier Inc. All rights reserved.
Machine Learning. Part 1. A Historical and Methodological Analysis.
1983-05-31
Machine learning has always been an integral part of artificial intelligence, and its methodology has evolved in concert with the major concerns of the field. In response to the difficulties of encoding ever-increasing volumes of knowledge in modern Al systems, many researchers have recently turned their attention to machine learning as a means to overcome the knowledge acquisition bottleneck. Part 1 of this paper presents a taxonomic analysis of machine learning organized primarily by learning strategies and secondarily by
Thutmose - Investigation of Machine Learning-Based Intrusion Detection Systems
2016-06-01
research is being done to incorporate the field of machine learning into intrusion detection. Machine learning is a branch of artificial intelligence (AI...adversarial drift." Proceedings of the 2013 ACM workshop on Artificial intelligence and security. ACM. (2013) Kantarcioglu, M., Xi, B., and Clifton, C. "A...34 Proceedings of the 4th ACM workshop on Security and artificial intelligence . ACM. (2011) Dua, S., and Du, X. Data Mining and Machine Learning in
Machine learning in heart failure: ready for prime time.
Awan, Saqib Ejaz; Sohel, Ferdous; Sanfilippo, Frank Mario; Bennamoun, Mohammed; Dwivedi, Girish
2018-03-01
The aim of this review is to present an up-to-date overview of the application of machine learning methods in heart failure including diagnosis, classification, readmissions and medication adherence. Recent studies have shown that the application of machine learning techniques may have the potential to improve heart failure outcomes and management, including cost savings by improving existing diagnostic and treatment support systems. Recently developed deep learning methods are expected to yield even better performance than traditional machine learning techniques in performing complex tasks by learning the intricate patterns hidden in big medical data. The review summarizes the recent developments in the application of machine and deep learning methods in heart failure management.
Designing Contestability: Interaction Design, Machine Learning, and Mental Health
Hirsch, Tad; Merced, Kritzia; Narayanan, Shrikanth; Imel, Zac E.; Atkins, David C.
2017-01-01
We describe the design of an automated assessment and training tool for psychotherapists to illustrate challenges with creating interactive machine learning (ML) systems, particularly in contexts where human life, livelihood, and wellbeing are at stake. We explore how existing theories of interaction design and machine learning apply to the psychotherapy context, and identify “contestability” as a new principle for designing systems that evaluate human behavior. Finally, we offer several strategies for making ML systems more accountable to human actors. PMID:28890949
Motor-response learning at a process control panel by an autonomous robot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spelt, P.F.; de Saussure, G.; Lyness, E.
1988-01-01
The Center for Engineering Systems Advanced Research (CESAR) was founded at Oak Ridge National Laboratory (ORNL) by the Department of Energy's Office of Energy Research/Division of Engineering and Geoscience (DOE-OER/DEG) to conduct basic research in the area of intelligent machines. Therefore, researchers at the CESAR Laboratory are engaged in a variety of research activities in the field of machine learning. In this paper, we describe our approach to a class of machine learning which involves motor response acquisition using feedback from trial-and-error learning. Our formulation is being experimentally validated using an autonomous robot, learning tasks of control panel monitoring andmore » manipulation for effect process control. The CLIPS Expert System and the associated knowledge base used by the robot in the learning process, which reside in a hypercube computer aboard the robot, are described in detail. Benchmark testing of the learning process on a robot/control panel simulation system consisting of two intercommunicating computers is presented, along with results of sample problems used to train and test the expert system. These data illustrate machine learning and the resulting performance improvement in the robot for problems similar to, but not identical with, those on which the robot was trained. Conclusions are drawn concerning the learning problems, and implications for future work on machine learning for autonomous robots are discussed. 16 refs., 4 figs., 1 tab.« less
Barrington, Luke; Turnbull, Douglas; Lanckriet, Gert
2012-01-01
Searching for relevant content in a massive amount of multimedia information is facilitated by accurately annotating each image, video, or song with a large number of relevant semantic keywords, or tags. We introduce game-powered machine learning, an integrated approach to annotating multimedia content that combines the effectiveness of human computation, through online games, with the scalability of machine learning. We investigate this framework for labeling music. First, a socially-oriented music annotation game called Herd It collects reliable music annotations based on the “wisdom of the crowds.” Second, these annotated examples are used to train a supervised machine learning system. Third, the machine learning system actively directs the annotation games to collect new data that will most benefit future model iterations. Once trained, the system can automatically annotate a corpus of music much larger than what could be labeled using human computation alone. Automatically annotated songs can be retrieved based on their semantic relevance to text-based queries (e.g., “funky jazz with saxophone,” “spooky electronica,” etc.). Based on the results presented in this paper, we find that actively coupling annotation games with machine learning provides a reliable and scalable approach to making searchable massive amounts of multimedia data. PMID:22460786
Game-powered machine learning.
Barrington, Luke; Turnbull, Douglas; Lanckriet, Gert
2012-04-24
Searching for relevant content in a massive amount of multimedia information is facilitated by accurately annotating each image, video, or song with a large number of relevant semantic keywords, or tags. We introduce game-powered machine learning, an integrated approach to annotating multimedia content that combines the effectiveness of human computation, through online games, with the scalability of machine learning. We investigate this framework for labeling music. First, a socially-oriented music annotation game called Herd It collects reliable music annotations based on the "wisdom of the crowds." Second, these annotated examples are used to train a supervised machine learning system. Third, the machine learning system actively directs the annotation games to collect new data that will most benefit future model iterations. Once trained, the system can automatically annotate a corpus of music much larger than what could be labeled using human computation alone. Automatically annotated songs can be retrieved based on their semantic relevance to text-based queries (e.g., "funky jazz with saxophone," "spooky electronica," etc.). Based on the results presented in this paper, we find that actively coupling annotation games with machine learning provides a reliable and scalable approach to making searchable massive amounts of multimedia data.
Grouin, Cyril; Zweigenbaum, Pierre
2013-01-01
In this paper, we present a comparison of two approaches to automatically de-identify medical records written in French: a rule-based system and a machine-learning based system using a conditional random fields (CRF) formalism. Both systems have been designed to process nine identifiers in a corpus of medical records in cardiology. We performed two evaluations: first, on 62 documents in cardiology, and on 10 documents in foetopathology - produced by optical character recognition (OCR) - to evaluate the robustness of our systems. We achieved a 0.843 (rule-based) and 0.883 (machine-learning) exact match overall F-measure in cardiology. While the rule-based system allowed us to achieve good results on nominative (first and last names) and numerical data (dates, phone numbers, and zip codes), the machine-learning approach performed best on more complex categories (postal addresses, hospital names, medical devices, and towns). On the foetopathology corpus, although our systems have not been designed for this corpus and despite OCR character recognition errors, we obtained promising results: a 0.681 (rule-based) and 0.638 (machine-learning) exact-match overall F-measure. This demonstrates that existing tools can be applied to process new documents of lower quality.
1993-01-01
engineering has led to many AI systems that are now regularly used in industry and elsewhere. The ultimate test of machine learning , the subfield of Al that...applications of machine learning suggest the time was ripe for a meeting on this topic. For this reason, Pat Langley (Siemens Corporate Research) and Yves...Kodratoff (Universite de Paris, Sud) organized an invited workshop on applications of machine learning . The goal of the gathering was to familiarize
An active role for machine learning in drug development
Murphy, Robert F.
2014-01-01
Due to the complexity of biological systems, cutting-edge machine-learning methods will be critical for future drug development. In particular, machine-vision methods to extract detailed information from imaging assays and active-learning methods to guide experimentation will be required to overcome the dimensionality problem in drug development. PMID:21587249
Learning dominance relations in combinatorial search problems
NASA Technical Reports Server (NTRS)
Yu, Chee-Fen; Wah, Benjamin W.
1988-01-01
Dominance relations commonly are used to prune unnecessary nodes in search graphs, but they are problem-dependent and cannot be derived by a general procedure. The authors identify machine learning of dominance relations and the applicable learning mechanisms. A study of learning dominance relations using learning by experimentation is described. This system has been able to learn dominance relations for the 0/1-knapsack problem, an inventory problem, the reliability-by-replication problem, the two-machine flow shop problem, a number of single-machine scheduling problems, and a two-machine scheduling problem. It is considered that the same methodology can be extended to learn dominance relations in general.
Amplifying human ability through autonomics and machine learning in IMPACT
NASA Astrophysics Data System (ADS)
Dzieciuch, Iryna; Reeder, John; Gutzwiller, Robert; Gustafson, Eric; Coronado, Braulio; Martinez, Luis; Croft, Bryan; Lange, Douglas S.
2017-05-01
Amplifying human ability for controlling complex environments featuring autonomous units can be aided by learned models of human and system performance. In developing a command and control system that allows a small number of people to control a large number of autonomous teams, we employ an autonomics framework to manage the networks that represent mission plans and the networks that are composed of human controllers and their autonomous assistants. Machine learning allows us to build models of human and system performance useful for monitoring plans and managing human attention and task loads. Machine learning also aids in the development of tactics that human supervisors can successfully monitor through the command and control system.
MLBCD: a machine learning tool for big clinical data.
Luo, Gang
2015-01-01
Predictive modeling is fundamental for extracting value from large clinical data sets, or "big clinical data," advancing clinical research, and improving healthcare. Machine learning is a powerful approach to predictive modeling. Two factors make machine learning challenging for healthcare researchers. First, before training a machine learning model, the values of one or more model parameters called hyper-parameters must typically be specified. Due to their inexperience with machine learning, it is hard for healthcare researchers to choose an appropriate algorithm and hyper-parameter values. Second, many clinical data are stored in a special format. These data must be iteratively transformed into the relational table format before conducting predictive modeling. This transformation is time-consuming and requires computing expertise. This paper presents our vision for and design of MLBCD (Machine Learning for Big Clinical Data), a new software system aiming to address these challenges and facilitate building machine learning predictive models using big clinical data. The paper describes MLBCD's design in detail. By making machine learning accessible to healthcare researchers, MLBCD will open the use of big clinical data and increase the ability to foster biomedical discovery and improve care.
Active learning machine learns to create new quantum experiments.
Melnikov, Alexey A; Poulsen Nautrup, Hendrik; Krenn, Mario; Dunjko, Vedran; Tiersch, Markus; Zeilinger, Anton; Briegel, Hans J
2018-02-06
How useful can machine learning be in a quantum laboratory? Here we raise the question of the potential of intelligent machines in the context of scientific research. A major motivation for the present work is the unknown reachability of various entanglement classes in quantum experiments. We investigate this question by using the projective simulation model, a physics-oriented approach to artificial intelligence. In our approach, the projective simulation system is challenged to design complex photonic quantum experiments that produce high-dimensional entangled multiphoton states, which are of high interest in modern quantum experiments. The artificial intelligence system learns to create a variety of entangled states and improves the efficiency of their realization. In the process, the system autonomously (re)discovers experimental techniques which are only now becoming standard in modern quantum optical experiments-a trait which was not explicitly demanded from the system but emerged through the process of learning. Such features highlight the possibility that machines could have a significantly more creative role in future research.
A Machine Learns to Predict the Stability of Tightly Packed Planetary Systems
NASA Astrophysics Data System (ADS)
Tamayo, Daniel; Silburt, Ari; Valencia, Diana; Menou, Kristen; Ali-Dib, Mohamad; Petrovich, Cristobal; Huang, Chelsea X.; Rein, Hanno; van Laerhoven, Christa; Paradise, Adiv; Obertas, Alysa; Murray, Norman
2016-12-01
The requirement that planetary systems be dynamically stable is often used to vet new discoveries or set limits on unconstrained masses or orbital elements. This is typically carried out via computationally expensive N-body simulations. We show that characterizing the complicated and multi-dimensional stability boundary of tightly packed systems is amenable to machine-learning methods. We find that training an XGBoost machine-learning algorithm on physically motivated features yields an accurate classifier of stability in packed systems. On the stability timescale investigated (107 orbits), it is three orders of magnitude faster than direct N-body simulations. Optimized machine-learning classifiers for dynamical stability may thus prove useful across the discipline, e.g., to characterize the exoplanet sample discovered by the upcoming Transiting Exoplanet Survey Satellite. This proof of concept motivates investing computational resources to train algorithms capable of predicting stability over longer timescales and over broader regions of phase space.
Quantum neural network based machine translator for Hindi to English.
Narayan, Ravi; Singh, V P; Chakraverty, S
2014-01-01
This paper presents the machine learning based machine translation system for Hindi to English, which learns the semantically correct corpus. The quantum neural based pattern recognizer is used to recognize and learn the pattern of corpus, using the information of part of speech of individual word in the corpus, like a human. The system performs the machine translation using its knowledge gained during the learning by inputting the pair of sentences of Devnagri-Hindi and English. To analyze the effectiveness of the proposed approach, 2600 sentences have been evaluated during simulation and evaluation. The accuracy achieved on BLEU score is 0.7502, on NIST score is 6.5773, on ROUGE-L score is 0.9233, and on METEOR score is 0.5456, which is significantly higher in comparison with Google Translation and Bing Translation for Hindi to English Machine Translation.
Quantum Machine Learning over Infinite Dimensions
Lau, Hoi-Kwan; Pooser, Raphael; Siopsis, George; ...
2017-02-21
Machine learning is a fascinating and exciting eld within computer science. Recently, this ex- citement has been transferred to the quantum information realm. Currently, all proposals for the quantum version of machine learning utilize the nite-dimensional substrate of discrete variables. Here we generalize quantum machine learning to the more complex, but still remarkably practi- cal, in nite-dimensional systems. We present the critical subroutines of quantum machine learning algorithms for an all-photonic continuous-variable quantum computer that achieve an exponential speedup compared to their equivalent classical counterparts. Finally, we also map out an experi- mental implementation which can be used as amore » blueprint for future photonic demonstrations.« less
Quantum Machine Learning over Infinite Dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Hoi-Kwan; Pooser, Raphael; Siopsis, George
Machine learning is a fascinating and exciting eld within computer science. Recently, this ex- citement has been transferred to the quantum information realm. Currently, all proposals for the quantum version of machine learning utilize the nite-dimensional substrate of discrete variables. Here we generalize quantum machine learning to the more complex, but still remarkably practi- cal, in nite-dimensional systems. We present the critical subroutines of quantum machine learning algorithms for an all-photonic continuous-variable quantum computer that achieve an exponential speedup compared to their equivalent classical counterparts. Finally, we also map out an experi- mental implementation which can be used as amore » blueprint for future photonic demonstrations.« less
Health Informatics via Machine Learning for the Clinical Management of Patients.
Clifton, D A; Niehaus, K E; Charlton, P; Colopy, G W
2015-08-13
To review how health informatics systems based on machine learning methods have impacted the clinical management of patients, by affecting clinical practice. We reviewed literature from 2010-2015 from databases such as Pubmed, IEEE xplore, and INSPEC, in which methods based on machine learning are likely to be reported. We bring together a broad body of literature, aiming to identify those leading examples of health informatics that have advanced the methodology of machine learning. While individual methods may have further examples that might be added, we have chosen some of the most representative, informative exemplars in each case. Our survey highlights that, while much research is taking place in this high-profile field, examples of those that affect the clinical management of patients are seldom found. We show that substantial progress is being made in terms of methodology, often by data scientists working in close collaboration with clinical groups. Health informatics systems based on machine learning are in their infancy and the translation of such systems into clinical management has yet to be performed at scale.
Intelligent power management in a vehicular system with multiple power sources
NASA Astrophysics Data System (ADS)
Murphey, Yi L.; Chen, ZhiHang; Kiliaris, Leonidas; Masrur, M. Abul
This paper presents an optimal online power management strategy applied to a vehicular power system that contains multiple power sources and deals with largely fluctuated load requests. The optimal online power management strategy is developed using machine learning and fuzzy logic. A machine learning algorithm has been developed to learn the knowledge about minimizing power loss in a Multiple Power Sources and Loads (M_PS&LD) system. The algorithm exploits the fact that different power sources used to deliver a load request have different power losses under different vehicle states. The machine learning algorithm is developed to train an intelligent power controller, an online fuzzy power controller, FPC_MPS, that has the capability of finding combinations of power sources that minimize power losses while satisfying a given set of system and component constraints during a drive cycle. The FPC_MPS was implemented in two simulated systems, a power system of four power sources, and a vehicle system of three power sources. Experimental results show that the proposed machine learning approach combined with fuzzy control is a promising technology for intelligent vehicle power management in a M_PS&LD power system.
Extracting laboratory test information from biomedical text
Kang, Yanna Shen; Kayaalp, Mehmet
2013-01-01
Background: No previous study reported the efficacy of current natural language processing (NLP) methods for extracting laboratory test information from narrative documents. This study investigates the pathology informatics question of how accurately such information can be extracted from text with the current tools and techniques, especially machine learning and symbolic NLP methods. The study data came from a text corpus maintained by the U.S. Food and Drug Administration, containing a rich set of information on laboratory tests and test devices. Methods: The authors developed a symbolic information extraction (SIE) system to extract device and test specific information about four types of laboratory test entities: Specimens, analytes, units of measures and detection limits. They compared the performance of SIE and three prominent machine learning based NLP systems, LingPipe, GATE and BANNER, each implementing a distinct supervised machine learning method, hidden Markov models, support vector machines and conditional random fields, respectively. Results: Machine learning systems recognized laboratory test entities with moderately high recall, but low precision rates. Their recall rates were relatively higher when the number of distinct entity values (e.g., the spectrum of specimens) was very limited or when lexical morphology of the entity was distinctive (as in units of measures), yet SIE outperformed them with statistically significant margins on extracting specimen, analyte and detection limit information in both precision and F-measure. Its high recall performance was statistically significant on analyte information extraction. Conclusions: Despite its shortcomings against machine learning methods, a well-tailored symbolic system may better discern relevancy among a pile of information of the same type and may outperform a machine learning system by tapping into lexically non-local contextual information such as the document structure. PMID:24083058
Automated discovery systems and the inductivist controversy
NASA Astrophysics Data System (ADS)
Giza, Piotr
2017-09-01
The paper explores possible influences that some developments in the field of branches of AI, called automated discovery and machine learning systems, might have upon some aspects of the old debate between Francis Bacon's inductivism and Karl Popper's falsificationism. Donald Gillies facetiously calls this controversy 'the duel of two English knights', and claims, after some analysis of historical cases of discovery, that Baconian induction had been used in science very rarely, or not at all, although he argues that the situation has changed with the advent of machine learning systems. (Some clarification of terms machine learning and automated discovery is required here. The key idea of machine learning is that, given data with associated outcomes, software can be trained to make those associations in future cases which typically amounts to inducing some rules from individual cases classified by the experts. Automated discovery (also called machine discovery) deals with uncovering new knowledge that is valuable for human beings, and its key idea is that discovery is like other intellectual tasks and that the general idea of heuristic search in problem spaces applies also to discovery tasks. However, since machine learning systems discover (very low-level) regularities in data, throughout this paper I use the generic term automated discovery for both kinds of systems. I will elaborate on this later on). Gillies's line of argument can be generalised: thanks to automated discovery systems, philosophers of science have at their disposal a new tool for empirically testing their philosophical hypotheses. Accordingly, in the paper, I will address the question, which of the two philosophical conceptions of scientific method is better vindicated in view of the successes and failures of systems developed within three major research programmes in the field: machine learning systems in the Turing tradition, normative theory of scientific discovery formulated by Herbert Simon's group and the programme called HHNT, proposed by J. Holland, K. Holyoak, R. Nisbett and P. Thagard.
An iterative learning control method with application for CNC machine tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D.I.; Kim, S.
1996-01-01
A proportional, integral, and derivative (PID) type iterative learning controller is proposed for precise tracking control of industrial robots and computer numerical controller (CNC) machine tools performing repetitive tasks. The convergence of the output error by the proposed learning controller is guaranteed under a certain condition even when the system parameters are not known exactly and unknown external disturbances exist. As the proposed learning controller is repeatedly applied to the industrial robot or the CNC machine tool with the path-dependent repetitive task, the distance difference between the desired path and the actual tracked or machined path, which is one ofmore » the most significant factors in the evaluation of control performance, is progressively reduced. The experimental results demonstrate that the proposed learning controller can improve machining accuracy when the CNC machine tool performs repetitive machining tasks.« less
Machine Learning, deep learning and optimization in computer vision
NASA Astrophysics Data System (ADS)
Canu, Stéphane
2017-03-01
As quoted in the Large Scale Computer Vision Systems NIPS workshop, computer vision is a mature field with a long tradition of research, but recent advances in machine learning, deep learning, representation learning and optimization have provided models with new capabilities to better understand visual content. The presentation will go through these new developments in machine learning covering basic motivations, ideas, models and optimization in deep learning for computer vision, identifying challenges and opportunities. It will focus on issues related with large scale learning that is: high dimensional features, large variety of visual classes, and large number of examples.
Adaptive Learning Systems: Beyond Teaching Machines
ERIC Educational Resources Information Center
Kara, Nuri; Sevim, Nese
2013-01-01
Since 1950s, teaching machines have changed a lot. Today, we have different ideas about how people learn, what instructor should do to help students during their learning process. We have adaptive learning technologies that can create much more student oriented learning environments. The purpose of this article is to present these changes and its…
Quantum Neural Network Based Machine Translator for Hindi to English
Singh, V. P.; Chakraverty, S.
2014-01-01
This paper presents the machine learning based machine translation system for Hindi to English, which learns the semantically correct corpus. The quantum neural based pattern recognizer is used to recognize and learn the pattern of corpus, using the information of part of speech of individual word in the corpus, like a human. The system performs the machine translation using its knowledge gained during the learning by inputting the pair of sentences of Devnagri-Hindi and English. To analyze the effectiveness of the proposed approach, 2600 sentences have been evaluated during simulation and evaluation. The accuracy achieved on BLEU score is 0.7502, on NIST score is 6.5773, on ROUGE-L score is 0.9233, and on METEOR score is 0.5456, which is significantly higher in comparison with Google Translation and Bing Translation for Hindi to English Machine Translation. PMID:24977198
Hepworth, Philip J.; Nefedov, Alexey V.; Muchnik, Ilya B.; Morgan, Kenton L.
2012-01-01
Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide. PMID:22319115
Hepworth, Philip J; Nefedov, Alexey V; Muchnik, Ilya B; Morgan, Kenton L
2012-08-07
Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide.
Khumrin, Piyapong; Ryan, Anna; Judd, Terry; Verspoor, Karin
2017-01-01
Computer-aided learning systems (e-learning systems) can help medical students gain more experience with diagnostic reasoning and decision making. Within this context, providing feedback that matches students' needs (i.e. personalised feedback) is both critical and challenging. In this paper, we describe the development of a machine learning model to support medical students' diagnostic decisions. Machine learning models were trained on 208 clinical cases presenting with abdominal pain, to predict five diagnoses. We assessed which of these models are likely to be most effective for use in an e-learning tool that allows students to interact with a virtual patient. The broader goal is to utilise these models to generate personalised feedback based on the specific patient information requested by students and their active diagnostic hypotheses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pullum, Laura L; Symons, Christopher T
2011-01-01
Machine learning is used in many applications, from machine vision to speech recognition to decision support systems, and is used to test applications. However, though much has been done to evaluate the performance of machine learning algorithms, little has been done to verify the algorithms or examine their failure modes. Moreover, complex learning frameworks often require stepping beyond black box evaluation to distinguish between errors based on natural limits on learning and errors that arise from mistakes in implementation. We present a conceptual architecture, failure model and taxonomy, and failure modes and effects analysis (FMEA) of a semi-supervised, multi-modal learningmore » system, and provide specific examples from its use in a radiological analysis assistant system. The goal of the research described in this paper is to provide a foundation from which dependability analysis of systems using semi-supervised, multi-modal learning can be conducted. The methods presented provide a first step towards that overall goal.« less
Optimisation and evaluation of hyperspectral imaging system using machine learning algorithm
NASA Astrophysics Data System (ADS)
Suthar, Gajendra; Huang, Jung Y.; Chidangil, Santhosh
2017-10-01
Hyperspectral imaging (HSI), also called imaging spectrometer, originated from remote sensing. Hyperspectral imaging is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the objects physiology, morphology, and composition. The present work involves testing and evaluating the performance of the hyperspectral imaging system. The methodology involved manually taking reflectance of the object in many images or scan of the object. The object used for the evaluation of the system was cabbage and tomato. The data is further converted to the required format and the analysis is done using machine learning algorithm. The machine learning algorithms applied were able to distinguish between the object present in the hypercube obtain by the scan. It was concluded from the results that system was working as expected. This was observed by the different spectra obtained by using the machine-learning algorithm.
ClearTK 2.0: Design Patterns for Machine Learning in UIMA
Bethard, Steven; Ogren, Philip; Becker, Lee
2014-01-01
ClearTK adds machine learning functionality to the UIMA framework, providing wrappers to popular machine learning libraries, a rich feature extraction library that works across different classifiers, and utilities for applying and evaluating machine learning models. Since its inception in 2008, ClearTK has evolved in response to feedback from developers and the community. This evolution has followed a number of important design principles including: conceptually simple annotator interfaces, readable pipeline descriptions, minimal collection readers, type system agnostic code, modules organized for ease of import, and assisting user comprehension of the complex UIMA framework. PMID:29104966
ClearTK 2.0: Design Patterns for Machine Learning in UIMA.
Bethard, Steven; Ogren, Philip; Becker, Lee
2014-05-01
ClearTK adds machine learning functionality to the UIMA framework, providing wrappers to popular machine learning libraries, a rich feature extraction library that works across different classifiers, and utilities for applying and evaluating machine learning models. Since its inception in 2008, ClearTK has evolved in response to feedback from developers and the community. This evolution has followed a number of important design principles including: conceptually simple annotator interfaces, readable pipeline descriptions, minimal collection readers, type system agnostic code, modules organized for ease of import, and assisting user comprehension of the complex UIMA framework.
Araki, Tadashi; Ikeda, Nobutaka; Shukla, Devarshi; Jain, Pankaj K; Londhe, Narendra D; Shrivastava, Vimal K; Banchhor, Sumit K; Saba, Luca; Nicolaides, Andrew; Shafique, Shoaib; Laird, John R; Suri, Jasjit S
2016-05-01
Percutaneous coronary interventional procedures need advance planning prior to stenting or an endarterectomy. Cardiologists use intravascular ultrasound (IVUS) for screening, risk assessment and stratification of coronary artery disease (CAD). We hypothesize that plaque components are vulnerable to rupture due to plaque progression. Currently, there are no standard grayscale IVUS tools for risk assessment of plaque rupture. This paper presents a novel strategy for risk stratification based on plaque morphology embedded with principal component analysis (PCA) for plaque feature dimensionality reduction and dominant feature selection technique. The risk assessment utilizes 56 grayscale coronary features in a machine learning framework while linking information from carotid and coronary plaque burdens due to their common genetic makeup. This system consists of a machine learning paradigm which uses a support vector machine (SVM) combined with PCA for optimal and dominant coronary artery morphological feature extraction. Carotid artery proven intima-media thickness (cIMT) biomarker is adapted as a gold standard during the training phase of the machine learning system. For the performance evaluation, K-fold cross validation protocol is adapted with 20 trials per fold. For choosing the dominant features out of the 56 grayscale features, a polling strategy of PCA is adapted where the original value of the features is unaltered. Different protocols are designed for establishing the stability and reliability criteria of the coronary risk assessment system (cRAS). Using the PCA-based machine learning paradigm and cross-validation protocol, a classification accuracy of 98.43% (AUC 0.98) with K=10 folds using an SVM radial basis function (RBF) kernel was achieved. A reliability index of 97.32% and machine learning stability criteria of 5% were met for the cRAS. This is the first Computer aided design (CADx) system of its kind that is able to demonstrate the ability of coronary risk assessment and stratification while demonstrating a successful design of the machine learning system based on our assumptions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Prediction of drug synergy in cancer using ensemble-based machine learning techniques
NASA Astrophysics Data System (ADS)
Singh, Harpreet; Rana, Prashant Singh; Singh, Urvinder
2018-04-01
Drug synergy prediction plays a significant role in the medical field for inhibiting specific cancer agents. It can be developed as a pre-processing tool for therapeutic successes. Examination of different drug-drug interaction can be done by drug synergy score. It needs efficient regression-based machine learning approaches to minimize the prediction errors. Numerous machine learning techniques such as neural networks, support vector machines, random forests, LASSO, Elastic Nets, etc., have been used in the past to realize requirement as mentioned above. However, these techniques individually do not provide significant accuracy in drug synergy score. Therefore, the primary objective of this paper is to design a neuro-fuzzy-based ensembling approach. To achieve this, nine well-known machine learning techniques have been implemented by considering the drug synergy data. Based on the accuracy of each model, four techniques with high accuracy are selected to develop ensemble-based machine learning model. These models are Random forest, Fuzzy Rules Using Genetic Cooperative-Competitive Learning method (GFS.GCCL), Adaptive-Network-Based Fuzzy Inference System (ANFIS) and Dynamic Evolving Neural-Fuzzy Inference System method (DENFIS). Ensembling is achieved by evaluating the biased weighted aggregation (i.e. adding more weights to the model with a higher prediction score) of predicted data by selected models. The proposed and existing machine learning techniques have been evaluated on drug synergy score data. The comparative analysis reveals that the proposed method outperforms others in terms of accuracy, root mean square error and coefficient of correlation.
research focuses on optimization and machine learning applied to complex energy systems and turbulent flows techniques to improve wind plant design and controls and developed a new data-driven machine learning closure
A Machine Learning System for Analyzing Human Tactics in a Game
NASA Astrophysics Data System (ADS)
Ito, Hirotaka; Tanaka, Toshimitsu; Sugie, Noboru
In order to realize advanced man-machine interfaces, it is desired to develop a system that can infer the mental state of human users and then return appropriate responses. As the first step toward the above goal, we developed a system capable of inferring human tactics in a simple game played between the system and a human. We present a machine learning system that plays a color expectation game. The system infers the tactics of the opponent, and then decides the action based on the result. We employed a modified version of classifier system like XCS in order to design the system. In addition, three methods are proposed in order to accelerate the learning rate. They are a masking method, an iterative method, and tactics templates. The results of computer experiments confirmed that the proposed methods effectively accelerate the machine learning. The masking method and the iterative method are effective to a simple strategy that considers only a part of past information. However, study speed of these methods is not enough for the tactics that refers to a lot of past information. For the case, the tactics template was able to settle the study rapidly when the tactics is identified.
Simulation-driven machine learning: Bearing fault classification
NASA Astrophysics Data System (ADS)
Sobie, Cameron; Freitas, Carina; Nicolai, Mike
2018-01-01
Increasing the accuracy of mechanical fault detection has the potential to improve system safety and economic performance by minimizing scheduled maintenance and the probability of unexpected system failure. Advances in computational performance have enabled the application of machine learning algorithms across numerous applications including condition monitoring and failure detection. Past applications of machine learning to physical failure have relied explicitly on historical data, which limits the feasibility of this approach to in-service components with extended service histories. Furthermore, recorded failure data is often only valid for the specific circumstances and components for which it was collected. This work directly addresses these challenges for roller bearings with race faults by generating training data using information gained from high resolution simulations of roller bearing dynamics, which is used to train machine learning algorithms that are then validated against four experimental datasets. Several different machine learning methodologies are compared starting from well-established statistical feature-based methods to convolutional neural networks, and a novel application of dynamic time warping (DTW) to bearing fault classification is proposed as a robust, parameter free method for race fault detection.
Learning Companion Systems, Social Learning Systems, and the Global Social Learning Club.
ERIC Educational Resources Information Center
Chan, Tak-Wai
1996-01-01
Describes the development of learning companion systems and their contributions to the class of social learning systems that integrate artificial intelligence agents and use machine learning to tutor and interact with students. Outlines initial social learning projects, their programming languages, and weakness. Future improvements will include…
Understanding of anesthesia machine function is enhanced with a transparent reality simulation.
Fischler, Ira S; Kaschub, Cynthia E; Lizdas, David E; Lampotang, Samsun
2008-01-01
Photorealistic simulations may provide efficient transfer of certain skills to the real system, but by being opaque may fail to encourage deeper learning of the structure and function of the system. Schematic simulations that are more abstract, with less visual fidelity but make system structure and function transparent, may enhance deeper learning and optimize retention and transfer of learning. We compared learning effectiveness of these 2 modes of externalizing the output of a common simulation engine (the Virtual Anesthesia Machine, VAM) that models machine function and dynamics and responds in real time to user interventions such as changes in gas flow or ventilation. Undergraduate students (n = 39) and medical students (n = 35) were given a single, 1-hour guided learning session with either a Transparent or an Opaque version of the VAM simulation. The following day, the learners' knowledge of machine components, function, and dynamics was tested. The Transparent-VAM groups scored higher than the Opaque-VAM groups on a set of multiple-choice questions concerning conceptual knowledge about anesthesia machines (P = 0.009), provided better and more complete explanations of component function (P = 0.003), and were more accurate in remembering and inferring cause-and-effect dynamics of the machine and relations among components (P = 0.003). Although the medical students outperformed undergraduates on all measures, a similar pattern of benefits for the Transparent VAM was observed for these 2 groups. Schematic simulations that transparently allow learners to visualize, and explore, underlying system dynamics and relations among components may provide a more effective mental model for certain systems. This may lead to a deeper understanding of how the system works, and therefore, we believe, how to detect and respond to potentially adverse situations.
Machine learning challenges in Mars rover traverse science
NASA Technical Reports Server (NTRS)
Castano, R.; Judd, M.; Anderson, R. C.; Estlin, T.
2003-01-01
The successful implementation of machine learning in autonomous rover traverse science requires addressing challenges that range from the analytical technical realm, to the fuzzy, philosophical domain of entrenched belief systems within scientists and mission managers.
Narula, Sukrit; Shameer, Khader; Salem Omar, Alaa Mabrouk; Dudley, Joel T; Sengupta, Partho P
2016-11-29
Machine-learning models may aid cardiac phenotypic recognition by using features of cardiac tissue deformation. This study investigated the diagnostic value of a machine-learning framework that incorporates speckle-tracking echocardiographic data for automated discrimination of hypertrophic cardiomyopathy (HCM) from physiological hypertrophy seen in athletes (ATH). Expert-annotated speckle-tracking echocardiographic datasets obtained from 77 ATH and 62 HCM patients were used for developing an automated system. An ensemble machine-learning model with 3 different machine-learning algorithms (support vector machines, random forests, and artificial neural networks) was developed and a majority voting method was used for conclusive predictions with further K-fold cross-validation. Feature selection using an information gain (IG) algorithm revealed that volume was the best predictor for differentiating between HCM ands. ATH (IG = 0.24) followed by mid-left ventricular segmental (IG = 0.134) and average longitudinal strain (IG = 0.131). The ensemble machine-learning model showed increased sensitivity and specificity compared with early-to-late diastolic transmitral velocity ratio (p < 0.01), average early diastolic tissue velocity (e') (p < 0.01), and strain (p = 0.04). Because ATH were younger, adjusted analysis was undertaken in younger HCM patients and compared with ATH with left ventricular wall thickness >13 mm. In this subgroup analysis, the automated model continued to show equal sensitivity, but increased specificity relative to early-to-late diastolic transmitral velocity ratio, e', and strain. Our results suggested that machine-learning algorithms can assist in the discrimination of physiological versus pathological patterns of hypertrophic remodeling. This effort represents a step toward the development of a real-time, machine-learning-based system for automated interpretation of echocardiographic images, which may help novice readers with limited experience. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
A strategy for quantum algorithm design assisted by machine learning
NASA Astrophysics Data System (ADS)
Bang, Jeongho; Ryu, Junghee; Yoo, Seokwon; Pawłowski, Marcin; Lee, Jinhyoung
2014-07-01
We propose a method for quantum algorithm design assisted by machine learning. The method uses a quantum-classical hybrid simulator, where a ‘quantum student’ is being taught by a ‘classical teacher’. In other words, in our method, the learning system is supposed to evolve into a quantum algorithm for a given problem, assisted by a classical main-feedback system. Our method is applicable for designing quantum oracle-based algorithms. We chose, as a case study, an oracle decision problem, called a Deutsch-Jozsa problem. We showed by using Monte Carlo simulations that our simulator can faithfully learn a quantum algorithm for solving the problem for a given oracle. Remarkably, the learning time is proportional to the square root of the total number of parameters, rather than showing the exponential dependence found in the classical machine learning-based method.
Solti, Imre; Cooke, Colin R; Xia, Fei; Wurfel, Mark M
2009-11-01
This paper compares the performance of keyword and machine learning-based chest x-ray report classification for Acute Lung Injury (ALI). ALI mortality is approximately 30 percent. High mortality is, in part, a consequence of delayed manual chest x-ray classification. An automated system could reduce the time to recognize ALI and lead to reductions in mortality. For our study, 96 and 857 chest x-ray reports in two corpora were labeled by domain experts for ALI. We developed a keyword and a Maximum Entropy-based classification system. Word unigram and character n-grams provided the features for the machine learning system. The Maximum Entropy algorithm with character 6-gram achieved the highest performance (Recall=0.91, Precision=0.90 and F-measure=0.91) on the 857-report corpus. This study has shown that for the classification of ALI chest x-ray reports, the machine learning approach is superior to the keyword based system and achieves comparable results to highest performing physician annotators.
Solti, Imre; Cooke, Colin R.; Xia, Fei; Wurfel, Mark M.
2010-01-01
This paper compares the performance of keyword and machine learning-based chest x-ray report classification for Acute Lung Injury (ALI). ALI mortality is approximately 30 percent. High mortality is, in part, a consequence of delayed manual chest x-ray classification. An automated system could reduce the time to recognize ALI and lead to reductions in mortality. For our study, 96 and 857 chest x-ray reports in two corpora were labeled by domain experts for ALI. We developed a keyword and a Maximum Entropy-based classification system. Word unigram and character n-grams provided the features for the machine learning system. The Maximum Entropy algorithm with character 6-gram achieved the highest performance (Recall=0.91, Precision=0.90 and F-measure=0.91) on the 857-report corpus. This study has shown that for the classification of ALI chest x-ray reports, the machine learning approach is superior to the keyword based system and achieves comparable results to highest performing physician annotators. PMID:21152268
Machine learning in updating predictive models of planning and scheduling transportation projects
DOT National Transportation Integrated Search
1997-01-01
A method combining machine learning and regression analysis to automatically and intelligently update predictive models used in the Kansas Department of Transportations (KDOTs) internal management system is presented. The predictive models used...
NASA Astrophysics Data System (ADS)
Nawir, Mukrimah; Amir, Amiza; Lynn, Ong Bi; Yaakob, Naimah; Badlishah Ahmad, R.
2018-05-01
The rapid growth of technologies might endanger them to various network attacks due to the nature of data which are frequently exchange their data through Internet and large-scale data that need to be handle. Moreover, network anomaly detection using machine learning faced difficulty when dealing the involvement of dataset where the number of labelled network dataset is very few in public and this caused many researchers keep used the most commonly network dataset (KDDCup99) which is not relevant to employ the machine learning (ML) algorithms for a classification. Several issues regarding these available labelled network datasets are discussed in this paper. The aim of this paper to build a network anomaly detection system using machine learning algorithms that are efficient, effective and fast processing. The finding showed that AODE algorithm is performed well in term of accuracy and processing time for binary classification towards UNSW-NB15 dataset.
Discovering Fine-grained Sentiment in Suicide Notes
Wang, Wenbo; Chen, Lu; Tan, Ming; Wang, Shaojun; Sheth, Amit P.
2012-01-01
This paper presents our solution for the i2b2 sentiment classification challenge. Our hybrid system consists of machine learning and rule-based classifiers. For the machine learning classifier, we investigate a variety of lexical, syntactic and knowledge-based features, and show how much these features contribute to the performance of the classifier through experiments. For the rule-based classifier, we propose an algorithm to automatically extract effective syntactic and lexical patterns from training examples. The experimental results show that the rule-based classifier outperforms the baseline machine learning classifier using unigram features. By combining the machine learning classifier and the rule-based classifier, the hybrid system gains a better trade-off between precision and recall, and yields the highest micro-averaged F-measure (0.5038), which is better than the mean (0.4875) and median (0.5027) micro-average F-measures among all participating teams. PMID:22879770
The value of prior knowledge in machine learning of complex network systems.
Ferranti, Dana; Krane, David; Craft, David
2017-11-15
Our overall goal is to develop machine-learning approaches based on genomics and other relevant accessible information for use in predicting how a patient will respond to a given proposed drug or treatment. Given the complexity of this problem, we begin by developing, testing and analyzing learning methods using data from simulated systems, which allows us access to a known ground truth. We examine the benefits of using prior system knowledge and investigate how learning accuracy depends on various system parameters as well as the amount of training data available. The simulations are based on Boolean networks-directed graphs with 0/1 node states and logical node update rules-which are the simplest computational systems that can mimic the dynamic behavior of cellular systems. Boolean networks can be generated and simulated at scale, have complex yet cyclical dynamics and as such provide a useful framework for developing machine-learning algorithms for modular and hierarchical networks such as biological systems in general and cancer in particular. We demonstrate that utilizing prior knowledge (in the form of network connectivity information), without detailed state equations, greatly increases the power of machine-learning algorithms to predict network steady-state node values ('phenotypes') and perturbation responses ('drug effects'). Links to codes and datasets here: https://gray.mgh.harvard.edu/people-directory/71-david-craft-phd. dcraft@broadinstitute.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Machine vision and appearance based learning
NASA Astrophysics Data System (ADS)
Bernstein, Alexander
2017-03-01
Smart algorithms are used in Machine vision to organize or extract high-level information from the available data. The resulted high-level understanding the content of images received from certain visual sensing system and belonged to an appearance space can be only a key first step in solving various specific tasks such as mobile robot navigation in uncertain environments, road detection in autonomous driving systems, etc. Appearance-based learning has become very popular in the field of machine vision. In general, the appearance of a scene is a function of the scene content, the lighting conditions, and the camera position. Mobile robots localization problem in machine learning framework via appearance space analysis is considered. This problem is reduced to certain regression on an appearance manifold problem, and newly regression on manifolds methods are used for its solution.
Performance improvement in remote manipulation with time delay by means of a learning system.
NASA Technical Reports Server (NTRS)
Freedy, A.; Weltman, G.
1973-01-01
A teleoperating system is presented that involves shared control between a human operator and a general-purpose computer-based learning machine. This setup features a trainable control network termed the autonomous control subsystem (ACS) which is able to observe the operator's control actions, learn the task at hand, and take appropriate control actions. A working ACS system is described that has been put in operation for the purpose of exploring the uses of a remote intelligence of this type. The expansion of the present system into a multifunctional learning machine capable of a greater degree of autonomy is also discussed.
Interface Metaphors for Interactive Machine Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasper, Robert J.; Blaha, Leslie M.
To promote more interactive and dynamic machine learn- ing, we revisit the notion of user-interface metaphors. User-interface metaphors provide intuitive constructs for supporting user needs through interface design elements. A user-interface metaphor provides a visual or action pattern that leverages a user’s knowledge of another domain. Metaphors suggest both the visual representations that should be used in a display as well as the interactions that should be afforded to the user. We argue that user-interface metaphors can also offer a method of extracting interaction-based user feedback for use in machine learning. Metaphors offer indirect, context-based information that can be usedmore » in addition to explicit user inputs, such as user-provided labels. Implicit information from user interactions with metaphors can augment explicit user input for active learning paradigms. Or it might be leveraged in systems where explicit user inputs are more challenging to obtain. Each interaction with the metaphor provides an opportunity to gather data and learn. We argue this approach is especially important in streaming applications, where we desire machine learning systems that can adapt to dynamic, changing data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borges, Raymond Charles; Beaver, Justin M; Buckner, Mark A
Power system disturbances are inherently complex and can be attributed to a wide range of sources, including both natural and man-made events. Currently, the power system operators are heavily relied on to make decisions regarding the causes of experienced disturbances and the appropriate course of action as a response. In the case of cyber-attacks against a power system, human judgment is less certain since there is an overt attempt to disguise the attack and deceive the operators as to the true state of the system. To enable the human decision maker, we explore the viability of machine learning as amore » means for discriminating types of power system disturbances, and focus specifically on detecting cyber-attacks where deception is a core tenet of the event. We evaluate various machine learning methods as disturbance discriminators and discuss the practical implications for deploying machine learning systems as an enhancement to existing power system architectures.« less
Machine learning techniques for fault isolation and sensor placement
NASA Technical Reports Server (NTRS)
Carnes, James R.; Fisher, Douglas H.
1993-01-01
Fault isolation and sensor placement are vital for monitoring and diagnosis. A sensor conveys information about a system's state that guides troubleshooting if problems arise. We are using machine learning methods to uncover behavioral patterns over snapshots of system simulations that will aid fault isolation and sensor placement, with an eye towards minimality, fault coverage, and noise tolerance.
NASA Astrophysics Data System (ADS)
Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Jo, Byungdu; Choi, Seungyeon; Shin, Jungwook; Kim, Hee-Joung
2017-03-01
The chest digital tomosynthesis(CDT) is recently developed medical device that has several advantage for diagnosing lung disease. For example, CDT provides depth information with relatively low radiation dose compared to computed tomography (CT). However, a major problem with CDT is the image artifacts associated with data incompleteness resulting from limited angle data acquisition in CDT geometry. For this reason, the sensitivity of lung disease was not clear compared to CT. In this study, to improve sensitivity of lung disease detection in CDT, we developed computer aided diagnosis (CAD) systems based on machine learning. For design CAD systems, we used 100 cases of lung nodules cropped images and 100 cases of normal lesion cropped images acquired by lung man phantoms and proto type CDT. We used machine learning techniques based on support vector machine and Gabor filter. The Gabor filter was used for extracting characteristics of lung nodules and we compared performance of feature extraction of Gabor filter with various scale and orientation parameters. We used 3, 4, 5 scales and 4, 6, 8 orientations. After extracting features, support vector machine (SVM) was used for classifying feature of lesions. The linear, polynomial and Gaussian kernels of SVM were compared to decide the best SVM conditions for CDT reconstruction images. The results of CAD system with machine learning showed the capability of automatically lung lesion detection. Furthermore detection performance was the best when Gabor filter with 5 scale and 8 orientation and SVM with Gaussian kernel were used. In conclusion, our suggested CAD system showed improving sensitivity of lung lesion detection in CDT and decide Gabor filter and SVM conditions to achieve higher detection performance of our developed CAD system for CDT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamieson, Kevin; Davis, IV, Warren L.
Active learning methods automatically adapt data collection by selecting the most informative samples in order to accelerate machine learning. Because of this, real-world testing and comparing active learning algorithms requires collecting new datasets (adaptively), rather than simply applying algorithms to benchmark datasets, as is the norm in (passive) machine learning research. To facilitate the development, testing and deployment of active learning for real applications, we have built an open-source software system for large-scale active learning research and experimentation. The system, called NEXT, provides a unique platform for realworld, reproducible active learning research. This paper details the challenges of building themore » system and demonstrates its capabilities with several experiments. The results show how experimentation can help expose strengths and weaknesses of active learning algorithms, in sometimes unexpected and enlightening ways.« less
Travnik, Jaden B; Pilarski, Patrick M
2017-07-01
Prosthetic devices have advanced in their capabilities and in the number and type of sensors included in their design. As the space of sensorimotor data available to a conventional or machine learning prosthetic control system increases in dimensionality and complexity, it becomes increasingly important that this data be represented in a useful and computationally efficient way. Well structured sensory data allows prosthetic control systems to make informed, appropriate control decisions. In this study, we explore the impact that increased sensorimotor information has on current machine learning prosthetic control approaches. Specifically, we examine the effect that high-dimensional sensory data has on the computation time and prediction performance of a true-online temporal-difference learning prediction method as embedded within a resource-limited upper-limb prosthesis control system. We present results comparing tile coding, the dominant linear representation for real-time prosthetic machine learning, with a newly proposed modification to Kanerva coding that we call selective Kanerva coding. In addition to showing promising results for selective Kanerva coding, our results confirm potential limitations to tile coding as the number of sensory input dimensions increases. To our knowledge, this study is the first to explicitly examine representations for realtime machine learning prosthetic devices in general terms. This work therefore provides an important step towards forming an efficient prosthesis-eye view of the world, wherein prompt and accurate representations of high-dimensional data may be provided to machine learning control systems within artificial limbs and other assistive rehabilitation technologies.
Designing a holistic end-to-end intelligent network analysis and security platform
NASA Astrophysics Data System (ADS)
Alzahrani, M.
2018-03-01
Firewall protects a network from outside attacks, however, once an attack entering a network, it is difficult to detect. Recent significance accidents happened. i.e.: millions of Yahoo email account were stolen and crucial data from institutions are held for ransom. Within two year Yahoo’s system administrators were not aware that there are intruder inside the network. This happened due to the lack of intelligent tools to monitor user behaviour in internal network. This paper discusses a design of an intelligent anomaly/malware detection system with proper proactive actions. The aim is to equip the system administrator with a proper tool to battle the insider attackers. The proposed system adopts machine learning to analyse user’s behaviour through the runtime behaviour of each node in the network. The machine learning techniques include: deep learning, evolving machine learning perceptron, hybrid of Neural Network and Fuzzy, as well as predictive memory techniques. The proposed system is expanded to deal with larger network using agent techniques.
Paradigms for machine learning
NASA Technical Reports Server (NTRS)
Schlimmer, Jeffrey C.; Langley, Pat
1991-01-01
Five paradigms are described for machine learning: connectionist (neural network) methods, genetic algorithms and classifier systems, empirical methods for inducing rules and decision trees, analytic learning methods, and case-based approaches. Some dimensions are considered along with these paradigms vary in their approach to learning, and the basic methods are reviewed that are used within each framework, together with open research issues. It is argued that the similarities among the paradigms are more important than their differences, and that future work should attempt to bridge the existing boundaries. Finally, some recent developments in the field of machine learning are discussed, and their impact on both research and applications is examined.
Machine learning-based methods for prediction of linear B-cell epitopes.
Wang, Hsin-Wei; Pai, Tun-Wen
2014-01-01
B-cell epitope prediction facilitates immunologists in designing peptide-based vaccine, diagnostic test, disease prevention, treatment, and antibody production. In comparison with T-cell epitope prediction, the performance of variable length B-cell epitope prediction is still yet to be satisfied. Fortunately, due to increasingly available verified epitope databases, bioinformaticians could adopt machine learning-based algorithms on all curated data to design an improved prediction tool for biomedical researchers. Here, we have reviewed related epitope prediction papers, especially those for linear B-cell epitope prediction. It should be noticed that a combination of selected propensity scales and statistics of epitope residues with machine learning-based tools formulated a general way for constructing linear B-cell epitope prediction systems. It is also observed from most of the comparison results that the kernel method of support vector machine (SVM) classifier outperformed other machine learning-based approaches. Hence, in this chapter, except reviewing recently published papers, we have introduced the fundamentals of B-cell epitope and SVM techniques. In addition, an example of linear B-cell prediction system based on physicochemical features and amino acid combinations is illustrated in details.
Amp: A modular approach to machine learning in atomistic simulations
NASA Astrophysics Data System (ADS)
Khorshidi, Alireza; Peterson, Andrew A.
2016-10-01
Electronic structure calculations, such as those employing Kohn-Sham density functional theory or ab initio wavefunction theories, have allowed for atomistic-level understandings of a wide variety of phenomena and properties of matter at small scales. However, the computational cost of electronic structure methods drastically increases with length and time scales, which makes these methods difficult for long time-scale molecular dynamics simulations or large-sized systems. Machine-learning techniques can provide accurate potentials that can match the quality of electronic structure calculations, provided sufficient training data. These potentials can then be used to rapidly simulate large and long time-scale phenomena at similar quality to the parent electronic structure approach. Machine-learning potentials usually take a bias-free mathematical form and can be readily developed for a wide variety of systems. Electronic structure calculations have favorable properties-namely that they are noiseless and targeted training data can be produced on-demand-that make them particularly well-suited for machine learning. This paper discusses our modular approach to atomistic machine learning through the development of the open-source Atomistic Machine-learning Package (Amp), which allows for representations of both the total and atom-centered potential energy surface, in both periodic and non-periodic systems. Potentials developed through the atom-centered approach are simultaneously applicable for systems with various sizes. Interpolation can be enhanced by introducing custom descriptors of the local environment. We demonstrate this in the current work for Gaussian-type, bispectrum, and Zernike-type descriptors. Amp has an intuitive and modular structure with an interface through the python scripting language yet has parallelizable fortran components for demanding tasks; it is designed to integrate closely with the widely used Atomic Simulation Environment (ASE), which makes it compatible with a wide variety of commercial and open-source electronic structure codes. We finally demonstrate that the neural network model inside Amp can accurately interpolate electronic structure energies as well as forces of thousands of multi-species atomic systems.
Pereira, Sérgio; Meier, Raphael; McKinley, Richard; Wiest, Roland; Alves, Victor; Silva, Carlos A; Reyes, Mauricio
2018-02-01
Machine learning systems are achieving better performances at the cost of becoming increasingly complex. However, because of that, they become less interpretable, which may cause some distrust by the end-user of the system. This is especially important as these systems are pervasively being introduced to critical domains, such as the medical field. Representation Learning techniques are general methods for automatic feature computation. Nevertheless, these techniques are regarded as uninterpretable "black boxes". In this paper, we propose a methodology to enhance the interpretability of automatically extracted machine learning features. The proposed system is composed of a Restricted Boltzmann Machine for unsupervised feature learning, and a Random Forest classifier, which are combined to jointly consider existing correlations between imaging data, features, and target variables. We define two levels of interpretation: global and local. The former is devoted to understanding if the system learned the relevant relations in the data correctly, while the later is focused on predictions performed on a voxel- and patient-level. In addition, we propose a novel feature importance strategy that considers both imaging data and target variables, and we demonstrate the ability of the approach to leverage the interpretability of the obtained representation for the task at hand. We evaluated the proposed methodology in brain tumor segmentation and penumbra estimation in ischemic stroke lesions. We show the ability of the proposed methodology to unveil information regarding relationships between imaging modalities and extracted features and their usefulness for the task at hand. In both clinical scenarios, we demonstrate that the proposed methodology enhances the interpretability of automatically learned features, highlighting specific learning patterns that resemble how an expert extracts relevant data from medical images. Copyright © 2017 Elsevier B.V. All rights reserved.
A Machine Learning Approach to Automated Gait Analysis for the Noldus Catwalk System.
Frohlich, Holger; Claes, Kasper; De Wolf, Catherine; Van Damme, Xavier; Michel, Anne
2018-05-01
Gait analysis of animal disease models can provide valuable insights into in vivo compound effects and thus help in preclinical drug development. The purpose of this paper is to establish a computational gait analysis approach for the Noldus Catwalk system, in which footprints are automatically captured and stored. We present a - to our knowledge - first machine learning based approach for the Catwalk system, which comprises a step decomposition, definition and extraction of meaningful features, multivariate step sequence alignment, feature selection, and training of different classifiers (gradient boosting machine, random forest, and elastic net). Using animal-wise leave-one-out cross validation we demonstrate that with our method we can reliable separate movement patterns of a putative Parkinson's disease animal model and several control groups. Furthermore, we show that we can predict the time point after and the type of different brain lesions and can even forecast the brain region, where the intervention was applied. We provide an in-depth analysis of the features involved into our classifiers via statistical techniques for model interpretation. A machine learning method for automated analysis of data from the Noldus Catwalk system was established. Our works shows the ability of machine learning to discriminate pharmacologically relevant animal groups based on their walking behavior in a multivariate manner. Further interesting aspects of the approach include the ability to learn from past experiments, improve with more data arriving and to make predictions for single animals in future studies.
Shark: SQL and Rich Analytics at Scale
2012-11-26
learning programs up to 100 faster than Hadoop. Unlike previous systems, Shark shows that it is possible to achieve these speedups while retaining a...Shark to run SQL queries up to 100× faster than Apache Hive, and machine learning programs up to 100× faster than Hadoop. Unlike previous systems, Shark...so using a runtime that is optimized for such workloads and a programming model that is designed to express machine learn - ing algorithms. 4.1
NASA Astrophysics Data System (ADS)
Hoffmann, Achim; Mahidadia, Ashesh
The purpose of this chapter is to present fundamental ideas and techniques of machine learning suitable for the field of this book, i.e., for automated scientific discovery. The chapter focuses on those symbolic machine learning methods, which produce results that are suitable to be interpreted and understood by humans. This is particularly important in the context of automated scientific discovery as the scientific theories to be produced by machines are usually meant to be interpreted by humans. This chapter contains some of the most influential ideas and concepts in machine learning research to give the reader a basic insight into the field. After the introduction in Sect. 1, general ideas of how learning problems can be framed are given in Sect. 2. The section provides useful perspectives to better understand what learning algorithms actually do. Section 3 presents the Version space model which is an early learning algorithm as well as a conceptual framework, that provides important insight into the general mechanisms behind most learning algorithms. In section 4, a family of learning algorithms, the AQ family for learning classification rules is presented. The AQ family belongs to the early approaches in machine learning. The next, Sect. 5 presents the basic principles of decision tree learners. Decision tree learners belong to the most influential class of inductive learning algorithms today. Finally, a more recent group of learning systems are presented in Sect. 6, which learn relational concepts within the framework of logic programming. This is a particularly interesting group of learning systems since the framework allows also to incorporate background knowledge which may assist in generalisation. Section 7 discusses Association Rules - a technique that comes from the related field of Data mining. Section 8 presents the basic idea of the Naive Bayesian Classifier. While this is a very popular learning technique, the learning result is not well suited for human comprehension as it is essentially a large collection of probability values. In Sect. 9, we present a generic method for improving accuracy of a given learner by generatingmultiple classifiers using variations of the training data. While this works well in most cases, the resulting classifiers have significantly increased complexity and, hence, tend to destroy the human readability of the learning result that a single learner may produce. Section 10 contains a summary, mentions briefly other techniques not discussed in this chapter and presents outlook on the potential of machine learning in the future.
Systematic Poisoning Attacks on and Defenses for Machine Learning in Healthcare.
Mozaffari-Kermani, Mehran; Sur-Kolay, Susmita; Raghunathan, Anand; Jha, Niraj K
2015-11-01
Machine learning is being used in a wide range of application domains to discover patterns in large datasets. Increasingly, the results of machine learning drive critical decisions in applications related to healthcare and biomedicine. Such health-related applications are often sensitive, and thus, any security breach would be catastrophic. Naturally, the integrity of the results computed by machine learning is of great importance. Recent research has shown that some machine-learning algorithms can be compromised by augmenting their training datasets with malicious data, leading to a new class of attacks called poisoning attacks. Hindrance of a diagnosis may have life-threatening consequences and could cause distrust. On the other hand, not only may a false diagnosis prompt users to distrust the machine-learning algorithm and even abandon the entire system but also such a false positive classification may cause patient distress. In this paper, we present a systematic, algorithm-independent approach for mounting poisoning attacks across a wide range of machine-learning algorithms and healthcare datasets. The proposed attack procedure generates input data, which, when added to the training set, can either cause the results of machine learning to have targeted errors (e.g., increase the likelihood of classification into a specific class), or simply introduce arbitrary errors (incorrect classification). These attacks may be applied to both fixed and evolving datasets. They can be applied even when only statistics of the training dataset are available or, in some cases, even without access to the training dataset, although at a lower efficacy. We establish the effectiveness of the proposed attacks using a suite of six machine-learning algorithms and five healthcare datasets. Finally, we present countermeasures against the proposed generic attacks that are based on tracking and detecting deviations in various accuracy metrics, and benchmark their effectiveness.
Shan, Juan; Alam, S Kaisar; Garra, Brian; Zhang, Yingtao; Ahmed, Tahira
2016-04-01
This work identifies effective computable features from the Breast Imaging Reporting and Data System (BI-RADS), to develop a computer-aided diagnosis (CAD) system for breast ultrasound. Computerized features corresponding to ultrasound BI-RADs categories were designed and tested using a database of 283 pathology-proven benign and malignant lesions. Features were selected based on classification performance using a "bottom-up" approach for different machine learning methods, including decision tree, artificial neural network, random forest and support vector machine. Using 10-fold cross-validation on the database of 283 cases, the highest area under the receiver operating characteristic (ROC) curve (AUC) was 0.84 from a support vector machine with 77.7% overall accuracy; the highest overall accuracy, 78.5%, was from a random forest with the AUC 0.83. Lesion margin and orientation were optimum features common to all of the different machine learning methods. These features can be used in CAD systems to help distinguish benign from worrisome lesions. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. All rights reserved.
Machine Learning: A Crucial Tool for Sensor Design
Zhao, Weixiang; Bhushan, Abhinav; Santamaria, Anthony D.; Simon, Melinda G.; Davis, Cristina E.
2009-01-01
Sensors have been widely used for disease diagnosis, environmental quality monitoring, food quality control, industrial process analysis and control, and other related fields. As a key tool for sensor data analysis, machine learning is becoming a core part of novel sensor design. Dividing a complete machine learning process into three steps: data pre-treatment, feature extraction and dimension reduction, and system modeling, this paper provides a review of the methods that are widely used for each step. For each method, the principles and the key issues that affect modeling results are discussed. After reviewing the potential problems in machine learning processes, this paper gives a summary of current algorithms in this field and provides some feasible directions for future studies. PMID:20191110
Research on knowledge representation, machine learning, and knowledge acquisition
NASA Technical Reports Server (NTRS)
Buchanan, Bruce G.
1987-01-01
Research in knowledge representation, machine learning, and knowledge acquisition performed at Knowledge Systems Lab. is summarized. The major goal of the research was to develop flexible, effective methods for representing the qualitative knowledge necessary for solving large problems that require symbolic reasoning as well as numerical computation. The research focused on integrating different representation methods to describe different kinds of knowledge more effectively than any one method can alone. In particular, emphasis was placed on representing and using spatial information about three dimensional objects and constraints on the arrangement of these objects in space. Another major theme is the development of robust machine learning programs that can be integrated with a variety of intelligent systems. To achieve this goal, learning methods were designed, implemented and experimented within several different problem solving environments.
Zheng, Shuai; Lu, James J; Ghasemzadeh, Nima; Hayek, Salim S; Quyyumi, Arshed A; Wang, Fusheng
2017-05-09
Extracting structured data from narrated medical reports is challenged by the complexity of heterogeneous structures and vocabularies and often requires significant manual effort. Traditional machine-based approaches lack the capability to take user feedbacks for improving the extraction algorithm in real time. Our goal was to provide a generic information extraction framework that can support diverse clinical reports and enables a dynamic interaction between a human and a machine that produces highly accurate results. A clinical information extraction system IDEAL-X has been built on top of online machine learning. It processes one document at a time, and user interactions are recorded as feedbacks to update the learning model in real time. The updated model is used to predict values for extraction in subsequent documents. Once prediction accuracy reaches a user-acceptable threshold, the remaining documents may be batch processed. A customizable controlled vocabulary may be used to support extraction. Three datasets were used for experiments based on report styles: 100 cardiac catheterization procedure reports, 100 coronary angiographic reports, and 100 integrated reports-each combines history and physical report, discharge summary, outpatient clinic notes, outpatient clinic letter, and inpatient discharge medication report. Data extraction was performed by 3 methods: online machine learning, controlled vocabularies, and a combination of these. The system delivers results with F1 scores greater than 95%. IDEAL-X adopts a unique online machine learning-based approach combined with controlled vocabularies to support data extraction for clinical reports. The system can quickly learn and improve, thus it is highly adaptable. ©Shuai Zheng, James J Lu, Nima Ghasemzadeh, Salim S Hayek, Arshed A Quyyumi, Fusheng Wang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 09.05.2017.
Machine Learning Methods for Attack Detection in the Smart Grid.
Ozay, Mete; Esnaola, Inaki; Yarman Vural, Fatos Tunay; Kulkarni, Sanjeev R; Poor, H Vincent
2016-08-01
Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.
Evolving autonomous learning in cognitive networks.
Sheneman, Leigh; Hintze, Arend
2017-12-01
There are two common approaches for optimizing the performance of a machine: genetic algorithms and machine learning. A genetic algorithm is applied over many generations whereas machine learning works by applying feedback until the system meets a performance threshold. These methods have been previously combined, particularly in artificial neural networks using an external objective feedback mechanism. We adapt this approach to Markov Brains, which are evolvable networks of probabilistic and deterministic logic gates. Prior to this work MB could only adapt from one generation to the other, so we introduce feedback gates which augment their ability to learn during their lifetime. We show that Markov Brains can incorporate these feedback gates in such a way that they do not rely on an external objective feedback signal, but instead can generate internal feedback that is then used to learn. This results in a more biologically accurate model of the evolution of learning, which will enable us to study the interplay between evolution and learning and could be another step towards autonomously learning machines.
NASA Astrophysics Data System (ADS)
Nelson, Kevin; Corbin, George; Blowers, Misty
2014-05-01
Machine learning is continuing to gain popularity due to its ability to solve problems that are difficult to model using conventional computer programming logic. Much of the current and past work has focused on algorithm development, data processing, and optimization. Lately, a subset of research has emerged which explores issues related to security. This research is gaining traction as systems employing these methods are being applied to both secure and adversarial environments. One of machine learning's biggest benefits, its data-driven versus logic-driven approach, is also a weakness if the data on which the models rely are corrupted. Adversaries could maliciously influence systems which address drift and data distribution changes using re-training and online learning. Our work is focused on exploring the resilience of various machine learning algorithms to these data-driven attacks. In this paper, we present our initial findings using Monte Carlo simulations, and statistical analysis, to explore the maximal achievable shift to a classification model, as well as the required amount of control over the data.
Zheng, Shuai; Ghasemzadeh, Nima; Hayek, Salim S; Quyyumi, Arshed A
2017-01-01
Background Extracting structured data from narrated medical reports is challenged by the complexity of heterogeneous structures and vocabularies and often requires significant manual effort. Traditional machine-based approaches lack the capability to take user feedbacks for improving the extraction algorithm in real time. Objective Our goal was to provide a generic information extraction framework that can support diverse clinical reports and enables a dynamic interaction between a human and a machine that produces highly accurate results. Methods A clinical information extraction system IDEAL-X has been built on top of online machine learning. It processes one document at a time, and user interactions are recorded as feedbacks to update the learning model in real time. The updated model is used to predict values for extraction in subsequent documents. Once prediction accuracy reaches a user-acceptable threshold, the remaining documents may be batch processed. A customizable controlled vocabulary may be used to support extraction. Results Three datasets were used for experiments based on report styles: 100 cardiac catheterization procedure reports, 100 coronary angiographic reports, and 100 integrated reports—each combines history and physical report, discharge summary, outpatient clinic notes, outpatient clinic letter, and inpatient discharge medication report. Data extraction was performed by 3 methods: online machine learning, controlled vocabularies, and a combination of these. The system delivers results with F1 scores greater than 95%. Conclusions IDEAL-X adopts a unique online machine learning–based approach combined with controlled vocabularies to support data extraction for clinical reports. The system can quickly learn and improve, thus it is highly adaptable. PMID:28487265
Installé, Arnaud Jf; Van den Bosch, Thierry; De Moor, Bart; Timmerman, Dirk
2014-10-20
Using machine-learning techniques, clinical diagnostic model research extracts diagnostic models from patient data. Traditionally, patient data are often collected using electronic Case Report Form (eCRF) systems, while mathematical software is used for analyzing these data using machine-learning techniques. Due to the lack of integration between eCRF systems and mathematical software, extracting diagnostic models is a complex, error-prone process. Moreover, due to the complexity of this process, it is usually only performed once, after a predetermined number of data points have been collected, without insight into the predictive performance of the resulting models. The objective of the study of Clinical Data Miner (CDM) software framework is to offer an eCRF system with integrated data preprocessing and machine-learning libraries, improving efficiency of the clinical diagnostic model research workflow, and to enable optimization of patient inclusion numbers through study performance monitoring. The CDM software framework was developed using a test-driven development (TDD) approach, to ensure high software quality. Architecturally, CDM's design is split over a number of modules, to ensure future extendability. The TDD approach has enabled us to deliver high software quality. CDM's eCRF Web interface is in active use by the studies of the International Endometrial Tumor Analysis consortium, with over 4000 enrolled patients, and more studies planned. Additionally, a derived user interface has been used in six separate interrater agreement studies. CDM's integrated data preprocessing and machine-learning libraries simplify some otherwise manual and error-prone steps in the clinical diagnostic model research workflow. Furthermore, CDM's libraries provide study coordinators with a method to monitor a study's predictive performance as patient inclusions increase. To our knowledge, CDM is the only eCRF system integrating data preprocessing and machine-learning libraries. This integration improves the efficiency of the clinical diagnostic model research workflow. Moreover, by simplifying the generation of learning curves, CDM enables study coordinators to assess more accurately when data collection can be terminated, resulting in better models or lower patient recruitment costs.
Jauregi Unanue, Iñigo; Zare Borzeshi, Ehsan; Piccardi, Massimo
2017-12-01
Previous state-of-the-art systems on Drug Name Recognition (DNR) and Clinical Concept Extraction (CCE) have focused on a combination of text "feature engineering" and conventional machine learning algorithms such as conditional random fields and support vector machines. However, developing good features is inherently heavily time-consuming. Conversely, more modern machine learning approaches such as recurrent neural networks (RNNs) have proved capable of automatically learning effective features from either random assignments or automated word "embeddings". (i) To create a highly accurate DNR and CCE system that avoids conventional, time-consuming feature engineering. (ii) To create richer, more specialized word embeddings by using health domain datasets such as MIMIC-III. (iii) To evaluate our systems over three contemporary datasets. Two deep learning methods, namely the Bidirectional LSTM and the Bidirectional LSTM-CRF, are evaluated. A CRF model is set as the baseline to compare the deep learning systems to a traditional machine learning approach. The same features are used for all the models. We have obtained the best results with the Bidirectional LSTM-CRF model, which has outperformed all previously proposed systems. The specialized embeddings have helped to cover unusual words in DrugBank and MedLine, but not in the i2b2/VA dataset. We present a state-of-the-art system for DNR and CCE. Automated word embeddings has allowed us to avoid costly feature engineering and achieve higher accuracy. Nevertheless, the embeddings need to be retrained over datasets that are adequate for the domain, in order to adequately cover the domain-specific vocabulary. Copyright © 2017 Elsevier Inc. All rights reserved.
Machine learning algorithms for the creation of clinical healthcare enterprise systems
NASA Astrophysics Data System (ADS)
Mandal, Indrajit
2017-10-01
Clinical recommender systems are increasingly becoming popular for improving modern healthcare systems. Enterprise systems are persuasively used for creating effective nurse care plans to provide nurse training, clinical recommendations and clinical quality control. A novel design of a reliable clinical recommender system based on multiple classifier system (MCS) is implemented. A hybrid machine learning (ML) ensemble based on random subspace method and random forest is presented. The performance accuracy and robustness of proposed enterprise architecture are quantitatively estimated to be above 99% and 97%, respectively (above 95% confidence interval). The study then extends to experimental analysis of the clinical recommender system with respect to the noisy data environment. The ranking of items in nurse care plan is demonstrated using machine learning algorithms (MLAs) to overcome the drawback of the traditional association rule method. The promising experimental results are compared against the sate-of-the-art approaches to highlight the advancement in recommendation technology. The proposed recommender system is experimentally validated using five benchmark clinical data to reinforce the research findings.
A data-driven multi-model methodology with deep feature selection for short-term wind forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Cong; Cui, Mingjian; Hodge, Bri-Mathias
With the growing wind penetration into the power system worldwide, improving wind power forecasting accuracy is becoming increasingly important to ensure continued economic and reliable power system operations. In this paper, a data-driven multi-model wind forecasting methodology is developed with a two-layer ensemble machine learning technique. The first layer is composed of multiple machine learning models that generate individual forecasts. A deep feature selection framework is developed to determine the most suitable inputs to the first layer machine learning models. Then, a blending algorithm is applied in the second layer to create an ensemble of the forecasts produced by firstmore » layer models and generate both deterministic and probabilistic forecasts. This two-layer model seeks to utilize the statistically different characteristics of each machine learning algorithm. A number of machine learning algorithms are selected and compared in both layers. This developed multi-model wind forecasting methodology is compared to several benchmarks. The effectiveness of the proposed methodology is evaluated to provide 1-hour-ahead wind speed forecasting at seven locations of the Surface Radiation network. Numerical results show that comparing to the single-algorithm models, the developed multi-model framework with deep feature selection procedure has improved the forecasting accuracy by up to 30%.« less
A Development of Automatic Audit System for Written Informed Consent using Machine Learning.
Yamada, Hitomi; Takemura, Tadamasa; Asai, Takahiro; Okamoto, Kazuya; Kuroda, Tomohiro; Kuwata, Shigeki
2015-01-01
In Japan, most of all the university and advanced hospitals have implemented both electronic order entry systems and electronic charting. In addition, all medical records are subjected to inspector audit for quality assurance. The record of informed consent (IC) is very important as this provides evidence of consent from the patient or patient's family and health care provider. Therefore, we developed an automatic audit system for a hospital information system (HIS) that is able to evaluate IC automatically using machine learning.
Machine Learning Toolkit for Extreme Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-03-31
Support Vector Machines (SVM) is a popular machine learning technique, which has been applied to a wide range of domains such as science, finance, and social networks for supervised learning. MaTEx undertakes the challenge of designing a scalable parallel SVM training algorithm for large scale systems, which includes commodity multi-core machines, tightly connected supercomputers and cloud computing systems. Several techniques are proposed for improved speed and memory space usage including adaptive and aggressive elimination of samples for faster convergence , and sparse format representation of data samples. Several heuristics for earliest possible to lazy elimination of non-contributing samples are consideredmore » in MaTEx. In many cases, where an early sample elimination might result in a false positive, low overhead mechanisms for reconstruction of key data structures are proposed. The proposed algorithm and heuristics are implemented and evaluated on various publicly available datasets« less
Machine learning strategies for systems with invariance properties
NASA Astrophysics Data System (ADS)
Ling, Julia; Jones, Reese; Templeton, Jeremy
2016-08-01
In many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds Averaged Navier Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high performance computing has led to a growing availability of high fidelity simulation data. These data open up the possibility of using machine learning algorithms, such as random forests or neural networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these empirical models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first method, a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance at significantly reduced computational training costs.
Machine learning strategies for systems with invariance properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ling, Julia; Jones, Reese E.; Templeton, Jeremy Alan
Here, in many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds-Averaged Navier-Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high-performance computing has led to a growing availability of high-fidelity simulation data, which open up the possibility of using machine learning algorithms, such as random forests or neuralmore » networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first , a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance with significantly reduced computational training costs.« less
Machine learning strategies for systems with invariance properties
Ling, Julia; Jones, Reese E.; Templeton, Jeremy Alan
2016-05-06
Here, in many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds-Averaged Navier-Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high-performance computing has led to a growing availability of high-fidelity simulation data, which open up the possibility of using machine learning algorithms, such as random forests or neuralmore » networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first , a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance with significantly reduced computational training costs.« less
Feasibility of a real-time hand hygiene notification machine learning system in outpatient clinics.
Geilleit, R; Hen, Z Q; Chong, C Y; Loh, A P; Pang, N L; Peterson, G M; Ng, K C; Huis, A; de Korne, D F
2018-04-09
Various technologies have been developed to improve hand hygiene (HH) compliance in inpatient settings; however, little is known about the feasibility of machine learning technology for this purpose in outpatient clinics. To assess the effectiveness, user experiences, and costs of implementing a real-time HH notification machine learning system in outpatient clinics. In our mixed methods study, a multi-disciplinary team co-created an infrared guided sensor system to automatically notify clinicians to perform HH just before first patient contact. Notification technology effects were measured by comparing HH compliance at baseline (without notifications) with real-time auditory notifications that continued till HH was performed (intervention I) or notifications lasting 15 s (intervention II). User experiences were collected during daily briefings and semi-structured interviews. Costs of implementation of the system were calculated and compared to the current observational auditing programme. Average baseline HH performance before first patient contact was 53.8%. With real-time auditory notifications that continued till HH was performed, overall HH performance increased to 100% (P < 0.001). With auditory notifications of a maximum duration of 15 s, HH performance was 80.4% (P < 0.001). Users emphasized the relevance of real-time notification and contributed to technical feasibility improvements that were implemented in the prototype. Annual running costs for the machine learning system were estimated to be 46% lower than the observational auditing programme. Machine learning technology that enables real-time HH notification provides a promising cost-effective approach to both improving and monitoring HH, and deserves further development in outpatient settings. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
A review on machine learning principles for multi-view biological data integration.
Li, Yifeng; Wu, Fang-Xiang; Ngom, Alioune
2018-03-01
Driven by high-throughput sequencing techniques, modern genomic and clinical studies are in a strong need of integrative machine learning models for better use of vast volumes of heterogeneous information in the deep understanding of biological systems and the development of predictive models. How data from multiple sources (called multi-view data) are incorporated in a learning system is a key step for successful analysis. In this article, we provide a comprehensive review on omics and clinical data integration techniques, from a machine learning perspective, for various analyses such as prediction, clustering, dimension reduction and association. We shall show that Bayesian models are able to use prior information and model measurements with various distributions; tree-based methods can either build a tree with all features or collectively make a final decision based on trees learned from each view; kernel methods fuse the similarity matrices learned from individual views together for a final similarity matrix or learning model; network-based fusion methods are capable of inferring direct and indirect associations in a heterogeneous network; matrix factorization models have potential to learn interactions among features from different views; and a range of deep neural networks can be integrated in multi-modal learning for capturing the complex mechanism of biological systems.
Takada, Kenji
2016-09-01
New approach for the diagnosis of extractions with neural network machine learning. Seok-Ki Jung and Tae-Woo Kim. Am J Orthod Dentofacial Orthop 2016;149:127-33. Not reported. Mathematical modeling. Copyright © 2016 Elsevier Inc. All rights reserved.
A New Mathematical Framework for Design Under Uncertainty
2016-05-05
blending multiple information sources via auto-regressive stochastic modeling. A computationally efficient machine learning framework is developed based on...sion and machine learning approaches; see Fig. 1. This will lead to a comprehensive description of system performance with less uncertainty than in the...Bayesian optimization of super-cavitating hy- drofoils The goal of this study is to demonstrate the capabilities of statistical learning and
Real-time detection of transients in OGLE-IV with application of machine learning
NASA Astrophysics Data System (ADS)
Klencki, Jakub; Wyrzykowski, Łukasz
2016-06-01
The current bottleneck of transient detection in most surveys is the problem of rejecting numerous artifacts from detected candidates. We present a triple-stage hierarchical machine learning system for automated artifact filtering in difference imaging, based on self-organizing maps. The classifier, when tested on the OGLE-IV Transient Detection System, accepts 97% of real transients while removing up to 97.5% of artifacts.
Classifying black and white spruce pollen using layered machine learning.
Punyasena, Surangi W; Tcheng, David K; Wesseln, Cassandra; Mueller, Pietra G
2012-11-01
Pollen is among the most ubiquitous of terrestrial fossils, preserving an extended record of vegetation change. However, this temporal continuity comes with a taxonomic tradeoff. Analytical methods that improve the taxonomic precision of pollen identifications would expand the research questions that could be addressed by pollen, in fields such as paleoecology, paleoclimatology, biostratigraphy, melissopalynology, and forensics. We developed a supervised, layered, instance-based machine-learning classification system that uses leave-one-out bias optimization and discriminates among small variations in pollen shape, size, and texture. We tested our system on black and white spruce, two paleoclimatically significant taxa in the North American Quaternary. We achieved > 93% grain-to-grain classification accuracies in a series of experiments with both fossil and reference material. More significantly, when applied to Quaternary samples, the learning system was able to replicate the count proportions of a human expert (R(2) = 0.78, P = 0.007), with one key difference - the machine achieved these ratios by including larger numbers of grains with low-confidence identifications. Our results demonstrate the capability of machine-learning systems to solve the most challenging palynological classification problem, the discrimination of congeneric species, extending the capabilities of the pollen analyst and improving the taxonomic resolution of the palynological record. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Machine learning of parameter control doctrine for sensor and communication systems. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamen, R.B.; Dillard, R.A.
Artificial-intelligence approaches to learning were reviewed for their potential contributions to the construction of a system to learn parameter-control doctrine. Separate learning tasks were isolated and several levels of related problems were distinguished. Formulas for providing the learning system with measures of its performance were derived for four kinds of targets.
A Machine Learning Approach to Student Modeling.
1984-05-01
machine learning , and describe ACN, a student modeling system that incorporates this approach. This system begins with a set of overly general rules, which it uses to search a problem space until it arrives at the same answer as the student. The ACM computer program then uses the solution path it has discovered to determine positive and negative instances of its initial rules, and employs a discrimination learning mechanism to place additional conditions on these rules. The revised rules will reproduce the solution path without search, and constitute a cognitive model of
Kim, Jongin; Park, Hyeong-jun
2016-01-01
The purpose of this study is to classify EEG data on imagined speech in a single trial. We recorded EEG data while five subjects imagined different vowels, /a/, /e/, /i/, /o/, and /u/. We divided each single trial dataset into thirty segments and extracted features (mean, variance, standard deviation, and skewness) from all segments. To reduce the dimension of the feature vector, we applied a feature selection algorithm based on the sparse regression model. These features were classified using a support vector machine with a radial basis function kernel, an extreme learning machine, and two variants of an extreme learning machine with different kernels. Because each single trial consisted of thirty segments, our algorithm decided the label of the single trial by selecting the most frequent output among the outputs of the thirty segments. As a result, we observed that the extreme learning machine and its variants achieved better classification rates than the support vector machine with a radial basis function kernel and linear discrimination analysis. Thus, our results suggested that EEG responses to imagined speech could be successfully classified in a single trial using an extreme learning machine with a radial basis function and linear kernel. This study with classification of imagined speech might contribute to the development of silent speech BCI systems. PMID:28097128
Parameterizing Phrase Based Statistical Machine Translation Models: An Analytic Study
ERIC Educational Resources Information Center
Cer, Daniel
2011-01-01
The goal of this dissertation is to determine the best way to train a statistical machine translation system. I first develop a state-of-the-art machine translation system called Phrasal and then use it to examine a wide variety of potential learning algorithms and optimization criteria and arrive at two very surprising results. First, despite the…
Oliveira, Bárbara L; Godinho, Daniela; O'Halloran, Martin; Glavin, Martin; Jones, Edward; Conceição, Raquel C
2018-05-19
Currently, breast cancer often requires invasive biopsies for diagnosis, motivating researchers to design and develop non-invasive and automated diagnosis systems. Recent microwave breast imaging studies have shown how backscattered signals carry relevant information about the shape of a tumour, and tumour shape is often used with current imaging modalities to assess malignancy. This paper presents a comprehensive analysis of microwave breast diagnosis systems which use machine learning to learn characteristics of benign and malignant tumours. The state-of-the-art, the main challenges still to overcome and potential solutions are outlined. Specifically, this work investigates the benefit of signal pre-processing on diagnostic performance, and proposes a new set of extracted features that capture the tumour shape information embedded in a signal. This work also investigates if a relationship exists between the antenna topology in a microwave system and diagnostic performance. Finally, a careful machine learning validation methodology is implemented to guarantee the robustness of the results and the accuracy of performance evaluation.
Machine learning molecular dynamics for the simulation of infrared spectra.
Gastegger, Michael; Behler, Jörg; Marquetand, Philipp
2017-10-01
Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness this power to predict highly accurate molecular infrared spectra with unprecedented computational efficiency. To account for vibrational anharmonic and dynamical effects - typically neglected by conventional quantum chemistry approaches - we base our machine learning strategy on ab initio molecular dynamics simulations. While these simulations are usually extremely time consuming even for small molecules, we overcome these limitations by leveraging the power of a variety of machine learning techniques, not only accelerating simulations by several orders of magnitude, but also greatly extending the size of systems that can be treated. To this end, we develop a molecular dipole moment model based on environment dependent neural network charges and combine it with the neural network potential approach of Behler and Parrinello. Contrary to the prevalent big data philosophy, we are able to obtain very accurate machine learning models for the prediction of infrared spectra based on only a few hundreds of electronic structure reference points. This is made possible through the use of molecular forces during neural network potential training and the introduction of a fully automated sampling scheme. We demonstrate the power of our machine learning approach by applying it to model the infrared spectra of a methanol molecule, n -alkanes containing up to 200 atoms and the protonated alanine tripeptide, which at the same time represents the first application of machine learning techniques to simulate the dynamics of a peptide. In all of these case studies we find an excellent agreement between the infrared spectra predicted via machine learning models and the respective theoretical and experimental spectra.
Kepler-90 System Compared to Our Solar System (Artist's Concept)
2017-12-14
Our solar system now is tied for most number of planets around a single star, with the recent discovery of an eighth planet circling Kepler-90, a Sun-like star 2,545 light years from Earth. The planet was discovered in data from NASA's Kepler Space Telescope. This artist's concept depicts the Kepler-90 system compared with our own solar system. The newly-discovered Kepler-90i -- a sizzling hot, rocky planet that orbits its star once every 14.4 days -- was found using machine learning from Google. Machine learning is an approach to artificial intelligence in which computers "learn." In this case, computers learned to identify planets by finding in Kepler data instances where the telescope recorded changes in starlight caused by planets beyond our solar system, known as exoplanets. https://photojournal.jpl.nasa.gov/catalog/PIA22193
Machine learning for many-body physics: The case of the Anderson impurity model
Arsenault, Louis-François; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole; ...
2014-10-31
We applied machine learning methods in order to find the Green's function of the Anderson impurity model, a basic model system of quantum many-body condensed-matter physics. Furthermore, different methods of parametrizing the Green's function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its limited number of coefficients and its applicability to state of the art methods of solution. The dependence of the errors on the size of the training set is determined. Our results indicate that a machine learning approach to dynamical mean-field theory may be feasible.
Machine learning for many-body physics: The case of the Anderson impurity model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arsenault, Louis-François; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole
We applied machine learning methods in order to find the Green's function of the Anderson impurity model, a basic model system of quantum many-body condensed-matter physics. Furthermore, different methods of parametrizing the Green's function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its limited number of coefficients and its applicability to state of the art methods of solution. The dependence of the errors on the size of the training set is determined. Our results indicate that a machine learning approach to dynamical mean-field theory may be feasible.
ERIC Educational Resources Information Center
Scarnati, James T.; Tice, Craig J.
1992-01-01
Describes how students can make and use Hooey Machines to learn how mechanical energy can be transferred from one object to another within a system. The Hooey Machine is made using a pencil, eight thumbtacks, one pushpin, tape, scissors, graph paper, and a plastic lid. (PR)
Lee, Unseok; Chang, Sungyul; Putra, Gian Anantrio; Kim, Hyoungseok; Kim, Dong Hwan
2018-01-01
A high-throughput plant phenotyping system automatically observes and grows many plant samples. Many plant sample images are acquired by the system to determine the characteristics of the plants (populations). Stable image acquisition and processing is very important to accurately determine the characteristics. However, hardware for acquiring plant images rapidly and stably, while minimizing plant stress, is lacking. Moreover, most software cannot adequately handle large-scale plant imaging. To address these problems, we developed a new, automated, high-throughput plant phenotyping system using simple and robust hardware, and an automated plant-imaging-analysis pipeline consisting of machine-learning-based plant segmentation. Our hardware acquires images reliably and quickly and minimizes plant stress. Furthermore, the images are processed automatically. In particular, large-scale plant-image datasets can be segmented precisely using a classifier developed using a superpixel-based machine-learning algorithm (Random Forest), and variations in plant parameters (such as area) over time can be assessed using the segmented images. We performed comparative evaluations to identify an appropriate learning algorithm for our proposed system, and tested three robust learning algorithms. We developed not only an automatic analysis pipeline but also a convenient means of plant-growth analysis that provides a learning data interface and visualization of plant growth trends. Thus, our system allows end-users such as plant biologists to analyze plant growth via large-scale plant image data easily.
Summary of vulnerability related technologies based on machine learning
NASA Astrophysics Data System (ADS)
Zhao, Lei; Chen, Zhihao; Jia, Qiong
2018-04-01
As the scale of information system increases by an order of magnitude, the complexity of system software is getting higher. The vulnerability interaction from design, development and deployment to implementation stages greatly increases the risk of the entire information system being attacked successfully. Considering the limitations and lags of the existing mainstream security vulnerability detection techniques, this paper summarizes the development and current status of related technologies based on the machine learning methods applied to deal with massive and irregular data, and handling security vulnerabilities.
Chen, Chien-Chang; Juan, Hung-Hui; Tsai, Meng-Yuan; Lu, Henry Horng-Shing
2018-01-11
By introducing the methods of machine learning into the density functional theory, we made a detour for the construction of the most probable density function, which can be estimated by learning relevant features from the system of interest. Using the properties of universal functional, the vital core of density functional theory, the most probable cluster numbers and the corresponding cluster boundaries in a studying system can be simultaneously and automatically determined and the plausibility is erected on the Hohenberg-Kohn theorems. For the method validation and pragmatic applications, interdisciplinary problems from physical to biological systems were enumerated. The amalgamation of uncharged atomic clusters validated the unsupervised searching process of the cluster numbers and the corresponding cluster boundaries were exhibited likewise. High accurate clustering results of the Fisher's iris dataset showed the feasibility and the flexibility of the proposed scheme. Brain tumor detections from low-dimensional magnetic resonance imaging datasets and segmentations of high-dimensional neural network imageries in the Brainbow system were also used to inspect the method practicality. The experimental results exhibit the successful connection between the physical theory and the machine learning methods and will benefit the clinical diagnoses.
Building machines that learn and think like people.
Lake, Brenden M; Ullman, Tomer D; Tenenbaum, Joshua B; Gershman, Samuel J
2017-01-01
Recent progress in artificial intelligence has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats that of humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn and how they learn it. Specifically, we argue that these machines should (1) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (2) ground learning in intuitive theories of physics and psychology to support and enrich the knowledge that is learned; and (3) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes toward these goals that can combine the strengths of recent neural network advances with more structured cognitive models.
Using Machine Learning to Match Assistive Technology to People with Disabilities.
Rafi, Abe
2017-01-01
This paper describes the initial results of work to create a recommender system to match technology products to people with I/DD by applying machine learning to a large volume of data about: people with I/DD; the technology products they use; and the outcomes they aim to achieve with technology.
Acquiring Software Design Schemas: A Machine Learning Perspective
NASA Technical Reports Server (NTRS)
Harandi, Mehdi T.; Lee, Hing-Yan
1991-01-01
In this paper, we describe an approach based on machine learning that acquires software design schemas from design cases of existing applications. An overview of the technique, design representation, and acquisition system are presented. the paper also addresses issues associated with generalizing common features such as biases. The generalization process is illustrated using an example.
Intelligent fault-tolerant controllers
NASA Technical Reports Server (NTRS)
Huang, Chien Y.
1987-01-01
A system with fault tolerant controls is one that can detect, isolate, and estimate failures and perform necessary control reconfiguration based on this new information. Artificial intelligence (AI) is concerned with semantic processing, and it has evolved to include the topics of expert systems and machine learning. This research represents an attempt to apply AI to fault tolerant controls, hence, the name intelligent fault tolerant control (IFTC). A generic solution to the problem is sought, providing a system based on logic in addition to analytical tools, and offering machine learning capabilities. The advantages are that redundant system specific algorithms are no longer needed, that reasonableness is used to quickly choose the correct control strategy, and that the system can adapt to new situations by learning about its effects on system dynamics.
Ozcift, Akin; Gulten, Arif
2011-12-01
Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature. While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC). Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases. RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Classification of older adults with/without a fall history using machine learning methods.
Lin Zhang; Ou Ma; Fabre, Jennifer M; Wood, Robert H; Garcia, Stephanie U; Ivey, Kayla M; McCann, Evan D
2015-01-01
Falling is a serious problem in an aged society such that assessment of the risk of falls for individuals is imperative for the research and practice of falls prevention. This paper introduces an application of several machine learning methods for training a classifier which is capable of classifying individual older adults into a high risk group and a low risk group (distinguished by whether or not the members of the group have a recent history of falls). Using a 3D motion capture system, significant gait features related to falls risk are extracted. By training these features, classification hypotheses are obtained based on machine learning techniques (K Nearest-neighbour, Naive Bayes, Logistic Regression, Neural Network, and Support Vector Machine). Training and test accuracies with sensitivity and specificity of each of these techniques are assessed. The feature adjustment and tuning of the machine learning algorithms are discussed. The outcome of the study will benefit the prediction and prevention of falls.
The desktop interface in intelligent tutoring systems
NASA Technical Reports Server (NTRS)
Baudendistel, Stephen; Hua, Grace
1987-01-01
The interface between an Intelligent Tutoring System (ITS) and the person being tutored is critical to the success of the learning process. If the interface to the ITS is confusing or non-supportive of the tutored domain, the effectiveness of the instruction will be diminished or lost entirely. Consequently, the interface to an ITS should be highly integrated with the domain to provide a robust and semantically rich learning environment. In building an ITS for ZetaLISP on a LISP Machine, a Desktop Interface was designed to support a programming learning environment. Using the bitmapped display, windows, and mouse, three desktops were designed to support self-study and tutoring of ZetaLISP. Through organization, well-defined boundaries, and domain support facilities, the desktops provide substantial flexibility and power for the student and facilitate learning ZetaLISP programming while screening the student from the complex LISP Machine environment. The student can concentrate on learning ZetaLISP programming and not on how to operate the interface or a LISP Machine.
An experimental result of estimating an application volume by machine learning techniques.
Hasegawa, Tatsuhito; Koshino, Makoto; Kimura, Haruhiko
2015-01-01
In this study, we improved the usability of smartphones by automating a user's operations. We developed an intelligent system using machine learning techniques that periodically detects a user's context on a smartphone. We selected the Android operating system because it has the largest market share and highest flexibility of its development environment. In this paper, we describe an application that automatically adjusts application volume. Adjusting the volume can be easily forgotten because users need to push the volume buttons to alter the volume depending on the given situation. Therefore, we developed an application that automatically adjusts the volume based on learned user settings. Application volume can be set differently from ringtone volume on Android devices, and these volume settings are associated with each specific application including games. Our application records a user's location, the volume setting, the foreground application name and other such attributes as learning data, thereby estimating whether the volume should be adjusted using machine learning techniques via Weka.
Proceedings of the 1986 IEEE international conference on systems, man and cybernetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
This book presents the papers given at a conference on man-machine systems. Topics considered at the conference included neural model-based cognitive theory and engineering, user interfaces, adaptive and learning systems, human interaction with robotics, decision making, the testing and evaluation of expert systems, software development, international conflict resolution, intelligent interfaces, automation in man-machine system design aiding, knowledge acquisition in expert systems, advanced architectures for artificial intelligence, pattern recognition, knowledge bases, and machine vision.
Machine learning based Intelligent cognitive network using fog computing
NASA Astrophysics Data System (ADS)
Lu, Jingyang; Li, Lun; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik
2017-05-01
In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.
Machine Learning-based Intelligent Formal Reasoning and Proving System
NASA Astrophysics Data System (ADS)
Chen, Shengqing; Huang, Xiaojian; Fang, Jiaze; Liang, Jia
2018-03-01
The reasoning system can be used in many fields. How to improve reasoning efficiency is the core of the design of system. Through the formal description of formal proof and the regular matching algorithm, after introducing the machine learning algorithm, the system of intelligent formal reasoning and verification has high efficiency. The experimental results show that the system can verify the correctness of propositional logic reasoning and reuse the propositional logical reasoning results, so as to obtain the implicit knowledge in the knowledge base and provide the basic reasoning model for the construction of intelligent system.
Some history and use of the random positioning machine, RPM, in gravity related research
NASA Astrophysics Data System (ADS)
van Loon, Jack J. W. A.
The first experiments using machines and instruments to manipulate gravity and thus learn about its impact to this force onto living systems were performed by Sir Thomas Andrew Knight in 1806, exactly two centuries ago. What have we learned from these experiments and in particular what have we learned about the use of instruments to reveal the impact of gravity and rotation on plants and other living systems? In this essay I want to go into the use of instruments in gravity related research with emphases on the Random Positioning Machine, RPM. Going from water wheel via clinostat to RPM, we will address the usefulness and possible working principles of these hypergravity and mostly called microgravity, or better, micro-weight simulation techniques.
NASA Astrophysics Data System (ADS)
Dang, Nguyen Tuan; Akai-Kasada, Megumi; Asai, Tetsuya; Saito, Akira; Kuwahara, Yuji; Hokkaido University Collaboration
2015-03-01
Machine learning using the artificial neuron network research is supposed to be the best way to understand how the human brain trains itself to process information. In this study, we have successfully developed the programs using supervised machine learning algorithm. However, these supervised learning processes for the neuron network required the very strong computing configuration. Derivation from the necessity of increasing in computing ability and in reduction of power consumption, accelerator circuits become critical. To develop such accelerator circuits using supervised machine learning algorithm, conducting polymer micro/nanowires growing process was realized and applied as a synaptic weigh controller. In this work, high conductivity Polypyrrole (PPy) and Poly (3, 4 - ethylenedioxythiophene) PEDOT wires were potentiostatically grown crosslinking the designated electrodes, which were prefabricated by lithography, when appropriate square wave AC voltage and appropriate frequency were applied. Micro/nanowire growing process emulated the neurotransmitter release process of synapses inside a biological neuron and wire's resistance variation during the growing process was preferred to as the variation of synaptic weigh in machine learning algorithm. In a cooperation with Graduate School of Information Science and Technology, Hokkaido University.
Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey
Zhang, Fan; Li, Xuelong
2018-01-01
The ultrasound imaging is one of the most common schemes to detect diseases in the clinical practice. There are many advantages of ultrasound imaging such as safety, convenience, and low cost. However, reading ultrasound imaging is not easy. To support the diagnosis of clinicians and reduce the load of doctors, many ultrasound computer-aided diagnosis (CAD) systems are proposed. In recent years, the success of deep learning in the image classification and segmentation led to more and more scholars realizing the potential of performance improvement brought by utilizing the deep learning in the ultrasound CAD system. This paper summarized the research which focuses on the ultrasound CAD system utilizing machine learning technology in recent years. This study divided the ultrasound CAD system into two categories. One is the traditional ultrasound CAD system which employed the manmade feature and the other is the deep learning ultrasound CAD system. The major feature and the classifier employed by the traditional ultrasound CAD system are introduced. As for the deep learning ultrasound CAD, newest applications are summarized. This paper will be useful for researchers who focus on the ultrasound CAD system. PMID:29687000
Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey.
Huang, Qinghua; Zhang, Fan; Li, Xuelong
2018-01-01
The ultrasound imaging is one of the most common schemes to detect diseases in the clinical practice. There are many advantages of ultrasound imaging such as safety, convenience, and low cost. However, reading ultrasound imaging is not easy. To support the diagnosis of clinicians and reduce the load of doctors, many ultrasound computer-aided diagnosis (CAD) systems are proposed. In recent years, the success of deep learning in the image classification and segmentation led to more and more scholars realizing the potential of performance improvement brought by utilizing the deep learning in the ultrasound CAD system. This paper summarized the research which focuses on the ultrasound CAD system utilizing machine learning technology in recent years. This study divided the ultrasound CAD system into two categories. One is the traditional ultrasound CAD system which employed the manmade feature and the other is the deep learning ultrasound CAD system. The major feature and the classifier employed by the traditional ultrasound CAD system are introduced. As for the deep learning ultrasound CAD, newest applications are summarized. This paper will be useful for researchers who focus on the ultrasound CAD system.
Alcaide-Leon, P; Dufort, P; Geraldo, A F; Alshafai, L; Maralani, P J; Spears, J; Bharatha, A
2017-06-01
Accurate preoperative differentiation of primary central nervous system lymphoma and enhancing glioma is essential to avoid unnecessary neurosurgical resection in patients with primary central nervous system lymphoma. The purpose of the study was to evaluate the diagnostic performance of a machine-learning algorithm by using texture analysis of contrast-enhanced T1-weighted images for differentiation of primary central nervous system lymphoma and enhancing glioma. Seventy-one adult patients with enhancing gliomas and 35 adult patients with primary central nervous system lymphomas were included. The tumors were manually contoured on contrast-enhanced T1WI, and the resulting volumes of interest were mined for textural features and subjected to a support vector machine-based machine-learning protocol. Three readers classified the tumors independently on contrast-enhanced T1WI. Areas under the receiver operating characteristic curves were estimated for each reader and for the support vector machine classifier. A noninferiority test for diagnostic accuracy based on paired areas under the receiver operating characteristic curve was performed with a noninferiority margin of 0.15. The mean areas under the receiver operating characteristic curve were 0.877 (95% CI, 0.798-0.955) for the support vector machine classifier; 0.878 (95% CI, 0.807-0.949) for reader 1; 0.899 (95% CI, 0.833-0.966) for reader 2; and 0.845 (95% CI, 0.757-0.933) for reader 3. The mean area under the receiver operating characteristic curve of the support vector machine classifier was significantly noninferior to the mean area under the curve of reader 1 ( P = .021), reader 2 ( P = .035), and reader 3 ( P = .007). Support vector machine classification based on textural features of contrast-enhanced T1WI is noninferior to expert human evaluation in the differentiation of primary central nervous system lymphoma and enhancing glioma. © 2017 by American Journal of Neuroradiology.
Kepler-90 system (Artist's Concept)
2017-12-14
Our solar system now is tied for most number of planets around a single star, with the recent discovery of an eighth planet circling Kepler-90, a Sun-like star 2,545 light years from Earth. The planet was discovered in data from NASA's Kepler Space Telescope. The newly-discovered Kepler-90i -- a sizzling hot, rocky planet that orbits its star once every 14.4 days -- was found using machine learning from Google. Machine learning is an approach to artificial intelligence in which computers "learn." In this case, computers learned to identify planets by finding in Kepler data instances where the telescope recorded changes in starlight caused by planets beyond our solar system, known as exoplanets. https://photojournal.jpl.nasa.gov/catalog/PIA22192
Needs of ergonomic design at control units in production industries.
Levchuk, I; Schäfer, A; Lang, K-H; Gebhardt, Hj; Klussmann, A
2012-01-01
During the last decades, an increasing use of innovative technologies in manufacturing areas was monitored. A huge amount of physical workload was replaced by the change from conventional machine tools to computer-controlled units. CNC systems spread in current production processes. Because of this, machine operators today mostly have an observational function. This caused increasing of static work (e.g., standing, sitting) and cognitive demands (e.g., process observation). Machine operators have a high responsibility, because mistakes may lead to human injuries as well as to product losses - and in consequence may lead to high monetary losses (for the company) as well. Being usable often means for a CNC machine being efficient. An intuitive usability and an ergonomic organization of CNC workplaces can be an essential basis to reduce the risk of failures in operation as well as physical complaints (e.g. pain or diseases because of bad body posture during work). In contrast to conventional machines, CNC machines are equipped both with hardware and software. An intuitive and clear-sighted operating of CNC systems is a requirement for quick learning of new systems. Within this study, a survey was carried out among trainees learning the operation of CNC machines.
Kolb, Brian; Lentz, Levi C.; Kolpak, Alexie M.
2017-04-26
Modern ab initio methods have rapidly increased our understanding of solid state materials properties, chemical reactions, and the quantum interactions between atoms. However, poor scaling often renders direct ab initio calculations intractable for large or complex systems. There are two obvious avenues through which to remedy this problem: (i) develop new, less expensive methods to calculate system properties, or (ii) make existing methods faster. This paper describes an open source framework designed to pursue both of these avenues. PROPhet (short for PROPerty Prophet) utilizes machine learning techniques to find complex, non-linear mappings between sets of material or system properties. Themore » result is a single code capable of learning analytical potentials, non-linear density functionals, and other structure-property or property-property relationships. These capabilities enable highly accurate mesoscopic simulations, facilitate computation of expensive properties, and enable the development of predictive models for systematic materials design and optimization. Here, this work explores the coupling of machine learning to ab initio methods through means both familiar (e.g., the creation of various potentials and energy functionals) and less familiar (e.g., the creation of density functionals for arbitrary properties), serving both to demonstrate PROPhet’s ability to create exciting post-processing analysis tools and to open the door to improving ab initio methods themselves with these powerful machine learning techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolb, Brian; Lentz, Levi C.; Kolpak, Alexie M.
Modern ab initio methods have rapidly increased our understanding of solid state materials properties, chemical reactions, and the quantum interactions between atoms. However, poor scaling often renders direct ab initio calculations intractable for large or complex systems. There are two obvious avenues through which to remedy this problem: (i) develop new, less expensive methods to calculate system properties, or (ii) make existing methods faster. This paper describes an open source framework designed to pursue both of these avenues. PROPhet (short for PROPerty Prophet) utilizes machine learning techniques to find complex, non-linear mappings between sets of material or system properties. Themore » result is a single code capable of learning analytical potentials, non-linear density functionals, and other structure-property or property-property relationships. These capabilities enable highly accurate mesoscopic simulations, facilitate computation of expensive properties, and enable the development of predictive models for systematic materials design and optimization. Here, this work explores the coupling of machine learning to ab initio methods through means both familiar (e.g., the creation of various potentials and energy functionals) and less familiar (e.g., the creation of density functionals for arbitrary properties), serving both to demonstrate PROPhet’s ability to create exciting post-processing analysis tools and to open the door to improving ab initio methods themselves with these powerful machine learning techniques.« less
Tan, W Katherine; Hassanpour, Saeed; Heagerty, Patrick J; Rundell, Sean D; Suri, Pradeep; Huhdanpaa, Hannu T; James, Kathryn; Carrell, David S; Langlotz, Curtis P; Organ, Nancy L; Meier, Eric N; Sherman, Karen J; Kallmes, David F; Luetmer, Patrick H; Griffith, Brent; Nerenz, David R; Jarvik, Jeffrey G
2018-03-28
To evaluate a natural language processing (NLP) system built with open-source tools for identification of lumbar spine imaging findings related to low back pain on magnetic resonance and x-ray radiology reports from four health systems. We used a limited data set (de-identified except for dates) sampled from lumbar spine imaging reports of a prospectively assembled cohort of adults. From N = 178,333 reports, we randomly selected N = 871 to form a reference-standard dataset, consisting of N = 413 x-ray reports and N = 458 MR reports. Using standardized criteria, four spine experts annotated the presence of 26 findings, where 71 reports were annotated by all four experts and 800 were each annotated by two experts. We calculated inter-rater agreement and finding prevalence from annotated data. We randomly split the annotated data into development (80%) and testing (20%) sets. We developed an NLP system from both rule-based and machine-learned models. We validated the system using accuracy metrics such as sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). The multirater annotated dataset achieved inter-rater agreement of Cohen's kappa > 0.60 (substantial agreement) for 25 of 26 findings, with finding prevalence ranging from 3% to 89%. In the testing sample, rule-based and machine-learned predictions both had comparable average specificity (0.97 and 0.95, respectively). The machine-learned approach had a higher average sensitivity (0.94, compared to 0.83 for rules-based), and a higher overall AUC (0.98, compared to 0.90 for rules-based). Our NLP system performed well in identifying the 26 lumbar spine findings, as benchmarked by reference-standard annotation by medical experts. Machine-learned models provided substantial gains in model sensitivity with slight loss of specificity, and overall higher AUC. Copyright © 2018 The Association of University Radiologists. All rights reserved.
A machine learning system to improve heart failure patient assistance.
Guidi, Gabriele; Pettenati, Maria Chiara; Melillo, Paolo; Iadanza, Ernesto
2014-11-01
In this paper, we present a clinical decision support system (CDSS) for the analysis of heart failure (HF) patients, providing various outputs such as an HF severity evaluation, HF-type prediction, as well as a management interface that compares the different patients' follow-ups. The whole system is composed of a part of intelligent core and of an HF special-purpose management tool also providing the function to act as interface for the artificial intelligence training and use. To implement the smart intelligent functions, we adopted a machine learning approach. In this paper, we compare the performance of a neural network (NN), a support vector machine, a system with fuzzy rules genetically produced, and a classification and regression tree and its direct evolution, which is the random forest, in analyzing our database. Best performances in both HF severity evaluation and HF-type prediction functions are obtained by using the random forest algorithm. The management tool allows the cardiologist to populate a "supervised database" suitable for machine learning during his or her regular outpatient consultations. The idea comes from the fact that in literature there are a few databases of this type, and they are not scalable to our case.
Accuracy comparison among different machine learning techniques for detecting malicious codes
NASA Astrophysics Data System (ADS)
Narang, Komal
2016-03-01
In this paper, a machine learning based model for malware detection is proposed. It can detect newly released malware i.e. zero day attack by analyzing operation codes on Android operating system. The accuracy of Naïve Bayes, Support Vector Machine (SVM) and Neural Network for detecting malicious code has been compared for the proposed model. In the experiment 400 benign files, 100 system files and 500 malicious files have been used to construct the model. The model yields the best accuracy 88.9% when neural network is used as classifier and achieved 95% and 82.8% accuracy for sensitivity and specificity respectively.
Hu, Yu-Chuan; Li, Gang; Yang, Yang; Han, Yu; Sun, Ying-Zhi; Liu, Zhi-Cheng; Tian, Qiang; Han, Zi-Yang; Liu, Le-De; Hu, Bin-Quan; Qiu, Zi-Yu; Wang, Wen; Cui, Guang-Bin
2017-01-01
Current machine learning techniques provide the opportunity to develop noninvasive and automated glioma grading tools, by utilizing quantitative parameters derived from multi-modal magnetic resonance imaging (MRI) data. However, the efficacies of different machine learning methods in glioma grading have not been investigated.A comprehensive comparison of varied machine learning methods in differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well as WHO grade II, III and IV gliomas based on multi-parametric MRI images was proposed in the current study. The parametric histogram and image texture attributes of 120 glioma patients were extracted from the perfusion, diffusion and permeability parametric maps of preoperative MRI. Then, 25 commonly used machine learning classifiers combined with 8 independent attribute selection methods were applied and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the influences of parameter selection on the classifying performances were investigated. We found that support vector machine (SVM) exhibited superior performance to other classifiers. By combining all tumor attributes with synthetic minority over-sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive Feature Elimination (RFE) attribute selection strategy further improved the classifying accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising tool in developing automated preoperative glioma grading system, especially when being combined with RFE strategy. Model parameters should be considered in glioma grading model optimization. PMID:28599282
Zhang, Xin; Yan, Lin-Feng; Hu, Yu-Chuan; Li, Gang; Yang, Yang; Han, Yu; Sun, Ying-Zhi; Liu, Zhi-Cheng; Tian, Qiang; Han, Zi-Yang; Liu, Le-De; Hu, Bin-Quan; Qiu, Zi-Yu; Wang, Wen; Cui, Guang-Bin
2017-07-18
Current machine learning techniques provide the opportunity to develop noninvasive and automated glioma grading tools, by utilizing quantitative parameters derived from multi-modal magnetic resonance imaging (MRI) data. However, the efficacies of different machine learning methods in glioma grading have not been investigated.A comprehensive comparison of varied machine learning methods in differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well as WHO grade II, III and IV gliomas based on multi-parametric MRI images was proposed in the current study. The parametric histogram and image texture attributes of 120 glioma patients were extracted from the perfusion, diffusion and permeability parametric maps of preoperative MRI. Then, 25 commonly used machine learning classifiers combined with 8 independent attribute selection methods were applied and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the influences of parameter selection on the classifying performances were investigated. We found that support vector machine (SVM) exhibited superior performance to other classifiers. By combining all tumor attributes with synthetic minority over-sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive Feature Elimination (RFE) attribute selection strategy further improved the classifying accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising tool in developing automated preoperative glioma grading system, especially when being combined with RFE strategy. Model parameters should be considered in glioma grading model optimization.
Machine learning phases of matter
NASA Astrophysics Data System (ADS)
Carrasquilla, Juan; Stoudenmire, Miles; Melko, Roger
We show how the technology that allows automatic teller machines read hand-written digits in cheques can be used to encode and recognize phases of matter and phase transitions in many-body systems. In particular, we analyze the (quasi-)order-disorder transitions in the classical Ising and XY models. Furthermore, we successfully use machine learning to study classical Z2 gauge theories that have important technological application in the coming wave of quantum information technologies and whose phase transitions have no conventional order parameter.
Luo, Gang
2017-12-01
For user-friendliness, many software systems offer progress indicators for long-duration tasks. A typical progress indicator continuously estimates the remaining task execution time as well as the portion of the task that has been finished. Building a machine learning model often takes a long time, but no existing machine learning software supplies a non-trivial progress indicator. Similarly, running a data mining algorithm often takes a long time, but no existing data mining software provides a nontrivial progress indicator. In this article, we consider the problem of offering progress indicators for machine learning model building and data mining algorithm execution. We discuss the goals and challenges intrinsic to this problem. Then we describe an initial framework for implementing such progress indicators and two advanced, potential uses of them, with the goal of inspiring future research on this topic.
Machine learning of network metrics in ATLAS Distributed Data Management
NASA Astrophysics Data System (ADS)
Lassnig, Mario; Toler, Wesley; Vamosi, Ralf; Bogado, Joaquin; ATLAS Collaboration
2017-10-01
The increasing volume of physics data poses a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from one of our ongoing automation efforts that focuses on network metrics. First, we describe our machine learning framework built atop the ATLAS Analytics Platform. This framework can automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for networkaware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our models.
Luo, Gang
2017-01-01
For user-friendliness, many software systems offer progress indicators for long-duration tasks. A typical progress indicator continuously estimates the remaining task execution time as well as the portion of the task that has been finished. Building a machine learning model often takes a long time, but no existing machine learning software supplies a non-trivial progress indicator. Similarly, running a data mining algorithm often takes a long time, but no existing data mining software provides a nontrivial progress indicator. In this article, we consider the problem of offering progress indicators for machine learning model building and data mining algorithm execution. We discuss the goals and challenges intrinsic to this problem. Then we describe an initial framework for implementing such progress indicators and two advanced, potential uses of them, with the goal of inspiring future research on this topic. PMID:29177022
Jiang, Yizhang; Wu, Dongrui; Deng, Zhaohong; Qian, Pengjiang; Wang, Jun; Wang, Guanjin; Chung, Fu-Lai; Choi, Kup-Sze; Wang, Shitong
2017-12-01
Recognition of epileptic seizures from offline EEG signals is very important in clinical diagnosis of epilepsy. Compared with manual labeling of EEG signals by doctors, machine learning approaches can be faster and more consistent. However, the classification accuracy is usually not satisfactory for two main reasons: the distributions of the data used for training and testing may be different, and the amount of training data may not be enough. In addition, most machine learning approaches generate black-box models that are difficult to interpret. In this paper, we integrate transductive transfer learning, semi-supervised learning and TSK fuzzy system to tackle these three problems. More specifically, we use transfer learning to reduce the discrepancy in data distribution between the training and testing data, employ semi-supervised learning to use the unlabeled testing data to remedy the shortage of training data, and adopt TSK fuzzy system to increase model interpretability. Two learning algorithms are proposed to train the system. Our experimental results show that the proposed approaches can achieve better performance than many state-of-the-art seizure classification algorithms.
Conformal Predictions in Multimedia Pattern Recognition
ERIC Educational Resources Information Center
Nallure Balasubramanian, Vineeth
2010-01-01
The fields of pattern recognition and machine learning are on a fundamental quest to design systems that can learn the way humans do. One important aspect of human intelligence that has so far not been given sufficient attention is the capability of humans to express when they are certain about a decision, or when they are not. Machine learning…
Sun, Baozhou; Lam, Dao; Yang, Deshan; Grantham, Kevin; Zhang, Tiezhi; Mutic, Sasa; Zhao, Tianyu
2018-05-01
Clinical treatment planning systems for proton therapy currently do not calculate monitor units (MUs) in passive scatter proton therapy due to the complexity of the beam delivery systems. Physical phantom measurements are commonly employed to determine the field-specific output factors (OFs) but are often subject to limited machine time, measurement uncertainties and intensive labor. In this study, a machine learning-based approach was developed to predict output (cGy/MU) and derive MUs, incorporating the dependencies on gantry angle and field size for a single-room proton therapy system. The goal of this study was to develop a secondary check tool for OF measurements and eventually eliminate patient-specific OF measurements. The OFs of 1754 fields previously measured in a water phantom with calibrated ionization chambers and electrometers for patient-specific fields with various range and modulation width combinations for 23 options were included in this study. The training data sets for machine learning models in three different methods (Random Forest, XGBoost and Cubist) included 1431 (~81%) OFs. Ten-fold cross-validation was used to prevent "overfitting" and to validate each model. The remaining 323 (~19%) OFs were used to test the trained models. The difference between the measured and predicted values from machine learning models was analyzed. Model prediction accuracy was also compared with that of the semi-empirical model developed by Kooy (Phys. Med. Biol. 50, 2005). Additionally, gantry angle dependence of OFs was measured for three groups of options categorized on the selection of the second scatters. Field size dependence of OFs was investigated for the measurements with and without patient-specific apertures. All three machine learning methods showed higher accuracy than the semi-empirical model which shows considerably large discrepancy of up to 7.7% for the treatment fields with full range and full modulation width. The Cubist-based solution outperformed all other models (P < 0.001) with the mean absolute discrepancy of 0.62% and maximum discrepancy of 3.17% between the measured and predicted OFs. The OFs showed a small dependence on gantry angle for small and deep options while they were constant for large options. The OF decreased by 3%-4% as the field radius was reduced to 2.5 cm. Machine learning methods can be used to predict OF for double-scatter proton machines with greater prediction accuracy than the most popular semi-empirical prediction model. By incorporating the gantry angle dependence and field size dependence, the machine learning-based methods can be used for a sanity check of OF measurements and bears the potential to eliminate the time-consuming patient-specific OF measurements. © 2018 American Association of Physicists in Medicine.
An Android malware detection system based on machine learning
NASA Astrophysics Data System (ADS)
Wen, Long; Yu, Haiyang
2017-08-01
The Android smartphone, with its open source character and excellent performance, has attracted many users. However, the convenience of the Android platform also has motivated the development of malware. The traditional method which detects the malware based on the signature is unable to detect unknown applications. The article proposes a machine learning-based lightweight system that is capable of identifying malware on Android devices. In this system we extract features based on the static analysis and the dynamitic analysis, then a new feature selection approach based on principle component analysis (PCA) and relief are presented in the article to decrease the dimensions of the features. After that, a model will be constructed with support vector machine (SVM) for classification. Experimental results show that our system provides an effective method in Android malware detection.
Constraint-Based Scheduling System
NASA Technical Reports Server (NTRS)
Zweben, Monte; Eskey, Megan; Stock, Todd; Taylor, Will; Kanefsky, Bob; Drascher, Ellen; Deale, Michael; Daun, Brian; Davis, Gene
1995-01-01
Report describes continuing development of software for constraint-based scheduling system implemented eventually on massively parallel computer. Based on machine learning as means of improving scheduling. Designed to learn when to change search strategy by analyzing search progress and learning general conditions under which resource bottleneck occurs.
McCoy, Andrea
2017-01-01
Introduction Sepsis management is a challenge for hospitals nationwide, as severe sepsis carries high mortality rates and costs the US healthcare system billions of dollars each year. It has been shown that early intervention for patients with severe sepsis and septic shock is associated with higher rates of survival. The Cape Regional Medical Center (CRMC) aimed to improve sepsis-related patient outcomes through a revised sepsis management approach. Methods In collaboration with Dascena, CRMC formed a quality improvement team to implement a machine learning-based sepsis prediction algorithm to identify patients with sepsis earlier. Previously, CRMC assessed all patients for sepsis using twice-daily systemic inflammatory response syndrome screenings, but desired improvements. The quality improvement team worked to implement a machine learning-based algorithm, collect and incorporate feedback, and tailor the system to current hospital workflow. Results Relative to the pre-implementation period, the post-implementation period sepsis-related in-hospital mortality rate decreased by 60.24%, sepsis-related hospital length of stay decreased by 9.55% and sepsis-related 30-day readmission rate decreased by 50.14%. Conclusion The machine learning-based sepsis prediction algorithm improved patient outcomes at CRMC. PMID:29450295
Auto-SEIA: simultaneous optimization of image processing and machine learning algorithms
NASA Astrophysics Data System (ADS)
Negro Maggio, Valentina; Iocchi, Luca
2015-02-01
Object classification from images is an important task for machine vision and it is a crucial ingredient for many computer vision applications, ranging from security and surveillance to marketing. Image based object classification techniques properly integrate image processing and machine learning (i.e., classification) procedures. In this paper we present a system for automatic simultaneous optimization of algorithms and parameters for object classification from images. More specifically, the proposed system is able to process a dataset of labelled images and to return a best configuration of image processing and classification algorithms and of their parameters with respect to the accuracy of classification. Experiments with real public datasets are used to demonstrate the effectiveness of the developed system.
Ranjith, G; Parvathy, R; Vikas, V; Chandrasekharan, Kesavadas; Nair, Suresh
2015-04-01
With the advent of new imaging modalities, radiologists are faced with handling increasing volumes of data for diagnosis and treatment planning. The use of automated and intelligent systems is becoming essential in such a scenario. Machine learning, a branch of artificial intelligence, is increasingly being used in medical image analysis applications such as image segmentation, registration and computer-aided diagnosis and detection. Histopathological analysis is currently the gold standard for classification of brain tumors. The use of machine learning algorithms along with extraction of relevant features from magnetic resonance imaging (MRI) holds promise of replacing conventional invasive methods of tumor classification. The aim of the study is to classify gliomas into benign and malignant types using MRI data. Retrospective data from 28 patients who were diagnosed with glioma were used for the analysis. WHO Grade II (low-grade astrocytoma) was classified as benign while Grade III (anaplastic astrocytoma) and Grade IV (glioblastoma multiforme) were classified as malignant. Features were extracted from MR spectroscopy. The classification was done using four machine learning algorithms: multilayer perceptrons, support vector machine, random forest and locally weighted learning. Three of the four machine learning algorithms gave an area under ROC curve in excess of 0.80. Random forest gave the best performance in terms of AUC (0.911) while sensitivity was best for locally weighted learning (86.1%). The performance of different machine learning algorithms in the classification of gliomas is promising. An even better performance may be expected by integrating features extracted from other MR sequences. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Patterson, Olga V; Forbush, Tyler B; Saini, Sameer D; Moser, Stephanie E; DuVall, Scott L
2015-01-01
In order to measure the level of utilization of colonoscopy procedures, identifying the primary indication for the procedure is required. Colonoscopies may be utilized not only for screening, but also for diagnostic or therapeutic purposes. To determine whether a colonoscopy was performed for screening, we created a natural language processing system to identify colonoscopy reports in the electronic medical record system and extract indications for the procedure. A rule-based model and three machine-learning models were created using 2,000 manually annotated clinical notes of patients cared for in the Department of Veterans Affairs. Performance of the models was measured and compared. Analysis of the models on a test set of 1,000 documents indicates that the rule-based system performance stays fairly constant as evaluated on training and testing sets. However, the machine learning model without feature selection showed significant decrease in performance. Therefore, rule-based classification system appears to be more robust than a machine-learning system in cases when no feature selection is performed.
NASA Astrophysics Data System (ADS)
Palittapongarnpim, Pantita; Sanders, Barry C.
2018-05-01
Quantum tomography infers quantum states from measurement data, but it becomes infeasible for large systems. Machine learning enables tomography of highly entangled many-body states and suggests a new powerful approach to this problem.
NASA Astrophysics Data System (ADS)
Yu, Jianbo
2017-01-01
This study proposes an adaptive-learning-based method for machine faulty detection and health degradation monitoring. The kernel of the proposed method is an "evolving" model that uses an unsupervised online learning scheme, in which an adaptive hidden Markov model (AHMM) is used for online learning the dynamic health changes of machines in their full life. A statistical index is developed for recognizing the new health states in the machines. Those new health states are then described online by adding of new hidden states in AHMM. Furthermore, the health degradations in machines are quantified online by an AHMM-based health index (HI) that measures the similarity between two density distributions that describe the historic and current health states, respectively. When necessary, the proposed method characterizes the distinct operating modes of the machine and can learn online both abrupt as well as gradual health changes. Our method overcomes some drawbacks of the HIs (e.g., relatively low comprehensibility and applicability) based on fixed monitoring models constructed in the offline phase. Results from its application in a bearing life test reveal that the proposed method is effective in online detection and adaptive assessment of machine health degradation. This study provides a useful guide for developing a condition-based maintenance (CBM) system that uses an online learning method without considerable human intervention.
Using machine learning algorithms to guide rehabilitation planning for home care clients.
Zhu, Mu; Zhang, Zhanyang; Hirdes, John P; Stolee, Paul
2007-12-20
Targeting older clients for rehabilitation is a clinical challenge and a research priority. We investigate the potential of machine learning algorithms - Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) - to guide rehabilitation planning for home care clients. This study is a secondary analysis of data on 24,724 longer-term clients from eight home care programs in Ontario. Data were collected with the RAI-HC assessment system, in which the Activities of Daily Living Clinical Assessment Protocol (ADLCAP) is used to identify clients with rehabilitation potential. For study purposes, a client is defined as having rehabilitation potential if there was: i) improvement in ADL functioning, or ii) discharge home. SVM and KNN results are compared with those obtained using the ADLCAP. For comparison, the machine learning algorithms use the same functional and health status indicators as the ADLCAP. The KNN and SVM algorithms achieved similar substantially improved performance over the ADLCAP, although false positive and false negative rates were still fairly high (FP > .18, FN > .34 versus FP > .29, FN. > .58 for ADLCAP). Results are used to suggest potential revisions to the ADLCAP. Machine learning algorithms achieved superior predictions than the current protocol. Machine learning results are less readily interpretable, but can also be used to guide development of improved clinical protocols.
A comparative study of machine learning models for ethnicity classification
NASA Astrophysics Data System (ADS)
Trivedi, Advait; Bessie Amali, D. Geraldine
2017-11-01
This paper endeavours to adopt a machine learning approach to solve the problem of ethnicity recognition. Ethnicity identification is an important vision problem with its use cases being extended to various domains. Despite the multitude of complexity involved, ethnicity identification comes naturally to humans. This meta information can be leveraged to make several decisions, be it in target marketing or security. With the recent development of intelligent systems a sub module to efficiently capture ethnicity would be useful in several use cases. Several attempts to identify an ideal learning model to represent a multi-ethnic dataset have been recorded. A comparative study of classifiers such as support vector machines, logistic regression has been documented. Experimental results indicate that the logical classifier provides a much accurate classification than the support vector machine.
Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction
de Greeff, Joachim; Belpaeme, Tony
2015-01-01
Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children’s social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a “mental model” of the robot, tailoring the tutoring to the robot’s performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot’s bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance. PMID:26422143
Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction.
de Greeff, Joachim; Belpaeme, Tony
2015-01-01
Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children's social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a "mental model" of the robot, tailoring the tutoring to the robot's performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot's bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance.
Defense Logistics Standard Systems Functional Requirements.
1987-03-01
Artificial Intelligence - the development of a machine capability to perform functions normally concerned with human intelligence, such as learning , adapting...Basic Data Base Machine Configurations .... ......... D- 18 xx ~ ?f~~~vX PART I: MODELS - DEFENSE LOGISTICS STANDARD SYSTEMS FUNCTIONAL REQUIREMENTS...On-line, Interactive Access. Integrating user input and machine output in a dynamic, real-time, give-and- take process is considered the optimum mode
Machine-learned and codified synthesis parameters of oxide materials
NASA Astrophysics Data System (ADS)
Kim, Edward; Huang, Kevin; Tomala, Alex; Matthews, Sara; Strubell, Emma; Saunders, Adam; McCallum, Andrew; Olivetti, Elsa
2017-09-01
Predictive materials design has rapidly accelerated in recent years with the advent of large-scale resources, such as materials structure and property databases generated by ab initio computations. In the absence of analogous ab initio frameworks for materials synthesis, high-throughput and machine learning techniques have recently been harnessed to generate synthesis strategies for select materials of interest. Still, a community-accessible, autonomously-compiled synthesis planning resource which spans across materials systems has not yet been developed. In this work, we present a collection of aggregated synthesis parameters computed using the text contained within over 640,000 journal articles using state-of-the-art natural language processing and machine learning techniques. We provide a dataset of synthesis parameters, compiled autonomously across 30 different oxide systems, in a format optimized for planning novel syntheses of materials.
Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego
2016-06-17
Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults.
Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning
Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego
2016-01-01
Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults. PMID:27322273
Sequential Nonlinear Learning for Distributed Multiagent Systems via Extreme Learning Machines.
Vanli, Nuri Denizcan; Sayin, Muhammed O; Delibalta, Ibrahim; Kozat, Suleyman Serdar
2017-03-01
We study online nonlinear learning over distributed multiagent systems, where each agent employs a single hidden layer feedforward neural network (SLFN) structure to sequentially minimize arbitrary loss functions. In particular, each agent trains its own SLFN using only the data that is revealed to itself. On the other hand, the aim of the multiagent system is to train the SLFN at each agent as well as the optimal centralized batch SLFN that has access to all the data, by exchanging information between neighboring agents. We address this problem by introducing a distributed subgradient-based extreme learning machine algorithm. The proposed algorithm provides guaranteed upper bounds on the performance of the SLFN at each agent and shows that each of these individual SLFNs asymptotically achieves the performance of the optimal centralized batch SLFN. Our performance guarantees explicitly distinguish the effects of data- and network-dependent parameters on the convergence rate of the proposed algorithm. The experimental results illustrate that the proposed algorithm achieves the oracle performance significantly faster than the state-of-the-art methods in the machine learning and signal processing literature. Hence, the proposed method is highly appealing for the applications involving big data.
Collective Machine Learning: Team Learning and Classification in Multi-Agent Systems
ERIC Educational Resources Information Center
Gifford, Christopher M.
2009-01-01
This dissertation focuses on the collaboration of multiple heterogeneous, intelligent agents (hardware or software) which collaborate to learn a task and are capable of sharing knowledge. The concept of collaborative learning in multi-agent and multi-robot systems is largely under studied, and represents an area where further research is needed to…
Deep learning of support vector machines with class probability output networks.
Kim, Sangwook; Yu, Zhibin; Kil, Rhee Man; Lee, Minho
2015-04-01
Deep learning methods endeavor to learn features automatically at multiple levels and allow systems to learn complex functions mapping from the input space to the output space for the given data. The ability to learn powerful features automatically is increasingly important as the volume of data and range of applications of machine learning methods continues to grow. This paper proposes a new deep architecture that uses support vector machines (SVMs) with class probability output networks (CPONs) to provide better generalization power for pattern classification problems. As a result, deep features are extracted without additional feature engineering steps, using multiple layers of the SVM classifiers with CPONs. The proposed structure closely approaches the ideal Bayes classifier as the number of layers increases. Using a simulation of classification problems, the effectiveness of the proposed method is demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Application of Machine Learning to Rotorcraft Health Monitoring
NASA Technical Reports Server (NTRS)
Cody, Tyler; Dempsey, Paula J.
2017-01-01
Machine learning is a powerful tool for data exploration and model building with large data sets. This project aimed to use machine learning techniques to explore the inherent structure of data from rotorcraft gear tests, relationships between features and damage states, and to build a system for predicting gear health for future rotorcraft transmission applications. Classical machine learning techniques are difficult, if not irresponsible to apply to time series data because many make the assumption of independence between samples. To overcome this, Hidden Markov Models were used to create a binary classifier for identifying scuffing transitions and Recurrent Neural Networks were used to leverage long distance relationships in predicting discrete damage states. When combined in a workflow, where the binary classifier acted as a filter for the fatigue monitor, the system was able to demonstrate accuracy in damage state prediction and scuffing identification. The time dependent nature of the data restricted data exploration to collecting and analyzing data from the model selection process. The limited amount of available data was unable to give useful information, and the division of training and testing sets tended to heavily influence the scores of the models across combinations of features and hyper-parameters. This work built a framework for tracking scuffing and fatigue on streaming data and demonstrates that machine learning has much to offer rotorcraft health monitoring by using Bayesian learning and deep learning methods to capture the time dependent nature of the data. Suggested future work is to implement the framework developed in this project using a larger variety of data sets to test the generalization capabilities of the models and allow for data exploration.
Interaction with Machine Improvisation
NASA Astrophysics Data System (ADS)
Assayag, Gerard; Bloch, George; Cont, Arshia; Dubnov, Shlomo
We describe two multi-agent architectures for an improvisation oriented musician-machine interaction systems that learn in real time from human performers. The improvisation kernel is based on sequence modeling and statistical learning. We present two frameworks of interaction with this kernel. In the first, the stylistic interaction is guided by a human operator in front of an interactive computer environment. In the second framework, the stylistic interaction is delegated to machine intelligence and therefore, knowledge propagation and decision are taken care of by the computer alone. The first framework involves a hybrid architecture using two popular composition/performance environments, Max and OpenMusic, that are put to work and communicate together, each one handling the process at a different time/memory scale. The second framework shares the same representational schemes with the first but uses an Active Learning architecture based on collaborative, competitive and memory-based learning to handle stylistic interactions. Both systems are capable of processing real-time audio/video as well as MIDI. After discussing the general cognitive background of improvisation practices, the statistical modelling tools and the concurrent agent architecture are presented. Then, an Active Learning scheme is described and considered in terms of using different improvisation regimes for improvisation planning. Finally, we provide more details about the different system implementations and describe several performances with the system.
Barua, Shaibal; Begum, Shahina; Ahmed, Mobyen Uddin
2015-01-01
Machine learning algorithms play an important role in computer science research. Recent advancement in sensor data collection in clinical sciences lead to a complex, heterogeneous data processing, and analysis for patient diagnosis and prognosis. Diagnosis and treatment of patients based on manual analysis of these sensor data are difficult and time consuming. Therefore, development of Knowledge-based systems to support clinicians in decision-making is important. However, it is necessary to perform experimental work to compare performances of different machine learning methods to help to select appropriate method for a specific characteristic of data sets. This paper compares classification performance of three popular machine learning methods i.e., case-based reasoning, neutral networks and support vector machine to diagnose stress of vehicle drivers using finger temperature and heart rate variability. The experimental results show that case-based reasoning outperforms other two methods in terms of classification accuracy. Case-based reasoning has achieved 80% and 86% accuracy to classify stress using finger temperature and heart rate variability. On contrary, both neural network and support vector machine have achieved less than 80% accuracy by using both physiological signals.
Li, Yang; Yang, Jianyi
2017-04-24
The prediction of protein-ligand binding affinity has recently been improved remarkably by machine-learning-based scoring functions. For example, using a set of simple descriptors representing the atomic distance counts, the RF-Score improves the Pearson correlation coefficient to about 0.8 on the core set of the PDBbind 2007 database, which is significantly higher than the performance of any conventional scoring function on the same benchmark. A few studies have been made to discuss the performance of machine-learning-based methods, but the reason for this improvement remains unclear. In this study, by systemically controlling the structural and sequence similarity between the training and test proteins of the PDBbind benchmark, we demonstrate that protein structural and sequence similarity makes a significant impact on machine-learning-based methods. After removal of training proteins that are highly similar to the test proteins identified by structure alignment and sequence alignment, machine-learning-based methods trained on the new training sets do not outperform the conventional scoring functions any more. On the contrary, the performance of conventional functions like X-Score is relatively stable no matter what training data are used to fit the weights of its energy terms.
Simplify and Accelerate Earth Science Data Preparation to Systemize Machine Learning
NASA Astrophysics Data System (ADS)
Kuo, K. S.; Rilee, M. L.; Oloso, A.
2017-12-01
Data preparation is the most laborious and time-consuming part of machine learning. The effort required is usually more than linearly proportional to the varieties of data used. From a system science viewpoint, useful machine learning in Earth Science likely involves diverse datasets. Thus, simplifying data preparation to ease the systemization of machine learning in Earth Science is of immense value. The technologies we have developed and applied to an array database, SciDB, are explicitly designed for the purpose, including the innovative SpatioTemporal Adaptive-Resolution Encoding (STARE), a remapping tool suite, and an efficient implementation of connected component labeling (CCL). STARE serves as a universal Earth data representation that homogenizes data varieties and facilitates spatiotemporal data placement as well as alignment, to maximize query performance on massively parallel, distributed computing resources for a major class of analysis. Moreover, it converts spatiotemporal set operations into fast and efficient integer interval operations, supporting in turn moving-object analysis. Integrative analysis requires more than overlapping spatiotemporal sets. For example, meaningful comparison of temperature fields obtained with different means and resolutions requires their transformation to the same grid. Therefore, remapping has been implemented to enable integrative analysis. Finally, Earth Science investigations are generally studies of phenomena, e.g. tropical cyclone, atmospheric river, and blizzard, through their associated events, like hurricanes Katrina and Sandy. Unfortunately, except for a few high-impact phenomena, comprehensive episodic records are lacking. Consequently, we have implemented an efficient CCL tracking algorithm, enabling event-based investigations within climate data records beyond mere event presence. In summary, we have implemented the core unifying capabilities on a Big Data technology to enable systematic machine learning in Earth Science.
Automatic Earthquake Detection by Active Learning
NASA Astrophysics Data System (ADS)
Bergen, K.; Beroza, G. C.
2017-12-01
In recent years, advances in machine learning have transformed fields such as image recognition, natural language processing and recommender systems. Many of these performance gains have relied on the availability of large, labeled data sets to train high-accuracy models; labeled data sets are those for which each sample includes a target class label, such as waveforms tagged as either earthquakes or noise. Earthquake seismologists are increasingly leveraging machine learning and data mining techniques to detect and analyze weak earthquake signals in large seismic data sets. One of the challenges in applying machine learning to seismic data sets is the limited labeled data problem; learning algorithms need to be given examples of earthquake waveforms, but the number of known events, taken from earthquake catalogs, may be insufficient to build an accurate detector. Furthermore, earthquake catalogs are known to be incomplete, resulting in training data that may be biased towards larger events and contain inaccurate labels. This challenge is compounded by the class imbalance problem; the events of interest, earthquakes, are infrequent relative to noise in continuous data sets, and many learning algorithms perform poorly on rare classes. In this work, we investigate the use of active learning for automatic earthquake detection. Active learning is a type of semi-supervised machine learning that uses a human-in-the-loop approach to strategically supplement a small initial training set. The learning algorithm incorporates domain expertise through interaction between a human expert and the algorithm, with the algorithm actively posing queries to the user to improve detection performance. We demonstrate the potential of active machine learning to improve earthquake detection performance with limited available training data.
Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems.
Cheng, Ching-An; Huang, Han-Pang
2016-12-01
We study the modeling of Lagrangian systems with multiple degrees of freedom. Based on system dynamics, canonical parametric models require ad hoc derivations and sometimes simplification for a computable solution; on the other hand, due to the lack of prior knowledge in the system's structure, modern nonparametric models in machine learning face the curse of dimensionality, especially in learning large systems. In this paper, we bridge this gap by unifying the theories of Lagrangian systems and vector-valued reproducing kernel Hilbert space. We reformulate Lagrangian systems with kernels that embed the governing Euler-Lagrange equation-the Lagrangian kernels-and show that these kernels span a subspace capturing the Lagrangian's projection as inverse dynamics. By such property, our model uses only inputs and outputs as in machine learning and inherits the structured form as in system dynamics, thereby removing the need for the mundane derivations for new systems as well as the generalization problem in learning from scratches. In effect, it learns the system's Lagrangian, a simpler task than directly learning the dynamics. To demonstrate, we applied the proposed kernel to identify the robot inverse dynamics in simulations and experiments. Our results present a competitive novel approach to identifying Lagrangian systems, despite using only inputs and outputs.
NASA Astrophysics Data System (ADS)
Tellaeche, A.; Arana, R.; Ibarguren, A.; Martínez-Otzeta, J. M.
The exhaustive quality control is becoming very important in the world's globalized market. One of these examples where quality control becomes critical is the percussion cap mass production. These elements must achieve a minimum tolerance deviation in their fabrication. This paper outlines a machine vision development using a 3D camera for the inspection of the whole production of percussion caps. This system presents multiple problems, such as metallic reflections in the percussion caps, high speed movement of the system and mechanical errors and irregularities in percussion cap placement. Due to these problems, it is impossible to solve the problem by traditional image processing methods, and hence, machine learning algorithms have been tested to provide a feasible classification of the possible errors present in the percussion caps.
Machine learning approaches to the social determinants of health in the health and retirement study.
Seligman, Benjamin; Tuljapurkar, Shripad; Rehkopf, David
2018-04-01
Social and economic factors are important predictors of health and of recognized importance for health systems. However, machine learning, used elsewhere in the biomedical literature, has not been extensively applied to study relationships between society and health. We investigate how machine learning may add to our understanding of social determinants of health using data from the Health and Retirement Study. A linear regression of age and gender, and a parsimonious theory-based regression additionally incorporating income, wealth, and education, were used to predict systolic blood pressure, body mass index, waist circumference, and telomere length. Prediction, fit, and interpretability were compared across four machine learning methods: linear regression, penalized regressions, random forests, and neural networks. All models had poor out-of-sample prediction. Most machine learning models performed similarly to the simpler models. However, neural networks greatly outperformed the three other methods. Neural networks also had good fit to the data ( R 2 between 0.4-0.6, versus <0.3 for all others). Across machine learning models, nine variables were frequently selected or highly weighted as predictors: dental visits, current smoking, self-rated health, serial-seven subtractions, probability of receiving an inheritance, probability of leaving an inheritance of at least $10,000, number of children ever born, African-American race, and gender. Some of the machine learning methods do not improve prediction or fit beyond simpler models, however, neural networks performed well. The predictors identified across models suggest underlying social factors that are important predictors of biological indicators of chronic disease, and that the non-linear and interactive relationships between variables fundamental to the neural network approach may be important to consider.
Cavallo, Filippo; Sinigaglia, Stefano; Megali, Giuseppe; Pietrabissa, Andrea; Dario, Paolo; Mosca, Franco; Cuschieri, Alfred
2014-10-01
The uptake of minimal access surgery (MAS) has by virtue of its clinical benefits become widespread across the surgical specialties. However, despite its advantages in reducing traumatic insult to the patient, it imposes significant ergonomic restriction on the operating surgeons who require training for the safe execution. Recent progress in manipulator technologies (robotic or mechanical) have certainly reduced the level of difficulty, however it requires information for a complete gesture analysis of surgical performance. This article reports on the development and evaluation of such a system capable of full biomechanical and machine learning. The system for gesture analysis comprises 5 principal modules, which permit synchronous acquisition of multimodal surgical gesture signals from different sources and settings. The acquired signals are used to perform a biomechanical analysis for investigation of kinematics, dynamics, and muscle parameters of surgical gestures and a machine learning model for segmentation and recognition of principal phases of surgical gesture. The biomechanical system is able to estimate the level of expertise of subjects and the ergonomics in using different instruments. The machine learning approach is able to ascertain the level of expertise of subjects and has the potential for automatic recognition of surgical gesture for surgeon-robot interactions. Preliminary tests have confirmed the efficacy of the system for surgical gesture analysis, providing an objective evaluation of progress during training of surgeons in their acquisition of proficiency in MAS approach and highlighting useful information for the design and evaluation of master-slave manipulator systems. © The Author(s) 2013.
Classification and authentication of unknown water samples using machine learning algorithms.
Kundu, Palash K; Panchariya, P C; Kundu, Madhusree
2011-07-01
This paper proposes the development of water sample classification and authentication, in real life which is based on machine learning algorithms. The proposed techniques used experimental measurements from a pulse voltametry method which is based on an electronic tongue (E-tongue) instrumentation system with silver and platinum electrodes. E-tongue include arrays of solid state ion sensors, transducers even of different types, data collectors and data analysis tools, all oriented to the classification of liquid samples and authentication of unknown liquid samples. The time series signal and the corresponding raw data represent the measurement from a multi-sensor system. The E-tongue system, implemented in a laboratory environment for 6 numbers of different ISI (Bureau of Indian standard) certified water samples (Aquafina, Bisleri, Kingfisher, Oasis, Dolphin, and McDowell) was the data source for developing two types of machine learning algorithms like classification and regression. A water data set consisting of 6 numbers of sample classes containing 4402 numbers of features were considered. A PCA (principal component analysis) based classification and authentication tool was developed in this study as the machine learning component of the E-tongue system. A proposed partial least squares (PLS) based classifier, which was dedicated as well; to authenticate a specific category of water sample evolved out as an integral part of the E-tongue instrumentation system. The developed PCA and PLS based E-tongue system emancipated an overall encouraging authentication percentage accuracy with their excellent performances for the aforesaid categories of water samples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Assessing Continuous Operator Workload With a Hybrid Scaffolded Neuroergonomic Modeling Approach.
Borghetti, Brett J; Giametta, Joseph J; Rusnock, Christina F
2017-02-01
We aimed to predict operator workload from neurological data using statistical learning methods to fit neurological-to-state-assessment models. Adaptive systems require real-time mental workload assessment to perform dynamic task allocations or operator augmentation as workload issues arise. Neuroergonomic measures have great potential for informing adaptive systems, and we combine these measures with models of task demand as well as information about critical events and performance to clarify the inherent ambiguity of interpretation. We use machine learning algorithms on electroencephalogram (EEG) input to infer operator workload based upon Improved Performance Research Integration Tool workload model estimates. Cross-participant models predict workload of other participants, statistically distinguishing between 62% of the workload changes. Machine learning models trained from Monte Carlo resampled workload profiles can be used in place of deterministic workload profiles for cross-participant modeling without incurring a significant decrease in machine learning model performance, suggesting that stochastic models can be used when limited training data are available. We employed a novel temporary scaffold of simulation-generated workload profile truth data during the model-fitting process. A continuous workload profile serves as the target to train our statistical machine learning models. Once trained, the workload profile scaffolding is removed and the trained model is used directly on neurophysiological data in future operator state assessments. These modeling techniques demonstrate how to use neuroergonomic methods to develop operator state assessments, which can be employed in adaptive systems.
Elicitation of neurological knowledge with argument-based machine learning.
Groznik, Vida; Guid, Matej; Sadikov, Aleksander; Možina, Martin; Georgiev, Dejan; Kragelj, Veronika; Ribarič, Samo; Pirtošek, Zvezdan; Bratko, Ivan
2013-02-01
The paper describes the use of expert's knowledge in practice and the efficiency of a recently developed technique called argument-based machine learning (ABML) in the knowledge elicitation process. We are developing a neurological decision support system to help the neurologists differentiate between three types of tremors: Parkinsonian, essential, and mixed tremor (comorbidity). The system is intended to act as a second opinion for the neurologists, and most importantly to help them reduce the number of patients in the "gray area" that require a very costly further examination (DaTSCAN). We strive to elicit comprehensible and medically meaningful knowledge in such a way that it does not come at the cost of diagnostic accuracy. To alleviate the difficult problem of knowledge elicitation from data and domain experts, we used ABML. ABML guides the expert to explain critical special cases which cannot be handled automatically by machine learning. This very efficiently reduces the expert's workload, and combines expert's knowledge with learning data. 122 patients were enrolled into the study. The classification accuracy of the final model was 91%. Equally important, the initial and the final models were also evaluated for their comprehensibility by the neurologists. All 13 rules of the final model were deemed as appropriate to be able to support its decisions with good explanations. The paper demonstrates ABML's advantage in combining machine learning and expert knowledge. The accuracy of the system is very high with respect to the current state-of-the-art in clinical practice, and the system's knowledge base is assessed to be very consistent from a medical point of view. This opens up the possibility to use the system also as a teaching tool. Copyright © 2012 Elsevier B.V. All rights reserved.
Machine Learning and Computer Vision System for Phenotype Data Acquisition and Analysis in Plants.
Navarro, Pedro J; Pérez, Fernando; Weiss, Julia; Egea-Cortines, Marcos
2016-05-05
Phenomics is a technology-driven approach with promising future to obtain unbiased data of biological systems. Image acquisition is relatively simple. However data handling and analysis are not as developed compared to the sampling capacities. We present a system based on machine learning (ML) algorithms and computer vision intended to solve the automatic phenotype data analysis in plant material. We developed a growth-chamber able to accommodate species of various sizes. Night image acquisition requires near infrared lightning. For the ML process, we tested three different algorithms: k-nearest neighbour (kNN), Naive Bayes Classifier (NBC), and Support Vector Machine. Each ML algorithm was executed with different kernel functions and they were trained with raw data and two types of data normalisation. Different metrics were computed to determine the optimal configuration of the machine learning algorithms. We obtained a performance of 99.31% in kNN for RGB images and a 99.34% in SVM for NIR. Our results show that ML techniques can speed up phenomic data analysis. Furthermore, both RGB and NIR images can be segmented successfully but may require different ML algorithms for segmentation.
Tear fluid proteomics multimarkers for diabetic retinopathy screening
2013-01-01
Background The aim of the project was to develop a novel method for diabetic retinopathy screening based on the examination of tear fluid biomarker changes. In order to evaluate the usability of protein biomarkers for pre-screening purposes several different approaches were used, including machine learning algorithms. Methods All persons involved in the study had diabetes. Diabetic retinopathy (DR) was diagnosed by capturing 7-field fundus images, evaluated by two independent ophthalmologists. 165 eyes were examined (from 119 patients), 55 were diagnosed healthy and 110 images showed signs of DR. Tear samples were taken from all eyes and state-of-the-art nano-HPLC coupled ESI-MS/MS mass spectrometry protein identification was performed on all samples. Applicability of protein biomarkers was evaluated by six different optimally parameterized machine learning algorithms: Support Vector Machine, Recursive Partitioning, Random Forest, Naive Bayes, Logistic Regression, K-Nearest Neighbor. Results Out of the six investigated machine learning algorithms the result of Recursive Partitioning proved to be the most accurate. The performance of the system realizing the above algorithm reached 74% sensitivity and 48% specificity. Conclusions Protein biomarkers selected and classified with machine learning algorithms alone are at present not recommended for screening purposes because of low specificity and sensitivity values. This tool can be potentially used to improve the results of image processing methods as a complementary tool in automatic or semiautomatic systems. PMID:23919537
Using Machine Learning to Advance Personality Assessment and Theory.
Bleidorn, Wiebke; Hopwood, Christopher James
2018-05-01
Machine learning has led to important advances in society. One of the most exciting applications of machine learning in psychological science has been the development of assessment tools that can powerfully predict human behavior and personality traits. Thus far, machine learning approaches to personality assessment have focused on the associations between social media and other digital records with established personality measures. The goal of this article is to expand the potential of machine learning approaches to personality assessment by embedding it in a more comprehensive construct validation framework. We review recent applications of machine learning to personality assessment, place machine learning research in the broader context of fundamental principles of construct validation, and provide recommendations for how to use machine learning to advance our understanding of personality.
Hsin, Kun-Yi; Ghosh, Samik; Kitano, Hiroaki
2013-01-01
Increased availability of bioinformatics resources is creating opportunities for the application of network pharmacology to predict drug effects and toxicity resulting from multi-target interactions. Here we present a high-precision computational prediction approach that combines two elaborately built machine learning systems and multiple molecular docking tools to assess binding potentials of a test compound against proteins involved in a complex molecular network. One of the two machine learning systems is a re-scoring function to evaluate binding modes generated by docking tools. The second is a binding mode selection function to identify the most predictive binding mode. Results from a series of benchmark validations and a case study show that this approach surpasses the prediction reliability of other techniques and that it also identifies either primary or off-targets of kinase inhibitors. Integrating this approach with molecular network maps makes it possible to address drug safety issues by comprehensively investigating network-dependent effects of a drug or drug candidate. PMID:24391846
Real Time Network Monitoring and Reporting System
ERIC Educational Resources Information Center
Massengale, Ricky L., Sr.
2009-01-01
With the ability of modern system developers to develop intelligent programs that allows machines to learn, modify and evolve themselves, current trends of reactionary methods to detect and eradicate malicious software code from infected machines is proving to be too costly. Addressing malicious software after an attack is the current methodology…
Clinical quality needs complex adaptive systems and machine learning.
Marsland, Stephen; Buchan, Iain
2004-01-01
The vast increase in clinical data has the potential to bring about large improvements in clinical quality and other aspects of healthcare delivery. However, such benefits do not come without cost. The analysis of such large datasets, particularly where the data may have to be merged from several sources and may be noisy and incomplete, is a challenging task. Furthermore, the introduction of clinical changes is a cyclical task, meaning that the processes under examination operate in an environment that is not static. We suggest that traditional methods of analysis are unsuitable for the task, and identify complexity theory and machine learning as areas that have the potential to facilitate the examination of clinical quality. By its nature the field of complex adaptive systems deals with environments that change because of the interactions that have occurred in the past. We draw parallels between health informatics and bioinformatics, which has already started to successfully use machine learning methods.
Yamamoto, Yoichiro; Saito, Akira; Tateishi, Ayako; Shimojo, Hisashi; Kanno, Hiroyuki; Tsuchiya, Shinichi; Ito, Ken-ichi; Cosatto, Eric; Graf, Hans Peter; Moraleda, Rodrigo R.; Eils, Roland; Grabe, Niels
2017-01-01
Machine learning systems have recently received increased attention for their broad applications in several fields. In this study, we show for the first time that histological types of breast tumors can be classified using subtle morphological differences of microenvironmental myoepithelial cell nuclei without any direct information about neoplastic tumor cells. We quantitatively measured 11661 nuclei on the four histological types: normal cases, usual ductal hyperplasia and low/high grade ductal carcinoma in situ (DCIS). Using a machine learning system, we succeeded in classifying the four histological types with 90.9% accuracy. Electron microscopy observations suggested that the activity of typical myoepithelial cells in DCIS was lowered. Through these observations as well as meta-analytic database analyses, we developed a paracrine cross-talk-based biological mechanism of DCIS progressing to invasive cancer. Our observations support novel approaches in clinical computational diagnostics as well as in therapy development against progression. PMID:28440283
Training Knowledge Bots for Physics-Based Simulations Using Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.; Wong, Jay Ming
2014-01-01
Millions of complex physics-based simulations are required for design of an aerospace vehicle. These simulations are usually performed by highly trained and skilled analysts, who execute, monitor, and steer each simulation. Analysts rely heavily on their broad experience that may have taken 20-30 years to accumulate. In addition, the simulation software is complex in nature, requiring significant computational resources. Simulations of system of systems become even more complex and are beyond human capacity to effectively learn their behavior. IBM has developed machines that can learn and compete successfully with a chess grandmaster and most successful jeopardy contestants. These machines are capable of learning some complex problems much faster than humans can learn. In this paper, we propose using artificial neural network to train knowledge bots to identify the idiosyncrasies of simulation software and recognize patterns that can lead to successful simulations. We examine the use of knowledge bots for applications of computational fluid dynamics (CFD), trajectory analysis, commercial finite-element analysis software, and slosh propellant dynamics. We will show that machine learning algorithms can be used to learn the idiosyncrasies of computational simulations and identify regions of instability without including any additional information about their mathematical form or applied discretization approaches.
Jaspers, Arne; De Beéck, Tim Op; Brink, Michel S; Frencken, Wouter G P; Staes, Filip; Davis, Jesse J; Helsen, Werner F
2018-05-01
Machine learning may contribute to understanding the relationship between the external load and internal load in professional soccer. Therefore, the relationship between external load indicators (ELIs) and the rating of perceived exertion (RPE) was examined using machine learning techniques on a group and individual level. Training data were collected from 38 professional soccer players over 2 seasons. The external load was measured using global positioning system technology and accelerometry. The internal load was obtained using the RPE. Predictive models were constructed using 2 machine learning techniques, artificial neural networks and least absolute shrinkage and selection operator (LASSO) models, and 1 naive baseline method. The predictions were based on a large set of ELIs. Using each technique, 1 group model involving all players and 1 individual model for each player were constructed. These models' performance on predicting the reported RPE values for future training sessions was compared with the naive baseline's performance. Both the artificial neural network and LASSO models outperformed the baseline. In addition, the LASSO model made more accurate predictions for the RPE than did the artificial neural network model. Furthermore, decelerations were identified as important ELIs. Regardless of the applied machine learning technique, the group models resulted in equivalent or better predictions for the reported RPE values than the individual models. Machine learning techniques may have added value in predicting RPE for future sessions to optimize training design and evaluation. These techniques may also be used in conjunction with expert knowledge to select key ELIs for load monitoring.
Machine learning of fault characteristics from rocket engine simulation data
NASA Technical Reports Server (NTRS)
Ke, Min; Ali, Moonis
1990-01-01
Transformation of data into knowledge through conceptual induction has been the focus of our research described in this paper. We have developed a Machine Learning System (MLS) to analyze the rocket engine simulation data. MLS can provide to its users fault analysis, characteristics, and conceptual descriptions of faults, and the relationships of attributes and sensors. All the results are critically important in identifying faults.
Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon
2018-04-30
Cell types of erythrocytes should be identified because they are closely related to their functionality and viability. Conventional methods for classifying erythrocytes are time consuming and labor intensive. Therefore, an automatic and accurate erythrocyte classification system is indispensable in healthcare and biomedical fields. In this study, we proposed a new label-free sensor for automatic identification of erythrocyte cell types using a digital in-line holographic microscopy (DIHM) combined with machine learning algorithms. A total of 12 features, including information on intensity distributions, morphological descriptors, and optical focusing characteristics, is quantitatively obtained from numerically reconstructed holographic images. All individual features for discocytes, echinocytes, and spherocytes are statistically different. To improve the performance of cell type identification, we adopted several machine learning algorithms, such as decision tree model, support vector machine, linear discriminant classification, and k-nearest neighbor classification. With the aid of these machine learning algorithms, the extracted features are effectively utilized to distinguish erythrocytes. Among the four tested algorithms, the decision tree model exhibits the best identification performance for the training sets (n = 440, 98.18%) and test sets (n = 190, 97.37%). This proposed methodology, which smartly combined DIHM and machine learning, would be helpful for sensing abnormal erythrocytes and computer-aided diagnosis of hematological diseases in clinic. Copyright © 2017 Elsevier B.V. All rights reserved.
Hotz, Christine S; Templeton, Steven J; Christopher, Mary M
2005-03-01
A rule-based expert system using CLIPS programming language was created to classify body cavity effusions as transudates, modified transudates, exudates, chylous, and hemorrhagic effusions. The diagnostic accuracy of the rule-based system was compared with that produced by 2 machine-learning methods: Rosetta, a rough sets algorithm and RIPPER, a rule-induction method. Results of 508 body cavity fluid analyses (canine, feline, equine) obtained from the University of California-Davis Veterinary Medical Teaching Hospital computerized patient database were used to test CLIPS and to test and train RIPPER and Rosetta. The CLIPS system, using 17 rules, achieved an accuracy of 93.5% compared with pathologist consensus diagnoses. Rosetta accurately classified 91% of effusions by using 5,479 rules. RIPPER achieved the greatest accuracy (95.5%) using only 10 rules. When the original rules of the CLIPS application were replaced with those of RIPPER, the accuracy rates were identical. These results suggest that both rule-based expert systems and machine-learning methods hold promise for the preliminary classification of body fluids in the clinical laboratory.
Machine-learning-based real-bogus system for the HSC-SSP moving object detection pipeline
NASA Astrophysics Data System (ADS)
Lin, Hsing-Wen; Chen, Ying-Tung; Wang, Jen-Hung; Wang, Shiang-Yu; Yoshida, Fumi; Ip, Wing-Huen; Miyazaki, Satoshi; Terai, Tsuyoshi
2018-01-01
Machine-learning techniques are widely applied in many modern optical sky surveys, e.g., Pan-STARRS1, PTF/iPTF, and the Subaru/Hyper Suprime-Cam survey, to reduce human intervention in data verification. In this study, we have established a machine-learning-based real-bogus system to reject false detections in the Subaru/Hyper-Suprime-Cam Strategic Survey Program (HSC-SSP) source catalog. Therefore, the HSC-SSP moving object detection pipeline can operate more effectively due to the reduction of false positives. To train the real-bogus system, we use stationary sources as the real training set and "flagged" data as the bogus set. The training set contains 47 features, most of which are photometric measurements and shape moments generated from the HSC image reduction pipeline (hscPipe). Our system can reach a true positive rate (tpr) ˜96% with a false positive rate (fpr) ˜1% or tpr ˜99% at fpr ˜5%. Therefore, we conclude that stationary sources are decent real training samples, and using photometry measurements and shape moments can reject false positives effectively.
Navarro, Pedro J.; Fernández, Carlos; Borraz, Raúl; Alonso, Diego
2016-01-01
This article describes an automated sensor-based system to detect pedestrians in an autonomous vehicle application. Although the vehicle is equipped with a broad set of sensors, the article focuses on the processing of the information generated by a Velodyne HDL-64E LIDAR sensor. The cloud of points generated by the sensor (more than 1 million points per revolution) is processed to detect pedestrians, by selecting cubic shapes and applying machine vision and machine learning algorithms to the XY, XZ, and YZ projections of the points contained in the cube. The work relates an exhaustive analysis of the performance of three different machine learning algorithms: k-Nearest Neighbours (kNN), Naïve Bayes classifier (NBC), and Support Vector Machine (SVM). These algorithms have been trained with 1931 samples. The final performance of the method, measured a real traffic scenery, which contained 16 pedestrians and 469 samples of non-pedestrians, shows sensitivity (81.2%), accuracy (96.2%) and specificity (96.8%). PMID:28025565
Navarro, Pedro J; Fernández, Carlos; Borraz, Raúl; Alonso, Diego
2016-12-23
This article describes an automated sensor-based system to detect pedestrians in an autonomous vehicle application. Although the vehicle is equipped with a broad set of sensors, the article focuses on the processing of the information generated by a Velodyne HDL-64E LIDAR sensor. The cloud of points generated by the sensor (more than 1 million points per revolution) is processed to detect pedestrians, by selecting cubic shapes and applying machine vision and machine learning algorithms to the XY, XZ, and YZ projections of the points contained in the cube. The work relates an exhaustive analysis of the performance of three different machine learning algorithms: k-Nearest Neighbours (kNN), Naïve Bayes classifier (NBC), and Support Vector Machine (SVM). These algorithms have been trained with 1931 samples. The final performance of the method, measured a real traffic scenery, which contained 16 pedestrians and 469 samples of non-pedestrians, shows sensitivity (81.2%), accuracy (96.2%) and specificity (96.8%).
Exploring cluster Monte Carlo updates with Boltzmann machines
NASA Astrophysics Data System (ADS)
Wang, Lei
2017-11-01
Boltzmann machines are physics informed generative models with broad applications in machine learning. They model the probability distribution of an input data set with latent variables and generate new samples accordingly. Applying the Boltzmann machines back to physics, they are ideal recommender systems to accelerate the Monte Carlo simulation of physical systems due to their flexibility and effectiveness. More intriguingly, we show that the generative sampling of the Boltzmann machines can even give different cluster Monte Carlo algorithms. The latent representation of the Boltzmann machines can be designed to mediate complex interactions and identify clusters of the physical system. We demonstrate these findings with concrete examples of the classical Ising model with and without four-spin plaquette interactions. In the future, automatic searches in the algorithm space parametrized by Boltzmann machines may discover more innovative Monte Carlo updates.
Interactive machine learning for health informatics: when do we need the human-in-the-loop?
Holzinger, Andreas
2016-06-01
Machine learning (ML) is the fastest growing field in computer science, and health informatics is among the greatest challenges. The goal of ML is to develop algorithms which can learn and improve over time and can be used for predictions. Most ML researchers concentrate on automatic machine learning (aML), where great advances have been made, for example, in speech recognition, recommender systems, or autonomous vehicles. Automatic approaches greatly benefit from big data with many training sets. However, in the health domain, sometimes we are confronted with a small number of data sets or rare events, where aML-approaches suffer of insufficient training samples. Here interactive machine learning (iML) may be of help, having its roots in reinforcement learning, preference learning, and active learning. The term iML is not yet well used, so we define it as "algorithms that can interact with agents and can optimize their learning behavior through these interactions, where the agents can also be human." This "human-in-the-loop" can be beneficial in solving computationally hard problems, e.g., subspace clustering, protein folding, or k-anonymization of health data, where human expertise can help to reduce an exponential search space through heuristic selection of samples. Therefore, what would otherwise be an NP-hard problem, reduces greatly in complexity through the input and the assistance of a human agent involved in the learning phase.
Hassanpour, Saeed; Langlotz, Curtis P; Amrhein, Timothy J; Befera, Nicholas T; Lungren, Matthew P
2017-04-01
The purpose of this study is to evaluate the performance of a natural language processing (NLP) system in classifying a database of free-text knee MRI reports at two separate academic radiology practices. An NLP system that uses terms and patterns in manually classified narrative knee MRI reports was constructed. The NLP system was trained and tested on expert-classified knee MRI reports from two major health care organizations. Radiology reports were modeled in the training set as vectors, and a support vector machine framework was used to train the classifier. A separate test set from each organization was used to evaluate the performance of the system. We evaluated the performance of the system both within and across organizations. Standard evaluation metrics, such as accuracy, precision, recall, and F1 score (i.e., the weighted average of the precision and recall), and their respective 95% CIs were used to measure the efficacy of our classification system. The accuracy for radiology reports that belonged to the model's clinically significant concept classes after training data from the same institution was good, yielding an F1 score greater than 90% (95% CI, 84.6-97.3%). Performance of the classifier on cross-institutional application without institution-specific training data yielded F1 scores of 77.6% (95% CI, 69.5-85.7%) and 90.2% (95% CI, 84.5-95.9%) at the two organizations studied. The results show excellent accuracy by the NLP machine learning classifier in classifying free-text knee MRI reports, supporting the institution-independent reproducibility of knee MRI report classification. Furthermore, the machine learning classifier performed well on free-text knee MRI reports from another institution. These data support the feasibility of multiinstitutional classification of radiologic imaging text reports with a single machine learning classifier without requiring institution-specific training data.
Stone, Bryan L; Johnson, Michael D; Tarczy-Hornoch, Peter; Wilcox, Adam B; Mooney, Sean D; Sheng, Xiaoming; Haug, Peter J; Nkoy, Flory L
2017-01-01
Background To improve health outcomes and cut health care costs, we often need to conduct prediction/classification using large clinical datasets (aka, clinical big data), for example, to identify high-risk patients for preventive interventions. Machine learning has been proposed as a key technology for doing this. Machine learning has won most data science competitions and could support many clinical activities, yet only 15% of hospitals use it for even limited purposes. Despite familiarity with data, health care researchers often lack machine learning expertise to directly use clinical big data, creating a hurdle in realizing value from their data. Health care researchers can work with data scientists with deep machine learning knowledge, but it takes time and effort for both parties to communicate effectively. Facing a shortage in the United States of data scientists and hiring competition from companies with deep pockets, health care systems have difficulty recruiting data scientists. Building and generalizing a machine learning model often requires hundreds to thousands of manual iterations by data scientists to select the following: (1) hyper-parameter values and complex algorithms that greatly affect model accuracy and (2) operators and periods for temporally aggregating clinical attributes (eg, whether a patient’s weight kept rising in the past year). This process becomes infeasible with limited budgets. Objective This study’s goal is to enable health care researchers to directly use clinical big data, make machine learning feasible with limited budgets and data scientist resources, and realize value from data. Methods This study will allow us to achieve the following: (1) finish developing the new software, Automated Machine Learning (Auto-ML), to automate model selection for machine learning with clinical big data and validate Auto-ML on seven benchmark modeling problems of clinical importance; (2) apply Auto-ML and novel methodology to two new modeling problems crucial for care management allocation and pilot one model with care managers; and (3) perform simulations to estimate the impact of adopting Auto-ML on US patient outcomes. Results We are currently writing Auto-ML’s design document. We intend to finish our study by around the year 2022. Conclusions Auto-ML will generalize to various clinical prediction/classification problems. With minimal help from data scientists, health care researchers can use Auto-ML to quickly build high-quality models. This will boost wider use of machine learning in health care and improve patient outcomes. PMID:28851678
Automatic vetting of planet candidates from ground based surveys: Machine learning with NGTS
NASA Astrophysics Data System (ADS)
Armstrong, David J.; Günther, Maximilian N.; McCormac, James; Smith, Alexis M. S.; Bayliss, Daniel; Bouchy, François; Burleigh, Matthew R.; Casewell, Sarah; Eigmüller, Philipp; Gillen, Edward; Goad, Michael R.; Hodgkin, Simon T.; Jenkins, James S.; Louden, Tom; Metrailler, Lionel; Pollacco, Don; Poppenhaeger, Katja; Queloz, Didier; Raynard, Liam; Rauer, Heike; Udry, Stéphane; Walker, Simon R.; Watson, Christopher A.; West, Richard G.; Wheatley, Peter J.
2018-05-01
State of the art exoplanet transit surveys are producing ever increasing quantities of data. To make the best use of this resource, in detecting interesting planetary systems or in determining accurate planetary population statistics, requires new automated methods. Here we describe a machine learning algorithm that forms an integral part of the pipeline for the NGTS transit survey, demonstrating the efficacy of machine learning in selecting planetary candidates from multi-night ground based survey data. Our method uses a combination of random forests and self-organising-maps to rank planetary candidates, achieving an AUC score of 97.6% in ranking 12368 injected planets against 27496 false positives in the NGTS data. We build on past examples by using injected transit signals to form a training set, a necessary development for applying similar methods to upcoming surveys. We also make the autovet code used to implement the algorithm publicly accessible. autovet is designed to perform machine learned vetting of planetary candidates, and can utilise a variety of methods. The apparent robustness of machine learning techniques, whether on space-based or the qualitatively different ground-based data, highlights their importance to future surveys such as TESS and PLATO and the need to better understand their advantages and pitfalls in an exoplanetary context.
Cohen, Kevin Bretonnel; Glass, Benjamin; Greiner, Hansel M.; Holland-Bouley, Katherine; Standridge, Shannon; Arya, Ravindra; Faist, Robert; Morita, Diego; Mangano, Francesco; Connolly, Brian; Glauser, Tracy; Pestian, John
2016-01-01
Objective: We describe the development and evaluation of a system that uses machine learning and natural language processing techniques to identify potential candidates for surgical intervention for drug-resistant pediatric epilepsy. The data are comprised of free-text clinical notes extracted from the electronic health record (EHR). Both known clinical outcomes from the EHR and manual chart annotations provide gold standards for the patient’s status. The following hypotheses are then tested: 1) machine learning methods can identify epilepsy surgery candidates as well as physicians do and 2) machine learning methods can identify candidates earlier than physicians do. These hypotheses are tested by systematically evaluating the effects of the data source, amount of training data, class balance, classification algorithm, and feature set on classifier performance. The results support both hypotheses, with F-measures ranging from 0.71 to 0.82. The feature set, classification algorithm, amount of training data, class balance, and gold standard all significantly affected classification performance. It was further observed that classification performance was better than the highest agreement between two annotators, even at one year before documented surgery referral. The results demonstrate that such machine learning methods can contribute to predicting pediatric epilepsy surgery candidates and reducing lag time to surgery referral. PMID:27257386
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
... committee information line to learn about possible modifications before coming to the meeting. Agenda: On... extracorporeal blood system. Sorbent hemoperfusion systems may also include the machine or instrument used to... from the patient, delivery to a hemodialysis machine for filtering, and return of filtered blood to the...
Transformation of an uncertain video search pipeline to a sketch-based visual analytics loop.
Legg, Philip A; Chung, David H S; Parry, Matthew L; Bown, Rhodri; Jones, Mark W; Griffiths, Iwan W; Chen, Min
2013-12-01
Traditional sketch-based image or video search systems rely on machine learning concepts as their core technology. However, in many applications, machine learning alone is impractical since videos may not be semantically annotated sufficiently, there may be a lack of suitable training data, and the search requirements of the user may frequently change for different tasks. In this work, we develop a visual analytics systems that overcomes the shortcomings of the traditional approach. We make use of a sketch-based interface to enable users to specify search requirement in a flexible manner without depending on semantic annotation. We employ active machine learning to train different analytical models for different types of search requirements. We use visualization to facilitate knowledge discovery at the different stages of visual analytics. This includes visualizing the parameter space of the trained model, visualizing the search space to support interactive browsing, visualizing candidature search results to support rapid interaction for active learning while minimizing watching videos, and visualizing aggregated information of the search results. We demonstrate the system for searching spatiotemporal attributes from sports video to identify key instances of the team and player performance.
Non-Bayesian Optical Inference Machines
NASA Astrophysics Data System (ADS)
Kadar, Ivan; Eichmann, George
1987-01-01
In a recent paper, Eichmann and Caulfield) presented a preliminary exposition of optical learning machines suited for use in expert systems. In this paper, we extend the previous ideas by introducing learning as a means of reinforcement by information gathering and reasoning with uncertainty in a non-Bayesian framework2. More specifically, the non-Bayesian approach allows the representation of total ignorance (not knowing) as opposed to assuming equally likely prior distributions.
On the impact of approximate computation in an analog DeSTIN architecture.
Young, Steven; Lu, Junjie; Holleman, Jeremy; Arel, Itamar
2014-05-01
Deep machine learning (DML) holds the potential to revolutionize machine learning by automating rich feature extraction, which has become the primary bottleneck of human engineering in pattern recognition systems. However, the heavy computational burden renders DML systems implemented on conventional digital processors impractical for large-scale problems. The highly parallel computations required to implement large-scale deep learning systems are well suited to custom hardware. Analog computation has demonstrated power efficiency advantages of multiple orders of magnitude relative to digital systems while performing nonideal computations. In this paper, we investigate typical error sources introduced by analog computational elements and their impact on system-level performance in DeSTIN--a compositional deep learning architecture. These inaccuracies are evaluated on a pattern classification benchmark, clearly demonstrating the robustness of the underlying algorithm to the errors introduced by analog computational elements. A clear understanding of the impacts of nonideal computations is necessary to fully exploit the efficiency of analog circuits.
Classifying Black Hole States with Machine Learning
NASA Astrophysics Data System (ADS)
Huppenkothen, Daniela
2018-01-01
Galactic black hole binaries are known to go through different states with apparent signatures in both X-ray light curves and spectra, leading to important implications for accretion physics as well as our knowledge of General Relativity. Existing frameworks of classification are usually based on human interpretation of low-dimensional representations of the data, and generally only apply to fairly small data sets. Machine learning, in contrast, allows for rapid classification of large, high-dimensional data sets. In this talk, I will report on advances made in classification of states observed in Black Hole X-ray Binaries, focusing on the two sources GRS 1915+105 and Cygnus X-1, and show both the successes and limitations of using machine learning to derive physical constraints on these systems.
Autonomous Scanning Probe Microscopy in Situ Tip Conditioning through Machine Learning.
Rashidi, Mohammad; Wolkow, Robert A
2018-05-23
Atomic-scale characterization and manipulation with scanning probe microscopy rely upon the use of an atomically sharp probe. Here we present automated methods based on machine learning to automatically detect and recondition the quality of the probe of a scanning tunneling microscope. As a model system, we employ these techniques on the technologically relevant hydrogen-terminated silicon surface, training the network to recognize abnormalities in the appearance of surface dangling bonds. Of the machine learning methods tested, a convolutional neural network yielded the greatest accuracy, achieving a positive identification of degraded tips in 97% of the test cases. By using multiple points of comparison and majority voting, the accuracy of the method is improved beyond 99%.
Shamir, Reuben R; Dolber, Trygve; Noecker, Angela M; Walter, Benjamin L; McIntyre, Cameron C
2015-01-01
Deep brain stimulation (DBS) of the subthalamic region is an established therapy for advanced Parkinson's disease (PD). However, patients often require time-intensive post-operative management to balance their coupled stimulation and medication treatments. Given the large and complex parameter space associated with this task, we propose that clinical decision support systems (CDSS) based on machine learning algorithms could assist in treatment optimization. Develop a proof-of-concept implementation of a CDSS that incorporates patient-specific details on both stimulation and medication. Clinical data from 10 patients, and 89 post-DBS surgery visits, were used to create a prototype CDSS. The system was designed to provide three key functions: (1) information retrieval; (2) visualization of treatment, and; (3) recommendation on expected effective stimulation and drug dosages, based on three machine learning methods that included support vector machines, Naïve Bayes, and random forest. Measures of medication dosages, time factors, and symptom-specific pre-operative response to levodopa were significantly correlated with post-operative outcomes (P < 0.05) and their effect on outcomes was of similar magnitude to that of DBS. Using those results, the combined machine learning algorithms were able to accurately predict 86% (12/14) of the motor improvement scores at one year after surgery. Using patient-specific details, an appropriately parameterized CDSS could help select theoretically optimal DBS parameter settings and medication dosages that have potential to improve the clinical management of PD patients. Copyright © 2015 Elsevier Inc. All rights reserved.
Quantum-chemical insights from deep tensor neural networks
Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R.; Tkatchenko, Alexandre
2017-01-01
Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol−1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems. PMID:28067221
Quantum-chemical insights from deep tensor neural networks.
Schütt, Kristof T; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R; Tkatchenko, Alexandre
2017-01-09
Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol -1 ) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems.
Quantum-chemical insights from deep tensor neural networks
NASA Astrophysics Data System (ADS)
Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R.; Tkatchenko, Alexandre
2017-01-01
Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol-1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems.
Dropout Prediction in E-Learning Courses through the Combination of Machine Learning Techniques
ERIC Educational Resources Information Center
Lykourentzou, Ioanna; Giannoukos, Ioannis; Nikolopoulos, Vassilis; Mpardis, George; Loumos, Vassili
2009-01-01
In this paper, a dropout prediction method for e-learning courses, based on three popular machine learning techniques and detailed student data, is proposed. The machine learning techniques used are feed-forward neural networks, support vector machines and probabilistic ensemble simplified fuzzy ARTMAP. Since a single technique may fail to…
Monte-Moreno, Enric
2011-10-01
This work presents a system for a simultaneous non-invasive estimate of the blood glucose level (BGL) and the systolic (SBP) and diastolic (DBP) blood pressure, using a photoplethysmograph (PPG) and machine learning techniques. The method is independent of the person whose values are being measured and does not need calibration over time or subjects. The architecture of the system consists of a photoplethysmograph sensor, an activity detection module, a signal processing module that extracts features from the PPG waveform, and a machine learning algorithm that estimates the SBP, DBP and BGL values. The idea that underlies the system is that there is functional relationship between the shape of the PPG waveform and the blood pressure and glucose levels. As described in this paper we tested this method on 410 individuals without performing any personalized calibration. The results were computed after cross validation. The machine learning techniques tested were: ridge linear regression, a multilayer perceptron neural network, support vector machines and random forests. The best results were obtained with the random forest technique. In the case of blood pressure, the resulting coefficients of determination for reference vs. prediction were R(SBP)(2)=0.91, R(DBP)(2)=0.89, and R(BGL)(2)=0.90. For the glucose estimation, distribution of the points on a Clarke error grid placed 87.7% of points in zone A, 10.3% in zone B, and 1.9% in zone D. Blood pressure values complied with the grade B protocol of the British Hypertension society. An effective system for estimate of blood glucose and blood pressure from a photoplethysmograph is presented. The main advantage of the system is that for clinical use it complies with the grade B protocol of the British Hypertension society for the blood pressure and only in 1.9% of the cases did not detect hypoglycemia or hyperglycemia. Copyright © 2011 Elsevier B.V. All rights reserved.
Epidermis area detection for immunofluorescence microscopy
NASA Astrophysics Data System (ADS)
Dovganich, Andrey; Krylov, Andrey; Nasonov, Andrey; Makhneva, Natalia
2018-04-01
We propose a novel image segmentation method for immunofluorescence microscopy images of skin tissue for the diagnosis of various skin diseases. The segmentation is based on machine learning algorithms. The feature vector is filled by three groups of features: statistical features, Laws' texture energy measures and local binary patterns. The images are preprocessed for better learning. Different machine learning algorithms have been used and the best results have been obtained with random forest algorithm. We use the proposed method to detect the epidermis region as a part of pemphigus diagnosis system.
NASA Astrophysics Data System (ADS)
Shprits, Y.; Zhelavskaya, I. S.; Kellerman, A. C.; Spasojevic, M.; Kondrashov, D. A.; Ghil, M.; Aseev, N.; Castillo Tibocha, A. M.; Cervantes Villa, J. S.; Kletzing, C.; Kurth, W. S.
2017-12-01
Increasing volume of satellite measurements requires deployment of new tools that can utilize such vast amount of data. Satellite measurements are usually limited to a single location in space, which complicates the data analysis geared towards reproducing the global state of the space environment. In this study we show how measurements can be combined by means of data assimilation and how machine learning can help analyze large amounts of data and can help develop global models that are trained on single point measurement. Data Assimilation: Manual analysis of the satellite measurements is a challenging task, while automated analysis is complicated by the fact that measurements are given at various locations in space, have different instrumental errors, and often vary by orders of magnitude. We show results of the long term reanalysis of radiation belt measurements along with fully operational real-time predictions using data assimilative VERB code. Machine Learning: We present application of the machine learning tools for the analysis of NASA Van Allen Probes upper-hybrid frequency measurements. Using the obtained data set we train a new global predictive neural network. The results for the Van Allen Probes based neural network are compared with historical IMAGE satellite observations. We also show examples of predictions of geomagnetic indices using neural networks. Combination of machine learning and data assimilation: We discuss how data assimilation tools and machine learning tools can be combine so that physics-based insight into the dynamics of the particular system can be combined with empirical knowledge of it's non-linear behavior.
Computer Augmented Learning; A Survey.
ERIC Educational Resources Information Center
Kindred, J.
The report contains a description and summary of computer augmented learning devices and systems. The devices are of two general types programed instruction systems based on the teaching machines pioneered by Pressey and developed by Skinner, and the so-called "docile" systems that permit greater user-direction with the computer under student…
Classifying smoking urges via machine learning
Dumortier, Antoine; Beckjord, Ellen; Shiffman, Saul; Sejdić, Ervin
2016-01-01
Background and objective Smoking is the largest preventable cause of death and diseases in the developed world, and advances in modern electronics and machine learning can help us deliver real-time intervention to smokers in novel ways. In this paper, we examine different machine learning approaches to use situational features associated with having or not having urges to smoke during a quit attempt in order to accurately classify high-urge states. Methods To test our machine learning approaches, specifically, Bayes, discriminant analysis and decision tree learning methods, we used a dataset collected from over 300 participants who had initiated a quit attempt. The three classification approaches are evaluated observing sensitivity, specificity, accuracy and precision. Results The outcome of the analysis showed that algorithms based on feature selection make it possible to obtain high classification rates with only a few features selected from the entire dataset. The classification tree method outperformed the naive Bayes and discriminant analysis methods, with an accuracy of the classifications up to 86%. These numbers suggest that machine learning may be a suitable approach to deal with smoking cessation matters, and to predict smoking urges, outlining a potential use for mobile health applications. Conclusions In conclusion, machine learning classifiers can help identify smoking situations, and the search for the best features and classifier parameters significantly improves the algorithms’ performance. In addition, this study also supports the usefulness of new technologies in improving the effect of smoking cessation interventions, the management of time and patients by therapists, and thus the optimization of available health care resources. Future studies should focus on providing more adaptive and personalized support to people who really need it, in a minimum amount of time by developing novel expert systems capable of delivering real-time interventions. PMID:28110725
Classifying smoking urges via machine learning.
Dumortier, Antoine; Beckjord, Ellen; Shiffman, Saul; Sejdić, Ervin
2016-12-01
Smoking is the largest preventable cause of death and diseases in the developed world, and advances in modern electronics and machine learning can help us deliver real-time intervention to smokers in novel ways. In this paper, we examine different machine learning approaches to use situational features associated with having or not having urges to smoke during a quit attempt in order to accurately classify high-urge states. To test our machine learning approaches, specifically, Bayes, discriminant analysis and decision tree learning methods, we used a dataset collected from over 300 participants who had initiated a quit attempt. The three classification approaches are evaluated observing sensitivity, specificity, accuracy and precision. The outcome of the analysis showed that algorithms based on feature selection make it possible to obtain high classification rates with only a few features selected from the entire dataset. The classification tree method outperformed the naive Bayes and discriminant analysis methods, with an accuracy of the classifications up to 86%. These numbers suggest that machine learning may be a suitable approach to deal with smoking cessation matters, and to predict smoking urges, outlining a potential use for mobile health applications. In conclusion, machine learning classifiers can help identify smoking situations, and the search for the best features and classifier parameters significantly improves the algorithms' performance. In addition, this study also supports the usefulness of new technologies in improving the effect of smoking cessation interventions, the management of time and patients by therapists, and thus the optimization of available health care resources. Future studies should focus on providing more adaptive and personalized support to people who really need it, in a minimum amount of time by developing novel expert systems capable of delivering real-time interventions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
2011-01-01
Background Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. Results This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. Conclusions AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the efficient development of highly accurate QSAR models fulfilling regulatory requirements. PMID:21798025
Stålring, Jonna C; Carlsson, Lars A; Almeida, Pedro; Boyer, Scott
2011-07-28
Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the efficient development of highly accurate QSAR models fulfilling regulatory requirements.
Case-Based Reasoning in Mixed Paradigm Settings and with Learning
1994-04-30
Learning Prototypical Cases OFF-BROADWAY, MCI and RMHC -* are three CBR-ML systems that learn case prototypes. We feel that methods that enable the...at Irvine Machine Learning Repository, including heart disease and breast cancer databases. OFF-BROADWAY, MCI and RMHC -* made the following notable
The Efficacy of Machine Learning Programs for Navy Manpower Analysis
1993-03-01
This thesis investigated the efficacy of two machine learning programs for Navy manpower analysis. Two machine learning programs, AIM and IXL, were...to generate models from the two commercial machine learning programs. Using a held out sub-set of the data the capabilities of the three models were...partial effects. The author recommended further investigation of AIM’s capabilities, and testing in an operational environment.... Machine learning , AIM, IXL.
A machine learning evaluation of an artificial immune system.
Glickman, Matthew; Balthrop, Justin; Forrest, Stephanie
2005-01-01
ARTIS is an artificial immune system framework which contains several adaptive mechanisms. LISYS is a version of ARTIS specialized for the problem of network intrusion detection. The adaptive mechanisms of LISYS are characterized in terms of their machine-learning counterparts, and a series of experiments is described, each of which isolates a different mechanism of LISYS and studies its contribution to the system's overall performance. The experiments were conducted on a new data set, which is more recent and realistic than earlier data sets. The network intrusion detection problem is challenging because it requires one-class learning in an on-line setting with concept drift. The experiments confirm earlier experimental results with LISYS, and they study in detail how LISYS achieves success on the new data set.
Local Learning Strategies for Wake Identification
NASA Astrophysics Data System (ADS)
Colvert, Brendan; Alsalman, Mohamad; Kanso, Eva
2017-11-01
Swimming agents, biological and engineered alike, must navigate the underwater environment to survive. Tasks such as autonomous navigation, foraging, mating, and predation require the ability to extract critical cues from the hydrodynamic environment. A substantial body of evidence supports the hypothesis that biological systems leverage local sensing modalities, including flow sensing, to gain knowledge of their global surroundings. The nonlinear nature and high degree of complexity of fluid dynamics makes the development of algorithms for implementing localized sensing in bioinspired engineering systems essentially intractable for many systems of practical interest. In this work, we use techniques from machine learning for training a bioinspired swimmer to learn from its environment. We demonstrate the efficacy of this strategy by learning how to sense global characteristics of the wakes of other swimmers measured only from local sensory information. We conclude by commenting on the advantages and limitations of this data-driven, machine learning approach and its potential impact on broader applications in underwater sensing and navigation.
Entanglement-Based Machine Learning on a Quantum Computer
NASA Astrophysics Data System (ADS)
Cai, X.-D.; Wu, D.; Su, Z.-E.; Chen, M.-C.; Wang, X.-L.; Li, Li; Liu, N.-L.; Lu, C.-Y.; Pan, J.-W.
2015-03-01
Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.
ERIC Educational Resources Information Center
Aslan, Burak Galip; Öztürk, Özlem; Inceoglu, Mustafa Murat
2014-01-01
Considering the increasing importance of adaptive approaches in CALL systems, this study implemented a machine learning based student modeling middleware with Bayesian networks. The profiling approach of the student modeling system is based on Felder and Silverman's Learning Styles Model and Felder and Soloman's Index of Learning Styles…
ERIC Educational Resources Information Center
Kadhim, Kais A.; Habeeb, Luwaytha S.; Sapar, Ahmad Arifin; Hussin, Zaharah; Abdullah, Muhammad Ridhuan Tony Lim
2013-01-01
Nowadays, online Machine Translation (MT) is used widely with translation software, such as Google and Babylon, being easily available and downloadable. This study aims to test the translation quality of these two machine systems in translating Arabic news headlines into English. 40 Arabic news headlines were selected from three online sources,…
Estelles-Lopez, Lucia; Ropodi, Athina; Pavlidis, Dimitris; Fotopoulou, Jenny; Gkousari, Christina; Peyrodie, Audrey; Panagou, Efstathios; Nychas, George-John; Mohareb, Fady
2017-09-01
Over the past decade, analytical approaches based on vibrational spectroscopy, hyperspectral/multispectral imagining and biomimetic sensors started gaining popularity as rapid and efficient methods for assessing food quality, safety and authentication; as a sensible alternative to the expensive and time-consuming conventional microbiological techniques. Due to the multi-dimensional nature of the data generated from such analyses, the output needs to be coupled with a suitable statistical approach or machine-learning algorithms before the results can be interpreted. Choosing the optimum pattern recognition or machine learning approach for a given analytical platform is often challenging and involves a comparative analysis between various algorithms in order to achieve the best possible prediction accuracy. In this work, "MeatReg", a web-based application is presented, able to automate the procedure of identifying the best machine learning method for comparing data from several analytical techniques, to predict the counts of microorganisms responsible of meat spoilage regardless of the packaging system applied. In particularly up to 7 regression methods were applied and these are ordinary least squares regression, stepwise linear regression, partial least square regression, principal component regression, support vector regression, random forest and k-nearest neighbours. MeatReg" was tested with minced beef samples stored under aerobic and modified atmosphere packaging and analysed with electronic nose, HPLC, FT-IR, GC-MS and Multispectral imaging instrument. Population of total viable count, lactic acid bacteria, pseudomonads, Enterobacteriaceae and B. thermosphacta, were predicted. As a result, recommendations of which analytical platforms are suitable to predict each type of bacteria and which machine learning methods to use in each case were obtained. The developed system is accessible via the link: www.sorfml.com. Copyright © 2017 Elsevier Ltd. All rights reserved.
Araki, Tadashi; Jain, Pankaj K; Suri, Harman S; Londhe, Narendra D; Ikeda, Nobutaka; El-Baz, Ayman; Shrivastava, Vimal K; Saba, Luca; Nicolaides, Andrew; Shafique, Shoaib; Laird, John R; Gupta, Ajay; Suri, Jasjit S
2017-01-01
Stroke risk stratification based on grayscale morphology of the ultrasound carotid wall has recently been shown to have a promise in classification of high risk versus low risk plaque or symptomatic versus asymptomatic plaques. In previous studies, this stratification has been mainly based on analysis of the far wall of the carotid artery. Due to the multifocal nature of atherosclerotic disease, the plaque growth is not restricted to the far wall alone. This paper presents a new approach for stroke risk assessment by integrating assessment of both the near and far walls of the carotid artery using grayscale morphology of the plaque. Further, this paper presents a scientific validation system for stroke risk assessment. Both these innovations have never been presented before. The methodology consists of an automated segmentation system of the near wall and far wall regions in grayscale carotid B-mode ultrasound scans. Sixteen grayscale texture features are computed, and fed into the machine learning system. The training system utilizes the lumen diameter to create ground truth labels for the stratification of stroke risk. The cross-validation procedure is adapted in order to obtain the machine learning testing classification accuracy through the use of three sets of partition protocols: (5, 10, and Jack Knife). The mean classification accuracy over all the sets of partition protocols for the automated system in the far and near walls is 95.08% and 93.47%, respectively. The corresponding accuracies for the manual system are 94.06% and 92.02%, respectively. The precision of merit of the automated machine learning system when compared against manual risk assessment system are 98.05% and 97.53% for the far and near walls, respectively. The ROC of the risk assessment system for the far and near walls is close to 1.0 demonstrating high accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Simba, Kenneth Renny; Bui, Ba Dinh; Msukwa, Mathew Renny; Uchiyama, Naoki
2018-04-01
In feed drive systems, particularly machine tools, a contour error is more significant than the individual axial tracking errors from the view point of enhancing precision in manufacturing and production systems. The contour error must be within the permissible tolerance of given products. In machining complex or sharp-corner products, large contour errors occur mainly owing to discontinuous trajectories and the existence of nonlinear uncertainties. Therefore, it is indispensable to design robust controllers that can enhance the tracking ability of feed drive systems. In this study, an iterative learning contouring controller consisting of a classical Proportional-Derivative (PD) controller and disturbance observer is proposed. The proposed controller was evaluated experimentally by using a typical sharp-corner trajectory, and its performance was compared with that of conventional controllers. The results revealed that the maximum contour error can be reduced by about 37% on average. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Casey, M
1996-08-15
Recurrent neural networks (RNNs) can learn to perform finite state computations. It is shown that an RNN performing a finite state computation must organize its state space to mimic the states in the minimal deterministic finite state machine that can perform that computation, and a precise description of the attractor structure of such systems is given. This knowledge effectively predicts activation space dynamics, which allows one to understand RNN computation dynamics in spite of complexity in activation dynamics. This theory provides a theoretical framework for understanding finite state machine (FSM) extraction techniques and can be used to improve training methods for RNNs performing FSM computations. This provides an example of a successful approach to understanding a general class of complex systems that has not been explicitly designed, e.g., systems that have evolved or learned their internal structure.
An automated diagnosis system of liver disease using artificial immune and genetic algorithms.
Liang, Chunlin; Peng, Lingxi
2013-04-01
The rise of health care cost is one of the world's most important problems. Disease prediction is also a vibrant research area. Researchers have approached this problem using various techniques such as support vector machine, artificial neural network, etc. This study typically exploits the immune system's characteristics of learning and memory to solve the problem of liver disease diagnosis. The proposed system applies a combination of two methods of artificial immune and genetic algorithm to diagnose the liver disease. The system architecture is based on artificial immune system. The learning procedure of system adopts genetic algorithm to interfere the evolution of antibody population. The experiments use two benchmark datasets in our study, which are acquired from the famous UCI machine learning repository. The obtained diagnosis accuracies are very promising with regard to the other diagnosis system in the literatures. These results suggest that this system may be a useful automatic diagnosis tool for liver disease.
A Machine Learning and Optimization Toolkit for the Swarm
2014-11-17
Machine Learning and Op0miza0on Toolkit for the Swarm Ilge Akkaya, Shuhei Emoto...3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE A Machine Learning and Optimization Toolkit for the Swarm 5a. CONTRACT NUMBER... machine learning methodologies by providing the right interfaces between machine learning tools and
A study of metaheuristic algorithms for high dimensional feature selection on microarray data
NASA Astrophysics Data System (ADS)
Dankolo, Muhammad Nasiru; Radzi, Nor Haizan Mohamed; Sallehuddin, Roselina; Mustaffa, Noorfa Haszlinna
2017-11-01
Microarray systems enable experts to examine gene profile at molecular level using machine learning algorithms. It increases the potentials of classification and diagnosis of many diseases at gene expression level. Though, numerous difficulties may affect the efficiency of machine learning algorithms which includes vast number of genes features comprised in the original data. Many of these features may be unrelated to the intended analysis. Therefore, feature selection is necessary to be performed in the data pre-processing. Many feature selection algorithms are developed and applied on microarray which including the metaheuristic optimization algorithms. This paper discusses the application of the metaheuristics algorithms for feature selection in microarray dataset. This study reveals that, the algorithms have yield an interesting result with limited resources thereby saving computational expenses of machine learning algorithms.
NASA Astrophysics Data System (ADS)
Lary, D. J.
2013-12-01
A BigData case study is described where multiple datasets from several satellites, high-resolution global meteorological data, social media and in-situ observations are combined using machine learning on a distributed cluster using an automated workflow. The global particulate dataset is relevant to global public health studies and would not be possible to produce without the use of the multiple big datasets, in-situ data and machine learning.To greatly reduce the development time and enhance the functionality a high level language capable of parallel processing has been used (Matlab). A key consideration for the system is high speed access due to the large data volume, persistence of the large data volumes and a precise process time scheduling capability.
Protein function in precision medicine: deep understanding with machine learning.
Rost, Burkhard; Radivojac, Predrag; Bromberg, Yana
2016-08-01
Precision medicine and personalized health efforts propose leveraging complex molecular, medical and family history, along with other types of personal data toward better life. We argue that this ambitious objective will require advanced and specialized machine learning solutions. Simply skimming some low-hanging results off the data wealth might have limited potential. Instead, we need to better understand all parts of the system to define medically relevant causes and effects: how do particular sequence variants affect particular proteins and pathways? How do these effects, in turn, cause the health or disease-related phenotype? Toward this end, deeper understanding will not simply diffuse from deeper machine learning, but from more explicit focus on understanding protein function, context-specific protein interaction networks, and impact of variation on both. © 2016 Federation of European Biochemical Societies.
Two-stage approach to keyword spotting in handwritten documents
NASA Astrophysics Data System (ADS)
Haji, Mehdi; Ameri, Mohammad R.; Bui, Tien D.; Suen, Ching Y.; Ponson, Dominique
2013-12-01
Separation of keywords from non-keywords is the main problem in keyword spotting systems which has traditionally been approached by simplistic methods, such as thresholding of recognition scores. In this paper, we analyze this problem from a machine learning perspective, and we study several standard machine learning algorithms specifically in the context of non-keyword rejection. We propose a two-stage approach to keyword spotting and provide a theoretical analysis of the performance of the system which gives insights on how to design the classifier in order to maximize the overall performance in terms of F-measure.
Identifying Structural Flow Defects in Disordered Solids Using Machine-Learning Methods
NASA Astrophysics Data System (ADS)
Cubuk, E. D.; Schoenholz, S. S.; Rieser, J. M.; Malone, B. D.; Rottler, J.; Durian, D. J.; Kaxiras, E.; Liu, A. J.
2015-03-01
We use machine-learning methods on local structure to identify flow defects—or particles susceptible to rearrangement—in jammed and glassy systems. We apply this method successfully to two very different systems: a two-dimensional experimental realization of a granular pillar under compression and a Lennard-Jones glass in both two and three dimensions above and below its glass transition temperature. We also identify characteristics of flow defects that differentiate them from the rest of the sample. Our results show it is possible to discern subtle structural features responsible for heterogeneous dynamics observed across a broad range of disordered materials.
Predicting Mouse Liver Microsomal Stability with “Pruned” Machine Learning Models and Public Data
Perryman, Alexander L.; Stratton, Thomas P.; Ekins, Sean; Freundlich, Joel S.
2015-01-01
Purpose Mouse efficacy studies are a critical hurdle to advance translational research of potential therapeutic compounds for many diseases. Although mouse liver microsomal (MLM) stability studies are not a perfect surrogate for in vivo studies of metabolic clearance, they are the initial model system used to assess metabolic stability. Consequently, we explored the development of machine learning models that can enhance the probability of identifying compounds possessing MLM stability. Methods Published assays on MLM half-life values were identified in PubChem, reformatted, and curated to create a training set with 894 unique small molecules. These data were used to construct machine learning models assessed with internal cross-validation, external tests with a published set of antitubercular compounds, and independent validation with an additional diverse set of 571 compounds (PubChem data on percent metabolism). Results “Pruning” out the moderately unstable/moderately stable compounds from the training set produced models with superior predictive power. Bayesian models displayed the best predictive power for identifying compounds with a half-life ≥1 hour. Conclusions Our results suggest the pruning strategy may be of general benefit to improve test set enrichment and provide machine learning models with enhanced predictive value for the MLM stability of small organic molecules. This study represents the most exhaustive study to date of using machine learning approaches with MLM data from public sources. PMID:26415647
Predicting Mouse Liver Microsomal Stability with "Pruned" Machine Learning Models and Public Data.
Perryman, Alexander L; Stratton, Thomas P; Ekins, Sean; Freundlich, Joel S
2016-02-01
Mouse efficacy studies are a critical hurdle to advance translational research of potential therapeutic compounds for many diseases. Although mouse liver microsomal (MLM) stability studies are not a perfect surrogate for in vivo studies of metabolic clearance, they are the initial model system used to assess metabolic stability. Consequently, we explored the development of machine learning models that can enhance the probability of identifying compounds possessing MLM stability. Published assays on MLM half-life values were identified in PubChem, reformatted, and curated to create a training set with 894 unique small molecules. These data were used to construct machine learning models assessed with internal cross-validation, external tests with a published set of antitubercular compounds, and independent validation with an additional diverse set of 571 compounds (PubChem data on percent metabolism). "Pruning" out the moderately unstable / moderately stable compounds from the training set produced models with superior predictive power. Bayesian models displayed the best predictive power for identifying compounds with a half-life ≥1 h. Our results suggest the pruning strategy may be of general benefit to improve test set enrichment and provide machine learning models with enhanced predictive value for the MLM stability of small organic molecules. This study represents the most exhaustive study to date of using machine learning approaches with MLM data from public sources.
Luo, Gang; Stone, Bryan L; Johnson, Michael D; Tarczy-Hornoch, Peter; Wilcox, Adam B; Mooney, Sean D; Sheng, Xiaoming; Haug, Peter J; Nkoy, Flory L
2017-08-29
To improve health outcomes and cut health care costs, we often need to conduct prediction/classification using large clinical datasets (aka, clinical big data), for example, to identify high-risk patients for preventive interventions. Machine learning has been proposed as a key technology for doing this. Machine learning has won most data science competitions and could support many clinical activities, yet only 15% of hospitals use it for even limited purposes. Despite familiarity with data, health care researchers often lack machine learning expertise to directly use clinical big data, creating a hurdle in realizing value from their data. Health care researchers can work with data scientists with deep machine learning knowledge, but it takes time and effort for both parties to communicate effectively. Facing a shortage in the United States of data scientists and hiring competition from companies with deep pockets, health care systems have difficulty recruiting data scientists. Building and generalizing a machine learning model often requires hundreds to thousands of manual iterations by data scientists to select the following: (1) hyper-parameter values and complex algorithms that greatly affect model accuracy and (2) operators and periods for temporally aggregating clinical attributes (eg, whether a patient's weight kept rising in the past year). This process becomes infeasible with limited budgets. This study's goal is to enable health care researchers to directly use clinical big data, make machine learning feasible with limited budgets and data scientist resources, and realize value from data. This study will allow us to achieve the following: (1) finish developing the new software, Automated Machine Learning (Auto-ML), to automate model selection for machine learning with clinical big data and validate Auto-ML on seven benchmark modeling problems of clinical importance; (2) apply Auto-ML and novel methodology to two new modeling problems crucial for care management allocation and pilot one model with care managers; and (3) perform simulations to estimate the impact of adopting Auto-ML on US patient outcomes. We are currently writing Auto-ML's design document. We intend to finish our study by around the year 2022. Auto-ML will generalize to various clinical prediction/classification problems. With minimal help from data scientists, health care researchers can use Auto-ML to quickly build high-quality models. This will boost wider use of machine learning in health care and improve patient outcomes. ©Gang Luo, Bryan L Stone, Michael D Johnson, Peter Tarczy-Hornoch, Adam B Wilcox, Sean D Mooney, Xiaoming Sheng, Peter J Haug, Flory L Nkoy. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 29.08.2017.
Scalable Machine Learning for Massive Astronomical Datasets
NASA Astrophysics Data System (ADS)
Ball, Nicholas M.; Gray, A.
2014-04-01
We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors. This is likely of particular interest to the radio astronomy community given, for example, that survey projects contain groups dedicated to this topic. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex datasets that wishes to extract the full scientific value from its data.
Scalable Machine Learning for Massive Astronomical Datasets
NASA Astrophysics Data System (ADS)
Ball, Nicholas M.; Astronomy Data Centre, Canadian
2014-01-01
We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors, and the local outlier factor. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex datasets that wishes to extract the full scientific value from its data.
Taniguchi, Hidetaka; Sato, Hiroshi; Shirakawa, Tomohiro
2018-05-09
Human learners can generalize a new concept from a small number of samples. In contrast, conventional machine learning methods require large amounts of data to address the same types of problems. Humans have cognitive biases that promote fast learning. Here, we developed a method to reduce the gap between human beings and machines in this type of inference by utilizing cognitive biases. We implemented a human cognitive model into machine learning algorithms and compared their performance with the currently most popular methods, naïve Bayes, support vector machine, neural networks, logistic regression and random forests. We focused on the task of spam classification, which has been studied for a long time in the field of machine learning and often requires a large amount of data to obtain high accuracy. Our models achieved superior performance with small and biased samples in comparison with other representative machine learning methods.
Machine learning: novel bioinformatics approaches for combating antimicrobial resistance.
Macesic, Nenad; Polubriaginof, Fernanda; Tatonetti, Nicholas P
2017-12-01
Antimicrobial resistance (AMR) is a threat to global health and new approaches to combating AMR are needed. Use of machine learning in addressing AMR is in its infancy but has made promising steps. We reviewed the current literature on the use of machine learning for studying bacterial AMR. The advent of large-scale data sets provided by next-generation sequencing and electronic health records make applying machine learning to the study and treatment of AMR possible. To date, it has been used for antimicrobial susceptibility genotype/phenotype prediction, development of AMR clinical decision rules, novel antimicrobial agent discovery and antimicrobial therapy optimization. Application of machine learning to studying AMR is feasible but remains limited. Implementation of machine learning in clinical settings faces barriers to uptake with concerns regarding model interpretability and data quality.Future applications of machine learning to AMR are likely to be laboratory-based, such as antimicrobial susceptibility phenotype prediction.
Artificial intelligence: Learning to see and act
NASA Astrophysics Data System (ADS)
Schölkopf, Bernhard
2015-02-01
An artificial-intelligence system uses machine learning from massive training sets to teach itself to play 49 classic computer games, demonstrating that it can adapt to a variety of tasks. See Letter p.529
Artificial Intelligence and NASA Data Used to Discover Eighth Planet Circling Distant Star
2017-12-12
Our solar system now is tied for most number of planets around a single star, with the recent discovery of an eighth planet circling Kepler-90, a Sun-like star 2,545 light years from Earth. The planet was discovered in data from NASA’s Kepler space telescope. The newly-discovered Kepler-90i -- a sizzling hot, rocky planet that orbits its star once every 14.4 days -- was found by researchers from Google and The University of Texas at Austin using machine learning. Machine learning is an approach to artificial intelligence in which computers “learn.” In this case, computers learned to identify planets by finding in Kepler data instances where the telescope recorded signals from planets beyond our solar system, known as exoplanets. Video Credit: NASA Ames Research Center / Google
Comparison between extreme learning machine and wavelet neural networks in data classification
NASA Astrophysics Data System (ADS)
Yahia, Siwar; Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri
2017-03-01
Extreme learning Machine is a well known learning algorithm in the field of machine learning. It's about a feed forward neural network with a single-hidden layer. It is an extremely fast learning algorithm with good generalization performance. In this paper, we aim to compare the Extreme learning Machine with wavelet neural networks, which is a very used algorithm. We have used six benchmark data sets to evaluate each technique. These datasets Including Wisconsin Breast Cancer, Glass Identification, Ionosphere, Pima Indians Diabetes, Wine Recognition and Iris Plant. Experimental results have shown that both extreme learning machine and wavelet neural networks have reached good results.
Detecting Visually Observable Disease Symptoms from Faces.
Wang, Kuan; Luo, Jiebo
2016-12-01
Recent years have witnessed an increasing interest in the application of machine learning to clinical informatics and healthcare systems. A significant amount of research has been done on healthcare systems based on supervised learning. In this study, we present a generalized solution to detect visually observable symptoms on faces using semi-supervised anomaly detection combined with machine vision algorithms. We rely on the disease-related statistical facts to detect abnormalities and classify them into multiple categories to narrow down the possible medical reasons of detecting. Our method is in contrast with most existing approaches, which are limited by the availability of labeled training data required for supervised learning, and therefore offers the major advantage of flagging any unusual and visually observable symptoms.
Machine learning models in breast cancer survival prediction.
Montazeri, Mitra; Montazeri, Mohadeseh; Montazeri, Mahdieh; Beigzadeh, Amin
2016-01-01
Breast cancer is one of the most common cancers with a high mortality rate among women. With the early diagnosis of breast cancer survival will increase from 56% to more than 86%. Therefore, an accurate and reliable system is necessary for the early diagnosis of this cancer. The proposed model is the combination of rules and different machine learning techniques. Machine learning models can help physicians to reduce the number of false decisions. They try to exploit patterns and relationships among a large number of cases and predict the outcome of a disease using historical cases stored in datasets. The objective of this study is to propose a rule-based classification method with machine learning techniques for the prediction of different types of Breast cancer survival. We use a dataset with eight attributes that include the records of 900 patients in which 876 patients (97.3%) and 24 (2.7%) patients were females and males respectively. Naive Bayes (NB), Trees Random Forest (TRF), 1-Nearest Neighbor (1NN), AdaBoost (AD), Support Vector Machine (SVM), RBF Network (RBFN), and Multilayer Perceptron (MLP) machine learning techniques with 10-cross fold technique were used with the proposed model for the prediction of breast cancer survival. The performance of machine learning techniques were evaluated with accuracy, precision, sensitivity, specificity, and area under ROC curve. Out of 900 patients, 803 patients and 97 patients were alive and dead, respectively. In this study, Trees Random Forest (TRF) technique showed better results in comparison to other techniques (NB, 1NN, AD, SVM and RBFN, MLP). The accuracy, sensitivity and the area under ROC curve of TRF are 96%, 96%, 93%, respectively. However, 1NN machine learning technique provided poor performance (accuracy 91%, sensitivity 91% and area under ROC curve 78%). This study demonstrates that Trees Random Forest model (TRF) which is a rule-based classification model was the best model with the highest level of accuracy. Therefore, this model is recommended as a useful tool for breast cancer survival prediction as well as medical decision making.
HELPR: Hybrid Evolutionary Learning for Pattern Recognition
2005-12-01
to a new approach called memetic algorithms that combines machine learning systems with human expertise to create new tools that have the advantage...architecture could form the foundation for a memetic system capable of solving ATR problems faster and more accurately than possible using pure human expertise
Background Knowledge in Learning-Based Relation Extraction
ERIC Educational Resources Information Center
Do, Quang Xuan
2012-01-01
In this thesis, we study the importance of background knowledge in relation extraction systems. We not only demonstrate the benefits of leveraging background knowledge to improve the systems' performance but also propose a principled framework that allows one to effectively incorporate knowledge into statistical machine learning models for…
Using human brain activity to guide machine learning.
Fong, Ruth C; Scheirer, Walter J; Cox, David D
2018-03-29
Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of "neurally-weighted" machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data.
ERIC Educational Resources Information Center
Deutsch, William
1992-01-01
Reviews the history of the development of the field of performance technology. Highlights include early teaching machines, instructional technology, learning theory, programed instruction, the systems approach, needs assessment, branching versus linear program formats, programing languages, and computer-assisted instruction. (LRW)
Weng, Wei-Hung; Wagholikar, Kavishwar B; McCray, Alexa T; Szolovits, Peter; Chueh, Henry C
2017-12-01
The medical subdomain of a clinical note, such as cardiology or neurology, is useful content-derived metadata for developing machine learning downstream applications. To classify the medical subdomain of a note accurately, we have constructed a machine learning-based natural language processing (NLP) pipeline and developed medical subdomain classifiers based on the content of the note. We constructed the pipeline using the clinical NLP system, clinical Text Analysis and Knowledge Extraction System (cTAKES), the Unified Medical Language System (UMLS) Metathesaurus, Semantic Network, and learning algorithms to extract features from two datasets - clinical notes from Integrating Data for Analysis, Anonymization, and Sharing (iDASH) data repository (n = 431) and Massachusetts General Hospital (MGH) (n = 91,237), and built medical subdomain classifiers with different combinations of data representation methods and supervised learning algorithms. We evaluated the performance of classifiers and their portability across the two datasets. The convolutional recurrent neural network with neural word embeddings trained-medical subdomain classifier yielded the best performance measurement on iDASH and MGH datasets with area under receiver operating characteristic curve (AUC) of 0.975 and 0.991, and F1 scores of 0.845 and 0.870, respectively. Considering better clinical interpretability, linear support vector machine-trained medical subdomain classifier using hybrid bag-of-words and clinically relevant UMLS concepts as the feature representation, with term frequency-inverse document frequency (tf-idf)-weighting, outperformed other shallow learning classifiers on iDASH and MGH datasets with AUC of 0.957 and 0.964, and F1 scores of 0.932 and 0.934 respectively. We trained classifiers on one dataset, applied to the other dataset and yielded the threshold of F1 score of 0.7 in classifiers for half of the medical subdomains we studied. Our study shows that a supervised learning-based NLP approach is useful to develop medical subdomain classifiers. The deep learning algorithm with distributed word representation yields better performance yet shallow learning algorithms with the word and concept representation achieves comparable performance with better clinical interpretability. Portable classifiers may also be used across datasets from different institutions.
Zhao, Jiangsan; Bodner, Gernot; Rewald, Boris
2016-01-01
Phenotyping local crop cultivars is becoming more and more important, as they are an important genetic source for breeding – especially in regard to inherent root system architectures. Machine learning algorithms are promising tools to assist in the analysis of complex data sets; novel approaches are need to apply them on root phenotyping data of mature plants. A greenhouse experiment was conducted in large, sand-filled columns to differentiate 16 European Pisum sativum cultivars based on 36 manually derived root traits. Through combining random forest and support vector machine models, machine learning algorithms were successfully used for unbiased identification of most distinguishing root traits and subsequent pairwise cultivar differentiation. Up to 86% of pea cultivar pairs could be distinguished based on top five important root traits (Timp5) – Timp5 differed widely between cultivar pairs. Selecting top important root traits (Timp) provided a significant improved classification compared to using all available traits or randomly selected trait sets. The most frequent Timp of mature pea cultivars was total surface area of lateral roots originating from tap root segments at 0–5 cm depth. The high classification rate implies that culturing did not lead to a major loss of variability in root system architecture in the studied pea cultivars. Our results illustrate the potential of machine learning approaches for unbiased (root) trait selection and cultivar classification based on rather small, complex phenotypic data sets derived from pot experiments. Powerful statistical approaches are essential to make use of the increasing amount of (root) phenotyping information, integrating the complex trait sets describing crop cultivars. PMID:27999587
NASA Astrophysics Data System (ADS)
Gavrishchaka, V. V.; Ganguli, S. B.
2001-12-01
Reliable forecasting of rare events in a complex dynamical system is a challenging problem that is important for many practical applications. Due to the nature of rare events, data set available for construction of the statistical and/or machine learning model is often very limited and incomplete. Therefore many widely used approaches including such robust algorithms as neural networks can easily become inadequate for rare events prediction. Moreover in many practical cases models with high-dimensional inputs are required. This limits applications of the existing rare event modeling techniques (e.g., extreme value theory) that focus on univariate cases. These approaches are not easily extended to multivariate cases. Support vector machine (SVM) is a machine learning system that can provide an optimal generalization using very limited and incomplete training data sets and can efficiently handle high-dimensional data. These features may allow to use SVM to model rare events in some applications. We have applied SVM-based system to the problem of large-amplitude substorm prediction and extreme event forecasting in stock and currency exchange markets. Encouraging preliminary results will be presented and other possible applications of the system will be discussed.
Online learning control using adaptive critic designs with sparse kernel machines.
Xu, Xin; Hou, Zhongsheng; Lian, Chuanqiang; He, Haibo
2013-05-01
In the past decade, adaptive critic designs (ACDs), including heuristic dynamic programming (HDP), dual heuristic programming (DHP), and their action-dependent ones, have been widely studied to realize online learning control of dynamical systems. However, because neural networks with manually designed features are commonly used to deal with continuous state and action spaces, the generalization capability and learning efficiency of previous ACDs still need to be improved. In this paper, a novel framework of ACDs with sparse kernel machines is presented by integrating kernel methods into the critic of ACDs. To improve the generalization capability as well as the computational efficiency of kernel machines, a sparsification method based on the approximately linear dependence analysis is used. Using the sparse kernel machines, two kernel-based ACD algorithms, that is, kernel HDP (KHDP) and kernel DHP (KDHP), are proposed and their performance is analyzed both theoretically and empirically. Because of the representation learning and generalization capability of sparse kernel machines, KHDP and KDHP can obtain much better performance than previous HDP and DHP with manually designed neural networks. Simulation and experimental results of two nonlinear control problems, that is, a continuous-action inverted pendulum problem and a ball and plate control problem, demonstrate the effectiveness of the proposed kernel ACD methods.
Quantum-Enhanced Machine Learning
NASA Astrophysics Data System (ADS)
Dunjko, Vedran; Taylor, Jacob M.; Briegel, Hans J.
2016-09-01
The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.
Using deep learning for content-based medical image retrieval
NASA Astrophysics Data System (ADS)
Sun, Qinpei; Yang, Yuanyuan; Sun, Jianyong; Yang, Zhiming; Zhang, Jianguo
2017-03-01
Content-Based medical image retrieval (CBMIR) is been highly active research area from past few years. The retrieval performance of a CBMIR system crucially depends on the feature representation, which have been extensively studied by researchers for decades. Although a variety of techniques have been proposed, it remains one of the most challenging problems in current CBMIR research, which is mainly due to the well-known "semantic gap" issue that exists between low-level image pixels captured by machines and high-level semantic concepts perceived by human[1]. Recent years have witnessed some important advances of new techniques in machine learning. One important breakthrough technique is known as "deep learning". Unlike conventional machine learning methods that are often using "shallow" architectures, deep learning mimics the human brain that is organized in a deep architecture and processes information through multiple stages of transformation and representation. This means that we do not need to spend enormous energy to extract features manually. In this presentation, we propose a novel framework which uses deep learning to retrieval the medical image to improve the accuracy and speed of a CBIR in integrated RIS/PACS.
NASA Astrophysics Data System (ADS)
Nguyen, Minh Q.; Allebach, Jan P.
2015-01-01
In our previous work1 , we presented a block-based technique to analyze printed page uniformity both visually and metrically. The features learned from the models were then employed in a Support Vector Machine (SVM) framework to classify the pages into one of the two categories of acceptable and unacceptable quality. In this paper, we introduce a set of tools for machine learning in the assessment of printed page uniformity. This work is primarily targeted to the printing industry, specifically the ubiquitous laser, electrophotographic printer. We use features that are well-correlated with the rankings of expert observers to develop a novel machine learning framework that allows one to achieve the minimum "false alarm" rate, subject to a chosen "miss" rate. Surprisingly, most of the research that has been conducted on machine learning does not consider this framework. During the process of developing a new product, test engineers will print hundreds of test pages, which can be scanned and then analyzed by an autonomous algorithm. Among these pages, most may be of acceptable quality. The objective is to find the ones that are not. These will provide critically important information to systems designers, regarding issues that need to be addressed in improving the printer design. A "miss" is defined to be a page that is not of acceptable quality to an expert observer that the prediction algorithm declares to be a "pass". Misses are a serious problem, since they represent problems that will not be seen by the systems designers. On the other hand, "false alarms" correspond to pages that an expert observer would declare to be of acceptable quality, but which are flagged by the prediction algorithm as "fails". In a typical printer testing and development scenario, such pages would be examined by an expert, and found to be of acceptable quality after all. "False alarm" pages result in extra pages to be examined by expert observers, which increases labor cost. But "false alarms" are not nearly as catastrophic as "misses", which represent potentially serious problems that are never seen by the systems developers. This scenario motivates us to develop a machine learning framework that will achieve the minimum "false alarm" rate subject to a specified "miss" rate. In order to construct such a set of receiver operating characteristic2 (ROC) curves, we examine various tools for the prediction, ranging from an exhaustive search over the space of the nonlinear discriminants to a Cost-Sentitive SVM3 framework. We then compare the curves gained from those methods. Our work shows promise for applying a standard framework to obtain a full ROC curve when it comes to tackling other machine learning problems in industry.
Saba, Luca; Jain, Pankaj K; Suri, Harman S; Ikeda, Nobutaka; Araki, Tadashi; Singh, Bikesh K; Nicolaides, Andrew; Shafique, Shoaib; Gupta, Ajay; Laird, John R; Suri, Jasjit S
2017-06-01
Severe atherosclerosis disease in carotid arteries causes stenosis which in turn leads to stroke. Machine learning systems have been previously developed for plaque wall risk assessment using morphology-based characterization. The fundamental assumption in such systems is the extraction of the grayscale features of the plaque region. Even though these systems have the ability to perform risk stratification, they lack the ability to achieve higher performance due their inability to select and retain dominant features. This paper introduces a polling-based principal component analysis (PCA) strategy embedded in the machine learning framework to select and retain dominant features, resulting in superior performance. This leads to more stability and reliability. The automated system uses offline image data along with the ground truth labels to generate the parameters, which are then used to transform the online grayscale features to predict the risk of stroke. A set of sixteen grayscale plaque features is computed. Utilizing the cross-validation protocol (K = 10), and the PCA cutoff of 0.995, the machine learning system is able to achieve an accuracy of 98.55 and 98.83%corresponding to the carotidfar wall and near wall plaques, respectively. The corresponding reliability of the system was 94.56 and 95.63%, respectively. The automated system was validated against the manual risk assessment system and the precision of merit for same cross-validation settings and PCA cutoffs are 98.28 and 93.92%for the far and the near wall, respectively.PCA-embedded morphology-based plaque characterization shows a powerful strategy for risk assessment and can be adapted in clinical settings.
Myths and legends in learning classification rules
NASA Technical Reports Server (NTRS)
Buntine, Wray
1990-01-01
A discussion is presented of machine learning theory on empirically learning classification rules. Six myths are proposed in the machine learning community that address issues of bias, learning as search, computational learning theory, Occam's razor, universal learning algorithms, and interactive learning. Some of the problems raised are also addressed from a Bayesian perspective. Questions are suggested that machine learning researchers should be addressing both theoretically and experimentally.
Machine Learning Based Malware Detection
2015-05-18
A TRIDENT SCHOLAR PROJECT REPORT NO. 440 Machine Learning Based Malware Detection by Midshipman 1/C Zane A. Markel, USN...COVERED (From - To) 4. TITLE AND SUBTITLE Machine Learning Based Malware Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...suitably be projected into realistic performance. This work explores several aspects of machine learning based malware detection . First, we
Interpreting Medical Information Using Machine Learning and Individual Conditional Expectation.
Nohara, Yasunobu; Wakata, Yoshifumi; Nakashima, Naoki
2015-01-01
Recently, machine-learning techniques have spread many fields. However, machine-learning is still not popular in medical research field due to difficulty of interpreting. In this paper, we introduce a method of interpreting medical information using machine learning technique. The method gave new explanation of partial dependence plot and individual conditional expectation plot from medical research field.
Machine Learning Applications to Resting-State Functional MR Imaging Analysis.
Billings, John M; Eder, Maxwell; Flood, William C; Dhami, Devendra Singh; Natarajan, Sriraam; Whitlow, Christopher T
2017-11-01
Machine learning is one of the most exciting and rapidly expanding fields within computer science. Academic and commercial research entities are investing in machine learning methods, especially in personalized medicine via patient-level classification. There is great promise that machine learning methods combined with resting state functional MR imaging will aid in diagnosis of disease and guide potential treatment for conditions thought to be impossible to identify based on imaging alone, such as psychiatric disorders. We discuss machine learning methods and explore recent advances. Copyright © 2017 Elsevier Inc. All rights reserved.
Source localization in an ocean waveguide using supervised machine learning.
Niu, Haiqiang; Reeves, Emma; Gerstoft, Peter
2017-09-01
Source localization in ocean acoustics is posed as a machine learning problem in which data-driven methods learn source ranges directly from observed acoustic data. The pressure received by a vertical linear array is preprocessed by constructing a normalized sample covariance matrix and used as the input for three machine learning methods: feed-forward neural networks (FNN), support vector machines (SVM), and random forests (RF). The range estimation problem is solved both as a classification problem and as a regression problem by these three machine learning algorithms. The results of range estimation for the Noise09 experiment are compared for FNN, SVM, RF, and conventional matched-field processing and demonstrate the potential of machine learning for underwater source localization.
An ultra low power feature extraction and classification system for wearable seizure detection.
Page, Adam; Pramod Tim Oates, Siddharth; Mohsenin, Tinoosh
2015-01-01
In this paper we explore the use of a variety of machine learning algorithms for designing a reliable and low-power, multi-channel EEG feature extractor and classifier for predicting seizures from electroencephalographic data (scalp EEG). Different machine learning classifiers including k-nearest neighbor, support vector machines, naïve Bayes, logistic regression, and neural networks are explored with the goal of maximizing detection accuracy while minimizing power, area, and latency. The input to each machine learning classifier is a 198 feature vector containing 9 features for each of the 22 EEG channels obtained over 1-second windows. All classifiers were able to obtain F1 scores over 80% and onset sensitivity of 100% when tested on 10 patients. Among five different classifiers that were explored, logistic regression (LR) proved to have minimum hardware complexity while providing average F-1 score of 91%. Both ASIC and FPGA implementations of logistic regression are presented and show the smallest area, power consumption, and the lowest latency when compared to the previous work.
Barzegar, Rahim; Moghaddam, Asghar Asghari; Deo, Ravinesh; Fijani, Elham; Tziritis, Evangelos
2018-04-15
Constructing accurate and reliable groundwater risk maps provide scientifically prudent and strategic measures for the protection and management of groundwater. The objectives of this paper are to design and validate machine learning based-risk maps using ensemble-based modelling with an integrative approach. We employ the extreme learning machines (ELM), multivariate regression splines (MARS), M5 Tree and support vector regression (SVR) applied in multiple aquifer systems (e.g. unconfined, semi-confined and confined) in the Marand plain, North West Iran, to encapsulate the merits of individual learning algorithms in a final committee-based ANN model. The DRASTIC Vulnerability Index (VI) ranged from 56.7 to 128.1, categorized with no risk, low and moderate vulnerability thresholds. The correlation coefficient (r) and Willmott's Index (d) between NO 3 concentrations and VI were 0.64 and 0.314, respectively. To introduce improvements in the original DRASTIC method, the vulnerability indices were adjusted by NO 3 concentrations, termed as the groundwater contamination risk (GCR). Seven DRASTIC parameters utilized as the model inputs and GCR values utilized as the outputs of individual machine learning models were served in the fully optimized committee-based ANN-predictive model. The correlation indicators demonstrated that the ELM and SVR models outperformed the MARS and M5 Tree models, by virtue of a larger d and r value. Subsequently, the r and d metrics for the ANN-committee based multi-model in the testing phase were 0.8889 and 0.7913, respectively; revealing the superiority of the integrated (or ensemble) machine learning models when compared with the original DRASTIC approach. The newly designed multi-model ensemble-based approach can be considered as a pragmatic step for mapping groundwater contamination risks of multiple aquifer systems with multi-model techniques, yielding the high accuracy of the ANN committee-based model. Copyright © 2017 Elsevier B.V. All rights reserved.
Learning to predict chemical reactions.
Kayala, Matthew A; Azencott, Chloé-Agathe; Chen, Jonathan H; Baldi, Pierre
2011-09-26
Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles, respectively, are not high throughput, are not generalizable or scalable, and lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry data set consisting of 1630 full multistep reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top-ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of nonproductive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system is generalizable, making reasonable predictions over reactants and conditions which the rule-based expert does not handle. A web interface to the machine learning based mechanistic reaction predictor is accessible through our chemoinformatics portal ( http://cdb.ics.uci.edu) under the Toolkits section.
Learning to Predict Chemical Reactions
Kayala, Matthew A.; Azencott, Chloé-Agathe; Chen, Jonathan H.
2011-01-01
Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles respectively are not high-throughput, are not generalizable or scalable, or lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry dataset consisting of 1630 full multi-step reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval, problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of non-productive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system is generalizable, making reasonable predictions over reactants and conditions which the rule-based expert does not handle. A web interface to the machine learning based mechanistic reaction predictor is accessible through our chemoinformatics portal (http://cdb.ics.uci.edu) under the Toolkits section. PMID:21819139
Machine learning for quantum dynamics: deep learning of excitation energy transfer properties
Häse, Florian; Kreisbeck, Christoph; Aspuru-Guzik, Alán
2017-01-01
Understanding the relationship between the structure of light-harvesting systems and their excitation energy transfer properties is of fundamental importance in many applications including the development of next generation photovoltaics.
MDAS: an integrated system for metabonomic data analysis.
Liu, Juan; Li, Bo; Xiong, Jiang-Hui
2009-03-01
Metabonomics, the latest 'omics' research field, shows great promise as a tool in biomarker discovery, drug efficacy and toxicity analysis, disease diagnosis and prognosis. One of the major challenges now facing researchers is how to process this data to yield useful information about a biological system, e.g., the mechanism of diseases. Traditional methods employed in metabonomic data analysis use multivariate analysis methods developed independently in chemometrics research. Additionally, with the development of machine learning approaches, some methods such as SVMs also show promise for use in metabonomic data analysis. Aside from the application of general multivariate analysis and machine learning methods to this problem, there is also a need for an integrated tool customized for metabonomic data analysis which can be easily used by biologists to reveal interesting patterns in metabonomic data.In this paper, we present a novel software tool MDAS (Metabonomic Data Analysis System) for metabonomic data analysis which integrates traditional chemometrics methods and newly introduced machine learning approaches. MDAS contains a suite of functional models for metabonomic data analysis and optimizes the flow of data analysis. Several file formats can be accepted as input. The input data can be optionally preprocessed and can then be processed with operations such as feature analysis and dimensionality reduction. The data with reduced dimensionalities can be used for training or testing through machine learning models. The system supplies proper visualization for data preprocessing, feature analysis, and classification which can be a powerful function for users to extract knowledge from the data. MDAS is an integrated platform for metabonomic data analysis, which transforms a complex analysis procedure into a more formalized and simplified one. The software package can be obtained from the authors.
Niemeijer, Meindert; van Ginneken, Bram; Russell, Stephen R; Suttorp-Schulten, Maria S A; Abràmoff, Michael D
2007-05-01
To describe and evaluate a machine learning-based, automated system to detect exudates and cotton-wool spots in digital color fundus photographs and differentiate them from drusen, for early diagnosis of diabetic retinopathy. Three hundred retinal images from one eye of 300 patients with diabetes were selected from a diabetic retinopathy telediagnosis database (nonmydriatic camera, two-field photography): 100 with previously diagnosed bright lesions and 200 without. A machine learning computer program was developed that can identify and differentiate among drusen, (hard) exudates, and cotton-wool spots. A human expert standard for the 300 images was obtained by consensus annotation by two retinal specialists. Sensitivities and specificities of the annotations on the 300 images by the automated system and a third retinal specialist were determined. The system achieved an area under the receiver operating characteristic (ROC) curve of 0.95 and sensitivity/specificity pairs of 0.95/0.88 for the detection of bright lesions of any type, and 0.95/0.86, 0.70/0.93, and 0.77/0.88 for the detection of exudates, cotton-wool spots, and drusen, respectively. The third retinal specialist achieved pairs of 0.95/0.74 for bright lesions and 0.90/0.98, 0.87/0.98, and 0.92/0.79 per lesion type. A machine learning-based, automated system capable of detecting exudates and cotton-wool spots and differentiating them from drusen in color images obtained in community based diabetic patients has been developed and approaches the performance level of retinal experts. If the machine learning can be improved with additional training data sets, it may be useful for detecting clinically important bright lesions, enhancing early diagnosis, and reducing visual loss in patients with diabetes.
Harnessing Disordered-Ensemble Quantum Dynamics for Machine Learning
NASA Astrophysics Data System (ADS)
Fujii, Keisuke; Nakajima, Kohei
2017-08-01
The quantum computer has an amazing potential of fast information processing. However, the realization of a digital quantum computer is still a challenging problem requiring highly accurate controls and key application strategies. Here we propose a platform, quantum reservoir computing, to solve these issues successfully by exploiting the natural quantum dynamics of ensemble systems, which are ubiquitous in laboratories nowadays, for machine learning. This framework enables ensemble quantum systems to universally emulate nonlinear dynamical systems including classical chaos. A number of numerical experiments show that quantum systems consisting of 5-7 qubits possess computational capabilities comparable to conventional recurrent neural networks of 100-500 nodes. This discovery opens up a paradigm for information processing with artificial intelligence powered by quantum physics.
Machine learning in cardiovascular medicine: are we there yet?
Shameer, Khader; Johnson, Kipp W; Glicksberg, Benjamin S; Dudley, Joel T; Sengupta, Partho P
2018-01-19
Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being explicitly programmed where to look. These include a family of operations encompassing several terms like machine learning, cognitive learning, deep learning and reinforcement learning-based methods that can be used to integrate and interpret complex biomedical and healthcare data in scenarios where traditional statistical methods may not be able to perform. In this review article, we discuss the basics of machine learning algorithms and what potential data sources exist; evaluate the need for machine learning; and examine the potential limitations and challenges of implementing machine in the context of cardiovascular medicine. The most promising avenues for AI in medicine are the development of automated risk prediction algorithms which can be used to guide clinical care; use of unsupervised learning techniques to more precisely phenotype complex disease; and the implementation of reinforcement learning algorithms to intelligently augment healthcare providers. The utility of a machine learning-based predictive model will depend on factors including data heterogeneity, data depth, data breadth, nature of modelling task, choice of machine learning and feature selection algorithms, and orthogonal evidence. A critical understanding of the strength and limitations of various methods and tasks amenable to machine learning is vital. By leveraging the growing corpus of big data in medicine, we detail pathways by which machine learning may facilitate optimal development of patient-specific models for improving diagnoses, intervention and outcome in cardiovascular medicine. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
A Machine Learning-based Method for Question Type Classification in Biomedical Question Answering.
Sarrouti, Mourad; Ouatik El Alaoui, Said
2017-05-18
Biomedical question type classification is one of the important components of an automatic biomedical question answering system. The performance of the latter depends directly on the performance of its biomedical question type classification system, which consists of assigning a category to each question in order to determine the appropriate answer extraction algorithm. This study aims to automatically classify biomedical questions into one of the four categories: (1) yes/no, (2) factoid, (3) list, and (4) summary. In this paper, we propose a biomedical question type classification method based on machine learning approaches to automatically assign a category to a biomedical question. First, we extract features from biomedical questions using the proposed handcrafted lexico-syntactic patterns. Then, we feed these features for machine-learning algorithms. Finally, the class label is predicted using the trained classifiers. Experimental evaluations performed on large standard annotated datasets of biomedical questions, provided by the BioASQ challenge, demonstrated that our method exhibits significant improved performance when compared to four baseline systems. The proposed method achieves a roughly 10-point increase over the best baseline in terms of accuracy. Moreover, the obtained results show that using handcrafted lexico-syntactic patterns as features' provider of support vector machine (SVM) lead to the highest accuracy of 89.40 %. The proposed method can automatically classify BioASQ questions into one of the four categories: yes/no, factoid, list, and summary. Furthermore, the results demonstrated that our method produced the best classification performance compared to four baseline systems.
Accelerating Industrial Adoption of Metal Additive Manufacturing Technology
NASA Astrophysics Data System (ADS)
Vartanian, Kenneth; McDonald, Tom
2016-03-01
While metal additive manufacturing (AM) technology has clear benefits, there are still factors preventing its adoption by industry. These factors include the high cost of metal AM systems, the difficulty for machinists to learn and operate metal AM machines, the long approval process for part qualification/certification, and the need for better process controls; however, the high AM system cost is the main barrier deterring adoption. In this paper, we will discuss an America Makes-funded program to reduce AM system cost by combining metal AM technology with conventional computerized numerical controlled (CNC) machine tools. Information will be provided on how an Optomec-led team retrofitted a legacy CNC vertical mill with laser engineered net shaping (LENS®—LENS is a registered trademark of Sandia National Labs) AM technology, dramatically lowering deployment cost. The upgraded system, dubbed LENS Hybrid Vertical Mill, enables metal additive and subtractive operations to be performed on the same machine tool and even on the same part. Information on the LENS Hybrid system architecture, learnings from initial system deployment and continuing development work will also be provided to help guide further development activities within the materials community.
Libraries Can Learn from Banks.
ERIC Educational Resources Information Center
Lawrence, Gail H.
1983-01-01
The experiences of banks introducing computerized services to the public are described to provide some idea of what libraries can expect when they introduce online systems. Volume of use of Automated Teller Machines, types of users, introduction of machines, and user acceptance are highlighted. Thirty-two references are cited. (EJS)
Screening Electronic Health Record-Related Patient Safety Reports Using Machine Learning.
Marella, William M; Sparnon, Erin; Finley, Edward
2017-03-01
The objective of this study was to develop a semiautomated approach to screening cases that describe hazards associated with the electronic health record (EHR) from a mandatory, population-based patient safety reporting system. Potentially relevant cases were identified through a query of the Pennsylvania Patient Safety Reporting System. A random sample of cases were manually screened for relevance and divided into training, testing, and validation data sets to develop a machine learning model. This model was used to automate screening of remaining potentially relevant cases. Of the 4 algorithms tested, a naive Bayes kernel performed best, with an area under the receiver operating characteristic curve of 0.927 ± 0.023, accuracy of 0.855 ± 0.033, and F score of 0.877 ± 0.027. The machine learning model and text mining approach described here are useful tools for identifying and analyzing adverse event and near-miss reports. Although reporting systems are beginning to incorporate structured fields on health information technology and the EHR, these methods can identify related events that reporters classify in other ways. These methods can facilitate analysis of legacy safety reports by retrieving health information technology-related and EHR-related events from databases without fields and controlled values focused on this subject and distinguishing them from reports in which the EHR is mentioned only in passing. Machine learning and text mining are useful additions to the patient safety toolkit and can be used to semiautomate screening and analysis of unstructured text in safety reports from frontline staff.
Zhang, Lu; Tan, Jianjun; Han, Dan; Zhu, Hao
2017-11-01
Machine intelligence, which is normally presented as artificial intelligence, refers to the intelligence exhibited by computers. In the history of rational drug discovery, various machine intelligence approaches have been applied to guide traditional experiments, which are expensive and time-consuming. Over the past several decades, machine-learning tools, such as quantitative structure-activity relationship (QSAR) modeling, were developed that can identify potential biological active molecules from millions of candidate compounds quickly and cheaply. However, when drug discovery moved into the era of 'big' data, machine learning approaches evolved into deep learning approaches, which are a more powerful and efficient way to deal with the massive amounts of data generated from modern drug discovery approaches. Here, we summarize the history of machine learning and provide insight into recently developed deep learning approaches and their applications in rational drug discovery. We suggest that this evolution of machine intelligence now provides a guide for early-stage drug design and discovery in the current big data era. Copyright © 2017 Elsevier Ltd. All rights reserved.
Myths and legends in learning classification rules
NASA Technical Reports Server (NTRS)
Buntine, Wray
1990-01-01
This paper is a discussion of machine learning theory on empirically learning classification rules. The paper proposes six myths in the machine learning community that address issues of bias, learning as search, computational learning theory, Occam's razor, 'universal' learning algorithms, and interactive learnings. Some of the problems raised are also addressed from a Bayesian perspective. The paper concludes by suggesting questions that machine learning researchers should be addressing both theoretically and experimentally.
NASA Astrophysics Data System (ADS)
Bonfanti, C. E.; Stewart, J.; Lee, Y. J.; Govett, M.; Trailovic, L.; Etherton, B.
2017-12-01
One of the National Oceanic and Atmospheric Administration (NOAA) goals is to provide timely and reliable weather forecasts to support important decisions when and where people need it for safety, emergencies, planning for day-to-day activities. Satellite data is essential for areas lacking in-situ observations for use as initial conditions in Numerical Weather Prediction (NWP) Models, such as spans of the ocean or remote areas of land. Currently only about 7% of total received satellite data is selected for use and from that, an even smaller percentage ever are assimilated into NWP models. With machine learning, the computational and time costs needed for satellite data selection can be greatly reduced. We study various machine learning approaches to process orders of magnitude more satellite data in significantly less time allowing for a greater quantity and more intelligent selection of data to be used for assimilation purposes. Given the future launches of satellites in the upcoming years, machine learning is capable of being applied for better selection of Regions of Interest (ROI) in the magnitudes more of satellite data that will be received. This paper discusses the background of machine learning methods as applied to weather forecasting and the challenges of creating a "labeled dataset" for training and testing purposes. In the training stage of supervised machine learning, labeled data are important to identify a ROI as either true or false so that the model knows what signatures in satellite data to identify. Authors have selected cyclones, including tropical cyclones and mid-latitude lows, as ROI for their machine learning purposes and created a labeled dataset of true or false for ROI from Global Forecast System (GFS) reanalysis data. A dataset like this does not yet exist and given the need for a high quantity of samples, is was decided this was best done with automation. This process was done by developing a program similar to the National Center for Environmental Prediction (NCEP) tropical cyclone tracker by Marchok that was used to identify cyclones based off its physical characteristics. We will discuss the methods and challenges to creating this dataset and the dataset's use for our current supervised machine learning model as well as use for future work on events such as convection initiation.
Information extraction from multi-institutional radiology reports.
Hassanpour, Saeed; Langlotz, Curtis P
2016-01-01
The radiology report is the most important source of clinical imaging information. It documents critical information about the patient's health and the radiologist's interpretation of medical findings. It also communicates information to the referring physicians and records that information for future clinical and research use. Although efforts to structure some radiology report information through predefined templates are beginning to bear fruit, a large portion of radiology report information is entered in free text. The free text format is a major obstacle for rapid extraction and subsequent use of information by clinicians, researchers, and healthcare information systems. This difficulty is due to the ambiguity and subtlety of natural language, complexity of described images, and variations among different radiologists and healthcare organizations. As a result, radiology reports are used only once by the clinician who ordered the study and rarely are used again for research and data mining. In this work, machine learning techniques and a large multi-institutional radiology report repository are used to extract the semantics of the radiology report and overcome the barriers to the re-use of radiology report information in clinical research and other healthcare applications. We describe a machine learning system to annotate radiology reports and extract report contents according to an information model. This information model covers the majority of clinically significant contents in radiology reports and is applicable to a wide variety of radiology study types. Our automated approach uses discriminative sequence classifiers for named-entity recognition to extract and organize clinically significant terms and phrases consistent with the information model. We evaluated our information extraction system on 150 radiology reports from three major healthcare organizations and compared its results to a commonly used non-machine learning information extraction method. We also evaluated the generalizability of our approach across different organizations by training and testing our system on data from different organizations. Our results show the efficacy of our machine learning approach in extracting the information model's elements (10-fold cross-validation average performance: precision: 87%, recall: 84%, F1 score: 85%) and its superiority and generalizability compared to the common non-machine learning approach (p-value<0.05). Our machine learning information extraction approach provides an effective automatic method to annotate and extract clinically significant information from a large collection of free text radiology reports. This information extraction system can help clinicians better understand the radiology reports and prioritize their review process. In addition, the extracted information can be used by researchers to link radiology reports to information from other data sources such as electronic health records and the patient's genome. Extracted information also can facilitate disease surveillance, real-time clinical decision support for the radiologist, and content-based image retrieval. Copyright © 2015 Elsevier B.V. All rights reserved.
Big data integration for regional hydrostratigraphic mapping
NASA Astrophysics Data System (ADS)
Friedel, M. J.
2013-12-01
Numerical models provide a way to evaluate groundwater systems, but determining the hydrostratigraphic units (HSUs) used in devising these models remains subjective, nonunique, and uncertain. A novel geophysical-hydrogeologic data integration scheme is proposed to constrain the estimation of continuous HSUs. First, machine-learning and multivariate statistical techniques are used to simultaneously integrate borehole hydrogeologic (lithology, hydraulic conductivity, aqueous field parameters, dissolved constituents) and geophysical (gamma, spontaneous potential, and resistivity) measurements. Second, airborne electromagnetic measurements are numerically inverted to obtain subsurface resistivity structure at randomly selected locations. Third, the machine-learning algorithm is trained using the borehole hydrostratigraphic units and inverted airborne resistivity profiles. The trained machine-learning algorithm is then used to estimate HSUs at independent resistivity profile locations. We demonstrate efficacy of the proposed approach to map the hydrostratigraphy of a heterogeneous surficial aquifer in northwestern Nebraska.
Machine learning for micro-tomography
NASA Astrophysics Data System (ADS)
Parkinson, Dilworth Y.; Pelt, Daniël. M.; Perciano, Talita; Ushizima, Daniela; Krishnan, Harinarayan; Barnard, Harold S.; MacDowell, Alastair A.; Sethian, James
2017-09-01
Machine learning has revolutionized a number of fields, but many micro-tomography users have never used it for their work. The micro-tomography beamline at the Advanced Light Source (ALS), in collaboration with the Center for Applied Mathematics for Energy Research Applications (CAMERA) at Lawrence Berkeley National Laboratory, has now deployed a series of tools to automate data processing for ALS users using machine learning. This includes new reconstruction algorithms, feature extraction tools, and image classification and recommen- dation systems for scientific image. Some of these tools are either in automated pipelines that operate on data as it is collected or as stand-alone software. Others are deployed on computing resources at Berkeley Lab-from workstations to supercomputers-and made accessible to users through either scripting or easy-to-use graphical interfaces. This paper presents a progress report on this work.
Binary classification of items of interest in a repeatable process
Abell, Jeffrey A.; Spicer, John Patrick; Wincek, Michael Anthony; Wang, Hui; Chakraborty, Debejyo
2014-06-24
A system includes host and learning machines in electrical communication with sensors positioned with respect to an item of interest, e.g., a weld, and memory. The host executes instructions from memory to predict a binary quality status of the item. The learning machine receives signals from the sensor(s), identifies candidate features, and extracts features from the candidates that are more predictive of the binary quality status relative to other candidate features. The learning machine maps the extracted features to a dimensional space that includes most of the items from a passing binary class and excludes all or most of the items from a failing binary class. The host also compares the received signals for a subsequent item of interest to the dimensional space to thereby predict, in real time, the binary quality status of the subsequent item of interest.
Machine Learning Methods for Production Cases Analysis
NASA Astrophysics Data System (ADS)
Mokrova, Nataliya V.; Mokrov, Alexander M.; Safonova, Alexandra V.; Vishnyakov, Igor V.
2018-03-01
Approach to analysis of events occurring during the production process were proposed. Described machine learning system is able to solve classification tasks related to production control and hazard identification at an early stage. Descriptors of the internal production network data were used for training and testing of applied models. k-Nearest Neighbors and Random forest methods were used to illustrate and analyze proposed solution. The quality of the developed classifiers was estimated using standard statistical metrics, such as precision, recall and accuracy.
Machine Learning Control For Highly Reconfigurable High-Order Systems
2015-01-02
develop and flight test a Reinforcement Learning based approach for autonomous tracking of ground targets using a fixed wing Unmanned...Reinforcement Learning - based algorithms are developed for learning agents’ time dependent dynamics while also learning to control them. Three algorithms...to a wide range of engineering- based problems . Implementation of these solutions, however, is often complicated by the hysteretic, non-linear,
Web-based newborn screening system for metabolic diseases: machine learning versus clinicians.
Chen, Wei-Hsin; Hsieh, Sheau-Ling; Hsu, Kai-Ping; Chen, Han-Ping; Su, Xing-Yu; Tseng, Yi-Ju; Chien, Yin-Hsiu; Hwu, Wuh-Liang; Lai, Feipei
2013-05-23
A hospital information system (HIS) that integrates screening data and interpretation of the data is routinely requested by hospitals and parents. However, the accuracy of disease classification may be low because of the disease characteristics and the analytes used for classification. The objective of this study is to describe a system that enhanced the neonatal screening system of the Newborn Screening Center at the National Taiwan University Hospital. The system was designed and deployed according to a service-oriented architecture (SOA) framework under the Web services .NET environment. The system consists of sample collection, testing, diagnosis, evaluation, treatment, and follow-up services among collaborating hospitals. To improve the accuracy of newborn screening, machine learning and optimal feature selection mechanisms were investigated for screening newborns for inborn errors of metabolism. The framework of the Newborn Screening Hospital Information System (NSHIS) used the embedded Health Level Seven (HL7) standards for data exchanges among heterogeneous platforms integrated by Web services in the C# language. In this study, machine learning classification was used to predict phenylketonuria (PKU), hypermethioninemia, and 3-methylcrotonyl-CoA-carboxylase (3-MCC) deficiency. The classification methods used 347,312 newborn dried blood samples collected at the Center between 2006 and 2011. Of these, 220 newborns had values over the diagnostic cutoffs (positive cases) and 1557 had values that were over the screening cutoffs but did not meet the diagnostic cutoffs (suspected cases). The original 35 analytes and the manifested features were ranked based on F score, then combinations of the top 20 ranked features were selected as input features to support vector machine (SVM) classifiers to obtain optimal feature sets. These feature sets were tested using 5-fold cross-validation and optimal models were generated. The datasets collected in year 2011 were used as predicting cases. The feature selection strategies were implemented and the optimal markers for PKU, hypermethioninemia, and 3-MCC deficiency were obtained. The results of the machine learning approach were compared with the cutoff scheme. The number of the false positive cases were reduced from 21 to 2 for PKU, from 30 to 10 for hypermethioninemia, and 209 to 46 for 3-MCC deficiency. This SOA Web service-based newborn screening system can accelerate screening procedures effectively and efficiently. An SVM learning methodology for PKU, hypermethioninemia, and 3-MCC deficiency metabolic diseases classification, including optimal feature selection strategies, is presented. By adopting the results of this study, the number of suspected cases could be reduced dramatically.
Web-Based Newborn Screening System for Metabolic Diseases: Machine Learning Versus Clinicians
Chen, Wei-Hsin; Hsu, Kai-Ping; Chen, Han-Ping; Su, Xing-Yu; Tseng, Yi-Ju; Chien, Yin-Hsiu; Hwu, Wuh-Liang; Lai, Feipei
2013-01-01
Background A hospital information system (HIS) that integrates screening data and interpretation of the data is routinely requested by hospitals and parents. However, the accuracy of disease classification may be low because of the disease characteristics and the analytes used for classification. Objective The objective of this study is to describe a system that enhanced the neonatal screening system of the Newborn Screening Center at the National Taiwan University Hospital. The system was designed and deployed according to a service-oriented architecture (SOA) framework under the Web services .NET environment. The system consists of sample collection, testing, diagnosis, evaluation, treatment, and follow-up services among collaborating hospitals. To improve the accuracy of newborn screening, machine learning and optimal feature selection mechanisms were investigated for screening newborns for inborn errors of metabolism. Methods The framework of the Newborn Screening Hospital Information System (NSHIS) used the embedded Health Level Seven (HL7) standards for data exchanges among heterogeneous platforms integrated by Web services in the C# language. In this study, machine learning classification was used to predict phenylketonuria (PKU), hypermethioninemia, and 3-methylcrotonyl-CoA-carboxylase (3-MCC) deficiency. The classification methods used 347,312 newborn dried blood samples collected at the Center between 2006 and 2011. Of these, 220 newborns had values over the diagnostic cutoffs (positive cases) and 1557 had values that were over the screening cutoffs but did not meet the diagnostic cutoffs (suspected cases). The original 35 analytes and the manifested features were ranked based on F score, then combinations of the top 20 ranked features were selected as input features to support vector machine (SVM) classifiers to obtain optimal feature sets. These feature sets were tested using 5-fold cross-validation and optimal models were generated. The datasets collected in year 2011 were used as predicting cases. Results The feature selection strategies were implemented and the optimal markers for PKU, hypermethioninemia, and 3-MCC deficiency were obtained. The results of the machine learning approach were compared with the cutoff scheme. The number of the false positive cases were reduced from 21 to 2 for PKU, from 30 to 10 for hypermethioninemia, and 209 to 46 for 3-MCC deficiency. Conclusions This SOA Web service–based newborn screening system can accelerate screening procedures effectively and efficiently. An SVM learning methodology for PKU, hypermethioninemia, and 3-MCC deficiency metabolic diseases classification, including optimal feature selection strategies, is presented. By adopting the results of this study, the number of suspected cases could be reduced dramatically. PMID:23702487
The remapping of space in motor learning and human-machine interfaces
Mussa-Ivaldi, F.A.; Danziger, Z.
2009-01-01
Studies of motor adaptation to patterns of deterministic forces have revealed the ability of the motor control system to form and use predictive representations of the environment. One of the most fundamental elements of our environment is space itself. This article focuses on the notion of Euclidean space as it applies to common sensory motor experiences. Starting from the assumption that we interact with the world through a system of neural signals, we observe that these signals are not inherently endowed with metric properties of the ordinary Euclidean space. The ability of the nervous system to represent these properties depends on adaptive mechanisms that reconstruct the Euclidean metric from signals that are not Euclidean. Gaining access to these mechanisms will reveal the process by which the nervous system handles novel sophisticated coordinate transformation tasks, thus highlighting possible avenues to create functional human-machine interfaces that can make that task much easier. A set of experiments is presented that demonstrate the ability of the sensory-motor system to reorganize coordination in novel geometrical environments. In these environments multiple degrees of freedom of body motions are used to control the coordinates of a point in a two-dimensional Euclidean space. We discuss how practice leads to the acquisition of the metric properties of the controlled space. Methods of machine learning based on the reduction of reaching errors are tested as a means to facilitate learning by adaptively changing he map from body motions to controlled device. We discuss the relevance of the results to the development of adaptive human machine interfaces and optimal control. PMID:19665553
Mobile Tactical HF/VHF/EW System for Ground Forces
1989-09-01
presen- tation of what I have learned . I would like to thank my advisor, Professor Robert Partelow, and co-advisor, Commander James R. Powell, for the...analyze newly developed systems to determine how the man- machine interfaces of such systems can best be designed for optimal use by the operators. B...terminals and other controls. If factors like luminance ratio, reflectance, glare illuminance are allowed for good man- machine interface then an effective
Machine learning spatial geometry from entanglement features
NASA Astrophysics Data System (ADS)
You, Yi-Zhuang; Yang, Zhao; Qi, Xiao-Liang
2018-02-01
Motivated by the close relations of the renormalization group with both the holography duality and the deep learning, we propose that the holographic geometry can emerge from deep learning the entanglement feature of a quantum many-body state. We develop a concrete algorithm, call the entanglement feature learning (EFL), based on the random tensor network (RTN) model for the tensor network holography. We show that each RTN can be mapped to a Boltzmann machine, trained by the entanglement entropies over all subregions of a given quantum many-body state. The goal is to construct the optimal RTN that best reproduce the entanglement feature. The RTN geometry can then be interpreted as the emergent holographic geometry. We demonstrate the EFL algorithm on a 1D free fermion system and observe the emergence of the hyperbolic geometry (AdS3 spatial geometry) as we tune the fermion system towards the gapless critical point (CFT2 point).
Tighe, Patrick J.; Harle, Christopher A.; Hurley, Robert W.; Aytug, Haldun; Boezaart, Andre P.; Fillingim, Roger B.
2015-01-01
Background Given their ability to process highly dimensional datasets with hundreds of variables, machine learning algorithms may offer one solution to the vexing challenge of predicting postoperative pain. Methods Here, we report on the application of machine learning algorithms to predict postoperative pain outcomes in a retrospective cohort of 8071 surgical patients using 796 clinical variables. Five algorithms were compared in terms of their ability to forecast moderate to severe postoperative pain: Least Absolute Shrinkage and Selection Operator (LASSO), gradient-boosted decision tree, support vector machine, neural network, and k-nearest neighbor, with logistic regression included for baseline comparison. Results In forecasting moderate to severe postoperative pain for postoperative day (POD) 1, the LASSO algorithm, using all 796 variables, had the highest accuracy with an area under the receiver-operating curve (ROC) of 0.704. Next, the gradient-boosted decision tree had an ROC of 0.665 and the k-nearest neighbor algorithm had an ROC of 0.643. For POD 3, the LASSO algorithm, using all variables, again had the highest accuracy, with an ROC of 0.727. Logistic regression had a lower ROC of 0.5 for predicting pain outcomes on POD 1 and 3. Conclusions Machine learning algorithms, when combined with complex and heterogeneous data from electronic medical record systems, can forecast acute postoperative pain outcomes with accuracies similar to methods that rely only on variables specifically collected for pain outcome prediction. PMID:26031220
Ontology-Based Learner Categorization through Case Based Reasoning and Fuzzy Logic
ERIC Educational Resources Information Center
Sarwar, Sohail; García-Castro, Raul; Qayyum, Zia Ul; Safyan, Muhammad; Munir, Rana Faisal
2017-01-01
Learner categorization has a pivotal role in making e-learning systems a success. However, learner characteristics exploited at abstract level of granularity by contemporary techniques cannot categorize the learners effectively. In this paper, an architecture of e-learning framework has been presented that exploits the machine learning based…
Support patient search on pathology reports with interactive online learning based data extraction.
Zheng, Shuai; Lu, James J; Appin, Christina; Brat, Daniel; Wang, Fusheng
2015-01-01
Structural reporting enables semantic understanding and prompt retrieval of clinical findings about patients. While synoptic pathology reporting provides templates for data entries, information in pathology reports remains primarily in narrative free text form. Extracting data of interest from narrative pathology reports could significantly improve the representation of the information and enable complex structured queries. However, manual extraction is tedious and error-prone, and automated tools are often constructed with a fixed training dataset and not easily adaptable. Our goal is to extract data from pathology reports to support advanced patient search with a highly adaptable semi-automated data extraction system, which can adjust and self-improve by learning from a user's interaction with minimal human effort. We have developed an online machine learning based information extraction system called IDEAL-X. With its graphical user interface, the system's data extraction engine automatically annotates values for users to review upon loading each report text. The system analyzes users' corrections regarding these annotations with online machine learning, and incrementally enhances and refines the learning model as reports are processed. The system also takes advantage of customized controlled vocabularies, which can be adaptively refined during the online learning process to further assist the data extraction. As the accuracy of automatic annotation improves overtime, the effort of human annotation is gradually reduced. After all reports are processed, a built-in query engine can be applied to conveniently define queries based on extracted structured data. We have evaluated the system with a dataset of anatomic pathology reports from 50 patients. Extracted data elements include demographical data, diagnosis, genetic marker, and procedure. The system achieves F-1 scores of around 95% for the majority of tests. Extracting data from pathology reports could enable more accurate knowledge to support biomedical research and clinical diagnosis. IDEAL-X provides a bridge that takes advantage of online machine learning based data extraction and the knowledge from human's feedback. By combining iterative online learning and adaptive controlled vocabularies, IDEAL-X can deliver highly adaptive and accurate data extraction to support patient search.
NASA Technical Reports Server (NTRS)
Shewhart, Mark
1991-01-01
Statistical Process Control (SPC) charts are one of several tools used in quality control. Other tools include flow charts, histograms, cause and effect diagrams, check sheets, Pareto diagrams, graphs, and scatter diagrams. A control chart is simply a graph which indicates process variation over time. The purpose of drawing a control chart is to detect any changes in the process signalled by abnormal points or patterns on the graph. The Artificial Intelligence Support Center (AISC) of the Acquisition Logistics Division has developed a hybrid machine learning expert system prototype which automates the process of constructing and interpreting control charts.
Building environment analysis based on temperature and humidity for smart energy systems.
Yun, Jaeseok; Won, Kwang-Ho
2012-10-01
In this paper, we propose a new HVAC (heating, ventilation, and air conditioning) control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment.
Szlosek, Donald A; Ferrett, Jonathan
2016-01-01
As the number of clinical decision support systems (CDSSs) incorporated into electronic medical records (EMRs) increases, so does the need to evaluate their effectiveness. The use of medical record review and similar manual methods for evaluating decision rules is laborious and inefficient. The authors use machine learning and Natural Language Processing (NLP) algorithms to accurately evaluate a clinical decision support rule through an EMR system, and they compare it against manual evaluation. Modeled after the EMR system EPIC at Maine Medical Center, we developed a dummy data set containing physician notes in free text for 3,621 artificial patients records undergoing a head computed tomography (CT) scan for mild traumatic brain injury after the incorporation of an electronic best practice approach. We validated the accuracy of the Best Practice Advisories (BPA) using three machine learning algorithms-C-Support Vector Classification (SVC), Decision Tree Classifier (DecisionTreeClassifier), k-nearest neighbors classifier (KNeighborsClassifier)-by comparing their accuracy for adjudicating the occurrence of a mild traumatic brain injury against manual review. We then used the best of the three algorithms to evaluate the effectiveness of the BPA, and we compared the algorithm's evaluation of the BPA to that of manual review. The electronic best practice approach was found to have a sensitivity of 98.8 percent (96.83-100.0), specificity of 10.3 percent, PPV = 7.3 percent, and NPV = 99.2 percent when reviewed manually by abstractors. Though all the machine learning algorithms were observed to have a high level of prediction, the SVC displayed the highest with a sensitivity 93.33 percent (92.49-98.84), specificity of 97.62 percent (96.53-98.38), PPV = 50.00, NPV = 99.83. The SVC algorithm was observed to have a sensitivity of 97.9 percent (94.7-99.86), specificity 10.30 percent, PPV 7.25 percent, and NPV 99.2 percent for evaluating the best practice approach, after accounting for 17 cases (0.66 percent) where the patient records had to be reviewed manually due to the NPL systems inability to capture the proper diagnosis. CDSSs incorporated into EMRs can be evaluated in an automatic fashion by using NLP and machine learning techniques.
PredicT-ML: a tool for automating machine learning model building with big clinical data.
Luo, Gang
2016-01-01
Predictive modeling is fundamental to transforming large clinical data sets, or "big clinical data," into actionable knowledge for various healthcare applications. Machine learning is a major predictive modeling approach, but two barriers make its use in healthcare challenging. First, a machine learning tool user must choose an algorithm and assign one or more model parameters called hyper-parameters before model training. The algorithm and hyper-parameter values used typically impact model accuracy by over 40 %, but their selection requires many labor-intensive manual iterations that can be difficult even for computer scientists. Second, many clinical attributes are repeatedly recorded over time, requiring temporal aggregation before predictive modeling can be performed. Many labor-intensive manual iterations are required to identify a good pair of aggregation period and operator for each clinical attribute. Both barriers result in time and human resource bottlenecks, and preclude healthcare administrators and researchers from asking a series of what-if questions when probing opportunities to use predictive models to improve outcomes and reduce costs. This paper describes our design of and vision for PredicT-ML (prediction tool using machine learning), a software system that aims to overcome these barriers and automate machine learning model building with big clinical data. The paper presents the detailed design of PredicT-ML. PredicT-ML will open the use of big clinical data to thousands of healthcare administrators and researchers and increase the ability to advance clinical research and improve healthcare.
[Application of Mass Spectrometry to the Diagnosis of Cancer--Chairman's Introductory Remarks].
Yatomi, Yutaka
2015-09-01
In this symposium, the latest application of mass spectrometry to laboratory medicine, i.e., to the early diagnosis of cancer, was introduced. Dr. Masaru YOSHIDA, who has been using metabolome analysis to discover biomarker candidates for gastroenterological diseases, presented an automated early diagnosis system for early stages of colon cancer based on metabolome analysis and using a minute amount of blood. On the other hand, Dr. Sen TAKEDA, who has developed a new approach by employing both mass spectrometry and machine-learning for cancer diagnosis, presented a device for the clinical diagnosis of cancer using probe electrospray ionization (PESI) and machine-learning called the dual penalized logistic regression machine (dPLRM).
Modeling Electronic Quantum Transport with Machine Learning
Lopez Bezanilla, Alejandro; von Lilienfeld Toal, Otto A.
2014-06-11
We present a machine learning approach to solve electronic quantum transport equations of one-dimensional nanostructures. The transmission coefficients of disordered systems were computed to provide training and test data sets to the machine. The system’s representation encodes energetic as well as geometrical information to characterize similarities between disordered configurations, while the Euclidean norm is used as a measure of similarity. Errors for out-of-sample predictions systematically decrease with training set size, enabling the accurate and fast prediction of new transmission coefficients. The remarkable performance of our model to capture the complexity of interference phenomena lends further support to its viability inmore » dealing with transport problems of undulatory nature.« less
NASA Astrophysics Data System (ADS)
Aziz, Nur Liyana Afiqah Abdul; Siah Yap, Keem; Afif Bunyamin, Muhammad
2013-06-01
This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of "computing the word". The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.
A neural network controller for automated composite manufacturing
NASA Technical Reports Server (NTRS)
Lichtenwalner, Peter F.
1994-01-01
At McDonnell Douglas Aerospace (MDA), an artificial neural network based control system has been developed and implemented to control laser heating for the fiber placement composite manufacturing process. This neurocontroller learns an approximate inverse model of the process on-line to provide performance that improves with experience and exceeds that of conventional feedback control techniques. When untrained, the control system behaves as a proportional plus integral (PI) controller. However after learning from experience, the neural network feedforward control module provides control signals that greatly improve temperature tracking performance. Faster convergence to new temperature set points and reduced temperature deviation due to changing feed rate have been demonstrated on the machine. A Cerebellar Model Articulation Controller (CMAC) network is used for inverse modeling because of its rapid learning performance. This control system is implemented in an IBM compatible 386 PC with an A/D board interface to the machine.
Neural networks and applications tutorial
NASA Astrophysics Data System (ADS)
Guyon, I.
1991-09-01
The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.
Exploiting the Dynamics of Soft Materials for Machine Learning
Hauser, Helmut; Li, Tao; Pfeifer, Rolf
2018-01-01
Abstract Soft materials are increasingly utilized for various purposes in many engineering applications. These materials have been shown to perform a number of functions that were previously difficult to implement using rigid materials. Here, we argue that the diverse dynamics generated by actuating soft materials can be effectively used for machine learning purposes. This is demonstrated using a soft silicone arm through a technique of multiplexing, which enables the rich transient dynamics of the soft materials to be fully exploited as a computational resource. The computational performance of the soft silicone arm is examined through two standard benchmark tasks. Results show that the soft arm compares well to or even outperforms conventional machine learning techniques under multiple conditions. We then demonstrate that this system can be used for the sensory time series prediction problem for the soft arm itself, which suggests its immediate applicability to a real-world machine learning problem. Our approach, on the one hand, represents a radical departure from traditional computational methods, whereas on the other hand, it fits nicely into a more general perspective of computation by way of exploiting the properties of physical materials in the real world. PMID:29708857
Exploiting the Dynamics of Soft Materials for Machine Learning.
Nakajima, Kohei; Hauser, Helmut; Li, Tao; Pfeifer, Rolf
2018-06-01
Soft materials are increasingly utilized for various purposes in many engineering applications. These materials have been shown to perform a number of functions that were previously difficult to implement using rigid materials. Here, we argue that the diverse dynamics generated by actuating soft materials can be effectively used for machine learning purposes. This is demonstrated using a soft silicone arm through a technique of multiplexing, which enables the rich transient dynamics of the soft materials to be fully exploited as a computational resource. The computational performance of the soft silicone arm is examined through two standard benchmark tasks. Results show that the soft arm compares well to or even outperforms conventional machine learning techniques under multiple conditions. We then demonstrate that this system can be used for the sensory time series prediction problem for the soft arm itself, which suggests its immediate applicability to a real-world machine learning problem. Our approach, on the one hand, represents a radical departure from traditional computational methods, whereas on the other hand, it fits nicely into a more general perspective of computation by way of exploiting the properties of physical materials in the real world.
A Machine Learning Framework for Plan Payment Risk Adjustment.
Rose, Sherri
2016-12-01
To introduce cross-validation and a nonparametric machine learning framework for plan payment risk adjustment and then assess whether they have the potential to improve risk adjustment. 2011-2012 Truven MarketScan database. We compare the performance of multiple statistical approaches within a broad machine learning framework for estimation of risk adjustment formulas. Total annual expenditure was predicted using age, sex, geography, inpatient diagnoses, and hierarchical condition category variables. The methods included regression, penalized regression, decision trees, neural networks, and an ensemble super learner, all in concert with screening algorithms that reduce the set of variables considered. The performance of these methods was compared based on cross-validated R 2 . Our results indicate that a simplified risk adjustment formula selected via this nonparametric framework maintains much of the efficiency of a traditional larger formula. The ensemble approach also outperformed classical regression and all other algorithms studied. The implementation of cross-validated machine learning techniques provides novel insight into risk adjustment estimation, possibly allowing for a simplified formula, thereby reducing incentives for increased coding intensity as well as the ability of insurers to "game" the system with aggressive diagnostic upcoding. © Health Research and Educational Trust.
Big Data and Machine Learning in Plastic Surgery: A New Frontier in Surgical Innovation.
Kanevsky, Jonathan; Corban, Jason; Gaster, Richard; Kanevsky, Ari; Lin, Samuel; Gilardino, Mirko
2016-05-01
Medical decision-making is increasingly based on quantifiable data. From the moment patients come into contact with the health care system, their entire medical history is recorded electronically. Whether a patient is in the operating room or on the hospital ward, technological advancement has facilitated the expedient and reliable measurement of clinically relevant health metrics, all in an effort to guide care and ensure the best possible clinical outcomes. However, as the volume and complexity of biomedical data grow, it becomes challenging to effectively process "big data" using conventional techniques. Physicians and scientists must be prepared to look beyond classic methods of data processing to extract clinically relevant information. The purpose of this article is to introduce the modern plastic surgeon to machine learning and computational interpretation of large data sets. What is machine learning? Machine learning, a subfield of artificial intelligence, can address clinically relevant problems in several domains of plastic surgery, including burn surgery; microsurgery; and craniofacial, peripheral nerve, and aesthetic surgery. This article provides a brief introduction to current research and suggests future projects that will allow plastic surgeons to explore this new frontier of surgical science.
Ellis, Katherine; Godbole, Suneeta; Marshall, Simon; Lanckriet, Gert; Staudenmayer, John; Kerr, Jacqueline
2014-01-01
Active travel is an important area in physical activity research, but objective measurement of active travel is still difficult. Automated methods to measure travel behaviors will improve research in this area. In this paper, we present a supervised machine learning method for transportation mode prediction from global positioning system (GPS) and accelerometer data. We collected a dataset of about 150 h of GPS and accelerometer data from two research assistants following a protocol of prescribed trips consisting of five activities: bicycling, riding in a vehicle, walking, sitting, and standing. We extracted 49 features from 1-min windows of this data. We compared the performance of several machine learning algorithms and chose a random forest algorithm to classify the transportation mode. We used a moving average output filter to smooth the output predictions over time. The random forest algorithm achieved 89.8% cross-validated accuracy on this dataset. Adding the moving average filter to smooth output predictions increased the cross-validated accuracy to 91.9%. Machine learning methods are a viable approach for automating measurement of active travel, particularly for measuring travel activities that traditional accelerometer data processing methods misclassify, such as bicycling and vehicle travel.
An immune-inspired semi-supervised algorithm for breast cancer diagnosis.
Peng, Lingxi; Chen, Wenbin; Zhou, Wubai; Li, Fufang; Yang, Jin; Zhang, Jiandong
2016-10-01
Breast cancer is the most frequently and world widely diagnosed life-threatening cancer, which is the leading cause of cancer death among women. Early accurate diagnosis can be a big plus in treating breast cancer. Researchers have approached this problem using various data mining and machine learning techniques such as support vector machine, artificial neural network, etc. The computer immunology is also an intelligent method inspired by biological immune system, which has been successfully applied in pattern recognition, combination optimization, machine learning, etc. However, most of these diagnosis methods belong to a supervised diagnosis method. It is very expensive to obtain labeled data in biology and medicine. In this paper, we seamlessly integrate the state-of-the-art research on life science with artificial intelligence, and propose a semi-supervised learning algorithm to reduce the need for labeled data. We use two well-known benchmark breast cancer datasets in our study, which are acquired from the UCI machine learning repository. Extensive experiments are conducted and evaluated on those two datasets. Our experimental results demonstrate the effectiveness and efficiency of our proposed algorithm, which proves that our algorithm is a promising automatic diagnosis method for breast cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Guo, Doudou; Juan, Jiaxiang; Chang, Liying; Zhang, Jingjin; Huang, Danfeng
2017-08-15
Plant-based sensing on water stress can provide sensitive and direct reference for precision irrigation system in greenhouse. However, plant information acquisition, interpretation, and systematical application remain insufficient. This study developed a discrimination method for plant root zone water status in greenhouse by integrating phenotyping and machine learning techniques. Pakchoi plants were used and treated by three root zone moisture levels, 40%, 60%, and 80% relative water content. Three classification models, Random Forest (RF), Neural Network (NN), and Support Vector Machine (SVM) were developed and validated in different scenarios with overall accuracy over 90% for all. SVM model had the highest value, but it required the longest training time. All models had accuracy over 85% in all scenarios, and more stable performance was observed in RF model. Simplified SVM model developed by the top five most contributing traits had the largest accuracy reduction as 29.5%, while simplified RF and NN model still maintained approximately 80%. For real case application, factors such as operation cost, precision requirement, and system reaction time should be synthetically considered in model selection. Our work shows it is promising to discriminate plant root zone water status by implementing phenotyping and machine learning techniques for precision irrigation management.
Machine Learning Based Single-Frame Super-Resolution Processing for Lensless Blood Cell Counting
Huang, Xiwei; Jiang, Yu; Liu, Xu; Xu, Hang; Han, Zhi; Rong, Hailong; Yang, Haiping; Yan, Mei; Yu, Hao
2016-01-01
A lensless blood cell counting system integrating microfluidic channel and a complementary metal oxide semiconductor (CMOS) image sensor is a promising technique to miniaturize the conventional optical lens based imaging system for point-of-care testing (POCT). However, such a system has limited resolution, making it imperative to improve resolution from the system-level using super-resolution (SR) processing. Yet, how to improve resolution towards better cell detection and recognition with low cost of processing resources and without degrading system throughput is still a challenge. In this article, two machine learning based single-frame SR processing types are proposed and compared for lensless blood cell counting, namely the Extreme Learning Machine based SR (ELMSR) and Convolutional Neural Network based SR (CNNSR). Moreover, lensless blood cell counting prototypes using commercial CMOS image sensors and custom designed backside-illuminated CMOS image sensors are demonstrated with ELMSR and CNNSR. When one captured low-resolution lensless cell image is input, an improved high-resolution cell image will be output. The experimental results show that the cell resolution is improved by 4×, and CNNSR has 9.5% improvement over the ELMSR on resolution enhancing performance. The cell counting results also match well with a commercial flow cytometer. Such ELMSR and CNNSR therefore have the potential for efficient resolution improvement in lensless blood cell counting systems towards POCT applications. PMID:27827837
Monitoring Hitting Load in Tennis Using Inertial Sensors and Machine Learning.
Whiteside, David; Cant, Olivia; Connolly, Molly; Reid, Machar
2017-10-01
Quantifying external workload is fundamental to training prescription in sport. In tennis, global positioning data are imprecise and fail to capture hitting loads. The current gold standard (manual notation) is time intensive and often not possible given players' heavy travel schedules. To develop an automated stroke-classification system to help quantify hitting load in tennis. Nineteen athletes wore an inertial measurement unit (IMU) on their wrist during 66 video-recorded training sessions. Video footage was manually notated such that known shot type (serve, rally forehand, slice forehand, forehand volley, rally backhand, slice backhand, backhand volley, smash, or false positive) was associated with the corresponding IMU data for 28,582 shots. Six types of machine-learning models were then constructed to classify true shot type from the IMU signals. Across 10-fold cross-validation, a cubic-kernel support vector machine classified binned shots (overhead, forehand, or backhand) with an accuracy of 97.4%. A second cubic-kernel support vector machine achieved 93.2% accuracy when classifying all 9 shot types. With a view to monitoring external load, the combination of miniature inertial sensors and machine learning offers a practical and automated method of quantifying shot counts and discriminating shot types in elite tennis players.
Axis: Generating Explanations at Scale with Learnersourcing and Machine Learning
ERIC Educational Resources Information Center
Williams, Joseph Jay; Kim, Juho; Rafferty, Anna; Heffernan, Neil; Maldonado, Samuel; Gajos, Krzysztof Z.; Lasecki, Walter S.; Heffernan, Neil
2016-01-01
While explanations may help people learn by providing information about why an answer is correct, many problems on online platforms lack high-quality explanations. This paper presents AXIS (Adaptive eXplanation Improvement System), a system for obtaining explanations. AXIS asks learners to generate, revise, and evaluate explanations as they solve…
Machine Methods for Acquiring, Learning, and Applying Knowledge.
ERIC Educational Resources Information Center
Hayes-Roth, Frederick; And Others
A research plan for identifying and acting upon constraints that impede the development of knowledge-based intelligent systems is described. The two primary problems identified are knowledge programming, the task of which is to create an intelligent system that does what an expert says it should, and learning, the problem requiring the criticizing…
An Analysis of Learning To Plan as a Search Problem.
ERIC Educational Resources Information Center
Gratch, Jonathan; DeJong, Gerald
Increasingly, machine learning is entertained as a mechanism for improving the efficiency of planning systems. Research in this area has generated an impressive battery of techniques and a growing body of empirical successes. Unfortunately the formal properties of these systems are not well understood. This is highlighted by a growing corpus of…
Experimental Realization of a Quantum Support Vector Machine
NASA Astrophysics Data System (ADS)
Li, Zhaokai; Liu, Xiaomei; Xu, Nanyang; Du, Jiangfeng
2015-04-01
The fundamental principle of artificial intelligence is the ability of machines to learn from previous experience and do future work accordingly. In the age of big data, classical learning machines often require huge computational resources in many practical cases. Quantum machine learning algorithms, on the other hand, could be exponentially faster than their classical counterparts by utilizing quantum parallelism. Here, we demonstrate a quantum machine learning algorithm to implement handwriting recognition on a four-qubit NMR test bench. The quantum machine learns standard character fonts and then recognizes handwritten characters from a set with two candidates. Because of the wide spread importance of artificial intelligence and its tremendous consumption of computational resources, quantum speedup would be extremely attractive against the challenges of big data.
Machine Learning and Inverse Problem in Geodynamics
NASA Astrophysics Data System (ADS)
Shahnas, M. H.; Yuen, D. A.; Pysklywec, R.
2017-12-01
During the past few decades numerical modeling and traditional HPC have been widely deployed in many diverse fields for problem solutions. However, in recent years the rapid emergence of machine learning (ML), a subfield of the artificial intelligence (AI), in many fields of sciences, engineering, and finance seems to mark a turning point in the replacement of traditional modeling procedures with artificial intelligence-based techniques. The study of the circulation in the interior of Earth relies on the study of high pressure mineral physics, geochemistry, and petrology where the number of the mantle parameters is large and the thermoelastic parameters are highly pressure- and temperature-dependent. More complexity arises from the fact that many of these parameters that are incorporated in the numerical models as input parameters are not yet well established. In such complex systems the application of machine learning algorithms can play a valuable role. Our focus in this study is the application of supervised machine learning (SML) algorithms in predicting mantle properties with the emphasis on SML techniques in solving the inverse problem. As a sample problem we focus on the spin transition in ferropericlase and perovskite that may cause slab and plume stagnation at mid-mantle depths. The degree of the stagnation depends on the degree of negative density anomaly at the spin transition zone. The training and testing samples for the machine learning models are produced by the numerical convection models with known magnitudes of density anomaly (as the class labels of the samples). The volume fractions of the stagnated slabs and plumes which can be considered as measures for the degree of stagnation are assigned as sample features. The machine learning models can determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at mid-mantle depths. Employing support vector machine (SVM) algorithms we show that SML techniques can successfully predict the magnitude of the mantle density anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to more complex problems in mantle dynamics by employing deep learning algorithms for estimation of mantle properties such as viscosity, elastic parameters, and thermal and chemical anomalies.
Janik, M; Bossew, P; Kurihara, O
2018-07-15
Machine learning is a class of statistical techniques which has proven to be a powerful tool for modelling the behaviour of complex systems, in which response quantities depend on assumed controls or predictors in a complicated way. In this paper, as our first purpose, we propose the application of machine learning to reconstruct incomplete or irregularly sampled data of time series indoor radon ( 222 Rn). The physical assumption underlying the modelling is that Rn concentration in the air is controlled by environmental variables such as air temperature and pressure. The algorithms "learn" from complete sections of multivariate series, derive a dependence model and apply it to sections where the controls are available, but not the response (Rn), and in this way complete the Rn series. Three machine learning techniques are applied in this study, namely random forest, its extension called the gradient boosting machine and deep learning. For a comparison, we apply the classical multiple regression in a generalized linear model version. Performance of the models is evaluated through different metrics. The performance of the gradient boosting machine is found to be superior to that of the other techniques. By applying learning machines, we show, as our second purpose, that missing data or periods of Rn series data can be reconstructed and resampled on a regular grid reasonably, if data of appropriate physical controls are available. The techniques also identify to which degree the assumed controls contribute to imputing missing Rn values. Our third purpose, though no less important from the viewpoint of physics, is identifying to which degree physical, in this case environmental variables, are relevant as Rn predictors, or in other words, which predictors explain most of the temporal variability of Rn. We show that variables which contribute most to the Rn series reconstruction, are temperature, relative humidity and day of the year. The first two are physical predictors, while "day of the year" is a statistical proxy or surrogate for missing or unknown predictors. Copyright © 2018 Elsevier B.V. All rights reserved.
Workshop on Fielded Applications of Machine Learning
1994-05-11
This report summaries the talks presented at the Workshop on Fielded Applications of Machine Learning , and draws some initial conclusions about the state of machine learning and its potential for solving real-world problems.
Revisit of Machine Learning Supported Biological and Biomedical Studies.
Yu, Xiang-Tian; Wang, Lu; Zeng, Tao
2018-01-01
Generally, machine learning includes many in silico methods to transform the principles underlying natural phenomenon to human understanding information, which aim to save human labor, to assist human judge, and to create human knowledge. It should have wide application potential in biological and biomedical studies, especially in the era of big biological data. To look through the application of machine learning along with biological development, this review provides wide cases to introduce the selection of machine learning methods in different practice scenarios involved in the whole biological and biomedical study cycle and further discusses the machine learning strategies for analyzing omics data in some cutting-edge biological studies. Finally, the notes on new challenges for machine learning due to small-sample high-dimension are summarized from the key points of sample unbalance, white box, and causality.
Aquatic Toxic Analysis by Monitoring Fish Behavior Using Computer Vision: A Recent Progress
Fu, Longwen; Liu, Zuoyi
2018-01-01
Video tracking based biological early warning system achieved a great progress with advanced computer vision and machine learning methods. Ability of video tracking of multiple biological organisms has been largely improved in recent years. Video based behavioral monitoring has become a common tool for acquiring quantified behavioral data for aquatic risk assessment. Investigation of behavioral responses under chemical and environmental stress has been boosted by rapidly developed machine learning and artificial intelligence. In this paper, we introduce the fundamental of video tracking and present the pioneer works in precise tracking of a group of individuals in 2D and 3D space. Technical and practical issues suffered in video tracking are explained. Subsequently, the toxic analysis based on fish behavioral data is summarized. Frequently used computational methods and machine learning are explained with their applications in aquatic toxicity detection and abnormal pattern analysis. Finally, advantages of recent developed deep learning approach in toxic prediction are presented. PMID:29849612
A Developmental Approach to Machine Learning?
Smith, Linda B.; Slone, Lauren K.
2017-01-01
Visual learning depends on both the algorithms and the training material. This essay considers the natural statistics of infant- and toddler-egocentric vision. These natural training sets for human visual object recognition are very different from the training data fed into machine vision systems. Rather than equal experiences with all kinds of things, toddlers experience extremely skewed distributions with many repeated occurrences of a very few things. And though highly variable when considered as a whole, individual views of things are experienced in a specific order – with slow, smooth visual changes moment-to-moment, and developmentally ordered transitions in scene content. We propose that the skewed, ordered, biased visual experiences of infants and toddlers are the training data that allow human learners to develop a way to recognize everything, both the pervasively present entities and the rarely encountered ones. The joint consideration of real-world statistics for learning by researchers of human and machine learning seems likely to bring advances in both disciplines. PMID:29259573
Intelligible machine learning with malibu.
Langlois, Robert E; Lu, Hui
2008-01-01
malibu is an open-source machine learning work-bench developed in C/C++ for high-performance real-world applications, namely bioinformatics and medical informatics. It leverages third-party machine learning implementations for more robust bug-free software. This workbench handles several well-studied supervised machine learning problems including classification, regression, importance-weighted classification and multiple-instance learning. The malibu interface was designed to create reproducible experiments ideally run in a remote and/or command line environment. The software can be found at: http://proteomics.bioengr. uic.edu/malibu/index.html.
Jiang, Min; Chen, Yukun; Liu, Mei; Rosenbloom, S Trent; Mani, Subramani; Denny, Joshua C; Xu, Hua
2011-01-01
The authors' goal was to develop and evaluate machine-learning-based approaches to extracting clinical entities-including medical problems, tests, and treatments, as well as their asserted status-from hospital discharge summaries written using natural language. This project was part of the 2010 Center of Informatics for Integrating Biology and the Bedside/Veterans Affairs (VA) natural-language-processing challenge. The authors implemented a machine-learning-based named entity recognition system for clinical text and systematically evaluated the contributions of different types of features and ML algorithms, using a training corpus of 349 annotated notes. Based on the results from training data, the authors developed a novel hybrid clinical entity extraction system, which integrated heuristic rule-based modules with the ML-base named entity recognition module. The authors applied the hybrid system to the concept extraction and assertion classification tasks in the challenge and evaluated its performance using a test data set with 477 annotated notes. Standard measures including precision, recall, and F-measure were calculated using the evaluation script provided by the Center of Informatics for Integrating Biology and the Bedside/VA challenge organizers. The overall performance for all three types of clinical entities and all six types of assertions across 477 annotated notes were considered as the primary metric in the challenge. Systematic evaluation on the training set showed that Conditional Random Fields outperformed Support Vector Machines, and semantic information from existing natural-language-processing systems largely improved performance, although contributions from different types of features varied. The authors' hybrid entity extraction system achieved a maximum overall F-score of 0.8391 for concept extraction (ranked second) and 0.9313 for assertion classification (ranked fourth, but not statistically different than the first three systems) on the test data set in the challenge.
Space Weather in the Machine Learning Era: A Multidisciplinary Approach
NASA Astrophysics Data System (ADS)
Camporeale, E.; Wing, S.; Johnson, J.; Jackman, C. M.; McGranaghan, R.
2018-01-01
The workshop entitled Space Weather: A Multidisciplinary Approach took place at the Lorentz Center, University of Leiden, Netherlands, on 25-29 September 2017. The aim of this workshop was to bring together members of the Space Weather, Mathematics, Statistics, and Computer Science communities to address the use of advanced techniques such as Machine Learning, Information Theory, and Deep Learning, to better understand the Sun-Earth system and to improve space weather forecasting. Although individual efforts have been made toward this goal, the community consensus is that establishing interdisciplinary collaborations is the most promising strategy for fully utilizing the potential of these advanced techniques in solving Space Weather-related problems.
Language Acquisition and Machine Learning.
1986-02-01
machine learning and examine its implications for computational models of language acquisition. As a framework for understanding this research, the authors propose four component tasks involved in learning from experience-aggregation, clustering, characterization, and storage. They then consider four common problems studied by machine learning researchers-learning from examples, heuristics learning, conceptual clustering, and learning macro-operators-describing each in terms of our framework. After this, they turn to the problem of grammar
Behavioral Profiling of Scada Network Traffic Using Machine Learning Algorithms
2014-03-27
BEHAVIORAL PROFILING OF SCADA NETWORK TRAFFIC USING MACHINE LEARNING ALGORITHMS THESIS Jessica R. Werling, Captain, USAF AFIT-ENG-14-M-81 DEPARTMENT...subject to copyright protection in the United States. AFIT-ENG-14-M-81 BEHAVIORAL PROFILING OF SCADA NETWORK TRAFFIC USING MACHINE LEARNING ...AFIT-ENG-14-M-81 BEHAVIORAL PROFILING OF SCADA NETWORK TRAFFIC USING MACHINE LEARNING ALGORITHMS Jessica R. Werling, B.S.C.S. Captain, USAF Approved
Statistical Machine Learning for Structured and High Dimensional Data
2014-09-17
AFRL-OSR-VA-TR-2014-0234 STATISTICAL MACHINE LEARNING FOR STRUCTURED AND HIGH DIMENSIONAL DATA Larry Wasserman CARNEGIE MELLON UNIVERSITY Final...Re . 8-98) v Prescribed by ANSI Std. Z39.18 14-06-2014 Final Dec 2009 - Aug 2014 Statistical Machine Learning for Structured and High Dimensional...area of resource-constrained statistical estimation. machine learning , high-dimensional statistics U U U UU John Lafferty 773-702-3813 > Research under
Machine learning in genetics and genomics
Libbrecht, Maxwell W.; Noble, William Stafford
2016-01-01
The field of machine learning promises to enable computers to assist humans in making sense of large, complex data sets. In this review, we outline some of the main applications of machine learning to genetic and genomic data. In the process, we identify some recurrent challenges associated with this type of analysis and provide general guidelines to assist in the practical application of machine learning to real genetic and genomic data. PMID:25948244
Machine Learning Techniques for Prediction of Early Childhood Obesity.
Dugan, T M; Mukhopadhyay, S; Carroll, A; Downs, S
2015-01-01
This paper aims to predict childhood obesity after age two, using only data collected prior to the second birthday by a clinical decision support system called CHICA. Analyses of six different machine learning methods: RandomTree, RandomForest, J48, ID3, Naïve Bayes, and Bayes trained on CHICA data show that an accurate, sensitive model can be created. Of the methods analyzed, the ID3 model trained on the CHICA dataset proved the best overall performance with accuracy of 85% and sensitivity of 89%. Additionally, the ID3 model had a positive predictive value of 84% and a negative predictive value of 88%. The structure of the tree also gives insight into the strongest predictors of future obesity in children. Many of the strongest predictors seen in the ID3 modeling of the CHICA dataset have been independently validated in the literature as correlated with obesity, thereby supporting the validity of the model. This study demonstrated that data from a production clinical decision support system can be used to build an accurate machine learning model to predict obesity in children after age two.
An illustration of new methods in machine condition monitoring, Part I: stochastic resonance
NASA Astrophysics Data System (ADS)
Worden, K.; Antoniadou, I.; Marchesiello, S.; Mba, C.; Garibaldi, L.
2017-05-01
There have been many recent developments in the application of data-based methods to machine condition monitoring. A powerful methodology based on machine learning has emerged, where diagnostics are based on a two-step procedure: extraction of damage-sensitive features, followed by unsupervised learning (novelty detection) or supervised learning (classification). The objective of the current pair of papers is simply to illustrate one state-of-the-art procedure for each step, using synthetic data representative of reality in terms of size and complexity. The first paper in the pair will deal with feature extraction. Although some papers have appeared in the recent past considering stochastic resonance as a means of amplifying damage information in signals, they have largely relied on ad hoc specifications of the resonator used. In contrast, the current paper will adopt a principled optimisation-based approach to the resonator design. The paper will also show that a discrete dynamical system can provide all the benefits of a continuous system, but also provide a considerable speed-up in terms of simulation time in order to facilitate the optimisation approach.
Machine learning Z2 quantum spin liquids with quasiparticle statistics
NASA Astrophysics Data System (ADS)
Zhang, Yi; Melko, Roger G.; Kim, Eun-Ah
2017-12-01
After decades of progress and effort, obtaining a phase diagram for a strongly correlated topological system still remains a challenge. Although in principle one could turn to Wilson loops and long-range entanglement, evaluating these nonlocal observables at many points in phase space can be prohibitively costly. With growing excitement over topological quantum computation comes the need for an efficient approach for obtaining topological phase diagrams. Here we turn to machine learning using quantum loop topography (QLT), a notion we have recently introduced. Specifically, we propose a construction of QLT that is sensitive to quasiparticle statistics. We then use mutual statistics between the spinons and visons to detect a Z2 quantum spin liquid in a multiparameter phase space. We successfully obtain the quantum phase boundary between the topological and trivial phases using a simple feed-forward neural network. Furthermore, we demonstrate advantages of our approach for the evaluation of phase diagrams relating to speed and storage. Such statistics-based machine learning of topological phases opens new efficient routes to studying topological phase diagrams in strongly correlated systems.
Galaxy morphology - An unsupervised machine learning approach
NASA Astrophysics Data System (ADS)
Schutter, A.; Shamir, L.
2015-09-01
Structural properties poses valuable information about the formation and evolution of galaxies, and are important for understanding the past, present, and future universe. Here we use unsupervised machine learning methodology to analyze a network of similarities between galaxy morphological types, and automatically deduce a morphological sequence of galaxies. Application of the method to the EFIGI catalog show that the morphological scheme produced by the algorithm is largely in agreement with the De Vaucouleurs system, demonstrating the ability of computer vision and machine learning methods to automatically profile galaxy morphological sequences. The unsupervised analysis method is based on comprehensive computer vision techniques that compute the visual similarities between the different morphological types. Rather than relying on human cognition, the proposed system deduces the similarities between sets of galaxy images in an automatic manner, and is therefore not limited by the number of galaxies being analyzed. The source code of the method is publicly available, and the protocol of the experiment is included in the paper so that the experiment can be replicated, and the method can be used to analyze user-defined datasets of galaxy images.
Entity recognition in the biomedical domain using a hybrid approach.
Basaldella, Marco; Furrer, Lenz; Tasso, Carlo; Rinaldi, Fabio
2017-11-09
This article describes a high-recall, high-precision approach for the extraction of biomedical entities from scientific articles. The approach uses a two-stage pipeline, combining a dictionary-based entity recognizer with a machine-learning classifier. First, the OGER entity recognizer, which has a bias towards high recall, annotates the terms that appear in selected domain ontologies. Subsequently, the Distiller framework uses this information as a feature for a machine learning algorithm to select the relevant entities only. For this step, we compare two different supervised machine-learning algorithms: Conditional Random Fields and Neural Networks. In an in-domain evaluation using the CRAFT corpus, we test the performance of the combined systems when recognizing chemicals, cell types, cellular components, biological processes, molecular functions, organisms, proteins, and biological sequences. Our best system combines dictionary-based candidate generation with Neural-Network-based filtering. It achieves an overall precision of 86% at a recall of 60% on the named entity recognition task, and a precision of 51% at a recall of 49% on the concept recognition task. These results are to our knowledge the best reported so far in this particular task.
The use of instruments for gravity related research
NASA Astrophysics Data System (ADS)
van Loon, J. J. W.
The first experiments using machines and instruments to manipulate gravity and thus learn about the impact of gravity onto living systems were performed by T A Knight in 1806 exactly 2 centuries ago What have we learned from these experiments and in particular what have we leaned about the use of instruments to reveal the impact of gravity and rotation onto plants and other living systems In this overview paper I will introduce the use of various instruments for gravity related research From water wheel to Random Positioning Machine RPM from clinostat to Free Fall Machine FFM and Rotating Wall Vessel RWV the usefulness and working principles of these microgravity simulators will be discussed We will discuss the question whether the RPM is a useful microgravity simulator and how to interpret experimental results This work is supported by NWO-ALW-SRON grant MG-057
Social Intelligence in a Human-Machine Collaboration System
NASA Astrophysics Data System (ADS)
Nakajima, Hiroshi; Morishima, Yasunori; Yamada, Ryota; Brave, Scott; Maldonado, Heidy; Nass, Clifford; Kawaji, Shigeyasu
In this information society of today, it is often argued that it is necessary to create a new way of human-machine interaction. In this paper, an agent with social response capabilities has been developed to achieve this goal. There are two kinds of information that is exchanged by two entities: objective and functional information (e.g., facts, requests, states of matters, etc.) and subjective information (e.g., feelings, sense of relationship, etc.). Traditional interactive systems have been designed to handle the former kind of information. In contrast, in this study social agents handling the latter type of information are presented. The current study focuses on sociality of the agent from the view point of Media Equation theory. This article discusses the definition, importance, and benefits of social intelligence as agent technology and argues that social intelligence has a potential to enhance the user's perception of the system, which in turn can lead to improvements of the system's performance. In order to implement social intelligence in the agent, a mind model has been developed to render affective expressions and personality of the agent. The mind model has been implemented in a human-machine collaborative learning system. One differentiating feature of the collaborative learning system is that it has an agent that performs as a co-learner with which the user interacts during the learning session. The mind model controls the social behaviors of the agent, thus making it possible for the user to have more social interactions with the agent. The experiment with the system suggested that a greater degree of learning was achieved when the students worked with the co-learner agent and that the co-learner agent with the mind model that expressed emotions resulted in a more positive attitude toward the system.
An application of machine learning to the organization of institutional software repositories
NASA Technical Reports Server (NTRS)
Bailin, Sidney; Henderson, Scott; Truszkowski, Walt
1993-01-01
Software reuse has become a major goal in the development of space systems, as a recent NASA-wide workshop on the subject made clear. The Data Systems Technology Division of Goddard Space Flight Center has been working on tools and techniques for promoting reuse, in particular in the development of satellite ground support software. One of these tools is the Experiment in Libraries via Incremental Schemata and Cobweb (ElvisC). ElvisC applies machine learning to the problem of organizing a reusable software component library for efficient and reliable retrieval. In this paper we describe the background factors that have motivated this work, present the design of the system, and evaluate the results of its application.
Addressing uncertainty in atomistic machine learning.
Peterson, Andrew A; Christensen, Rune; Khorshidi, Alireza
2017-05-10
Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility of the predictions. In this perspective, we address the types of errors that might arise in atomistic machine learning, the unique aspects of atomistic simulations that make machine-learning challenging, and highlight how uncertainty analysis can be used to assess the validity of machine-learning predictions. We suggest this will allow researchers to more fully use machine learning for the routine acceleration of large, high-accuracy, or extended-time simulations. In our demonstrations, we use a bootstrap ensemble of neural network-based calculators, and show that the width of the ensemble can provide an estimate of the uncertainty when the width is comparable to that in the training data. Intriguingly, we also show that the uncertainty can be localized to specific atoms in the simulation, which may offer hints for the generation of training data to strategically improve the machine-learned representation.
On the Conditioning of Machine-Learning-Assisted Turbulence Modeling
NASA Astrophysics Data System (ADS)
Wu, Jinlong; Sun, Rui; Wang, Qiqi; Xiao, Heng
2017-11-01
Recently, several researchers have demonstrated that machine learning techniques can be used to improve the RANS modeled Reynolds stress by training on available database of high fidelity simulations. However, obtaining improved mean velocity field remains an unsolved challenge, restricting the predictive capability of current machine-learning-assisted turbulence modeling approaches. In this work we define a condition number to evaluate the model conditioning of data-driven turbulence modeling approaches, and propose a stability-oriented machine learning framework to model Reynolds stress. Two canonical flows, the flow in a square duct and the flow over periodic hills, are investigated to demonstrate the predictive capability of the proposed framework. The satisfactory prediction performance of mean velocity field for both flows demonstrates the predictive capability of the proposed framework for machine-learning-assisted turbulence modeling. With showing the capability of improving the prediction of mean flow field, the proposed stability-oriented machine learning framework bridges the gap between the existing machine-learning-assisted turbulence modeling approaches and the demand of predictive capability of turbulence models in real applications.
Zeng, Xueqiang; Luo, Gang
2017-12-01
Machine learning is broadly used for clinical data analysis. Before training a model, a machine learning algorithm must be selected. Also, the values of one or more model parameters termed hyper-parameters must be set. Selecting algorithms and hyper-parameter values requires advanced machine learning knowledge and many labor-intensive manual iterations. To lower the bar to machine learning, miscellaneous automatic selection methods for algorithms and/or hyper-parameter values have been proposed. Existing automatic selection methods are inefficient on large data sets. This poses a challenge for using machine learning in the clinical big data era. To address the challenge, this paper presents progressive sampling-based Bayesian optimization, an efficient and automatic selection method for both algorithms and hyper-parameter values. We report an implementation of the method. We show that compared to a state of the art automatic selection method, our method can significantly reduce search time, classification error rate, and standard deviation of error rate due to randomization. This is major progress towards enabling fast turnaround in identifying high-quality solutions required by many machine learning-based clinical data analysis tasks.
Lu, Zhao; Sun, Jing; Butts, Kenneth
2014-05-01
Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.
An Evolutionary Machine Learning Framework for Big Data Sequence Mining
ERIC Educational Resources Information Center
Kamath, Uday Krishna
2014-01-01
Sequence classification is an important problem in many real-world applications. Unlike other machine learning data, there are no "explicit" features or signals in sequence data that can help traditional machine learning algorithms learn and predict from the data. Sequence data exhibits inter-relationships in the elements that are…
Neuromorphic Optical Signal Processing and Image Understanding for Automated Target Recognition
1989-12-01
34 Stochastic Learning Machine " Neuromorphic Target Identification * Cognitive Networks 3. Conclusions ..... ................ .. 12 4. Publications...16 5. References ...... ................... . 17 6. Appendices ....... .................. 18 I. Optoelectronic Neural Networks and...Learning Machines. II. Stochastic Optical Learning Machine. III. Learning Network for Extrapolation AccesFon For and Radar Target Identification
Graph Representations of Flow and Transport in Fracture Networks using Machine Learning
NASA Astrophysics Data System (ADS)
Srinivasan, G.; Viswanathan, H. S.; Karra, S.; O'Malley, D.; Godinez, H. C.; Hagberg, A.; Osthus, D.; Mohd-Yusof, J.
2017-12-01
Flow and transport of fluids through fractured systems is governed by the properties and interactions at the micro-scale. Retaining information about the micro-structure such as fracture length, orientation, aperture and connectivity in mesh-based computational models results in solving for millions to billions of degrees of freedom and quickly renders the problem computationally intractable. Our approach depicts fracture networks graphically, by mapping fractures to nodes and intersections to edges, thereby greatly reducing computational burden. Additionally, we use machine learning techniques to build simulators on the graph representation, trained on data from the mesh-based high fidelity simulations to speed up computation by orders of magnitude. We demonstrate our methodology on ensembles of discrete fracture networks, dividing up the data into training and validation sets. Our machine learned graph-based solvers result in over 3 orders of magnitude speedup without any significant sacrifice in accuracy.
Energy landscapes for a machine-learning prediction of patient discharge
NASA Astrophysics Data System (ADS)
Das, Ritankar; Wales, David J.
2016-06-01
The energy landscapes framework is applied to a configuration space generated by training the parameters of a neural network. In this study the input data consists of time series for a collection of vital signs monitored for hospital patients, and the outcomes are patient discharge or continued hospitalisation. Using machine learning as a predictive diagnostic tool to identify patterns in large quantities of electronic health record data in real time is a very attractive approach for supporting clinical decisions, which have the potential to improve patient outcomes and reduce waiting times for discharge. Here we report some preliminary analysis to show how machine learning might be applied. In particular, we visualize the fitting landscape in terms of locally optimal neural networks and the connections between them in parameter space. We anticipate that these results, and analogues of thermodynamic properties for molecular systems, may help in the future design of improved predictive tools.
Machine Learning Estimates of Natural Product Conformational Energies
Rupp, Matthias; Bauer, Matthias R.; Wilcken, Rainer; Lange, Andreas; Reutlinger, Michael; Boeckler, Frank M.; Schneider, Gisbert
2014-01-01
Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking the natural product Archazolid A, a potent inhibitor of vacuolar-type ATPase, from the myxobacterium Archangium gephyra as an example. Our model estimates energies of new conformations by exploiting information from previous calculations via Gaussian process regression. Predictive variance is used to assess whether a conformation is in the interpolation region, allowing a controlled trade-off between prediction accuracy and computational speed-up. For energies of relaxed conformations at the density functional level of theory (implicit solvent, DFT/BLYP-disp3/def2-TZVP), mean absolute errors of less than 1 kcal/mol were achieved. The study demonstrates that predictive machine learning models can be developed for structurally complex, pharmaceutically relevant compounds, potentially enabling considerable speed-ups in simulations of larger molecular structures. PMID:24453952
Temperature based Restricted Boltzmann Machines
NASA Astrophysics Data System (ADS)
Li, Guoqi; Deng, Lei; Xu, Yi; Wen, Changyun; Wang, Wei; Pei, Jing; Shi, Luping
2016-01-01
Restricted Boltzmann machines (RBMs), which apply graphical models to learning probability distribution over a set of inputs, have attracted much attention recently since being proposed as building blocks of multi-layer learning systems called deep belief networks (DBNs). Note that temperature is a key factor of the Boltzmann distribution that RBMs originate from. However, none of existing schemes have considered the impact of temperature in the graphical model of DBNs. In this work, we propose temperature based restricted Boltzmann machines (TRBMs) which reveals that temperature is an essential parameter controlling the selectivity of the firing neurons in the hidden layers. We theoretically prove that the effect of temperature can be adjusted by setting the parameter of the sharpness of the logistic function in the proposed TRBMs. The performance of RBMs can be improved by adjusting the temperature parameter of TRBMs. This work provides a comprehensive insights into the deep belief networks and deep learning architectures from a physical point of view.
WebWatcher: Machine Learning and Hypertext
1995-05-29
WebWatcher: Machine Learning and Hypertext Thorsten Joachims, Tom Mitchell, Dayne Freitag, and Robert Armstrong School of Computer Science Carnegie...HTML-page about machine learning in which we in- serted a hyperlink to WebWatcher (line 6). The user follows this hyperlink and gets to a page which...AND SUBTITLE WebWatcher: Machine Learning and Hypertext 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT
A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors.
Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei
2017-09-21
In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.
Burgansky-Eliash, Zvia; Wollstein, Gadi; Chu, Tianjiao; Ramsey, Joseph D.; Glymour, Clark; Noecker, Robert J.; Ishikawa, Hiroshi; Schuman, Joel S.
2007-01-01
Purpose Machine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis. The present study investigated whether the use of machine-learning classifiers improves optical coherence tomography (OCT) glaucoma detection. Methods Forty-seven patients with glaucoma (47 eyes) and 42 healthy subjects (42 eyes) were included in this cross-sectional study. Of the glaucoma patients, 27 had early disease (visual field mean deviation [MD] ≥ −6 dB) and 20 had advanced glaucoma (MD < −6 dB). Machine-learning classifiers were trained to discriminate between glaucomatous and healthy eyes using parameters derived from OCT output. The classifiers were trained with all 38 parameters as well as with only 8 parameters that correlated best with the visual field MD. Five classifiers were tested: linear discriminant analysis, support vector machine, recursive partitioning and regression tree, generalized linear model, and generalized additive model. For the last two classifiers, a backward feature selection was used to find the minimal number of parameters that resulted in the best and most simple prediction. The cross-validated receiver operating characteristic (ROC) curve and accuracies were calculated. Results The largest area under the ROC curve (AROC) for glaucoma detection was achieved with the support vector machine using eight parameters (0.981). The sensitivity at 80% and 95% specificity was 97.9% and 92.5%, respectively. This classifier also performed best when judged by cross-validated accuracy (0.966). The best classification between early glaucoma and advanced glaucoma was obtained with the generalized additive model using only three parameters (AROC = 0.854). Conclusions Automated machine classifiers of OCT data might be useful for enhancing the utility of this technology for detecting glaucomatous abnormality. PMID:16249492
Vision Systems with the Human in the Loop
NASA Astrophysics Data System (ADS)
Bauckhage, Christian; Hanheide, Marc; Wrede, Sebastian; Käster, Thomas; Pfeiffer, Michael; Sagerer, Gerhard
2005-12-01
The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed.
Kringel, Dario; Lippmann, Catharina; Parnham, Michael J; Kalso, Eija; Ultsch, Alfred; Lötsch, Jörn
2018-06-19
Human genetic research has implicated functional variants of more than one hundred genes in the modulation of persisting pain. Artificial intelligence and machine learning techniques may combine this knowledge with results of genetic research gathered in any context, which permits the identification of the key biological processes involved in chronic sensitization to pain. Based on published evidence, a set of 110 genes carrying variants reported to be associated with modulation of the clinical phenotype of persisting pain in eight different clinical settings was submitted to unsupervised machine-learning aimed at functional clustering. Subsequently, a mathematically supported subset of genes, comprising those most consistently involved in persisting pain, was analyzed by means of computational functional genomics in the Gene Ontology knowledgebase. Clustering of genes with evidence for a modulation of persisting pain elucidated a functionally heterogeneous set. The situation cleared when the focus was narrowed to a genetic modulation consistently observed throughout several clinical settings. On this basis, two groups of biological processes, the immune system and nitric oxide signaling, emerged as major players in sensitization to persisting pain, which is biologically highly plausible and in agreement with other lines of pain research. The present computational functional genomics-based approach provided a computational systems-biology perspective on chronic sensitization to pain. Human genetic control of persisting pain points to the immune system as a source of potential future targets for drugs directed against persisting pain. Contemporary machine-learned methods provide innovative approaches to knowledge discovery from previous evidence. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
48 CFR 952.227-13 - Patent rights-acquisition by the Government.
Code of Federal Regulations, 2011 CFR
2011-10-01
... a process or method; or to operate, in the case of a machine or system; and, in each case, under... procedures. (2) If the Contracting Officer learns of an unreported Contractor invention which the Contracting... upon the practice of any specific process, method, machine, manufacture, or composition of matter...
48 CFR 952.227-13 - Patent rights-acquisition by the Government.
Code of Federal Regulations, 2010 CFR
2010-10-01
... a process or method; or to operate, in the case of a machine or system; and, in each case, under... procedures. (2) If the Contracting Officer learns of an unreported Contractor invention which the Contracting... upon the practice of any specific process, method, machine, manufacture, or composition of matter...
48 CFR 952.227-13 - Patent rights-acquisition by the Government.
Code of Federal Regulations, 2014 CFR
2014-10-01
... a process or method; or to operate, in the case of a machine or system; and, in each case, under... procedures. (2) If the Contracting Officer learns of an unreported Contractor invention which the Contracting... upon the practice of any specific process, method, machine, manufacture, or composition of matter...
48 CFR 952.227-13 - Patent rights-acquisition by the Government.
Code of Federal Regulations, 2013 CFR
2013-10-01
... a process or method; or to operate, in the case of a machine or system; and, in each case, under... procedures. (2) If the Contracting Officer learns of an unreported Contractor invention which the Contracting... upon the practice of any specific process, method, machine, manufacture, or composition of matter...
48 CFR 952.227-13 - Patent rights-acquisition by the Government.
Code of Federal Regulations, 2012 CFR
2012-10-01
... a process or method; or to operate, in the case of a machine or system; and, in each case, under... procedures. (2) If the Contracting Officer learns of an unreported Contractor invention which the Contracting... upon the practice of any specific process, method, machine, manufacture, or composition of matter...
Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy.
Asadi, Hamed; Dowling, Richard; Yan, Bernard; Mitchell, Peter
2014-01-01
Stroke is a major cause of death and disability. Accurately predicting stroke outcome from a set of predictive variables may identify high-risk patients and guide treatment approaches, leading to decreased morbidity. Logistic regression models allow for the identification and validation of predictive variables. However, advanced machine learning algorithms offer an alternative, in particular, for large-scale multi-institutional data, with the advantage of easily incorporating newly available data to improve prediction performance. Our aim was to design and compare different machine learning methods, capable of predicting the outcome of endovascular intervention in acute anterior circulation ischaemic stroke. We conducted a retrospective study of a prospectively collected database of acute ischaemic stroke treated by endovascular intervention. Using SPSS®, MATLAB®, and Rapidminer®, classical statistics as well as artificial neural network and support vector algorithms were applied to design a supervised machine capable of classifying these predictors into potential good and poor outcomes. These algorithms were trained, validated and tested using randomly divided data. We included 107 consecutive acute anterior circulation ischaemic stroke patients treated by endovascular technique. Sixty-six were male and the mean age of 65.3. All the available demographic, procedural and clinical factors were included into the models. The final confusion matrix of the neural network, demonstrated an overall congruency of ∼ 80% between the target and output classes, with favourable receiving operative characteristics. However, after optimisation, the support vector machine had a relatively better performance, with a root mean squared error of 2.064 (SD: ± 0.408). We showed promising accuracy of outcome prediction, using supervised machine learning algorithms, with potential for incorporation of larger multicenter datasets, likely further improving prediction. Finally, we propose that a robust machine learning system can potentially optimise the selection process for endovascular versus medical treatment in the management of acute stroke.
Machine learning for medical images analysis.
Criminisi, A
2016-10-01
This article discusses the application of machine learning for the analysis of medical images. Specifically: (i) We show how a special type of learning models can be thought of as automatically optimized, hierarchically-structured, rule-based algorithms, and (ii) We discuss how the issue of collecting large labelled datasets applies to both conventional algorithms as well as machine learning techniques. The size of the training database is a function of model complexity rather than a characteristic of machine learning methods. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Fuzzy Logic-Based Audio Pattern Recognition
NASA Astrophysics Data System (ADS)
Malcangi, M.
2008-11-01
Audio and audio-pattern recognition is becoming one of the most important technologies to automatically control embedded systems. Fuzzy logic may be the most important enabling methodology due to its ability to rapidly and economically model such application. An audio and audio-pattern recognition engine based on fuzzy logic has been developed for use in very low-cost and deeply embedded systems to automate human-to-machine and machine-to-machine interaction. This engine consists of simple digital signal-processing algorithms for feature extraction and normalization, and a set of pattern-recognition rules manually tuned or automatically tuned by a self-learning process.
NASA Astrophysics Data System (ADS)
Zhao, Lili; Yin, Jianping; Yuan, Lihuan; Liu, Qiang; Li, Kuan; Qiu, Minghui
2017-07-01
Automatic detection of abnormal cells from cervical smear images is extremely demanded in annual diagnosis of women's cervical cancer. For this medical cell recognition problem, there are three different feature sections, namely cytology morphology, nuclear chromatin pathology and region intensity. The challenges of this problem come from feature combination s and classification accurately and efficiently. Thus, we propose an efficient abnormal cervical cell detection system based on multi-instance extreme learning machine (MI-ELM) to deal with above two questions in one unified framework. MI-ELM is one of the most promising supervised learning classifiers which can deal with several feature sections and realistic classification problems analytically. Experiment results over Herlev dataset demonstrate that the proposed method outperforms three traditional methods for two-class classification in terms of well accuracy and less time.
Machine learning applications in genetics and genomics.
Libbrecht, Maxwell W; Noble, William Stafford
2015-06-01
The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets. Here, we provide an overview of machine learning applications for the analysis of genome sequencing data sets, including the annotation of sequence elements and epigenetic, proteomic or metabolomic data. We present considerations and recurrent challenges in the application of supervised, semi-supervised and unsupervised machine learning methods, as well as of generative and discriminative modelling approaches. We provide general guidelines to assist in the selection of these machine learning methods and their practical application for the analysis of genetic and genomic data sets.
Machine learning and medicine: book review and commentary.
Koprowski, Robert; Foster, Kenneth R
2018-02-01
This article is a review of the book "Master machine learning algorithms, discover how they work and implement them from scratch" (ISBN: not available, 37 USD, 163 pages) edited by Jason Brownlee published by the Author, edition, v1.10 http://MachineLearningMastery.com . An accompanying commentary discusses some of the issues that are involved with use of machine learning and data mining techniques to develop predictive models for diagnosis or prognosis of disease, and to call attention to additional requirements for developing diagnostic and prognostic algorithms that are generally useful in medicine. Appendix provides examples that illustrate potential problems with machine learning that are not addressed in the reviewed book.
Dialogue-Based Call: A Case Study on Teaching Pronouns
ERIC Educational Resources Information Center
Vlugter, P.; Knott, A.; McDonald, J.; Hall, C.
2009-01-01
We describe a computer assisted language learning (CALL) system that uses human-machine dialogue as its medium of interaction. The system was developed to help students learn the basics of the Maori language and was designed to accompany the introductory course in Maori running at the University of Otago. The student engages in a task-based…
Intelligent Machines in the 21st Century: Automating the Processes of Inference and Inquiry
NASA Technical Reports Server (NTRS)
Knuth, Kevin H.
2003-01-01
The last century saw the application of Boolean algebra toward the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines. in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. However, modern intelligent machines work by inferring knowledge using only their pre-programmed prior knowledge and the data provided. They lack the ability to ask questions, or request data that would aid their inferences. Recent advances in understanding the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we identified the algebra of questions as the free distributive algebra, which now allows us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper we describe this logic of inference and inquiry using the mathematics of partially ordered sets and the scaffolding of lattice theory, discuss the far-reaching implications of the methodology, and demonstrate its application with current examples in machine learning. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them to not only make inferences from data, but also decide which question to ask, experiment to perform, or measurement to take given what they have learned and what they are designed to understand.
Data Mining at NASA: From Theory to Applications
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.
2009-01-01
This slide presentation demonstrates the data mining/machine learning capabilities of NASA Ames and Intelligent Data Understanding (IDU) group. This will encompass the work done recently in the group by various group members. The IDU group develops novel algorithms to detect, classify, and predict events in large data streams for scientific and engineering systems. This presentation for Knowledge Discovery and Data Mining 2009 is to demonstrate the data mining/machine learning capabilities of NASA Ames and IDU group. This will encompass the work done re cently in the group by various group members.
Classifying BCI signals from novice users with extreme learning machine
NASA Astrophysics Data System (ADS)
Rodríguez-Bermúdez, Germán; Bueno-Crespo, Andrés; José Martinez-Albaladejo, F.
2017-07-01
Brain computer interface (BCI) allows to control external devices only with the electrical activity of the brain. In order to improve the system, several approaches have been proposed. However it is usual to test algorithms with standard BCI signals from experts users or from repositories available on Internet. In this work, extreme learning machine (ELM) has been tested with signals from 5 novel users to compare with standard classification algorithms. Experimental results show that ELM is a suitable method to classify electroencephalogram signals from novice users.
2016-01-01
Background As more and more researchers are turning to big data for new opportunities of biomedical discoveries, machine learning models, as the backbone of big data analysis, are mentioned more often in biomedical journals. However, owing to the inherent complexity of machine learning methods, they are prone to misuse. Because of the flexibility in specifying machine learning models, the results are often insufficiently reported in research articles, hindering reliable assessment of model validity and consistent interpretation of model outputs. Objective To attain a set of guidelines on the use of machine learning predictive models within clinical settings to make sure the models are correctly applied and sufficiently reported so that true discoveries can be distinguished from random coincidence. Methods A multidisciplinary panel of machine learning experts, clinicians, and traditional statisticians were interviewed, using an iterative process in accordance with the Delphi method. Results The process produced a set of guidelines that consists of (1) a list of reporting items to be included in a research article and (2) a set of practical sequential steps for developing predictive models. Conclusions A set of guidelines was generated to enable correct application of machine learning models and consistent reporting of model specifications and results in biomedical research. We believe that such guidelines will accelerate the adoption of big data analysis, particularly with machine learning methods, in the biomedical research community. PMID:27986644
Lin, Frank P Y; Pokorny, Adrian; Teng, Christina; Dear, Rachel; Epstein, Richard J
2016-12-01
Multidisciplinary team (MDT) meetings are used to optimise expert decision-making about treatment options, but such expertise is not digitally transferable between centres. To help standardise medical decision-making, we developed a machine learning model designed to predict MDT decisions about adjuvant breast cancer treatments. We analysed MDT decisions regarding adjuvant systemic therapy for 1065 breast cancer cases over eight years. Machine learning classifiers with and without bootstrap aggregation were correlated with MDT decisions (recommended, not recommended, or discussable) regarding adjuvant cytotoxic, endocrine and biologic/targeted therapies, then tested for predictability using stratified ten-fold cross-validations. The predictions so derived were duly compared with those based on published (ESMO and NCCN) cancer guidelines. Machine learning more accurately predicted adjuvant chemotherapy MDT decisions than did simple application of guidelines. No differences were found between MDT- vs. ESMO/NCCN- based decisions to prescribe either adjuvant endocrine (97%, p = 0.44/0.74) or biologic/targeted therapies (98%, p = 0.82/0.59). In contrast, significant discrepancies were evident between MDT- and guideline-based decisions to prescribe chemotherapy (87%, p < 0.01, representing 43% and 53% variations from ESMO/NCCN guidelines, respectively). Using ten-fold cross-validation, the best classifiers achieved areas under the receiver operating characteristic curve (AUC) of 0.940 for chemotherapy (95% C.I., 0.922-0.958), 0.899 for the endocrine therapy (95% C.I., 0.880-0.918), and 0.977 for trastuzumab therapy (95% C.I., 0.955-0.999) respectively. Overall, bootstrap aggregated classifiers performed better among all evaluated machine learning models. A machine learning approach based on clinicopathologic characteristics can predict MDT decisions about adjuvant breast cancer drug therapies. The discrepancy between MDT- and guideline-based decisions regarding adjuvant chemotherapy implies that certain non-clincopathologic criteria, such as patient preference and resource availability, are factored into clinical decision-making by local experts but not captured by guidelines.
Intelligent machines in the twenty-first century: foundations of inference and inquiry.
Knuth, Kevin H
2003-12-15
The last century saw the application of Boolean algebra to the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines, in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. Recent advances in our understanding of the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we recently identified the algebra of questions as the free distributive algebra, which will now allow us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper, we examine the foundations of inference and inquiry. We begin with a history of inferential reasoning, highlighting key concepts that have led to the automation of inference in modern machine-learning systems. We then discuss the foundations of inference in more detail using a modern viewpoint that relies on the mathematics of partially ordered sets and the scaffolding of lattice theory. This new viewpoint allows us to develop the logic of inquiry and introduce a measure describing the relevance of a proposed question to an unresolved issue. Last, we will demonstrate the automation of inference, and discuss how this new logic of inquiry will enable intelligent machines to ask questions. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them not only to make inferences from data, but also to decide which question to ask, which experiment to perform, or which measurement to take given what they have learned and what they are designed to understand.
Intelligent machines in the twenty-first century: foundations of inference and inquiry
NASA Technical Reports Server (NTRS)
Knuth, Kevin H.
2003-01-01
The last century saw the application of Boolean algebra to the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines, in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. Recent advances in our understanding of the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we recently identified the algebra of questions as the free distributive algebra, which will now allow us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper, we examine the foundations of inference and inquiry. We begin with a history of inferential reasoning, highlighting key concepts that have led to the automation of inference in modern machine-learning systems. We then discuss the foundations of inference in more detail using a modern viewpoint that relies on the mathematics of partially ordered sets and the scaffolding of lattice theory. This new viewpoint allows us to develop the logic of inquiry and introduce a measure describing the relevance of a proposed question to an unresolved issue. Last, we will demonstrate the automation of inference, and discuss how this new logic of inquiry will enable intelligent machines to ask questions. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them not only to make inferences from data, but also to decide which question to ask, which experiment to perform, or which measurement to take given what they have learned and what they are designed to understand.
AHaH computing-from metastable switches to attractors to machine learning.
Nugent, Michael Alexander; Molter, Timothy Wesley
2014-01-01
Modern computing architecture based on the separation of memory and processing leads to a well known problem called the von Neumann bottleneck, a restrictive limit on the data bandwidth between CPU and RAM. This paper introduces a new approach to computing we call AHaH computing where memory and processing are combined. The idea is based on the attractor dynamics of volatile dissipative electronics inspired by biological systems, presenting an attractive alternative architecture that is able to adapt, self-repair, and learn from interactions with the environment. We envision that both von Neumann and AHaH computing architectures will operate together on the same machine, but that the AHaH computing processor may reduce the power consumption and processing time for certain adaptive learning tasks by orders of magnitude. The paper begins by drawing a connection between the properties of volatility, thermodynamics, and Anti-Hebbian and Hebbian (AHaH) plasticity. We show how AHaH synaptic plasticity leads to attractor states that extract the independent components of applied data streams and how they form a computationally complete set of logic functions. After introducing a general memristive device model based on collections of metastable switches, we show how adaptive synaptic weights can be formed from differential pairs of incremental memristors. We also disclose how arrays of synaptic weights can be used to build a neural node circuit operating AHaH plasticity. By configuring the attractor states of the AHaH node in different ways, high level machine learning functions are demonstrated. This includes unsupervised clustering, supervised and unsupervised classification, complex signal prediction, unsupervised robotic actuation and combinatorial optimization of procedures-all key capabilities of biological nervous systems and modern machine learning algorithms with real world application.
AHaH Computing–From Metastable Switches to Attractors to Machine Learning
Nugent, Michael Alexander; Molter, Timothy Wesley
2014-01-01
Modern computing architecture based on the separation of memory and processing leads to a well known problem called the von Neumann bottleneck, a restrictive limit on the data bandwidth between CPU and RAM. This paper introduces a new approach to computing we call AHaH computing where memory and processing are combined. The idea is based on the attractor dynamics of volatile dissipative electronics inspired by biological systems, presenting an attractive alternative architecture that is able to adapt, self-repair, and learn from interactions with the environment. We envision that both von Neumann and AHaH computing architectures will operate together on the same machine, but that the AHaH computing processor may reduce the power consumption and processing time for certain adaptive learning tasks by orders of magnitude. The paper begins by drawing a connection between the properties of volatility, thermodynamics, and Anti-Hebbian and Hebbian (AHaH) plasticity. We show how AHaH synaptic plasticity leads to attractor states that extract the independent components of applied data streams and how they form a computationally complete set of logic functions. After introducing a general memristive device model based on collections of metastable switches, we show how adaptive synaptic weights can be formed from differential pairs of incremental memristors. We also disclose how arrays of synaptic weights can be used to build a neural node circuit operating AHaH plasticity. By configuring the attractor states of the AHaH node in different ways, high level machine learning functions are demonstrated. This includes unsupervised clustering, supervised and unsupervised classification, complex signal prediction, unsupervised robotic actuation and combinatorial optimization of procedures–all key capabilities of biological nervous systems and modern machine learning algorithms with real world application. PMID:24520315
Machine-learning approach for local classification of crystalline structures in multiphase systems
NASA Astrophysics Data System (ADS)
Dietz, C.; Kretz, T.; Thoma, M. H.
2017-07-01
Machine learning is one of the most popular fields in computer science and has a vast number of applications. In this work we will propose a method that will use a neural network to locally identify crystal structures in a mixed phase Yukawa system consisting of fcc, hcp, and bcc clusters and disordered particles similar to plasma crystals. We compare our approach to already used methods and show that the quality of identification increases significantly. The technique works very well for highly disturbed lattices and shows a flexible and robust way to classify crystalline structures that can be used by only providing particle positions. This leads to insights into highly disturbed crystalline structures.
Li, Yuancheng; Qiu, Rixuan; Jing, Sitong
2018-01-01
Advanced Metering Infrastructure (AMI) realizes a two-way communication of electricity data through by interconnecting with a computer network as the core component of the smart grid. Meanwhile, it brings many new security threats and the traditional intrusion detection method can't satisfy the security requirements of AMI. In this paper, an intrusion detection system based on Online Sequence Extreme Learning Machine (OS-ELM) is established, which is used to detecting the attack in AMI and carrying out the comparative analysis with other algorithms. Simulation results show that, compared with other intrusion detection methods, intrusion detection method based on OS-ELM is more superior in detection speed and accuracy.
Building Environment Analysis based on Temperature and Humidity for Smart Energy Systems
Yun, Jaeseok; Won, Kwang-Ho
2012-01-01
In this paper, we propose a new HVAC (heating, ventilation, and air conditioning) control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment. PMID:23202004
NASA Technical Reports Server (NTRS)
Gupta, U. K.; Ali, M.
1988-01-01
The theoretical basis and operation of LEBEX, a machine-learning system for jet-engine performance monitoring, are described. The behavior of the engine is modeled in terms of four parameters (the rotational speeds of the high- and low-speed sections and the exhaust and combustion temperatures), and parameter variations indicating malfunction are transformed into structural representations involving instances and events. LEBEX extracts descriptors from a set of training data on normal and faulty engines, represents them hierarchically in a knowledge base, and uses them to diagnose and predict faults on a real-time basis. Diagrams of the system architecture and printouts of typical results are shown.
A Machine Learning Method for Power Prediction on the Mobile Devices.
Chen, Da-Ren; Chen, You-Shyang; Chen, Lin-Chih; Hsu, Ming-Yang; Chiang, Kai-Feng
2015-10-01
Energy profiling and estimation have been popular areas of research in multicore mobile architectures. While short sequences of system calls have been recognized by machine learning as pattern descriptions for anomalous detection, power consumption of running processes with respect to system-call patterns are not well studied. In this paper, we propose a fuzzy neural network (FNN) for training and analyzing process execution behaviour with respect to series of system calls, parameters and their power consumptions. On the basis of the patterns of a series of system calls, we develop a power estimation daemon (PED) to analyze and predict the energy consumption of the running process. In the initial stage, PED categorizes sequences of system calls as functional groups and predicts their energy consumptions by FNN. In the operational stage, PED is applied to identify the predefined sequences of system calls invoked by running processes and estimates their energy consumption.
A review of intelligent systems for heart sound signal analysis.
Nabih-Ali, Mohammed; El-Dahshan, El-Sayed A; Yahia, Ashraf S
2017-10-01
Intelligent computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of physicians and reduce the time required for accurate diagnosis. CAD systems could provide physicians with a suggestion about the diagnostic of heart diseases. The objective of this paper is to review the recent published preprocessing, feature extraction and classification techniques and their state of the art of phonocardiogram (PCG) signal analysis. Published literature reviewed in this paper shows the potential of machine learning techniques as a design tool in PCG CAD systems and reveals that the CAD systems for PCG signal analysis are still an open problem. Related studies are compared to their datasets, feature extraction techniques and the classifiers they used. Current achievements and limitations in developing CAD systems for PCG signal analysis using machine learning techniques are presented and discussed. In the light of this review, a number of future research directions for PCG signal analysis are provided.
Machine Learning Force Field Parameters from Ab Initio Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ying; Li, Hui; Pickard, Frank C.
Machine learning (ML) techniques with the genetic algorithm (GA) have been applied to determine a polarizable force field parameters using only ab initio data from quantum mechanics (QM) calculations of molecular clusters at the MP2/6-31G(d,p), DFMP2(fc)/jul-cc-pVDZ, and DFMP2(fc)/jul-cc-pVTZ levels to predict experimental condensed phase properties (i.e., density and heat of vaporization). The performance of this ML/GA approach is demonstrated on 4943 dimer electrostatic potentials and 1250 cluster interaction energies for methanol. Excellent agreement between the training data set from QM calculations and the optimized force field model was achieved. The results were further improved by introducing an offset factor duringmore » the machine learning process to compensate for the discrepancy between the QM calculated energy and the energy reproduced by optimized force field, while maintaining the local “shape” of the QM energy surface. Throughout the machine learning process, experimental observables were not involved in the objective function, but were only used for model validation. The best model, optimized from the QM data at the DFMP2(fc)/jul-cc-pVTZ level, appears to perform even better than the original AMOEBA force field (amoeba09.prm), which was optimized empirically to match liquid properties. The present effort shows the possibility of using machine learning techniques to develop descriptive polarizable force field using only QM data. The ML/GA strategy to optimize force fields parameters described here could easily be extended to other molecular systems.« less
NASA Astrophysics Data System (ADS)
Reichstein, M.; Jung, M.; Bodesheim, P.; Mahecha, M. D.; Gans, F.; Rodner, E.; Camps-Valls, G.; Papale, D.; Tramontana, G.; Denzler, J.; Baldocchi, D. D.
2016-12-01
Machine learning tools have been very successful in describing and predicting instantaneous climatic influences on the spatial and seasonal variability of biosphere-atmosphere exchange, while interannual variability is harder to model (e.g. Jung et al. 2011, JGR Biogeosciences). Here we hypothesize that innterannual variability is harder to describe for two reasons. 1) The signal-to-noise ratio in both, predictors (e.g. remote sensing) and target variables (e.g. net ecosystem exchange) is relatively weak, 2) The employed machine learning methods do not sufficiently account for dynamic lag and carry-over effects. In this presentation we can largely confirm both hypotheses: 1) We show that based on FLUXNET data and an ensemble of machine learning methods we can arrive at estimates of global NEE that correlate well with the residual land sink overall and CO2 flux inversions over latitudinal bands. Furthermore these results highlight the importance of variations in water availability for variations in carbon fluxes locally, while globally, as a scale-emergent property, tropical temperatures correlate well with the atmospheric CO2 growth rate, because of spatial anticorrelation and compensation of water availability. 2) We evidence with synthetic and real data that machine learning methods with embed dynamic memory effects of the system such as recurrent neural networks (RNNs) are able to better capture lag and carry-over effect which are caused by dynamic carbon pools in vegetation and soils. For these methods, long-term replicate observations are an essential asset.
NASA Astrophysics Data System (ADS)
Mølgaard, Lasse L.; Buus, Ole T.; Larsen, Jan; Babamoradi, Hamid; Thygesen, Ida L.; Laustsen, Milan; Munk, Jens Kristian; Dossi, Eleftheria; O'Keeffe, Caroline; Lässig, Lina; Tatlow, Sol; Sandström, Lars; Jakobsen, Mogens H.
2017-05-01
We present a data-driven machine learning approach to detect drug- and explosives-precursors using colorimetric sensor technology for air-sampling. The sensing technology has been developed in the context of the CRIM-TRACK project. At present a fully- integrated portable prototype for air sampling with disposable sensing chips and automated data acquisition has been developed. The prototype allows for fast, user-friendly sampling, which has made it possible to produce large datasets of colorimetric data for different target analytes in laboratory and simulated real-world application scenarios. To make use of the highly multi-variate data produced from the colorimetric chip a number of machine learning techniques are employed to provide reliable classification of target analytes from confounders found in the air streams. We demonstrate that a data-driven machine learning method using dimensionality reduction in combination with a probabilistic classifier makes it possible to produce informative features and a high detection rate of analytes. Furthermore, the probabilistic machine learning approach provides a means of automatically identifying unreliable measurements that could produce false predictions. The robustness of the colorimetric sensor has been evaluated in a series of experiments focusing on the amphetamine pre-cursor phenylacetone as well as the improvised explosives pre-cursor hydrogen peroxide. The analysis demonstrates that the system is able to detect analytes in clean air and mixed with substances that occur naturally in real-world sampling scenarios. The technology under development in CRIM-TRACK has the potential as an effective tool to control trafficking of illegal drugs, explosive detection, or in other law enforcement applications.
Approaches to Machine Learning.
1984-02-16
The field of machine learning strives to develop methods and techniques to automatic the acquisition of new information, new skills, and new ways of organizing existing information. In this article, we review the major approaches to machine learning in symbolic domains, covering the tasks of learning concepts from examples, learning search methods, conceptual clustering, and language acquisition. We illustrate each of the basic approaches with paradigmatic examples. (Author)
The Industrial Immune System: Using Machine Learning for Next Generation
nefarious intentions have that deep domain expertise of energy systems or water systems or thermal systems panacea: It needs to be used strategically, and it requires a hygienic network to be really effective. All
Machine Learning in the Big Data Era: Are We There Yet?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar, Sreenivas Rangan
In this paper, we discuss the machine learning challenges of the Big Data era. We observe that recent innovations in being able to collect, access, organize, integrate, and query massive amounts of data from a wide variety of data sources have brought statistical machine learning under more scrutiny and evaluation for gleaning insights from the data than ever before. In that context, we pose and debate the question - Are machine learning algorithms scaling with the ability to store and compute? If yes, how? If not, why not? We survey recent developments in the state-of-the-art to discuss emerging and outstandingmore » challenges in the design and implementation of machine learning algorithms at scale. We leverage experience from real-world Big Data knowledge discovery projects across domains of national security and healthcare to suggest our efforts be focused along the following axes: (i) the data science challenge - designing scalable and flexible computational architectures for machine learning (beyond just data-retrieval); (ii) the science of data challenge the ability to understand characteristics of data before applying machine learning algorithms and tools; and (iii) the scalable predictive functions challenge the ability to construct, learn and infer with increasing sample size, dimensionality, and categories of labels. We conclude with a discussion of opportunities and directions for future research.« less
1990-04-01
DTIC i.LE COPY RADC-TR-90-25 Final Technical Report April 1990 MACHINE LEARNING The MITRE Corporation Melissa P. Chase Cs) CTIC ’- CT E 71 IN 2 11990...S. FUNDING NUMBERS MACHINE LEARNING C - F19628-89-C-0001 PE - 62702F PR - MOlE S. AUTHO(S) TA - 79 Melissa P. Chase WUT - 80 S. PERFORMING...341.280.5500 pm I " Aw Sig rill Ia 2110-01 SECTION 1 INTRODUCTION 1.1 BACKGROUND Research in machine learning has taken two directions in the problem of
Shrivastava, Vimal K; Londhe, Narendra D; Sonawane, Rajendra S; Suri, Jasjit S
2015-10-01
A large percentage of dermatologist׳s decision in psoriasis disease assessment is based on color. The current computer-aided diagnosis systems for psoriasis risk stratification and classification lack the vigor of color paradigm. The paper presents an automated psoriasis computer-aided diagnosis (pCAD) system for classification of psoriasis skin images into psoriatic lesion and healthy skin, which solves the two major challenges: (i) fulfills the color feature requirements and (ii) selects the powerful dominant color features while retaining high classification accuracy. Fourteen color spaces are discovered for psoriasis disease analysis leading to 86 color features. The pCAD system is implemented in a support vector-based machine learning framework where the offline image data set is used for computing machine learning offline color machine learning parameters. These are then used for transformation of the online color features to predict the class labels for healthy vs. diseased cases. The above paradigm uses principal component analysis for color feature selection of dominant features, keeping the original color feature unaltered. Using the cross-validation protocol, the above machine learning protocol is compared against the standalone grayscale features with 60 features and against the combined grayscale and color feature set of 146. Using a fixed data size of 540 images with equal number of healthy and diseased, 10 fold cross-validation protocol, and SVM of polynomial kernel of type two, pCAD system shows an accuracy of 99.94% with sensitivity and specificity of 99.93% and 99.96%. Using a varying data size protocol, the mean classification accuracies for color, grayscale, and combined scenarios are: 92.85%, 93.83% and 93.99%, respectively. The reliability of the system in these three scenarios are: 94.42%, 97.39% and 96.00%, respectively. We conclude that pCAD system using color space alone is compatible to grayscale space or combined color and grayscale spaces. We validated our pCAD system against facial color databases and the results are consistent in accuracy and reliability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Role of Big Data and Machine Learning in Diagnostic Decision Support in Radiology.
Syeda-Mahmood, Tanveer
2018-03-01
The field of diagnostic decision support in radiology is undergoing rapid transformation with the availability of large amounts of patient data and the development of new artificial intelligence methods of machine learning such as deep learning. They hold the promise of providing imaging specialists with tools for improving the accuracy and efficiency of diagnosis and treatment. In this article, we will describe the growth of this field for radiology and outline general trends highlighting progress in the field of diagnostic decision support from the early days of rule-based expert systems to cognitive assistants of the modern era. Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Reinforcement learning in computer vision
NASA Astrophysics Data System (ADS)
Bernstein, A. V.; Burnaev, E. V.
2018-04-01
Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn state of surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. It is not surprising that when solving computer vision tasks we should take into account special aspects of their subsequent application in model-based predictive control. Reinforcement learning is one of modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, Reinforcement learning has been used both for solving such applied tasks as processing and analysis of visual information, and for solving specific computer vision problems such as filtering, extracting image features, localizing objects in scenes, and many others. The paper describes shortly the Reinforcement learning technology and its use for solving computer vision problems.
Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks
NASA Astrophysics Data System (ADS)
DeCost, Brian L.; Jain, Harshvardhan; Rollett, Anthony D.; Holm, Elizabeth A.
2017-03-01
By applying computer vision and machine learning methods, we develop a system to characterize powder feedstock materials for metal additive manufacturing (AM). Feature detection and description algorithms are applied to create a microstructural scale image representation that can be used to cluster, compare, and analyze powder micrographs. When applied to eight commercial feedstock powders, the system classifies powder images into the correct material systems with greater than 95% accuracy. The system also identifies both representative and atypical powder images. These results suggest the possibility of measuring variations in powders as a function of processing history, relating microstructural features of powders to properties relevant to their performance in AM processes, and defining objective material standards based on visual images. A significant advantage of the computer vision approach is that it is autonomous, objective, and repeatable.
Machine learning in autistic spectrum disorder behavioral research: A review and ways forward.
Thabtah, Fadi
2018-02-13
Autistic Spectrum Disorder (ASD) is a mental disorder that retards acquisition of linguistic, communication, cognitive, and social skills and abilities. Despite being diagnosed with ASD, some individuals exhibit outstanding scholastic, non-academic, and artistic capabilities, in such cases posing a challenging task for scientists to provide answers. In the last few years, ASD has been investigated by social and computational intelligence scientists utilizing advanced technologies such as machine learning to improve diagnostic timing, precision, and quality. Machine learning is a multidisciplinary research topic that employs intelligent techniques to discover useful concealed patterns, which are utilized in prediction to improve decision making. Machine learning techniques such as support vector machines, decision trees, logistic regressions, and others, have been applied to datasets related to autism in order to construct predictive models. These models claim to enhance the ability of clinicians to provide robust diagnoses and prognoses of ASD. However, studies concerning the use of machine learning in ASD diagnosis and treatment suffer from conceptual, implementation, and data issues such as the way diagnostic codes are used, the type of feature selection employed, the evaluation measures chosen, and class imbalances in data among others. A more serious claim in recent studies is the development of a new method for ASD diagnoses based on machine learning. This article critically analyses these recent investigative studies on autism, not only articulating the aforementioned issues in these studies but also recommending paths forward that enhance machine learning use in ASD with respect to conceptualization, implementation, and data. Future studies concerning machine learning in autism research are greatly benefitted by such proposals.
Overlay improvements using a real time machine learning algorithm
NASA Astrophysics Data System (ADS)
Schmitt-Weaver, Emil; Kubis, Michael; Henke, Wolfgang; Slotboom, Daan; Hoogenboom, Tom; Mulkens, Jan; Coogans, Martyn; ten Berge, Peter; Verkleij, Dick; van de Mast, Frank
2014-04-01
While semiconductor manufacturing is moving towards the 14nm node using immersion lithography, the overlay requirements are tightened to below 5nm. Next to improvements in the immersion scanner platform, enhancements in the overlay optimization and process control are needed to enable these low overlay numbers. Whereas conventional overlay control methods address wafer and lot variation autonomously with wafer pre exposure alignment metrology and post exposure overlay metrology, we see a need to reduce these variations by correlating more of the TWINSCAN system's sensor data directly to the post exposure YieldStar metrology in time. In this paper we will present the results of a study on applying a real time control algorithm based on machine learning technology. Machine learning methods use context and TWINSCAN system sensor data paired with post exposure YieldStar metrology to recognize generic behavior and train the control system to anticipate on this generic behavior. Specific for this study, the data concerns immersion scanner context, sensor data and on-wafer measured overlay data. By making the link between the scanner data and the wafer data we are able to establish a real time relationship. The result is an inline controller that accounts for small changes in scanner hardware performance in time while picking up subtle lot to lot and wafer to wafer deviations introduced by wafer processing.
Agarwal, Shashank; Liu, Feifan; Yu, Hong
2011-10-03
Protein-protein interaction (PPI) is an important biomedical phenomenon. Automatically detecting PPI-relevant articles and identifying methods that are used to study PPI are important text mining tasks. In this study, we have explored domain independent features to develop two open source machine learning frameworks. One performs binary classification to determine whether the given article is PPI relevant or not, named "Simple Classifier", and the other one maps the PPI relevant articles with corresponding interaction method nodes in a standardized PSI-MI (Proteomics Standards Initiative-Molecular Interactions) ontology, named "OntoNorm". We evaluated our system in the context of BioCreative challenge competition using the standardized data set. Our systems are amongst the top systems reported by the organizers, attaining 60.8% F1-score for identifying relevant documents, and 52.3% F1-score for mapping articles to interaction method ontology. Our results show that domain-independent machine learning frameworks can perform competitively well at the tasks of detecting PPI relevant articles and identifying the methods that were used to study the interaction in such articles. Simple Classifier is available at http://sourceforge.net/p/simpleclassify/home/ and OntoNorm at http://sourceforge.net/p/ontonorm/home/.
Anam, Khairul; Al-Jumaily, Adel
2014-01-01
The use of a small number of surface electromyography (EMG) channels on the transradial amputee in a myoelectric controller is a big challenge. This paper proposes a pattern recognition system using an extreme learning machine (ELM) optimized by particle swarm optimization (PSO). PSO is mutated by wavelet function to avoid trapped in a local minima. The proposed system is used to classify eleven imagined finger motions on five amputees by using only two EMG channels. The optimal performance of wavelet-PSO was compared to a grid-search method and standard PSO. The experimental results show that the proposed system is the most accurate classifier among other tested classifiers. It could classify 11 finger motions with the average accuracy of about 94 % across five amputees.
Nakai, Yasushi; Takiguchi, Tetsuya; Matsui, Gakuyo; Yamaoka, Noriko; Takada, Satoshi
2017-10-01
Abnormal prosody is often evident in the voice intonations of individuals with autism spectrum disorders. We compared a machine-learning-based voice analysis with human hearing judgments made by 10 speech therapists for classifying children with autism spectrum disorders ( n = 30) and typical development ( n = 51). Using stimuli limited to single-word utterances, machine-learning-based voice analysis was superior to speech therapist judgments. There was a significantly higher true-positive than false-negative rate for machine-learning-based voice analysis but not for speech therapists. Results are discussed in terms of some artificiality of clinician judgments based on single-word utterances, and the objectivity machine-learning-based voice analysis adds to judging abnormal prosody.
A Transfer Learning Approach for Applying Matrix Factorization to Small ITS Datasets
ERIC Educational Resources Information Center
Voß, Lydia; Schatten, Carlotta; Mazziotti, Claudia; Schmidt-Thieme, Lars
2015-01-01
Machine Learning methods for Performance Prediction in Intelligent Tutoring Systems (ITS) have proven their efficacy; specific methods, e.g. Matrix Factorization (MF), however suffer from the lack of available information about new tasks or new students. In this paper we show how this problem could be solved by applying Transfer Learning (TL),…
SignMT: An Alternative Language Learning Tool
ERIC Educational Resources Information Center
Ditcharoen, Nadh; Naruedomkul, Kanlaya; Cercone, Nick
2010-01-01
Learning a second language is very difficult, especially, for the disabled; the disability may be a barrier to learn and to utilize information written in text form. We present the SignMT, Thai sign to Thai machine translation system, which is able to translate from Thai sign language into Thai text. In the translation process, SignMT takes into…
ERIC Educational Resources Information Center
Chatzara, K.; Karagiannidis, C.; Stamatis, D.
2016-01-01
This paper presents an anthropocentric approach in human-machine interaction in the area of self-regulated e-learning. In an attempt to enhance communication mediated through computers for pedagogical use we propose the incorporation of an intelligent emotional agent that is represented by a synthetic character with multimedia capabilities,…
Ellis, Katherine; Godbole, Suneeta; Marshall, Simon; Lanckriet, Gert; Staudenmayer, John; Kerr, Jacqueline
2014-01-01
Background: Active travel is an important area in physical activity research, but objective measurement of active travel is still difficult. Automated methods to measure travel behaviors will improve research in this area. In this paper, we present a supervised machine learning method for transportation mode prediction from global positioning system (GPS) and accelerometer data. Methods: We collected a dataset of about 150 h of GPS and accelerometer data from two research assistants following a protocol of prescribed trips consisting of five activities: bicycling, riding in a vehicle, walking, sitting, and standing. We extracted 49 features from 1-min windows of this data. We compared the performance of several machine learning algorithms and chose a random forest algorithm to classify the transportation mode. We used a moving average output filter to smooth the output predictions over time. Results: The random forest algorithm achieved 89.8% cross-validated accuracy on this dataset. Adding the moving average filter to smooth output predictions increased the cross-validated accuracy to 91.9%. Conclusion: Machine learning methods are a viable approach for automating measurement of active travel, particularly for measuring travel activities that traditional accelerometer data processing methods misclassify, such as bicycling and vehicle travel. PMID:24795875
Zorman, Milan; Sánchez de la Rosa, José Luis; Dinevski, Dejan
2011-12-01
It is not very often to see a symbol-based machine learning approach to be used for the purpose of image classification and recognition. In this paper we will present such an approach, which we first used on the follicular lymphoma images. Lymphoma is a broad term encompassing a variety of cancers of the lymphatic system. Lymphoma is differentiated by the type of cell that multiplies and how the cancer presents itself. It is very important to get an exact diagnosis regarding lymphoma and to determine the treatments that will be most effective for the patient's condition. Our work was focused on the identification of lymphomas by finding follicles in microscopy images provided by the Laboratory of Pathology in the University Hospital of Tenerife, Spain. We divided our work in two stages: in the first stage we did image pre-processing and feature extraction, and in the second stage we used different symbolic machine learning approaches for pixel classification. Symbolic machine learning approaches are often neglected when looking for image analysis tools. They are not only known for a very appropriate knowledge representation, but also claimed to lack computational power. The results we got are very promising and show that symbolic approaches can be successful in image analysis applications.
Parodi, Stefano; Manneschi, Chiara; Verda, Damiano; Ferrari, Enrico; Muselli, Marco
2018-03-01
This study evaluates the performance of a set of machine learning techniques in predicting the prognosis of Hodgkin's lymphoma using clinical factors and gene expression data. Analysed samples from 130 Hodgkin's lymphoma patients included a small set of clinical variables and more than 54,000 gene features. Machine learning classifiers included three black-box algorithms ( k-nearest neighbour, Artificial Neural Network, and Support Vector Machine) and two methods based on intelligible rules (Decision Tree and the innovative Logic Learning Machine method). Support Vector Machine clearly outperformed any of the other methods. Among the two rule-based algorithms, Logic Learning Machine performed better and identified a set of simple intelligible rules based on a combination of clinical variables and gene expressions. Decision Tree identified a non-coding gene ( XIST) involved in the early phases of X chromosome inactivation that was overexpressed in females and in non-relapsed patients. XIST expression might be responsible for the better prognosis of female Hodgkin's lymphoma patients.
Aziz, Omar; Musngi, Magnus; Park, Edward J; Mori, Greg; Robinovitch, Stephen N
2017-01-01
Falls are the leading cause of injury-related morbidity and mortality among older adults. Over 90 % of hip and wrist fractures and 60 % of traumatic brain injuries in older adults are due to falls. Another serious consequence of falls among older adults is the 'long lie' experienced by individuals who are unable to get up and remain on the ground for an extended period of time after a fall. Considerable research has been conducted over the past decade on the design of wearable sensor systems that can automatically detect falls and send an alert to care providers to reduce the frequency and severity of long lies. While most systems described to date incorporate threshold-based algorithms, machine learning algorithms may offer increased accuracy in detecting falls. In the current study, we compared the accuracy of these two approaches in detecting falls by conducting a comprehensive set of falling experiments with 10 young participants. Participants wore waist-mounted tri-axial accelerometers and simulated the most common causes of falls observed in older adults, along with near-falls and activities of daily living. The overall performance of five machine learning algorithms was greater than the performance of five threshold-based algorithms described in the literature, with support vector machines providing the highest combination of sensitivity and specificity.
Hussain, Lal; Ahmed, Adeel; Saeed, Sharjil; Rathore, Saima; Awan, Imtiaz Ahmed; Shah, Saeed Arif; Majid, Abdul; Idris, Adnan; Awan, Anees Ahmed
2018-02-06
Prostate is a second leading causes of cancer deaths among men. Early detection of cancer can effectively reduce the rate of mortality caused by Prostate cancer. Due to high and multiresolution of MRIs from prostate cancer require a proper diagnostic systems and tools. In the past researchers developed Computer aided diagnosis (CAD) systems that help the radiologist to detect the abnormalities. In this research paper, we have employed novel Machine learning techniques such as Bayesian approach, Support vector machine (SVM) kernels: polynomial, radial base function (RBF) and Gaussian and Decision Tree for detecting prostate cancer. Moreover, different features extracting strategies are proposed to improve the detection performance. The features extracting strategies are based on texture, morphological, scale invariant feature transform (SIFT), and elliptic Fourier descriptors (EFDs) features. The performance was evaluated based on single as well as combination of features using Machine Learning Classification techniques. The Cross validation (Jack-knife k-fold) was performed and performance was evaluated in term of receiver operating curve (ROC) and specificity, sensitivity, Positive predictive value (PPV), negative predictive value (NPV), false positive rate (FPR). Based on single features extracting strategies, SVM Gaussian Kernel gives the highest accuracy of 98.34% with AUC of 0.999. While, using combination of features extracting strategies, SVM Gaussian kernel with texture + morphological, and EFDs + morphological features give the highest accuracy of 99.71% and AUC of 1.00.
Probabilistic machine learning and artificial intelligence.
Ghahramani, Zoubin
2015-05-28
How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.
Probabilistic machine learning and artificial intelligence
NASA Astrophysics Data System (ADS)
Ghahramani, Zoubin
2015-05-01
How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.
Machine Learning Techniques in Clinical Vision Sciences.
Caixinha, Miguel; Nunes, Sandrina
2017-01-01
This review presents and discusses the contribution of machine learning techniques for diagnosis and disease monitoring in the context of clinical vision science. Many ocular diseases leading to blindness can be halted or delayed when detected and treated at its earliest stages. With the recent developments in diagnostic devices, imaging and genomics, new sources of data for early disease detection and patients' management are now available. Machine learning techniques emerged in the biomedical sciences as clinical decision-support techniques to improve sensitivity and specificity of disease detection and monitoring, increasing objectively the clinical decision-making process. This manuscript presents a review in multimodal ocular disease diagnosis and monitoring based on machine learning approaches. In the first section, the technical issues related to the different machine learning approaches will be present. Machine learning techniques are used to automatically recognize complex patterns in a given dataset. These techniques allows creating homogeneous groups (unsupervised learning), or creating a classifier predicting group membership of new cases (supervised learning), when a group label is available for each case. To ensure a good performance of the machine learning techniques in a given dataset, all possible sources of bias should be removed or minimized. For that, the representativeness of the input dataset for the true population should be confirmed, the noise should be removed, the missing data should be treated and the data dimensionally (i.e., the number of parameters/features and the number of cases in the dataset) should be adjusted. The application of machine learning techniques in ocular disease diagnosis and monitoring will be presented and discussed in the second section of this manuscript. To show the clinical benefits of machine learning in clinical vision sciences, several examples will be presented in glaucoma, age-related macular degeneration, and diabetic retinopathy, these ocular pathologies being the major causes of irreversible visual impairment.
ERIC Educational Resources Information Center
Kafafian, Haig
Teaching instructions, lesson plans, and exercises are provided for severely physically and/or neurologically handicapped persons learning to use the Cybertype electric writing machine with a tongue-body keyboard. The keyboard, which has eight double-throw toggle switches and a three-position state-selector switch, is designed to be used by…
Multi-Stage Convex Relaxation Methods for Machine Learning
2013-03-01
Many problems in machine learning can be naturally formulated as non-convex optimization problems. However, such direct nonconvex formulations have...original nonconvex formulation. We will develop theoretical properties of this method and algorithmic consequences. Related convex and nonconvex machine learning methods will also be investigated.
Machine Learning for the Knowledge Plane
2006-06-01
this idea is to combine techniques from machine learning with new architectural concepts in networking to make the internet self-aware and self...work on the machine learning portion of the Knowledge Plane. This consisted of three components: (a) we wrote a document formulating the various
Quantitative Predictive Models for Systemic Toxicity (SOT)
Models to identify systemic and specific target organ toxicity were developed to help transition the field of toxicology towards computational models. By leveraging multiple data sources to incorporate read-across and machine learning approaches, a quantitative model of systemic ...
Machine learning and data science in soft materials engineering
NASA Astrophysics Data System (ADS)
Ferguson, Andrew L.
2018-01-01
In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.
Machine learning and data science in soft materials engineering.
Ferguson, Andrew L
2018-01-31
In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.
A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors
Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei
2017-01-01
In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors. PMID:28934163
Machine Learning Approaches for Clinical Psychology and Psychiatry.
Dwyer, Dominic B; Falkai, Peter; Koutsouleris, Nikolaos
2018-05-07
Machine learning approaches for clinical psychology and psychiatry explicitly focus on learning statistical functions from multidimensional data sets to make generalizable predictions about individuals. The goal of this review is to provide an accessible understanding of why this approach is important for future practice given its potential to augment decisions associated with the diagnosis, prognosis, and treatment of people suffering from mental illness using clinical and biological data. To this end, the limitations of current statistical paradigms in mental health research are critiqued, and an introduction is provided to critical machine learning methods used in clinical studies. A selective literature review is then presented aiming to reinforce the usefulness of machine learning methods and provide evidence of their potential. In the context of promising initial results, the current limitations of machine learning approaches are addressed, and considerations for future clinical translation are outlined.
Interactive Machine Learning at Scale with CHISSL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arendt, Dustin L.; Grace, Emily A.; Volkova, Svitlana
We demonstrate CHISSL, a scalable client-server system for real-time interactive machine learning. Our system is capa- ble of incorporating user feedback incrementally and imme- diately without a structured or pre-defined prediction task. Computation is partitioned between a lightweight web-client and a heavyweight server. The server relies on representation learning and agglomerative clustering to learn a dendrogram, a hierarchical approximation of a representation space. The client uses only this dendrogram to incorporate user feedback into the model via transduction. Distances and predictions for each unlabeled instance are updated incrementally and deter- ministically, with O(n) space and time complexity. Our al- gorithmmore » is implemented in a functional prototype, designed to be easy to use by non-experts. The prototype organizes the large amounts of data into recommendations. This allows the user to interact with actual instances by dragging and drop- ping to provide feedback in an intuitive manner. We applied CHISSL to several domains including cyber, social media, and geo-temporal analysis.« less
Sahan, Seral; Polat, Kemal; Kodaz, Halife; Güneş, Salih
2007-03-01
The use of machine learning tools in medical diagnosis is increasing gradually. This is mainly because the effectiveness of classification and recognition systems has improved in a great deal to help medical experts in diagnosing diseases. Such a disease is breast cancer, which is a very common type of cancer among woman. As the incidence of this disease has increased significantly in the recent years, machine learning applications to this problem have also took a great attention as well as medical consideration. This study aims at diagnosing breast cancer with a new hybrid machine learning method. By hybridizing a fuzzy-artificial immune system with k-nearest neighbour algorithm, a method was obtained to solve this diagnosis problem via classifying Wisconsin Breast Cancer Dataset (WBCD). This data set is a very commonly used data set in the literature relating the use of classification systems for breast cancer diagnosis and it was used in this study to compare the classification performance of our proposed method with regard to other studies. We obtained a classification accuracy of 99.14%, which is the highest one reached so far. The classification accuracy was obtained via 10-fold cross validation. This result is for WBCD but it states that this method can be used confidently for other breast cancer diagnosis problems, too.
Meng, Qier; Kitasaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Ueno, Junji; Mori, Kensaku
2017-02-01
Airway segmentation plays an important role in analyzing chest computed tomography (CT) volumes for computerized lung cancer detection, emphysema diagnosis and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3D airway tree structure from a CT volume is quite a challenging task. Several researchers have proposed automated airway segmentation algorithms basically based on region growing and machine learning techniques. However, these methods fail to detect the peripheral bronchial branches, which results in a large amount of leakage. This paper presents a novel approach for more accurate extraction of the complex airway tree. This proposed segmentation method is composed of three steps. First, Hessian analysis is utilized to enhance the tube-like structure in CT volumes; then, an adaptive multiscale cavity enhancement filter is employed to detect the cavity-like structure with different radii. In the second step, support vector machine learning will be utilized to remove the false positive (FP) regions from the result obtained in the previous step. Finally, the graph-cut algorithm is used to refine the candidate voxels to form an integrated airway tree. A test dataset including 50 standard-dose chest CT volumes was used for evaluating our proposed method. The average extraction rate was about 79.1 % with the significantly decreased FP rate. A new method of airway segmentation based on local intensity structure and machine learning technique was developed. The method was shown to be feasible for airway segmentation in a computer-aided diagnosis system for a lung and bronchoscope guidance system.
Learning About Climate and Atmospheric Models Through Machine Learning
NASA Astrophysics Data System (ADS)
Lucas, D. D.
2017-12-01
From the analysis of ensemble variability to improving simulation performance, machine learning algorithms can play a powerful role in understanding the behavior of atmospheric and climate models. To learn about model behavior, we create training and testing data sets through ensemble techniques that sample different model configurations and values of input parameters, and then use supervised machine learning to map the relationships between the inputs and outputs. Following this procedure, we have used support vector machines, random forests, gradient boosting and other methods to investigate a variety of atmospheric and climate model phenomena. We have used machine learning to predict simulation crashes, estimate the probability density function of climate sensitivity, optimize simulations of the Madden Julian oscillation, assess the impacts of weather and emissions uncertainty on atmospheric dispersion, and quantify the effects of model resolution changes on precipitation. This presentation highlights recent examples of our applications of machine learning to improve the understanding of climate and atmospheric models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Kunimatsu, Akira; Kunimatsu, Natsuko; Yasaka, Koichiro; Akai, Hiroyuki; Kamiya, Kouhei; Watadani, Takeyuki; Mori, Harushi; Abe, Osamu
2018-05-16
Although advanced MRI techniques are increasingly available, imaging differentiation between glioblastoma and primary central nervous system lymphoma (PCNSL) is sometimes confusing. We aimed to evaluate the performance of image classification by support vector machine, a method of traditional machine learning, using texture features computed from contrast-enhanced T 1 -weighted images. This retrospective study on preoperative brain tumor MRI included 76 consecutives, initially treated patients with glioblastoma (n = 55) or PCNSL (n = 21) from one institution, consisting of independent training group (n = 60: 44 glioblastomas and 16 PCNSLs) and test group (n = 16: 11 glioblastomas and 5 PCNSLs) sequentially separated by time periods. A total set of 67 texture features was computed on routine contrast-enhanced T 1 -weighted images of the training group, and the top four most discriminating features were selected as input variables to train support vector machine classifiers. These features were then evaluated on the test group with subsequent image classification. The area under the receiver operating characteristic curves on the training data was calculated at 0.99 (95% confidence interval [CI]: 0.96-1.00) for the classifier with a Gaussian kernel and 0.87 (95% CI: 0.77-0.95) for the classifier with a linear kernel. On the test data, both of the classifiers showed prediction accuracy of 75% (12/16) of the test images. Although further improvement is needed, our preliminary results suggest that machine learning-based image classification may provide complementary diagnostic information on routine brain MRI.
Automation of energy demand forecasting
NASA Astrophysics Data System (ADS)
Siddique, Sanzad
Automation of energy demand forecasting saves time and effort by searching automatically for an appropriate model in a candidate model space without manual intervention. This thesis introduces a search-based approach that improves the performance of the model searching process for econometrics models. Further improvements in the accuracy of the energy demand forecasting are achieved by integrating nonlinear transformations within the models. This thesis introduces machine learning techniques that are capable of modeling such nonlinearity. Algorithms for learning domain knowledge from time series data using the machine learning methods are also presented. The novel search based approach and the machine learning models are tested with synthetic data as well as with natural gas and electricity demand signals. Experimental results show that the model searching technique is capable of finding an appropriate forecasting model. Further experimental results demonstrate an improved forecasting accuracy achieved by using the novel machine learning techniques introduced in this thesis. This thesis presents an analysis of how the machine learning techniques learn domain knowledge. The learned domain knowledge is used to improve the forecast accuracy.
Applications of machine learning in cancer prediction and prognosis.
Cruz, Joseph A; Wishart, David S
2007-02-11
Machine learning is a branch of artificial intelligence that employs a variety of statistical, probabilistic and optimization techniques that allows computers to "learn" from past examples and to detect hard-to-discern patterns from large, noisy or complex data sets. This capability is particularly well-suited to medical applications, especially those that depend on complex proteomic and genomic measurements. As a result, machine learning is frequently used in cancer diagnosis and detection. More recently machine learning has been applied to cancer prognosis and prediction. This latter approach is particularly interesting as it is part of a growing trend towards personalized, predictive medicine. In assembling this review we conducted a broad survey of the different types of machine learning methods being used, the types of data being integrated and the performance of these methods in cancer prediction and prognosis. A number of trends are noted, including a growing dependence on protein biomarkers and microarray data, a strong bias towards applications in prostate and breast cancer, and a heavy reliance on "older" technologies such artificial neural networks (ANNs) instead of more recently developed or more easily interpretable machine learning methods. A number of published studies also appear to lack an appropriate level of validation or testing. Among the better designed and validated studies it is clear that machine learning methods can be used to substantially (15-25%) improve the accuracy of predicting cancer susceptibility, recurrence and mortality. At a more fundamental level, it is also evident that machine learning is also helping to improve our basic understanding of cancer development and progression.
A review of supervised machine learning applied to ageing research.
Fabris, Fabio; Magalhães, João Pedro de; Freitas, Alex A
2017-04-01
Broadly speaking, supervised machine learning is the computational task of learning correlations between variables in annotated data (the training set), and using this information to create a predictive model capable of inferring annotations for new data, whose annotations are not known. Ageing is a complex process that affects nearly all animal species. This process can be studied at several levels of abstraction, in different organisms and with different objectives in mind. Not surprisingly, the diversity of the supervised machine learning algorithms applied to answer biological questions reflects the complexities of the underlying ageing processes being studied. Many works using supervised machine learning to study the ageing process have been recently published, so it is timely to review these works, to discuss their main findings and weaknesses. In summary, the main findings of the reviewed papers are: the link between specific types of DNA repair and ageing; ageing-related proteins tend to be highly connected and seem to play a central role in molecular pathways; ageing/longevity is linked with autophagy and apoptosis, nutrient receptor genes, and copper and iron ion transport. Additionally, several biomarkers of ageing were found by machine learning. Despite some interesting machine learning results, we also identified a weakness of current works on this topic: only one of the reviewed papers has corroborated the computational results of machine learning algorithms through wet-lab experiments. In conclusion, supervised machine learning has contributed to advance our knowledge and has provided novel insights on ageing, yet future work should have a greater emphasis in validating the predictions.
Jonnalagadda, Siddhartha Reddy; Li, Dingcheng; Sohn, Sunghwan; Wu, Stephen Tze-Inn; Wagholikar, Kavishwar; Torii, Manabu; Liu, Hongfang
2012-01-01
This paper describes the coreference resolution system submitted by Mayo Clinic for the 2011 i2b2/VA/Cincinnati shared task Track 1C. The goal of the task was to construct a system that links the markables corresponding to the same entity. The task organizers provided progress notes and discharge summaries that were annotated with the markables of treatment, problem, test, person, and pronoun. We used a multi-pass sieve algorithm that applies deterministic rules in the order of preciseness and simultaneously gathers information about the entities in the documents. Our system, MedCoref, also uses a state-of-the-art machine learning framework as an alternative to the final, rule-based pronoun resolution sieve. The best system that uses a multi-pass sieve has an overall score of 0.836 (average of B(3), MUC, Blanc, and CEAF F score) for the training set and 0.843 for the test set. A supervised machine learning system that typically uses a single function to find coreferents cannot accommodate irregularities encountered in data especially given the insufficient number of examples. On the other hand, a completely deterministic system could lead to a decrease in recall (sensitivity) when the rules are not exhaustive. The sieve-based framework allows one to combine reliable machine learning components with rules designed by experts. Using relatively simple rules, part-of-speech information, and semantic type properties, an effective coreference resolution system could be designed. The source code of the system described is available at https://sourceforge.net/projects/ohnlp/files/MedCoref.
NASA Astrophysics Data System (ADS)
Yenaeng, Sasikanchana; Saelee, Somkid; Samai, Wirachai
2018-01-01
The system evaluation for report writing skills of summary by Hybrid Genetic Algorithm-Support Vector Machines (HGA-SVM) with Ontology of Medical Case Study in Problem Based Learning (PBL) is a system was developed as a guideline of scoring for the facilitators or medical teacher. The essay answers come from medical student of medical education courses in the nervous system motion and Behavior I and II subject, a third year medical student 20 groups of 9-10 people, the Faculty of Medicine in Prince of Songkla University (PSU). The audit committee have the opinion that the ratings of individual facilitators are inadequate, this system to solve such problems. In this paper proposes a development of the system evaluation for report writing skills of summary by HGA-SVM with Ontology of medical case study in PBL which the mean scores of machine learning score and humans (facilitators) score were not different at the significantly level .05 all 3 essay parts contain problem essay part, hypothesis essay part and learning objective essay part. The result show that, the average score all 3 essay parts that were not significantly different from the rate at the level of significance .05.
Machine learning, social learning and the governance of self-driving cars.
Stilgoe, Jack
2018-02-01
Self-driving cars, a quintessentially 'smart' technology, are not born smart. The algorithms that control their movements are learning as the technology emerges. Self-driving cars represent a high-stakes test of the powers of machine learning, as well as a test case for social learning in technology governance. Society is learning about the technology while the technology learns about society. Understanding and governing the politics of this technology means asking 'Who is learning, what are they learning and how are they learning?' Focusing on the successes and failures of social learning around the much-publicized crash of a Tesla Model S in 2016, I argue that trajectories and rhetorics of machine learning in transport pose a substantial governance challenge. 'Self-driving' or 'autonomous' cars are misnamed. As with other technologies, they are shaped by assumptions about social needs, solvable problems, and economic opportunities. Governing these technologies in the public interest means improving social learning by constructively engaging with the contingencies of machine learning.
NASA Technical Reports Server (NTRS)
Lum, Henry, Jr.
1988-01-01
Information on systems autonomy is given in viewgraph form. Information is given on space systems integration, intelligent autonomous systems, automated systems for in-flight mission operations, the Systems Autonomy Demonstration Project on the Space Station Thermal Control System, the architecture of an autonomous intelligent system, artificial intelligence research issues, machine learning, and real-time image processing.
Robust Fault Diagnosis in Electric Drives Using Machine Learning
2004-09-08
detection of fault conditions of the inverter. A machine learning framework is developed to systematically select torque-speed domain operation points...were used to generate various fault condition data for machine learning . The technique is viable for accurate, reliable and fast fault detection in electric drives.
2010-02-01
multi-agent reputation management. State abstraction is a technique used to allow machine learning technologies to cope with problems that have large...state abstrac- tion process to enable reinforcement learning in domains with large state spaces. State abstraction is vital to machine learning ...across a collective of independent platforms. These individual elements, often referred to as agents in the machine learning community, should exhibit both
Machine learning approaches in medical image analysis: From detection to diagnosis.
de Bruijne, Marleen
2016-10-01
Machine learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and risk assessment. This paper highlights new research directions and discusses three main challenges related to machine learning in medical imaging: coping with variation in imaging protocols, learning from weak labels, and interpretation and evaluation of results. Copyright © 2016 Elsevier B.V. All rights reserved.
2017-12-21
rank , and computer vision. Machine learning is closely related to (and often overlaps with) computational statistics, which also focuses on...Machine learning is a field of computer science that gives computers the ability to learn without being explicitly programmed.[1] Arthur Samuel...an American pioneer in the field of computer gaming and artificial intelligence, coined the term "Machine Learning " in 1959 while at IBM[2]. Evolved
Machine learning with naturally labeled data for identifying abbreviation definitions.
Yeganova, Lana; Comeau, Donald C; Wilbur, W John
2011-06-09
The rapid growth of biomedical literature requires accurate text analysis and text processing tools. Detecting abbreviations and identifying their definitions is an important component of such tools. Most existing approaches for the abbreviation definition identification task employ rule-based methods. While achieving high precision, rule-based methods are limited to the rules defined and fail to capture many uncommon definition patterns. Supervised learning techniques, which offer more flexibility in detecting abbreviation definitions, have also been applied to the problem. However, they require manually labeled training data. In this work, we develop a machine learning algorithm for abbreviation definition identification in text which makes use of what we term naturally labeled data. Positive training examples are naturally occurring potential abbreviation-definition pairs in text. Negative training examples are generated by randomly mixing potential abbreviations with unrelated potential definitions. The machine learner is trained to distinguish between these two sets of examples. Then, the learned feature weights are used to identify the abbreviation full form. This approach does not require manually labeled training data. We evaluate the performance of our algorithm on the Ab3P, BIOADI and Medstract corpora. Our system demonstrated results that compare favourably to the existing Ab3P and BIOADI systems. We achieve an F-measure of 91.36% on Ab3P corpus, and an F-measure of 87.13% on BIOADI corpus which are superior to the results reported by Ab3P and BIOADI systems. Moreover, we outperform these systems in terms of recall, which is one of our goals.
Geological applications of machine learning on hyperspectral remote sensing data
NASA Astrophysics Data System (ADS)
Tse, C. H.; Li, Yi-liang; Lam, Edmund Y.
2015-02-01
The CRISM imaging spectrometer orbiting Mars has been producing a vast amount of data in the visible to infrared wavelengths in the form of hyperspectral data cubes. These data, compared with those obtained from previous remote sensing techniques, yield an unprecedented level of detailed spectral resolution in additional to an ever increasing level of spatial information. A major challenge brought about by the data is the burden of processing and interpreting these datasets and extract the relevant information from it. This research aims at approaching the challenge by exploring machine learning methods especially unsupervised learning to achieve cluster density estimation and classification, and ultimately devising an efficient means leading to identification of minerals. A set of software tools have been constructed by Python to access and experiment with CRISM hyperspectral cubes selected from two specific Mars locations. A machine learning pipeline is proposed and unsupervised learning methods were implemented onto pre-processed datasets. The resulting data clusters are compared with the published ASTER spectral library and browse data products from the Planetary Data System (PDS). The result demonstrated that this approach is capable of processing the huge amount of hyperspectral data and potentially providing guidance to scientists for more detailed studies.
Mental Health Risk Adjustment with Clinical Categories and Machine Learning.
Shrestha, Akritee; Bergquist, Savannah; Montz, Ellen; Rose, Sherri
2017-12-15
To propose nonparametric ensemble machine learning for mental health and substance use disorders (MHSUD) spending risk adjustment formulas, including considering Clinical Classification Software (CCS) categories as diagnostic covariates over the commonly used Hierarchical Condition Category (HCC) system. 2012-2013 Truven MarketScan database. We implement 21 algorithms to predict MHSUD spending, as well as a weighted combination of these algorithms called super learning. The algorithm collection included seven unique algorithms that were supplied with three differing sets of MHSUD-related predictors alongside demographic covariates: HCC, CCS, and HCC + CCS diagnostic variables. Performance was evaluated based on cross-validated R 2 and predictive ratios. Results show that super learning had the best performance based on both metrics. The top single algorithm was random forests, which improved on ordinary least squares regression by 10 percent with respect to relative efficiency. CCS categories-based formulas were generally more predictive of MHSUD spending compared to HCC-based formulas. Literature supports the potential benefit of implementing a separate MHSUD spending risk adjustment formula. Our results suggest there is an incentive to explore machine learning for MHSUD-specific risk adjustment, as well as considering CCS categories over HCCs. © Health Research and Educational Trust.
Hidden physics models: Machine learning of nonlinear partial differential equations
NASA Astrophysics Data System (ADS)
Raissi, Maziar; Karniadakis, George Em
2018-03-01
While there is currently a lot of enthusiasm about "big data", useful data is usually "small" and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schrödinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.
Machine learning for real time remote detection
NASA Astrophysics Data System (ADS)
Labbé, Benjamin; Fournier, Jérôme; Henaff, Gilles; Bascle, Bénédicte; Canu, Stéphane
2010-10-01
Infrared systems are key to providing enhanced capability to military forces such as automatic control of threats and prevention from air, naval and ground attacks. Key requirements for such a system to produce operational benefits are real-time processing as well as high efficiency in terms of detection and false alarm rate. These are serious issues since the system must deal with a large number of objects and categories to be recognized (small vehicles, armored vehicles, planes, buildings, etc.). Statistical learning based algorithms are promising candidates to meet these requirements when using selected discriminant features and real-time implementation. This paper proposes a new decision architecture benefiting from recent advances in machine learning by using an effective method for level set estimation. While building decision function, the proposed approach performs variable selection based on a discriminative criterion. Moreover, the use of level set makes it possible to manage rejection of unknown or ambiguous objects thus preserving the false alarm rate. Experimental evidences reported on real world infrared images demonstrate the validity of our approach.
Zhang, Y N
2017-01-01
Parkinson's disease (PD) is primarily diagnosed by clinical examinations, such as walking test, handwriting test, and MRI diagnostic. In this paper, we propose a machine learning based PD telediagnosis method for smartphone. Classification of PD using speech records is a challenging task owing to the fact that the classification accuracy is still lower than doctor-level. Here we demonstrate automatic classification of PD using time frequency features, stacked autoencoders (SAE), and K nearest neighbor (KNN) classifier. KNN classifier can produce promising classification results from useful representations which were learned by SAE. Empirical results show that the proposed method achieves better performance with all tested cases across classification tasks, demonstrating machine learning capable of classifying PD with a level of competence comparable to doctor. It concludes that a smartphone can therefore potentially provide low-cost PD diagnostic care. This paper also gives an implementation on browser/server system and reports the running time cost. Both advantages and disadvantages of the proposed telediagnosis system are discussed.
2017-01-01
Parkinson's disease (PD) is primarily diagnosed by clinical examinations, such as walking test, handwriting test, and MRI diagnostic. In this paper, we propose a machine learning based PD telediagnosis method for smartphone. Classification of PD using speech records is a challenging task owing to the fact that the classification accuracy is still lower than doctor-level. Here we demonstrate automatic classification of PD using time frequency features, stacked autoencoders (SAE), and K nearest neighbor (KNN) classifier. KNN classifier can produce promising classification results from useful representations which were learned by SAE. Empirical results show that the proposed method achieves better performance with all tested cases across classification tasks, demonstrating machine learning capable of classifying PD with a level of competence comparable to doctor. It concludes that a smartphone can therefore potentially provide low-cost PD diagnostic care. This paper also gives an implementation on browser/server system and reports the running time cost. Both advantages and disadvantages of the proposed telediagnosis system are discussed. PMID:29075547
Cognitive learning: a machine learning approach for automatic process characterization from design
NASA Astrophysics Data System (ADS)
Foucher, J.; Baderot, J.; Martinez, S.; Dervilllé, A.; Bernard, G.
2018-03-01
Cutting edge innovation requires accurate and fast process-control to obtain fast learning rate and industry adoption. Current tools available for such task are mainly manual and user dependent. We present in this paper cognitive learning, which is a new machine learning based technique to facilitate and to speed up complex characterization by using the design as input, providing fast training and detection time. We will focus on the machine learning framework that allows object detection, defect traceability and automatic measurement tools.
Mikhchi, Abbas; Honarvar, Mahmood; Kashan, Nasser Emam Jomeh; Aminafshar, Mehdi
2016-06-21
Genotype imputation is an important tool for prediction of unknown genotypes for both unrelated individuals and parent-offspring trios. Several imputation methods are available and can either employ universal machine learning methods, or deploy algorithms dedicated to infer missing genotypes. In this research the performance of eight machine learning methods: Support Vector Machine, K-Nearest Neighbors, Extreme Learning Machine, Radial Basis Function, Random Forest, AdaBoost, LogitBoost, and TotalBoost compared in terms of the imputation accuracy, computation time and the factors affecting imputation accuracy. The methods employed using real and simulated datasets to impute the un-typed SNPs in parent-offspring trios. The tested methods show that imputation of parent-offspring trios can be accurate. The Random Forest and Support Vector Machine were more accurate than the other machine learning methods. The TotalBoost performed slightly worse than the other methods.The running times were different between methods. The ELM was always most fast algorithm. In case of increasing the sample size, the RBF requires long imputation time.The tested methods in this research can be an alternative for imputation of un-typed SNPs in low missing rate of data. However, it is recommended that other machine learning methods to be used for imputation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Investigating Mesoscale Convective Systems and their Predictability Using Machine Learning
NASA Astrophysics Data System (ADS)
Daher, H.; Duffy, D.; Bowen, M. K.
2016-12-01
A mesoscale convective system (MCS) is a thunderstorm region that lasts several hours long and forms near weather fronts and can often develop into tornadoes. Here we seek to answer the question of whether these tornadoes are "predictable" by looking for a defining characteristic(s) separating MCSs that evolve into tornadoes versus those that do not. Using NASA's Modern Era Retrospective-analysis for Research and Applications 2 reanalysis data (M2R12K), we apply several state of the art machine learning techniques to investigate this question. The spatial region examined in this experiment is Tornado Alley in the United States over the peak tornado months. A database containing select variables from M2R12K is created using PostgreSQL. This database is then analyzed using machine learning methods such as Symbolic Aggregate approXimation (SAX) and DBSCAN (an unsupervised density-based data clustering algorithm). The incentive behind using these methods is to mathematically define a MCS so that association rule mining techniques can be used to uncover some sort of signal or teleconnection that will help us forecast which MCSs will result in tornadoes and therefore give society more time to prepare and in turn reduce casualties and destruction.
[Machine Learning-based Prediction of Seizure-inducing Action as an Adverse Drug Effect].
Gao, Mengxuan; Sato, Motoshige; Ikegaya, Yuji
2018-01-01
During the preclinical research period of drug development, animal testing is widely used to help screen out a drug's dangerous side effects. However, it remains difficult to predict side effects within the central nervous system. Here, we introduce a machine learning-based in vitro system designed to detect seizure-inducing side effects before clinical trial. We recorded local field potentials from the CA1 alveus in acute mouse neocortico-hippocampal slices that were bath-perfused with each of 14 different drugs, and at 5 different concentrations of each drug. For each of these experimental conditions, we collected seizure-like neuronal activity and merged their waveforms as one graphic image, which was further converted into a feature vector using Caffe, an open framework for deep learning. In the space of the first two principal components, the support vector machine completely separated the vectors (i.e., doses of individual drugs) that induced seizure-like events, and identified diphenhydramine, enoxacin, strychnine and theophylline as "seizure-inducing" drugs, which have indeed been reported to induce seizures in clinical situations. Thus, this artificial intelligence-based classification may provide a new platform to pre-clinically detect seizure-inducing side effects of drugs.
Machine Learning and Data Mining for Comprehensive Test Ban Treaty Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, S; Vaidya, S
2009-07-30
The Comprehensive Test Ban Treaty (CTBT) is gaining renewed attention in light of growing worldwide interest in mitigating risks of nuclear weapons proliferation and testing. Since the International Monitoring System (IMS) installed the first suite of sensors in the late 1990's, the IMS network has steadily progressed, providing valuable support for event diagnostics. This progress was highlighted at the recent International Scientific Studies (ISS) Conference in Vienna in June 2009, where scientists and domain experts met with policy makers to assess the current status of the CTBT Verification System. A strategic theme within the ISS Conference centered on exploring opportunitiesmore » for further enhancing the detection and localization accuracy of low magnitude events by drawing upon modern tools and techniques for machine learning and large-scale data analysis. Several promising approaches for data exploitation were presented at the Conference. These are summarized in a companion report. In this paper, we introduce essential concepts in machine learning and assess techniques which could provide both incremental and comprehensive value for event discrimination by increasing the accuracy of the final data product, refining On-Site-Inspection (OSI) conclusions, and potentially reducing the cost of future network operations.« less
Combining Machine Learning and Natural Language Processing to Assess Literary Text Comprehension
ERIC Educational Resources Information Center
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S.
2017-01-01
This study examined how machine learning and natural language processing (NLP) techniques can be leveraged to assess the interpretive behavior that is required for successful literary text comprehension. We compared the accuracy of seven different machine learning classification algorithms in predicting human ratings of student essays about…
Implementing Machine Learning in Radiology Practice and Research.
Kohli, Marc; Prevedello, Luciano M; Filice, Ross W; Geis, J Raymond
2017-04-01
The purposes of this article are to describe concepts that radiologists should understand to evaluate machine learning projects, including common algorithms, supervised as opposed to unsupervised techniques, statistical pitfalls, and data considerations for training and evaluation, and to briefly describe ethical dilemmas and legal risk. Machine learning includes a broad class of computer programs that improve with experience. The complexity of creating, training, and monitoring machine learning indicates that the success of the algorithms will require radiologist involvement for years to come, leading to engagement rather than replacement.
Lenhard, Fabian; Sauer, Sebastian; Andersson, Erik; Månsson, Kristoffer Nt; Mataix-Cols, David; Rück, Christian; Serlachius, Eva
2018-03-01
There are no consistent predictors of treatment outcome in paediatric obsessive-compulsive disorder (OCD). One reason for this might be the use of suboptimal statistical methodology. Machine learning is an approach to efficiently analyse complex data. Machine learning has been widely used within other fields, but has rarely been tested in the prediction of paediatric mental health treatment outcomes. To test four different machine learning methods in the prediction of treatment response in a sample of paediatric OCD patients who had received Internet-delivered cognitive behaviour therapy (ICBT). Participants were 61 adolescents (12-17 years) who enrolled in a randomized controlled trial and received ICBT. All clinical baseline variables were used to predict strictly defined treatment response status three months after ICBT. Four machine learning algorithms were implemented. For comparison, we also employed a traditional logistic regression approach. Multivariate logistic regression could not detect any significant predictors. In contrast, all four machine learning algorithms performed well in the prediction of treatment response, with 75 to 83% accuracy. The results suggest that machine learning algorithms can successfully be applied to predict paediatric OCD treatment outcome. Validation studies and studies in other disorders are warranted. Copyright © 2017 John Wiley & Sons, Ltd.
BlueSky Cloud Framework: An E-Learning Framework Embracing Cloud Computing
NASA Astrophysics Data System (ADS)
Dong, Bo; Zheng, Qinghua; Qiao, Mu; Shu, Jian; Yang, Jie
Currently, E-Learning has grown into a widely accepted way of learning. With the huge growth of users, services, education contents and resources, E-Learning systems are facing challenges of optimizing resource allocations, dealing with dynamic concurrency demands, handling rapid storage growth requirements and cost controlling. In this paper, an E-Learning framework based on cloud computing is presented, namely BlueSky cloud framework. Particularly, the architecture and core components of BlueSky cloud framework are introduced. In BlueSky cloud framework, physical machines are virtualized, and allocated on demand for E-Learning systems. Moreover, BlueSky cloud framework combines with traditional middleware functions (such as load balancing and data caching) to serve for E-Learning systems as a general architecture. It delivers reliable, scalable and cost-efficient services to E-Learning systems, and E-Learning organizations can establish systems through these services in a simple way. BlueSky cloud framework solves the challenges faced by E-Learning, and improves the performance, availability and scalability of E-Learning systems.
Recent developments in machine learning applications in landslide susceptibility mapping
NASA Astrophysics Data System (ADS)
Lun, Na Kai; Liew, Mohd Shahir; Matori, Abdul Nasir; Zawawi, Noor Amila Wan Abdullah
2017-11-01
While the prediction of spatial distribution of potential landslide occurrences is a primary interest in landslide hazard mitigation, it remains a challenging task. To overcome the scarceness of complete, sufficiently detailed geomorphological attributes and environmental conditions, various machine-learning techniques are increasingly applied to effectively map landslide susceptibility for large regions. Nevertheless, limited review papers are devoted to this field, particularly on the various domain specific applications of machine learning techniques. Available literature often report relatively good predictive performance, however, papers discussing the limitations of each approaches are quite uncommon. The foremost aim of this paper is to narrow these gaps in literature and to review up-to-date machine learning and ensemble learning techniques applied in landslide susceptibility mapping. It provides new readers an introductory understanding on the subject matter and researchers a contemporary review of machine learning advancements alongside the future direction of these techniques in the landslide mitigation field.
The application of machine learning techniques in the clinical drug therapy.
Meng, Huan-Yu; Jin, Wan-Lin; Yan, Cheng-Kai; Yang, Huan
2018-05-25
The development of a novel drug is an extremely complicated process that includes the target identification, design and manufacture, and proper therapy of the novel drug, as well as drug dose selection, drug efficacy evaluation, and adverse drug reaction control. Due to the limited resources, high costs, long duration, and low hit-to-lead ratio in the development of pharmacogenetics and computer technology, machine learning techniques have assisted novel drug development and have gradually received more attention by researchers. According to current research, machine learning techniques are widely applied in the process of the discovery of new drugs and novel drug targets, the decision surrounding proper therapy and drug dose, and the prediction of drug efficacy and adverse drug reactions. In this article, we discussed the history, workflow, and advantages and disadvantages of machine learning techniques in the processes mentioned above. Although the advantages of machine learning techniques are fairly obvious, the application of machine learning techniques is currently limited. With further research, the application of machine techniques in drug development could be much more widespread and could potentially be one of the major methods used in drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-06-19
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.
Chaotic behaviour of Zeeman machines at introductory course of mechanics
NASA Astrophysics Data System (ADS)
Nagy, Péter; Tasnádi, Péter
2016-05-01
Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.
NASA Astrophysics Data System (ADS)
Hsu, Roy CHaoming; Jian, Jhih-Wei; Lin, Chih-Chuan; Lai, Chien-Hung; Liu, Cheng-Ting
2013-01-01
The main purpose of this paper is to use machine learning method and Kinect and its body sensation technology to design a simple, convenient, yet effective robot remote control system. In this study, a Kinect sensor is used to capture the human body skeleton with depth information, and a gesture training and identification method is designed using the back propagation neural network to remotely command a mobile robot for certain actions via the Bluetooth. The experimental results show that the designed mobile robots remote control system can achieve, on an average, more than 96% of accurate identification of 7 types of gestures and can effectively control a real e-puck robot for the designed commands.
Li, Yuancheng; Jing, Sitong
2018-01-01
Advanced Metering Infrastructure (AMI) realizes a two-way communication of electricity data through by interconnecting with a computer network as the core component of the smart grid. Meanwhile, it brings many new security threats and the traditional intrusion detection method can’t satisfy the security requirements of AMI. In this paper, an intrusion detection system based on Online Sequence Extreme Learning Machine (OS-ELM) is established, which is used to detecting the attack in AMI and carrying out the comparative analysis with other algorithms. Simulation results show that, compared with other intrusion detection methods, intrusion detection method based on OS-ELM is more superior in detection speed and accuracy. PMID:29485990
Machine Learning in Radiology: Applications Beyond Image Interpretation.
Lakhani, Paras; Prater, Adam B; Hutson, R Kent; Andriole, Kathy P; Dreyer, Keith J; Morey, Jose; Prevedello, Luciano M; Clark, Toshi J; Geis, J Raymond; Itri, Jason N; Hawkins, C Matthew
2018-02-01
Much attention has been given to machine learning and its perceived impact in radiology, particularly in light of recent success with image classification in international competitions. However, machine learning is likely to impact radiology outside of image interpretation long before a fully functional "machine radiologist" is implemented in practice. Here, we describe an overview of machine learning, its application to radiology and other domains, and many cases of use that do not involve image interpretation. We hope that better understanding of these potential applications will help radiology practices prepare for the future and realize performance improvement and efficiency gains. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Prostate Cancer Probability Prediction By Machine Learning Technique.
Jović, Srđan; Miljković, Milica; Ivanović, Miljan; Šaranović, Milena; Arsić, Milena
2017-11-26
The main goal of the study was to explore possibility of prostate cancer prediction by machine learning techniques. In order to improve the survival probability of the prostate cancer patients it is essential to make suitable prediction models of the prostate cancer. If one make relevant prediction of the prostate cancer it is easy to create suitable treatment based on the prediction results. Machine learning techniques are the most common techniques for the creation of the predictive models. Therefore in this study several machine techniques were applied and compared. The obtained results were analyzed and discussed. It was concluded that the machine learning techniques could be used for the relevant prediction of prostate cancer.
Health Problems Discovery from Motion-Capture Data of Elderly
NASA Astrophysics Data System (ADS)
Pogorelc, B.; Gams, M.
Rapid aging of the population of the developed countries could exceed the society's capacity for taking care for them. In order to help solving this problem, we propose a system for automatic discovery of health problems from motion-capture data of gait of elderly. The gait of the user is captured with the motion capture system, which consists of tags attached to the body and sensors situated in the apartment. Position of the tags is acquired by the sensors and the resulting time series of position coordinates are analyzed with machine learning algorithms in order to identify the specific health problem. We propose novel features for training a machine learning classifier that classifies the user's gait into: i) normal, ii) with hemiplegia, iii) with Parkinson's disease, iv) with pain in the back and v) with pain in the leg. Results show that naive Bayes needs more tags and less noise to reach classification accuracy of 98 % than support vector machines for 99 %.
On-the-Fly Machine Learning of Atomic Potential in Density Functional Theory Structure Optimization
NASA Astrophysics Data System (ADS)
Jacobsen, T. L.; Jørgensen, M. S.; Hammer, B.
2018-01-01
Machine learning (ML) is used to derive local stability information for density functional theory calculations of systems in relation to the recently discovered SnO2 (110 )-(4 ×1 ) reconstruction. The ML model is trained on (structure, total energy) relations collected during global minimum energy search runs with an evolutionary algorithm (EA). While being built, the ML model is used to guide the EA, thereby speeding up the overall rate by which the EA succeeds. Inspection of the local atomic potentials emerging from the model further shows chemically intuitive patterns.
Machine learning methods for credibility assessment of interviewees based on posturographic data.
Saripalle, Sashi K; Vemulapalli, Spandana; King, Gregory W; Burgoon, Judee K; Derakhshani, Reza
2015-01-01
This paper discusses the advantages of using posturographic signals from force plates for non-invasive credibility assessment. The contributions of our work are two fold: first, the proposed method is highly efficient and non invasive. Second, feasibility for creating an autonomous credibility assessment system using machine-learning algorithms is studied. This study employs an interview paradigm that includes subjects responding with truthful and deceptive intent while their center of pressure (COP) signal is being recorded. Classification models utilizing sets of COP features for deceptive responses are derived and best accuracy of 93.5% for test interval is reported.
Solving a Higgs optimization problem with quantum annealing for machine learning.
Mott, Alex; Job, Joshua; Vlimant, Jean-Roch; Lidar, Daniel; Spiropulu, Maria
2017-10-18
The discovery of Higgs-boson decays in a background of standard-model processes was assisted by machine learning methods. The classifiers used to separate signals such as these from background are trained using highly unerring but not completely perfect simulations of the physical processes involved, often resulting in incorrect labelling of background processes or signals (label noise) and systematic errors. Here we use quantum and classical annealing (probabilistic techniques for approximating the global maximum or minimum of a given function) to solve a Higgs-signal-versus-background machine learning optimization problem, mapped to a problem of finding the ground state of a corresponding Ising spin model. We build a set of weak classifiers based on the kinematic observables of the Higgs decay photons, which we then use to construct a strong classifier. This strong classifier is highly resilient against overtraining and against errors in the correlations of the physical observables in the training data. We show that the resulting quantum and classical annealing-based classifier systems perform comparably to the state-of-the-art machine learning methods that are currently used in particle physics. However, in contrast to these methods, the annealing-based classifiers are simple functions of directly interpretable experimental parameters with clear physical meaning. The annealer-trained classifiers use the excited states in the vicinity of the ground state and demonstrate some advantage over traditional machine learning methods for small training datasets. Given the relative simplicity of the algorithm and its robustness to error, this technique may find application in other areas of experimental particle physics, such as real-time decision making in event-selection problems and classification in neutrino physics.
Solving a Higgs optimization problem with quantum annealing for machine learning
NASA Astrophysics Data System (ADS)
Mott, Alex; Job, Joshua; Vlimant, Jean-Roch; Lidar, Daniel; Spiropulu, Maria
2017-10-01
The discovery of Higgs-boson decays in a background of standard-model processes was assisted by machine learning methods. The classifiers used to separate signals such as these from background are trained using highly unerring but not completely perfect simulations of the physical processes involved, often resulting in incorrect labelling of background processes or signals (label noise) and systematic errors. Here we use quantum and classical annealing (probabilistic techniques for approximating the global maximum or minimum of a given function) to solve a Higgs-signal-versus-background machine learning optimization problem, mapped to a problem of finding the ground state of a corresponding Ising spin model. We build a set of weak classifiers based on the kinematic observables of the Higgs decay photons, which we then use to construct a strong classifier. This strong classifier is highly resilient against overtraining and against errors in the correlations of the physical observables in the training data. We show that the resulting quantum and classical annealing-based classifier systems perform comparably to the state-of-the-art machine learning methods that are currently used in particle physics. However, in contrast to these methods, the annealing-based classifiers are simple functions of directly interpretable experimental parameters with clear physical meaning. The annealer-trained classifiers use the excited states in the vicinity of the ground state and demonstrate some advantage over traditional machine learning methods for small training datasets. Given the relative simplicity of the algorithm and its robustness to error, this technique may find application in other areas of experimental particle physics, such as real-time decision making in event-selection problems and classification in neutrino physics.
A Survey of Research in Supervisory Control and Data Acquisition (SCADA)
2014-09-01
distance learning .2 The data acquired may be operationally oriented and used to better run the system, or it could be strategic in nature and used to...Technically the SCADA system is composed of the information technology (IT) that provides the human- machine interface (HMI) and stores and analyzes the data...systems work by learning what normal or benign traffic is and reporting on any abnormal traffic. These systems have the potential to detect zero-day
The Next Era: Deep Learning in Pharmaceutical Research.
Ekins, Sean
2016-11-01
Over the past decade we have witnessed the increasing sophistication of machine learning algorithms applied in daily use from internet searches, voice recognition, social network software to machine vision software in cameras, phones, robots and self-driving cars. Pharmaceutical research has also seen its fair share of machine learning developments. For example, applying such methods to mine the growing datasets that are created in drug discovery not only enables us to learn from the past but to predict a molecule's properties and behavior in future. The latest machine learning algorithm garnering significant attention is deep learning, which is an artificial neural network with multiple hidden layers. Publications over the last 3 years suggest that this algorithm may have advantages over previous machine learning methods and offer a slight but discernable edge in predictive performance. The time has come for a balanced review of this technique but also to apply machine learning methods such as deep learning across a wider array of endpoints relevant to pharmaceutical research for which the datasets are growing such as physicochemical property prediction, formulation prediction, absorption, distribution, metabolism, excretion and toxicity (ADME/Tox), target prediction and skin permeation, etc. We also show that there are many potential applications of deep learning beyond cheminformatics. It will be important to perform prospective testing (which has been carried out rarely to date) in order to convince skeptics that there will be benefits from investing in this technique.
Contemporary machine learning: techniques for practitioners in the physical sciences
NASA Astrophysics Data System (ADS)
Spears, Brian
2017-10-01
Machine learning is the science of using computers to find relationships in data without explicitly knowing or programming those relationships in advance. Often without realizing it, we employ machine learning every day as we use our phones or drive our cars. Over the last few years, machine learning has found increasingly broad application in the physical sciences. This most often involves building a model relationship between a dependent, measurable output and an associated set of controllable, but complicated, independent inputs. The methods are applicable both to experimental observations and to databases of simulated output from large, detailed numerical simulations. In this tutorial, we will present an overview of current tools and techniques in machine learning - a jumping-off point for researchers interested in using machine learning to advance their work. We will discuss supervised learning techniques for modeling complicated functions, beginning with familiar regression schemes, then advancing to more sophisticated decision trees, modern neural networks, and deep learning methods. Next, we will cover unsupervised learning and techniques for reducing the dimensionality of input spaces and for clustering data. We'll show example applications from both magnetic and inertial confinement fusion. Along the way, we will describe methods for practitioners to help ensure that their models generalize from their training data to as-yet-unseen test data. We will finally point out some limitations to modern machine learning and speculate on some ways that practitioners from the physical sciences may be particularly suited to help. This work was performed by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Applications of Machine Learning in Cancer Prediction and Prognosis
Cruz, Joseph A.; Wishart, David S.
2006-01-01
Machine learning is a branch of artificial intelligence that employs a variety of statistical, probabilistic and optimization techniques that allows computers to “learn” from past examples and to detect hard-to-discern patterns from large, noisy or complex data sets. This capability is particularly well-suited to medical applications, especially those that depend on complex proteomic and genomic measurements. As a result, machine learning is frequently used in cancer diagnosis and detection. More recently machine learning has been applied to cancer prognosis and prediction. This latter approach is particularly interesting as it is part of a growing trend towards personalized, predictive medicine. In assembling this review we conducted a broad survey of the different types of machine learning methods being used, the types of data being integrated and the performance of these methods in cancer prediction and prognosis. A number of trends are noted, including a growing dependence on protein biomarkers and microarray data, a strong bias towards applications in prostate and breast cancer, and a heavy reliance on “older” technologies such artificial neural networks (ANNs) instead of more recently developed or more easily interpretable machine learning methods. A number of published studies also appear to lack an appropriate level of validation or testing. Among the better designed and validated studies it is clear that machine learning methods can be used to substantially (15–25%) improve the accuracy of predicting cancer susceptibility, recurrence and mortality. At a more fundamental level, it is also evident that machine learning is also helping to improve our basic understanding of cancer development and progression. PMID:19458758
Luo, Wei; Phung, Dinh; Tran, Truyen; Gupta, Sunil; Rana, Santu; Karmakar, Chandan; Shilton, Alistair; Yearwood, John; Dimitrova, Nevenka; Ho, Tu Bao; Venkatesh, Svetha; Berk, Michael
2016-12-16
As more and more researchers are turning to big data for new opportunities of biomedical discoveries, machine learning models, as the backbone of big data analysis, are mentioned more often in biomedical journals. However, owing to the inherent complexity of machine learning methods, they are prone to misuse. Because of the flexibility in specifying machine learning models, the results are often insufficiently reported in research articles, hindering reliable assessment of model validity and consistent interpretation of model outputs. To attain a set of guidelines on the use of machine learning predictive models within clinical settings to make sure the models are correctly applied and sufficiently reported so that true discoveries can be distinguished from random coincidence. A multidisciplinary panel of machine learning experts, clinicians, and traditional statisticians were interviewed, using an iterative process in accordance with the Delphi method. The process produced a set of guidelines that consists of (1) a list of reporting items to be included in a research article and (2) a set of practical sequential steps for developing predictive models. A set of guidelines was generated to enable correct application of machine learning models and consistent reporting of model specifications and results in biomedical research. We believe that such guidelines will accelerate the adoption of big data analysis, particularly with machine learning methods, in the biomedical research community. ©Wei Luo, Dinh Phung, Truyen Tran, Sunil Gupta, Santu Rana, Chandan Karmakar, Alistair Shilton, John Yearwood, Nevenka Dimitrova, Tu Bao Ho, Svetha Venkatesh, Michael Berk. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 16.12.2016.
NASA Astrophysics Data System (ADS)
Hannel, Mark D.; Abdulali, Aidan; O'Brien, Michael; Grier, David G.
2018-06-01
Holograms of colloidal particles can be analyzed with the Lorenz-Mie theory of light scattering to measure individual particles' three-dimensional positions with nanometer precision while simultaneously estimating their sizes and refractive indexes. Extracting this wealth of information begins by detecting and localizing features of interest within individual holograms. Conventionally approached with heuristic algorithms, this image analysis problem can be solved faster and more generally with machine-learning techniques. We demonstrate that two popular machine-learning algorithms, cascade classifiers and deep convolutional neural networks (CNN), can solve the feature-localization problem orders of magnitude faster than current state-of-the-art techniques. Our CNN implementation localizes holographic features precisely enough to bootstrap more detailed analyses based on the Lorenz-Mie theory of light scattering. The wavelet-based Haar cascade proves to be less precise, but is so computationally efficient that it creates new opportunities for applications that emphasize speed and low cost. We demonstrate its use as a real-time targeting system for holographic optical trapping.
Automated Data Assimilation and Flight Planning for Multi-Platform Observation Missions
NASA Technical Reports Server (NTRS)
Oza, Nikunj; Morris, Robert A.; Strawa, Anthony; Kurklu, Elif; Keely, Leslie
2008-01-01
This is a progress report on an effort in which our goal is to demonstrate the effectiveness of automated data mining and planning for the daily management of Earth Science missions. Currently, data mining and machine learning technologies are being used by scientists at research labs for validating Earth science models. However, few if any of these advanced techniques are currently being integrated into daily mission operations. Consequently, there are significant gaps in the knowledge that can be derived from the models and data that are used each day for guiding mission activities. The result can be sub-optimal observation plans, lack of useful data, and wasteful use of resources. Recent advances in data mining, machine learning, and planning make it feasible to migrate these technologies into the daily mission planning cycle. We describe the design of a closed loop system for data acquisition, processing, and flight planning that integrates the results of machine learning into the flight planning process.
Mori, Kensaku; Ota, Shunsuke; Deguchi, Daisuke; Kitasaka, Takayuki; Suenaga, Yasuhito; Iwano, Shingo; Hasegawa, Yosihnori; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi
2009-01-01
This paper presents a method for the automated anatomical labeling of bronchial branches extracted from 3D CT images based on machine learning and combination optimization. We also show applications of anatomical labeling on a bronchoscopy guidance system. This paper performs automated labeling by using machine learning and combination optimization. The actual procedure consists of four steps: (a) extraction of tree structures of the bronchus regions extracted from CT images, (b) construction of AdaBoost classifiers, (c) computation of candidate names for all branches by using the classifiers, (d) selection of best combination of anatomical names. We applied the proposed method to 90 cases of 3D CT datasets. The experimental results showed that the proposed method can assign correct anatomical names to 86.9% of the bronchial branches up to the sub-segmental lobe branches. Also, we overlaid the anatomical names of bronchial branches on real bronchoscopic views to guide real bronchoscopy.
Machine Learning for Knowledge Extraction from PHR Big Data.
Poulymenopoulou, Michaela; Malamateniou, Flora; Vassilacopoulos, George
2014-01-01
Cloud computing, Internet of things (IOT) and NoSQL database technologies can support a new generation of cloud-based PHR services that contain heterogeneous (unstructured, semi-structured and structured) patient data (health, social and lifestyle) from various sources, including automatically transmitted data from Internet connected devices of patient living space (e.g. medical devices connected to patients at home care). The patient data stored in such PHR systems constitute big data whose analysis with the use of appropriate machine learning algorithms is expected to improve diagnosis and treatment accuracy, to cut healthcare costs and, hence, to improve the overall quality and efficiency of healthcare provided. This paper describes a health data analytics engine which uses machine learning algorithms for analyzing cloud based PHR big health data towards knowledge extraction to support better healthcare delivery as regards disease diagnosis and prognosis. This engine comprises of the data preparation, the model generation and the data analysis modules and runs on the cloud taking advantage from the map/reduce paradigm provided by Apache Hadoop.
Development of E-Learning Materials for Machining Safety Education
NASA Astrophysics Data System (ADS)
Nakazawa, Tsuyoshi; Mita, Sumiyoshi; Matsubara, Masaaki; Takashima, Takeo; Tanaka, Koichi; Izawa, Satoru; Kawamura, Takashi
We developed two e-learning materials for Manufacturing Practice safety education: movie learning materials and hazard-detection learning materials. Using these video and sound media, students can learn how to operate machines safely with movie learning materials, which raise the effectiveness of preparation and review for manufacturing practice. Using these materials, students can realize safety operation well. Students can apply knowledge learned in lectures to the detection of hazards and use study methods for hazard detection during machine operation using the hazard-detection learning materials. Particularly, the hazard-detection learning materials raise students‧ safety consciousness and increase students‧ comprehension of knowledge from lectures and comprehension of operations during Manufacturing Practice.
Shang, Qiang; Lin, Ciyun; Yang, Zhaosheng; Bing, Qichun; Zhou, Xiyang
2016-01-01
Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS). Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM) is proposed based on singular spectrum analysis (SSA) and kernel extreme learning machine (KELM). SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA). Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust.
Lin, Ciyun; Yang, Zhaosheng; Bing, Qichun; Zhou, Xiyang
2016-01-01
Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS). Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM) is proposed based on singular spectrum analysis (SSA) and kernel extreme learning machine (KELM). SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA). Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust. PMID:27551829
An introduction to quantum machine learning
NASA Astrophysics Data System (ADS)
Schuld, Maria; Sinayskiy, Ilya; Petruccione, Francesco
2015-04-01
Machine learning algorithms learn a desired input-output relation from examples in order to interpret new inputs. This is important for tasks such as image and speech recognition or strategy optimisation, with growing applications in the IT industry. In the last couple of years, researchers investigated if quantum computing can help to improve classical machine learning algorithms. Ideas range from running computationally costly algorithms or their subroutines efficiently on a quantum computer to the translation of stochastic methods into the language of quantum theory. This contribution gives a systematic overview of the emerging field of quantum machine learning. It presents the approaches as well as technical details in an accessible way, and discusses the potential of a future theory of quantum learning.
Sakr, Sherif; Elshawi, Radwa; Ahmed, Amjad M; Qureshi, Waqas T; Brawner, Clinton A; Keteyian, Steven J; Blaha, Michael J; Al-Mallah, Mouaz H
2017-12-19
Prior studies have demonstrated that cardiorespiratory fitness (CRF) is a strong marker of cardiovascular health. Machine learning (ML) can enhance the prediction of outcomes through classification techniques that classify the data into predetermined categories. The aim of this study is to present an evaluation and comparison of how machine learning techniques can be applied on medical records of cardiorespiratory fitness and how the various techniques differ in terms of capabilities of predicting medical outcomes (e.g. mortality). We use data of 34,212 patients free of known coronary artery disease or heart failure who underwent clinician-referred exercise treadmill stress testing at Henry Ford Health Systems Between 1991 and 2009 and had a complete 10-year follow-up. Seven machine learning classification techniques were evaluated: Decision Tree (DT), Support Vector Machine (SVM), Artificial Neural Networks (ANN), Naïve Bayesian Classifier (BC), Bayesian Network (BN), K-Nearest Neighbor (KNN) and Random Forest (RF). In order to handle the imbalanced dataset used, the Synthetic Minority Over-Sampling Technique (SMOTE) is used. Two set of experiments have been conducted with and without the SMOTE sampling technique. On average over different evaluation metrics, SVM Classifier has shown the lowest performance while other models like BN, BC and DT performed better. The RF classifier has shown the best performance (AUC = 0.97) among all models trained using the SMOTE sampling. The results show that various ML techniques can significantly vary in terms of its performance for the different evaluation metrics. It is also not necessarily that the more complex the ML model, the more prediction accuracy can be achieved. The prediction performance of all models trained with SMOTE is much better than the performance of models trained without SMOTE. The study shows the potential of machine learning methods for predicting all-cause mortality using cardiorespiratory fitness data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, Kristin C; Brunhart-Lupo, Nicholas J; Bush, Brian W
We have developed a framework for the exploration, design, and planning of energy systems that combines interactive visualization with machine-learning based approximations of simulations through a general purpose dataflow API. Our system provides a visual inter- face allowing users to explore an ensemble of energy simulations representing a subset of the complex input parameter space, and spawn new simulations to 'fill in' input regions corresponding to new enegery system scenarios. Unfortunately, many energy simula- tions are far too slow to provide interactive responses. To support interactive feedback, we are developing reduced-form models via machine learning techniques, which provide statistically soundmore » esti- mates of the full simulations at a fraction of the computational cost and which are used as proxies for the full-form models. Fast com- putation and an agile dataflow enhance the engagement with energy simulations, and allow researchers to better allocate computational resources to capture informative relationships within the system and provide a low-cost method for validating and quality-checking large-scale modeling efforts.« less
Using decision-tree classifier systems to extract knowledge from databases
NASA Technical Reports Server (NTRS)
St.clair, D. C.; Sabharwal, C. L.; Hacke, Keith; Bond, W. E.
1990-01-01
One difficulty in applying artificial intelligence techniques to the solution of real world problems is that the development and maintenance of many AI systems, such as those used in diagnostics, require large amounts of human resources. At the same time, databases frequently exist which contain information about the process(es) of interest. Recently, efforts to reduce development and maintenance costs of AI systems have focused on using machine learning techniques to extract knowledge from existing databases. Research is described in the area of knowledge extraction using a class of machine learning techniques called decision-tree classifier systems. Results of this research suggest ways of performing knowledge extraction which may be applied in numerous situations. In addition, a measurement called the concept strength metric (CSM) is described which can be used to determine how well the resulting decision tree can differentiate between the concepts it has learned. The CSM can be used to determine whether or not additional knowledge needs to be extracted from the database. An experiment involving real world data is presented to illustrate the concepts described.
Use of Computer Speech Technologies To Enhance Learning.
ERIC Educational Resources Information Center
Ferrell, Joe
1999-01-01
Discusses the design of an innovative learning system that uses new technologies for the man-machine interface, incorporating a combination of Automatic Speech Recognition (ASR) and Text To Speech (TTS) synthesis. Highlights include using speech technologies to mimic the attributes of the ideal tutor and design features. (AEF)
Computers in Post-Secondary Developmental Education and Learning Assistance.
ERIC Educational Resources Information Center
Christ, Frank L.; McLaughlin, Richard C.
This update on computer technology--as it affects learning assistance directors and developmental education personnel--begins by reporting on new developments and changes that have taken place during the past two years in five areas: (1) hardware (microcomputer systems, low cost PC clones, combination Apple/PC machines, lab computer controllers…
Efficiently Ranking Hyphotheses in Machine Learning
NASA Technical Reports Server (NTRS)
Chien, Steve
1997-01-01
This paper considers the problem of learning the ranking of a set of alternatives based upon incomplete information (e.g. a limited number of observations). At each decision cycle, the system can output a complete ordering on the hypotheses or decide to gather additional information (e.g. observation) at some cost.
Large-Scale Machine Learning for Classification and Search
ERIC Educational Resources Information Center
Liu, Wei
2012-01-01
With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…
Newton Methods for Large Scale Problems in Machine Learning
ERIC Educational Resources Information Center
Hansen, Samantha Leigh
2014-01-01
The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…
Applying Machine Learning to Facilitate Autism Diagnostics: Pitfalls and Promises
ERIC Educational Resources Information Center
Bone, Daniel; Goodwin, Matthew S.; Black, Matthew P.; Lee, Chi-Chun; Audhkhasi, Kartik; Narayanan, Shrikanth
2015-01-01
Machine learning has immense potential to enhance diagnostic and intervention research in the behavioral sciences, and may be especially useful in investigations involving the highly prevalent and heterogeneous syndrome of autism spectrum disorder. However, use of machine learning in the absence of clinical domain expertise can be tenuous and lead…
Prediction and Validation of Disease Genes Using HeteSim Scores.
Zeng, Xiangxiang; Liao, Yuanlu; Liu, Yuansheng; Zou, Quan
2017-01-01
Deciphering the gene disease association is an important goal in biomedical research. In this paper, we use a novel relevance measure, called HeteSim, to prioritize candidate disease genes. Two methods based on heterogeneous networks constructed using protein-protein interaction, gene-phenotype associations, and phenotype-phenotype similarity, are presented. In HeteSim_MultiPath (HSMP), HeteSim scores of different paths are combined with a constant that dampens the contributions of longer paths. In HeteSim_SVM (HSSVM), HeteSim scores are combined with a machine learning method. The 3-fold experiments show that our non-machine learning method HSMP performs better than the existing non-machine learning methods, our machine learning method HSSVM obtains similar accuracy with the best existing machine learning method CATAPULT. From the analysis of the top 10 predicted genes for different diseases, we found that HSSVM avoid the disadvantage of the existing machine learning based methods, which always predict similar genes for different diseases. The data sets and Matlab code for the two methods are freely available for download at http://lab.malab.cn/data/HeteSim/index.jsp.
1991-09-05
34 Learning from Learning : Principles for Supporting Drivers" J A Groeger, MRC Applied Psychology Unit, UK "Argos: A Driver Behaviour Analysis System...Technology (CEST), UK MISCELLANEOUS "Modular Sensor System for Guiding Handling Machines " J Geit and J 423 Heinrich, TZN Forshcungs, FRG "Flexible...PUBLIC TRANSP . MANAa RESEARCH Arrrtympe PARTI "Implementation Strategl»» Systems engineering \\ PART III / Validation through Pilot