Two-machine flow shop scheduling integrated with preventive maintenance planning
NASA Astrophysics Data System (ADS)
Wang, Shijin; Liu, Ming
2016-02-01
This paper investigates an integrated optimisation problem of production scheduling and preventive maintenance (PM) in a two-machine flow shop with time to failure of each machine subject to a Weibull probability distribution. The objective is to find the optimal job sequence and the optimal PM decisions before each job such that the expected makespan is minimised. To investigate the value of integrated scheduling solution, computational experiments on small-scale problems with different configurations are conducted with total enumeration method, and the results are compared with those of scheduling without maintenance but with machine degradation, and individual job scheduling combined with independent PM planning. Then, for large-scale problems, four genetic algorithm (GA) based heuristics are proposed. The numerical results with several large problem sizes and different configurations indicate the potential benefits of integrated scheduling solution and the results also show that proposed GA-based heuristics are efficient for the integrated problem.
NASA Astrophysics Data System (ADS)
Hsiao, Ming-Chih; Su, Ling-Huey
2018-02-01
This research addresses the problem of scheduling hybrid machine types, in which one type is a two-machine flowshop and another type is a single machine. A job is either processed on the two-machine flowshop or on the single machine. The objective is to determine a production schedule for all jobs so as to minimize the makespan. The problem is NP-hard since the two parallel machines problem was proved to be NP-hard. Simulated annealing algorithms are developed to solve the problem optimally. A mixed integer programming (MIP) is developed and used to evaluate the performance for two SAs. Computational experiments demonstrate the efficiency of the simulated annealing algorithms, the quality of the simulated annealing algorithms will also be reported.
NASA Technical Reports Server (NTRS)
Moore, J. E.
1975-01-01
An enumeration algorithm is presented for solving a scheduling problem similar to the single machine job shop problem with sequence dependent setup times. The scheduling problem differs from the job shop problem in two ways. First, its objective is to select an optimum subset of the available tasks to be performed during a fixed period of time. Secondly, each task scheduled is constrained to occur within its particular scheduling window. The algorithm is currently being used to develop typical observational timelines for a telescope that will be operated in earth orbit. Computational times associated with timeline development are presented.
Learning dominance relations in combinatorial search problems
NASA Technical Reports Server (NTRS)
Yu, Chee-Fen; Wah, Benjamin W.
1988-01-01
Dominance relations commonly are used to prune unnecessary nodes in search graphs, but they are problem-dependent and cannot be derived by a general procedure. The authors identify machine learning of dominance relations and the applicable learning mechanisms. A study of learning dominance relations using learning by experimentation is described. This system has been able to learn dominance relations for the 0/1-knapsack problem, an inventory problem, the reliability-by-replication problem, the two-machine flow shop problem, a number of single-machine scheduling problems, and a two-machine scheduling problem. It is considered that the same methodology can be extended to learn dominance relations in general.
Scheduling Jobs with Variable Job Processing Times on Unrelated Parallel Machines
Zhang, Guang-Qian; Wang, Jian-Jun; Liu, Ya-Jing
2014-01-01
m unrelated parallel machines scheduling problems with variable job processing times are considered, where the processing time of a job is a function of its position in a sequence, its starting time, and its resource allocation. The objective is to determine the optimal resource allocation and the optimal schedule to minimize a total cost function that dependents on the total completion (waiting) time, the total machine load, the total absolute differences in completion (waiting) times on all machines, and total resource cost. If the number of machines is a given constant number, we propose a polynomial time algorithm to solve the problem. PMID:24982933
A Solution Method of Scheduling Problem with Worker Allocation by a Genetic Algorithm
NASA Astrophysics Data System (ADS)
Osawa, Akira; Ida, Kenichi
In a scheduling problem with worker allocation (SPWA) proposed by Iima et al, the worker's skill level to each machine is all the same. However, each worker has a different skill level for each machine in the real world. For that reason, we propose a new model of SPWA in which a worker has the different skill level to each machine. To solve the problem, we propose a new GA for SPWA consisting of the following new three procedures, shortening of idle time, modifying infeasible solution to feasible solution, and a new selection method for GA. The effectiveness of the proposed algorithm is clarified by numerical experiments using benchmark problems for job-shop scheduling.
Job shop scheduling problem with late work criterion
NASA Astrophysics Data System (ADS)
Piroozfard, Hamed; Wong, Kuan Yew
2015-05-01
Scheduling is considered as a key task in many industries, such as project based scheduling, crew scheduling, flight scheduling, machine scheduling, etc. In the machine scheduling area, the job shop scheduling problems are considered to be important and highly complex, in which they are characterized as NP-hard. The job shop scheduling problems with late work criterion and non-preemptive jobs are addressed in this paper. Late work criterion is a fairly new objective function. It is a qualitative measure and concerns with late parts of the jobs, unlike classical objective functions that are quantitative measures. In this work, simulated annealing was presented to solve the scheduling problem. In addition, operation based representation was used to encode the solution, and a neighbourhood search structure was employed to search for the new solutions. The case studies are Lawrence instances that were taken from the Operations Research Library. Computational results of this probabilistic meta-heuristic algorithm were compared with a conventional genetic algorithm, and a conclusion was made based on the algorithm and problem.
Manipulating Tabu List to Handle Machine Breakdowns in Job Shop Scheduling Problems
NASA Astrophysics Data System (ADS)
Nababan, Erna Budhiarti; SalimSitompul, Opim
2011-06-01
Machine breakdowns in a production schedule may occur on a random basis that make the well-known hard combinatorial problem of Job Shop Scheduling Problems (JSSP) becomes more complex. One of popular techniques used to solve the combinatorial problems is Tabu Search. In this technique, moves that will be not allowed to be revisited are retained in a tabu list in order to avoid in gaining solutions that have been obtained previously. In this paper, we propose an algorithm to employ a second tabu list to keep broken machines, in addition to the tabu list that keeps the moves. The period of how long the broken machines will be kept on the list is categorized using fuzzy membership function. Our technique are tested to the benchmark data of JSSP available on the OR library. From the experiment, we found that our algorithm is promising to help a decision maker to face the event of machine breakdowns.
NASA Astrophysics Data System (ADS)
Wang, Li-Chih; Chen, Yin-Yann; Chen, Tzu-Li; Cheng, Chen-Yang; Chang, Chin-Wei
2014-10-01
This paper studies a solar cell industry scheduling problem, which is similar to traditional hybrid flowshop scheduling (HFS). In a typical HFS problem, the allocation of machine resources for each order should be scheduled in advance. However, the challenge in solar cell manufacturing is the number of machines that can be adjusted dynamically to complete the job. An optimal production scheduling model is developed to explore these issues, considering the practical characteristics, such as hybrid flowshop, parallel machine system, dedicated machines, sequence independent job setup times and sequence dependent job setup times. The objective of this model is to minimise the makespan and to decide the processing sequence of the orders/lots in each stage, lot-splitting decisions for the orders and the number of machines used to satisfy the demands in each stage. From the experimental results, lot-splitting has significant effect on shortening the makespan, and the improvement effect is influenced by the processing time and the setup time of orders. Therefore, the threshold point to improve the makespan can be identified. In addition, the model also indicates that more lot-splitting approaches, that is, the flexibility of allocating orders/lots to machines is larger, will result in a better scheduling performance.
Scheduling algorithm for flow shop with two batch-processing machines and arbitrary job sizes
NASA Astrophysics Data System (ADS)
Cheng, Bayi; Yang, Shanlin; Hu, Xiaoxuan; Li, Kai
2014-03-01
This article considers the problem of scheduling two batch-processing machines in flow shop where the jobs have arbitrary sizes and the machines have limited capacity. The jobs are processed in batches and the total size of jobs in each batch cannot exceed the machine capacity. Once a batch is being processed, no interruption is allowed until all the jobs in it are completed. The problem of minimising makespan is NP-hard in the strong sense. First, we present a mathematical model of the problem using integer programme. We show the scale of feasible solutions of the problem and provide optimality properties. Then, we propose a polynomial time algorithm with running time in O(nlogn). The jobs are first assigned in feasible batches and then scheduled on machines. For the general case, we prove that the proposed algorithm has a performance guarantee of 4. For the special case where the processing times of each job on the two machines satisfy p 1 j = ap 2 j , the performance guarantee is ? for a > 0.
Permutation flow-shop scheduling problem to optimize a quadratic objective function
NASA Astrophysics Data System (ADS)
Ren, Tao; Zhao, Peng; Zhang, Da; Liu, Bingqian; Yuan, Huawei; Bai, Danyu
2017-09-01
A flow-shop scheduling model enables appropriate sequencing for each job and for processing on a set of machines in compliance with identical processing orders. The objective is to achieve a feasible schedule for optimizing a given criterion. Permutation is a special setting of the model in which the processing order of the jobs on the machines is identical for each subsequent step of processing. This article addresses the permutation flow-shop scheduling problem to minimize the criterion of total weighted quadratic completion time. With a probability hypothesis, the asymptotic optimality of the weighted shortest processing time schedule under a consistency condition (WSPT-CC) is proven for sufficiently large-scale problems. However, the worst case performance ratio of the WSPT-CC schedule is the square of the number of machines in certain situations. A discrete differential evolution algorithm, where a new crossover method with multiple-point insertion is used to improve the final outcome, is presented to obtain high-quality solutions for moderate-scale problems. A sequence-independent lower bound is designed for pruning in a branch-and-bound algorithm for small-scale problems. A set of random experiments demonstrates the performance of the lower bound and the effectiveness of the proposed algorithms.
A parallel-machine scheduling problem with two competing agents
NASA Astrophysics Data System (ADS)
Lee, Wen-Chiung; Chung, Yu-Hsiang; Wang, Jen-Ya
2017-06-01
Scheduling with two competing agents has become popular in recent years. Most of the research has focused on single-machine problems. This article considers a parallel-machine problem, the objective of which is to minimize the total completion time of jobs from the first agent given that the maximum tardiness of jobs from the second agent cannot exceed an upper bound. The NP-hardness of this problem is also examined. A genetic algorithm equipped with local search is proposed to search for the near-optimal solution. Computational experiments are conducted to evaluate the proposed genetic algorithm.
Hidri, Lotfi; Gharbi, Anis; Louly, Mohamed Aly
2014-01-01
We focus on the two-center hybrid flow shop scheduling problem with identical parallel machines and removal times. The job removal time is the required duration to remove it from a machine after its processing. The objective is to minimize the maximum completion time (makespan). A heuristic and a lower bound are proposed for this NP-Hard problem. These procedures are based on the optimal solution of the parallel machine scheduling problem with release dates and delivery times. The heuristic is composed of two phases. The first one is a constructive phase in which an initial feasible solution is provided, while the second phase is an improvement one. Intensive computational experiments have been conducted to confirm the good performance of the proposed procedures.
Efficient Bounding Schemes for the Two-Center Hybrid Flow Shop Scheduling Problem with Removal Times
2014-01-01
We focus on the two-center hybrid flow shop scheduling problem with identical parallel machines and removal times. The job removal time is the required duration to remove it from a machine after its processing. The objective is to minimize the maximum completion time (makespan). A heuristic and a lower bound are proposed for this NP-Hard problem. These procedures are based on the optimal solution of the parallel machine scheduling problem with release dates and delivery times. The heuristic is composed of two phases. The first one is a constructive phase in which an initial feasible solution is provided, while the second phase is an improvement one. Intensive computational experiments have been conducted to confirm the good performance of the proposed procedures. PMID:25610911
NASA Astrophysics Data System (ADS)
Sivarami Reddy, N.; Ramamurthy, D. V., Dr.; Prahlada Rao, K., Dr.
2017-08-01
This article addresses simultaneous scheduling of machines, AGVs and tools where machines are allowed to share the tools considering transfer times of jobs and tools between machines, to generate best optimal sequences that minimize makespan in a multi-machine Flexible Manufacturing System (FMS). Performance of FMS is expected to improve by effective utilization of its resources, by proper integration and synchronization of their scheduling. Symbiotic Organisms Search (SOS) algorithm is a potent tool which is a better alternative for solving optimization problems like scheduling and proven itself. The proposed SOS algorithm is tested on 22 job sets with makespan as objective for scheduling of machines and tools where machines are allowed to share tools without considering transfer times of jobs and tools and the results are compared with the results of existing methods. The results show that the SOS has outperformed. The same SOS algorithm is used for simultaneous scheduling of machines, AGVs and tools where machines are allowed to share tools considering transfer times of jobs and tools to determine the best optimal sequences that minimize makespan.
NASA Astrophysics Data System (ADS)
Paksi, A. B. N.; Ma'ruf, A.
2016-02-01
In general, both machines and human resources are needed for processing a job on production floor. However, most classical scheduling problems have ignored the possible constraint caused by availability of workers and have considered only machines as a limited resource. In addition, along with production technology development, routing flexibility appears as a consequence of high product variety and medium demand for each product. Routing flexibility is caused by capability of machines that offers more than one machining process. This paper presents a method to address scheduling problem constrained by both machines and workers, considering routing flexibility. Scheduling in a Dual-Resource Constrained shop is categorized as NP-hard problem that needs long computational time. Meta-heuristic approach, based on Genetic Algorithm, is used due to its practical implementation in industry. Developed Genetic Algorithm uses indirect chromosome representative and procedure to transform chromosome into Gantt chart. Genetic operators, namely selection, elitism, crossover, and mutation are developed to search the best fitness value until steady state condition is achieved. A case study in a manufacturing SME is used to minimize tardiness as objective function. The algorithm has shown 25.6% reduction of tardiness, equal to 43.5 hours.
NASA Astrophysics Data System (ADS)
Santosa, B.; Siswanto, N.; Fiqihesa
2018-04-01
This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution
Scheduling Jobs and a Variable Maintenance on a Single Machine with Common Due-Date Assignment
Wan, Long
2014-01-01
We investigate a common due-date assignment scheduling problem with a variable maintenance on a single machine. The goal is to minimize the total earliness, tardiness, and due-date cost. We derive some properties on an optimal solution for our problem. For a special case with identical jobs we propose an optimal polynomial time algorithm followed by a numerical example. PMID:25147861
NASA Astrophysics Data System (ADS)
Birgin, Ernesto G.; Ronconi, Débora P.
2012-10-01
The single machine scheduling problem with a common due date and non-identical ready times for the jobs is examined in this work. Performance is measured by the minimization of the weighted sum of earliness and tardiness penalties of the jobs. Since this problem is NP-hard, the application of constructive heuristics that exploit specific characteristics of the problem to improve their performance is investigated. The proposed approaches are examined through a computational comparative study on a set of 280 benchmark test problems with up to 1000 jobs.
NASA Astrophysics Data System (ADS)
Amallynda, I.; Santosa, B.
2017-11-01
This paper proposes a new generalization of the distributed parallel machine and assembly scheduling problem (DPMASP) with eligibility constraints referred to as the modified distributed parallel machine and assembly scheduling problem (MDPMASP) with eligibility constraints. Within this generalization, we assume that there are a set non-identical factories or production lines, each one with a set unrelated parallel machine with different speeds in processing them disposed to a single assembly machine in series. A set of different products that are manufactured through an assembly program of a set of components (jobs) according to the requested demand. Each product requires several kinds of jobs with different sizes. Beside that we also consider to the multi-objective problem (MOP) of minimizing mean flow time and the number of tardy products simultaneously. This is known to be NP-Hard problem, is important to practice, as the former criterions to reflect the customer's demand and manufacturer's perspective. This is a realistic and complex problem with wide range of possible solutions, we propose four simple heuristics and two metaheuristics to solve it. Various parameters of the proposed metaheuristic algorithms are discussed and calibrated by means of Taguchi technique. All proposed algorithms are tested by Matlab software. Our computational experiments indicate that the proposed problem and fourth proposed algorithms are able to be implemented and can be used to solve moderately-sized instances, and giving efficient solutions, which are close to optimum in most cases.
Scheduling of flow shop problems on 3 machines in fuzzy environment with double transport facility
NASA Astrophysics Data System (ADS)
Sathish, Shakeela; Ganesan, K.
2016-06-01
Flow shop scheduling is a decision making problem in production and manufacturing field which has a significant impact on the performance of an organization. When the machines on which jobs are to be processed are placed at different places, the transportation time plays a significant role in production. Further two different transport agents where 1st takes the job from 1st machine to 2nd machine and then returns back to the first machine and the 2nd takes the job from 2nd machine to 3rd machine and then returns back to the 2nd machine are also considered. We propose a method to minimize the total make span; without converting the fuzzy processing time to classical numbers by using a new type of fuzzy arithmetic and a fuzzy ranking method. A numerical example is provided to explain the proposed method.
NASA Astrophysics Data System (ADS)
Konno, Yohko; Suzuki, Keiji
This paper describes an approach to development of a solution algorithm of a general-purpose for large scale problems using “Local Clustering Organization (LCO)” as a new solution for Job-shop scheduling problem (JSP). Using a performance effective large scale scheduling in the study of usual LCO, a solving JSP keep stability induced better solution is examined. In this study for an improvement of a performance of a solution for JSP, processes to a optimization by LCO is examined, and a scheduling solution-structure is extended to a new solution-structure based on machine-division. A solving method introduced into effective local clustering for the solution-structure is proposed as an extended LCO. An extended LCO has an algorithm which improves scheduling evaluation efficiently by clustering of parallel search which extends over plural machines. A result verified by an application of extended LCO on various scale of problems proved to conduce to minimizing make-span and improving on the stable performance.
NASA Astrophysics Data System (ADS)
Lu, Yuan-Yuan; Wang, Ji-Bo; Ji, Ping; He, Hongyu
2017-09-01
In this article, single-machine group scheduling with learning effects and convex resource allocation is studied. The goal is to find the optimal job schedule, the optimal group schedule, and resource allocations of jobs and groups. For the problem of minimizing the makespan subject to limited resource availability, it is proved that the problem can be solved in polynomial time under the condition that the setup times of groups are independent. For the general setup times of groups, a heuristic algorithm and a branch-and-bound algorithm are proposed, respectively. Computational experiments show that the performance of the heuristic algorithm is fairly accurate in obtaining near-optimal solutions.
Single machine scheduling with slack due dates assignment
NASA Astrophysics Data System (ADS)
Liu, Weiguo; Hu, Xiangpei; Wang, Xuyin
2017-04-01
This paper considers a single machine scheduling problem in which each job is assigned an individual due date based on a common flow allowance (i.e. all jobs have slack due date). The goal is to find a sequence for jobs, together with a due date assignment, that minimizes a non-regular criterion comprising the total weighted absolute lateness value and common flow allowance cost, where the weight is a position-dependent weight. In order to solve this problem, an ? time algorithm is proposed. Some extensions of the problem are also shown.
A Genetic Algorithm for Flow Shop Scheduling with Assembly Operations to Minimize Makespan
NASA Astrophysics Data System (ADS)
Bhongade, A. S.; Khodke, P. M.
2014-04-01
Manufacturing systems, in which, several parts are processed through machining workstations and later assembled to form final products, is common. Though scheduling of such problems are solved using heuristics, available solution approaches can provide solution for only moderate sized problems due to large computation time required. In this work, scheduling approach is developed for such flow-shop manufacturing system having machining workstations followed by assembly workstations. The initial schedule is generated using Disjunctive method and genetic algorithm (GA) is applied further for generating schedule for large sized problems. GA is found to give near optimal solution based on the deviation of makespan from lower bound. The lower bound of makespan of such problem is estimated and percent deviation of makespan from lower bounds is used as a performance measure to evaluate the schedules. Computational experiments are conducted on problems developed using fractional factorial orthogonal array, varying the number of parts per product, number of products, and number of workstations (ranging upto 1,520 number of operations). A statistical analysis indicated the significance of all the three factors considered. It is concluded that GA method can obtain optimal makespan.
Frutos, M; Méndez, M; Tohmé, F; Broz, D
2013-01-01
Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier.
Some single-machine scheduling problems with learning effects and two competing agents.
Li, Hongjie; Li, Zeyuan; Yin, Yunqiang
2014-01-01
This study considers a scheduling environment in which there are two agents and a set of jobs, each of which belongs to one of the two agents and its actual processing time is defined as a decreasing linear function of its starting time. Each of the two agents competes to process its respective jobs on a single machine and has its own scheduling objective to optimize. The objective is to assign the jobs so that the resulting schedule performs well with respect to the objectives of both agents. The objective functions addressed in this study include the maximum cost, the total weighted completion time, and the discounted total weighted completion time. We investigate three problems arising from different combinations of the objectives of the two agents. The computational complexity of the problems is discussed and solution algorithms where possible are presented.
NASA Astrophysics Data System (ADS)
Wang, Ji-Bo; Wang, Ming-Zheng; Ji, Ping
2012-05-01
In this article, we consider a single machine scheduling problem with a time-dependent learning effect and deteriorating jobs. By the effects of time-dependent learning and deterioration, we mean that the job processing time is defined by a function of its starting time and total normal processing time of jobs in front of it in the sequence. The objective is to determine an optimal schedule so as to minimize the total completion time. This problem remains open for the case of -1 < a < 0, where a denotes the learning index; we show that an optimal schedule of the problem is V-shaped with respect to job normal processing times. Three heuristic algorithms utilising the V-shaped property are proposed, and computational experiments show that the last heuristic algorithm performs effectively and efficiently in obtaining near-optimal solutions.
Meta-RaPS Algorithm for the Aerial Refueling Scheduling Problem
NASA Technical Reports Server (NTRS)
Kaplan, Sezgin; Arin, Arif; Rabadi, Ghaith
2011-01-01
The Aerial Refueling Scheduling Problem (ARSP) can be defined as determining the refueling completion times for each fighter aircraft (job) on multiple tankers (machines). ARSP assumes that jobs have different release times and due dates, The total weighted tardiness is used to evaluate schedule's quality. Therefore, ARSP can be modeled as a parallel machine scheduling with release limes and due dates to minimize the total weighted tardiness. Since ARSP is NP-hard, it will be more appropriate to develop a pproimate or heuristic algorithm to obtain solutions in reasonable computation limes. In this paper, Meta-Raps-ATC algorithm is implemented to create high quality solutions. Meta-RaPS (Meta-heuristic for Randomized Priority Search) is a recent and promising meta heuristic that is applied by introducing randomness to a construction heuristic. The Apparent Tardiness Rule (ATC), which is a good rule for scheduling problems with tardiness objective, is used to construct initial solutions which are improved by an exchanging operation. Results are presented for generated instances.
Heuristic for Critical Machine Based a Lot Streaming for Two-Stage Hybrid Production Environment
NASA Astrophysics Data System (ADS)
Vivek, P.; Saravanan, R.; Chandrasekaran, M.; Pugazhenthi, R.
2017-03-01
Lot streaming in Hybrid flowshop [HFS] is encountered in many real world problems. This paper deals with a heuristic approach for Lot streaming based on critical machine consideration for a two stage Hybrid Flowshop. The first stage has two identical parallel machines and the second stage has only one machine. In the second stage machine is considered as a critical by valid reasons these kind of problems is known as NP hard. A mathematical model developed for the selected problem. The simulation modelling and analysis were carried out in Extend V6 software. The heuristic developed for obtaining optimal lot streaming schedule. The eleven cases of lot streaming were considered. The proposed heuristic was verified and validated by real time simulation experiments. All possible lot streaming strategies and possible sequence under each lot streaming strategy were simulated and examined. The heuristic consistently yielded optimal schedule consistently in all eleven cases. The identification procedure for select best lot streaming strategy was suggested.
NASA Astrophysics Data System (ADS)
Mirabi, Mohammad; Fatemi Ghomi, S. M. T.; Jolai, F.
2014-04-01
Flow-shop scheduling problem (FSP) deals with the scheduling of a set of n jobs that visit a set of m machines in the same order. As the FSP is NP-hard, there is no efficient algorithm to reach the optimal solution of the problem. To minimize the holding, delay and setup costs of large permutation flow-shop scheduling problems with sequence-dependent setup times on each machine, this paper develops a novel hybrid genetic algorithm (HGA) with three genetic operators. Proposed HGA applies a modified approach to generate a pool of initial solutions, and also uses an improved heuristic called the iterated swap procedure to improve the initial solutions. We consider the make-to-order production approach that some sequences between jobs are assumed as tabu based on maximum allowable setup cost. In addition, the results are compared to some recently developed heuristics and computational experimental results show that the proposed HGA performs very competitively with respect to accuracy and efficiency of solution.
Research on Production Scheduling System with Bottleneck Based on Multi-agent
NASA Astrophysics Data System (ADS)
Zhenqiang, Bao; Weiye, Wang; Peng, Wang; Pan, Quanke
Aimed at the imbalance problem of resource capacity in Production Scheduling System, this paper uses Production Scheduling System based on multi-agent which has been constructed, and combines the dynamic and autonomous of Agent; the bottleneck problem in the scheduling is solved dynamically. Firstly, this paper uses Bottleneck Resource Agent to find out the bottleneck resource in the production line, analyses the inherent mechanism of bottleneck, and describes the production scheduling process based on bottleneck resource. Bottleneck Decomposition Agent harmonizes the relationship of job's arrival time and transfer time in Bottleneck Resource Agent and Non-Bottleneck Resource Agents, therefore, the dynamic scheduling problem is simplified as the single machine scheduling of each resource which takes part in the scheduling. Finally, the dynamic real-time scheduling problem is effectively solved in Production Scheduling System.
Frutos, M.; Méndez, M.; Tohmé, F.; Broz, D.
2013-01-01
Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier. PMID:24489502
Run-time scheduling and execution of loops on message passing machines
NASA Technical Reports Server (NTRS)
Crowley, Kay; Saltz, Joel; Mirchandaney, Ravi; Berryman, Harry
1989-01-01
Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.
Run-time scheduling and execution of loops on message passing machines
NASA Technical Reports Server (NTRS)
Saltz, Joel; Crowley, Kathleen; Mirchandaney, Ravi; Berryman, Harry
1990-01-01
Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.
Solving the flexible job shop problem by hybrid metaheuristics-based multiagent model
NASA Astrophysics Data System (ADS)
Nouri, Houssem Eddine; Belkahla Driss, Olfa; Ghédira, Khaled
2018-03-01
The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling problem that allows to process operations on one machine out of a set of alternative machines. The FJSP is an NP-hard problem consisting of two sub-problems, which are the assignment and the scheduling problems. In this paper, we propose how to solve the FJSP by hybrid metaheuristics-based clustered holonic multiagent model. First, a neighborhood-based genetic algorithm (NGA) is applied by a scheduler agent for a global exploration of the search space. Second, a local search technique is used by a set of cluster agents to guide the research in promising regions of the search space and to improve the quality of the NGA final population. The efficiency of our approach is explained by the flexible selection of the promising parts of the search space by the clustering operator after the genetic algorithm process, and by applying the intensification technique of the tabu search allowing to restart the search from a set of elite solutions to attain new dominant scheduling solutions. Computational results are presented using four sets of well-known benchmark literature instances. New upper bounds are found, showing the effectiveness of the presented approach.
Hybrid Metaheuristics for Solving a Fuzzy Single Batch-Processing Machine Scheduling Problem
Molla-Alizadeh-Zavardehi, S.; Tavakkoli-Moghaddam, R.; Lotfi, F. Hosseinzadeh
2014-01-01
This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM) scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA), variable neighborhood search (VNS), and simulated annealing (SA) frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms. PMID:24883359
Multiagent scheduling method with earliness and tardiness objectives in flexible job shops.
Wu, Zuobao; Weng, Michael X
2005-04-01
Flexible job-shop scheduling problems are an important extension of the classical job-shop scheduling problems and present additional complexity. Such problems are mainly due to the existence of a considerable amount of overlapping capacities with modern machines. Classical scheduling methods are generally incapable of addressing such capacity overlapping. We propose a multiagent scheduling method with job earliness and tardiness objectives in a flexible job-shop environment. The earliness and tardiness objectives are consistent with the just-in-time production philosophy which has attracted significant attention in both industry and academic community. A new job-routing and sequencing mechanism is proposed. In this mechanism, two kinds of jobs are defined to distinguish jobs with one operation left from jobs with more than one operation left. Different criteria are proposed to route these two kinds of jobs. Job sequencing enables to hold a job that may be completed too early. Two heuristic algorithms for job sequencing are developed to deal with these two kinds of jobs. The computational experiments show that the proposed multiagent scheduling method significantly outperforms the existing scheduling methods in the literature. In addition, the proposed method is quite fast. In fact, the simulation time to find a complete schedule with over 2000 jobs on ten machines is less than 1.5 min.
Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao
2016-01-01
Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.
A meta-heuristic method for solving scheduling problem: crow search algorithm
NASA Astrophysics Data System (ADS)
Adhi, Antono; Santosa, Budi; Siswanto, Nurhadi
2018-04-01
Scheduling is one of the most important processes in an industry both in manufacturingand services. The scheduling process is the process of selecting resources to perform an operation on tasks. Resources can be machines, peoples, tasks, jobs or operations.. The selection of optimum sequence of jobs from a permutation is an essential issue in every research in scheduling problem. Optimum sequence becomes optimum solution to resolve scheduling problem. Scheduling problem becomes NP-hard problem since the number of job in the sequence is more than normal number can be processed by exact algorithm. In order to obtain optimum results, it needs a method with capability to solve complex scheduling problems in an acceptable time. Meta-heuristic is a method usually used to solve scheduling problem. The recently published method called Crow Search Algorithm (CSA) is adopted in this research to solve scheduling problem. CSA is an evolutionary meta-heuristic method which is based on the behavior in flocks of crow. The calculation result of CSA for solving scheduling problem is compared with other algorithms. From the comparison, it is found that CSA has better performance in term of optimum solution and time calculation than other algorithms.
Job shop scheduling model for non-identic machine with fixed delivery time to minimize tardiness
NASA Astrophysics Data System (ADS)
Kusuma, K. K.; Maruf, A.
2016-02-01
Scheduling non-identic machines problem with low utilization characteristic and fixed delivery time are frequent in manufacture industry. This paper propose a mathematical model to minimize total tardiness for non-identic machines in job shop environment. This model will be categorized as an integer linier programming model and using branch and bound algorithm as the solver method. We will use fixed delivery time as main constraint and different processing time to process a job. The result of this proposed model shows that the utilization of production machines can be increase with minimal tardiness using fixed delivery time as constraint.
Human-Machine Collaborative Optimization via Apprenticeship Scheduling
2016-09-09
prenticeship Scheduling (COVAS), which performs ma- chine learning using human expert demonstration, in conjunction with optimization, to automatically and ef...ficiently produce optimal solutions to challenging real- world scheduling problems. COVAS first learns a policy from human scheduling demonstration via...apprentice- ship learning , then uses this initial solution to provide a tight bound on the value of the optimal solution, thereby substantially
Sensibility study in a flexible job shop scheduling problem
NASA Astrophysics Data System (ADS)
Curralo, Ana; Pereira, Ana I.; Barbosa, José; Leitão, Paulo
2013-10-01
This paper proposes the impact assessment of the jobs order in the optimal time of operations in a Flexible Job Shop Scheduling Problem. In this work a real assembly cell was studied: the AIP-PRIMECA cell at the Université de Valenciennes et du Hainaut-Cambrésis, in France, which is considered as a Flexible Job Shop problem. The problem consists in finding the machines operations schedule, taking into account the precedence constraints. The main objective is to minimize the batch makespan, i.e. the finish time of the last operation completed in the schedule. Shortly, the present study consists in evaluating if the jobs order affects the optimal time of the operations schedule. The genetic algorithm was used to solve the optimization problem. As a conclusion, it's assessed that the jobs order influence the optimal time.
NASA Astrophysics Data System (ADS)
Sembiring, N.; Panjaitan, N.; Saragih, A. F.
2018-02-01
PT. XYZ is a manufacturing company that produces fresh fruit bunches (FFB) to Crude Palm Oil (CPO) and Palm Kernel Oil (PKO). PT. XYZ consists of six work stations: receipt station, sterilizing station, thressing station, pressing station, clarification station, and kernelery station. So far, the company is still implementing corrective maintenance maintenance system for production machines where the machine repair is done after damage occurs. Problems at PT. XYZ is the absence of scheduling engine maintenance in a planned manner resulting in the engine often damaged which can disrupt the smooth production. Another factor that is the problem in this research is the kernel station environment that becomes less convenient for operators such as there are machines and equipment not used in the production area, slippery, muddy, scattered fibers, incomplete use of PPE, and lack of employee discipline. The most commonly damaged machine is in the seed processing station (kernel station) which is cake breaker conveyor machine. The solution of this problem is to propose a schedule plan for maintenance of the machine by using the method of reliability centered maintenance and also the application of 5S. The result of the application of Reliability Centered maintenance method is obtained four components that must be treated scheduled (time directed), namely: for bearing component is 37 days, gearbox component is 97 days, CBC pen component is 35 days and conveyor pedal component is 32 days While after identification the application of 5S obtained the proposed corporate environmental improvement measures in accordance with the principles of 5S where unused goods will be moved from the production area, grouping goods based on their use, determining the procedure of cleaning the production area, conducting inspection in the use of PPE, and making 5S slogans.
Stochastic scheduling on a repairable manufacturing system
NASA Astrophysics Data System (ADS)
Li, Wei; Cao, Jinhua
1995-08-01
In this paper, we consider some stochastic scheduling problems with a set of stochastic jobs on a manufacturing system with a single machine that is subject to multiple breakdowns and repairs. When the machine processing a job fails, the job processing must restart some time later when the machine is repaired. For this typical manufacturing system, we find the optimal policies that minimize the following objective functions: (1) the weighed sum of the completion times; (2) the weighed number of late jobs having constant due dates; (3) the weighted number of late jobs having random due dates exponentially distributed, which generalize some previous results.
Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk
2014-01-01
We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms.
Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)
NASA Astrophysics Data System (ADS)
Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman
2012-01-01
In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.
NASA Astrophysics Data System (ADS)
Jiang, Fuhong; Zhang, Xingong; Bai, Danyu; Wu, Chin-Chia
2018-04-01
In this article, a competitive two-agent scheduling problem in a two-machine open shop is studied. The objective is to minimize the weighted sum of the makespans of two competitive agents. A complexity proof is presented for minimizing the weighted combination of the makespan of each agent if the weight α belonging to agent B is arbitrary. Furthermore, two pseudo-polynomial-time algorithms using the largest alternate processing time (LAPT) rule are presented. Finally, two approximation algorithms are presented if the weight is equal to one. Additionally, another approximation algorithm is presented if the weight is larger than one.
Optimization-based manufacturing scheduling with multiple resources and setup requirements
NASA Astrophysics Data System (ADS)
Chen, Dong; Luh, Peter B.; Thakur, Lakshman S.; Moreno, Jack, Jr.
1998-10-01
The increasing demand for on-time delivery and low price forces manufacturer to seek effective schedules to improve coordination of multiple resources and to reduce product internal costs associated with labor, setup and inventory. This study describes the design and implementation of a scheduling system for J. M. Product Inc. whose manufacturing is characterized by the need to simultaneously consider machines and operators while an operator may attend several operations at the same time, and the presence of machines requiring significant setup times. The scheduling problem with these characteristics are typical for many manufacturers, very difficult to be handled, and have not been adequately addressed in the literature. In this study, both machine and operators are modeled as resources with finite capacities to obtain efficient coordination between them, and an operator's time can be shared by several operations at the same time to make full use of the operator. Setups are explicitly modeled following our previous work, with additional penalties on excessive setups to reduce setup costs and avoid possible scraps. An integer formulation with a separable structure is developed to maximize on-time delivery of products, low inventory and small number of setups. Within the Lagrangian relaxation framework, the problem is decomposed into individual subproblems that are effectively solved by using dynamic programming with additional penalties embedded in state transitions. Heuristics is then developed to obtain a feasible schedule following on our previous work with new mechanism to satisfy operator capacity constraints. The method has been implemented using the object-oriented programming language C++ with a user-friendly interface, and numerical testing shows that the method generates high quality schedules in a timely fashion. Through simultaneous consideration of machines and operators, machines and operators are well coordinated to facilitate the smooth flow of parts through the system. The explicit modeling of setups and the associated penalties let parts with same setup requirements clustered together to avoid excessive setups.
Zhao, Chuan-Li; Hsu, Hua-Feng
2014-01-01
This paper considers single machine scheduling and due date assignment with setup time. The setup time is proportional to the length of the already processed jobs; that is, the setup time is past-sequence-dependent (p-s-d). It is assumed that a job's processing time depends on its position in a sequence. The objective functions include total earliness, the weighted number of tardy jobs, and the cost of due date assignment. We analyze these problems with two different due date assignment methods. We first consider the model with job-dependent position effects. For each case, by converting the problem to a series of assignment problems, we proved that the problems can be solved in O(n 4) time. For the model with job-independent position effects, we proved that the problems can be solved in O(n 3) time by providing a dynamic programming algorithm. PMID:25258727
Zhao, Chuan-Li; Hsu, Chou-Jung; Hsu, Hua-Feng
2014-01-01
This paper considers single machine scheduling and due date assignment with setup time. The setup time is proportional to the length of the already processed jobs; that is, the setup time is past-sequence-dependent (p-s-d). It is assumed that a job's processing time depends on its position in a sequence. The objective functions include total earliness, the weighted number of tardy jobs, and the cost of due date assignment. We analyze these problems with two different due date assignment methods. We first consider the model with job-dependent position effects. For each case, by converting the problem to a series of assignment problems, we proved that the problems can be solved in O(n(4)) time. For the model with job-independent position effects, we proved that the problems can be solved in O(n(3)) time by providing a dynamic programming algorithm.
NASA Astrophysics Data System (ADS)
Buddala, Raviteja; Mahapatra, Siba Sankar
2017-11-01
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having `g' operations is performed on `g' operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching-learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.
Software For Integer Programming
NASA Technical Reports Server (NTRS)
Fogle, F. R.
1992-01-01
Improved Exploratory Search Technique for Pure Integer Linear Programming Problems (IESIP) program optimizes objective function of variables subject to confining functions or constraints, using discrete optimization or integer programming. Enables rapid solution of problems up to 10 variables in size. Integer programming required for accuracy in modeling systems containing small number of components, distribution of goods, scheduling operations on machine tools, and scheduling production in general. Written in Borland's TURBO Pascal.
NASA Astrophysics Data System (ADS)
Setiawan, A.; Wangsaputra, R.; Martawirya, Y. Y.; Halim, A. H.
2016-02-01
This paper deals with Flexible Manufacturing System (FMS) production rescheduling due to unavailability of cutting tools caused either of cutting tool failure or life time limit. The FMS consists of parallel identical machines integrated with an automatic material handling system and it runs fully automatically. Each machine has a same cutting tool configuration that consists of different geometrical cutting tool types on each tool magazine. The job usually takes two stages. Each stage has sequential operations allocated to machines considering the cutting tool life. In the real situation, the cutting tool can fail before the cutting tool life is reached. The objective in this paper is to develop a dynamic scheduling algorithm when a cutting tool is broken during unmanned and a rescheduling needed. The algorithm consists of four steps. The first step is generating initial schedule, the second step is determination the cutting tool failure time, the third step is determination of system status at cutting tool failure time and the fourth step is the rescheduling for unfinished jobs. The approaches to solve the problem are complete-reactive scheduling and robust-proactive scheduling. The new schedules result differences starting time and completion time of each operations from the initial schedule.
Multiplexing Low and High QoS Workloads in Virtual Environments
NASA Astrophysics Data System (ADS)
Verboven, Sam; Vanmechelen, Kurt; Broeckhove, Jan
Virtualization technology has introduced new ways for managing IT infrastructure. The flexible deployment of applications through self-contained virtual machine images has removed the barriers for multiplexing, suspending and migrating applications with their entire execution environment, allowing for a more efficient use of the infrastructure. These developments have given rise to an important challenge regarding the optimal scheduling of virtual machine workloads. In this paper, we specifically address the VM scheduling problem in which workloads that require guaranteed levels of CPU performance are mixed with workloads that do not require such guarantees. We introduce a framework to analyze this scheduling problem and evaluate to what extent such mixed service delivery is beneficial for a provider of virtualized IT infrastructure. Traditionally providers offer IT resources under a guaranteed and fixed performance profile, which can lead to underutilization. The findings of our simulation study show that through proper tuning of a limited set of parameters, the proposed scheduling algorithm allows for a significant increase in utilization without sacrificing on performance dependability.
NASA Astrophysics Data System (ADS)
Zhang, Xingong; Yin, Yunqiang; Wu, Chin-Chia
2017-01-01
There is a situation found in many manufacturing systems, such as steel rolling mills, fire fighting or single-server cycle-queues, where a job that is processed later consumes more time than that same job when processed earlier. The research finds that machine maintenance can improve the worsening of processing conditions. After maintenance activity, the machine will be restored. The maintenance duration is a positive and non-decreasing differentiable convex function of the total processing times of the jobs between maintenance activities. Motivated by this observation, the makespan and the total completion time minimization problems in the scheduling of jobs with non-decreasing rates of job processing time on a single machine are considered in this article. It is shown that both the makespan and the total completion time minimization problems are NP-hard in the strong sense when the number of maintenance activities is arbitrary, while the makespan minimization problem is NP-hard in the ordinary sense when the number of maintenance activities is fixed. If the deterioration rates of the jobs are identical and the maintenance duration is a linear function of the total processing times of the jobs between maintenance activities, then this article shows that the group balance principle is satisfied for the makespan minimization problem. Furthermore, two polynomial-time algorithms are presented for solving the makespan problem and the total completion time problem under identical deterioration rates, respectively.
Single product lot-sizing on unrelated parallel machines with non-decreasing processing times
NASA Astrophysics Data System (ADS)
Eremeev, A.; Kovalyov, M.; Kuznetsov, P.
2018-01-01
We consider a problem in which at least a given quantity of a single product has to be partitioned into lots, and lots have to be assigned to unrelated parallel machines for processing. In one version of the problem, the maximum machine completion time should be minimized, in another version of the problem, the sum of machine completion times is to be minimized. Machine-dependent lower and upper bounds on the lot size are given. The product is either assumed to be continuously divisible or discrete. The processing time of each machine is defined by an increasing function of the lot volume, given as an oracle. Setup times and costs are assumed to be negligibly small, and therefore, they are not considered. We derive optimal polynomial time algorithms for several special cases of the problem. An NP-hard case is shown to admit a fully polynomial time approximation scheme. An application of the problem in energy efficient processors scheduling is considered.
Open shop scheduling problem to minimize total weighted completion time
NASA Astrophysics Data System (ADS)
Bai, Danyu; Zhang, Zhihai; Zhang, Qiang; Tang, Mengqian
2017-01-01
A given number of jobs in an open shop scheduling environment must each be processed for given amounts of time on each of a given set of machines in an arbitrary sequence. This study aims to achieve a schedule that minimizes total weighted completion time. Owing to the strong NP-hardness of the problem, the weighted shortest processing time block (WSPTB) heuristic is presented to obtain approximate solutions for large-scale problems. Performance analysis proves the asymptotic optimality of the WSPTB heuristic in the sense of probability limits. The largest weight block rule is provided to seek optimal schedules in polynomial time for a special case. A hybrid discrete differential evolution algorithm is designed to obtain high-quality solutions for moderate-scale problems. Simulation experiments demonstrate the effectiveness of the proposed algorithms.
Outsourcing and scheduling for a two-machine flow shop with release times
NASA Astrophysics Data System (ADS)
Ahmadizar, Fardin; Amiri, Zeinab
2018-03-01
This article addresses a two-machine flow shop scheduling problem where jobs are released intermittently and outsourcing is allowed. The first operations of outsourced jobs are processed by the first subcontractor, they are transported in batches to the second subcontractor for processing their second operations, and finally they are transported back to the manufacturer. The objective is to select a subset of jobs to be outsourced, to schedule both the in-house and the outsourced jobs, and to determine a transportation plan for the outsourced jobs so as to minimize the sum of the makespan and the outsourcing and transportation costs. Two mathematical models of the problem and several necessary optimality conditions are presented. A solution approach is then proposed by incorporating the dominance properties with an ant colony algorithm. Finally, computational experiments are conducted to evaluate the performance of the models and solution approach.
Ozmutlu, H. Cenk
2014-01-01
We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms. PMID:24977204
Better approximation guarantees for job-shop scheduling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, L.A.; Paterson, M.; Srinivasan, A.
1997-06-01
Job-shop scheduling is a classical NP-hard problem. Shmoys, Stein & Wein presented the first polynomial-time approximation algorithm for this problem that has a good (polylogarithmic) approximation guarantee. We improve the approximation guarantee of their work, and present further improvements for some important NP-hard special cases of this problem (e.g., in the preemptive case where machines can suspend work on operations and later resume). We also present NC algorithms with improved approximation guarantees for some NP-hard special cases.
Batch Scheduling for Hybrid Assembly Differentiation Flow Shop to Minimize Total Actual Flow Time
NASA Astrophysics Data System (ADS)
Maulidya, R.; Suprayogi; Wangsaputra, R.; Halim, A. H.
2018-03-01
A hybrid assembly differentiation flow shop is a three-stage flow shop consisting of Machining, Assembly and Differentiation Stages and producing different types of products. In the machining stage, parts are processed in batches on different (unrelated) machines. In the assembly stage, each part of the different parts is assembled into an assembly product. Finally, the assembled products will further be processed into different types of final products in the differentiation stage. In this paper, we develop a batch scheduling model for a hybrid assembly differentiation flow shop to minimize the total actual flow time defined as the total times part spent in the shop floor from the arrival times until its due date. We also proposed a heuristic algorithm for solving the problems. The proposed algorithm is tested using a set of hypothetic data. The solution shows that the algorithm can solve the problems effectively.
Application of a hybrid generation/utility assessment heuristic to a class of scheduling problems
NASA Technical Reports Server (NTRS)
Heyward, Ann O.
1989-01-01
A two-stage heuristic solution approach for a class of multiobjective, n-job, 1-machine scheduling problems is described. Minimization of job-to-job interference for n jobs is sought. The first stage generates alternative schedule sequences by interchanging pairs of schedule elements. The set of alternative sequences can represent nodes of a decision tree; each node is reached via decision to interchange job elements. The second stage selects the parent node for the next generation of alternative sequences through automated paired comparison of objective performance for all current nodes. An application of the heuristic approach to communications satellite systems planning is presented.
Estimates of the absolute error and a scheme for an approximate solution to scheduling problems
NASA Astrophysics Data System (ADS)
Lazarev, A. A.
2009-02-01
An approach is proposed for estimating absolute errors and finding approximate solutions to classical NP-hard scheduling problems of minimizing the maximum lateness for one or many machines and makespan is minimized. The concept of a metric (distance) between instances of the problem is introduced. The idea behind the approach is, given the problem instance, to construct another instance for which an optimal or approximate solution can be found at the minimum distance from the initial instance in the metric introduced. Instead of solving the original problem (instance), a set of approximating polynomially/pseudopolynomially solvable problems (instances) are considered, an instance at the minimum distance from the given one is chosen, and the resulting schedule is then applied to the original instance.
An efficient annealing in Boltzmann machine in Hopfield neural network
NASA Astrophysics Data System (ADS)
Kin, Teoh Yeong; Hasan, Suzanawati Abu; Bulot, Norhisam; Ismail, Mohammad Hafiz
2012-09-01
This paper proposes and implements Boltzmann machine in Hopfield neural network doing logic programming based on the energy minimization system. The temperature scheduling in Boltzmann machine enhancing the performance of doing logic programming in Hopfield neural network. The finest temperature is determined by observing the ratio of global solution and final hamming distance using computer simulations. The study shows that Boltzmann Machine model is more stable and competent in term of representing and solving difficult combinatory problems.
NASA Astrophysics Data System (ADS)
Sembiring, N.; Ginting, E.; Darnello, T.
2017-12-01
Problems that appear in a company that produces refined sugar, the production floor has not reached the level of critical machine availability because it often suffered damage (breakdown). This results in a sudden loss of production time and production opportunities. This problem can be solved by Reliability Engineering method where the statistical approach to historical damage data is performed to see the pattern of the distribution. The method can provide a value of reliability, rate of damage, and availability level, of an machine during the maintenance time interval schedule. The result of distribution test to time inter-damage data (MTTF) flexible hose component is lognormal distribution while component of teflon cone lifthing is weibull distribution. While from distribution test to mean time of improvement (MTTR) flexible hose component is exponential distribution while component of teflon cone lifthing is weibull distribution. The actual results of the flexible hose component on the replacement schedule per 720 hours obtained reliability of 0.2451 and availability 0.9960. While on the critical components of teflon cone lifthing actual on the replacement schedule per 1944 hours obtained reliability of 0.4083 and availability 0.9927.
Due-Window Assignment Scheduling with Variable Job Processing Times
Wu, Yu-Bin
2015-01-01
We consider a common due-window assignment scheduling problem jobs with variable job processing times on a single machine, where the processing time of a job is a function of its position in a sequence (i.e., learning effect) or its starting time (i.e., deteriorating effect). The problem is to determine the optimal due-windows, and the processing sequence simultaneously to minimize a cost function includes earliness, tardiness, the window location, window size, and weighted number of tardy jobs. We prove that the problem can be solved in polynomial time. PMID:25918745
Car painting process scheduling with harmony search algorithm
NASA Astrophysics Data System (ADS)
Syahputra, M. F.; Maiyasya, A.; Purnamawati, S.; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.
2018-02-01
Automotive painting program in the process of painting the car body by using robot power, making efficiency in the production system. Production system will be more efficient if pay attention to scheduling of car order which will be done by considering painting body shape of car. Flow shop scheduling is a scheduling model in which the job-job to be processed entirely flows in the same product direction / path. Scheduling problems often arise if there are n jobs to be processed on the machine, which must be specified which must be done first and how to allocate jobs on the machine to obtain a scheduled production process. Harmony Search Algorithm is a metaheuristic optimization algorithm based on music. The algorithm is inspired by observations that lead to music in search of perfect harmony. This musical harmony is in line to find optimal in the optimization process. Based on the tests that have been done, obtained the optimal car sequence with minimum makespan value.
Constraint monitoring in TOSCA
NASA Technical Reports Server (NTRS)
Beck, Howard
1992-01-01
The Job-Shop Scheduling Problem (JSSP) deals with the allocation of resources over time to factory operations. Allocations are subject to various constraints (e.g., production precedence relationships, factory capacity constraints, and limits on the allowable number of machine setups) which must be satisfied for a schedule to be valid. The identification of constraint violations and the monitoring of constraint threats plays a vital role in schedule generation in terms of the following: (1) directing the scheduling process; and (2) informing scheduling decisions. This paper describes a general mechanism for identifying constraint violations and monitoring threats to the satisfaction of constraints throughout schedule generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-06-01
Following a planning period during which the Lawrence Livermore Laboratory and the Department of Defense managing sponsor, the USAF Materials Laboratory, agreed on work statements, the Department of Defense Tri-Service Precision Machine-Tool Program began in February 1978. Milestones scheduled for the first quarter have been met. Tasks and manpower requirements for two basic projects, precision-machining commercialization (PMC) and a machine-tool task force (MTTF), were defined. Progress by PMC includes: (1) documentation of existing precision machine-tool technology by initiation and compilation of a bibliography containing several hundred entries: (2) identification of the problems and needs of precision turning-machine builders and ofmore » precision turning-machine users interested in developing high-precision machining capability; and (3) organization of the schedule and content of the first seminar, to be held in October 1978, which will bring together representatives from the machine-tool and optics communities to address the problems and begin the process of high-precision machining commercialization. Progress by MTTF includes: (1) planning for the organization of a team effort of approximately 60 to 80 international experts to contribute in various ways to project objectives, namely, to summarize state-of-the-art cutting-machine-tool technology and to identify areas where future R and D should prove technically and economically profitable; (2) preparation of a comprehensive plan to achieve those objectives; and (3) preliminary arrangements for a plenary session, also in October, when the task force will meet to formalize the details for implementing the plan.« less
Automated Planning and Scheduling for Space Mission Operations
NASA Technical Reports Server (NTRS)
Chien, Steve; Jonsson, Ari; Knight, Russell
2005-01-01
Research Trends: a) Finite-capacity scheduling under more complex constraints and increased problem dimensionality (subcontracting, overtime, lot splitting, inventory, etc.) b) Integrated planning and scheduling. c) Mixed-initiative frameworks. d) Management of uncertainty (proactive and reactive). e) Autonomous agent architectures and distributed production management. e) Integration of machine learning capabilities. f) Wider scope of applications: 1) analysis of supplier/buyer protocols & tradeoffs; 2) integration of strategic & tactical decision-making; and 3) enterprise integration.
Analysis of tasks for dynamic man/machine load balancing in advanced helicopters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgensen, C.C.
1987-10-01
This report considers task allocation requirements imposed by advanced helicopter designs incorporating mixes of human pilots and intelligent machines. Specifically, it develops an analogy between load balancing using distributed non-homogeneous multiprocessors and human team functions. A taxonomy is presented which can be used to identify task combinations likely to cause overload for dynamic scheduling and process allocation mechanisms. Designer criteria are given for function decomposition, separation of control from data, and communication handling for dynamic tasks. Possible effects of n-p complete scheduling problems are noted and a class of combinatorial optimization methods are examined.
A Solution Method of Job-shop Scheduling Problems by the Idle Time Shortening Type Genetic Algorithm
NASA Astrophysics Data System (ADS)
Ida, Kenichi; Osawa, Akira
In this paper, we propose a new idle time shortening method for Job-shop scheduling problems (JSPs). We insert its method into a genetic algorithm (GA). The purpose of JSP is to find a schedule with the minimum makespan. We suppose that it is effective to reduce idle time of a machine in order to improve the makespan. The left shift is a famous algorithm in existing algorithms for shortening idle time. The left shift can not arrange the work to idle time. For that reason, some idle times are not shortened by the left shift. We propose two kinds of algorithms which shorten such idle time. Next, we combine these algorithms and the reversal of a schedule. We apply GA with its algorithm to benchmark problems and we show its effectiveness.
Spike: Artificial intelligence scheduling for Hubble space telescope
NASA Technical Reports Server (NTRS)
Johnston, Mark; Miller, Glenn; Sponsler, Jeff; Vick, Shon; Jackson, Robert
1990-01-01
Efficient utilization of spacecraft resources is essential, but the accompanying scheduling problems are often computationally intractable and are difficult to approximate because of the presence of numerous interacting constraints. Artificial intelligence techniques were applied to the scheduling of the NASA/ESA Hubble Space Telescope (HST). This presents a particularly challenging problem since a yearlong observing program can contain some tens of thousands of exposures which are subject to a large number of scientific, operational, spacecraft, and environmental constraints. New techniques were developed for machine reasoning about scheduling constraints and goals, especially in cases where uncertainty is an important scheduling consideration and where resolving conflicts among conflicting preferences is essential. These technique were utilized in a set of workstation based scheduling tools (Spike) for HST. Graphical displays of activities, constraints, and schedules are an important feature of the system. High level scheduling strategies using both rule based and neural network approaches were developed. While the specific constraints implemented are those most relevant to HST, the framework developed is far more general and could easily handle other kinds of scheduling problems. The concept and implementation of the Spike system are described along with some experiments in adapting Spike to other spacecraft scheduling domains.
A hybrid dynamic harmony search algorithm for identical parallel machines scheduling
NASA Astrophysics Data System (ADS)
Chen, Jing; Pan, Quan-Ke; Wang, Ling; Li, Jun-Qing
2012-02-01
In this article, a dynamic harmony search (DHS) algorithm is proposed for the identical parallel machines scheduling problem with the objective to minimize makespan. First, an encoding scheme based on a list scheduling rule is developed to convert the continuous harmony vectors to discrete job assignments. Second, the whole harmony memory (HM) is divided into multiple small-sized sub-HMs, and each sub-HM performs evolution independently and exchanges information with others periodically by using a regrouping schedule. Third, a novel improvisation process is applied to generate a new harmony by making use of the information of harmony vectors in each sub-HM. Moreover, a local search strategy is presented and incorporated into the DHS algorithm to find promising solutions. Simulation results show that the hybrid DHS (DHS_LS) is very competitive in comparison to its competitors in terms of mean performance and average computational time.
Parallel-Batch Scheduling and Transportation Coordination with Waiting Time Constraint
Gong, Hua; Chen, Daheng; Xu, Ke
2014-01-01
This paper addresses a parallel-batch scheduling problem that incorporates transportation of raw materials or semifinished products before processing with waiting time constraint. The orders located at the different suppliers are transported by some vehicles to a manufacturing facility for further processing. One vehicle can load only one order in one shipment. Each order arriving at the facility must be processed in the limited waiting time. The orders are processed in batches on a parallel-batch machine, where a batch contains several orders and the processing time of the batch is the largest processing time of the orders in it. The goal is to find a schedule to minimize the sum of the total flow time and the production cost. We prove that the general problem is NP-hard in the strong sense. We also demonstrate that the problem with equal processing times on the machine is NP-hard. Furthermore, a dynamic programming algorithm in pseudopolynomial time is provided to prove its ordinarily NP-hardness. An optimal algorithm in polynomial time is presented to solve a special case with equal processing times and equal transportation times for each order. PMID:24883385
Characterization of robotics parallel algorithms and mapping onto a reconfigurable SIMD machine
NASA Technical Reports Server (NTRS)
Lee, C. S. G.; Lin, C. T.
1989-01-01
The kinematics, dynamics, Jacobian, and their corresponding inverse computations are six essential problems in the control of robot manipulators. Efficient parallel algorithms for these computations are discussed and analyzed. Their characteristics are identified and a scheme on the mapping of these algorithms to a reconfigurable parallel architecture is presented. Based on the characteristics including type of parallelism, degree of parallelism, uniformity of the operations, fundamental operations, data dependencies, and communication requirement, it is shown that most of the algorithms for robotic computations possess highly regular properties and some common structures, especially the linear recursive structure. Moreover, they are well-suited to be implemented on a single-instruction-stream multiple-data-stream (SIMD) computer with reconfigurable interconnection network. The model of a reconfigurable dual network SIMD machine with internal direct feedback is introduced. A systematic procedure internal direct feedback is introduced. A systematic procedure to map these computations to the proposed machine is presented. A new scheduling problem for SIMD machines is investigated and a heuristic algorithm, called neighborhood scheduling, that reorders the processing sequence of subtasks to reduce the communication time is described. Mapping results of a benchmark algorithm are illustrated and discussed.
Single-machine group scheduling problems with deteriorating and learning effect
NASA Astrophysics Data System (ADS)
Xingong, Zhang; Yong, Wang; Shikun, Bai
2016-07-01
The concepts of deteriorating jobs and learning effects have been individually studied in many scheduling problems. However, most studies considering the deteriorating and learning effects ignore the fact that production efficiency can be increased by grouping various parts and products with similar designs and/or production processes. This phenomenon is known as 'group technology' in the literature. In this paper, a new group scheduling model with deteriorating and learning effects is proposed, where learning effect depends not only on job position, but also on the position of the corresponding job group; deteriorating effect depends on its starting time of the job. This paper shows that the makespan and the total completion time problems remain polynomial optimal solvable under the proposed model. In addition, a polynomial optimal solution is also presented to minimise the maximum lateness problem under certain agreeable restriction.
Skipping Strategy (SS) for Initial Population of Job-Shop Scheduling Problem
NASA Astrophysics Data System (ADS)
Abdolrazzagh-Nezhad, M.; Nababan, E. B.; Sarim, H. M.
2018-03-01
Initial population in job-shop scheduling problem (JSSP) is an essential step to obtain near optimal solution. Techniques used to solve JSSP are computationally demanding. Skipping strategy (SS) is employed to acquire initial population after sequence of job on machine and sequence of operations (expressed in Plates-jobs and mPlates-jobs) are determined. The proposed technique is applied to benchmark datasets and the results are compared to that of other initialization techniques. It is shown that the initial population obtained from the SS approach could generate optimal solution.
Code of Federal Regulations, 2011 CFR
2011-07-01
... machine cards not available from Federal Supply Schedule contracts. 101-26.509-2 Section 101-26.509-2... Programs § 101-26.509-2 Requisitioning tabulating machine cards not available from Federal Supply Schedule contracts. (a) Requisitions for tabulating machine cards covered by Federal Supply Schedule contracts which...
NASA Astrophysics Data System (ADS)
Chang, Yung-Chia; Li, Vincent C.; Chiang, Chia-Ju
2014-04-01
Make-to-order or direct-order business models that require close interaction between production and distribution activities have been adopted by many enterprises in order to be competitive in demanding markets. This article considers an integrated production and distribution scheduling problem in which jobs are first processed by one of the unrelated parallel machines and then distributed to corresponding customers by capacitated vehicles without intermediate inventory. The objective is to find a joint production and distribution schedule so that the weighted sum of total weighted job delivery time and the total distribution cost is minimized. This article presents a mathematical model for describing the problem and designs an algorithm using ant colony optimization. Computational experiments illustrate that the algorithm developed is capable of generating near-optimal solutions. The computational results also demonstrate the value of integrating production and distribution in the model for the studied problem.
NASA Astrophysics Data System (ADS)
Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu
2015-12-01
For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.
Multiple-variable neighbourhood search for the single-machine total weighted tardiness problem
NASA Astrophysics Data System (ADS)
Chung, Tsui-Ping; Fu, Qunjie; Liao, Ching-Jong; Liu, Yi-Ting
2017-07-01
The single-machine total weighted tardiness (SMTWT) problem is a typical discrete combinatorial optimization problem in the scheduling literature. This problem has been proved to be NP hard and thus provides a challenging area for metaheuristics, especially the variable neighbourhood search algorithm. In this article, a multiple variable neighbourhood search (m-VNS) algorithm with multiple neighbourhood structures is proposed to solve the problem. Special mechanisms named matching and strengthening operations are employed in the algorithm, which has an auto-revising local search procedure to explore the solution space beyond local optimality. Two aspects, searching direction and searching depth, are considered, and neighbourhood structures are systematically exchanged. Experimental results show that the proposed m-VNS algorithm outperforms all the compared algorithms in solving the SMTWT problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayne F. Boyer; Gurdeep S. Hura
2005-09-01
The Problem of obtaining an optimal matching and scheduling of interdependent tasks in distributed heterogeneous computing (DHC) environments is well known to be an NP-hard problem. In a DHC system, task execution time is dependent on the machine to which it is assigned and task precedence constraints are represented by a directed acyclic graph. Recent research in evolutionary techniques has shown that genetic algorithms usually obtain more efficient schedules that other known algorithms. We propose a non-evolutionary random scheduling (RS) algorithm for efficient matching and scheduling of inter-dependent tasks in a DHC system. RS is a succession of randomized taskmore » orderings and a heuristic mapping from task order to schedule. Randomized task ordering is effectively a topological sort where the outcome may be any possible task order for which the task precedent constraints are maintained. A detailed comparison to existing evolutionary techniques (GA and PSGA) shows the proposed algorithm is less complex than evolutionary techniques, computes schedules in less time, requires less memory and fewer tuning parameters. Simulation results show that the average schedules produced by RS are approximately as efficient as PSGA schedules for all cases studied and clearly more efficient than PSGA for certain cases. The standard formulation for the scheduling problem addressed in this paper is Rm|prec|Cmax.,« less
A Multiple Ant Colony Metahuristic for the Air Refueling Tanker Assignment Problem
2002-03-01
Problem The tanker assignment problem can be modeled as a job shop scheduling problem ( JSSP ). The JSSP is made up of n jobs, composed of m ordered...points) to be processed on all the machines (tankers). The problem with using JSSP is that the tanker assignment problem has multiple objectives... JSSP will minimize the time it takes for all jobs, but this may take an inordinate number of tankers. Thus using JSSP alone is not necessarily a good
NASA Astrophysics Data System (ADS)
Liu, Weibo; Jin, Yan; Price, Mark
2016-10-01
A new heuristic based on the Nawaz-Enscore-Ham algorithm is proposed in this article for solving a permutation flow-shop scheduling problem. A new priority rule is proposed by accounting for the average, mean absolute deviation, skewness and kurtosis, in order to fully describe the distribution style of processing times. A new tie-breaking rule is also introduced for achieving effective job insertion with the objective of minimizing both makespan and machine idle time. Statistical tests illustrate better solution quality of the proposed algorithm compared to existing benchmark heuristics.
NASA Astrophysics Data System (ADS)
Yusriski, R.; Sukoyo; Samadhi, T. M. A. A.; Halim, A. H.
2018-03-01
This research deals with a single machine batch scheduling model considering the influenced of learning, forgetting, and machine deterioration effects. The objective of the model is to minimize total inventory holding cost, and the decision variables are the number of batches (N), batch sizes (Q[i], i = 1, 2, .., N) and the sequence of processing the resulting batches. The parts to be processed are received at the right time and the right quantities, and all completed parts must be delivered at a common due date. We propose a heuristic procedure based on the Lagrange method to solve the problem. The effectiveness of the procedure is evaluated by comparing the resulting solution to the optimal solution obtained from the enumeration procedure using the integer composition technique and shows that the average effectiveness is 94%.
Job Shop Scheduling Focusing on Role of Buffer
NASA Astrophysics Data System (ADS)
Hino, Rei; Kusumi, Tetsuya; Yoo, Jae-Kyu; Shimizu, Yoshiaki
A scheduling problem is formulated in order to consistently manage each manufacturing resource, including machine tools, assembly robots, AGV, storehouses, material shelves, and so on. The manufacturing resources are classified into three types: producer, location, and mover. This paper focuses especially on the role of the buffer, and the differences among these types are analyzed. A unified scheduling formulation is derived from the analytical results based on the resource’s roles. Scheduling procedures based on dispatching rules are also proposed in order to numerically evaluate job shop-type production having finite buffer capacity. The influences of the capacity of bottle-necked production devices and the buffer on productivity are discussed.
An Improved Hierarchical Genetic Algorithm for Sheet Cutting Scheduling with Process Constraints
Rao, Yunqing; Qi, Dezhong; Li, Jinling
2013-01-01
For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem. PMID:24489491
NASA Astrophysics Data System (ADS)
Bai, Danyu
2015-08-01
This paper discusses the flow shop scheduling problem to minimise the total quadratic completion time (TQCT) with release dates in offline and online environments. For this NP-hard problem, the investigation is focused on the performance of two online algorithms based on the Shortest Processing Time among Available jobs rule. Theoretical results indicate the asymptotic optimality of the algorithms as the problem scale is sufficiently large. To further enhance the quality of the original solutions, the improvement scheme is provided for these algorithms. A new lower bound with performance guarantee is provided, and computational experiments show the effectiveness of these heuristics. Moreover, several results of the single-machine TQCT problem with release dates are also obtained for the deduction of the main theorem.
An improved hierarchical genetic algorithm for sheet cutting scheduling with process constraints.
Rao, Yunqing; Qi, Dezhong; Li, Jinling
2013-01-01
For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony--hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem.
Resource Management in Constrained Dynamic Situations
NASA Astrophysics Data System (ADS)
Seok, Jinwoo
Resource management is considered in this dissertation for systems with limited resources, possibly combined with other system constraints, in unpredictably dynamic environments. Resources may represent fuel, power, capabilities, energy, and so on. Resource management is important for many practical systems; usually, resources are limited, and their use must be optimized. Furthermore, systems are often constrained, and constraints must be satisfied for safe operation. Simplistic resource management can result in poor use of resources and failure of the system. Furthermore, many real-world situations involve dynamic environments. Many traditional problems are formulated based on the assumptions of given probabilities or perfect knowledge of future events. However, in many cases, the future is completely unknown, and information on or probabilities about future events are not available. In other words, we operate in unpredictably dynamic situations. Thus, a method is needed to handle dynamic situations without knowledge of the future, but few formal methods have been developed to address them. Thus, the goal is to design resource management methods for constrained systems, with limited resources, in unpredictably dynamic environments. To this end, resource management is organized hierarchically into two levels: 1) planning, and 2) control. In the planning level, the set of tasks to be performed is scheduled based on limited resources to maximize resource usage in unpredictably dynamic environments. In the control level, the system controller is designed to follow the schedule by considering all the system constraints for safe and efficient operation. Consequently, this dissertation is mainly divided into two parts: 1) planning level design, based on finite state machines, and 2) control level methods, based on model predictive control. We define a recomposable restricted finite state machine to handle limited resource situations and unpredictably dynamic environments for the planning level. To obtain a policy, dynamic programing is applied, and to obtain a solution, limited breadth-first search is applied to the recomposable restricted finite state machine. A multi-function phased array radar resource management problem and an unmanned aerial vehicle patrolling problem are treated using recomposable restricted finite state machines. Then, we use model predictive control for the control level, because it allows constraint handling and setpoint tracking for the schedule. An aircraft power system management problem is treated that aims to develop an integrated control system for an aircraft gas turbine engine and electrical power system using rate-based model predictive control. Our results indicate that at the planning level, limited breadth-first search for recomposable restricted finite state machines generates good scheduling solutions in limited resource situations and unpredictably dynamic environments. The importance of cooperation in the planning level is also verified. At the control level, a rate-based model predictive controller allows good schedule tracking and safe operations. The importance of considering the system constraints and interactions between the subsystems is indicated. For the best resource management in constrained dynamic situations, the planning level and the control level need to be considered together.
Huang, Song; Tian, Na; Wang, Yan; Ji, Zhicheng
2016-01-01
Taking resource allocation into account, flexible job shop problem (FJSP) is a class of complex scheduling problem in manufacturing system. In order to utilize the machine resources rationally, multi-objective particle swarm optimization (MOPSO) integrating with variable neighborhood search is introduced to address FJSP efficiently. Firstly, the assignment rules (AL) and dispatching rules (DR) are provided to initialize the population. And then special discrete operators are designed to produce new individuals and earliest completion machine (ECM) is adopted in the disturbance operator to escape the optima. Secondly, personal-best archives (cognitive memories) and global-best archive (social memory), which are updated by the predefined non-dominated archive update strategy, are simultaneously designed to preserve non-dominated individuals and select personal-best positions and the global-best position. Finally, three neighborhoods are provided to search the neighborhoods of global-best archive for enhancing local search ability. The proposed algorithm is evaluated by using Kacem instances and Brdata instances, and a comparison with other approaches shows the effectiveness of the proposed algorithm for FJSP.
A Study on Real-Time Scheduling Methods in Holonic Manufacturing Systems
NASA Astrophysics Data System (ADS)
Iwamura, Koji; Taimizu, Yoshitaka; Sugimura, Nobuhiro
Recently, new architectures of manufacturing systems have been proposed to realize flexible control structures of the manufacturing systems, which can cope with the dynamic changes in the volume and the variety of the products and also the unforeseen disruptions, such as failures of manufacturing resources and interruptions by high priority jobs. They are so called as the autonomous distributed manufacturing system, the biological manufacturing system and the holonic manufacturing system. Rule-based scheduling methods were proposed and applied to the real-time production scheduling problems of the HMS (Holonic Manufacturing System) in the previous report. However, there are still remaining problems from the viewpoint of the optimization of the whole production schedules. New procedures are proposed, in the present paper, to select the production schedules, aimed at generating effective production schedules in real-time. The proposed methods enable the individual holons to select suitable machining operations to be carried out in the next time period. Coordination process among the holons is also proposed to carry out the coordination based on the effectiveness values of the individual holons.
Full glowworm swarm optimization algorithm for whole-set orders scheduling in single machine.
Yu, Zhang; Yang, Xiaomei
2013-01-01
By analyzing the characteristics of whole-set orders problem and combining the theory of glowworm swarm optimization, a new glowworm swarm optimization algorithm for scheduling is proposed. A new hybrid-encoding schema combining with two-dimensional encoding and random-key encoding is given. In order to enhance the capability of optimal searching and speed up the convergence rate, the dynamical changed step strategy is integrated into this algorithm. Furthermore, experimental results prove its feasibility and efficiency.
NASA Technical Reports Server (NTRS)
Borse, John E.; Owens, Christopher C.
1992-01-01
Our research focuses on the problem of recovering from perturbations in large-scale schedules, specifically on the ability of a human-machine partnership to dynamically modify an airline schedule in response to unanticipated disruptions. This task is characterized by massive interdependencies and a large space of possible actions. Our approach is to apply the following: qualitative, knowledge-intensive techniques relying on a memory of stereotypical failures and appropriate recoveries; and quantitative techniques drawn from the Operations Research community's work on scheduling. Our main scientific challenge is to represent schedules, failures, and repairs so as to make both sets of techniques applicable to the same data. This paper outlines ongoing research in which we are cooperating with United Airlines to develop our understanding of the scientific issues underlying the practicalities of dynamic, real-time schedule repair.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J.R.; Netrologic, Inc., San Diego, CA)
1988-01-01
Topics presented include integrating neural networks and expert systems, neural networks and signal processing, machine learning, cognition and avionics applications, artificial intelligence and man-machine interface issues, real time expert systems, artificial intelligence, and engineering applications. Also considered are advanced problem solving techniques, combinational optimization for scheduling and resource control, data fusion/sensor fusion, back propagation with momentum, shared weights and recurrency, automatic target recognition, cybernetics, optical neural networks.
Deng, Qianwang; Gong, Guiliang; Gong, Xuran; Zhang, Like; Liu, Wei; Ren, Qinghua
2017-01-01
Flexible job-shop scheduling problem (FJSP) is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP) characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) for multiobjective FJSP (MO-FJSP) with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N , in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed.
Deng, Qianwang; Gong, Xuran; Zhang, Like; Liu, Wei; Ren, Qinghua
2017-01-01
Flexible job-shop scheduling problem (FJSP) is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP) characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) for multiobjective FJSP (MO-FJSP) with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N, in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed. PMID:28458687
Research on schedulers for astronomical observatories
NASA Astrophysics Data System (ADS)
Colome, Josep; Colomer, Pau; Guàrdia, Josep; Ribas, Ignasi; Campreciós, Jordi; Coiffard, Thierry; Gesa, Lluis; Martínez, Francesc; Rodler, Florian
2012-09-01
The main task of a scheduler applied to astronomical observatories is the time optimization of the facility and the maximization of the scientific return. Scheduling of astronomical observations is an example of the classical task allocation problem known as the job-shop problem (JSP), where N ideal tasks are assigned to M identical resources, while minimizing the total execution time. A problem of higher complexity, called the Flexible-JSP (FJSP), arises when the tasks can be executed by different resources, i.e. by different telescopes, and it focuses on determining a routing policy (i.e., which machine to assign for each operation) other than the traditional scheduling decisions (i.e., to determine the starting time of each operation). In most cases there is no single best approach to solve the planning system and, therefore, various mathematical algorithms (Genetic Algorithms, Ant Colony Optimization algorithms, Multi-Objective Evolutionary algorithms, etc.) are usually considered to adapt the application to the system configuration and task execution constraints. The scheduling time-cycle is also an important ingredient to determine the best approach. A shortterm scheduler, for instance, has to find a good solution with the minimum computation time, providing the system with the capability to adapt the selected task to varying execution constraints (i.e., environment conditions). We present in this contribution an analysis of the task allocation problem and the solutions currently in use at different astronomical facilities. We also describe the schedulers for three different projects (CTA, CARMENES and TJO) where the conclusions of this analysis are applied to develop a suitable routine.
NASA Astrophysics Data System (ADS)
Tang, Dunbing; Dai, Min
2015-09-01
The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production planning and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed smalland large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.
Efficient Execution of Microscopy Image Analysis on CPU, GPU, and MIC Equipped Cluster Systems.
Andrade, G; Ferreira, R; Teodoro, George; Rocha, Leonardo; Saltz, Joel H; Kurc, Tahsin
2014-10-01
High performance computing is experiencing a major paradigm shift with the introduction of accelerators, such as graphics processing units (GPUs) and Intel Xeon Phi (MIC). These processors have made available a tremendous computing power at low cost, and are transforming machines into hybrid systems equipped with CPUs and accelerators. Although these systems can deliver a very high peak performance, making full use of its resources in real-world applications is a complex problem. Most current applications deployed to these machines are still being executed in a single processor, leaving other devices underutilized. In this paper we explore a scenario in which applications are composed of hierarchical data flow tasks which are allocated to nodes of a distributed memory machine in coarse-grain, but each of them may be composed of several finer-grain tasks which can be allocated to different devices within the node. We propose and implement novel performance aware scheduling techniques that can be used to allocate tasks to devices. We evaluate our techniques using a pathology image analysis application used to investigate brain cancer morphology, and our experimental evaluation shows that the proposed scheduling strategies significantly outperforms other efficient scheduling techniques, such as Heterogeneous Earliest Finish Time - HEFT, in cooperative executions using CPUs, GPUs, and MICs. We also experimentally show that our strategies are less sensitive to inaccuracy in the scheduling input data and that the performance gains are maintained as the application scales.
Efficient Execution of Microscopy Image Analysis on CPU, GPU, and MIC Equipped Cluster Systems
Andrade, G.; Ferreira, R.; Teodoro, George; Rocha, Leonardo; Saltz, Joel H.; Kurc, Tahsin
2015-01-01
High performance computing is experiencing a major paradigm shift with the introduction of accelerators, such as graphics processing units (GPUs) and Intel Xeon Phi (MIC). These processors have made available a tremendous computing power at low cost, and are transforming machines into hybrid systems equipped with CPUs and accelerators. Although these systems can deliver a very high peak performance, making full use of its resources in real-world applications is a complex problem. Most current applications deployed to these machines are still being executed in a single processor, leaving other devices underutilized. In this paper we explore a scenario in which applications are composed of hierarchical data flow tasks which are allocated to nodes of a distributed memory machine in coarse-grain, but each of them may be composed of several finer-grain tasks which can be allocated to different devices within the node. We propose and implement novel performance aware scheduling techniques that can be used to allocate tasks to devices. We evaluate our techniques using a pathology image analysis application used to investigate brain cancer morphology, and our experimental evaluation shows that the proposed scheduling strategies significantly outperforms other efficient scheduling techniques, such as Heterogeneous Earliest Finish Time - HEFT, in cooperative executions using CPUs, GPUs, and MICs. We also experimentally show that our strategies are less sensitive to inaccuracy in the scheduling input data and that the performance gains are maintained as the application scales. PMID:26640423
Scheduling job shop - A case study
NASA Astrophysics Data System (ADS)
Abas, M.; Abbas, A.; Khan, W. A.
2016-08-01
The scheduling in job shop is important for efficient utilization of machines in the manufacturing industry. There are number of algorithms available for scheduling of jobs which depend on machines tools, indirect consumables and jobs which are to be processed. In this paper a case study is presented for scheduling of jobs when parts are treated on available machines. Through time and motion study setup time and operation time are measured as total processing time for variety of products having different manufacturing processes. Based on due dates different level of priority are assigned to the jobs and the jobs are scheduled on the basis of priority. In view of the measured processing time, the times for processing of some new jobs are estimated and for efficient utilization of the machines available an algorithm is proposed and validated.
ERIC Educational Resources Information Center
Seth, Anupam
2009-01-01
Production planning and scheduling for printed circuit, board assembly has so far defied standard operations research approaches due to the size and complexity of the underlying problems, resulting in unexploited automation flexibility. In this thesis, the increasingly popular collect-and-place machine configuration is studied and the assembly…
Optimizing Integrated Terminal Airspace Operations Under Uncertainty
NASA Technical Reports Server (NTRS)
Bosson, Christabelle; Xue, Min; Zelinski, Shannon
2014-01-01
In the terminal airspace, integrated departures and arrivals have the potential to increase operations efficiency. Recent research has developed geneticalgorithm- based schedulers for integrated arrival and departure operations under uncertainty. This paper presents an alternate method using a machine jobshop scheduling formulation to model the integrated airspace operations. A multistage stochastic programming approach is chosen to formulate the problem and candidate solutions are obtained by solving sample average approximation problems with finite sample size. Because approximate solutions are computed, the proposed algorithm incorporates the computation of statistical bounds to estimate the optimality of the candidate solutions. A proof-ofconcept study is conducted on a baseline implementation of a simple problem considering a fleet mix of 14 aircraft evolving in a model of the Los Angeles terminal airspace. A more thorough statistical analysis is also performed to evaluate the impact of the number of scenarios considered in the sampled problem. To handle extensive sampling computations, a multithreading technique is introduced.
Investigation of automated task learning, decomposition and scheduling
NASA Technical Reports Server (NTRS)
Livingston, David L.; Serpen, Gursel; Masti, Chandrashekar L.
1990-01-01
The details and results of research conducted in the application of neural networks to task planning and decomposition are presented. Task planning and decomposition are operations that humans perform in a reasonably efficient manner. Without the use of good heuristics and usually much human interaction, automatic planners and decomposers generally do not perform well due to the intractable nature of the problems under consideration. The human-like performance of neural networks has shown promise for generating acceptable solutions to intractable problems such as planning and decomposition. This was the primary reasoning behind attempting the study. The basis for the work is the use of state machines to model tasks. State machine models provide a useful means for examining the structure of tasks since many formal techniques have been developed for their analysis and synthesis. It is the approach to integrate the strong algebraic foundations of state machines with the heretofore trial-and-error approach to neural network synthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitley, L. Darrell; Watson, Jean-Paul; Howe, Adele E.
Over the last decade and a half, tabu search algorithms for machine scheduling have gained a near-mythical reputation by consistently equaling or establishing state-of-the-art performance levels on a range of academic and real-world problems. Yet, despite these successes, remarkably little research has been devoted to developing an understanding of why tabu search is so effective on this problem class. In this paper, we report results that provide significant progress in this direction. We consider Nowicki and Smutnicki's i-TSAB tabu search algorithm, which represents the current state-of-the-art for the makespan-minimization form of the classical jobshop scheduling problem. Via a series ofmore » controlled experiments, we identify those components of i-TSAB that enable it to achieve state-of-the-art performance levels. In doing so, we expose a number of misconceptions regarding the behavior and/or benefits of tabu search and other local search metaheuristics for the job-shop problem. Our results also serve to focus future research, by identifying those specific directions that are most likely to yield further improvements in performance.« less
JIGSAW: Preference-directed, co-operative scheduling
NASA Technical Reports Server (NTRS)
Linden, Theodore A.; Gaw, David
1992-01-01
Techniques that enable humans and machines to cooperate in the solution of complex scheduling problems have evolved out of work on the daily allocation and scheduling of Tactical Air Force resources. A generalized, formal model of these applied techniques is being developed. It is called JIGSAW by analogy with the multi-agent, constructive process used when solving jigsaw puzzles. JIGSAW begins from this analogy and extends it by propagating local preferences into global statistics that dynamically influence the value and variable ordering decisions. The statistical projections also apply to abstract resources and time periods--allowing more opportunities to find a successful variable ordering by reserving abstract resources and deferring the choice of a specific resource or time period.
Prediction based proactive thermal virtual machine scheduling in green clouds.
Kinger, Supriya; Kumar, Rajesh; Sharma, Anju
2014-01-01
Cloud computing has rapidly emerged as a widely accepted computing paradigm, but the research on Cloud computing is still at an early stage. Cloud computing provides many advanced features but it still has some shortcomings such as relatively high operating cost and environmental hazards like increasing carbon footprints. These hazards can be reduced up to some extent by efficient scheduling of Cloud resources. Working temperature on which a machine is currently running can be taken as a criterion for Virtual Machine (VM) scheduling. This paper proposes a new proactive technique that considers current and maximum threshold temperature of Server Machines (SMs) before making scheduling decisions with the help of a temperature predictor, so that maximum temperature is never reached. Different workload scenarios have been taken into consideration. The results obtained show that the proposed system is better than existing systems of VM scheduling, which does not consider current temperature of nodes before making scheduling decisions. Thus, a reduction in need of cooling systems for a Cloud environment has been obtained and validated.
Machine Learning Based Online Performance Prediction for Runtime Parallelization and Task Scheduling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J; Ma, X; Singh, K
2008-10-09
With the emerging many-core paradigm, parallel programming must extend beyond its traditional realm of scientific applications. Converting existing sequential applications as well as developing next-generation software requires assistance from hardware, compilers and runtime systems to exploit parallelism transparently within applications. These systems must decompose applications into tasks that can be executed in parallel and then schedule those tasks to minimize load imbalance. However, many systems lack a priori knowledge about the execution time of all tasks to perform effective load balancing with low scheduling overhead. In this paper, we approach this fundamental problem using machine learning techniques first to generatemore » performance models for all tasks and then applying those models to perform automatic performance prediction across program executions. We also extend an existing scheduling algorithm to use generated task cost estimates for online task partitioning and scheduling. We implement the above techniques in the pR framework, which transparently parallelizes scripts in the popular R language, and evaluate their performance and overhead with both a real-world application and a large number of synthetic representative test scripts. Our experimental results show that our proposed approach significantly improves task partitioning and scheduling, with maximum improvements of 21.8%, 40.3% and 22.1% and average improvements of 15.9%, 16.9% and 4.2% for LMM (a real R application) and synthetic test cases with independent and dependent tasks, respectively.« less
Process Development and Micro-Machining of MARBLE Foam-Cored Rexolite Hemi-Shell Ablator Capsules
Randolph, Randall Blaine; Oertel, John A.; Schmidt, Derek William; ...
2016-06-30
For this study, machined CH hemi-shell ablator capsules have been successfully produced by the MST-7 Target Fabrication Team at Los Alamos National Laboratory. Process development and micro-machining techniques have been developed to produce capsules for both the Omega and National Ignition Facility (NIF) campaigns. These capsules are gas filled up to 10 atm and consist of a machined plastic hemi-shell outer layer that accommodates various specially engineered low-density polystyrene foam cores. Machining and assembly of the two-part, step-jointed plastic hemi-shell outer layer required development of new techniques, processes, and tooling while still meeting very aggressive shot schedules for both campaigns.more » Finally, problems encountered and process improvements will be discussed that describe this very unique, complex capsule design approach through the first Omega proof-of-concept version to the larger NIF version.« less
Achieving spectrum conservation for the minimum-span and minimum-order frequency assignment problems
NASA Technical Reports Server (NTRS)
Heyward, Ann O.
1992-01-01
Effective and efficient solutions of frequency assignment problems assumes increasing importance as the radiofrequency spectrum experiences ever increasing utilization by diverse communications services, requiring that the most efficient use of this resource be achieved. The research presented explores a general approach to the frequency assignment problem, in which such problems are categorized by the appropriate spectrum conserving objective function, and are each treated as an N-job, M-machine scheduling problem appropriate for the objective. Results obtained and presented illustrate that such an approach presents an effective means of achieving spectrum conserving frequency assignments for communications systems in a variety of environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randolph, Randall Blaine; Oertel, John A.; Schmidt, Derek William
For this study, machined CH hemi-shell ablator capsules have been successfully produced by the MST-7 Target Fabrication Team at Los Alamos National Laboratory. Process development and micro-machining techniques have been developed to produce capsules for both the Omega and National Ignition Facility (NIF) campaigns. These capsules are gas filled up to 10 atm and consist of a machined plastic hemi-shell outer layer that accommodates various specially engineered low-density polystyrene foam cores. Machining and assembly of the two-part, step-jointed plastic hemi-shell outer layer required development of new techniques, processes, and tooling while still meeting very aggressive shot schedules for both campaigns.more » Finally, problems encountered and process improvements will be discussed that describe this very unique, complex capsule design approach through the first Omega proof-of-concept version to the larger NIF version.« less
Reactor operations informal monthly report, May 1, 1995--May 31, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hauptman, H.M.; Petro, J.N.; Jacobi, O.
1995-05-01
This document is an informal progress report for the operational performance of the Brookhaven Medical Research Reactor, and the Brookhaven High Flux Beam Reactor, for the month of May, 1995. Both machines ran well during this period, with no reportable instrumentation problems, all scheduled maintenance performed, and only one reportable occurance, involving a particle on Vest Button, Personnel Radioactive Contamination.
Prediction Based Proactive Thermal Virtual Machine Scheduling in Green Clouds
Kinger, Supriya; Kumar, Rajesh; Sharma, Anju
2014-01-01
Cloud computing has rapidly emerged as a widely accepted computing paradigm, but the research on Cloud computing is still at an early stage. Cloud computing provides many advanced features but it still has some shortcomings such as relatively high operating cost and environmental hazards like increasing carbon footprints. These hazards can be reduced up to some extent by efficient scheduling of Cloud resources. Working temperature on which a machine is currently running can be taken as a criterion for Virtual Machine (VM) scheduling. This paper proposes a new proactive technique that considers current and maximum threshold temperature of Server Machines (SMs) before making scheduling decisions with the help of a temperature predictor, so that maximum temperature is never reached. Different workload scenarios have been taken into consideration. The results obtained show that the proposed system is better than existing systems of VM scheduling, which does not consider current temperature of nodes before making scheduling decisions. Thus, a reduction in need of cooling systems for a Cloud environment has been obtained and validated. PMID:24737962
NASA Astrophysics Data System (ADS)
Huang, J. D.; Liu, J. J.; Chen, Q. X.; Mao, N.
2017-06-01
Against a background of heat-treatment operations in mould manufacturing, a two-stage flow-shop scheduling problem is described for minimizing makespan with parallel batch-processing machines and re-entrant jobs. The weights and release dates of jobs are non-identical, but job processing times are equal. A mixed-integer linear programming model is developed and tested with small-scale scenarios. Given that the problem is NP hard, three heuristic construction methods with polynomial complexity are proposed. The worst case of the new constructive heuristic is analysed in detail. A method for computing lower bounds is proposed to test heuristic performance. Heuristic efficiency is tested with sets of scenarios. Compared with the two improved heuristics, the performance of the new constructive heuristic is superior.
On-Line Scheduling of Parallel Machines
1990-11-01
machine without losing any work; this is referred to as the preemptive model. In contrast to the nonpreemptive model which we have considered in this paper...that there exists no schedule of length d. The 2-relaxed decision procedure is as follows. Put each job into the queue of the slowest machine Mk such...in their queues . If a machine’s queue is empty it takes jobs to process from the queue of the first machine that is slower than it and that has a
IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS
NASA Technical Reports Server (NTRS)
Fogle, F. R.
1994-01-01
IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.
Proposed algorithm to improve job shop production scheduling using ant colony optimization method
NASA Astrophysics Data System (ADS)
Pakpahan, Eka KA; Kristina, Sonna; Setiawan, Ari
2017-12-01
This paper deals with the determination of job shop production schedule on an automatic environment. On this particular environment, machines and material handling system are integrated and controlled by a computer center where schedule were created and then used to dictate the movement of parts and the operations at each machine. This setting is usually designed to have an unmanned production process for a specified interval time. We consider here parts with various operations requirement. Each operation requires specific cutting tools. These parts are to be scheduled on machines each having identical capability, meaning that each machine is equipped with a similar set of cutting tools therefore is capable of processing any operation. The availability of a particular machine to process a particular operation is determined by the remaining life time of its cutting tools. We proposed an algorithm based on the ant colony optimization method and embedded them on matlab software to generate production schedule which minimize the total processing time of the parts (makespan). We test the algorithm on data provided by real industry and the process shows a very short computation time. This contributes a lot to the flexibility and timelines targeted on an automatic environment.
49 CFR 214.533 - Schedule of repairs subject to availability of parts.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Maintenance Machines and Hi-Rail Vehicles § 214.533 Schedule of repairs subject to availability of parts. (a... 49 Transportation 4 2011-10-01 2011-10-01 false Schedule of repairs subject to availability of... maintenance machine or a hi-rail vehicle by the end of the next business day following the report of the...
49 CFR 214.533 - Schedule of repairs subject to availability of parts.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Maintenance Machines and Hi-Rail Vehicles § 214.533 Schedule of repairs subject to availability of parts. (a... maintenance machine or a hi-rail vehicle by the end of the next business day following the report of the... maintenance machine or hi-rail vehicle within seven calendar days after receiving the necessary part. The...
Approximation algorithms for scheduling unrelated parallel machines with release dates
NASA Astrophysics Data System (ADS)
Avdeenko, T. V.; Mesentsev, Y. A.; Estraykh, I. V.
2017-01-01
In this paper we propose approaches to optimal scheduling of unrelated parallel machines with release dates. One approach is based on the scheme of dynamic programming modified with adaptive narrowing of search domain ensuring its computational effectiveness. We discussed complexity of the exact schedules synthesis and compared it with approximate, close to optimal, solutions. Also we explain how the algorithm works for the example of two unrelated parallel machines and five jobs with release dates. Performance results that show the efficiency of the proposed approach have been given.
NASA Technical Reports Server (NTRS)
Shearrow, Charles A.
1999-01-01
One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.
Two-MILP models for scheduling elective surgeries within a private healthcare facility.
Khlif Hachicha, Hejer; Zeghal Mansour, Farah
2016-11-05
This paper deals with an Integrated Elective Surgery-Scheduling Problem (IESSP) that arises in a privately operated healthcare facility. It aims to optimize the resource utilization of the entire surgery process including pre-operative, per-operative and post-operative activities. Moreover, it addresses a specific feature of private facilities where surgeons are independent service providers and may conduct their surgeries in different private healthcare facilities. Thus, the problem requires the assignment of surgery patients to hospital beds, operating rooms and recovery beds as well as their sequencing over a 1-day period while taking into account surgeons' availability constraints. We present two Mixed Integer Linear Programs (MILP) that model the IESSP as a three-stage hybrid flow-shop scheduling problem with recirculation, resource synchronization, dedicated machines, and blocking constraints. To assess the empirical performance of the proposed models, we conducted experiments on real-world data of a Tunisian private clinic: Clinique Ennasr and on randomly generated instances. Two criteria were minimised: the patients' average length of stay and the number of patients' overnight stays. The computational results show that the proposed models can solve instances with up to 44 surgical cases in a reasonable CPU time using a general-purpose MILP solver.
Ebrahimi, Ahmad; Kia, Reza; Komijan, Alireza Rashidi
2016-01-01
In this article, a novel integrated mixed-integer nonlinear programming model is presented for designing a cellular manufacturing system (CMS) considering machine layout and part scheduling problems simultaneously as interrelated decisions. The integrated CMS model is formulated to incorporate several design features including part due date, material handling time, operation sequence, processing time, an intra-cell layout of unequal-area facilities, and part scheduling. The objective function is to minimize makespan, tardiness penalties, and material handling costs of inter-cell and intra-cell movements. Two numerical examples are solved by the Lingo software to illustrate the results obtained by the incorporated features. In order to assess the effects and importance of integration of machine layout and part scheduling in designing a CMS, two approaches, sequentially and concurrent are investigated and the improvement resulted from a concurrent approach is revealed. Also, due to the NP-hardness of the integrated model, an efficient genetic algorithm is designed. As a consequence, computational results of this study indicate that the best solutions found by GA are better than the solutions found by B&B in much less time for both sequential and concurrent approaches. Moreover, the comparisons between the objective function values (OFVs) obtained by sequential and concurrent approaches demonstrate that the OFV improvement is averagely around 17 % by GA and 14 % by B&B.
NASA Astrophysics Data System (ADS)
Gu, Cunchang; Mu, Yundong
2013-03-01
In this paper, we consider a single machine on-line scheduling problem with the special chains precedence and delivery time. All jobs arrive over time. The chains chainsi arrive at time ri , it is known that the processing and delivery time of each job on the chain satisfy one special condition CD a forehand: if the job J(i)j is the predecessor of the job J(i)k on the chain chaini, then they satisfy p(i)j = p(i)k = p >= qj >= qk , i = 1,2, ---,n , where pj and qj denote the processing time and the delivery time of the job Jj respectively. Obviously, if the arrival jobs have no chains precedence, it shows that the length of the corresponding chain is 1. The objective is to minimize the time by which all jobs have been delivered. We provide an on-line algorithm with a competitive ratio of √2 , and the result is the best possible.
Bidding-based autonomous process planning and scheduling
NASA Astrophysics Data System (ADS)
Gu, Peihua; Balasubramanian, Sivaram; Norrie, Douglas H.
1995-08-01
Improving productivity through computer integrated manufacturing systems (CIMS) and concurrent engineering requires that the islands of automation in an enterprise be completely integrated. The first step in this direction is to integrate design, process planning, and scheduling. This can be achieved through a bidding-based process planning approach. The product is represented in a STEP model with detailed design and administrative information including design specifications, batch size, and due dates. Upon arrival at the manufacturing facility, the product registered in the shop floor manager which is essentially a coordinating agent. The shop floor manager broadcasts the product's requirements to the machines. The shop contains autonomous machines that have knowledge about their functionality, capabilities, tooling, and schedule. Each machine has its own process planner and responds to the product's request in a different way that is consistent with its capabilities and capacities. When more than one machine offers certain process(es) for the same requirements, they enter into negotiation. Based on processing time, due date, and cost, one of the machines wins the contract. The successful machine updates its schedule and advises the product to request raw material for processing. The concept was implemented using a multi-agent system with the task decomposition and planning achieved through contract nets. The examples are included to illustrate the approach.
Environmental concept for engineering software on MIMD computers
NASA Technical Reports Server (NTRS)
Lopez, L. A.; Valimohamed, K.
1989-01-01
The issues related to developing an environment in which engineering systems can be implemented on MIMD machines are discussed. The problem is presented in terms of implementing the finite element method under such an environment. However, neither the concepts nor the prototype implementation environment are limited to this application. The topics discussed include: the ability to schedule and synchronize tasks efficiently; granularity of tasks; load balancing; and the use of a high level language to specify parallel constructs, manage data, and achieve portability. The objective of developing a virtual machine concept which incorporates solutions to the above issues leads to a design that can be mapped onto loosely coupled, tightly coupled, and hybrid systems.
Sort-Mid tasks scheduling algorithm in grid computing.
Reda, Naglaa M; Tawfik, A; Marzok, Mohamed A; Khamis, Soheir M
2015-11-01
Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan.
Sort-Mid tasks scheduling algorithm in grid computing
Reda, Naglaa M.; Tawfik, A.; Marzok, Mohamed A.; Khamis, Soheir M.
2014-01-01
Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan. PMID:26644937
An overview of the artificial intelligence and expert systems component of RICIS
NASA Technical Reports Server (NTRS)
Feagin, Terry
1987-01-01
Artificial Intelligence and Expert Systems are the important component of RICIS (Research Institute and Information Systems) research program. For space applications, a number of problem areas that should be able to make good use of the above tools include: resource allocation and management, control and monitoring, environmental control and life support, power distribution, communications scheduling, orbit and attitude maintenance, redundancy management, intelligent man-machine interfaces and fault detection, isolation and recovery.
Secure Autonomous Automated Scheduling (SAAS). Rev. 1.1
NASA Technical Reports Server (NTRS)
Walke, Jon G.; Dikeman, Larry; Sage, Stephen P.; Miller, Eric M.
2010-01-01
This report describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the UK-DMC, is used as the space-based sensor. The UK-DMC's availability is determined via machine-to-machine communications using SSTL's mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL's and Universal Space Network's (USN) ground assets. The availability and scheduling of USN's assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards
NASA Astrophysics Data System (ADS)
Sembiring, N.; Nasution, A. H.
2018-02-01
Corrective maintenance i.e replacing or repairing the machine component after machine break down always done in a manufacturing company. It causes the production process must be stopped. Production time will decrease due to the maintenance team must replace or repair the damage machine component. This paper proposes a preventive maintenance’s schedule for a critical component of a critical machine of an crude palm oil and kernel company due to increase maintenance efficiency. The Reliability Engineering & Maintenance Value Stream Mapping is used as a method and a tool to analize the reliability of the component and reduce the wastage in any process by segregating value added and non value added activities.
More reliable protein NMR peak assignment via improved 2-interval scheduling.
Chen, Zhi-Zhong; Lin, Guohui; Rizzi, Romeo; Wen, Jianjun; Xu, Dong; Xu, Ying; Jiang, Tao
2005-03-01
Protein NMR peak assignment refers to the process of assigning a group of "spin systems" obtained experimentally to a protein sequence of amino acids. The automation of this process is still an unsolved and challenging problem in NMR protein structure determination. Recently, protein NMR peak assignment has been formulated as an interval scheduling problem (ISP), where a protein sequence P of amino acids is viewed as a discrete time interval I (the amino acids on P one-to-one correspond to the time units of I), each subset S of spin systems that are known to originate from consecutive amino acids from P is viewed as a "job" j(s), the preference of assigning S to a subsequence P of consecutive amino acids on P is viewed as the profit of executing job j(s) in the subinterval of I corresponding to P, and the goal is to maximize the total profit of executing the jobs (on a single machine) during I. The interval scheduling problem is max SNP-hard in general; but in the real practice of protein NMR peak assignment, each job j(s) usually requires at most 10 consecutive time units, and typically the jobs that require one or two consecutive time units are the most difficult to assign/schedule. In order to solve these most difficult assignments, we present an efficient 13/7-approximation algorithm for the special case of the interval scheduling problem where each job takes one or two consecutive time units. Combining this algorithm with a greedy filtering strategy for handling long jobs (i.e., jobs that need more than two consecutive time units), we obtain a new efficient heuristic for protein NMR peak assignment. Our experimental study shows that the new heuristic produces the best peak assignment in most of the cases, compared with the NMR peak assignment algorithms in the recent literature. The above algorithm is also the first approximation algorithm for a nontrivial case of the well-known interval scheduling problem that breaks the ratio 2 barrier.
Aerial Refueling Process Rescheduling Under Job Related Disruptions
NASA Technical Reports Server (NTRS)
Kaplan, Sezgin; Rabadi, Ghaith
2011-01-01
The Aerial Refueling Scheduling Problem (ARSP) can be defined as determining the refueling completion times for each fighter aircraft (job) on the multiple tankers (machines) to minimize the total weighted tardiness. ARSP assumes that the jobs have different release times and due dates. The ARSP is dynamic environment and unexpected events may occur. In this paper, rescheduling in the aerial refueling process with a time set of jobs will be studied to deal with job related disruptions such as the arrival of new jobs, the departure of an existing job, high deviations in the release times and changes in job priorities. In order to keep the stability and to avoid excessive computation, partial schedule repair algorithm is developed and its preliminary results are presented.
Test - Apollo-Soyuz Test Project (ASTP)
1974-07-01
S74-24671 (10 July 1974) --- Three Apollo-Soyuz Test Project (ASTP) engineers look over a Soyuz spacecraft docking system prior to an ASTP docking mechanism fitness test conducted in Building 13 at the Johnson Space Center (JSC). They are (left to right) Robert White, Vladimir Syromyatnikov and Yevgeniy Bobrov. White is the American chairman of ASTP Working Group Number 3, and Syromyatnikov is his Soviet counterpart. This working group is concerned with ASTP docking problems and procedures. White is with JSC's Spacecraft Design Division. Syromyatnikov is senior researcher of the Soviet State Research Institute of Machine Building. Bobrov is a junior researcher with the Institute of Machine Building. The joint United States - USSR ASTP docking mission in Earth orbit is scheduled for the summer of 1975.
A task scheduler framework for self-powered wireless sensors.
Nordman, Mikael M
2003-10-01
The cost and inconvenience of cabling is a factor limiting widespread use of intelligent sensors. Recent developments in short-range, low-power radio seem to provide an opening to this problem, making development of wireless sensors feasible. However, for these sensors the energy availability is a main concern. The common solution is either to use a battery or to harvest ambient energy. The benefit of harvested ambient energy is that the energy feeder can be considered as lasting a lifetime, thus it saves the user from concerns related to energy management. The problem is, however, the unpredictability and unsteady behavior of ambient energy sources. This becomes a main concern for sensors that run multiple tasks at different priorities. This paper proposes a new scheduler framework that enables the reliable assignment of task priorities and scheduling in sensors powered by ambient energy. The framework being based on environment parameters, virtual queues, and a state machine with transition conditions, dynamically manages task execution according to priorities. The framework is assessed in a test system powered by a solar panel. The results show the functionality of the framework and how task execution reliably is handled without violating the priority scheme that has been assigned to it.
Optimizing integrated airport surface and terminal airspace operations under uncertainty
NASA Astrophysics Data System (ADS)
Bosson, Christabelle S.
In airports and surrounding terminal airspaces, the integration of surface, arrival and departure scheduling and routing have the potential to improve the operations efficiency. Moreover, because both the airport surface and the terminal airspace are often altered by random perturbations, the consideration of uncertainty in flight schedules is crucial to improve the design of robust flight schedules. Previous research mainly focused on independently solving arrival scheduling problems, departure scheduling problems and surface management scheduling problems and most of the developed models are deterministic. This dissertation presents an alternate method to model the integrated operations by using a machine job-shop scheduling formulation. A multistage stochastic programming approach is chosen to formulate the problem in the presence of uncertainty and candidate solutions are obtained by solving sample average approximation problems with finite sample size. The developed mixed-integer-linear-programming algorithm-based scheduler is capable of computing optimal aircraft schedules and routings that reflect the integration of air and ground operations. The assembled methodology is applied to a Los Angeles case study. To show the benefits of integrated operations over First-Come-First-Served, a preliminary proof-of-concept is conducted for a set of fourteen aircraft evolving under deterministic conditions in a model of the Los Angeles International Airport surface and surrounding terminal areas. Using historical data, a representative 30-minute traffic schedule and aircraft mix scenario is constructed. The results of the Los Angeles application show that the integration of air and ground operations and the use of a time-based separation strategy enable both significant surface and air time savings. The solution computed by the optimization provides a more efficient routing and scheduling than the First-Come-First-Served solution. Additionally, a data driven analysis is performed for the Los Angeles environment and probabilistic distributions of pertinent uncertainty sources are obtained. A sensitivity analysis is then carried out to assess the methodology performance and find optimal sampling parameters. Finally, simulations of increasing traffic density in the presence of uncertainty are conducted first for integrated arrivals and departures, then for integrated surface and air operations. To compare the optimization results and show the benefits of integrated operations, two aircraft separation methods are implemented that offer different routing options. The simulations of integrated air operations and the simulations of integrated air and surface operations demonstrate that significant traveling time savings, both total and individual surface and air times, can be obtained when more direct routes are allowed to be traveled even in the presence of uncertainty. The resulting routings induce however extra take off delay for departing flights. As a consequence, some flights cannot meet their initial assigned runway slot which engenders runway position shifting when comparing resulting runway sequences computed under both deterministic and stochastic conditions. The optimization is able to compute an optimal runway schedule that represents an optimal balance between total schedule delays and total travel times.
NASA Astrophysics Data System (ADS)
Zhadanovsky, Boris; Sinenko, Sergey
2018-03-01
Economic indicators of construction work, particularly in high-rise construction, are directly related to the choice of optimal number of machines. The shortage of machinery makes it impossible to complete the construction & installation work on scheduled time. Rates of performance of construction & installation works and labor productivity during high-rise construction largely depend on the degree of provision of construction project with machines (level of work mechanization). During calculation of the need for machines in construction projects, it is necessary to ensure that work is completed on scheduled time, increased level of complex mechanization, increased productivity and reduction of manual work, and improved usage and maintenance of machine fleet. The selection of machines and determination of their numbers should be carried out by using formulas presented in this work.
A survey of planning and scheduling research at the NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Zweben, Monte
1989-01-01
NASA Ames Research Center has a diverse program in planning and scheduling. Some research projects as well as some applications are highlighted. Topics addressed include machine learning techniques, action representations and constraint-based scheduling systems. The applications discussed are planetary rovers, Hubble Space Telescope scheduling, and Pioneer Venus orbit scheduling.
Applications of artificial intelligence to mission planning
NASA Technical Reports Server (NTRS)
Ford, Donnie R.; Rogers, John S.; Floyd, Stephen A.
1990-01-01
The scheduling problem facing NASA-Marshall mission planning is extremely difficult for several reasons. The most critical factor is the computational complexity involved in developing a schedule. The size of the search space is large along some dimensions and infinite along others. It is because of this and other difficulties that many of the conventional operation research techniques are not feasible or inadequate to solve the problems by themselves. Therefore, the purpose is to examine various artificial intelligence (AI) techniques to assist conventional techniques or to replace them. The specific tasks performed were as follows: (1) to identify mission planning applications for object oriented and rule based programming; (2) to investigate interfacing AI dedicated hardware (Lisp machines) to VAX hardware; (3) to demonstrate how Lisp may be called from within FORTRAN programs; (4) to investigate and report on programming techniques used in some commercial AI shells, such as Knowledge Engineering Environment (KEE); and (5) to study and report on algorithmic methods to reduce complexity as related to AI techniques.
Satellite antenna management system and method
NASA Technical Reports Server (NTRS)
Leath, Timothy T (Inventor); Azzolini, John D (Inventor)
1999-01-01
The antenna management system and method allow a satellite to communicate with a ground station either directly or by an intermediary of a second satellite, thus permitting communication even when the satellite is not within range of the ground station. The system and method employ five major software components, which are the control and initialization module, the command and telemetry handler module, the contact schedule processor module, the contact state machining module, and the telemetry state machine module. The control and initialization module initializes the system and operates the main control cycle, in which the other modules are called. The command and telemetry handler module handles communication to and from the ground station. The contact scheduler processor module handles the contact entry schedules to allow scheduling of contacts with the second satellite. The contact and telemetry state machine modules handle the various states of the satellite in beginning, maintaining and ending contact with the second satellite and in beginning, maintaining and ending communication with the satellite.
A Decentralized Scheduling Policy for a Dynamically Reconfigurable Production System
NASA Astrophysics Data System (ADS)
Giordani, Stefano; Lujak, Marin; Martinelli, Francesco
In this paper, the static layout of a traditional multi-machine factory producing a set of distinct goods is integrated with a set of mobile production units - robots. The robots dynamically change their work position to increment the product rate of the different typologies of products in respect to the fluctuations of the demands and production costs during a given time horizon. Assuming that the planning time horizon is subdivided into a finite number of time periods, this particularly flexible layout requires the definition and the solution of a complex scheduling problem, involving for each period of the planning time horizon, the determination of the position of the robots, i.e., the assignment to the respective tasks in order to minimize production costs given the product demand rates during the planning time horizon.
Abdullahi, Mohammed; Ngadi, Md Asri
2016-01-01
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.
Abdullahi, Mohammed; Ngadi, Md Asri
2016-01-01
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan. PMID:27348127
A survey of planning and scheduling research at the NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Zweben, Monte
1988-01-01
NASA Ames Research Center has a diverse program in planning and scheduling. This paper highlights some of our research projects as well as some of our applications. Topics addressed include machine learning techniques, action representations and constraint-based scheduling systems. The applications discussed are planetary rovers, Hubble Space Telescope scheduling, and Pioneer Venus orbit scheduling.
NASA Astrophysics Data System (ADS)
Yusriski, R.; Sukoyo; Samadhi, T. M. A. A.; Halim, A. H.
2016-02-01
In the manufacturing industry, several identical parts can be processed in batches, and setup time is needed between two consecutive batches. Since the processing times of batches are not always fixed during a scheduling period due to learning and deterioration effects, this research deals with batch scheduling problems with simultaneous learning and deterioration effects. The objective is to minimize total actual flow time, defined as a time interval between the arrival of all parts at the shop and their common due date. The decision variables are the number of batches, integer batch sizes, and the sequence of the resulting batches. This research proposes a heuristic algorithm based on the Lagrange Relaxation. The effectiveness of the proposed algorithm is determined by comparing the resulting solutions of the algorithm to the respective optimal solution obtained from the enumeration method. Numerical experience results show that the average of difference among the solutions is 0.05%.
21 CFR 1310.16 - Exemptions for certain scheduled listed chemical products.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Exemptions for certain scheduled listed chemical... RECORDS AND REPORTS OF LISTED CHEMICALS AND CERTAIN MACHINES § 1310.16 Exemptions for certain scheduled listed chemical products. (a) Upon the application of a manufacturer of a scheduled listed chemical...
Automation and robotics technology for intelligent mining systems
NASA Technical Reports Server (NTRS)
Welsh, Jeffrey H.
1989-01-01
The U.S. Bureau of Mines is approaching the problems of accidents and efficiency in the mining industry through the application of automation and robotics to mining systems. This technology can increase safety by removing workers from hazardous areas of the mines or from performing hazardous tasks. The short-term goal of the Automation and Robotics program is to develop technology that can be implemented in the form of an autonomous mining machine using current continuous mining machine equipment. In the longer term, the goal is to conduct research that will lead to new intelligent mining systems that capitalize on the capabilities of robotics. The Bureau of Mines Automation and Robotics program has been structured to produce the technology required for the short- and long-term goals. The short-term goal of application of automation and robotics to an existing mining machine, resulting in autonomous operation, is expected to be accomplished within five years. Key technology elements required for an autonomous continuous mining machine are well underway and include machine navigation systems, coal-rock interface detectors, machine condition monitoring, and intelligent computer systems. The Bureau of Mines program is described, including status of key technology elements for an autonomous continuous mining machine, the program schedule, and future work. Although the program is directed toward underground mining, much of the technology being developed may have applications for space systems or mining on the Moon or other planets.
32 CFR 701.53 - FOIA fee schedule.
Code of Federal Regulations, 2014 CFR
2014-07-01
... human time) and machine time. (1) Human time. Human time is all the time spent by humans performing the...) Machine time. Machine time involves only direct costs of the central processing unit (CPU), input/output... exist to calculate CPU time, no machine costs can be passed on to the requester. When CPU calculations...
32 CFR 701.53 - FOIA fee schedule.
Code of Federal Regulations, 2012 CFR
2012-07-01
... human time) and machine time. (1) Human time. Human time is all the time spent by humans performing the...) Machine time. Machine time involves only direct costs of the central processing unit (CPU), input/output... exist to calculate CPU time, no machine costs can be passed on to the requester. When CPU calculations...
32 CFR 701.53 - FOIA fee schedule.
Code of Federal Regulations, 2013 CFR
2013-07-01
... human time) and machine time. (1) Human time. Human time is all the time spent by humans performing the...) Machine time. Machine time involves only direct costs of the central processing unit (CPU), input/output... exist to calculate CPU time, no machine costs can be passed on to the requester. When CPU calculations...
Constraint-Based Scheduling System
NASA Technical Reports Server (NTRS)
Zweben, Monte; Eskey, Megan; Stock, Todd; Taylor, Will; Kanefsky, Bob; Drascher, Ellen; Deale, Michael; Daun, Brian; Davis, Gene
1995-01-01
Report describes continuing development of software for constraint-based scheduling system implemented eventually on massively parallel computer. Based on machine learning as means of improving scheduling. Designed to learn when to change search strategy by analyzing search progress and learning general conditions under which resource bottleneck occurs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... approved, accepted or certified under Bureau of Mines Schedule 2D, 2E, 2F, or 2G. 18.95 Section 18.95..., accepted or certified under Bureau of Mines Schedule 2D, 2E, 2F, or 2G. Machines for which field approval... 2D, 2E, 2F, or 2G, shall be approved following a determination by the electrical representative that...
Code of Federal Regulations, 2013 CFR
2013-07-01
... approved, accepted or certified under Bureau of Mines Schedule 2D, 2E, 2F, or 2G. 18.95 Section 18.95..., accepted or certified under Bureau of Mines Schedule 2D, 2E, 2F, or 2G. Machines for which field approval... 2D, 2E, 2F, or 2G, shall be approved following a determination by the electrical representative that...
Code of Federal Regulations, 2010 CFR
2010-07-01
... approved, accepted or certified under Bureau of Mines Schedule 2D, 2E, 2F, or 2G. 18.95 Section 18.95..., accepted or certified under Bureau of Mines Schedule 2D, 2E, 2F, or 2G. Machines for which field approval... 2D, 2E, 2F, or 2G, shall be approved following a determination by the electrical representative that...
Code of Federal Regulations, 2014 CFR
2014-07-01
... approved, accepted or certified under Bureau of Mines Schedule 2D, 2E, 2F, or 2G. 18.95 Section 18.95..., accepted or certified under Bureau of Mines Schedule 2D, 2E, 2F, or 2G. Machines for which field approval... 2D, 2E, 2F, or 2G, shall be approved following a determination by the electrical representative that...
Code of Federal Regulations, 2012 CFR
2012-07-01
... approved, accepted or certified under Bureau of Mines Schedule 2D, 2E, 2F, or 2G. 18.95 Section 18.95..., accepted or certified under Bureau of Mines Schedule 2D, 2E, 2F, or 2G. Machines for which field approval... 2D, 2E, 2F, or 2G, shall be approved following a determination by the electrical representative that...
Dynamically allocating sets of fine-grained processors to running computations
NASA Technical Reports Server (NTRS)
Middleton, David
1988-01-01
Researchers explore an approach to using general purpose parallel computers which involves mapping hardware resources onto computations instead of mapping computations onto hardware. Problems such as processor allocation, task scheduling and load balancing, which have traditionally proven to be challenging, change significantly under this approach and may become amenable to new attacks. Researchers describe the implementation of this approach used by the FFP Machine whose computation and communication resources are repeatedly partitioned into disjoint groups that match the needs of available tasks from moment to moment. Several consequences of this system are examined.
Dypas: A dynamic payload scheduler for shuttle missions
NASA Technical Reports Server (NTRS)
Davis, Stephen
1988-01-01
Decision and analysis systems have had broad and very practical application areas in the human decision making process. These software systems range from the help sections in simple accounting packages, to the more complex computer configuration programs. Dypas is a decision and analysis system that aids prelaunch shutlle scheduling, and has added functionality to aid the rescheduling done in flight. Dypas is written in Common Lisp on a Symbolics Lisp machine. Dypas differs from other scheduling programs in that it can draw its knowledge from different rule bases and apply them to different rule interpretation schemes. The system has been coded with Flavors, an object oriented extension to Common Lisp on the Symbolics hardware. This allows implementation of objects (experiments) to better match the problem definition, and allows a more coherent solution space to be developed. Dypas was originally developed to test a programmer's aptitude toward Common Lisp and the Symbolics software environment. Since then the system has grown into a large software effort with several programmers and researchers thrown into the effort. Dypas is currently using two expert systems and three inferencing procedures to generate a many object schedule. The paper will review the abilities of Dypas and comment on its functionality.
Assessment of New Load Schedules for the Machine Calibration of a Force Balance
NASA Technical Reports Server (NTRS)
Ulbrich, N.; Gisler, R.; Kew, R.
2015-01-01
New load schedules for the machine calibration of a six-component force balance are currently being developed and evaluated at the NASA Ames Balance Calibration Laboratory. One of the proposed load schedules is discussed in the paper. It has a total of 2082 points that are distributed across 16 load series. Several criteria were applied to define the load schedule. It was decided, for example, to specify the calibration load set in force balance format as this approach greatly simplifies the definition of the lower and upper bounds of the load schedule. In addition, all loads are assumed to be applied in a calibration machine by using the one-factor-at-a-time approach. At first, all single-component loads are applied in six load series. Then, three two-component load series are applied. They consist of the load pairs (N1, N2), (S1, S2), and (RM, AF). Afterwards, four three-component load series are applied. They consist of the combinations (N1, N2, AF), (S1, S2, AF), (N1, N2, RM), and (S1, S2, RM). In the next step, one four-component load series is applied. It is the load combination (N1, N2, S1, S2). Finally, two five-component load series are applied. They are the load combination (N1, N2, S1, S2, AF) and (N1, N2, S1, S2, RM). The maximum difference between loads of two subsequent data points of the load schedule is limited to 33 % of capacity. This constraint helps avoid unwanted load "jumps" in the load schedule that can have a negative impact on the performance of a calibration machine. Only loadings of the single- and two-component load series are loaded to 100 % of capacity. This approach was selected because it keeps the total number of calibration points to a reasonable limit while still allowing for the application of some of the more complex load combinations. Data from two of NASA's force balances is used to illustrate important characteristics of the proposed 2082-point calibration load schedule.
1990-10-01
to economic, technological, spatial or logistic concerns, or involve training, man-machine interfaces, or integration into existing systems. Once the...probabilistic reasoning, mixed analysis- and simulation-oriented, mixed computation- and communication-oriented, nonpreemptive static priority...scheduling base, nonrandomized, preemptive static priority scheduling base, randomized, simulation-oriented, and static scheduling base. The selection of both
Construction machine control guidance implementation strategy.
DOT National Transportation Integrated Search
2010-07-01
Machine Controlled Guidance (MCG) technology may be used in roadway and bridge construction to improve construction efficiencies, potentially resulting in reduced project costs and accelerated schedules. The technology utilizes a Global Positioning S...
Distributed-Memory Fast Maximal Independent Set
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanewala Appuhamilage, Thejaka Amila J.; Zalewski, Marcin J.; Lumsdaine, Andrew
The Maximal Independent Set (MIS) graph problem arises in many applications such as computer vision, information theory, molecular biology, and process scheduling. The growing scale of MIS problems suggests the use of distributed-memory hardware as a cost-effective approach to providing necessary compute and memory resources. Luby proposed four randomized algorithms to solve the MIS problem. All those algorithms are designed focusing on shared-memory machines and are analyzed using the PRAM model. These algorithms do not have direct efficient distributed-memory implementations. In this paper, we extend two of Luby’s seminal MIS algorithms, “Luby(A)” and “Luby(B),” to distributed-memory execution, and we evaluatemore » their performance. We compare our results with the “Filtered MIS” implementation in the Combinatorial BLAS library for two types of synthetic graph inputs.« less
ERIC Educational Resources Information Center
Sukwong, Orathai
2013-01-01
Virtualization enables the ability to consolidate multiple servers on a single physical machine, increasing the infrastructure utilization. Maximizing the ratio of server virtual machines (VMs) to physical machines, namely the consolidation ratio, becomes an important goal toward infrastructure cost saving in a cloud. However, the consolidation…
30 CFR 75.209 - Automated Temporary Roof Support (ATRS) systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... paragraphs (b) and (c) of this section, an ATRS system shall be used with roof bolting machines and continuous-mining machines with integral roof bolters operated in a working section. The requirements of this paragraph shall be met according to the following schedule: (1) All new machines ordered after March 28...
30 CFR 75.209 - Automated Temporary Roof Support (ATRS) systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... paragraphs (b) and (c) of this section, an ATRS system shall be used with roof bolting machines and continuous-mining machines with integral roof bolters operated in a working section. The requirements of this paragraph shall be met according to the following schedule: (1) All new machines ordered after March 28...
30 CFR 75.209 - Automated Temporary Roof Support (ATRS) systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... paragraphs (b) and (c) of this section, an ATRS system shall be used with roof bolting machines and continuous-mining machines with integral roof bolters operated in a working section. The requirements of this paragraph shall be met according to the following schedule: (1) All new machines ordered after March 28...
Scheduling for Parallel Supercomputing: A Historical Perspective of Achievable Utilization
NASA Technical Reports Server (NTRS)
Jones, James Patton; Nitzberg, Bill
1999-01-01
The NAS facility has operated parallel supercomputers for the past 11 years, including the Intel iPSC/860, Intel Paragon, Thinking Machines CM-5, IBM SP-2, and Cray Origin 2000. Across this wide variety of machine architectures, across a span of 10 years, across a large number of different users, and through thousands of minor configuration and policy changes, the utilization of these machines shows three general trends: (1) scheduling using a naive FIFO first-fit policy results in 40-60% utilization, (2) switching to the more sophisticated dynamic backfilling scheduling algorithm improves utilization by about 15 percentage points (yielding about 70% utilization), and (3) reducing the maximum allowable job size further increases utilization. Most surprising is the consistency of these trends. Over the lifetime of the NAS parallel systems, we made hundreds, perhaps thousands, of small changes to hardware, software, and policy, yet, utilization was affected little. In particular these results show that the goal of achieving near 100% utilization while supporting a real parallel supercomputing workload is unrealistic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikov, V.
1991-05-01
The U.S. Army's detailed equipment decontamination process is a stochastic flow shop which has N independent non-identical jobs (vehicles) which have overlapping processing times. This flow shop consists of up to six non-identical machines (stations). With the exception of one station, the processing times of the jobs are random variables. Based on an analysis of the processing times, the jobs for the 56 Army heavy division companies were scheduled according to the best shortest expected processing time - longest expected processing time (SEPT-LEPT) sequence. To assist in this scheduling the Gap Comparison Heuristic was developed to select the best SEPT-LEPTmore » schedule. This schedule was then used in balancing the detailed equipment decon line in order to find the best possible site configuration subject to several constraints. The detailed troop decon line, in which all jobs are independent and identically distributed, was then balanced. Lastly, an NBC decon optimization computer program was developed using the scheduling and line balancing results. This program serves as a prototype module for the ANBACIS automated NBC decision support system.... Decontamination, Stochastic flow shop, Scheduling, Stochastic scheduling, Minimization of the makespan, SEPT-LEPT Sequences, Flow shop line balancing, ANBACIS.« less
Optimized Hypervisor Scheduler for Parallel Discrete Event Simulations on Virtual Machine Platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoginath, Srikanth B; Perumalla, Kalyan S
2013-01-01
With the advent of virtual machine (VM)-based platforms for parallel computing, it is now possible to execute parallel discrete event simulations (PDES) over multiple virtual machines, in contrast to executing in native mode directly over hardware as is traditionally done over the past decades. While mature VM-based parallel systems now offer new, compelling benefits such as serviceability, dynamic reconfigurability and overall cost effectiveness, the runtime performance of parallel applications can be significantly affected. In particular, most VM-based platforms are optimized for general workloads, but PDES execution exhibits unique dynamics significantly different from other workloads. Here we first present results frommore » experiments that highlight the gross deterioration of the runtime performance of VM-based PDES simulations when executed using traditional VM schedulers, quantitatively showing the bad scaling properties of the scheduler as the number of VMs is increased. The mismatch is fundamental in nature in the sense that any fairness-based VM scheduler implementation would exhibit this mismatch with PDES runs. We also present a new scheduler optimized specifically for PDES applications, and describe its design and implementation. Experimental results obtained from running PDES benchmarks (PHOLD and vehicular traffic simulations) over VMs show over an order of magnitude improvement in the run time of the PDES-optimized scheduler relative to the regular VM scheduler, with over 20 reduction in run time of simulations using up to 64 VMs. The observations and results are timely in the context of emerging systems such as cloud platforms and VM-based high performance computing installations, highlighting to the community the need for PDES-specific support, and the feasibility of significantly reducing the runtime overhead for scalable PDES on VM platforms.« less
Machine learning in updating predictive models of planning and scheduling transportation projects
DOT National Transportation Integrated Search
1997-01-01
A method combining machine learning and regression analysis to automatically and intelligently update predictive models used in the Kansas Department of Transportations (KDOTs) internal management system is presented. The predictive models used...
30 CFR 18.97 - Inspection of machines; minimum requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... all electrical components for materials, workmanship, design, and construction; (2) Examination of all components of the machine which have been approved or certified under Bureau of Mines Schedule 2D, 2E, 2F, or...
30 CFR 18.97 - Inspection of machines; minimum requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... all electrical components for materials, workmanship, design, and construction; (2) Examination of all components of the machine which have been approved or certified under Bureau of Mines Schedule 2D, 2E, 2F, or...
30 CFR 18.97 - Inspection of machines; minimum requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... all electrical components for materials, workmanship, design, and construction; (2) Examination of all components of the machine which have been approved or certified under Bureau of Mines Schedule 2D, 2E, 2F, or...
Virtual Mission Operations of Remote Sensors With Rapid Access To and From Space
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Stewart, Dave; Walke, Jon; Dikeman, Larry; Sage, Steven; Miller, Eric; Northam, James; Jackson, Chris; Taylor, John; Lynch, Scott;
2010-01-01
This paper describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the United Kingdom Disaster Monitoring Constellation (UK-DMC), is used as the space-based sensor. The UK-DMC s availability is determined via machine-to-machine communications using SSTL s mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL s and Universal Space Network s (USN) ground assets. The availability and scheduling of USN s assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards.
Tuning Parameters in Heuristics by Using Design of Experiments Methods
NASA Technical Reports Server (NTRS)
Arin, Arif; Rabadi, Ghaith; Unal, Resit
2010-01-01
With the growing complexity of today's large scale problems, it has become more difficult to find optimal solutions by using exact mathematical methods. The need to find near-optimal solutions in an acceptable time frame requires heuristic approaches. In many cases, however, most heuristics have several parameters that need to be "tuned" before they can reach good results. The problem then turns into "finding best parameter setting" for the heuristics to solve the problems efficiently and timely. One-Factor-At-a-Time (OFAT) approach for parameter tuning neglects the interactions between parameters. Design of Experiments (DOE) tools can be instead employed to tune the parameters more effectively. In this paper, we seek the best parameter setting for a Genetic Algorithm (GA) to solve the single machine total weighted tardiness problem in which n jobs must be scheduled on a single machine without preemption, and the objective is to minimize the total weighted tardiness. Benchmark instances for the problem are available in the literature. To fine tune the GA parameters in the most efficient way, we compare multiple DOE models including 2-level (2k ) full factorial design, orthogonal array design, central composite design, D-optimal design and signal-to-noise (SIN) ratios. In each DOE method, a mathematical model is created using regression analysis, and solved to obtain the best parameter setting. After verification runs using the tuned parameter setting, the preliminary results for optimal solutions of multiple instances were found efficiently.
Efficiently Scheduling Multi-core Guest Virtual Machines on Multi-core Hosts in Network Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoginath, Srikanth B; Perumalla, Kalyan S
2011-01-01
Virtual machine (VM)-based simulation is a method used by network simulators to incorporate realistic application behaviors by executing actual VMs as high-fidelity surrogates for simulated end-hosts. A critical requirement in such a method is the simulation time-ordered scheduling and execution of the VMs. Prior approaches such as time dilation are less efficient due to the high degree of multiplexing possible when multiple multi-core VMs are simulated on multi-core host systems. We present a new simulation time-ordered scheduler to efficiently schedule multi-core VMs on multi-core real hosts, with a virtual clock realized on each virtual core. The distinguishing features of ourmore » approach are: (1) customizable granularity of the VM scheduling time unit on the simulation time axis, (2) ability to take arbitrary leaps in virtual time by VMs to maximize the utilization of host (real) cores when guest virtual cores idle, and (3) empirically determinable optimality in the tradeoff between total execution (real) time and time-ordering accuracy levels. Experiments show that it is possible to get nearly perfect time-ordered execution, with a slight cost in total run time, relative to optimized non-simulation VM schedulers. Interestingly, with our time-ordered scheduler, it is also possible to reduce the time-ordering error from over 50% of non-simulation scheduler to less than 1% realized by our scheduler, with almost the same run time efficiency as that of the highly efficient non-simulation VM schedulers.« less
2008-03-01
order fulfillment visibility, Kanban deployment, inventory count can be made visually, machines and tool labeling, costs, preventive maintenance...order fulfillment, computer scheduling versus Kanban , pull versus push systems, flow time efficiencies, back room costs of scheduling, MRP costs
The checkpoint ordering problem
Hungerländer, P.
2017-01-01
Abstract We suggest a new variant of a row layout problem: Find an ordering of n departments with given lengths such that the total weighted sum of their distances to a given checkpoint is minimized. The Checkpoint Ordering Problem (COP) is both of theoretical and practical interest. It has several applications and is conceptually related to some well-studied combinatorial optimization problems, namely the Single-Row Facility Layout Problem, the Linear Ordering Problem and a variant of parallel machine scheduling. In this paper we study the complexity of the (COP) and its special cases. The general version of the (COP) with an arbitrary but fixed number of checkpoints is NP-hard in the weak sense. We propose both a dynamic programming algorithm and an integer linear programming approach for the (COP) . Our computational experiments indicate that the (COP) is hard to solve in practice. While the run time of the dynamic programming algorithm strongly depends on the length of the departments, the integer linear programming approach is able to solve instances with up to 25 departments to optimality. PMID:29170574
2000-04-01
be an extension of Utah’s nascent Quarks system, oriented to closely coupled cluster environments. However, the grant did not actually begin until... Intel x86, implemented ten virtual machine monitors and servers, including a virtual memory manager, a checkpointer, a process manager, a file server...Fluke, we developed a novel hierarchical processor scheduling frame- work called CPU inheritance scheduling [5]. This is a framework for scheduling
Wave scheduling - Decentralized scheduling of task forces in multicomputers
NASA Technical Reports Server (NTRS)
Van Tilborg, A. M.; Wittie, L. D.
1984-01-01
Decentralized operating systems that control large multicomputers need techniques to schedule competing parallel programs called task forces. Wave scheduling is a probabilistic technique that uses a hierarchical distributed virtual machine to schedule task forces by recursively subdividing and issuing wavefront-like commands to processing elements capable of executing individual tasks. Wave scheduling is highly resistant to processing element failures because it uses many distributed schedulers that dynamically assign scheduling responsibilities among themselves. The scheduling technique is trivially extensible as more processing elements join the host multicomputer. A simple model of scheduling cost is used by every scheduler node to distribute scheduling activity and minimize wasted processing capacity by using perceived workload to vary decentralized scheduling rules. At low to moderate levels of network activity, wave scheduling is only slightly less efficient than a central scheduler in its ability to direct processing elements to accomplish useful work.
Constraint-based integration of planning and scheduling for space-based observatory management
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Smith, Steven F.
1994-01-01
Progress toward the development of effective, practical solutions to space-based observatory scheduling problems within the HSTS scheduling framework is reported. HSTS was developed and originally applied in the context of the Hubble Space Telescope (HST) short-term observation scheduling problem. The work was motivated by the limitations of the current solution and, more generally, by the insufficiency of classical planning and scheduling approaches in this problem context. HSTS has subsequently been used to develop improved heuristic solution techniques in related scheduling domains and is currently being applied to develop a scheduling tool for the upcoming Submillimeter Wave Astronomy Satellite (SWAS) mission. The salient architectural characteristics of HSTS and their relationship to previous scheduling and AI planning research are summarized. Then, some key problem decomposition techniques underlying the integrated planning and scheduling approach to the HST problem are described; research results indicate that these techniques provide leverage in solving space-based observatory scheduling problems. Finally, more recently developed constraint-posting scheduling procedures and the current SWAS application focus are summarized.
Modeling of a production system using the multi-agent approach
NASA Astrophysics Data System (ADS)
Gwiazda, A.; Sękala, A.; Banaś, W.
2017-08-01
The method that allows for the analysis of complex systems is a multi-agent simulation. The multi-agent simulation (Agent-based modeling and simulation - ABMS) is modeling of complex systems consisting of independent agents. In the case of the model of the production system agents may be manufactured pieces set apart from other types of agents like machine tools, conveyors or replacements stands. Agents are magazines and buffers. More generally speaking, the agents in the model can be single individuals, but you can also be defined as agents of collective entities. They are allowed hierarchical structures. It means that a single agent could belong to a certain class. Depending on the needs of the agent may also be a natural or physical resource. From a technical point of view, the agent is a bundle of data and rules describing its behavior in different situations. Agents can be autonomous or non-autonomous in making the decision about the types of classes of agents, class sizes and types of connections between elements of the system. Multi-agent modeling is a very flexible technique for modeling and model creating in the convention that could be adapted to any research problem analyzed from different points of views. One of the major problems associated with the organization of production is the spatial organization of the production process. Secondly, it is important to include the optimal scheduling. For this purpose use can approach multi-purposeful. In this regard, the model of the production process will refer to the design and scheduling of production space for four different elements. The program system was developed in the environment NetLogo. It was also used elements of artificial intelligence. The main agent represents the manufactured pieces that, according to previously assumed rules, generate the technological route and allow preprint the schedule of that line. Machine lines, reorientation stands, conveyors and transport devices also represent the other type of agent that are utilized in the described simulation. The article presents the idea of an integrated program approach and shows the resulting production layout as a virtual model. This model was developed in the NetLogo multi-agent program environment.
Linux Kernel Co-Scheduling For Bulk Synchronous Parallel Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Terry R
2011-01-01
This paper describes a kernel scheduling algorithm that is based on co-scheduling principles and that is intended for parallel applications running on 1000 cores or more where inter-node scalability is key. Experimental results for a Linux implementation on a Cray XT5 machine are presented.1 The results indicate that Linux is a suitable operating system for this new scheduling scheme, and that this design provides a dramatic improvement in scaling performance for synchronizing collective operations at scale.
NASA Technical Reports Server (NTRS)
Smith, Stephen F.; Pathak, Dhiraj K.
1991-01-01
In this paper, we report work aimed at applying concepts of constraint-based problem structuring and multi-perspective scheduling to an over-subscribed scheduling problem. Previous research has demonstrated the utility of these concepts as a means for effectively balancing conflicting objectives in constraint-relaxable scheduling problems, and our goal here is to provide evidence of their similar potential in the context of HST observation scheduling. To this end, we define and experimentally assess the performance of two time-bounded heuristic scheduling strategies in balancing the tradeoff between resource setup time minimization and satisfaction of absolute time constraints. The first strategy considered is motivated by dispatch-based manufacturing scheduling research, and employs a problem decomposition that concentrates local search on minimizing resource idle time due to setup activities. The second is motivated by research in opportunistic scheduling and advocates a problem decomposition that focuses attention on the goal activities that have the tightest temporal constraints. Analysis of experimental results gives evidence of differential superiority on the part of each strategy in different problem solving circumstances. A composite strategy based on recognition of characteristics of the current problem solving state is then defined and tested to illustrate the potential benefits of constraint-based problem structuring and multi-perspective scheduling in over-subscribe scheduling problems.
Fundamental research in artificial intelligence at NASA
NASA Technical Reports Server (NTRS)
Friedland, Peter
1990-01-01
This paper describes basic research at NASA in the field of artificial intelligence. The work is conducted at the Ames Research Center and the Jet Propulsion Laboratory, primarily under the auspices of the NASA-wide Artificial Intelligence Program in the Office of Aeronautics, Exploration and Technology. The research is aimed at solving long-term NASA problems in missions operations, spacecraft autonomy, preservation of corporate knowledge about NASA missions and vehicles, and management/analysis of scientific and engineering data. From a scientific point of view, the research is broken into the categories of: planning and scheduling; machine learning; and design of and reasoning about large-scale physical systems.
20 CFR 402.165 - Fee schedule.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Fee schedule. 402.165 Section 402.165 Employees' Benefits SOCIAL SECURITY ADMINISTRATION AVAILABILITY OF INFORMATION AND RECORDS TO THE PUBLIC... costs of operating the machine, plus the actual cost of the materials used, plus charges for the time...
Reactive Scheduling in Multipurpose Batch Plants
NASA Astrophysics Data System (ADS)
Narayani, A.; Shaik, Munawar A.
2010-10-01
Scheduling is an important operation in process industries for improving resource utilization resulting in direct economic benefits. It has a two-fold objective of fulfilling customer orders within the specified time as well as maximizing the plant profit. Unexpected disturbances such as machine breakdown, arrival of rush orders and cancellation of orders affect the schedule of the plant. Reactive scheduling is generation of a new schedule which has minimum deviation from the original schedule in spite of the occurrence of unexpected events in the plant operation. Recently, Shaik & Floudas (2009) proposed a novel unified model for short-term scheduling of multipurpose batch plants using unit-specific event-based continuous time representation. In this paper, we extend the model of Shaik & Floudas (2009) to handle reactive scheduling.
Decomposability and scalability in space-based observatory scheduling
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Smith, Stephen F.
1992-01-01
In this paper, we discuss issues of problem and model decomposition within the HSTS scheduling framework. HSTS was developed and originally applied in the context of the Hubble Space Telescope (HST) scheduling problem, motivated by the limitations of the current solution and, more generally, the insufficiency of classical planning and scheduling approaches in this problem context. We first summarize the salient architectural characteristics of HSTS and their relationship to previous scheduling and AI planning research. Then, we describe some key problem decomposition techniques supported by HSTS and underlying our integrated planning and scheduling approach, and we discuss the leverage they provide in solving space-based observatory scheduling problems.
AI techniques for a space application scheduling problem
NASA Technical Reports Server (NTRS)
Thalman, N.; Sparn, T.; Jaffres, L.; Gablehouse, D.; Judd, D.; Russell, C.
1991-01-01
Scheduling is a very complex optimization problem which can be categorized as an NP-complete problem. NP-complete problems are quite diverse, as are the algorithms used in searching for an optimal solution. In most cases, the best solutions that can be derived for these combinatorial explosive problems are near-optimal solutions. Due to the complexity of the scheduling problem, artificial intelligence (AI) can aid in solving these types of problems. Some of the factors are examined which make space application scheduling problems difficult and presents a fairly new AI-based technique called tabu search as applied to a real scheduling application. the specific problem is concerned with scheduling application. The specific problem is concerned with scheduling solar and stellar observations for the SOLar-STellar Irradiance Comparison Experiment (SOLSTICE) instrument in a constrained environment which produces minimum impact on the other instruments and maximizes target observation times. The SOLSTICE instrument will gly on-board the Upper Atmosphere Research Satellite (UARS) in 1991, and a similar instrument will fly on the earth observing system (Eos).
SOFIA's Choice: Automating the Scheduling of Airborne Observations
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Norvig, Peter (Technical Monitor)
1999-01-01
This paper describes the problem of scheduling observations for an airborne telescope. Given a set of prioritized observations to choose from, and a wide range of complex constraints governing legitimate choices and orderings, how can we efficiently and effectively create a valid flight plan which supports high priority observations? This problem is quite different from scheduling problems which are routinely solved automatically in industry. For instance, the problem requires making choices which lead to other choices later, and contains many interacting complex constraints over both discrete and continuous variables. Furthermore, new types of constraints may be added as the fundamental problem changes. As a result of these features, this problem cannot be solved by traditional scheduling techniques. The problem resembles other problems in NASA and industry, from observation scheduling for rovers and other science instruments to vehicle routing. The remainder of the paper is organized as follows. In 2 we describe the observatory in order to provide some background. In 3 we describe the problem of scheduling a single flight. In 4 we compare flight planning and other scheduling problems and argue that traditional techniques are not sufficient to solve this problem. We also mention similar complex scheduling problems which may benefit from efforts to solve this problem. In 5 we describe an approach for solving this problem based on research into a similar problem, that of scheduling observations for a space-borne probe. In 6 we discuss extensions of the flight planning problem as well as other problems which are similar to flight planning. In 7 we conclude and discuss future work.
1984-06-29
sheet metal, machined and composite parts and assembling the components into final pruJucts o Planning, evaluating, testing, inspecting and...Research showed that current programs were pursuing the design and demonstration of integrated centers for sheet metal, machining and composite ...determine any metal parts required and to schedule these requirements from the machining center. Figure 3-33, Planned Composite Production, shows
Code of Federal Regulations, 2011 CFR
2011-07-01
... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Requisitioning tabulating... Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT... electrical and mechanical contact tabulating machines, including aperture cards and copy cards. Federal...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Requisitioning tabulating... Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT... electrical and mechanical contact tabulating machines, including aperture cards and copy cards. Federal...
5 CFR 532.279 - Special wage schedules for printing positions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Opaquer 4 Offset Press Helper 5 Bindery Machine Operator (Helper) 5 Film Assembler-Stripper (Single Flat-Single Color) 5 Platemaker (Single Color) 5 Film Assembler-Stripper (Partial and Composite Flats) 7... Cutter) 8 Bindery Machine Operator (Power Folder) 8 Film Assembler-Stripper (Multiple Flat-Multiple Color...
5 CFR 532.279 - Special wage schedules for printing positions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Opaquer 4 Offset Press Helper 5 Bindery Machine Operator (Helper) 5 Film Assembler-Stripper (Single Flat-Single Color) 5 Platemaker (Single Color) 5 Film Assembler-Stripper (Partial and Composite Flats) 7... Cutter) 8 Bindery Machine Operator (Power Folder) 8 Film Assembler-Stripper (Multiple Flat-Multiple Color...
Reasoning about real-time systems with temporal interval logic constraints on multi-state automata
NASA Technical Reports Server (NTRS)
Gabrielian, Armen
1991-01-01
Models of real-time systems using a single paradigm often turn out to be inadequate, whether the paradigm is based on states, rules, event sequences, or logic. A model-based approach to reasoning about real-time systems is presented in which a temporal interval logic called TIL is employed to define constraints on a new type of high level automata. The combination, called hierarchical multi-state (HMS) machines, can be used to model formally a real-time system, a dynamic set of requirements, the environment, heuristic knowledge about planning-related problem solving, and the computational states of the reasoning mechanism. In this framework, mathematical techniques were developed for: (1) proving the correctness of a representation; (2) planning of concurrent tasks to achieve goals; and (3) scheduling of plans to satisfy complex temporal constraints. HMS machines allow reasoning about a real-time system from a model of how truth arises instead of merely depending of what is true in a system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, M.; Grimshaw, A.
1996-12-31
The Legion project at the University of Virginia is an architecture for designing and building system services that provide the illusion of a single virtual machine to users, a virtual machine that provides secure shared object and shared name spaces, application adjustable fault-tolerance, improved response time, and greater throughput. Legion targets wide area assemblies of workstations, supercomputers, and parallel supercomputers, Legion tackles problems not solved by existing workstation based parallel processing tools; the system will enable fault-tolerance, wide area parallel processing, inter-operability, heterogeneity, a single global name space, protection, security, efficient scheduling, and comprehensive resource management. This paper describes themore » core Legion object model, which specifies the composition and functionality of Legion`s core objects-those objects that cooperate to create, locate, manage, and remove objects in the Legion system. The object model facilitates a flexible extensible implementation, provides a single global name space, grants site autonomy to participating organizations, and scales to millions of sites and trillions of objects.« less
Dynamic VMs placement for energy efficiency by PSO in cloud computing
NASA Astrophysics Data System (ADS)
Dashti, Seyed Ebrahim; Rahmani, Amir Masoud
2016-03-01
Recently, cloud computing is growing fast and helps to realise other high technologies. In this paper, we propose a hieratical architecture to satisfy both providers' and consumers' requirements in these technologies. We design a new service in the PaaS layer for scheduling consumer tasks. In the providers' perspective, incompatibility between specification of physical machine and user requests in cloud leads to problems such as energy-performance trade-off and large power consumption so that profits are decreased. To guarantee Quality of service of users' tasks, and reduce energy efficiency, we proposed to modify Particle Swarm Optimisation to reallocate migrated virtual machines in the overloaded host. We also dynamically consolidate the under-loaded host which provides power saving. Simulation results in CloudSim demonstrated that whatever simulation condition is near to the real environment, our method is able to save as much as 14% more energy and the number of migrations and simulation time significantly reduces compared with the previous works.
Fritz, Jennifer N; Jackson, Lynsey M; Stiefler, Nicole A; Wimberly, Barbara S; Richardson, Amy R
2017-07-01
The effects of noncontingent reinforcement (NCR) without extinction during treatment of problem behavior maintained by social positive reinforcement were evaluated for five individuals diagnosed with autism spectrum disorder. A continuous NCR schedule was gradually thinned to a fixed-time 5-min schedule. If problem behavior increased during NCR schedule thinning, a continuous NCR schedule was reinstated and NCR schedule thinning was repeated with differential reinforcement of alternative behavior (DRA) included. Results showed an immediate decrease in all participants' problem behavior during continuous NCR, and problem behavior maintained at low levels during NCR schedule thinning for three participants. Problem behavior increased and maintained at higher rates during NCR schedule thinning for two other participants; however, the addition of DRA to the intervention resulted in decreased problem behavior and increased mands. © 2017 Society for the Experimental Analysis of Behavior.
Multi-objective group scheduling optimization integrated with preventive maintenance
NASA Astrophysics Data System (ADS)
Liao, Wenzhu; Zhang, Xiufang; Jiang, Min
2017-11-01
This article proposes a single-machine-based integration model to meet the requirements of production scheduling and preventive maintenance in group production. To describe the production for identical/similar and different jobs, this integrated model considers the learning and forgetting effects. Based on machine degradation, the deterioration effect is also considered. Moreover, perfect maintenance and minimal repair are adopted in this integrated model. The multi-objective of minimizing total completion time and maintenance cost is taken to meet the dual requirements of delivery date and cost. Finally, a genetic algorithm is developed to solve this optimization model, and the computation results demonstrate that this integrated model is effective and reliable.
A new scheduling algorithm for parallel sparse LU factorization with static pivoting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigori, Laura; Li, Xiaoye S.
2002-08-20
In this paper we present a static scheduling algorithm for parallel sparse LU factorization with static pivoting. The algorithm is divided into mapping and scheduling phases, using the symmetric pruned graphs of L' and U to represent dependencies. The scheduling algorithm is designed for driving the parallel execution of the factorization on a distributed-memory architecture. Experimental results and comparisons with SuperLU{_}DIST are reported after applying this algorithm on real world application matrices on an IBM SP RS/6000 distributed memory machine.
Linux Kernel Co-Scheduling and Bulk Synchronous Parallelism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Terry R
2012-01-01
This paper describes a kernel scheduling algorithm that is based on coscheduling principles and that is intended for parallel applications running on 1000 cores or more. Experimental results for a Linux implementation on a Cray XT5 machine are presented. The results indicate that Linux is a suitable operating system for this new scheduling scheme, and that this design provides a dramatic improvement in scaling performance for synchronizing collective operations at scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoginath, Srikanth B; Perumalla, Kalyan S; Henz, Brian J
2012-01-01
In prior work (Yoginath and Perumalla, 2011; Yoginath, Perumalla and Henz, 2012), the motivation, challenges and issues were articulated in favor of virtual time ordering of Virtual Machines (VMs) in network simulations hosted on multi-core machines. Two major components in the overall virtualization challenge are (1) virtual timeline establishment and scheduling of VMs, and (2) virtualization of inter-VM communication. Here, we extend prior work by presenting scaling results for the first component, with experiment results on up to 128 VMs scheduled in virtual time order on a single 12-core host. We also explore the solution space of design alternatives formore » the second component, and present performance results from a multi-threaded, multi-queue implementation of inter-VM network control for synchronized execution with VM scheduling, incorporated in our NetWarp simulation system.« less
Navy Acquisition: Cost, Schedule, and Performance of New Submarine Combat Systems
1990-01-01
1985). Page 8 GAO/NSIAD-90-72 Submarine Combat Systems Chapter 1 Introduction In December 1983 the Navy awarded the International Business Machines...contracts to the General Electric Com- pany and the International Business Machines. In December 1987 the Navy selected General Electric as the prime...contractor and International Business Machines as the "follower" contractor. On March 31, 1988. the Navy awarded General Electric a $1.84 billion fixed
Techniques for cash management in scheduling manufacturing operations
NASA Astrophysics Data System (ADS)
Morady Gohareh, Mehdy; Shams Gharneh, Naser; Ghasemy Yaghin, Reza
2017-06-01
The objective in traditional scheduling is usually time based. Minimizing the makespan, total flow times, total tardi costs, etc. are instances of these objectives. In manufacturing, processing each job entails a cost paying and price receiving. Thus, the objective should include some notion of managing the flow of cash. We have defined two new objectives: maximization of average and minimum available cash. For single machine scheduling, it is demonstrated that scheduling jobs in decreasing order of profit ratios maximizes the former and improves productivity. Moreover, scheduling jobs in increasing order of costs and breaking ties in decreasing order of prices maximizes the latter and creates protection against financial instability.
SLURM: Simple Linux Utility for Resource Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jette, M; Grondona, M
2002-12-19
Simple Linux Utility for Resource Management (SLURM) is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for Linux clusters of thousands of nodes. Components include machine status, partition management, job management, scheduling and stream copy modules. This paper presents an overview of the SLURM architecture and functionality.
SLURM: Simplex Linux Utility for Resource Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jette, M; Grondona, M
2003-04-22
Simple Linux Utility for Resource Management (SLURM) is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for Linux clusters of thousands of nodes. Components include machine status, partition management, job management, scheduling, and stream copy modules. This paper presents an overview of the SLURM architecture and functionality.
49 CFR 214.531 - Schedule of repairs; general.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Hi-Rail Vehicles § 214.531 Schedule of repairs; general. Except as provided in §§ 214.527(c)(5), 214.529, and 214.533, an on-track roadway maintenance machine or hi-rail vehicle that does not meet all... or hi-rail vehicle shall be placed out of on-track service. ...
NASA Astrophysics Data System (ADS)
Akbar, Jodi; Akbar, Muhammad; Irianto, Dradjad
2016-02-01
Politeknik Manufaktur Bandung (Bandung Manufacture Polytechnic) is a polytechnic education that is not only to educate their students, but also manufactures order from customers at its teaching factory. This polytechnic is usually not responsive with the number of reject due to amateur operators from newcomer students. However, customers will be displeased if the reject rate is too high which can cause delay of delivery. At the foundry section, pintle chain is a product that has the highest amount of quantity but the lowest product standard fulfilment. Realizing this problem, it is a strong need to give more focus on quality improvement. The polytechnic considers that bad quality is not only related to low level of humanware (operator) but also related to low level of technoware (machine and equipment). In this research, QFD model was used as a tool for identifying target of improvement of non conforming factors of humanware and technoware using UNESCAP's technometric model. An improvement was done by implementing new scheduling strategy at foundry unit in order to minimize waiting time from molding to pouring process because of deterioration problem. This strategy provides an opportunity to reduce completion times about 50% and waiting time about 95% compared to the existing scheduling strategy.
Completable scheduling: An integrated approach to planning and scheduling
NASA Technical Reports Server (NTRS)
Gervasio, Melinda T.; Dejong, Gerald F.
1992-01-01
The planning problem has traditionally been treated separately from the scheduling problem. However, as more realistic domains are tackled, it becomes evident that the problem of deciding on an ordered set of tasks to achieve a set of goals cannot be treated independently of the problem of actually allocating resources to the tasks. Doing so would result in losing the robustness and flexibility needed to deal with imperfectly modeled domains. Completable scheduling is an approach which integrates the two problems by allowing an a priori planning module to defer particular planning decisions, and consequently the associated scheduling decisions, until execution time. This allows a completable scheduling system to maximize plan flexibility by allowing runtime information to be taken into consideration when making planning and scheduling decision. Furthermore, through the criteria of achievability placed on deferred decision, a completable scheduling system is able to retain much of the goal-directedness and guarantees of achievement afforded by a priori planning. The completable scheduling approach is further enhanced by the use of contingent explanation-based learning, which enables a completable scheduling system to learn general completable plans from example and improve its performance through experience. Initial experimental results show that completable scheduling outperforms classical scheduling as well as pure reactive scheduling in a simple scheduling domain.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...
NASA Astrophysics Data System (ADS)
Buchner, Johannes
2011-12-01
Scheduling, the task of producing a time table for resources and tasks, is well-known to be a difficult problem the more resources are involved (a NP-hard problem). This is about to become an issue in Radio astronomy as observatories consisting of hundreds to thousands of telescopes are planned and operated. The Square Kilometre Array (SKA), which Australia and New Zealand bid to host, is aiming for scales where current approaches -- in construction, operation but also scheduling -- are insufficent. Although manual scheduling is common today, the problem is becoming complicated by the demand for (1) independent sub-arrays doing simultaneous observations, which requires the scheduler to plan parallel observations and (2) dynamic re-scheduling on changed conditions. Both of these requirements apply to the SKA, especially in the construction phase. We review the scheduling approaches taken in the astronomy literature, as well as investigate techniques from human schedulers and today's observatories. The scheduling problem is specified in general for scientific observations and in particular on radio telescope arrays. Also taken into account is the fact that the observatory may be oversubscribed, requiring the scheduling problem to be integrated with a planning process. We solve this long-term scheduling problem using a time-based encoding that works in the very general case of observation scheduling. This research then compares algorithms from various approaches, including fast heuristics from CPU scheduling, Linear Integer Programming and Genetic algorithms, Branch-and-Bound enumeration schemes. Measures include not only goodness of the solution, but also scalability and re-scheduling capabilities. In conclusion, we have identified a fast and good scheduling approach that allows (re-)scheduling difficult and changing problems by combining heuristics with a Genetic algorithm using block-wise mutation operations. We are able to explain and eradicate two problems in the literature: The inability of a GA to properly improve schedules and the generation of schedules with frequent interruptions. Finally, we demonstrate the scheduling framework for several operating telescopes: (1) Dynamic re-scheduling with the AUT Warkworth 12m telescope, (2) Scheduling for the Australian Mopra 22m telescope and scheduling for the Allen Telescope Array. Furthermore, we discuss the applicability of the presented scheduling framework to the Atacama Large Millimeter/submillimeter Array (ALMA, in construction) and the SKA. In particular, during the development phase of the SKA, this dynamic, scalable scheduling framework can accommodate changing conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meneses, Esteban; Ni, Xiang; Jones, Terry R
The unprecedented computational power of cur- rent supercomputers now makes possible the exploration of complex problems in many scientific fields, from genomic analysis to computational fluid dynamics. Modern machines are powerful because they are massive: they assemble millions of cores and a huge quantity of disks, cards, routers, and other components. But it is precisely the size of these machines that glooms the future of supercomputing. A system that comprises many components has a high chance to fail, and fail often. In order to make the next generation of supercomputers usable, it is imperative to use some type of faultmore » tolerance platform to run applications on large machines. Most fault tolerance strategies can be optimized for the peculiarities of each system and boost efficacy by keeping the system productive. In this paper, we aim to understand how failure characterization can improve resilience in several layers of the software stack: applications, runtime systems, and job schedulers. We examine the Titan supercomputer, one of the fastest systems in the world. We analyze a full year of Titan in production and distill the failure patterns of the machine. By looking into Titan s log files and using the criteria of experts, we provide a detailed description of the types of failures. In addition, we inspect the job submission files and describe how the system is used. Using those two sources, we cross correlate failures in the machine to executing jobs and provide a picture of how failures affect the user experience. We believe such characterization is fundamental in developing appropriate fault tolerance solutions for Cray systems similar to Titan.« less
An Optimization Model for Scheduling Problems with Two-Dimensional Spatial Resource Constraint
NASA Technical Reports Server (NTRS)
Garcia, Christopher; Rabadi, Ghaith
2010-01-01
Traditional scheduling problems involve determining temporal assignments for a set of jobs in order to optimize some objective. Some scheduling problems also require the use of limited resources, which adds another dimension of complexity. In this paper we introduce a spatial resource-constrained scheduling problem that can arise in assembly, warehousing, cross-docking, inventory management, and other areas of logistics and supply chain management. This scheduling problem involves a twodimensional rectangular area as a limited resource. Each job, in addition to having temporal requirements, has a width and a height and utilizes a certain amount of space inside the area. We propose an optimization model for scheduling the jobs while respecting all temporal and spatial constraints.
An Implicit Enumeration Algorithm with Binary-Valued Constraints.
1986-03-01
problems is the National Basketball Association ( NBA -) schedul- ing problems developed by Bean (1980), as discussed in detail in the Appendix. These...fY! X F L- %n~ P ’ % -C-10 K7 K: K7 -L- -7".i - W. , W V APPENDIX The NBA Scheduling Problem §A.1 Formulation The National Basketball Association...16 2.2 4.9 40.2 15.14 §6.2.3 NBA Scheduling Problem The last set of testing problems involves the NBA scheduling problem. A detailed description of
Performance comparison of some evolutionary algorithms on job shop scheduling problems
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Rao, C. S. P.
2016-09-01
Job Shop Scheduling as a state space search problem belonging to NP-hard category due to its complexity and combinational explosion of states. Several naturally inspire evolutionary methods have been developed to solve Job Shop Scheduling Problems. In this paper the evolutionary methods namely Particles Swarm Optimization, Artificial Intelligence, Invasive Weed Optimization, Bacterial Foraging Optimization, Music Based Harmony Search Algorithms are applied and find tuned to model and solve Job Shop Scheduling Problems. To compare about 250 Bench Mark instances have been used to evaluate the performance of these algorithms. The capabilities of each these algorithms in solving Job Shop Scheduling Problems are outlined.
Operations research for resource planning and -use in radiotherapy: a literature review.
Vieira, Bruno; Hans, Erwin W; van Vliet-Vroegindeweij, Corine; van de Kamer, Jeroen; van Harten, Wim
2016-11-25
The delivery of radiotherapy (RT) involves the use of rather expensive resources and multi-disciplinary staff. As the number of cancer patients receiving RT increases, timely delivery becomes increasingly difficult due to the complexities related to, among others, variable patient inflow, complex patient routing, and the joint planning of multiple resources. Operations research (OR) methods have been successfully applied to solve many logistics problems through the development of advanced analytical models for improved decision making. This paper presents the state of the art in the application of OR methods for logistics optimization in RT, at various managerial levels. A literature search was performed in six databases covering several disciplines, from the medical to the technical field. Papers included in the review were published in peer-reviewed journals from 2000 to 2015. Data extraction includes the subject of research, the OR methods used in the study, the extent of implementation according to a six-stage model and the (potential) impact of the results in practice. From the 33 papers included in the review, 18 addressed problems related to patient scheduling (of which 12 focus on scheduling patients on linear accelerators), 8 focus on strategic decision making, 5 on resource capacity planning, and 2 on patient prioritization. Although calculating promising results, none of the papers reported a full implementation of the model with at least a thorough pre-post performance evaluation, indicating that, apart from possible reporting bias, implementation rates of OR models in RT are probably low. The literature on OR applications in RT covers a wide range of approaches from strategic capacity management to operational scheduling levels, and shows that considerable benefits in terms of both waiting times and resource utilization are likely to be achieved. Various fields can be further developed, for instance optimizing the coordination between the available capacity of different imaging devices or developing scheduling models that consider the RT chain of operations as a whole rather than the treatment machines alone.
The MICRO-BOSS scheduling system: Current status and future efforts
NASA Technical Reports Server (NTRS)
Sadeh, Norman M.
1992-01-01
In this paper, a micro-opportunistic approach to factory scheduling was described that closely monitors the evolution of bottlenecks during the construction of the schedule and continuously redirects search towards the bottleneck that appears to be most critical. This approach differs from earlier opportunistic approaches, as it does not require scheduling large resource subproblems or large job subproblems before revising the current scheduling strategy. This micro-opportunistic approach was implemented in the context of the MICRO-BOSS factory scheduling system. A study comparing MICRO-BOSS against a macro-opportunistic scheduler suggests that the additional flexibility of the micro-opportunistic approach to scheduling generally yields important reductions in both tardiness and inventory. Current research efforts include: adaptation of MICRO-BOSS to deal with sequence-dependent setups and development of micro-opportunistic reactive scheduling techniques that will enable the system to patch the schedule in the presence of contingencies such as machine breakdowns, raw materials arriving late, job cancellations, etc.
Compiling Planning into Scheduling: A Sketch
NASA Technical Reports Server (NTRS)
Bedrax-Weiss, Tania; Crawford, James M.; Smith, David E.
2004-01-01
Although there are many approaches for compiling a planning problem into a static CSP or a scheduling problem, current approaches essentially preserve the structure of the planning problem in the encoding. In this pape: we present a fundamentally different encoding that more accurately resembles a scheduling problem. We sketch the approach and argue, based on an example, that it is possible to automate the generation of such an encoding for problems with certain properties and thus produce a compiler of planning into scheduling problems. Furthermore we argue that many NASA problems exhibit these properties and that such a compiler would provide benefits to both theory and practice.
SLURM: Simple Linux Utility for Resource Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jette, M; Dunlap, C; Garlick, J
2002-07-08
Simple Linux Utility for Resource Management (SLURM) is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for Linux clusters of thousands of nodes. Components include machine status, partition management, job management, scheduling and stream copy modules. The design also includes a scalable, general-purpose communication infrastructure. This paper presents a overview of the SLURM architecture and functionality.
Linux OS Jitter Measurements at Large Node Counts using a BlueGene/L
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Terry R; Tauferner, Mr. Andrew; Inglett, Mr. Todd
2010-01-01
We present experimental results for a coordinated scheduling implementation of the Linux operating system. Results were collected on an IBM Blue Gene/L machine at scales up to 16K nodes. Our results indicate coordinated scheduling was able to provide a dramatic improvement in scaling performance for two applications characterized as bulk synchronous parallel programs.
Real-time Scheduling for GPUS with Applications in Advanced Automotive Systems
2015-01-01
129 3.7 Architecture of GPU tasklet scheduling infrastructure ...throughput. This disparity is even greater when we consider mobile CPUs, such as those designed by ARM. For instance, the ARM Cortex-A15 series processor as...stub library that replaces the GPGPU runtime within each virtual machine. The stub library communicates API calls to a GPGPU backend user-space daemon
Autonomous planning and scheduling on the TechSat 21 mission
NASA Technical Reports Server (NTRS)
Sherwood, R.; Chien, S.; Castano, R.; Rabideau, G.
2002-01-01
The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting.
Planning for rover opportunistic science
NASA Technical Reports Server (NTRS)
Gaines, Daniel M.; Estlin, Tara; Forest, Fisher; Chouinard, Caroline; Castano, Rebecca; Anderson, Robert C.
2004-01-01
The Mars Exploration Rover Spirit recently set a record for the furthest distance traveled in a single sol on Mars. Future planetary exploration missions are expected to use even longer drives to position rovers in areas of high scientific interest. This increase provides the potential for a large rise in the number of new science collection opportunities as the rover traverses the Martian surface. In this paper, we describe the OASIS system, which provides autonomous capabilities for dynamically identifying and pursuing these science opportunities during longrange traverses. OASIS uses machine learning and planning and scheduling techniques to address this goal. Machine learning techniques are applied to analyze data as it is collected and quickly determine new science gods and priorities on these goals. Planning and scheduling techniques are used to alter the behavior of the rover so that new science measurements can be performed while still obeying resource and other mission constraints. We will introduce OASIS and describe how planning and scheduling algorithms support opportunistic science.
Scheduling algorithms for automatic control systems for technological processes
NASA Astrophysics Data System (ADS)
Chernigovskiy, A. S.; Tsarev, R. Yu; Kapulin, D. V.
2017-01-01
Wide use of automatic process control systems and the usage of high-performance systems containing a number of computers (processors) give opportunities for creation of high-quality and fast production that increases competitiveness of an enterprise. Exact and fast calculations, control computation, and processing of the big data arrays - all of this requires the high level of productivity and, at the same time, minimum time of data handling and result receiving. In order to reach the best time, it is necessary not only to use computing resources optimally, but also to design and develop the software so that time gain will be maximal. For this purpose task (jobs or operations), scheduling techniques for the multi-machine/multiprocessor systems are applied. Some of basic task scheduling methods for the multi-machine process control systems are considered in this paper, their advantages and disadvantages come to light, and also some usage considerations, in case of the software for automatic process control systems developing, are made.
Bridging the Gap Between Planning and Scheduling
NASA Technical Reports Server (NTRS)
Smith, David E.; Frank, Jeremy; Jonsson, Ari K.; Norvig, Peter (Technical Monitor)
2000-01-01
Planning research in Artificial Intelligence (AI) has often focused on problems where there are cascading levels of action choice and complex interactions between actions. In contrast. Scheduling research has focused on much larger problems where there is little action choice, but the resulting ordering problem is hard. In this paper, we give an overview of M planning and scheduling techniques, focusing on their similarities, differences, and limitations. We also argue that many difficult practical problems lie somewhere between planning and scheduling, and that neither area has the right set of tools for solving these vexing problems.
Interactive computer aided shift scheduling.
Gaertner, J
2001-12-01
This paper starts with a discussion of computer aided shift scheduling. After a brief review of earlier approaches, two conceptualizations of this field are introduced: First, shift scheduling as a field that ranges from extremely stable rosters at one pole to rather market-like approaches on the other pole. Unfortunately, already small alterations of a scheduling problem (e.g., the number of groups, the number of shifts) may call for rather different approaches and tools. Second, their environment shapes scheduling problems and scheduling has to be done within idiosyncratic organizational settings. This calls for the amalgamation of scheduling with other tasks (e.g., accounting) and for reflections whether better solutions might become possible by changes in the problem definition (e.g., other service levels, organizational changes). Therefore shift scheduling should be understood as a highly connected problem. Building upon these two conceptualizations, a few examples of software that ease scheduling in some areas of this field are given and future research questions are outlined.
Optimal recombination in genetic algorithms for flowshop scheduling problems
NASA Astrophysics Data System (ADS)
Kovalenko, Julia
2016-10-01
The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.
Integrated scheduling and resource management. [for Space Station Information System
NASA Technical Reports Server (NTRS)
Ward, M. T.
1987-01-01
This paper examines the problem of integrated scheduling during the Space Station era. Scheduling for Space Station entails coordinating the support of many distributed users who are sharing common resources and pursuing individual and sometimes conflicting objectives. This paper compares the scheduling integration problems of current missions with those anticipated for the Space Station era. It examines the facilities and the proposed operations environment for Space Station. It concludes that the pattern of interdependecies among the users and facilities, which are the source of the integration problem is well structured, allowing a dividing of the larger problem into smaller problems. It proposes an architecture to support integrated scheduling by scheduling efficiently at local facilities as a function of dependencies with other facilities of the program. A prototype is described that is being developed to demonstrate this integration concept.
Optimal de novo design of MRM experiments for rapid assay development in targeted proteomics.
Bertsch, Andreas; Jung, Stephan; Zerck, Alexandra; Pfeifer, Nico; Nahnsen, Sven; Henneges, Carsten; Nordheim, Alfred; Kohlbacher, Oliver
2010-05-07
Targeted proteomic approaches such as multiple reaction monitoring (MRM) overcome problems associated with classical shotgun mass spectrometry experiments. Developing MRM quantitation assays can be time consuming, because relevant peptide representatives of the proteins must be found and their retention time and the product ions must be determined. Given the transitions, hundreds to thousands of them can be scheduled into one experiment run. However, it is difficult to select which of the transitions should be included into a measurement. We present a novel algorithm that allows the construction of MRM assays from the sequence of the targeted proteins alone. This enables the rapid development of targeted MRM experiments without large libraries of transitions or peptide spectra. The approach relies on combinatorial optimization in combination with machine learning techniques to predict proteotypicity, retention time, and fragmentation of peptides. The resulting potential transitions are scheduled optimally by solving an integer linear program. We demonstrate that fully automated construction of MRM experiments from protein sequences alone is possible and over 80% coverage of the targeted proteins can be achieved without further optimization of the assay.
NASA Astrophysics Data System (ADS)
Shah, Rahul H.
Production costs account for the largest share of the overall cost of manufacturing facilities. With the U.S. industrial sector becoming more and more competitive, manufacturers are looking for more cost and resource efficient working practices. Operations management and production planning have shown their capability to dramatically reduce manufacturing costs and increase system robustness. When implementing operations related decision making and planning, two fields that have shown to be most effective are maintenance and energy. Unfortunately, the current research that integrates both is limited. Additionally, these studies fail to consider parameter domains and optimization on joint energy and maintenance driven production planning. Accordingly, production planning methodology that considers maintenance and energy is investigated. Two models are presented to achieve well-rounded operating strategy. The first is a joint energy and maintenance production scheduling model. The second is a cost per part model considering maintenance, energy, and production. The proposed methodology will involve a Time-of-Use electricity demand response program, buffer and holding capacity, station reliability, production rate, station rated power, and more. In practice, the scheduling problem can be used to determine a joint energy, maintenance, and production schedule. Meanwhile, the cost per part model can be used to: (1) test the sensitivity of the obtained optimal production schedule and its corresponding savings by varying key production system parameters; and (2) to determine optimal system parameter combinations when using the joint energy, maintenance, and production planning model. Additionally, a factor analysis on the system parameters is conducted and the corresponding performance of the production schedule under variable parameter conditions, is evaluated. Also, parameter optimization guidelines that incorporate maintenance and energy parameter decision making in the production planning framework are discussed. A modified Particle Swarm Optimization solution technique is adopted to solve the proposed scheduling problem. The algorithm is described in detail and compared to Genetic Algorithm. Case studies are presented to illustrate the benefits of using the proposed model and the effectiveness of the Particle Swarm Optimization approach. Numerical Experiments are implemented and analyzed to test the effectiveness of the proposed model. The proposed scheduling strategy can achieve savings of around 19 to 27 % in cost per part when compared to the baseline scheduling scenarios. By optimizing key production system parameters from the cost per part model, the baseline scenarios can obtain around 20 to 35 % in savings for the cost per part. These savings further increase by 42 to 55 % when system parameter optimization is integrated with the proposed scheduling problem. Using this method, the most influential parameters on the cost per part are the rated power from production, the production rate, and the initial machine reliabilities. The modified Particle Swarm Optimization algorithm adopted allows greater diversity and exploration compared to Genetic Algorithm for the proposed joint model which results in it being more computationally efficient in determining the optimal scheduling. While Genetic Algorithm could achieve a solution quality of 2,279.63 at an expense of 2,300 seconds in computational effort. In comparison, the proposed Particle Swarm Optimization algorithm achieved a solution quality of 2,167.26 in less than half the computation effort which is required by Genetic Algorithm.
Applications of dynamic scheduling technique to space related problems: Some case studies
NASA Astrophysics Data System (ADS)
Nakasuka, Shinichi; Ninomiya, Tetsujiro
1994-10-01
The paper discusses the applications of 'Dynamic Scheduling' technique, which has been invented for the scheduling of Flexible Manufacturing System, to two space related scheduling problems: operation scheduling of a future space transportation system, and resource allocation in a space system with limited resources such as space station or space shuttle.
Solving a real-world problem using an evolving heuristically driven schedule builder.
Hart, E; Ross, P; Nelson, J
1998-01-01
This work addresses the real-life scheduling problem of a Scottish company that must produce daily schedules for the catching and transportation of large numbers of live chickens. The problem is complex and highly constrained. We show that it can be successfully solved by division into two subproblems and solving each using a separate genetic algorithm (GA). We address the problem of whether this produces locally optimal solutions and how to overcome this. We extend the traditional approach of evolving a "permutation + schedule builder" by concentrating on evolving the schedule builder itself. This results in a unique schedule builder being built for each daily scheduling problem, each individually tailored to deal with the particular features of that problem. This results in a robust, fast, and flexible system that can cope with most of the circumstances imaginable at the factory. We also compare the performance of a GA approach to several other evolutionary methods and show that population-based methods are superior to both hill-climbing and simulated annealing in the quality of solutions produced. Population-based methods also have the distinct advantage of producing multiple, equally fit solutions, which is of particular importance when considering the practical aspects of the problem.
Coupling sensing to crop models for closed-loop plant production in advanced life support systems
NASA Astrophysics Data System (ADS)
Cavazzoni, James; Ling, Peter P.
1999-01-01
We present a conceptual framework for coupling sensing to crop models for closed-loop analysis of plant production for NASA's program in advanced life support. Crop status may be monitored through non-destructive observations, while models may be independently applied to crop production planning and decision support. To achieve coupling, environmental variables and observations are linked to mode inputs and outputs, and monitoring results compared with model predictions of plant growth and development. The information thus provided may be useful in diagnosing problems with the plant growth system, or as a feedback to the model for evaluation of plant scheduling and potential yield. In this paper, we demonstrate this coupling using machine vision sensing of canopy height and top projected canopy area, and the CROPGRO crop growth model. Model simulations and scenarios are used for illustration. We also compare model predictions of the machine vision variables with data from soybean experiments conducted at New Jersey Agriculture Experiment Station Horticulture Greenhouse Facility, Rutgers University. Model simulations produce reasonable agreement with the available data, supporting our illustration.
High accurate interpolation of NURBS tool path for CNC machine tools
NASA Astrophysics Data System (ADS)
Liu, Qiang; Liu, Huan; Yuan, Songmei
2016-09-01
Feedrate fluctuation caused by approximation errors of interpolation methods has great effects on machining quality in NURBS interpolation, but few methods can efficiently eliminate or reduce it to a satisfying level without sacrificing the computing efficiency at present. In order to solve this problem, a high accurate interpolation method for NURBS tool path is proposed. The proposed method can efficiently reduce the feedrate fluctuation by forming a quartic equation with respect to the curve parameter increment, which can be efficiently solved by analytic methods in real-time. Theoretically, the proposed method can totally eliminate the feedrate fluctuation for any 2nd degree NURBS curves and can interpolate 3rd degree NURBS curves with minimal feedrate fluctuation. Moreover, a smooth feedrate planning algorithm is also proposed to generate smooth tool motion with considering multiple constraints and scheduling errors by an efficient planning strategy. Experiments are conducted to verify the feasibility and applicability of the proposed method. This research presents a novel NURBS interpolation method with not only high accuracy but also satisfying computing efficiency.
Testing Task Schedulers on Linux System
NASA Astrophysics Data System (ADS)
Jelenković, Leonardo; Groš, Stjepan; Jakobović, Domagoj
Testing task schedulers on Linux operating system proves to be a challenging task. There are two main problems. The first one is to identify which properties of the scheduler to test. The second problem is how to perform it, e.g., which API to use that is sufficiently precise and in the same time supported on most platforms. This paper discusses the problems in realizing test framework for testing task schedulers and presents one potential solution. Observed behavior of the scheduler is the one used for “normal” task scheduling (SCHED_OTHER), unlike one used for real-time tasks (SCHED_FIFO, SCHED_RR).
The NOνA Module Factory Quality Assurance System
NASA Astrophysics Data System (ADS)
Smith, Alex; the NOνA Collaboration
The NOνA experiment will measure neutrino oscillations using a long-baseline beam, a ∼220-ton near detector and a ∼14-kiloton far detector. Production of ∼12500 modules to build these detectors is an industrial scale operation requiring careful quality assurance to meet the stringent technical specifications. Unlike a typical industrial operation, this project will use primarily a part time labor force of ∼200 University of Minnesota undergraduate students managed by a small team of full time employees. The quality assurance system is involved in nearly every aspect of the production: assembly, scheduling, training, payroll, materials, machine maintenance, test data, and safety compliance. The quality assurance data collected during the assembly process allows us to quickly identify and correct any problems that arise.
Discrete Bat Algorithm for Optimal Problem of Permutation Flow Shop Scheduling
Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang
2014-01-01
A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem. PMID:25243220
Discrete bat algorithm for optimal problem of permutation flow shop scheduling.
Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang
2014-01-01
A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem.
A user interface for a knowledge-based planning and scheduling system
NASA Technical Reports Server (NTRS)
Mulvehill, Alice M.
1988-01-01
The objective of EMPRESS (Expert Mission Planning and Replanning Scheduling System) is to support the planning and scheduling required to prepare science and application payloads for flight aboard the US Space Shuttle. EMPRESS was designed and implemented in Zetalisp on a 3600 series Symbolics Lisp machine. Initially, EMPRESS was built as a concept demonstration system. The system has since been modified and expanded to ensure that the data have integrity. Issues underlying the design and development of the EMPRESS-I interface, results from a system usability assessment, and consequent modifications are described.
A Comparison of Techniques for Scheduling Fleets of Earth-Observing Satellites
NASA Technical Reports Server (NTRS)
Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna
2003-01-01
Earth observing satellite (EOS) scheduling is a complex real-world domain representative of a broad class of over-subscription scheduling problems. Over-subscription problems are those where requests for a facility exceed its capacity. These problems arise in a wide variety of NASA and terrestrial domains and are .XI important class of scheduling problems because such facilities often represent large capital investments. We have run experiments comparing multiple variants of the genetic algorithm, hill climbing, simulated annealing, squeaky wheel optimization and iterated sampling on two variants of a realistically-sized model of the EOS scheduling problem. These are implemented as permutation-based methods; methods that search in the space of priority orderings of observation requests and evaluate each permutation by using it to drive a greedy scheduler. Simulated annealing performs best and random mutation operators outperform our squeaky (more intelligent) operator. Furthermore, taking smaller steps towards the end of the search improves performance.
The effect of embedded bonus rounds on slot machine preference.
Belisle, Jordan; Owens, Kelti; Dixon, Mark R; Malkin, Albert; Jordan, Sam D
2017-04-01
Twenty-three university students completed a simulated slot machine task involving the concurrent presentation of two slot machines that were varied both in win density and the inclusion of a bonus round feature to evaluate the effect of embedded bonus rounds on participant response allocation. The results suggest that participants allocated a greater percentage of responses to machines with embedded bonus rounds across both dense (Bonus: M = 68.4, SD = 19.2; No Bonus: M = 51.2; 9.6) and lean (Bonus: M = 48.8, SD = 9.6; No Bonus: M = 31.6, SD = 19.2) reinforcement schedules, in which the overall reinforcement rate across all machines was held constant. © 2016 Society for the Experimental Analysis of Behavior.
Productivity improvement through cycle time analysis
NASA Astrophysics Data System (ADS)
Bonal, Javier; Rios, Luis; Ortega, Carlos; Aparicio, Santiago; Fernandez, Manuel; Rosendo, Maria; Sanchez, Alejandro; Malvar, Sergio
1996-09-01
A cycle time (CT) reduction methodology has been developed in the Lucent Technology facility (former AT&T) in Madrid, Spain. It is based on a comparison of the contribution of each process step in each technology with a target generated by a cycle time model. These targeted cycle times are obtained using capacity data of the machines processing those steps, queuing theory and theory of constrains (TOC) principles (buffers to protect bottleneck and low cycle time/inventory everywhere else). Overall efficiency equipment (OEE) like analysis is done in the machine groups with major differences between their target cycle time and real values. Comparisons between the current value of the parameters that command their capacity (process times, availability, idles, reworks, etc.) and the engineering standards are done to detect the cause of exceeding their contribution to the cycle time. Several friendly and graphical tools have been developed to track and analyze those capacity parameters. Specially important have showed to be two tools: ASAP (analysis of scheduling, arrivals and performance) and performer which analyzes interrelation problems among machines procedures and direct labor. The performer is designed for a detailed and daily analysis of an isolate machine. The extensive use of this tool by the whole labor force has demonstrated impressive results in the elimination of multiple small inefficiencies with a direct positive implications on OEE. As for ASAP, it shows the lot in process/queue for different machines at the same time. ASAP is a powerful tool to analyze the product flow management and the assigned capacity for interdependent operations like the cleaning and the oxidation/diffusion. Additional tools have been developed to track, analyze and improve the process times and the availability.
NASA Technical Reports Server (NTRS)
Phillips, K.
1976-01-01
A mathematical model for job scheduling in a specified context is presented. The model uses both linear programming and combinatorial methods. While designed with a view toward optimization of scheduling of facility and plant operations at the Deep Space Communications Complex, the context is sufficiently general to be widely applicable. The general scheduling problem including options for scheduling objectives is discussed and fundamental parameters identified. Mathematical algorithms for partitioning problems germane to scheduling are presented.
Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter
Loganathan, Shyamala; Mukherjee, Saswati
2015-01-01
Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms. PMID:26473166
Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter.
Loganathan, Shyamala; Mukherjee, Saswati
2015-01-01
Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms.
Production scheduling with discrete and renewable additional resources
NASA Astrophysics Data System (ADS)
Kalinowski, K.; Grabowik, C.; Paprocka, I.; Kempa, W.
2015-11-01
In this paper an approach to planning of additional resources when scheduling operations are discussed. The considered resources are assumed to be discrete and renewable. In most research in scheduling domain, the basic and often the only type of regarded resources is a workstation. It can be understood as a machine, a device or even as a separated space on the shop floor. In many cases, during the detailed scheduling of operations the need of using more than one resource, required for its implementation, can be indicated. Resource requirements for an operation may relate to different resources or resources of the same type. Additional resources are most often referred to these human resources, tools or equipment, for which the limited availability in the manufacturing system may have an influence on the execution dates of some operations. In the paper the concept of the division into basic and additional resources and their planning method was shown. A situation in which sets of basic and additional resources are not separable - the same additional resource may be a basic resource for another operation is also considered. Scheduling of operations, including greater amount of resources can cause many difficulties, depending on whether the resource is involved in the entire time of operation, only in the selected part(s) of operation (e.g. as auxiliary staff at setup time) or cyclic - e.g. when an operator supports more than one machine, or supervises the execution of several operations. For this reason the dates and work times of resources participation in the operation can be different. Presented issues are crucial when modelling of production scheduling environment and designing of structures for the purpose of scheduling software development.
ERIC Educational Resources Information Center
GLOVER, J.H.
THE CHIEF OBJECTIVE OF THIS STUDY OF SPEED-SKILL ACQUISITION WAS TO FIND A MATHEMATICAL MODEL CAPABLE OF SIMPLE GRAPHIC INTERPRETATION FOR INDUSTRIAL TRAINING AND PRODUCTION SCHEDULING AT THE SHOP FLOOR LEVEL. STUDIES OF MIDDLE SKILL DEVELOPMENT IN MACHINE AND VEHICLE ASSEMBLY, AIRCRAFT PRODUCTION, SPOOLMAKING AND THE MACHINING OF PARTS CONFIRMED…
User requirements for a patient scheduling system
NASA Technical Reports Server (NTRS)
Zimmerman, W.
1979-01-01
A rehabilitation institute's needs and wants from a scheduling system were established by (1) studying the existing scheduling system and the variables that affect patient scheduling, (2) conducting a human-factors study to establish the human interfaces that affect patients' meeting prescribed therapy schedules, and (3) developing and administering a questionnaire to the staff which pertains to the various interface problems in order to identify staff requirements to minimize scheduling problems and other factors that may limit the effectiveness of any new scheduling system.
NASA Astrophysics Data System (ADS)
Jia, Zhao-hong; Pei, Ming-li; Leung, Joseph Y.-T.
2017-12-01
In this paper, we investigate the batch-scheduling problem with rejection on parallel machines with non-identical job sizes and arbitrary job-rejected weights. If a job is rejected, the corresponding penalty has to be paid. Our objective is to minimise the makespan of the processed jobs and the total rejection cost of the rejected jobs. Based on the selected multi-objective optimisation approaches, two problems, P1 and P2, are considered. In P1, the two objectives are linearly combined into one single objective. In P2, the two objectives are simultaneously minimised and the Pareto non-dominated solution set is to be found. Based on the ant colony optimisation (ACO), two algorithms, called LACO and PACO, are proposed to address the two problems, respectively. Two different objective-oriented pheromone matrices and heuristic information are designed. Additionally, a local optimisation algorithm is adopted to improve the solution quality. Finally, simulated experiments are conducted, and the comparative results verify the effectiveness and efficiency of the proposed algorithms, especially on large-scale instances.
Evaluation of scheduling techniques for payload activity planning
NASA Technical Reports Server (NTRS)
Bullington, Stanley F.
1991-01-01
Two tasks related to payload activity planning and scheduling were performed. The first task involved making a comparison of space mission activity scheduling problems with production scheduling problems. The second task consisted of a statistical analysis of the output of runs of the Experiment Scheduling Program (ESP). Details of the work which was performed on these two tasks are presented.
Artificial intelligence approaches to astronomical observation scheduling
NASA Technical Reports Server (NTRS)
Johnston, Mark D.; Miller, Glenn
1988-01-01
Automated scheduling will play an increasing role in future ground- and space-based observatory operations. Due to the complexity of the problem, artificial intelligence technology currently offers the greatest potential for the development of scheduling tools with sufficient power and flexibility to handle realistic scheduling situations. Summarized here are the main features of the observatory scheduling problem, how artificial intelligence (AI) techniques can be applied, and recent progress in AI scheduling for Hubble Space Telescope.
NASA Astrophysics Data System (ADS)
Paprocka, I.; Kempa, W. M.; Grabowik, C.; Kalinowski, K.; Krenczyk, D.
2016-08-01
In the paper a survey of predictive and reactive scheduling methods is done in order to evaluate how the ability of prediction of reliability characteristics influences over robustness criteria. The most important reliability characteristics are: Mean Time to Failure, Mean Time of Repair. Survey analysis is done for a job shop scheduling problem. The paper answers the question: what method generates robust schedules in the case of a bottleneck failure occurrence before, at the beginning of planned maintenance actions or after planned maintenance actions? Efficiency of predictive schedules is evaluated using criteria: makespan, total tardiness, flow time, idle time. Efficiency of reactive schedules is evaluated using: solution robustness criterion and quality robustness criterion. This paper is the continuation of the research conducted in the paper [1], where the survey of predictive and reactive scheduling methods is done only for small size scheduling problems.
Source localization in an ocean waveguide using supervised machine learning.
Niu, Haiqiang; Reeves, Emma; Gerstoft, Peter
2017-09-01
Source localization in ocean acoustics is posed as a machine learning problem in which data-driven methods learn source ranges directly from observed acoustic data. The pressure received by a vertical linear array is preprocessed by constructing a normalized sample covariance matrix and used as the input for three machine learning methods: feed-forward neural networks (FNN), support vector machines (SVM), and random forests (RF). The range estimation problem is solved both as a classification problem and as a regression problem by these three machine learning algorithms. The results of range estimation for the Noise09 experiment are compared for FNN, SVM, RF, and conventional matched-field processing and demonstrate the potential of machine learning for underwater source localization.
Planning and Scheduling for Fleets of Earth Observing Satellites
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)
2001-01-01
We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.
Deep Space Network Scheduling Using Evolutionary Computational Methods
NASA Technical Reports Server (NTRS)
Guillaume, Alexandre; Lee, Seugnwon; Wang, Yeou-Fang; Terrile, Richard J.
2007-01-01
The paper presents the specific approach taken to formulate the problem in terms of gene encoding, fitness function, and genetic operations. The genome is encoded such that a subset of the scheduling constraints is automatically satisfied. Several fitness functions are formulated to emphasize different aspects of the scheduling problem. The optimal solutions of the different fitness functions demonstrate the trade-off of the scheduling problem and provide insight into a conflict resolution process.
Enhanced Specification and Verification for Timed Planning
2009-02-28
Scheduling Problem The job-shop scheduling problem ( JSSP ) is a generic resource allocation problem in which common resources (“machines”) are required...interleaving of all processes Pi with the non-delay and mutual exclusion constraints: JSSP =̂ |||0<i6n Pi Where mutual-exclusion( JSSP ) For every complete...execution of JSSP (which terminates), its associated sched- ule S is a feasible schedule. An optimal schedule is a trace of JSSP with the minimum ending
Improving Resource Selection and Scheduling Using Predictions. Chapter 1
NASA Technical Reports Server (NTRS)
Smith, Warren
2003-01-01
The introduction of computational grids has resulted in several new problems in the area of scheduling that can be addressed using predictions. The first problem is selecting where to run an application on the many resources available in a grid. Our approach to help address this problem is to provide predictions of when an application would start to execute if submitted to specific scheduled computer systems. The second problem is gaining simultaneous access to multiple computer systems so that distributed applications can be executed. We help address this problem by investigating how to support advance reservations in local scheduling systems. Our approaches to both of these problems are based on predictions for the execution time of applications on space- shared parallel computers. As a side effect of this work, we also discuss how predictions of application run times can be used to improve scheduling performance.
Experiments with a decision-theoretic scheduler
NASA Technical Reports Server (NTRS)
Hansson, Othar; Holt, Gerhard; Mayer, Andrew
1992-01-01
This paper describes DTS, a decision-theoretic scheduler designed to employ state-of-the-art probabilistic inference technology to speed the search for efficient solutions to constraint-satisfaction problems. Our approach involves assessing the performance of heuristic control strategies that are normally hard-coded into scheduling systems, and using probabilistic inference to aggregate this information in light of features of a given problem. BPS, the Bayesian Problem-Solver, introduced a similar approach to solving single-agent and adversarial graph search problems, yielding orders-of-magnitude improvement over traditional techniques. Initial efforts suggest that similar improvements will be realizable when applied to typical constraint-satisfaction scheduling problems.
Producing Satisfactory Solutions to Scheduling Problems: An Iterative Constraint Relaxation Approach
NASA Technical Reports Server (NTRS)
Chien, S.; Gratch, J.
1994-01-01
One drawback to using constraint-propagation in planning and scheduling systems is that when a problem has an unsatisfiable set of constraints such algorithms typically only show that no solution exists. While, technically correct, in practical situations, it is desirable in these cases to produce a satisficing solution that satisfies the most important constraints (typically defined in terms of maximizing a utility function). This paper describes an iterative constraint relaxation approach in which the scheduler uses heuristics to progressively relax problem constraints until the problem becomes satisfiable. We present empirical results of applying these techniques to the problem of scheduling spacecraft communications for JPL/NASA antenna resources.
Improving Energy Efficiency in CNC Machining
NASA Astrophysics Data System (ADS)
Pavanaskar, Sushrut S.
We present our work on analyzing and improving the energy efficiency of multi-axis CNC milling process. Due to the differences in energy consumption behavior, we treat 3- and 5-axis CNC machines separately in our work. For 3-axis CNC machines, we first propose an energy model that estimates the energy requirement for machining a component on a specified 3-axis CNC milling machine. Our model makes machine-specific predictions of energy requirements while also considering the geometric aspects of the machining toolpath. Our model - and the associated software tool - facilitate direct comparison of various alternative toolpath strategies based on their energy-consumption performance. Further, we identify key factors in toolpath planning that affect energy consumption in CNC machining. We then use this knowledge to propose and demonstrate a novel toolpath planning strategy that may be used to generate new toolpaths that are inherently energy-efficient, inspired by research on digital micrography -- a form of computational art. For 5-axis CNC machines, the process planning problem consists of several sub-problems that researchers have traditionally solved separately to obtain an approximate solution. After illustrating the need to solve all sub-problems simultaneously for a truly optimal solution, we propose a unified formulation based on configuration space theory. We apply our formulation to solve a problem variant that retains key characteristics of the full problem but has lower dimensionality, allowing visualization in 2D. Given the complexity of the full 5-axis toolpath planning problem, our unified formulation represents an important step towards obtaining a truly optimal solution. With this work on the two types of CNC machines, we demonstrate that without changing the current infrastructure or business practices, machine-specific, geometry-based, customized toolpath planning can save energy in CNC machining.
A New Lagrangian Relaxation Method Considering Previous Hour Scheduling for Unit Commitment Problem
NASA Astrophysics Data System (ADS)
Khorasani, H.; Rashidinejad, M.; Purakbari-Kasmaie, M.; Abdollahi, A.
2009-08-01
Generation scheduling is a crucial challenge in power systems especially under new environment of liberalization of electricity industry. A new Lagrangian relaxation method for unit commitment (UC) has been presented for solving generation scheduling problem. This paper focuses on the economical aspect of UC problem, while the previous hour scheduling as a very important issue is studied. In this paper generation scheduling of present hour has been conducted by considering the previous hour scheduling. The impacts of hot/cold start-up cost have been taken in to account in this paper. Case studies and numerical analysis presents significant outcomes while it demonstrates the effectiveness of the proposed method.
Production scheduling with ant colony optimization
NASA Astrophysics Data System (ADS)
Chernigovskiy, A. S.; Kapulin, D. V.; Noskova, E. E.; Yamskikh, T. N.; Tsarev, R. Yu
2017-10-01
The optimum solution of the production scheduling problem for manufacturing processes at an enterprise is crucial as it allows one to obtain the required amount of production within a specified time frame. Optimum production schedule can be found using a variety of optimization algorithms or scheduling algorithms. Ant colony optimization is one of well-known techniques to solve the global multi-objective optimization problem. In the article, the authors present a solution of the production scheduling problem by means of an ant colony optimization algorithm. A case study of the algorithm efficiency estimated against some others production scheduling algorithms is presented. Advantages of the ant colony optimization algorithm and its beneficial effect on the manufacturing process are provided.
NASA Astrophysics Data System (ADS)
Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.
2015-12-01
During the last years, several Grid computing centres chose virtualization as a better way to manage diverse use cases with self-consistent environments on the same bare infrastructure. The maturity of control interfaces (such as OpenNebula and OpenStack) opened the possibility to easily change the amount of resources assigned to each use case by simply turning on and off virtual machines. Some of those private clouds use, in production, copies of the Virtual Analysis Facility, a fully virtualized and self-contained batch analysis cluster capable of expanding and shrinking automatically upon need: however, resources starvation occurs frequently as expansion has to compete with other virtual machines running long-living batch jobs. Such batch nodes cannot relinquish their resources in a timely fashion: the more jobs they run, the longer it takes to drain them and shut off, and making one-job virtual machines introduces a non-negligible virtualization overhead. By improving several components of the Virtual Analysis Facility we have realized an experimental “Docked” Analysis Facility for ALICE, which leverages containers instead of virtual machines for providing performance and security isolation. We will present the techniques we have used to address practical problems, such as software provisioning through CVMFS, as well as our considerations on the maturity of containers for High Performance Computing. As the abstraction layer is thinner, our Docked Analysis Facilities may feature a more fine-grained sizing, down to single-job node containers: we will show how this approach will positively impact automatic cluster resizing by deploying lightweight pilot containers instead of replacing central queue polls.
Coordinating space telescope operations in an integrated planning and scheduling architecture
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Smith, Stephen F.; Cesta, Amedeo; D'Aloisi, Daniela
1992-01-01
The Heuristic Scheduling Testbed System (HSTS), a software architecture for integrated planning and scheduling, is discussed. The architecture has been applied to the problem of generating observation schedules for the Hubble Space Telescope. This problem is representative of the class of problems that can be addressed: their complexity lies in the interaction of resource allocation and auxiliary task expansion. The architecture deals with this interaction by viewing planning and scheduling as two complementary aspects of the more general process of constructing behaviors of a dynamical system. The principal components of the software architecture are described, indicating how to model the structure and dynamics of a system, how to represent schedules at multiple levels of abstraction in the temporal database, and how the problem solving machinery operates. A scheduler for the detailed management of Hubble Space Telescope operations that has been developed within HSTS is described. Experimental performance results are given that indicate the utility and practicality of the approach.
Preliminary Evaluation of BIM-based Approaches for Schedule Delay Analysis
NASA Astrophysics Data System (ADS)
Chou, Hui-Yu; Yang, Jyh-Bin
2017-10-01
The problem of schedule delay commonly occurs in construction projects. The quality of delay analysis depends on the availability of schedule-related information and delay evidence. More information used in delay analysis usually produces more accurate and fair analytical results. How to use innovative techniques to improve the quality of schedule delay analysis results have received much attention recently. As Building Information Modeling (BIM) technique has been quickly developed, using BIM and 4D simulation techniques have been proposed and implemented. Obvious benefits have been achieved especially in identifying and solving construction consequence problems in advance of construction. This study preforms an intensive literature review to discuss the problems encountered in schedule delay analysis and the possibility of using BIM as a tool in developing a BIM-based approach for schedule delay analysis. This study believes that most of the identified problems can be dealt with by BIM technique. Research results could be a fundamental of developing new approaches for resolving schedule delay disputes.
ERIC Educational Resources Information Center
Kennedy, Mike
2003-01-01
Describes how facilities-management systems use technology to help schools and universities operate their buildings more efficiently, reduce energy consumption, manage inventory more accurately, keep track of supplies and maintenance schedules, and save money. (EV)
Campos, Claudia; Leon, Yanerys; Sleiman, Andressa; Urcuyo, Beatriz
2017-03-01
One potential limitation of functional communication training (FCT) is that after the functional communication response (FCR) is taught, the response may be emitted at high rates or inappropriate times. Thus, schedule thinning is often necessary. Previous research has demonstrated that multiple schedules can facilitate schedule thinning by establishing discriminative control of the communication response while maintaining low rates of problem behavior. To date, most applied research evaluating the clinical utility of multiple schedules has done so in the context of behavior maintained by positive reinforcement (e.g., attention or tangible items). This study examined the use of a multiple schedule with alternating Fixed Ratio (FR 1)/extinction (EXT) components for two individuals with developmental disabilities who emitted escape-maintained problem behavior. Although problem behavior remained low during all FCT and multiple schedule phases, the use of the multiple schedule alone did not result in discriminated manding.
Electronic gaming machines: are they the 'crack-cocaine' of gambling?
Dowling, Nicki; Smith, David; Thomas, Trang
2005-01-01
There is a general view that electronic gaming is the most 'addictive' form of gambling, in that it contributes more to causing problem gambling than any other gambling activity. As such, electronic gaming machines have been referred to as the 'crack-cocaine' of gambling. While this analogy has popular appeal, it is only recently that the scientific community has begun to investigate its validity. In line with the belief that electronic gambling has a higher 'addictive' potential than other forms of gambling, research has also begun to focus on identifying the characteristics of gaming machines that may be associated with problem gambling behaviour. This paper will review the different types of modern electronic gaming machines, and will use the introduction of gaming machines to Australia to examine the association between electronic gaming and problem gambling, with particular reference to the characteristics of modern electronic gaming machines. Despite overwhelming acceptance that gaming machines are associated with the highest level of problem gambling, the empirical literature provides inconclusive evidence to support the analogy linking electronic gaming to 'crack-cocaine'. Rigorous and systematic evaluation is required to establish definitively the absolute 'addictive' potential of gaming machines and the degree to which machine characteristics influence the development and maintenance of problem gambling behaviour.
LHC Status and Upgrade Challenges
NASA Astrophysics Data System (ADS)
Smith, Jeffrey
2009-11-01
The Large Hadron Collider has had a trying start-up and a challenging operational future lays ahead. Critical to the machine's performance is controlling a beam of particles whose stored energy is equivalent to 80 kg of TNT. Unavoidable beam losses result in energy deposition throughout the machine and without adequate protection this power would result in quenching of the superconducting magnets. A brief overview of the machine layout and principles of operation will be reviewed including a summary of the September 2008 accident. The current status of the LHC, startup schedule and upgrade options to achieve the target luminosity will be presented.
Multitasking the three-dimensional transport code TORT on CRAY platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azmy, Y.Y.; Barnett, D.A.; Burre, C.A.
1996-04-01
The multitasking options in the three-dimensional neutral particle transport code TORT originally implemented for Cray`s CTSS operating system are revived and extended to run on Cray Y/MP and C90 computers using the UNICOS operating system. These include two coarse-grained domain decompositions; across octants, and across directions within an octant, termed Octant Parallel (OP), and Direction Parallel (DP), respectively. Parallel performance of the DP is significantly enhanced by increasing the task grain size and reducing load imbalance via dynamic scheduling of the discrete angles among the participating tasks. Substantial Wall Clock speedup factors, approaching 4.5 using 8 tasks, have been measuredmore » in a time-sharing environment, and generally depend on the test problem specifications, number of tasks, and machine loading during execution.« less
Fractional Programming for Communication Systems—Part II: Uplink Scheduling via Matching
NASA Astrophysics Data System (ADS)
Shen, Kaiming; Yu, Wei
2018-05-01
This two-part paper develops novel methodologies for using fractional programming (FP) techniques to design and optimize communication systems. Part I of this paper proposes a new quadratic transform for FP and treats its application for continuous optimization problems. In this Part II of the paper, we study discrete problems, such as those involving user scheduling, which are considerably more difficult to solve. Unlike the continuous problems, discrete or mixed discrete-continuous problems normally cannot be recast as convex problems. In contrast to the common heuristic of relaxing the discrete variables, this work reformulates the original problem in an FP form amenable to distributed combinatorial optimization. The paper illustrates this methodology by tackling the important and challenging problem of uplink coordinated multi-cell user scheduling in wireless cellular systems. Uplink scheduling is more challenging than downlink scheduling, because uplink user scheduling decisions significantly affect the interference pattern in nearby cells. Further, the discrete scheduling variable needs to be optimized jointly with continuous variables such as transmit power levels and beamformers. The main idea of the proposed FP approach is to decouple the interaction among the interfering links, thereby permitting a distributed and joint optimization of the discrete and continuous variables with provable convergence. The paper shows that the well-known weighted minimum mean-square-error (WMMSE) algorithm can also be derived from a particular use of FP; but our proposed FP-based method significantly outperforms WMMSE when discrete user scheduling variables are involved, both in term of run-time efficiency and optimizing results.
The Ames-Lockheed orbiter processing scheduling system
NASA Technical Reports Server (NTRS)
Zweben, Monte; Gargan, Robert
1991-01-01
A general purpose scheduling system and its application to Space Shuttle Orbiter Processing at the Kennedy Space Center (KSC) are described. Orbiter processing entails all the inspection, testing, repair, and maintenance necessary to prepare the Shuttle for launch and takes place within the Orbiter Processing Facility (OPF) at KSC, the Vehicle Assembly Building (VAB), and on the launch pad. The problems are extremely combinatoric in that there are thousands of tasks, resources, and other temporal considerations that must be coordinated. Researchers are building a scheduling tool that they hope will be an integral part of automating the planning and scheduling process at KSC. The scheduling engine is domain independent and is also being applied to Space Shuttle cargo processing problems as well as wind tunnel scheduling problems.
An investigation of the use of temporal decomposition in space mission scheduling
NASA Technical Reports Server (NTRS)
Bullington, Stanley E.; Narayanan, Venkat
1994-01-01
This research involves an examination of techniques for solving scheduling problems in long-duration space missions. The mission timeline is broken up into several time segments, which are then scheduled incrementally. Three methods are presented for identifying the activities that are to be attempted within these segments. The first method is a mathematical model, which is presented primarily to illustrate the structure of the temporal decomposition problem. Since the mathematical model is bound to be computationally prohibitive for realistic problems, two heuristic assignment procedures are also presented. The first heuristic method is based on dispatching rules for activity selection, and the second heuristic assigns performances of a model evenly over timeline segments. These heuristics are tested using a sample Space Station mission and a Spacelab mission. The results are compared with those obtained by scheduling the missions without any problem decomposition. The applicability of this approach to large-scale mission scheduling problems is also discussed.
NASA Technical Reports Server (NTRS)
Richards, Stephen F.
1991-01-01
Although computerized operations have significant gains realized in many areas, one area, scheduling, has enjoyed few benefits from automation. The traditional methods of industrial engineering and operations research have not proven robust enough to handle the complexities associated with the scheduling of realistic problems. To address this need, NASA has developed the computer-aided scheduling system (COMPASS), a sophisticated, interactive scheduling tool that is in wide-spread use within NASA and the contractor community. Therefore, COMPASS provides no explicit support for the large class of problems in which several people, perhaps at various locations, build separate schedules that share a common pool of resources. This research examines the issue of distributing scheduling, as applied to application domains characterized by the partial ordering of tasks, limited resources, and time restrictions. The focus of this research is on identifying issues related to distributed scheduling, locating applicable problem domains within NASA, and suggesting areas for ongoing research. The issues that this research identifies are goals, rescheduling requirements, database support, the need for communication and coordination among individual schedulers, the potential for expert system support for scheduling, and the possibility of integrating artificially intelligent schedulers into a network of human schedulers.
Automated telescope scheduling
NASA Technical Reports Server (NTRS)
Johnston, Mark D.
1988-01-01
With the ever increasing level of automation of astronomical telescopes the benefits and feasibility of automated planning and scheduling are becoming more apparent. Improved efficiency and increased overall telescope utilization are the most obvious goals. Automated scheduling at some level has been done for several satellite observatories, but the requirements on these systems were much less stringent than on modern ground or satellite observatories. The scheduling problem is particularly acute for Hubble Space Telescope: virtually all observations must be planned in excruciating detail weeks to months in advance. Space Telescope Science Institute has recently made significant progress on the scheduling problem by exploiting state-of-the-art artificial intelligence software technology. What is especially interesting is that this effort has already yielded software that is well suited to scheduling groundbased telescopes, including the problem of optimizing the coordinated scheduling of more than one telescope.
Reinforcement learning in scheduling
NASA Technical Reports Server (NTRS)
Dietterich, Tom G.; Ok, Dokyeong; Zhang, Wei; Tadepalli, Prasad
1994-01-01
The goal of this research is to apply reinforcement learning methods to real-world problems like scheduling. In this preliminary paper, we show that learning to solve scheduling problems such as the Space Shuttle Payload Processing and the Automatic Guided Vehicle (AGV) scheduling can be usefully studied in the reinforcement learning framework. We discuss some of the special challenges posed by the scheduling domain to these methods and propose some possible solutions we plan to implement.
Genetic algorithm parameters tuning for resource-constrained project scheduling problem
NASA Astrophysics Data System (ADS)
Tian, Xingke; Yuan, Shengrui
2018-04-01
Project Scheduling Problem (RCPSP) is a kind of important scheduling problem. To achieve a certain optimal goal such as the shortest duration, the smallest cost, the resource balance and so on, it is required to arrange the start and finish of all tasks under the condition of satisfying project timing constraints and resource constraints. In theory, the problem belongs to the NP-hard problem, and the model is abundant. Many combinatorial optimization problems are special cases of RCPSP, such as job shop scheduling, flow shop scheduling and so on. At present, the genetic algorithm (GA) has been used to deal with the classical RCPSP problem and achieved remarkable results. Vast scholars have also studied the improved genetic algorithm for the RCPSP problem, which makes it to solve the RCPSP problem more efficiently and accurately. However, for the selection of the main parameters of the genetic algorithm, there is no parameter optimization in these studies. Generally, we used the empirical method, but it cannot ensure to meet the optimal parameters. In this paper, the problem was carried out, which is the blind selection of parameters in the process of solving the RCPSP problem. We made sampling analysis, the establishment of proxy model and ultimately solved the optimal parameters.
Application of decentralized cooperative problem solving in dynamic flexible scheduling
NASA Astrophysics Data System (ADS)
Guan, Zai-Lin; Lei, Ming; Wu, Bo; Wu, Ya; Yang, Shuzi
1995-08-01
The object of this study is to discuss an intelligent solution to the problem of task-allocation in shop floor scheduling. For this purpose, the technique of distributed artificial intelligence (DAI) is applied. Intelligent agents (IAs) are used to realize decentralized cooperation, and negotiation is realized by using message passing based on the contract net model. Multiple agents, such as manager agents, workcell agents, and workstation agents, make game-like decisions based on multiple criteria evaluations. This procedure of decentralized cooperative problem solving makes local scheduling possible. And by integrating such multiple local schedules, dynamic flexible scheduling for the whole shop floor production can be realized.
Tug-Of-War Model for Two-Bandit Problem
NASA Astrophysics Data System (ADS)
Kim, Song-Ju; Aono, Masashi; Hara, Masahiko
The amoeba of the true slime mold Physarum polycephalum shows high computational capabilities. In the so-called amoeba-based computing, some computing tasks including combinatorial optimization are performed by the amoeba instead of a digital computer. We expect that there must be problems living organisms are good at solving. The “multi-armed bandit problem” would be the one of such problems. Consider a number of slot machines. Each of the machines has an arm which gives a player a reward with a certain probability when pulled. The problem is to determine the optimal strategy for maximizing the total reward sum after a certain number of trials. To maximize the total reward sum, it is necessary to judge correctly and quickly which machine has the highest reward probability. Therefore, the player should explore many machines to gather much knowledge on which machine is the best, but should not fail to exploit the reward from the known best machine. We consider that living organisms follow some efficient method to solve the problem.
Genetic algorithm to solve the problems of lectures and practicums scheduling
NASA Astrophysics Data System (ADS)
Syahputra, M. F.; Apriani, R.; Sawaluddin; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.
2018-02-01
Generally, the scheduling process is done manually. However, this method has a low accuracy level, along with possibilities that a scheduled process collides with another scheduled process. When doing theory class and practicum timetable scheduling process, there are numerous problems, such as lecturer teaching schedule collision, schedule collision with another schedule, practicum lesson schedules that collides with theory class, and the number of classrooms available. In this research, genetic algorithm is implemented to perform theory class and practicum timetable scheduling process. The algorithm will be used to process the data containing lists of lecturers, courses, and class rooms, obtained from information technology department at University of Sumatera Utara. The result of scheduling process using genetic algorithm is the most optimal timetable that conforms to available time slots, class rooms, courses, and lecturer schedules.
Decision-theoretic control of EUVE telescope scheduling
NASA Technical Reports Server (NTRS)
Hansson, Othar; Mayer, Andrew
1993-01-01
This paper describes a decision theoretic scheduler (DTS) designed to employ state-of-the-art probabilistic inference technology to speed the search for efficient solutions to constraint-satisfaction problems. Our approach involves assessing the performance of heuristic control strategies that are normally hard-coded into scheduling systems and using probabilistic inference to aggregate this information in light of the features of a given problem. The Bayesian Problem-Solver (BPS) introduced a similar approach to solving single agent and adversarial graph search patterns yielding orders-of-magnitude improvement over traditional techniques. Initial efforts suggest that similar improvements will be realizable when applied to typical constraint-satisfaction scheduling problems.
Design tool for multiprocessor scheduling and evaluation of iterative dataflow algorithms
NASA Technical Reports Server (NTRS)
Jones, Robert L., III
1995-01-01
A graph-theoretic design process and software tool is defined for selecting a multiprocessing scheduling solution for a class of computational problems. The problems of interest are those that can be described with a dataflow graph and are intended to be executed repetitively on a set of identical processors. Typical applications include signal processing and control law problems. Graph-search algorithms and analysis techniques are introduced and shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The software tool applies the design process to a given problem and includes performance optimization through the inclusion of additional precedence constraints among the schedulable tasks.
Designing a fuzzy scheduler for hard real-time systems
NASA Technical Reports Server (NTRS)
Yen, John; Lee, Jonathan; Pfluger, Nathan; Natarajan, Swami
1992-01-01
In hard real-time systems, tasks have to be performed not only correctly, but also in a timely fashion. If timing constraints are not met, there might be severe consequences. Task scheduling is the most important problem in designing a hard real-time system, because the scheduling algorithm ensures that tasks meet their deadlines. However, the inherent nature of uncertainty in dynamic hard real-time systems increases the problems inherent in scheduling. In an effort to alleviate these problems, we have developed a fuzzy scheduler to facilitate searching for a feasible schedule. A set of fuzzy rules are proposed to guide the search. The situation we are trying to address is the performance of the system when no feasible solution can be found, and therefore, certain tasks will not be executed. We wish to limit the number of important tasks that are not scheduled.
DTS: Building custom, intelligent schedulers
NASA Technical Reports Server (NTRS)
Hansson, Othar; Mayer, Andrew
1994-01-01
DTS is a decision-theoretic scheduler, built on top of a flexible toolkit -- this paper focuses on how the toolkit might be reused in future NASA mission schedulers. The toolkit includes a user-customizable scheduling interface, and a 'Just-For-You' optimization engine. The customizable interface is built on two metaphors: objects and dynamic graphs. Objects help to structure problem specifications and related data, while dynamic graphs simplify the specification of graphical schedule editors (such as Gantt charts). The interface can be used with any 'back-end' scheduler, through dynamically-loaded code, interprocess communication, or a shared database. The 'Just-For-You' optimization engine includes user-specific utility functions, automatically compiled heuristic evaluations, and a postprocessing facility for enforcing scheduling policies. The optimization engine is based on BPS, the Bayesian Problem-Solver (1,2), which introduced a similar approach to solving single-agent and adversarial graph search problems.
Improving Hospital-wide Patient Scheduling Decisions by Clinical Pathway Mining.
Gartner, Daniel; Arnolds, Ines V; Nickel, Stefan
2015-01-01
Recent research has highlighted the need for solving hospital-wide patient scheduling problems. Inpatient scheduling, patient activities have to be scheduled on scarce hospital resources such that temporal relations between activities (e.g. for recovery times) are ensured. Common objectives are, among others, the minimization of the length of stay (LOS). In this paper, we consider a hospital-wide patient scheduling problem with LOS minimization based on uncertain clinical pathways. We approach the problem in three stages: First, we learn most likely clinical pathways using a sequential pattern mining approach. Second, we provide a mathematical model for patient scheduling and finally, we combine the two approaches. In an experimental study carried out using real-world data, we show that our approach outperforms baseline approaches on two metrics.
The compound Atwood machine problem
NASA Astrophysics Data System (ADS)
Lopes Coelho, R.
2017-05-01
The present paper accounts for progress in physics teaching in the sense that a problem, which has been closed to students for being too difficult, is gained for the high school curriculum. This problem is the compound Atwood machine with three bodies. Its introduction into high school classes is based on a recent study on the weighing of an Atwood machine.
Wang, Zhaocai; Ji, Zuwen; Wang, Xiaoming; Wu, Tunhua; Huang, Wei
2017-12-01
As a promising approach to solve the computationally intractable problem, the method based on DNA computing is an emerging research area including mathematics, computer science and molecular biology. The task scheduling problem, as a well-known NP-complete problem, arranges n jobs to m individuals and finds the minimum execution time of last finished individual. In this paper, we use a biologically inspired computational model and describe a new parallel algorithm to solve the task scheduling problem by basic DNA molecular operations. In turn, we skillfully design flexible length DNA strands to represent elements of the allocation matrix, take appropriate biological experiment operations and get solutions of the task scheduling problem in proper length range with less than O(n 2 ) time complexity. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Li, Guoliang; Xing, Lining; Chen, Yingwu
2017-11-01
The autonomicity of self-scheduling on Earth observation satellite and the increasing scale of satellite network attract much attention from researchers in the last decades. In reality, the limited onboard computational resource presents challenge for the online scheduling algorithm. This study considered online scheduling problem for a single autonomous Earth observation satellite within satellite network environment. It especially addressed that the urgent tasks arrive stochastically during the scheduling horizon. We described the problem and proposed a hybrid online scheduling mechanism with revision and progressive techniques to solve this problem. The mechanism includes two decision policies, a when-to-schedule policy combining periodic scheduling and critical cumulative number-based event-driven rescheduling, and a how-to-schedule policy combining progressive and revision approaches to accommodate two categories of task: normal tasks and urgent tasks. Thus, we developed two heuristic (re)scheduling algorithms and compared them with other generally used techniques. Computational experiments indicated that the into-scheduling percentage of urgent tasks in the proposed mechanism is much higher than that in periodic scheduling mechanism, and the specific performance is highly dependent on some mechanism-relevant and task-relevant factors. For the online scheduling, the modified weighted shortest imaging time first and dynamic profit system benefit heuristics outperformed the others on total profit and the percentage of successfully scheduled urgent tasks.
Coelho, V N; Coelho, I M; Souza, M J F; Oliveira, T A; Cota, L P; Haddad, M N; Mladenovic, N; Silva, R C P; Guimarães, F G
2016-01-01
This article presents an Evolution Strategy (ES)--based algorithm, designed to self-adapt its mutation operators, guiding the search into the solution space using a Self-Adaptive Reduced Variable Neighborhood Search procedure. In view of the specific local search operators for each individual, the proposed population-based approach also fits into the context of the Memetic Algorithms. The proposed variant uses the Greedy Randomized Adaptive Search Procedure with different greedy parameters for generating its initial population, providing an interesting exploration-exploitation balance. To validate the proposal, this framework is applied to solve three different [Formula: see text]-Hard combinatorial optimization problems: an Open-Pit-Mining Operational Planning Problem with dynamic allocation of trucks, an Unrelated Parallel Machine Scheduling Problem with Setup Times, and the calibration of a hybrid fuzzy model for Short-Term Load Forecasting. Computational results point out the convergence of the proposed model and highlight its ability in combining the application of move operations from distinct neighborhood structures along the optimization. The results gathered and reported in this article represent a collective evidence of the performance of the method in challenging combinatorial optimization problems from different application domains. The proposed evolution strategy demonstrates an ability of adapting the strength of the mutation disturbance during the generations of its evolution process. The effectiveness of the proposal motivates the application of this novel evolutionary framework for solving other combinatorial optimization problems.
Dawn Usage, Scheduling, and Governance Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louis, S
2009-11-02
This document describes Dawn use, scheduling, and governance concerns. Users started running full-machine science runs in early April 2009 during the initial open shakedown period. Scheduling Dawn while in the Open Computing Facility (OCF) was controlled and coordinated via phone calls, emails, and a small number of controlled banks. With Dawn moving to the Secure Computing Facility (SCF) in fall of 2009, a more detailed scheduling and governance model is required. The three major objectives are: (1) Ensure Dawn resources are allocated on a program priority-driven basis; (2) Utilize Dawn resources on the job mixes for which they were intended;more » and (3) Minimize idle cycles through use of partitions, banks and proper job mix. The SCF workload for Dawn will be inherently different than Purple or BG/L, and therefore needs a different approach. Dawn's primary function is to permit adequate access for tri-lab code development in preparation for Sequoia, and in particular for weapons multi-physics codes in support of UQ. A second purpose is to provide time allocations for large-scale science runs and for UQ suite calculations to advance SSP program priorities. This proposed governance model will be the basis for initial time allocation of Dawn computing resources for the science and UQ workloads that merit priority on this class of resource, either because they cannot be reasonably attempted on any other resources due to size of problem, or because of the unavailability of sizable allocations on other ASC capability or capacity platforms. This proposed model intends to make the most effective use of Dawn as possible, but without being overly constrained by more formal proposal processes such as those now used for Purple CCCs.« less
Improved and Cost Effective Machining Techniques for Tracked Combat Vehicle Parts
1983-10-01
steel is shown in Figure 7-7 and consists of tempered marten- site. Three of the alloys which are used in the gas turbine engine are cast 17 - 4PH ...stainless steel, Inconel 718 and Inconel 713. The 17 - 4PH stainless steel was machined in the solution treated and aged condition. The microstructure as shown...SECURITY CLASS. (of thia report) ISa. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of thie Report) 17 . DISTRIBUTION STATEMENT (of
Scheduling a Medium-Sized Manufacturing Shop: A Simulation Study
1993-09-01
distinction, elements of work order data include: the minimum machine type required for a work order, as well as the prgramming , set-up, and machining... prevent this from happening. Such a mechanism could take the form of a reprioritization function that is executed after a specified period of time...system for a very long time unless some mechanism is used to prevent this from happening. The jobs left in the system will be the ones that have very
NASA Astrophysics Data System (ADS)
Gao, Kaizhou; Wang, Ling; Luo, Jianping; Jiang, Hua; Sadollah, Ali; Pan, Quanke
2018-06-01
In this article, scheduling and rescheduling problems with increasing processing time and new job insertion are studied for reprocessing problems in the remanufacturing process. To handle the unpredictability of reprocessing time, an experience-based strategy is used. Rescheduling strategies are applied for considering the effect of increasing reprocessing time and the new subassembly insertion. To optimize the scheduling and rescheduling objective, a discrete harmony search (DHS) algorithm is proposed. To speed up the convergence rate, a local search method is designed. The DHS is applied to two real-life cases for minimizing the maximum completion time and the mean of earliness and tardiness (E/T). These two objectives are also considered together as a bi-objective problem. Computational optimization results and comparisons show that the proposed DHS is able to solve the scheduling and rescheduling problems effectively and productively. Using the proposed approach, satisfactory optimization results can be achieved for scheduling and rescheduling on a real-life shop floor.
Solving multi-objective job shop scheduling problems using a non-dominated sorting genetic algorithm
NASA Astrophysics Data System (ADS)
Piroozfard, Hamed; Wong, Kuan Yew
2015-05-01
The efforts of finding optimal schedules for the job shop scheduling problems are highly important for many real-world industrial applications. In this paper, a multi-objective based job shop scheduling problem by simultaneously minimizing makespan and tardiness is taken into account. The problem is considered to be more complex due to the multiple business criteria that must be satisfied. To solve the problem more efficiently and to obtain a set of non-dominated solutions, a meta-heuristic based non-dominated sorting genetic algorithm is presented. In addition, task based representation is used for solution encoding, and tournament selection that is based on rank and crowding distance is applied for offspring selection. Swapping and insertion mutations are employed to increase diversity of population and to perform intensive search. To evaluate the modified non-dominated sorting genetic algorithm, a set of modified benchmarking job shop problems obtained from the OR-Library is used, and the results are considered based on the number of non-dominated solutions and quality of schedules obtained by the algorithm.
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Smith, Steven S.
1996-01-01
This final report summarizes research performed under NASA contract NCC 2-531 toward generalization of constraint-based scheduling theories and techniques for application to space telescope observation scheduling problems. Our work into theories and techniques for solution of this class of problems has led to the development of the Heuristic Scheduling Testbed System (HSTS), a software system for integrated planning and scheduling. Within HSTS, planning and scheduling are treated as two complementary aspects of the more general process of constructing a feasible set of behaviors of a target system. We have validated the HSTS approach by applying it to the generation of observation schedules for the Hubble Space Telescope. This report summarizes the HSTS framework and its application to the Hubble Space Telescope domain. First, the HSTS software architecture is described, indicating (1) how the structure and dynamics of a system is modeled in HSTS, (2) how schedules are represented at multiple levels of abstraction, and (3) the problem solving machinery that is provided. Next, the specific scheduler developed within this software architecture for detailed management of Hubble Space Telescope operations is presented. Finally, experimental performance results are given that confirm the utility and practicality of the approach.
Scheduler Design Criteria: Requirements and Considerations
NASA Technical Reports Server (NTRS)
Lee, Hanbong
2016-01-01
This presentation covers fundamental requirements and considerations for developing schedulers in airport operations. We first introduce performance and functional requirements for airport surface schedulers. Among various optimization problems in airport operations, we focus on airport surface scheduling problem, including runway and taxiway operations. We then describe a basic methodology for airport surface scheduling such as node-link network model and scheduling algorithms previously developed. Next, we explain how to design a mathematical formulation in more details, which consists of objectives, decision variables, and constraints. Lastly, we review other considerations, including optimization tools, computational performance, and performance metrics for evaluation.
NASA Astrophysics Data System (ADS)
Budi Harja, Herman; Prakosa, Tri; Raharno, Sri; Yuwana Martawirya, Yatna; Nurhadi, Indra; Setyo Nogroho, Alamsyah
2018-03-01
The production characteristic of job-shop industry at which products have wide variety but small amounts causes every machine tool will be shared to conduct production process with dynamic load. Its dynamic condition operation directly affects machine tools component reliability. Hence, determination of maintenance schedule for every component should be calculated based on actual usage of machine tools component. This paper describes study on development of monitoring system to obtaining information about each CNC machine tool component usage in real time approached by component grouping based on its operation phase. A special device has been developed for monitoring machine tool component usage by utilizing usage phase activity data taken from certain electronics components within CNC machine. The components are adaptor, servo driver and spindle driver, as well as some additional components such as microcontroller and relays. The obtained data are utilized for detecting machine utilization phases such as power on state, machine ready state or spindle running state. Experimental result have shown that the developed CNC machine tool monitoring system is capable of obtaining phase information of machine tool usage as well as its duration and displays the information at the user interface application.
Åkerstedt, Torbjörn; Kecklund, Göran
2017-03-01
The purpose was to investigate which detailed characteristics of shift schedules that are seen as problems to those exposed. A representative national sample of non-day workers (N = 2031) in Sweden was asked whether they had each of a number of particular work schedule characteristics and, if yes, to what extent this constituted a "big problem in life". It was also inquired whether the individual's work schedules had negative consequences for fatigue, sleep and social life. The characteristic with the highest percentage reporting a big problem was "short notice (<1 month) of a new work schedule" (30.5%), <11 h off between shifts (27.8%), and split duty (>1.5 h break at mid-shift, 27.2%). Overtime (>10 h/week), night work, morning work, day/night shifts showed lower prevalences of being a "big problem". Women indicated more problems in general. Short notice was mainly related to negative social effects, while <11 h off between shifts was related to disturbed sleep, fatigue and social difficulties. It was concluded that schedules involving unpredictable working hours (short notice), short daily rest between shifts, and split duty shifts constitute big problems. The results challenge current views of what aspects of shift work need improvement, and negative social consequences seem more important than those related to health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Service-Oriented Node Scheduling Scheme for Wireless Sensor Networks Using Markov Random Field Model
Cheng, Hongju; Su, Zhihuang; Lloret, Jaime; Chen, Guolong
2014-01-01
Future wireless sensor networks are expected to provide various sensing services and energy efficiency is one of the most important criterions. The node scheduling strategy aims to increase network lifetime by selecting a set of sensor nodes to provide the required sensing services in a periodic manner. In this paper, we are concerned with the service-oriented node scheduling problem to provide multiple sensing services while maximizing the network lifetime. We firstly introduce how to model the data correlation for different services by using Markov Random Field (MRF) model. Secondly, we formulate the service-oriented node scheduling issue into three different problems, namely, the multi-service data denoising problem which aims at minimizing the noise level of sensed data, the representative node selection problem concerning with selecting a number of active nodes while determining the services they provide, and the multi-service node scheduling problem which aims at maximizing the network lifetime. Thirdly, we propose a Multi-service Data Denoising (MDD) algorithm, a novel multi-service Representative node Selection and service Determination (RSD) algorithm, and a novel MRF-based Multi-service Node Scheduling (MMNS) scheme to solve the above three problems respectively. Finally, extensive experiments demonstrate that the proposed scheme efficiently extends the network lifetime. PMID:25384005
A bicriteria heuristic for an elective surgery scheduling problem.
Marques, Inês; Captivo, M Eugénia; Vaz Pato, Margarida
2015-09-01
Resource rationalization and reduction of waiting lists for surgery are two main guidelines for hospital units outlined in the Portuguese National Health Plan. This work is dedicated to an elective surgery scheduling problem arising in a Lisbon public hospital. In order to increase the surgical suite's efficiency and to reduce the waiting lists for surgery, two objectives are considered: maximize surgical suite occupation and maximize the number of surgeries scheduled. This elective surgery scheduling problem consists of assigning an intervention date, an operating room and a starting time for elective surgeries selected from the hospital waiting list. Accordingly, a bicriteria surgery scheduling problem arising in the hospital under study is presented. To search for efficient solutions of the bicriteria optimization problem, the minimization of a weighted Chebyshev distance to a reference point is used. A constructive and improvement heuristic procedure specially designed to address the objectives of the problem is developed and results of computational experiments obtained with empirical data from the hospital are presented. This study shows that by using the bicriteria approach presented here it is possible to build surgical plans with very good performance levels. This method can be used within an interactive approach with the decision maker. It can also be easily adapted to other hospitals with similar scheduling conditions.
NASA Astrophysics Data System (ADS)
Izah Anuar, Nurul; Saptari, Adi
2016-02-01
This paper addresses the types of particle representation (encoding) procedures in a population-based stochastic optimization technique in solving scheduling problems known in the job-shop manufacturing environment. It intends to evaluate and compare the performance of different particle representation procedures in Particle Swarm Optimization (PSO) in the case of solving Job-shop Scheduling Problems (JSP). Particle representation procedures refer to the mapping between the particle position in PSO and the scheduling solution in JSP. It is an important step to be carried out so that each particle in PSO can represent a schedule in JSP. Three procedures such as Operation and Particle Position Sequence (OPPS), random keys representation and random-key encoding scheme are used in this study. These procedures have been tested on FT06 and FT10 benchmark problems available in the OR-Library, where the objective function is to minimize the makespan by the use of MATLAB software. Based on the experimental results, it is discovered that OPPS gives the best performance in solving both benchmark problems. The contribution of this paper is the fact that it demonstrates to the practitioners involved in complex scheduling problems that different particle representation procedures can have significant effects on the performance of PSO in solving JSP.
Smart Screening System (S3) In Taconite Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daryoush Allaei; Ryan Wartman; David Tarnowski
2006-03-01
The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the completion of the design refinement phase. This phase resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. This system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota. Since then, the fabrication of the dry application prototype (incorporating an electromagnetic drive mechanism and a new deblinding concept) has been completed and successfully tested at QRDC's lab.« less
Multiresource allocation and scheduling for periodic soft real-time applications
NASA Astrophysics Data System (ADS)
Gopalan, Kartik; Chiueh, Tzi-cker
2001-12-01
Real-time applications that utilize multiple system resources, such as CPU, disks, and network links, require coordinated scheduling of these resources in order to meet their end-to-end performance requirements. Most state-of-the-art operating systems support independent resource allocation and deadline-driven scheduling but lack coordination among multiple heterogeneous resources. This paper describes the design and implementation of an Integrated Real-time Resource Scheduler (IRS) that performs coordinated allocation and scheduling of multiple heterogeneous resources on the same machine for periodic soft real-time application. The principal feature of IRS is a heuristic multi-resource allocation algorithm that reserves multiple resources for real-time applications in a manner that can maximize the number of applications admitted into the system in the long run. At run-time, a global scheduler dispatches the tasks of the soft real-time application to individual resource schedulers according to the precedence constraints between tasks. The individual resource schedulers, which could be any deadline based schedulers, can make scheduling decisions locally and yet collectively satisfy a real-time application's performance requirements. The tightness of overall timing guarantees is ultimately determined by the properties of individual resource schedulers. However, IRS maximizes overall system resource utilization efficiency by coordinating deadline assignment across multiple tasks in a soft real-time application.
Automatic Generation of Heuristics for Scheduling
NASA Technical Reports Server (NTRS)
Morris, Robert A.; Bresina, John L.; Rodgers, Stuart M.
1997-01-01
This paper presents a technique, called GenH, that automatically generates search heuristics for scheduling problems. The impetus for developing this technique is the growing consensus that heuristics encode advice that is, at best, useful in solving most, or typical, problem instances, and, at worst, useful in solving only a narrowly defined set of instances. In either case, heuristic problem solvers, to be broadly applicable, should have a means of automatically adjusting to the idiosyncrasies of each problem instance. GenH generates a search heuristic for a given problem instance by hill-climbing in the space of possible multi-attribute heuristics, where the evaluation of a candidate heuristic is based on the quality of the solution found under its guidance. We present empirical results obtained by applying GenH to the real world problem of telescope observation scheduling. These results demonstrate that GenH is a simple and effective way of improving the performance of an heuristic scheduler.
ERIC Educational Resources Information Center
Instructor, 1983
1983-01-01
Instructor's Computer-Using Teachers Board members give practical tips on how to get a classroom ready for a new computer, introduce students to the machine, and help them learn about programing and computer literacy. Safety, scheduling, and supervision requirements are noted. (PP)
Minimization of Delay Costs in the Realization of Production Orders in Two-Machine System
NASA Astrophysics Data System (ADS)
Dylewski, Robert; Jardzioch, Andrzej; Dworak, Oliver
2018-03-01
The article presents a new algorithm that enables the allocation of the optimal scheduling of the production orders in the two-machine system based on the minimum cost of order delays. The formulated algorithm uses the method of branch and bounds and it is a particular generalisation of the algorithm enabling for the determination of the sequence of the production orders with the minimal sum of the delays. In order to illustrate the proposed algorithm in the best way, the article contains examples accompanied by the graphical trees of solutions. The research analysing the utility of the said algorithm was conducted. The achieved results proved the usefulness of the proposed algorithm when applied to scheduling of orders. The formulated algorithm was implemented in the Matlab programme. In addition, the studies for different sets of production orders were conducted.
Optimizing an F-16 Squadron Weekly Pilot Schedule for the Turkish Air Force
2010-03-01
disrupted schedules are rescheduled , minimizing the total number of changes with respect to the previous schedule’s objective function. Output...producing rosters for a nursing staff in a large general hospital (Dowsland, 1998) and afterwards Aickelin and Dowsland use an Indirect Genetic...algorithm to improve the solutions of the nurse scheduling problem which is similar to the fighter squadron pilot scheduling problem (Aickelin and
Multi-trip vehicle routing and scheduling problem with time window in real life
NASA Astrophysics Data System (ADS)
Sze, San-Nah; Chiew, Kang-Leng; Sze, Jeeu-Fong
2012-09-01
This paper studies a manpower scheduling problem with multiple maintenance operations and vehicle routing considerations. Service teams located at a common service centre are required to travel to different customer sites. All customers must be served within given time window, which are known in advance. The scheduling process must take into consideration complex constraints such as a meal break during the team's shift, multiple travelling trips, synchronisation of service teams and working shifts. The main objective of this study is to develop a heuristic that can generate high quality solution in short time for large problem instances. A Two-stage Scheduling Heuristic is developed for different variants of the problem. Empirical results show that the proposed solution performs effectively and efficiently. In addition, our proposed approximation algorithm is very flexible and can be easily adapted to different scheduling environments and operational requirements.
NASA Technical Reports Server (NTRS)
Morrell, R. A.; Odoherty, R. J.; Ramsey, H. R.; Reynolds, C. C.; Willoughby, J. K.; Working, R. D.
1975-01-01
Data and analyses related to a variety of algorithms for solving typical large-scale scheduling and resource allocation problems are presented. The capabilities and deficiencies of various alternative problem solving strategies are discussed from the viewpoint of computer system design.
Taxi Time Prediction at Charlotte Airport Using Fast-Time Simulation and Machine Learning Techniques
NASA Technical Reports Server (NTRS)
Lee, Hanbong
2016-01-01
Accurate taxi time prediction is required for enabling efficient runway scheduling that can increase runway throughput and reduce taxi times and fuel consumptions on the airport surface. Currently NASA and American Airlines are jointly developing a decision-support tool called Spot and Runway Departure Advisor (SARDA) that assists airport ramp controllers to make gate pushback decisions and improve the overall efficiency of airport surface traffic. In this presentation, we propose to use Linear Optimized Sequencing (LINOS), a discrete-event fast-time simulation tool, to predict taxi times and provide the estimates to the runway scheduler in real-time airport operations. To assess its prediction accuracy, we also introduce a data-driven analytical method using machine learning techniques. These two taxi time prediction methods are evaluated with actual taxi time data obtained from the SARDA human-in-the-loop (HITL) simulation for Charlotte Douglas International Airport (CLT) using various performance measurement metrics. Based on the taxi time prediction results, we also discuss how the prediction accuracy can be affected by the operational complexity at this airport and how we can improve the fast time simulation model before implementing it with an airport scheduling algorithm in a real-time environment.
Integrated resource scheduling in a distributed scheduling environment
NASA Technical Reports Server (NTRS)
Zoch, David; Hall, Gardiner
1988-01-01
The Space Station era presents a highly-complex multi-mission planning and scheduling environment exercised over a highly distributed system. In order to automate the scheduling process, customers require a mechanism for communicating their scheduling requirements to NASA. A request language that a remotely-located customer can use to specify his scheduling requirements to a NASA scheduler, thus automating the customer-scheduler interface, is described. This notation, Flexible Envelope-Request Notation (FERN), allows the user to completely specify his scheduling requirements such as resource usage, temporal constraints, and scheduling preferences and options. The FERN also contains mechanisms for representing schedule and resource availability information, which are used in the inter-scheduler inconsistency resolution process. Additionally, a scheduler is described that can accept these requests, process them, generate schedules, and return schedule and resource availability information to the requester. The Request-Oriented Scheduling Engine (ROSE) was designed to function either as an independent scheduler or as a scheduling element in a network of schedulers. When used in a network of schedulers, each ROSE communicates schedule and resource usage information to other schedulers via the FERN notation, enabling inconsistencies to be resolved between schedulers. Individual ROSE schedules are created by viewing the problem as a constraint satisfaction problem with a heuristically guided search strategy.
A multi-group and preemptable scheduling of cloud resource based on HTCondor
NASA Astrophysics Data System (ADS)
Jiang, Xiaowei; Zou, Jiaheng; Cheng, Yaodong; Shi, Jingyan
2017-10-01
Due to the features of virtual machine-flexibility, easy controlling and various system environments, more and more fields utilize the virtualization technology to construct the distributed system with the virtual resources, also including high energy physics. This paper introduce a method used in high energy physics that supports multiple resource group and preemptable cloud resource scheduling, combining virtual machine with HTCondor (a batch system). It makes resource controlling more flexible and more efficient and makes resource scheduling independent of job scheduling. Firstly, the resources belong to different experiment-groups, and the type of user-groups mapping to resource-groups(same as experiment-group) is one-to-one or many-to-one. In order to make the confused group simply to be managed, we designed the permission controlling component to ensure that the different resource-groups can get the suitable jobs. Secondly, for the purpose of elastically allocating resources for suitable resource-group, it is necessary to schedule resources like scheduling jobs. So this paper designs the cloud resource scheduling to maintain a resource queue and allocate an appropriate amount of virtual resources to the request resource-group. Thirdly, in some kind of situations, because of the resource occupied for a long time, resources need to be preempted. This paper adds the preemption function for the resource scheduling that implement resource preemption based on the group priority. Additionally, the way to preempting is soft that when virtual resources are preempted, jobs will not be killed but also be held and rematched later. It is implemented with the help of HTCondor, storing the held job information in scheduler, releasing the job to idle status and doing second matcher. In IHEP (institute of high energy physics), we have built a batch system based on HTCondor with a virtual resources pool based on Openstack. And this paper will show some cases of experiment JUNO and LHAASO. The result indicates that multi-group and preemptable resource scheduling is efficient to support multi-group and soft preemption. Additionally, the permission controlling component has been used in the local computing cluster, supporting for experiment JUNO, CMS and LHAASO, and the scale will be expanded to more experiments at the first half year, including DYW, BES and so on. Its evidence that the permission controlling is efficient.
Decomposition of timed automata for solving scheduling problems
NASA Astrophysics Data System (ADS)
Nishi, Tatsushi; Wakatake, Masato
2014-03-01
A decomposition algorithm for scheduling problems based on timed automata (TA) model is proposed. The problem is represented as an optimal state transition problem for TA. The model comprises of the parallel composition of submodels such as jobs and resources. The procedure of the proposed methodology can be divided into two steps. The first step is to decompose the TA model into several submodels by using decomposable condition. The second step is to combine individual solution of subproblems for the decomposed submodels by the penalty function method. A feasible solution for the entire model is derived through the iterated computation of solving the subproblem for each submodel. The proposed methodology is applied to solve flowshop and jobshop scheduling problems. Computational experiments demonstrate the effectiveness of the proposed algorithm compared with a conventional TA scheduling algorithm without decomposition.
A controlled genetic algorithm by fuzzy logic and belief functions for job-shop scheduling.
Hajri, S; Liouane, N; Hammadi, S; Borne, P
2000-01-01
Most scheduling problems are highly complex combinatorial problems. However, stochastic methods such as genetic algorithm yield good solutions. In this paper, we present a controlled genetic algorithm (CGA) based on fuzzy logic and belief functions to solve job-shop scheduling problems. For better performance, we propose an efficient representational scheme, heuristic rules for creating the initial population, and a new methodology for mixing and computing genetic operator probabilities.
Scheduling in the Face of Uncertain Resource Consumption and Utility
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Dearden, Richard
2003-01-01
We discuss the problem of scheduling tasks that consume uncertain amounts of a resource with known capacity and where the tasks have uncertain utility. In these circumstances, we would like to find schedules that exceed a lower bound on the expected utility when executed. We show that the problems are NP- complete, and present some results that characterize the behavior of some simple heuristics over a variety of problem classes.
Scheduling Earth Observing Fleets Using Evolutionary Algorithms: Problem Description and Approach
NASA Technical Reports Server (NTRS)
Globus, Al; Crawford, James; Lohn, Jason; Morris, Robert; Clancy, Daniel (Technical Monitor)
2002-01-01
We describe work in progress concerning multi-instrument, multi-satellite scheduling. Most, although not all, Earth observing instruments currently in orbit are unique. In the relatively near future, however, we expect to see fleets of Earth observing spacecraft, many carrying nearly identical instruments. This presents a substantially new scheduling challenge. Inspired by successful commercial applications of evolutionary algorithms in scheduling domains, this paper presents work in progress regarding the use of evolutionary algorithms to solve a set of Earth observing related model problems. Both the model problems and the software are described. Since the larger problems will require substantial computation and evolutionary algorithms are embarrassingly parallel, we discuss our parallelization techniques using dedicated and cycle-scavenged workstations.
Multi-Stage Convex Relaxation Methods for Machine Learning
2013-03-01
Many problems in machine learning can be naturally formulated as non-convex optimization problems. However, such direct nonconvex formulations have...original nonconvex formulation. We will develop theoretical properties of this method and algorithmic consequences. Related convex and nonconvex machine learning methods will also be investigated.
Job Management Requirements for NAS Parallel Systems and Clusters
NASA Technical Reports Server (NTRS)
Saphir, William; Tanner, Leigh Ann; Traversat, Bernard
1995-01-01
A job management system is a critical component of a production supercomputing environment, permitting oversubscribed resources to be shared fairly and efficiently. Job management systems that were originally designed for traditional vector supercomputers are not appropriate for the distributed-memory parallel supercomputers that are becoming increasingly important in the high performance computing industry. Newer job management systems offer new functionality but do not solve fundamental problems. We address some of the main issues in resource allocation and job scheduling we have encountered on two parallel computers - a 160-node IBM SP2 and a cluster of 20 high performance workstations located at the Numerical Aerodynamic Simulation facility. We describe the requirements for resource allocation and job management that are necessary to provide a production supercomputing environment on these machines, prioritizing according to difficulty and importance, and advocating a return to fundamental issues.
The Use of the MASCOT Philosophy for the Construction of Ada Programs,
1983-10-01
dependent units must be recompiled. Because of Ada’s commitment to abstract data types tasks are treated as data types with certain restrictions. A task...3.3.3.1.4 End of Slice Action The scheduling algorithm determines, for each type of Slice termination, how the Scheduler treats Activities whose Slice has...Pools. The MASCOT Machine treats them as constructionally equivalent (refer 3.3.1.1.1). Because of the constraints brought in by the formulation of
Contingency rescheduling of spacecraft operations
NASA Technical Reports Server (NTRS)
Britt, Daniel L.; Geoffroy, Amy L.; Gohring, John R.
1988-01-01
Spacecraft activity scheduling was a focus of attention in artificial intelligence recently. Several scheduling systems were devised which more-or-less successfully address various aspects of the activity scheduling problem, though most of these are not yet mature, with the notable expection of NASA's ESP. Few current scheduling systems, however, make any attempt to deal fully with the problem of modifying a schedule in near-real-time in the event of contingencies which may arise during schedule execution. These contingencies can include resources becoming unavailable unpredictably, a change in spacecraft conditions or environment, or the need to perform an activity not scheduled. In these cases it becomes necessary to repair an existing schedule, disrupting ongoing operations as little as possible. Normal scheduling is just a part of that which must be accomplished during contingency rescheduling. A prototype system named MAESTRO was developed for spacecraft activity scheduling. MAESTRO is briefly described with a focus on recent work in the area of real-time contingency handling. Included is a discussion of some of the complexities of the scheduling problem and how they affect contingency rescheduling, such as temporal constraints between activities, activities which may be interrupted and continued in any of several ways, and different ways to choose a resource complement which will allow continuation of an activity. Various heuristics used in MAESTRO for contingency rescheduling is discussed, as are operational concerns such as interaction of the scheduler with spacecraft subsystems controllers.
Balancing Contention and Synchronization on the Intel Paragon
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.; Nicol, David M.
1996-01-01
The Intel Paragon is a mesh-connected distributed memory parallel computer. It uses an oblivious and deterministic message routing algorithm: this permits us to develop highly optimized schedules for frequently needed communication patterns. The complete exchange is one such pattern. Several approaches are available for carrying it out on the mesh. We study an algorithm developed by Scott. This algorithm assumes that a communication link can carry one message at a time and that a node can only transmit one message at a time. It requires global synchronization to enforce a schedule of transmissions. Unfortunately global synchronization has substantial overhead on the Paragon. At the same time the powerful interconnection mechanism of this machine permits 2 or 3 messages to share a communication link with minor overhead. It can also overlap multiple message transmission from the same node to some extent. We develop a generalization of Scott's algorithm that executes complete exchange with a prescribed contention. Schedules that incur greater contention require fewer synchronization steps. This permits us to tradeoff contention against synchronization overhead. We describe the performance of this algorithm and compare it with Scott's original algorithm as well as with a naive algorithm that does not take interconnection structure into account. The Bounded contention algorithm is always better than Scott's algorithm and outperforms the naive algorithm for all but the smallest message sizes. The naive algorithm fails to work on meshes larger than 12 x 12. These results show that due consideration of processor interconnect and machine performance parameters is necessary to obtain peak performance from the Paragon and its successor mesh machines.
Fisher, Wayne W.; Greer, Brian D.; Fuhrman, Ashley M.; Querim, Angie C.
2016-01-01
Multiple schedules with signaled periods of reinforcement and extinction have been used to thin reinforcement schedules during functional communication training (FCT) to make the intervention more practical for parents and teachers. We evaluated whether these signals would also facilitate rapid transfer of treatment effects from one setting to the next and from one therapist to the next. With two children, we conducted FCT in the context of mixed (baseline) and multiple (treatment) schedules introduced across settings or therapists using a multiple baseline design. Results indicated that when the multiple schedules were introduced, the functional communication response came under rapid discriminative control, and problem behavior remained at near-zero rates. We extended these findings with another individual by using a more traditional baseline in which problem behavior produced reinforcement. Results replicated those of the previous participants and showed rapid reductions in problem behavior when multiple schedules were implemented across settings. PMID:26384141
NASA Technical Reports Server (NTRS)
Golias, Mihalis M.
2011-01-01
Berth scheduling is a critical function at marine container terminals and determining the best berth schedule depends on several factors including the type and function of the port, size of the port, location, nearby competition, and type of contractual agreement between the terminal and the carriers. In this paper we formulate the berth scheduling problem as a bi-objective mixed-integer problem with the objective to maximize customer satisfaction and reliability of the berth schedule under the assumption that vessel handling times are stochastic parameters following a discrete and known probability distribution. A combination of an exact algorithm, a Genetic Algorithms based heuristic and a simulation post-Pareto analysis is proposed as the solution approach to the resulting problem. Based on a number of experiments it is concluded that the proposed berth scheduling policy outperforms the berth scheduling policy where reliability is not considered.
Fisher, Wayne W; Greer, Brian D; Fuhrman, Ashley M; Querim, Angie C
2015-12-01
Multiple schedules with signaled periods of reinforcement and extinction have been used to thin reinforcement schedules during functional communication training (FCT) to make the intervention more practical for parents and teachers. We evaluated whether these signals would also facilitate rapid transfer of treatment effects across settings and therapists. With 2 children, we conducted FCT in the context of mixed (baseline) and multiple (treatment) schedules introduced across settings or therapists using a multiple baseline design. Results indicated that when the multiple schedules were introduced, the functional communication response came under rapid discriminative control, and problem behavior remained at near-zero rates. We extended these findings with another individual by using a more traditional baseline in which problem behavior produced reinforcement. Results replicated those of the previous participants and showed rapid reductions in problem behavior when multiple schedules were implemented across settings. © Society for the Experimental Analysis of Behavior.
NASA Astrophysics Data System (ADS)
Ramli, Razamin; Tein, Lim Huai
2016-08-01
A good work schedule can improve hospital operations by providing better coverage with appropriate staffing levels in managing nurse personnel. Hence, constructing the best nurse work schedule is the appropriate effort. In doing so, an improved selection operator in the Evolutionary Algorithm (EA) strategy for a nurse scheduling problem (NSP) is proposed. The smart and efficient scheduling procedures were considered. Computation of the performance of each potential solution or schedule was done through fitness evaluation. The best so far solution was obtained via special Maximax&Maximin (MM) parent selection operator embedded in the EA, which fulfilled all constraints considered in the NSP.
Third Conference on Artificial Intelligence for Space Applications, part 1
NASA Technical Reports Server (NTRS)
Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)
1987-01-01
The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed.
30 CFR 75.209 - Automated Temporary Roof Support (ATRS) systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... paragraph shall be met according to the following schedule: (1) All new machines ordered after March 28... the left, right or beyond the ATRS system, shall not exceed 5 feet. (e) Each ATRS system shall meet...
30 CFR 75.209 - Automated Temporary Roof Support (ATRS) systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... paragraph shall be met according to the following schedule: (1) All new machines ordered after March 28... the left, right or beyond the ATRS system, shall not exceed 5 feet. (e) Each ATRS system shall meet...
NASA Astrophysics Data System (ADS)
Kumar, Vijay M.; Murthy, ANN; Chandrashekara, K.
2012-05-01
The production planning problem of flexible manufacturing system (FMS) concerns with decisions that have to be made before an FMS begins to produce parts according to a given production plan during an upcoming planning horizon. The main aspect of production planning deals with machine loading problem in which selection of a subset of jobs to be manufactured and assignment of their operations to the relevant machines are made. Such problems are not only combinatorial optimization problems, but also happen to be non-deterministic polynomial-time-hard, making it difficult to obtain satisfactory solutions using traditional optimization techniques. In this paper, an attempt has been made to address the machine loading problem with objectives of minimization of system unbalance and maximization of throughput simultaneously while satisfying the system constraints related to available machining time and tool slot designing and using a meta-hybrid heuristic technique based on genetic algorithm and particle swarm optimization. The results reported in this paper demonstrate the model efficiency and examine the performance of the system with respect to measures such as throughput and system utilization.
Scheduling multirobot operations in manufacturing by truncated Petri nets
NASA Astrophysics Data System (ADS)
Chen, Qin; Luh, J. Y.
1995-08-01
Scheduling of operational sequences in manufacturing processes is one of the important problems in automation. Methods of applying Petri nets to model and analyze the problem with constraints on precedence relations, multiple resources allocation, etc. have been available in literature. Searching for an optimum schedule can be implemented by combining the branch-and-bound technique with the execution of the timed Petri net. The process usually produces a large Petri net which is practically not manageable. This disadvantage, however, can be handled by a truncation technique which divides the original large Petri net into several smaller size subnets. The complexity involved in the analysis of each subnet individually is greatly reduced. However, when the locally optimum schedules of the resulting subnets are combined together, it may not yield an overall optimum schedule for the original Petri net. To circumvent this problem, algorithms are developed based on the concepts of Petri net execution and modified branch-and-bound process. The developed technique is applied to a multi-robot task scheduling problem of the manufacturing work cell.
Scheduling in the Face of Uncertain Resource Consumption and Utility
NASA Technical Reports Server (NTRS)
Koga, Dennis (Technical Monitor); Frank, Jeremy; Dearden, Richard
2003-01-01
We discuss the problem of scheduling tasks that consume a resource with known capacity and where the tasks have varying utility. We consider problems in which the resource consumption and utility of each activity is described by probability distributions. In these circumstances, we would like to find schedules that exceed a lower bound on the expected utility when executed. We first show that while some of these problems are NP-complete, others are only NP-Hard. We then describe various heuristic search algorithms to solve these problems and their drawbacks. Finally, we present empirical results that characterize the behavior of these heuristics over a variety of problem classes.
A novel discrete PSO algorithm for solving job shop scheduling problem to minimize makespan
NASA Astrophysics Data System (ADS)
Rameshkumar, K.; Rajendran, C.
2018-02-01
In this work, a discrete version of PSO algorithm is proposed to minimize the makespan of a job-shop. A novel schedule builder has been utilized to generate active schedules. The discrete PSO is tested using well known benchmark problems available in the literature. The solution produced by the proposed algorithms is compared with best known solution published in the literature and also compared with hybrid particle swarm algorithm and variable neighborhood search PSO algorithm. The solution construction methodology adopted in this study is found to be effective in producing good quality solutions for the various benchmark job-shop scheduling problems.
Workflow as a Service in the Cloud: Architecture and Scheduling Algorithms.
Wang, Jianwu; Korambath, Prakashan; Altintas, Ilkay; Davis, Jim; Crawl, Daniel
2014-01-01
With more and more workflow systems adopting cloud as their execution environment, it becomes increasingly challenging on how to efficiently manage various workflows, virtual machines (VMs) and workflow execution on VM instances. To make the system scalable and easy-to-extend, we design a Workflow as a Service (WFaaS) architecture with independent services. A core part of the architecture is how to efficiently respond continuous workflow requests from users and schedule their executions in the cloud. Based on different targets, we propose four heuristic workflow scheduling algorithms for the WFaaS architecture, and analyze the differences and best usages of the algorithms in terms of performance, cost and the price/performance ratio via experimental studies.
DORCA computer program. Volume 1: User's guide
NASA Technical Reports Server (NTRS)
Wray, S. T., Jr.
1971-01-01
The Dynamic Operational Requirements and Cost Analysis Program (DORCA) was written to provide a top level analysis tool for NASA. DORCA relies on a man-machine interaction to optimize results based on external criteria. DORCA relies heavily on outside sources to provide cost information and vehicle performance parameters as the program does not determine these quantities but rather uses them. Given data describing missions, vehicles, payloads, containers, space facilities, schedules, cost values and costing procedures, the program computes flight schedules, cargo manifests, vehicle fleet requirements, acquisition schedules and cost summaries. The program is designed to consider the Earth Orbit, Lunar, Interplanetary and Automated Satellite Programs. A general outline of the capabilities of the program are provided.
Discrete Optimization Model for Vehicle Routing Problem with Scheduling Side Cosntraints
NASA Astrophysics Data System (ADS)
Juliandri, Dedy; Mawengkang, Herman; Bu'ulolo, F.
2018-01-01
Vehicle Routing Problem (VRP) is an important element of many logistic systems which involve routing and scheduling of vehicles from a depot to a set of customers node. This is a hard combinatorial optimization problem with the objective to find an optimal set of routes used by a fleet of vehicles to serve the demands a set of customers It is required that these vehicles return to the depot after serving customers’ demand. The problem incorporates time windows, fleet and driver scheduling, pick-up and delivery in the planning horizon. The goal is to determine the scheduling of fleet and driver and routing policies of the vehicles. The objective is to minimize the overall costs of all routes over the planning horizon. We model the problem as a linear mixed integer program. We develop a combination of heuristics and exact method for solving the model.
Empirical results on scheduling and dynamic backtracking
NASA Technical Reports Server (NTRS)
Boddy, Mark S.; Goldman, Robert P.
1994-01-01
At the Honeywell Technology Center (HTC), we have been working on a scheduling problem related to commercial avionics. This application is large, complex, and hard to solve. To be a little more concrete: 'large' means almost 20,000 activities, 'complex' means several activity types, periodic behavior, and assorted types of temporal constraints, and 'hard to solve' means that we have been unable to eliminate backtracking through the use of search heuristics. At this point, we can generate solutions, where solutions exist, or report failure and sometimes why the system failed. To the best of our knowledge, this is among the largest and most complex scheduling problems to have been solved as a constraint satisfaction problem, at least that has appeared in the published literature. This abstract is a preliminary report on what we have done and how. In the next section, we present our approach to treating scheduling as a constraint satisfaction problem. The following sections present the application in more detail and describe how we solve scheduling problems in the application domain. The implemented system makes use of Ginsberg's Dynamic Backtracking algorithm, with some minor extensions to improve its utility for scheduling. We describe those extensions and the performance of the resulting system. The paper concludes with some general remarks, open questions and plans for future work.
Application Analysis of BIM Technology in Metro Rail Transit
NASA Astrophysics Data System (ADS)
Liu, Bei; Sun, Xianbin
2018-03-01
With the rapid development of urban roads, especially the construction of subway rail transit, it is an effective way to alleviate urban traffic congestion. There are limited site space, complex resource allocation, tight schedule, underground pipeline complex engineering problems. BIM technology, three-dimensional visualization, parameterization, virtual simulation and many other advantages can effectively solve these technical problems. Based on the project of Shenzhen Metro Line 9, BIM technology is innovatively researched throughout the lifecycle of BIM technology in the context of the metro rail transit project rarely used at this stage. The model information file is imported into Navisworks for four-dimensional animation simulation to determine the optimum construction scheme of the shield machine. Subway construction management application platform based on BIM and private cloud technology, the use of cameras and sensors to achieve electronic integration, dynamic monitoring of the operation and maintenance of underground facilities. Make full use of the many advantages of BIM technology to improve the engineering quality and construction efficiency of the subway rail transit project and to complete the operation and maintenance.
Sensitivity and bias under conditions of equal and unequal academic task difficulty.
Reed, Derek D; Martens, Brian K
2008-01-01
We conducted an experimental analysis of children's relative problem-completion rates across two workstations under conditions of equal (Experiment 1) and unequal (Experiment 2) problem difficulty. Results were described using the generalized matching equation and were evaluated for degree of schedule versus stimulus control. Experiment 1 involved a symmetrical choice arrangement in which the children could earn points exchangeable for rewards contingent on correct math problem completion. Points were delivered according to signaled variable-interval schedules at each workstation. For 2 children, relative rates of problem completion appeared to have been controlled by the schedule requirements in effect and matched relative rates of reinforcement, with sensitivity values near 1 and bias values near 0. Experiment 2 involved increasing the difficulty of math problems at one of the workstations. Sensitivity values for all 3 participants were near 1, but a substantial increase in bias toward the easier math problems was observed. This bias was possibly associated with responding at the more difficult workstation coming under stimulus control rather than schedule control.
Analysis of Feeder Bus Network Design and Scheduling Problems
Almasi, Mohammad Hadi; Karim, Mohamed Rehan
2014-01-01
A growing concern for public transit is its inability to shift passenger's mode from private to public transport. In order to overcome this problem, a more developed feeder bus network and matched schedules will play important roles. The present paper aims to review some of the studies performed on Feeder Bus Network Design and Scheduling Problem (FNDSP) based on three distinctive parts of the FNDSP setup, namely, problem description, problem characteristics, and solution approaches. The problems consist of different subproblems including data preparation, feeder bus network design, route generation, and feeder bus scheduling. Subsequently, descriptive analysis and classification of previous works are presented to highlight the main characteristics and solution methods. Finally, some of the issues and trends for future research are identified. This paper is targeted at dealing with the FNDSP to exhibit strategic and tactical goals and also contributes to the unification of the field which might be a useful complement to the few existing reviews. PMID:24526890
A genetic algorithm-based approach to flexible flow-line scheduling with variable lot sizes.
Lee, I; Sikora, R; Shaw, M J
1997-01-01
Genetic algorithms (GAs) have been used widely for such combinatorial optimization problems as the traveling salesman problem (TSP), the quadratic assignment problem (QAP), and job shop scheduling. In all of these problems there is usually a well defined representation which GA's use to solve the problem. We present a novel approach for solving two related problems-lot sizing and sequencing-concurrently using GAs. The essence of our approach lies in the concept of using a unified representation for the information about both the lot sizes and the sequence and enabling GAs to evolve the chromosome by replacing primitive genes with good building blocks. In addition, a simulated annealing procedure is incorporated to further improve the performance. We evaluate the performance of applying the above approach to flexible flow line scheduling with variable lot sizes for an actual manufacturing facility, comparing it to such alternative approaches as pair wise exchange improvement, tabu search, and simulated annealing procedures. The results show the efficacy of this approach for flexible flow line scheduling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlsson, Mats; Johansson, Mikael; Larson, Jeffrey
Previous approaches for scheduling a league with round-robin and divisional tournaments involved decomposing the problem into easier subproblems. This approach, used to schedule the top Swedish handball league Elitserien, reduces the problem complexity but can result in suboptimal schedules. This paper presents an integrated constraint programming model that allows to perform the scheduling in a single step. Particular attention is given to identifying implied and symmetry-breaking constraints that reduce the computational complexity significantly. The experimental evaluation of the integrated approach takes considerably less computational effort than the previous approach.
Optimization of Airport Surface Traffic: A Case-Study of Incheon International Airport
NASA Technical Reports Server (NTRS)
Eun, Yeonju; Jeon, Daekeun; Lee, Hanbong; Jung, Yoon C.; Zhu, Zhifan; Jeong, Myeongsook; Kim, Hyounkong; Oh, Eunmi; Hong, Sungkwon
2017-01-01
This study aims to develop a controllers decision support tool for departure and surface management of ICN. Airport surface traffic optimization for Incheon International Airport (ICN) in South Korea was studied based on the operational characteristics of ICN and airspace of Korea. For surface traffic optimization, a multiple runway scheduling problem and a taxi scheduling problem were formulated into two Mixed Integer Linear Programming (MILP) optimization models. The Miles-In-Trail (MIT) separation constraint at the departure fix shared by the departure flights from multiple runways and the runway crossing constraints due to the taxi route configuration specific to ICN were incorporated into the runway scheduling and taxiway scheduling problems, respectively. Since the MILP-based optimization model for the multiple runway scheduling problem may be computationally intensive, computation times and delay costs of different solving methods were compared for a practical implementation. This research was a collaboration between Korea Aerospace Research Institute (KARI) and National Aeronautics and Space Administration (NASA).
Optimization of Airport Surface Traffic: A Case-Study of Incheon International Airport
NASA Technical Reports Server (NTRS)
Eun, Yeonju; Jeon, Daekeun; Lee, Hanbong; Jung, Yoon Chul; Zhu, Zhifan; Jeong, Myeong-Sook; Kim, Hyoun Kyoung; Oh, Eunmi; Hong, Sungkwon
2017-01-01
This study aims to develop a controllers' decision support tool for departure and surface management of ICN. Airport surface traffic optimization for Incheon International Airport (ICN) in South Korea was studied based on the operational characteristics of ICN and airspace of Korea. For surface traffic optimization, a multiple runway scheduling problem and a taxi scheduling problem were formulated into two Mixed Integer Linear Programming (MILP) optimization models. The Miles-In-Trail (MIT) separation constraint at the departure fix shared by the departure flights from multiple runways and the runway crossing constraints due to the taxi route configuration specific to ICN were incorporated into the runway scheduling and taxiway scheduling problems, respectively. Since the MILP-based optimization model for the multiple runway scheduling problem may be computationally intensive, computation times and delay costs of different solving methods were compared for a practical implementation. This research was a collaboration between Korea Aerospace Research Institute (KARI) and National Aeronautics and Space Administration (NASA).
Multi-Objective Scheduling for the Cluster II Constellation
NASA Technical Reports Server (NTRS)
Johnston, Mark D.; Giuliano, Mark
2011-01-01
This paper describes the application of the MUSE multiobjecctive scheduling framework to the Cluster II WBD scheduling domain. Cluster II is an ESA four-spacecraft constellation designed to study the plasma environment of the Earth and it's magnetosphere. One of the instruments on each of the four spacecraft is the Wide Band Data (WBD) plasma wave experiment. We have applied the MUSE evolutionary algorithm to the scheduling problem represented by this instrument, and the result has been adopted and utilized by the WBD schedulers for nearly a year. This paper describes the WBD scheduling problem, its representation in MUSE, and some of the visualization elements that provide insight into objective value tradeoffs.
Optimal quantum cloning based on the maximin principle by using a priori information
NASA Astrophysics Data System (ADS)
Kang, Peng; Dai, Hong-Yi; Wei, Jia-Hua; Zhang, Ming
2016-10-01
We propose an optimal 1 →2 quantum cloning method based on the maximin principle by making full use of a priori information of amplitude and phase about the general cloned qubit input set, which is a simply connected region enclosed by a "longitude-latitude grid" on the Bloch sphere. Theoretically, the fidelity of the optimal quantum cloning machine derived from this method is the largest in terms of the maximin principle compared with that of any other machine. The problem solving is an optimization process that involves six unknown complex variables, six vectors in an uncertain-dimensional complex vector space, and four equality constraints. Moreover, by restricting the structure of the quantum cloning machine, the optimization problem is simplified as a three-real-parameter suboptimization problem with only one equality constraint. We obtain the explicit formula for a suboptimal quantum cloning machine. Additionally, the fidelity of our suboptimal quantum cloning machine is higher than or at least equal to that of universal quantum cloning machines and phase-covariant quantum cloning machines. It is also underlined that the suboptimal cloning machine outperforms the "belt quantum cloning machine" for some cases.
Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem.
Chen, Xiaopan; Kong, Yunfeng; Dang, Lanxue; Hou, Yane; Ye, Xinyue
2015-01-01
As a class of hard combinatorial optimization problems, the school bus routing problem has received considerable attention in the last decades. For a multi-school system, given the bus trips for each school, the school bus scheduling problem aims at optimizing bus schedules to serve all the trips within the school time windows. In this paper, we propose two approaches for solving the bi-objective school bus scheduling problem: an exact method of mixed integer programming (MIP) and a metaheuristic method which combines simulated annealing with local search. We develop MIP formulations for homogenous and heterogeneous fleet problems respectively and solve the models by MIP solver CPLEX. The bus type-based formulation for heterogeneous fleet problem reduces the model complexity in terms of the number of decision variables and constraints. The metaheuristic method is a two-stage framework for minimizing the number of buses to be used as well as the total travel distance of buses. We evaluate the proposed MIP and the metaheuristic method on two benchmark datasets, showing that on both instances, our metaheuristic method significantly outperforms the respective state-of-the-art methods.
Travel with CPAP machines: how frequent and what are the problems?
Bodington, Richard; Johnson, Owen; Carveth-Johnson, Pippa; Faruqi, Shoaib
2018-01-01
Obstructive sleep apnoea syndrome is a common condition for which continuous positive airways pressure (CPAP) is the standard treatment. The condition affects a population of which a substantial proportion will be travelling. We use a questionnaire survey of CPAP users to gain understanding regarding the behaviours, attitudes and problems surrounding travel with CPAP machines during travel and while abroad. All CPAP patients on our database at a UK district general hospital reviewed over a period of 4 years were sent a postal questionnaire. A response rate of 53% was achieved giving data on 588 trips. In the last 2 years, 63.7% of respondents had travelled; reasons for not travelling were CPAP related in only five cases. Travellers took their CPAP machines on 81% of trips. A similar proportion of patients took their CPAP machines regardless of the mode of travel, destination or length of holiday. Problems with checking in the CPAP machine were encountered in 4% of trips, all as part of air travel. Just over a third of patients faced problems either with the power cord, adapter or transport of the CPAP machine. Of those taking overnight flights, half did not sleep and none used their CPAP machines in flight. CPAP usage while away did not differ to usage at home. This is the first report to describe in some detail CPAP machine use and associated problems in travel and while away. The data may aid the targeting of brief interventions in CPAP clinics as well as helping to standardize the process of check-in in order to help travellers with CPAP machines. © International Society of Travel Medicine, 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
McKeith, Charles F A; Rock, Adam J; Clark, Gavin I
2017-06-01
In Australia, poker-machine gamblers represent a disproportionate number of problem gamblers. To cultivate a greater understanding of the psychological mechanisms involved in poker-machine gambling, a repeated measures cue-reactivity protocol was administered. A community sample of 38 poker-machine gamblers was assessed for problem-gambling severity and trait mindfulness. Participants were also assessed regarding altered state of awareness (ASA) and urge to gamble at baseline, following a neutral cue, and following a gambling cue. Results indicated that: (a) urge to gamble significantly increased from neutral cue to gambling cue, while controlling for baseline urge; (b) cue-reactive ASA did not significantly mediate the relationship between problem-gambling severity and cue-reactive urge (from neutral cue to gambling cue); (c) trait mindfulness was significantly negatively associated with both problem-gambling severity and cue-reactive urge (i.e., from neutral cue to gambling cue, while controlling for baseline urge); and (d) trait mindfulness did not significantly moderate the effect of problem-gambling severity on cue-reactive urge (from neutral cue to gambling cue). This is the first study to demonstrate a negative association between trait mindfulness and cue-reactive urge to gamble in a population of poker-machine gamblers. Thus, this association merits further evaluation both in relation to poker-machine gambling and other gambling modalities.
The application of artificial intelligence to astronomical scheduling problems
NASA Technical Reports Server (NTRS)
Johnston, Mark D.
1992-01-01
Efficient utilization of expensive space- and ground-based observatories is an important goal for the astronomical community; the cost of modern observing facilities is enormous, and the available observing time is much less than the demand from astronomers around the world. The complexity and variety of scheduling constraints and goals has led several groups to investigate how artificial intelligence (AI) techniques might help solve these kinds of problems. The earliest and most successful of these projects was started at Space Telescope Science Institute in 1987 and has led to the development of the Spike scheduling system to support the scheduling of Hubble Space Telescope (HST). The aim of Spike at STScI is to allocate observations to timescales of days to a week observing all scheduling constraints and maximizing preferences that help ensure that observations are made at optimal times. Spike has been in use operationally for HST since shortly after the observatory was launched in Apr. 1990. Although developed specifically for HST scheduling, Spike was carefully designed to provide a general framework for similar (activity-based) scheduling problems. In particular, the tasks to be scheduled are defined in the system in general terms, and no assumptions about the scheduling timescale are built in. The mechanisms for describing, combining, and propagating temporal and other constraints and preferences are quite general. The success of this approach has been demonstrated by the application of Spike to the scheduling of other satellite observatories: changes to the system are required only in the specific constraints that apply, and not in the framework itself. In particular, the Spike framework is sufficiently flexible to handle both long-term and short-term scheduling, on timescales of years down to minutes or less. This talk will discuss recent progress made in scheduling search techniques, the lessons learned from early HST operations, the application of Spike to other problem domains, and plans for the future evolution of the system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operating duplicating machinery. Not included in direct costs are overhead expenses such as costs of space... form of paper copy, microform, audio-visual materials, or machine-readable documentation (e.g... programs of scholarly research. (5) Non-commercial scientific institution means an institution that is not...
Code of Federal Regulations, 2012 CFR
2012-07-01
... operating duplicating machinery. Not included in direct costs are overhead expenses such as costs of space... form of paper copy, microform, audio-visual materials, or machine-readable documentation (e.g... programs of scholarly research. (5) Non-commercial scientific institution means an institution that is not...
Rural Renaissance. Revitalizing Small High Schools.
ERIC Educational Resources Information Center
Ford, Edmund A.
Written in 1961, this document presents the rationales and applications of what were and still are, in most instances, considered innovative practices. Subjects discussed are building designs, teaching machines, educational television, flexible scheduling, multiple classes and small-group techniques, teacher assistants, shared services, and…
Scheduling Future Water Supply Investments Under Uncertainty
NASA Astrophysics Data System (ADS)
Huskova, I.; Matrosov, E. S.; Harou, J. J.; Kasprzyk, J. R.; Reed, P. M.
2014-12-01
Uncertain hydrological impacts of climate change, population growth and institutional changes pose a major challenge to planning of water supply systems. Planners seek optimal portfolios of supply and demand management schemes but also when to activate assets whilst considering many system goals and plausible futures. Incorporation of scheduling into the planning under uncertainty problem strongly increases its complexity. We investigate some approaches to scheduling with many-objective heuristic search. We apply a multi-scenario many-objective scheduling approach to the Thames River basin water supply system planning problem in the UK. Decisions include which new supply and demand schemes to implement, at what capacity and when. The impact of different system uncertainties on scheme implementation schedules are explored, i.e. how the choice of future scenarios affects the search process and its outcomes. The activation of schemes is influenced by the occurrence of extreme hydrological events in the ensemble of plausible scenarios and other factors. The approach and results are compared with a previous study where only the portfolio problem is addressed (without scheduling).
NASA Technical Reports Server (NTRS)
Zweben, Monte
1991-01-01
The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.
NASA Technical Reports Server (NTRS)
Zweben, Monte
1991-01-01
The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocations for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its applications to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.
NASA Technical Reports Server (NTRS)
Zweben, Monte
1993-01-01
The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.
Blood Glucose Levels and Problem Behavior
ERIC Educational Resources Information Center
Valdovinos, Maria G.; Weyand, David
2006-01-01
The relationship between varying blood glucose levels and problem behavior during daily scheduled activities was examined. The effects that varying blood glucose levels had on problem behavior during daily scheduled activities were examined. Prior research has shown that differing blood glucose levels can affect behavior and mood. Results of this…
Srivastava, Shubhika; Allada, Vivekanand; Younoszai, Adel; Lopez, Leo; Soriano, Brian D; Fleishman, Craig E; Van Hoever, Andrea M; Lai, Wyman W
2016-10-01
The American Society of Echocardiography Committee on Pediatric Echocardiography Laboratory Productivity aimed to study factors that could influence the clinical productivity of physicians and sonographers and assess longitudinal trends for the same. The first survey results indicated that productivity correlated with the total volume of echocardiograms. Survey questions were designed to assess productivity for (1) physician full-time equivalent (FTE) allocated to echocardiography reading (echocardiograms per physician FTE per day), (2) sonographer FTE (echocardiograms per sonographer FTE per year), and (3) machine utilization (echocardiograms per machine per year). Questions were also posed to assess work flow and workforce. For fiscal year 2013 or academic year 2012-2013, the mean number of total echocardiograms-including outreach, transthoracic, fetal, and transesophageal echocardiograms-per physician FTE per day was 14.3 ± 5.9, the mean number of echocardiograms per sonographer FTE per year was 1,056 ± 441, and the mean number of echocardiograms per machine per year was 778 ± 303. Both physician and sonographer productivity was higher at high-volume surgical centers and with echocardiography slots scheduled concordantly with clinic visits. Having an advanced imaging fellow and outpatient sedation correlated negatively with clinical laboratory productivity. Machine utilization was greater in laboratories with higher sonographer and physician productivity and lower for machines obtained before 2009. Measures of pediatric echocardiography laboratory staff productivity and machine utilization were shown to correlate positively with surgical volume, total echocardiography volumes, and concordant echocardiography scheduling; the same measures correlated negatively with having an advanced imaging fellow and outpatient sedation. There has been no significant change in staff productivity noted over two Committee on Pediatric Echocardiography Laboratory Productivity survey cycles, suggesting that hiring practices have matched laboratory volume increases. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Multi-objective decision-making model based on CBM for an aircraft fleet
NASA Astrophysics Data System (ADS)
Luo, Bin; Lin, Lin
2018-04-01
Modern production management patterns, in which multi-unit (e.g., a fleet of aircrafts) are managed in a holistic manner, have brought new challenges for multi-unit maintenance decision making. To schedule a good maintenance plan, not only does the individual machine maintenance have to be considered, but also the maintenance of the other individuals have to be taken into account. Since most condition-based maintenance researches for aircraft focused on solely reducing maintenance cost or maximizing the availability of single aircraft, as well as considering that seldom researches concentrated on both the two objectives: minimizing cost and maximizing the availability of a fleet (total number of available aircraft in fleet), a multi-objective decision-making model based on condition-based maintenance concentrated both on the above two objectives is established. Furthermore, in consideration of the decision maker may prefer providing the final optimal result in the form of discrete intervals instead of a set of points (non-dominated solutions) in real decision-making problem, a novel multi-objective optimization method based on support vector regression is proposed to solve the above multi-objective decision-making model. Finally, a case study regarding a fleet is conducted, with the results proving that the approach efficiently generates outcomes that meet the schedule requirements.
Planning as a Precursor to Scheduling for Space Station Payload Operations
NASA Technical Reports Server (NTRS)
Howell, Eric; Maxwell, Theresa
1995-01-01
Contemporary schedulers attempt to solve the problem of best fitting a set of activities into an available timeframe while still satisfying the necessary constraints. This approach produces results which are optimized for the region of time the scheduler is able to process, satisfying the near term goals of the operation. In general the scheduler is not able to reason about the activities which precede or follow the window into which it is inputs to scheduling so that the intermediate placing activities. This creates a problem for operations which are composed of many activities spanning long durations (which exceed the scheduler's reasoning horizon) such as the continuous operations environment for payload operations on the Space Station. Not only must the near term scheduling objectives be met, but somehow the results of near term scheduling must be made to support the attainment of long term goals.
Spike: AI scheduling for Hubble Space Telescope after 18 months of orbital operations
NASA Technical Reports Server (NTRS)
Johnston, Mark D.
1992-01-01
This paper is a progress report on the Spike scheduling system, developed by the Space Telescope Science Institute for long-term scheduling of Hubble Space Telescope (HST) observations. Spike is an activity-based scheduler which exploits artificial intelligence (AI) techniques for constraint representation and for scheduling search. The system has been in operational use since shortly after HST launch in April 1990. Spike was adopted for several other satellite scheduling problems; of particular interest was the demonstration that the Spike framework is sufficiently flexible to handle both long-term and short-term scheduling, on timescales of years down to minutes or less. We describe the recent progress made in scheduling search techniques, the lessons learned from early HST operations, and the application of Spike to other problem domains. We also describe plans for the future evolution of the system.
NASA Astrophysics Data System (ADS)
Iwamura, Koji; Kuwahara, Shinya; Tanimizu, Yoshitaka; Sugimura, Nobuhiro
Recently, new distributed architectures of manufacturing systems are proposed, aiming at realizing more flexible control structures of the manufacturing systems. Many researches have been carried out to deal with the distributed architectures for planning and control of the manufacturing systems. However, the human operators have not yet been discussed for the autonomous components of the distributed manufacturing systems. A real-time scheduling method is proposed, in this research, to select suitable combinations of the human operators, the resources and the jobs for the manufacturing processes. The proposed scheduling method consists of following three steps. In the first step, the human operators select their favorite manufacturing processes which they will carry out in the next time period, based on their preferences. In the second step, the machine tools and the jobs select suitable combinations for the next machining processes. In the third step, the automated guided vehicles and the jobs select suitable combinations for the next transportation processes. The second and third steps are carried out by using the utility value based method and the dispatching rule-based method proposed in the previous researches. Some case studies have been carried out to verify the effectiveness of the proposed method.
Scheduling revisited workstations in integrated-circuit fabrication
NASA Technical Reports Server (NTRS)
Kline, Paul J.
1992-01-01
The cost of building new semiconductor wafer fabrication factories has grown rapidly, and a state-of-the-art fab may cost 250 million dollars or more. Obtaining an acceptable return on this investment requires high productivity from the fabrication facilities. This paper describes the Photo Dispatcher system which was developed to make machine-loading recommendations on a set of key fab machines. Dispatching policies that generally perform well in job shops (e.g., Shortest Remaining Processing Time) perform poorly for workstations such as photolithography which are visited several times by the same lot of silicon wafers. The Photo Dispatcher evaluates the history of workloads throughout the fab and identifies bottleneck areas. The scheduler then assigns priorities to lots depending on where they are headed after photolithography. These priorities are designed to avoid starving bottleneck workstations and to give preference to lots that are headed to areas where they can be processed with minimal waiting. Other factors considered by the scheduler to establish priorities are the nearness of a lot to the end of its process flow and the time that the lot has already been waiting in queue. Simulations that model the equipment and products in one of Texas Instrument's wafer fabs show the Photo Dispatcher can produce a 10 percent improvement in the time required to fabricate integrated circuits.
An investigation of chatter and tool wear when machining titanium
NASA Technical Reports Server (NTRS)
Sutherland, I. A.
1974-01-01
The low thermal conductivity of titanium, together with the low contact area between chip and tool and the unusually high chip velocities, gives rise to high tool tip temperatures and accelerated tool wear. Machining speeds have to be considerably reduced to avoid these high temperatures with a consequential loss of productivity. Restoring this lost productivity involves increasing other machining variables, such as feed and depth-of-cut, and can lead to another machining problem commonly known as chatter. This work is to acquaint users with these problems, to examine the variables that may be encountered when machining a material like titanium, and to advise the machine tool user on how to maximize the output from the machines and tooling available to him. Recommendations are made on ways of improving tolerances, reducing machine tool instability or chatter, and improving productivity. New tool materials, tool coatings, and coolants are reviewed and their relevance examined when machining titanium.
Periodic Heterogeneous Vehicle Routing Problem With Driver Scheduling
NASA Astrophysics Data System (ADS)
Mardiana Panggabean, Ellis; Mawengkang, Herman; Azis, Zainal; Filia Sari, Rina
2018-01-01
The paper develops a model for the optimal management of logistic delivery of a given commodity. The company has different type of vehicles with different capacity to deliver the commodity for customers. The problem is then called Periodic Heterogeneous Vehicle Routing Problem (PHVRP). The goal is to schedule the deliveries according to feasible combinations of delivery days and to determine the scheduling of fleet and driver and routing policies of the vehicles. The objective is to minimize the sum of the costs of all routes over the planning horizon. We propose a combined approach of heuristic algorithm and exact method to solve the problem.
Strategic Gang Scheduling for Railroad Maintenance
DOT National Transportation Integrated Search
2012-08-14
We address the railway track maintenance scheduling problem. The problem stems from the : significant percentage of the annual budget invested by the railway industry for maintaining its railway : tracks. The process requires consideration of human r...
Parts Quality Management: Direct Part Marking via Data Matrix Symbols for Mission Assurance
NASA Technical Reports Server (NTRS)
Moss, Chantrice
2013-01-01
A United States Government Accountability Office (GAO) review of twelve NASA programs found widespread parts quality problems contributing to significant cost overruns, schedule delays, and reduced system reliability. Direct part-marking with Data Matrix symbols could significantly improve the quality of inventory control and parts lifecycle management. This paper examines the feasibility of using 15 marking technologies for use in future NASA programs. A structural analysis is based on marked material type, operational environment (e.g., ground, suborbital, orbital), durability of marks, ease of operation, reliability, and affordability. A cost-benefits analysis considers marking technology (data plates, label printing, direct part marking) and marking types (two-dimensional machine-readable, human-readable). Previous NASA parts marking efforts and historical cost data are accounted for, including in-house vs. outsourced marking. Some marking methods are still under development. While this paper focuses on NASA programs, results may be applicable to a variety of industrial environments.
The no-show rate in a high-risk obstetric clinic.
Campbell, J D; Chez, R A; Queen, T; Barcelo, A; Patron, E
2000-10-01
We wished to determine the reasons for an average missed appointment rate of 28% in a high-risk pregnancy clinic. Only 41% of the 261 women in the study group could be reached by telephone. The reasons included not having a phone, the phone had been disconnected, incorrect phone number on the chart, the patient had moved, and the patient did not respond to the answering machine message. The reasons for missing the appointment included lack of transportation, scheduling problems, overslept or forgot, presence of a sick child or relative, and lack of child care. The response of patients to assessing prenatal care may reflect their priority of medical care relative to other priorities associated with day-to-day existence. There may be a baseline missed appointment rate for prenatal care in lower socioeconomic populations of women. The commitment of personnel time and energy to attempt to modify the no-show rate should be reexamined.
Forming Mandrels for X-Ray Mirror Substrates
NASA Technical Reports Server (NTRS)
Blake, Peter N.; Saha, Timo; Zhang, Will; O'Dell, Stephen; Kester, Thomas; Jones, William
2011-01-01
Future x-ray astronomical missions, like the International X-ray Observatory (IXO), will likely require replicated mirrors to reduce both mass and production costs. Accurately figured and measured mandrels - upon which the mirror substrates are thermally formed - are essential to enable these missions. The challenge of making these mandrels within reasonable costs and schedule has led the Goddard and Marshall Space Flight Centers to develop in-house processes and to encourage small businesses to attack parts of the problem. Both Goddard and Marshall have developed full-aperture polishing processes and metrologies that yield high-precision axial traces of the finished mandrels. Outside technologists have been addressing challenges presented by subaperture CNC machining processes: particularly difficult is the challenge of reducing mid-spatial frequency errors below 2 nm rms. The end-product of this approach is a realistic plan for the economically feasible production of mandrels that meet program requirements in both figure and quantity.
Decomposition of the compound Atwood machine
NASA Astrophysics Data System (ADS)
Lopes Coelho, R.
2017-11-01
Non-standard solving strategies for the compound Atwood machine problem have been proposed. The present strategy is based on a very simple idea. Taking an Atwood machine and replacing one of its bodies by another Atwood machine, we have a compound machine. As this operation can be repeated, we can construct any compound Atwood machine. This rule of construction is transferred to a mathematical model, whereby the equations of motion are obtained. The only difference between the machine and its model is that instead of pulleys and bodies, we have reference frames that move solidarily with these objects. This model provides us with the accelerations in the non-inertial frames of the bodies, which we will use to obtain the equations of motion. This approach to the problem will be justified by the Lagrange method and exemplified by machines with six and eight bodies.
U. S. fusion programs: Struggling to stay in the game
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, M.
Funding for the US fusion energy program has suffered and will probably continue to suffer major cuts. A committee hand-picked by Energy Secretary James Watkins urged the Department of Energy to mount an aggressive program to develop fusion power, but congress cut funding from $323 million in 1990 to $275 million in 1991. This portends dire conditions for fusion research and development. Projects to receive top priority are concerned with the tokamaks and to keep the next big machine, the Burning Plasma Experiment, scheduled for beginning of construction in 1993 on schedule. Secretary Watkins is said to want to keepmore » the International Thermonuclear Energy Reactor (ITER) on schedule. ITER would follow the Burning Plasma Experiment.« less
Workflow as a Service in the Cloud: Architecture and Scheduling Algorithms
Wang, Jianwu; Korambath, Prakashan; Altintas, Ilkay; Davis, Jim; Crawl, Daniel
2017-01-01
With more and more workflow systems adopting cloud as their execution environment, it becomes increasingly challenging on how to efficiently manage various workflows, virtual machines (VMs) and workflow execution on VM instances. To make the system scalable and easy-to-extend, we design a Workflow as a Service (WFaaS) architecture with independent services. A core part of the architecture is how to efficiently respond continuous workflow requests from users and schedule their executions in the cloud. Based on different targets, we propose four heuristic workflow scheduling algorithms for the WFaaS architecture, and analyze the differences and best usages of the algorithms in terms of performance, cost and the price/performance ratio via experimental studies. PMID:29399237
NASA Astrophysics Data System (ADS)
Bürger, Adrian; Sawant, Parantapa; Bohlayer, Markus; Altmann-Dieses, Angelika; Braun, Marco; Diehl, Moritz
2017-10-01
Within this work, the benefits of using predictive control methods for the operation of Adsorption Cooling Machines (ACMs) are shown on a simulation study. Since the internal control decisions of series-manufactured ACMs often cannot be influenced, the work focuses on optimized scheduling of an ACM considering its internal functioning as well as forecasts for load and driving energy occurrence. For illustration, an assumed solar thermal climate system is introduced and a system model suitable for use within gradient-based optimization methods is developed. The results of a system simulation using a conventional scheme for ACM scheduling are compared to the results of a predictive, optimization-based scheduling approach for the same exemplary scenario of load and driving energy occurrence. The benefits of the latter approach are shown and future actions for application of these methods for system control are addressed.
Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning
NASA Technical Reports Server (NTRS)
Drummond, Mark; Fox, Mark; Tate, Austin; Zweben, Monte
1992-01-01
The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques.
Job Scheduling in a Heterogeneous Grid Environment
NASA Technical Reports Server (NTRS)
Shan, Hong-Zhang; Smith, Warren; Oliker, Leonid; Biswas, Rupak
2004-01-01
Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.
Uncertainty management by relaxation of conflicting constraints in production process scheduling
NASA Technical Reports Server (NTRS)
Dorn, Juergen; Slany, Wolfgang; Stary, Christian
1992-01-01
Mathematical-analytical methods as used in Operations Research approaches are often insufficient for scheduling problems. This is due to three reasons: the combinatorial complexity of the search space, conflicting objectives for production optimization, and the uncertainty in the production process. Knowledge-based techniques, especially approximate reasoning and constraint relaxation, are promising ways to overcome these problems. A case study from an industrial CIM environment, namely high-grade steel production, is presented to demonstrate how knowledge-based scheduling with the desired capabilities could work. By using fuzzy set theory, the applied knowledge representation technique covers the uncertainty inherent in the problem domain. Based on this knowledge representation, a classification of jobs according to their importance is defined which is then used for the straightforward generation of a schedule. A control strategy which comprises organizational, spatial, temporal, and chemical constraints is introduced. The strategy supports the dynamic relaxation of conflicting constraints in order to improve tentative schedules.
Simulated annealing with probabilistic analysis for solving traveling salesman problems
NASA Astrophysics Data System (ADS)
Hong, Pei-Yee; Lim, Yai-Fung; Ramli, Razamin; Khalid, Ruzelan
2013-09-01
Simulated Annealing (SA) is a widely used meta-heuristic that was inspired from the annealing process of recrystallization of metals. Therefore, the efficiency of SA is highly affected by the annealing schedule. As a result, in this paper, we presented an empirical work to provide a comparable annealing schedule to solve symmetric traveling salesman problems (TSP). Randomized complete block design is also used in this study. The results show that different parameters do affect the efficiency of SA and thus, we propose the best found annealing schedule based on the Post Hoc test. SA was tested on seven selected benchmarked problems of symmetric TSP with the proposed annealing schedule. The performance of SA was evaluated empirically alongside with benchmark solutions and simple analysis to validate the quality of solutions. Computational results show that the proposed annealing schedule provides a good quality of solution.
Guidance and Control Software,
1980-05-01
commitments of function, cost, and schedule . The phrase "software engineering" was intended to contrast with the phrase "computer science" the latter aims...the software problems of cost, delivery schedule , and quality were gradually being recognized at the highest management levels. Thus, in a project... schedule dates. Although the analysis of software problems indicated that the entire software development process (figure 1) needed new methods, only
High performance techniques for space mission scheduling
NASA Technical Reports Server (NTRS)
Smith, Stephen F.
1994-01-01
In this paper, we summarize current research at Carnegie Mellon University aimed at development of high performance techniques and tools for space mission scheduling. Similar to prior research in opportunistic scheduling, our approach assumes the use of dynamic analysis of problem constraints as a basis for heuristic focusing of problem solving search. This methodology, however, is grounded in representational assumptions more akin to those adopted in recent temporal planning research, and in a problem solving framework which similarly emphasizes constraint posting in an explicitly maintained solution constraint network. These more general representational assumptions are necessitated by the predominance of state-dependent constraints in space mission planning domains, and the consequent need to integrate resource allocation and plan synthesis processes. First, we review the space mission problems we have considered to date and indicate the results obtained in these application domains. Next, we summarize recent work in constraint posting scheduling procedures, which offer the promise of better future solutions to this class of problems.
NASA Astrophysics Data System (ADS)
Chen, Jung-Chieh
This paper presents a low complexity algorithmic framework for finding a broadcasting schedule in a low-altitude satellite system, i. e., the satellite broadcast scheduling (SBS) problem, based on the recent modeling and computational methodology of factor graphs. Inspired by the huge success of the low density parity check (LDPC) codes in the field of error control coding, in this paper, we transform the SBS problem into an LDPC-like problem through a factor graph instead of using the conventional neural network approaches to solve the SBS problem. Based on a factor graph framework, the soft-information, describing the probability that each satellite will broadcast information to a terminal at a specific time slot, is exchanged among the local processing in the proposed framework via the sum-product algorithm to iteratively optimize the satellite broadcasting schedule. Numerical results show that the proposed approach not only can obtain optimal solution but also enjoys the low complexity suitable for integral-circuit implementation.
Application of TRIZ approach to machine vibration condition monitoring problems
NASA Astrophysics Data System (ADS)
Cempel, Czesław
2013-12-01
Up to now machine condition monitoring has not been seriously approached by TRIZ1TRIZ= Russian acronym for Inventive Problem Solving System, created by G. Altshuller ca 50 years ago. users, and the knowledge of TRIZ methodology has not been applied there intensively. However, there are some introductory papers of present author posted on Diagnostic Congress in Cracow (Cempel, in press [11]), and Diagnostyka Journal as well. But it seems to be further need to make such approach from different sides in order to see, if some new knowledge and technology will emerge. In doing this we need at first to define the ideal final result (IFR) of our innovation problem. As a next we need a set of parameters to describe the problems of system condition monitoring (CM) in terms of TRIZ language and set of inventive principles possible to apply, on the way to IFR. This means we should present the machine CM problem by means of contradiction and contradiction matrix. When specifying the problem parameters and inventive principles, one should use analogy and metaphorical thinking, which by definition is not exact but fuzzy, and leads sometimes to unexpected results and outcomes. The paper undertakes this important problem again and brings some new insight into system and machine CM problems. This may mean for example the minimal dimensionality of TRIZ engineering parameter set for the description of machine CM problems, and the set of most useful inventive principles applied to given engineering parameter and contradictions of TRIZ.
36 CFR § 902.82 - Fee schedule.
Code of Federal Regulations, 2013 CFR
2013-07-01
... operating duplicating machinery. Not included in direct costs are overhead expenses such as costs of space... form of paper copy, microform, audio-visual materials, or machine-readable documentation (e.g... programs of scholarly research. (5) Non-commercial scientific institution means an institution that is not...
Integrated flexible manufacturing program for manufacturing automation and rapid prototyping
NASA Technical Reports Server (NTRS)
Brooks, S. L.; Brown, C. W.; King, M. S.; Simons, W. R.; Zimmerman, J. J.
1993-01-01
The Kansas City Division of Allied Signal Inc., as part of the Integrated Flexible Manufacturing Program (IFMP), is developing an integrated manufacturing environment. Several systems are being developed to produce standards and automation tools for specific activities within the manufacturing environment. The Advanced Manufacturing Development System (AMDS) is concentrating on information standards (STEP) and product data transfer; the Expert Cut Planner system (XCUT) is concentrating on machining operation process planning standards and automation capabilities; the Advanced Numerical Control system (ANC) is concentrating on NC data preparation standards and NC data generation tools; the Inspection Planning and Programming Expert system (IPPEX) is concentrating on inspection process planning, coordinate measuring machine (CMM) inspection standards and CMM part program generation tools; and the Intelligent Scheduling and Planning System (ISAPS) is concentrating on planning and scheduling tools for a flexible manufacturing system environment. All of these projects are working together to address information exchange, standardization, and information sharing to support rapid prototyping in a Flexible Manufacturing System (FMS) environment.
A modify ant colony optimization for the grid jobs scheduling problem with QoS requirements
NASA Astrophysics Data System (ADS)
Pu, Xun; Lu, XianLiang
2011-10-01
Job scheduling with customers' quality of service (QoS) requirement is challenging in grid environment. In this paper, we present a modify Ant colony optimization (MACO) for the Job scheduling problem in grid. Instead of using the conventional construction approach to construct feasible schedules, the proposed algorithm employs a decomposition method to satisfy the customer's deadline and cost requirements. Besides, a new mechanism of service instances state updating is embedded to improve the convergence of MACO. Experiments demonstrate the effectiveness of the proposed algorithm.
The role of artificial intelligence techniques in scheduling systems
NASA Technical Reports Server (NTRS)
Geoffroy, Amy L.; Britt, Daniel L.; Gohring, John R.
1990-01-01
Artificial Intelligence (AI) techniques provide good solutions for many of the problems which are characteristic of scheduling applications. However, scheduling is a large, complex heterogeneous problem. Different applications will require different solutions. Any individual application will require the use of a variety of techniques, including both AI and conventional software methods. The operational context of the scheduling system will also play a large role in design considerations. The key is to identify those places where a specific AI technique is in fact the preferable solution, and to integrate that technique into the overall architecture.
A new distributed systems scheduling algorithm: a swarm intelligence approach
NASA Astrophysics Data System (ADS)
Haghi Kashani, Mostafa; Sarvizadeh, Raheleh; Jameii, Mahdi
2011-12-01
The scheduling problem in distributed systems is known as an NP-complete problem, and methods based on heuristic or metaheuristic search have been proposed to obtain optimal and suboptimal solutions. The task scheduling is a key factor for distributed systems to gain better performance. In this paper, an efficient method based on memetic algorithm is developed to solve the problem of distributed systems scheduling. With regard to load balancing efficiently, Artificial Bee Colony (ABC) has been applied as local search in the proposed memetic algorithm. The proposed method has been compared to existing memetic-Based approach in which Learning Automata method has been used as local search. The results demonstrated that the proposed method outperform the above mentioned method in terms of communication cost.
CP Violation and the Future of Flavor Physics
NASA Astrophysics Data System (ADS)
Kiesling, Christian
2009-12-01
With the nearing completion of the first-generation experiments at asymmetric e+e- colliders running at the Υ(4S) resonance ("B-Factories") a new era of high luminosity machines is at the horizon. We report here on the plans at KEK in Japan to upgrade the KEKB machine ("SuperKEKB") with the goal of achieving an instantaneous luminosity exceeding 8×1035 cm-2 s-1, which is almost two orders of magnitude higher than KEKB. Together with the machine, the Belle detector will be upgraded as well ("Belle-II"), with significant improvements to increase its background tolerance as well as improving its physics performance. The new generation of experiments is scheduled to take first data in the year 2013.
Quantum-Enhanced Machine Learning
NASA Astrophysics Data System (ADS)
Dunjko, Vedran; Taylor, Jacob M.; Briegel, Hans J.
2016-09-01
The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.
Solution and reasoning reuse in space planning and scheduling applications
NASA Technical Reports Server (NTRS)
Verfaillie, Gerard; Schiex, Thomas
1994-01-01
In the space domain, as in other domains, the CSP (Constraint Satisfaction Problems) techniques are increasingly used to represent and solve planning and scheduling problems. But these techniques have been developed to solve CSP's which are composed of fixed sets of variables and constraints, whereas many planning and scheduling problems are dynamic. It is therefore important to develop methods which allow a new solution to be rapidly found, as close as possible to the previous one, when some variables or constraints are added or removed. After presenting some existing approaches, this paper proposes a simple and efficient method, which has been developed on the basis of the dynamic backtracking algorithm. This method allows previous solution and reasoning to be reused in the framework of a CSP which is close to the previous one. Some experimental results on general random CSPs and on operation scheduling problems for remote sensing satellites are given.
Parameterizing by the Number of Numbers
NASA Astrophysics Data System (ADS)
Fellows, Michael R.; Gaspers, Serge; Rosamond, Frances A.
The usefulness of parameterized algorithmics has often depended on what Niedermeier has called "the art of problem parameterization". In this paper we introduce and explore a novel but general form of parameterization: the number of numbers. Several classic numerical problems, such as Subset Sum, Partition, 3-Partition, Numerical 3-Dimensional Matching, and Numerical Matching with Target Sums, have multisets of integers as input. We initiate the study of parameterizing these problems by the number of distinct integers in the input. We rely on an FPT result for Integer Linear Programming Feasibility to show that all the above-mentioned problems are fixed-parameter tractable when parameterized in this way. In various applied settings, problem inputs often consist in part of multisets of integers or multisets of weighted objects (such as edges in a graph, or jobs to be scheduled). Such number-of-numbers parameterized problems often reduce to subproblems about transition systems of various kinds, parameterized by the size of the system description. We consider several core problems of this kind relevant to number-of-numbers parameterization. Our main hardness result considers the problem: given a non-deterministic Mealy machine M (a finite state automaton outputting a letter on each transition), an input word x, and a census requirement c for the output word specifying how many times each letter of the output alphabet should be written, decide whether there exists a computation of M reading x that outputs a word y that meets the requirement c. We show that this problem is hard for W[1]. If the question is whether there exists an input word x such that a computation of M on x outputs a word that meets c, the problem becomes fixed-parameter tractable.
Machine learning of network metrics in ATLAS Distributed Data Management
NASA Astrophysics Data System (ADS)
Lassnig, Mario; Toler, Wesley; Vamosi, Ralf; Bogado, Joaquin; ATLAS Collaboration
2017-10-01
The increasing volume of physics data poses a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from one of our ongoing automation efforts that focuses on network metrics. First, we describe our machine learning framework built atop the ATLAS Analytics Platform. This framework can automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for networkaware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our models.
Toward interactive scheduling systems for managing medical resources.
Oddi, A; Cesta, A
2000-10-01
Managers of medico-hospital facilities are facing two general problems when allocating resources to activities: (1) to find an agreement between several and contrasting requirements; (2) to manage dynamic and uncertain situations when constraints suddenly change over time due to medical needs. This paper describes the results of a research aimed at applying constraint-based scheduling techniques to the management of medical resources. A mixed-initiative problem solving approach is adopted in which a user and a decision support system interact to incrementally achieve a satisfactory solution to the problem. A running prototype is described called Interactive Scheduler which offers a set of functionalities for a mixed-initiative interaction to cope with the medical resource management. Interactive Scheduler is endowed with a representation schema used for describing the medical environment, a set of algorithms that address the specific problems of the domain, and an innovative interaction module that offers functionalities for the dialogue between the support system and its user. A particular contribution of this work is the explicit representation of constraint violations, and the definition of scheduling algorithms that aim at minimizing the amount of constraint violations in a solution.
Smart Screening System (S3) In Taconite Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daryoush Allaei; Angus Morison; David Tarnowski
2005-09-01
The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the process of FE model validation and correlation with experimental data in terms of dynamic performance and predicted stresses. It also detailed efforts into making the supporting structure less important to system performance. Finally, an introduction into the dry application concept was presented. Since then, the design refinement phase was completed. This has resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. Furthermore, this system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota.« less
A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path.
Xie, Zhiqiang; Shao, Xia; Xin, Yu
2016-01-01
To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective.
A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path
Xie, Zhiqiang; Shao, Xia; Xin, Yu
2016-01-01
To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective. PMID:27490901
On the integrability of the motion of 3D-Swinging Atwood machine and related problems
NASA Astrophysics Data System (ADS)
Elmandouh, A. A.
2016-03-01
In the present article, we study the problem of the motion of 3D- Swinging Atwood machine. A new integrable case for this problem is announced. We point out a new integrable case describing the motion of a heavy particle on a titled cone.
Atwood's Machine as a Tool to Introduce Variable Mass Systems
ERIC Educational Resources Information Center
de Sousa, Celia A.
2012-01-01
This article discusses an instructional strategy which explores eventual similarities and/or analogies between familiar problems and more sophisticated systems. In this context, the Atwood's machine problem is used to introduce students to more complex problems involving ropes and chains. The methodology proposed helps students to develop the…
NASA Technical Reports Server (NTRS)
Rash, James
2014-01-01
NASA's space data-communications infrastructure-the Space Network and the Ground Network-provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft. The Space Network operates several orbiting geostationary platforms (the Tracking and Data Relay Satellite System (TDRSS)), each with its own servicedelivery antennas onboard. The Ground Network operates service-delivery antennas at ground stations located around the world. Together, these networks enable data transfer between user spacecraft and their mission control centers on Earth. Scheduling data-communications events for spacecraft that use the NASA communications infrastructure-the relay satellites and the ground stations-can be accomplished today with software having an operational heritage dating from the 1980s or earlier. An implementation of the scheduling methods and algorithms disclosed and formally specified herein will produce globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary algorithms, a class of probabilistic strategies for searching large solution spaces, is the essential technology invoked and exploited in this disclosure. Also disclosed are secondary methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithms themselves. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure within the expected range of future users and space- or ground-based service-delivery assets. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally. The generalized methods and algorithms are applicable to a very broad class of combinatorial-optimization problems that encompasses, among many others, the problem of generating optimal space-data communications schedules.
Quantum annealing with parametrically driven nonlinear oscillators
NASA Astrophysics Data System (ADS)
Puri, Shruti
While progress has been made towards building Ising machines to solve hard combinatorial optimization problems, quantum speedups have so far been elusive. Furthermore, protecting annealers against decoherence and achieving long-range connectivity remain important outstanding challenges. With the hope of overcoming these challenges, I introduce a new paradigm for quantum annealing that relies on continuous variable states. Unlike the more conventional approach based on two-level systems, in this approach, quantum information is encoded in two coherent states that are stabilized by parametrically driving a nonlinear resonator. I will show that a fully connected Ising problem can be mapped onto a network of such resonators, and outline an annealing protocol based on adiabatic quantum computing. During the protocol, the resonators in the network evolve from vacuum to coherent states representing the ground state configuration of the encoded problem. In short, the system evolves between two classical states following non-classical dynamics. As will be supported by numerical results, this new annealing paradigm leads to superior noise resilience. Finally, I will discuss a realistic circuit QED realization of an all-to-all connected network of parametrically driven nonlinear resonators. The continuous variable nature of the states in the large Hilbert space of the resonator provides new opportunities for exploring quantum phase transitions and non-stoquastic dynamics during the annealing schedule.
Distributed learning and multi-objectivity in traffic light control
NASA Astrophysics Data System (ADS)
Brys, Tim; Pham, Tong T.; Taylor, Matthew E.
2014-01-01
Traffic jams and suboptimal traffic flows are ubiquitous in modern societies, and they create enormous economic losses each year. Delays at traffic lights alone account for roughly 10% of all delays in US traffic. As most traffic light scheduling systems currently in use are static, set up by human experts rather than being adaptive, the interest in machine learning approaches to this problem has increased in recent years. Reinforcement learning (RL) approaches are often used in these studies, as they require little pre-existing knowledge about traffic flows. Distributed constraint optimisation approaches (DCOP) have also been shown to be successful, but are limited to cases where the traffic flows are known. The distributed coordination of exploration and exploitation (DCEE) framework was recently proposed to introduce learning in the DCOP framework. In this paper, we present a study of DCEE and RL techniques in a complex simulator, illustrating the particular advantages of each, comparing them against standard isolated traffic actuated signals. We analyse how learning and coordination behave under different traffic conditions, and discuss the multi-objective nature of the problem. Finally we evaluate several alternative reward signals in the best performing approach, some of these taking advantage of the correlation between the problem-inherent objectives to improve performance.
Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem
Chen, Xiaopan; Kong, Yunfeng; Dang, Lanxue; Hou, Yane; Ye, Xinyue
2015-01-01
As a class of hard combinatorial optimization problems, the school bus routing problem has received considerable attention in the last decades. For a multi-school system, given the bus trips for each school, the school bus scheduling problem aims at optimizing bus schedules to serve all the trips within the school time windows. In this paper, we propose two approaches for solving the bi-objective school bus scheduling problem: an exact method of mixed integer programming (MIP) and a metaheuristic method which combines simulated annealing with local search. We develop MIP formulations for homogenous and heterogeneous fleet problems respectively and solve the models by MIP solver CPLEX. The bus type-based formulation for heterogeneous fleet problem reduces the model complexity in terms of the number of decision variables and constraints. The metaheuristic method is a two-stage framework for minimizing the number of buses to be used as well as the total travel distance of buses. We evaluate the proposed MIP and the metaheuristic method on two benchmark datasets, showing that on both instances, our metaheuristic method significantly outperforms the respective state-of-the-art methods. PMID:26176764
NASA Technical Reports Server (NTRS)
Wang, Lui; Valenzuela-Rendon, Manuel
1993-01-01
The Space Station Freedom will require the supply of items in a regular fashion. A schedule for the delivery of these items is not easy to design due to the large span of time involved and the possibility of cancellations and changes in shuttle flights. This paper presents the basic concepts of a genetic algorithm model, and also presents the results of an effort to apply genetic algorithms to the design of propellant resupply schedules. As part of this effort, a simple simulator and an encoding by which a genetic algorithm can find near optimal schedules have been developed. Additionally, this paper proposes ways in which robust schedules, i.e., schedules that can tolerate small changes, can be found using genetic algorithms.
Learning Search Control Knowledge for Deep Space Network Scheduling
NASA Technical Reports Server (NTRS)
Gratch, Jonathan; Chien, Steve; DeJong, Gerald
1993-01-01
While the general class of most scheduling problems is NP-hard in worst-case complexity, in practice, for specific distributions of problems and constraints, domain-specific solutions have been shown to perform in much better than exponential time.
Vehicle and driver scheduling for public transit.
DOT National Transportation Integrated Search
2009-08-01
The problem of driver scheduling involves the construction of a legal set of shifts, including allowance : of overtime, which cover the blocks in a particular vehicle schedule. A shift is the work scheduled to be performed by : a driver in one day, w...
Onboard planning for geological investigations using a rover team
NASA Technical Reports Server (NTRS)
Estlin, Tara; Gaines, Daniel; Fisher, Forest; Castano, Rebecca
2004-01-01
This paper describes an integrated system for coordinating multiple rover behavior with the overall goal of collecting planetary surface data. The Multi-Rover Integrated Science Understanding System (MISUS) combines techniques from planning and scheduling with machine learning to perform autonomous scientific exploration with cooperating rovers.
An Efficient Downlink Scheduling Strategy Using Normal Graphs for Multiuser MIMO Wireless Systems
NASA Astrophysics Data System (ADS)
Chen, Jung-Chieh; Wu, Cheng-Hsuan; Lee, Yao-Nan; Wen, Chao-Kai
Inspired by the success of the low-density parity-check (LDPC) codes in the field of error-control coding, in this paper we propose transforming the downlink multiuser multiple-input multiple-output scheduling problem into an LDPC-like problem using the normal graph. Based on the normal graph framework, soft information, which indicates the probability that each user will be scheduled to transmit packets at the access point through a specified angle-frequency sub-channel, is exchanged among the local processors to iteratively optimize the multiuser transmission schedule. Computer simulations show that the proposed algorithm can efficiently schedule simultaneous multiuser transmission which then increases the overall channel utilization and reduces the average packet delay.
Predit: A temporal predictive framework for scheduling systems
NASA Technical Reports Server (NTRS)
Paolucci, E.; Patriarca, E.; Sem, M.; Gini, G.
1992-01-01
Scheduling can be formalized as a Constraint Satisfaction Problem (CSP). Within this framework activities belonging to a plan are interconnected via temporal constraints that account for slack among them. Temporal representation must include methods for constraints propagation and provide a logic for symbolic and numerical deductions. In this paper we describe a support framework for opportunistic reasoning in constraint directed scheduling. In order to focus the attention of an incremental scheduler on critical problem aspects, some discrete temporal indexes are presented. They are also useful for the prediction of the degree of resources contention. The predictive method expressed through our indexes can be seen as a Knowledge Source for an opportunistic scheduler with a blackboard architecture.
Distributed Sleep Scheduling in Wireless Sensor Networks via Fractional Domatic Partitioning
NASA Astrophysics Data System (ADS)
Schumacher, André; Haanpää, Harri
We consider setting up sleep scheduling in sensor networks. We formulate the problem as an instance of the fractional domatic partition problem and obtain a distributed approximation algorithm by applying linear programming approximation techniques. Our algorithm is an application of the Garg-Könemann (GK) scheme that requires solving an instance of the minimum weight dominating set (MWDS) problem as a subroutine. Our two main contributions are a distributed implementation of the GK scheme for the sleep-scheduling problem and a novel asynchronous distributed algorithm for approximating MWDS based on a primal-dual analysis of Chvátal's set-cover algorithm. We evaluate our algorithm with
A coherent Ising machine for 2000-node optimization problems
NASA Astrophysics Data System (ADS)
Inagaki, Takahiro; Haribara, Yoshitaka; Igarashi, Koji; Sonobe, Tomohiro; Tamate, Shuhei; Honjo, Toshimori; Marandi, Alireza; McMahon, Peter L.; Umeki, Takeshi; Enbutsu, Koji; Tadanaga, Osamu; Takenouchi, Hirokazu; Aihara, Kazuyuki; Kawarabayashi, Ken-ichi; Inoue, Kyo; Utsunomiya, Shoko; Takesue, Hiroki
2016-11-01
The analysis and optimization of complex systems can be reduced to mathematical problems collectively known as combinatorial optimization. Many such problems can be mapped onto ground-state search problems of the Ising model, and various artificial spin systems are now emerging as promising approaches. However, physical Ising machines have suffered from limited numbers of spin-spin couplings because of implementations based on localized spins, resulting in severe scalability problems. We report a 2000-spin network with all-to-all spin-spin couplings. Using a measurement and feedback scheme, we coupled time-multiplexed degenerate optical parametric oscillators to implement maximum cut problems on arbitrary graph topologies with up to 2000 nodes. Our coherent Ising machine outperformed simulated annealing in terms of accuracy and computation time for a 2000-node complete graph.
Lee, JuneHyuck; Noh, Sang Do; Kim, Hyun-Jung; Kang, Yong-Shin
2018-05-04
The prediction of internal defects of metal casting immediately after the casting process saves unnecessary time and money by reducing the amount of inputs into the next stage, such as the machining process, and enables flexible scheduling. Cyber-physical production systems (CPPS) perfectly fulfill the aforementioned requirements. This study deals with the implementation of CPPS in a real factory to predict the quality of metal casting and operation control. First, a CPPS architecture framework for quality prediction and operation control in metal-casting production was designed. The framework describes collaboration among internet of things (IoT), artificial intelligence, simulations, manufacturing execution systems, and advanced planning and scheduling systems. Subsequently, the implementation of the CPPS in actual plants is described. Temperature is a major factor that affects casting quality, and thus, temperature sensors and IoT communication devices were attached to casting machines. The well-known NoSQL database, HBase and the high-speed processing/analysis tool, Spark, are used for IoT repository and data pre-processing, respectively. Many machine learning algorithms such as decision tree, random forest, artificial neural network, and support vector machine were used for quality prediction and compared with R software. Finally, the operation of the entire system is demonstrated through a CPPS dashboard. In an era in which most CPPS-related studies are conducted on high-level abstract models, this study describes more specific architectural frameworks, use cases, usable software, and analytical methodologies. In addition, this study verifies the usefulness of CPPS by estimating quantitative effects. This is expected to contribute to the proliferation of CPPS in the industry.
ERIC Educational Resources Information Center
Tsakanikos, Elias; Underwood, Lisa; Sturmey, Peter; Bouras, Nick; McCarthy, Jane
2011-01-01
The present study employed the Disability Assessment Schedule (DAS) to assess problem behaviors in a large sample of adults with ID (N = 568) and evaluate the psychometric properties of this instrument. Although the DAS problem behaviors were found to be internally consistent (Cronbach's [alpha] = 0.87), item analysis revealed one weak item…
NASA Technical Reports Server (NTRS)
Rash, James L.
2010-01-01
NASA's space data-communications infrastructure, the Space Network and the Ground Network, provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft via orbiting relay satellites and ground stations. An implementation of the methods and algorithms disclosed herein will be a system that produces globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary search, a class of probabilistic strategies for searching large solution spaces, constitutes the essential technology in this disclosure. Also disclosed are methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithm itself. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally, with applicability to a very broad class of combinatorial optimization problems.
Scheduling: A guide for program managers
NASA Technical Reports Server (NTRS)
1994-01-01
The following topics are discussed concerning scheduling: (1) milestone scheduling; (2) network scheduling; (3) program evaluation and review technique; (4) critical path method; (5) developing a network; (6) converting an ugly duckling to a swan; (7) network scheduling problem; (8) (9) network scheduling when resources are limited; (10) multi-program considerations; (11) influence on program performance; (12) line-of-balance technique; (13) time management; (14) recapitulization; and (15) analysis.
Automated Scheduling Via Artificial Intelligence
NASA Technical Reports Server (NTRS)
Biefeld, Eric W.; Cooper, Lynne P.
1991-01-01
Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.
Scheduling for energy and reliability management on multiprocessor real-time systems
NASA Astrophysics Data System (ADS)
Qi, Xuan
Scheduling algorithms for multiprocessor real-time systems have been studied for years with many well-recognized algorithms proposed. However, it is still an evolving research area and many problems remain open due to their intrinsic complexities. With the emergence of multicore processors, it is necessary to re-investigate the scheduling problems and design/develop efficient algorithms for better system utilization, low scheduling overhead, high energy efficiency, and better system reliability. Focusing cluster schedulings with optimal global schedulers, we study the utilization bound and scheduling overhead for a class of cluster-optimal schedulers. Then, taking energy/power consumption into consideration, we developed energy-efficient scheduling algorithms for real-time systems, especially for the proliferating embedded systems with limited energy budget. As the commonly deployed energy-saving technique (e.g. dynamic voltage frequency scaling (DVFS)) will significantly affect system reliability, we study schedulers that have intelligent mechanisms to recuperate system reliability to satisfy the quality assurance requirements. Extensive simulation is conducted to evaluate the performance of the proposed algorithms on reduction of scheduling overhead, energy saving, and reliability improvement. The simulation results show that the proposed reliability-aware power management schemes could preserve the system reliability while still achieving substantial energy saving.
Quantum Computing: Solving Complex Problems
DiVincenzo, David
2018-05-22
One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.
Dataflow Design Tool: User's Manual
NASA Technical Reports Server (NTRS)
Jones, Robert L., III
1996-01-01
The Dataflow Design Tool is a software tool for selecting a multiprocessor scheduling solution for a class of computational problems. The problems of interest are those that can be described with a dataflow graph and are intended to be executed repetitively on a set of identical processors. Typical applications include signal processing and control law problems. The software tool implements graph-search algorithms and analysis techniques based on the dataflow paradigm. Dataflow analyses provided by the software are introduced and shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The software tool provides performance optimization through the inclusion of artificial precedence constraints among the schedulable tasks. The user interface and tool capabilities are described. Examples are provided to demonstrate the analysis, scheduling, and optimization functions facilitated by the tool.
An Exploratory Study of Problem Gambling on Casino versus Non-Casino Electronic Gaming Machines
ERIC Educational Resources Information Center
Clarke, Dave; Pulford, Justin; Bellringer, Maria; Abbott, Max; Hodgins, David C.
2012-01-01
Electronic gaming machines (EGMs) have been frequently associated with problem gambling. Little research has compared the relative contribution of casino EGMs versus non-casino EGMs on current problem gambling, after controlling for demographic factors and gambling behaviour. Our exploratory study obtained data from questionnaires administered to…
Solving cyclical nurse scheduling problem using preemptive goal programming
NASA Astrophysics Data System (ADS)
Sundari, V. E.; Mardiyati, S.
2017-07-01
Nurse scheduling system in a hospital is being modeled as a preemptive goal programming problem that is solved by using LINGO software with the objective function to minimize deviation variable at each goal. The scheduling is done cyclically, so every nurse is treated fairly since they have the same work shift portion with the other nurses. By paying attention to the hospital's rules regarding nursing work shift cyclically, it can be obtained that numbers of nurse needed in every ward are 18 nurses and the numbers of scheduling periods are 18 periods where every period consists of 21 days.
Neighbourhood generation mechanism applied in simulated annealing to job shop scheduling problems
NASA Astrophysics Data System (ADS)
Cruz-Chávez, Marco Antonio
2015-11-01
This paper presents a neighbourhood generation mechanism for the job shop scheduling problems (JSSPs). In order to obtain a feasible neighbour with the generation mechanism, it is only necessary to generate a permutation of an adjacent pair of operations in a scheduling of the JSSP. If there is no slack time between the adjacent pair of operations that is permuted, then it is proven, through theory and experimentation, that the new neighbour (schedule) generated is feasible. It is demonstrated that the neighbourhood generation mechanism is very efficient and effective in a simulated annealing.
32 CFR 1662.6 - Fee schedule; waiver of fees.
Code of Federal Regulations, 2012 CFR
2012-07-01
... as costs of space, and heating or lighting the facility in which the records are stored. (2) The term... copies may take the form of paper copy, microform, audio-visual materials, or machine readable... institution of vocational education, which operates a program or programs of scholarly research. (7) The term...
32 CFR 1662.6 - Fee schedule; waiver of fees.
Code of Federal Regulations, 2014 CFR
2014-07-01
... as costs of space, and heating or lighting the facility in which the records are stored. (2) The term... copies may take the form of paper copy, microform, audio-visual materials, or machine readable... institution of vocational education, which operates a program or programs of scholarly research. (7) The term...
Block Scheduling in High Schools.
ERIC Educational Resources Information Center
Irmsher, Karen
1996-01-01
Block Scheduling has been considered a cure for a lengthy list of educational problems. This report reviews the literature on block schedules and describes some Oregon high schools that have integrated block scheduling. Major disadvantages included resistance to change and requirements that teachers change their teaching strategies. There is…
Xing, KeYi; Han, LiBin; Zhou, MengChu; Wang, Feng
2012-06-01
Deadlock-free control and scheduling are vital for optimizing the performance of automated manufacturing systems (AMSs) with shared resources and route flexibility. Based on the Petri net models of AMSs, this paper embeds the optimal deadlock avoidance policy into the genetic algorithm and develops a novel deadlock-free genetic scheduling algorithm for AMSs. A possible solution of the scheduling problem is coded as a chromosome representation that is a permutation with repetition of parts. By using the one-step look-ahead method in the optimal deadlock control policy, the feasibility of a chromosome is checked, and infeasible chromosomes are amended into feasible ones, which can be easily decoded into a feasible deadlock-free schedule. The chromosome representation and polynomial complexity of checking and amending procedures together support the cooperative aspect of genetic search for scheduling problems strongly.
ERIC Educational Resources Information Center
Sedwal, Mona; Kamat, Sangeeta
2008-01-01
The Scheduled Castes (SCs, also known as Dalits) and Scheduled Tribes (STs, also known as Adivasis) are among the most socially and educationally disadvantaged groups in India. This paper examines issues concerning school access and equity for Scheduled Caste and Scheduled Tribe communities and also highlights their unique problems, which may…
2008-06-01
capacity planning; • Electrical generation capacity planning; • Machine scheduling; • Freight scheduling; • Dairy farm expansion planning...Support Systems and Multi Criteria Decision Analysis Products A.2.11.2.2.1 ELECTRE IS ELECTRE IS is a generalization of ELECTRE I. It is a...criteria, ELECTRE IS supports the user in the process of selecting one alternative or a subset of alternatives. The method consists of two parts
A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems
NASA Astrophysics Data System (ADS)
Thammano, Arit; Teekeng, Wannaporn
2015-05-01
The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.
Cost-efficient scheduling of FAST observations
NASA Astrophysics Data System (ADS)
Luo, Qi; Zhao, Laiping; Yu, Ce; Xiao, Jian; Sun, Jizhou; Zhu, Ming; Zhong, Yi
2018-03-01
A cost-efficient schedule for the Five-hundred-meter Aperture Spherical radio Telescope (FAST) requires to maximize the number of observable proposals and the overall scientific priority, and minimize the overall slew-cost generated by telescope shifting, while taking into account the constraints including the astronomical objects visibility, user-defined observable times, avoiding Radio Frequency Interference (RFI). In this contribution, first we solve the problem of maximizing the number of observable proposals and scientific priority by modeling it as a Minimum Cost Maximum Flow (MCMF) problem. The optimal schedule can be found by any MCMF solution algorithm. Then, for minimizing the slew-cost of the generated schedule, we devise a maximally-matchable edges detection-based method to reduce the problem size, and propose a backtracking algorithm to find the perfect matching with minimum slew-cost. Experiments on a real dataset from NASA/IPAC Extragalactic Database (NED) show that, the proposed scheduler can increase the usage of available times with high scientific priority and reduce the slew-cost significantly in a very short time.
Using the principles of circadian physiology enhances shift schedule design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, J.J.; Moore-Ede, M.C.
1987-01-01
Nuclear power plants must operate 24 h, 7 days a week. For the most part, shift schedules currently in use at nuclear power plants have been designed to meet operational needs without considering the biological clocks of the human operators. The development of schedules that also take circadian principles into account is a positive step that can be taken to improve plant safety by optimizing operator alertness. These schedules reduce the probability of human errors especially during backshifts. In addition, training programs that teach round-the-clock workers how to deal with the problems of shiftwork can help to optimize performance andmore » alertness. These programs teach shiftworkers the underlying causes of the sleep problems associated with shiftwork and also provide coping strategies for improving sleep and dealing with the transition between shifts. When these training programs are coupled with an improved schedule, the problems associated with working round-the-clock can be significantly reduced.« less
EUROPA2: Plan Database Services for Planning and Scheduling Applications
NASA Technical Reports Server (NTRS)
Bedrax-Weiss, Tania; Frank, Jeremy; Jonsson, Ari; McGann, Conor
2004-01-01
NASA missions require solving a wide variety of planning and scheduling problems with temporal constraints; simple resources such as robotic arms, communications antennae and cameras; complex replenishable resources such as memory, power and fuel; and complex constraints on geometry, heat and lighting angles. Planners and schedulers that solve these problems are used in ground tools as well as onboard systems. The diversity of planning problems and applications of planners and schedulers precludes a one-size fits all solution. However, many of the underlying technologies are common across planning domains and applications. We describe CAPR, a formalism for planning that is general enough to cover a wide variety of planning and scheduling domains of interest to NASA. We then describe EUROPA(sub 2), a software framework implementing CAPR. EUROPA(sub 2) provides efficient, customizable Plan Database Services that enable the integration of CAPR into a wide variety of applications. We describe the design of EUROPA(sub 2) from the perspective of both modeling, customization and application integration to different classes of NASA missions.
Language Acquisition and Machine Learning.
1986-02-01
machine learning and examine its implications for computational models of language acquisition. As a framework for understanding this research, the authors propose four component tasks involved in learning from experience-aggregation, clustering, characterization, and storage. They then consider four common problems studied by machine learning researchers-learning from examples, heuristics learning, conceptual clustering, and learning macro-operators-describing each in terms of our framework. After this, they turn to the problem of grammar
NASA Astrophysics Data System (ADS)
Lary, D. J.
2013-12-01
A BigData case study is described where multiple datasets from several satellites, high-resolution global meteorological data, social media and in-situ observations are combined using machine learning on a distributed cluster using an automated workflow. The global particulate dataset is relevant to global public health studies and would not be possible to produce without the use of the multiple big datasets, in-situ data and machine learning.To greatly reduce the development time and enhance the functionality a high level language capable of parallel processing has been used (Matlab). A key consideration for the system is high speed access due to the large data volume, persistence of the large data volumes and a precise process time scheduling capability.
Data-driven advice for applying machine learning to bioinformatics problems
Olson, Randal S.; La Cava, William; Mustahsan, Zairah; Varik, Akshay; Moore, Jason H.
2017-01-01
As the bioinformatics field grows, it must keep pace not only with new data but with new algorithms. Here we contribute a thorough analysis of 13 state-of-the-art, commonly used machine learning algorithms on a set of 165 publicly available classification problems in order to provide data-driven algorithm recommendations to current researchers. We present a number of statistical and visual comparisons of algorithm performance and quantify the effect of model selection and algorithm tuning for each algorithm and dataset. The analysis culminates in the recommendation of five algorithms with hyperparameters that maximize classifier performance across the tested problems, as well as general guidelines for applying machine learning to supervised classification problems. PMID:29218881
Hypertext-based design of a user interface for scheduling
NASA Technical Reports Server (NTRS)
Woerner, Irene W.; Biefeld, Eric
1993-01-01
Operations Mission Planner (OMP) is an ongoing research project at JPL that utilizes AI techniques to create an intelligent, automated planning and scheduling system. The information space reflects the complexity and diversity of tasks necessary in most real-world scheduling problems. Thus the problem of the user interface is to present as much information as possible at a given moment and allow the user to quickly navigate through the various types of displays. This paper describes a design which applies the hypertext model to solve these user interface problems. The general paradigm is to provide maps and search queries to allow the user to quickly find an interesting conflict or problem, and then allow the user to navigate through the displays in a hypertext fashion.
Scheduling the resident 80-hour work week: an operations research algorithm.
Day, T Eugene; Napoli, Joseph T; Kuo, Paul C
2006-01-01
The resident 80-hour work week requires that programs now schedule duty hours. Typically, scheduling is performed in an empirical "trial-and-error" fashion. However, this is a classic "scheduling" problem from the field of operations research (OR). It is similar to scheduling issues that airlines must face with pilots and planes routing through various airports at various times. The authors hypothesized that an OR approach using iterative computer algorithms could provide a rational scheduling solution. Institution-specific constraints of the residency problem were formulated. A total of 56 residents are rotating through 4 hospitals. Additional constraints were dictated by the Residency Review Committee (RRC) rules or the specific surgical service. For example, at Hospital 1, during the weekday hours between 6 am and 6 pm, there will be a PGY4 or PGY5 and a PGY2 or PGY3 on-duty to cover Service "A." A series of equations and logic statements was generated to satisfy all constraints and requirements. These were restated in the Optimization Programming Language used by the ILOG software suite for solving mixed integer programming problems. An integer programming solution was generated to this resource-constrained assignment problem. A total of 30,900 variables and 12,443 constraints were required. A total of man-hours of programming were used; computer run-time was 25.9 hours. A weekly schedule was generated for each resident that satisfied the RRC regulations while fulfilling all stated surgical service requirements. Each required between 64 and 80 weekly resident duty hours. The authors conclude that OR is a viable approach to schedule resident work hours. This technique is sufficiently robust to accommodate changes in resident numbers, service requirements, and service and hospital rotations.
The Compound Atwood Machine Problem
ERIC Educational Resources Information Center
Coelho, R. Lopes
2017-01-01
The present paper accounts for progress in physics teaching in the sense that a problem, which has been closed to students for being too difficult, is gained for the high school curriculum. This problem is the compound Atwood machine with three bodies. Its introduction into high school classes is based on a recent study on the weighing of an…
A time-shared machine repair problem with mixed spares under N-policy
NASA Astrophysics Data System (ADS)
Jain, Madhu; Shekhar, Chandra; Shukla, Shalini
2016-06-01
The present investigation deals with a machine repair problem consisting of cold and warm standby machines. The machines are subject to breakdown and are repaired by the permanent repairman operating under N-policy. There is provision of one additional removable repairman who is called upon when the work load of failed machines crosses a certain threshold level and is removed as soon as the work load again ceases to that level. Both repairmen recover the failed machines by following the time sharing concept which means that the repairmen share their repair job simultaneously among all the failed machines that have joined the system for repair. Markovian model has been developed by considering the queue dependent rates and solved analytically using the recursive technique. Various performance indices are derived which are further used to obtain the cost function. By taking illustration, numerical simulation and sensitivity analysis have been provided.
Li, Shanlin; Li, Maoqin
2015-01-01
We consider an integrated production and distribution scheduling problem faced by a typical make-to-order manufacturer which relies on a third-party logistics (3PL) provider for finished product delivery to customers. In the beginning of a planning horizon, the manufacturer has received a set of orders to be processed on a single production line. Completed orders are delivered to customers by a finite number of vehicles provided by the 3PL company which follows a fixed daily or weekly shipping schedule such that the vehicles have fixed departure dates which are not part of the decisions. The problem is to find a feasible schedule that minimizes one of the following objective functions when processing times and weights are oppositely ordered: (1) the total weight of late orders and (2) the number of vehicles used subject to the condition that the total weight of late orders is minimum. We show that both problems are solvable in polynomial time.
Scheduling Non-Preemptible Jobs to Minimize Peak Demand
Yaw, Sean; Mumey, Brendan
2017-10-28
Our paper examines an important problem in smart grid energy scheduling; peaks in power demand are proportionally more expensive to generate and provision for. The issue is exacerbated in local microgrids that do not benefit from the aggregate smoothing experienced by large grids. Demand-side scheduling can reduce these peaks by taking advantage of the fact that there is often flexibility in job start times. We then focus attention on the case where the jobs are non-preemptible, meaning once started, they run to completion. The associated optimization problem is called the peak demand minimization problem, and has been previously shown tomore » be NP-hard. These results include an optimal fixed-parameter tractable algorithm, a polynomial-time approximation algorithm, as well as an effective heuristic that can also be used in an online setting of the problem. Simulation results show that these methods can reduce peak demand by up to 50% versus on-demand scheduling for household power jobs.« less
Li, Shanlin; Li, Maoqin
2015-01-01
We consider an integrated production and distribution scheduling problem faced by a typical make-to-order manufacturer which relies on a third-party logistics (3PL) provider for finished product delivery to customers. In the beginning of a planning horizon, the manufacturer has received a set of orders to be processed on a single production line. Completed orders are delivered to customers by a finite number of vehicles provided by the 3PL company which follows a fixed daily or weekly shipping schedule such that the vehicles have fixed departure dates which are not part of the decisions. The problem is to find a feasible schedule that minimizes one of the following objective functions when processing times and weights are oppositely ordered: (1) the total weight of late orders and (2) the number of vehicles used subject to the condition that the total weight of late orders is minimum. We show that both problems are solvable in polynomial time. PMID:25785285
Scheduling Non-Preemptible Jobs to Minimize Peak Demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaw, Sean; Mumey, Brendan
Our paper examines an important problem in smart grid energy scheduling; peaks in power demand are proportionally more expensive to generate and provision for. The issue is exacerbated in local microgrids that do not benefit from the aggregate smoothing experienced by large grids. Demand-side scheduling can reduce these peaks by taking advantage of the fact that there is often flexibility in job start times. We then focus attention on the case where the jobs are non-preemptible, meaning once started, they run to completion. The associated optimization problem is called the peak demand minimization problem, and has been previously shown tomore » be NP-hard. These results include an optimal fixed-parameter tractable algorithm, a polynomial-time approximation algorithm, as well as an effective heuristic that can also be used in an online setting of the problem. Simulation results show that these methods can reduce peak demand by up to 50% versus on-demand scheduling for household power jobs.« less
NASA Astrophysics Data System (ADS)
Chen, Miawjane; Yan, Shangyao; Wang, Sin-Siang; Liu, Chiu-Lan
2015-02-01
An effective project schedule is essential for enterprises to increase their efficiency of project execution, to maximize profit, and to minimize wastage of resources. Heuristic algorithms have been developed to efficiently solve the complicated multi-mode resource-constrained project scheduling problem with discounted cash flows (MRCPSPDCF) that characterize real problems. However, the solutions obtained in past studies have been approximate and are difficult to evaluate in terms of optimality. In this study, a generalized network flow model, embedded in a time-precedence network, is proposed to formulate the MRCPSPDCF with the payment at activity completion times. Mathematically, the model is formulated as an integer network flow problem with side constraints, which can be efficiently solved for optimality, using existing mathematical programming software. To evaluate the model performance, numerical tests are performed. The test results indicate that the model could be a useful planning tool for project scheduling in the real world.
An Effective Mechanism for Virtual Machine Placement using Aco in IAAS Cloud
NASA Astrophysics Data System (ADS)
Shenbaga Moorthy, Rajalakshmi; Fareentaj, U.; Divya, T. K.
2017-08-01
Cloud computing provides an effective way to dynamically provide numerous resources to meet customer demands. A major challenging problem for cloud providers is designing efficient mechanisms for optimal virtual machine Placement (OVMP). Such mechanisms enable the cloud providers to effectively utilize their available resources and obtain higher profits. In order to provide appropriate resources to the clients an optimal virtual machine placement algorithm is proposed. Virtual machine placement is NP-Hard problem. Such NP-Hard problem can be solved using heuristic algorithm. In this paper, Ant Colony Optimization based virtual machine placement is proposed. Our proposed system focuses on minimizing the cost spending in each plan for hosting virtual machines in a multiple cloud provider environment and the response time of each cloud provider is monitored periodically, in such a way to minimize delay in providing the resources to the users. The performance of the proposed algorithm is compared with greedy mechanism. The proposed algorithm is simulated in Eclipse IDE. The results clearly show that the proposed algorithm minimizes the cost, response time and also number of migrations.
1993-02-01
the (re)planning framework, incorporating the demonstrators CALIGULA and ALLOCATOR for resource allocation and scheduling respectively. In the Command...demonstrator CALIGULA for the problem of allocating frequencies to a radio link network. The problems in the domain of scheduling are dealt with. which has...demonstrating the (re)planning framework, incorporating the demonstrators CALIGULA and ALLOCATOR for resource allocation and scheduling respectively
Ali, Habiba I; Jarrar, Amjad H; Abo-El-Enen, Mostafa; Al Shamsi, Mariam; Al Ashqar, Huda
2015-05-28
Increasing the healthfulness of campus food environments is an important step in promoting healthful food choices among college students. This study explored university students' suggestions on promoting healthful food choices from campus vending machines. It also examined factors influencing students' food choices from vending machines. Peer-led semi-structured individual interviews were conducted with 43 undergraduate students (33 females and 10 males) recruited from students enrolled in an introductory nutrition course in a large national university in the United Arab Emirates. Interviews were audiotaped, transcribed, and coded to generate themes using N-Vivo software. Accessibility, peer influence, and busy schedules were the main factors influencing students' food choices from campus vending machines. Participants expressed the need to improve the nutritional quality of the food items sold in the campus vending machines. Recommendations for students' nutrition educational activities included placing nutrition tips on or beside the vending machines and using active learning methods, such as competitions on nutrition knowledge. The results of this study have useful applications in improving the campus food environment and nutrition education opportunities at the university to assist students in making healthful food choices.
Intercell scheduling: A negotiation approach using multi-agent coalitions
NASA Astrophysics Data System (ADS)
Tian, Yunna; Li, Dongni; Zheng, Dan; Jia, Yunde
2016-10-01
Intercell scheduling problems arise as a result of intercell transfers in cellular manufacturing systems. Flexible intercell routes are considered in this article, and a coalition-based scheduling (CBS) approach using distributed multi-agent negotiation is developed. Taking advantage of the extended vision of the coalition agents, the global optimization is improved and the communication cost is reduced. The objective of the addressed problem is to minimize mean tardiness. Computational results show that, compared with the widely used combinatorial rules, CBS provides better performance not only in minimizing the objective, i.e. mean tardiness, but also in minimizing auxiliary measures such as maximum completion time, mean flow time and the ratio of tardy parts. Moreover, CBS is better than the existing intercell scheduling approach for the same problem with respect to the solution quality and computational costs.
Active Solution Space and Search on Job-shop Scheduling Problem
NASA Astrophysics Data System (ADS)
Watanabe, Masato; Ida, Kenichi; Gen, Mitsuo
In this paper we propose a new searching method of Genetic Algorithm for Job-shop scheduling problem (JSP). The coding method that represent job number in order to decide a priority to arrange a job to Gannt Chart (called the ordinal representation with a priority) in JSP, an active schedule is created by using left shift. We define an active solution at first. It is solution which can create an active schedule without using left shift, and set of its defined an active solution space. Next, we propose an algorithm named Genetic Algorithm with active solution space search (GA-asol) which can create an active solution while solution is evaluated, in order to search the active solution space effectively. We applied it for some benchmark problems to compare with other method. The experimental results show good performance.
Optimizing Irregular Applications for Energy and Performance on the Tilera Many-core Architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavarría-Miranda, Daniel; Panyala, Ajay R.; Halappanavar, Mahantesh
Optimizing applications simultaneously for energy and performance is a complex problem. High performance, parallel, irregular applications are notoriously hard to optimize due to their data-dependent memory accesses, lack of structured locality and complex data structures and code patterns. Irregular kernels are growing in importance in applications such as machine learning, graph analytics and combinatorial scientific computing. Performance- and energy-efficient implementation of these kernels on modern, energy efficient, multicore and many-core platforms is therefore an important and challenging problem. We present results from optimizing two irregular applications { the Louvain method for community detection (Grappolo), and high-performance conjugate gradient (HPCCG) {more » on the Tilera many-core system. We have significantly extended MIT's OpenTuner auto-tuning framework to conduct a detailed study of platform-independent and platform-specific optimizations to improve performance as well as reduce total energy consumption. We explore the optimization design space along three dimensions: memory layout schemes, compiler-based code transformations, and optimization of parallel loop schedules. Using auto-tuning, we demonstrate whole node energy savings of up to 41% relative to a baseline instantiation, and up to 31% relative to manually optimized variants.« less
Games in the Brain: Neural Substrates of Gambling Addiction.
Murch, W Spencer; Clark, Luke
2016-10-01
As a popular form of recreational risk taking, gambling games offer a paradigm for decision neuroscience research. As an individual behavior, gambling becomes dysfunctional in a subset of the population, with debilitating consequences. Gambling disorder has been recently reconceptualized as a "behavioral addiction" in the DSM-5, based on emerging parallels with substance use disorders. Why do some individuals undergo this transition from recreational to disordered gambling? The biomedical model of problem gambling is a "brain disorder" account that posits an underlying neurobiological abnormality. This article first delineates the neural circuitry that underpins gambling-related decision making, comprising ventral striatum, ventromedial prefrontal cortex, dopaminergic midbrain, and insula, and presents evidence for pathophysiology in this circuitry in gambling disorder. These biological dispositions become translated into clinical disorder through the effects of gambling games. This influence is better articulated in a public health approach that describes the interplay between the player and the (gambling) product. Certain forms of gambling, including electronic gambling machines, appear to be overrepresented in problem gamblers. These games harness psychological features, including variable ratio schedules, near-misses, "losses disguised as wins," and the illusion of control, which modulate the core decision-making circuitry that is perturbed in gambling disorder. © The Author(s) 2015.
Machine vision and appearance based learning
NASA Astrophysics Data System (ADS)
Bernstein, Alexander
2017-03-01
Smart algorithms are used in Machine vision to organize or extract high-level information from the available data. The resulted high-level understanding the content of images received from certain visual sensing system and belonged to an appearance space can be only a key first step in solving various specific tasks such as mobile robot navigation in uncertain environments, road detection in autonomous driving systems, etc. Appearance-based learning has become very popular in the field of machine vision. In general, the appearance of a scene is a function of the scene content, the lighting conditions, and the camera position. Mobile robots localization problem in machine learning framework via appearance space analysis is considered. This problem is reduced to certain regression on an appearance manifold problem, and newly regression on manifolds methods are used for its solution.
Simulation-driven machine learning: Bearing fault classification
NASA Astrophysics Data System (ADS)
Sobie, Cameron; Freitas, Carina; Nicolai, Mike
2018-01-01
Increasing the accuracy of mechanical fault detection has the potential to improve system safety and economic performance by minimizing scheduled maintenance and the probability of unexpected system failure. Advances in computational performance have enabled the application of machine learning algorithms across numerous applications including condition monitoring and failure detection. Past applications of machine learning to physical failure have relied explicitly on historical data, which limits the feasibility of this approach to in-service components with extended service histories. Furthermore, recorded failure data is often only valid for the specific circumstances and components for which it was collected. This work directly addresses these challenges for roller bearings with race faults by generating training data using information gained from high resolution simulations of roller bearing dynamics, which is used to train machine learning algorithms that are then validated against four experimental datasets. Several different machine learning methodologies are compared starting from well-established statistical feature-based methods to convolutional neural networks, and a novel application of dynamic time warping (DTW) to bearing fault classification is proposed as a robust, parameter free method for race fault detection.
NASA Astrophysics Data System (ADS)
Ardi, S.; Ardyansyah, D.
2018-02-01
In the Manufacturing of automotive spare parts, increased sales of vehicles is resulted in increased demand for production of engine valve of the customer. To meet customer demand, we carry out improvement and overhaul of the NTVS-2894 seat grinder machine on a machining line. NTVS-2894 seat grinder machine has been decreased machine productivity, the amount of trouble, and the amount of downtime. To overcome these problems on overhaul the NTVS-2984 seat grinder machine include mechanical and programs, is to do the design and manufacture of HMI (Human Machine Interface) GP-4501T program. Because of the time prior to the overhaul, NTVS-2894 seat grinder machine does not have a backup HMI (Human Machine Interface) program. The goal of the design and manufacture in this program is to improve the achievement of production, and allows an operator to operate beside it easier to troubleshoot the NTVS-2894 seat grinder machine thereby reducing downtime on the NTVS-2894 seat grinder machine. The results after the design are HMI program successfully made it back, machine productivity increased by 34.8%, the amount of trouble, and downtime decreased 40% decrease from 3,160 minutes to 1,700 minutes. The implication of our design, it could facilitate the operator in operating machine and the technician easer to maintain and do the troubleshooting the machine problems.
Effective Iterated Greedy Algorithm for Flow-Shop Scheduling Problems with Time lags
NASA Astrophysics Data System (ADS)
ZHAO, Ning; YE, Song; LI, Kaidian; CHEN, Siyu
2017-05-01
Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algorithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% computational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.
Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments
Kadima, Hubert; Granado, Bertrand
2013-01-01
We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach. PMID:24319361
Multi-objective approach for energy-aware workflow scheduling in cloud computing environments.
Yassa, Sonia; Chelouah, Rachid; Kadima, Hubert; Granado, Bertrand
2013-01-01
We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach.
Scheduling IT Staff at a Bank: A Mathematical Programming Approach
Labidi, M.; Mrad, M.; Gharbi, A.; Louly, M. A.
2014-01-01
We address a real-world optimization problem: the scheduling of a Bank Information Technologies (IT) staff. This problem can be defined as the process of constructing optimized work schedules for staff. In a general sense, it requires the allocation of suitably qualified staff to specific shifts to meet the demands for services of an organization while observing workplace regulations and attempting to satisfy individual work preferences. A monthly shift schedule is prepared to determine the shift duties of each staff considering shift coverage requirements, seniority-based workload rules, and staff work preferences. Due to the large number of conflicting constraints, a multiobjective programming model has been proposed to automate the schedule generation process. The suggested mathematical model has been implemented using Lingo software. The results indicate that high quality solutions can be obtained within a few seconds compared to the manually prepared schedules. PMID:24772032
Scheduling IT staff at a bank: a mathematical programming approach.
Labidi, M; Mrad, M; Gharbi, A; Louly, M A
2014-01-01
We address a real-world optimization problem: the scheduling of a Bank Information Technologies (IT) staff. This problem can be defined as the process of constructing optimized work schedules for staff. In a general sense, it requires the allocation of suitably qualified staff to specific shifts to meet the demands for services of an organization while observing workplace regulations and attempting to satisfy individual work preferences. A monthly shift schedule is prepared to determine the shift duties of each staff considering shift coverage requirements, seniority-based workload rules, and staff work preferences. Due to the large number of conflicting constraints, a multiobjective programming model has been proposed to automate the schedule generation process. The suggested mathematical model has been implemented using Lingo software. The results indicate that high quality solutions can be obtained within a few seconds compared to the manually prepared schedules.
Systemic Sustainability in RtI Using Intervention-Based Scheduling Methodologies
ERIC Educational Resources Information Center
Dallas, William P.
2017-01-01
This study evaluated a scheduling methodology referred to as intervention-based scheduling to address the problem of practice regarding the fidelity of implementing Response to Intervention (RtI) in an existing school schedule design. Employing panel data, this study used fixed-effects regressions and first differences ordinary least squares (OLS)…
Scheduling Independent Partitions in Integrated Modular Avionics Systems
Du, Chenglie; Han, Pengcheng
2016-01-01
Recently the integrated modular avionics (IMA) architecture has been widely adopted by the avionics industry due to its strong partition mechanism. Although the IMA architecture can achieve effective cost reduction and reliability enhancement in the development of avionics systems, it results in a complex allocation and scheduling problem. All partitions in an IMA system should be integrated together according to a proper schedule such that their deadlines will be met even under the worst case situations. In order to help provide a proper scheduling table for all partitions in IMA systems, we study the schedulability of independent partitions on a multiprocessor platform in this paper. We firstly present an exact formulation to calculate the maximum scaling factor and determine whether all partitions are schedulable on a limited number of processors. Then with a Game Theory analogy, we design an approximation algorithm to solve the scheduling problem of partitions, by allowing each partition to optimize its own schedule according to the allocations of the others. Finally, simulation experiments are conducted to show the efficiency and reliability of the approach proposed in terms of time consumption and acceptance ratio. PMID:27942013
Dynamic cellular manufacturing system considering machine failure and workload balance
NASA Astrophysics Data System (ADS)
Rabbani, Masoud; Farrokhi-Asl, Hamed; Ravanbakhsh, Mohammad
2018-02-01
Machines are a key element in the production system and their failure causes irreparable effects in terms of cost and time. In this paper, a new multi-objective mathematical model for dynamic cellular manufacturing system (DCMS) is provided with consideration of machine reliability and alternative process routes. In this dynamic model, we attempt to resolve the problem of integrated family (part/machine cell) formation as well as the operators' assignment to the cells. The first objective minimizes the costs associated with the DCMS. The second objective optimizes the labor utilization and, finally, a minimum value of the variance of workload between different cells is obtained by the third objective function. Due to the NP-hard nature of the cellular manufacturing problem, the problem is initially validated by the GAMS software in small-sized problems, and then the model is solved by two well-known meta-heuristic methods including non-dominated sorting genetic algorithm and multi-objective particle swarm optimization in large-scaled problems. Finally, the results of the two algorithms are compared with respect to five different comparison metrics.
A 16-bit Coherent Ising Machine for One-Dimensional Ring and Cubic Graph Problems
NASA Astrophysics Data System (ADS)
Takata, Kenta; Marandi, Alireza; Hamerly, Ryan; Haribara, Yoshitaka; Maruo, Daiki; Tamate, Shuhei; Sakaguchi, Hiromasa; Utsunomiya, Shoko; Yamamoto, Yoshihisa
2016-09-01
Many tasks in our modern life, such as planning an efficient travel, image processing and optimizing integrated circuit design, are modeled as complex combinatorial optimization problems with binary variables. Such problems can be mapped to finding a ground state of the Ising Hamiltonian, thus various physical systems have been studied to emulate and solve this Ising problem. Recently, networks of mutually injected optical oscillators, called coherent Ising machines, have been developed as promising solvers for the problem, benefiting from programmability, scalability and room temperature operation. Here, we report a 16-bit coherent Ising machine based on a network of time-division-multiplexed femtosecond degenerate optical parametric oscillators. The system experimentally gives more than 99.6% of success rates for one-dimensional Ising ring and nondeterministic polynomial-time (NP) hard instances. The experimental and numerical results indicate that gradual pumping of the network combined with multiple spectral and temporal modes of the femtosecond pulses can improve the computational performance of the Ising machine, offering a new path for tackling larger and more complex instances.
Application of the SNoW machine learning paradigm to a set of transportation imaging problems
NASA Astrophysics Data System (ADS)
Paul, Peter; Burry, Aaron M.; Wang, Yuheng; Kozitsky, Vladimir
2012-01-01
Machine learning methods have been successfully applied to image object classification problems where there is clear distinction between classes and where a comprehensive set of training samples and ground truth are readily available. The transportation domain is an area where machine learning methods are particularly applicable, since the classification problems typically have well defined class boundaries and, due to high traffic volumes in most applications, massive roadway data is available. Though these classes tend to be well defined, the particular image noises and variations can be challenging. Another challenge is the extremely high accuracy typically required in most traffic applications. Incorrect assignment of fines or tolls due to imaging mistakes is not acceptable in most applications. For the front seat vehicle occupancy detection problem, classification amounts to determining whether one face (driver only) or two faces (driver + passenger) are detected in the front seat of a vehicle on a roadway. For automatic license plate recognition, the classification problem is a type of optical character recognition problem encompassing multiple class classification. The SNoW machine learning classifier using local SMQT features is shown to be successful in these two transportation imaging applications.
Workshop on Fielded Applications of Machine Learning
1994-05-11
This report summaries the talks presented at the Workshop on Fielded Applications of Machine Learning , and draws some initial conclusions about the state of machine learning and its potential for solving real-world problems.
Temporal planning for transportation planning and scheduling
NASA Technical Reports Server (NTRS)
Frederking, Robert E.; Muscettola, Nicola
1992-01-01
In this paper we describe preliminary work done in the CORTES project, applying the Heuristic Scheduling Testbed System (HSTS) to a transportation planning and scheduling domain. First, we describe in more detail the transportation problems that we are addressing. We then describe the fundamental characteristics of HSTS and we concentrate on the representation of multiple capacity resources. We continue with a more detailed description of the transportation planning problem that we have initially addressed in HSTS and of its solution. Finally we describe future directions for our research.
NASA Astrophysics Data System (ADS)
Ha, W.; Gowda, P. H.; Oommen, T.; Howell, T. A.; Hernandez, J. E.
2010-12-01
High spatial resolution Land Surface Temperature (LST) images are required to estimate evapotranspiration (ET) at a field scale for irrigation scheduling purposes. Satellite sensors such as Landsat 5 Thematic Mapper (TM) and Moderate Resolution Imaging Spectroradiometer (MODIS) can offer images at several spectral bandwidths including visible, near-infrared (NIR), shortwave-infrared, and thermal-infrared (TIR). The TIR images usually have coarser spatial resolutions than those from non-thermal infrared bands. Due to this technical constraint of the satellite sensors on these platforms, image downscaling has been proposed in the field of ET remote sensing. This paper explores the potential of the Support Vector Machines (SVM) to perform downscaling of LST images derived from aircraft (4 m spatial resolution), TM (120 m), and MODIS (1000 m) using normalized difference vegetation index images derived from simultaneously acquired high resolution visible and NIR data (1 m for aircraft, 30 m for TM, and 250 m for MODIS). The SVM is a new generation machine learning algorithm that has found a wide application in the field of pattern recognition and time series analysis. The SVM would be ideally suited for downscaling problems due to its generalization ability in capturing non-linear regression relationship between the predictand and the multiple predictors. Remote sensing data acquired over the Texas High Plains during the 2008 summer growing season will be used in this study. Accuracy assessment of the downscaled 1, 30, and 250 m LST images will be made by comparing them with LST data measured with infrared thermometers at a small spatial scale, upscaled 30 m aircraft-based LST images, and upscaled 250 m TM-based LST images, respectively.
Graph Coloring Used to Model Traffic Lights.
ERIC Educational Resources Information Center
Williams, John
1992-01-01
Two scheduling problems, one involving setting up an examination schedule and the other describing traffic light problems, are modeled as colorings of graphs consisting of a set of vertices and edges. The chromatic number, the least number of colors necessary for coloring a graph, is employed in the solutions. (MDH)
ERIC Educational Resources Information Center
Borrero, Carrie S. W.; Vollmer, Timothy R.; Borrero, John C.; Bourret, Jason C.; Sloman, Kimberly N.; Samaha, Andrew L.; Dallery, Jesse
2010-01-01
This study evaluated how children who exhibited functionally equivalent problem and appropriate behavior allocate responding to experimentally arranged reinforcer rates. Relative reinforcer rates were arranged on concurrent variable-interval schedules and effects on relative response rates were interpreted using the generalized matching equation.…
Design and implementation of a UNIX based distributed computing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Love, J.S.; Michael, M.W.
1994-12-31
We have designed, implemented, and are running a corporate-wide distributed processing batch queue on a large number of networked workstations using the UNIX{reg_sign} operating system. Atlas Wireline researchers and scientists have used the system for over a year. The large increase in available computer power has greatly reduced the time required for nuclear and electromagnetic tool modeling. Use of remote distributed computing has simultaneously reduced computation costs and increased usable computer time. The system integrates equipment from different manufacturers, using various CPU architectures, distinct operating system revisions, and even multiple processors per machine. Various differences between the machines have tomore » be accounted for in the master scheduler. These differences include shells, command sets, swap spaces, memory sizes, CPU sizes, and OS revision levels. Remote processing across a network must be performed in a manner that is seamless from the users` perspective. The system currently uses IBM RISC System/6000{reg_sign}, SPARCstation{sup TM}, HP9000s700, HP9000s800, and DEC Alpha AXP{sup TM} machines. Each CPU in the network has its own speed rating, allowed working hours, and workload parameters. The system if designed so that all of the computers in the network can be optimally scheduled without adversely impacting the primary users of the machines. The increase in the total usable computational capacity by means of distributed batch computing can change corporate computing strategy. The integration of disparate computer platforms eliminates the need to buy one type of computer for computations, another for graphics, and yet another for day-to-day operations. It might be possible, for example, to meet all research and engineering computing needs with existing networked computers.« less
Lee, JuneHyuck; Noh, Sang Do; Kim, Hyun-Jung; Kang, Yong-Shin
2018-01-01
The prediction of internal defects of metal casting immediately after the casting process saves unnecessary time and money by reducing the amount of inputs into the next stage, such as the machining process, and enables flexible scheduling. Cyber-physical production systems (CPPS) perfectly fulfill the aforementioned requirements. This study deals with the implementation of CPPS in a real factory to predict the quality of metal casting and operation control. First, a CPPS architecture framework for quality prediction and operation control in metal-casting production was designed. The framework describes collaboration among internet of things (IoT), artificial intelligence, simulations, manufacturing execution systems, and advanced planning and scheduling systems. Subsequently, the implementation of the CPPS in actual plants is described. Temperature is a major factor that affects casting quality, and thus, temperature sensors and IoT communication devices were attached to casting machines. The well-known NoSQL database, HBase and the high-speed processing/analysis tool, Spark, are used for IoT repository and data pre-processing, respectively. Many machine learning algorithms such as decision tree, random forest, artificial neural network, and support vector machine were used for quality prediction and compared with R software. Finally, the operation of the entire system is demonstrated through a CPPS dashboard. In an era in which most CPPS-related studies are conducted on high-level abstract models, this study describes more specific architectural frameworks, use cases, usable software, and analytical methodologies. In addition, this study verifies the usefulness of CPPS by estimating quantitative effects. This is expected to contribute to the proliferation of CPPS in the industry. PMID:29734699
29 CFR 1208.6 - Schedule of fees and methods of payment for services rendered.
Code of Federal Regulations, 2014 CFR
2014-07-01
... included in direct costs are overhead expenses such as costs of space and heating or lighting the facility... form of paper copy, microfilm, audiovisual materials, or machine readable documentation (e.g., magnetic... scholarly research. (7) Non-commercial scientific institution refers to an institution that is not operated...
29 CFR 1208.6 - Schedule of fees and methods of payment for services rendered.
Code of Federal Regulations, 2012 CFR
2012-07-01
... included in direct costs are overhead expenses such as costs of space and heating or lighting the facility... form of paper copy, microfilm, audiovisual materials, or machine readable documentation (e.g., magnetic... scholarly research. (7) Non-commercial scientific institution refers to an institution that is not operated...
29 CFR 1208.6 - Schedule of fees and methods of payment for services rendered.
Code of Federal Regulations, 2013 CFR
2013-07-01
... included in direct costs are overhead expenses such as costs of space and heating or lighting the facility... form of paper copy, microfilm, audiovisual materials, or machine readable documentation (e.g., magnetic... scholarly research. (7) Non-commercial scientific institution refers to an institution that is not operated...
Space station data system analysis/architecture study. Task 5: Program plan
NASA Technical Reports Server (NTRS)
1985-01-01
Cost estimates for both the on-board and ground segments of the Space Station Data System (SSDS) are presented along with summary program schedules. Advanced technology development recommendations are provided in the areas of distributed data base management, end-to-end protocols, command/resource management, and flight qualified artificial intelligence machines.
Shiftwork Scheduling for the 1990s.
ERIC Educational Resources Information Center
Coleman, Richard M.
1989-01-01
The author discusses the problems of scheduling shift work, touching on such topics as employee desires, health requirements, and business needs. He presents a method for developing shift schedules that addresses these three areas. Implementation hints are also provided. (CH)
Ion beam machining error control and correction for small scale optics.
Xie, Xuhui; Zhou, Lin; Dai, Yifan; Li, Shengyi
2011-09-20
Ion beam figuring (IBF) technology for small scale optical components is discussed. Since the small removal function can be obtained in IBF, it makes computer-controlled optical surfacing technology possible to machine precision centimeter- or millimeter-scale optical components deterministically. Using a small ion beam to machine small optical components, there are some key problems, such as small ion beam positioning on the optical surface, material removal rate, ion beam scanning pitch control on the optical surface, and so on, that must be seriously considered. The main reasons for the problems are that it is more sensitive to the above problems than a big ion beam because of its small beam diameter and lower material ratio. In this paper, we discuss these problems and their influences in machining small optical components in detail. Based on the identification-compensation principle, an iterative machining compensation method is deduced for correcting the positioning error of an ion beam with the material removal rate estimated by a selected optimal scanning pitch. Experiments on ϕ10 mm Zerodur planar and spherical samples are made, and the final surface errors are both smaller than λ/100 measured by a Zygo GPI interferometer.
National Aspects of Creating and Using MARC/RECON Records.
ERIC Educational Resources Information Center
Rather, John C., Ed.; Avram, Henriette D., Ed.
The Retrospective Conversion (RECON) Working Task Force investigated the problems of converting retrospective catalog records to machine readable form. The major conclusions and recommendations of the Task Force cover five areas: the level of machine-readable records, conversion of other machine-readable data bases, a machine-readable National…
Online stochastic optimization of radiotherapy patient scheduling.
Legrain, Antoine; Fortin, Marie-Andrée; Lahrichi, Nadia; Rousseau, Louis-Martin
2015-06-01
The effective management of a cancer treatment facility for radiation therapy depends mainly on optimizing the use of the linear accelerators. In this project, we schedule patients on these machines taking into account their priority for treatment, the maximum waiting time before the first treatment, and the treatment duration. We collaborate with the Centre Intégré de Cancérologie de Laval to determine the best scheduling policy. Furthermore, we integrate the uncertainty related to the arrival of patients at the center. We develop a hybrid method combining stochastic optimization and online optimization to better meet the needs of central planning. We use information on the future arrivals of patients to provide an accurate picture of the expected utilization of resources. Results based on real data show that our method outperforms the policies typically used in treatment centers.
An Extended Deterministic Dendritic Cell Algorithm for Dynamic Job Shop Scheduling
NASA Astrophysics Data System (ADS)
Qiu, X. N.; Lau, H. Y. K.
The problem of job shop scheduling in a dynamic environment where random perturbation exists in the system is studied. In this paper, an extended deterministic Dendritic Cell Algorithm (dDCA) is proposed to solve such a dynamic Job Shop Scheduling Problem (JSSP) where unexpected events occurred randomly. This algorithm is designed based on dDCA and makes improvements by considering all types of signals and the magnitude of the output values. To evaluate this algorithm, ten benchmark problems are chosen and different kinds of disturbances are injected randomly. The results show that the algorithm performs competitively as it is capable of triggering the rescheduling process optimally with much less run time for deciding the rescheduling action. As such, the proposed algorithm is able to minimize the rescheduling times under the defined objective and to keep the scheduling process stable and efficient.
Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Abdulhamid, Shafi'i Muhammad; Usman, Mohammed Joda
2017-01-01
Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing.
Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Usman, Mohammed Joda
2017-01-01
Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing. PMID:28467505
NASA Technical Reports Server (NTRS)
Madden, Michael G.; Wyrick, Roberta; O'Neill, Dale E.
2005-01-01
Space Shuttle Processing is a complicated and highly variable project. The planning and scheduling problem, categorized as a Resource Constrained - Stochastic Project Scheduling Problem (RC-SPSP), has a great deal of variability in the Orbiter Processing Facility (OPF) process flow from one flight to the next. Simulation Modeling is a useful tool in estimation of the makespan of the overall process. However, simulation requires a model to be developed, which itself is a labor and time consuming effort. With such a dynamic process, often the model would potentially be out of synchronization with the actual process, limiting the applicability of the simulation answers in solving the actual estimation problem. Integration of TEAMS model enabling software with our existing schedule program software is the basis of our solution. This paper explains the approach used to develop an auto-generated simulation model from planning and schedule efforts and available data.
Optimisation of assembly scheduling in VCIM systems using genetic algorithm
NASA Astrophysics Data System (ADS)
Dao, Son Duy; Abhary, Kazem; Marian, Romeo
2017-09-01
Assembly plays an important role in any production system as it constitutes a significant portion of the lead time and cost of a product. Virtual computer-integrated manufacturing (VCIM) system is a modern production system being conceptually developed to extend the application of traditional computer-integrated manufacturing (CIM) system to global level. Assembly scheduling in VCIM systems is quite different from one in traditional production systems because of the difference in the working principles of the two systems. In this article, the assembly scheduling problem in VCIM systems is modeled and then an integrated approach based on genetic algorithm (GA) is proposed to search for a global optimised solution to the problem. Because of dynamic nature of the scheduling problem, a novel GA with unique chromosome representation and modified genetic operations is developed herein. Robustness of the proposed approach is verified by a numerical example.
NASA Astrophysics Data System (ADS)
Tellaeche, A.; Arana, R.; Ibarguren, A.; Martínez-Otzeta, J. M.
The exhaustive quality control is becoming very important in the world's globalized market. One of these examples where quality control becomes critical is the percussion cap mass production. These elements must achieve a minimum tolerance deviation in their fabrication. This paper outlines a machine vision development using a 3D camera for the inspection of the whole production of percussion caps. This system presents multiple problems, such as metallic reflections in the percussion caps, high speed movement of the system and mechanical errors and irregularities in percussion cap placement. Due to these problems, it is impossible to solve the problem by traditional image processing methods, and hence, machine learning algorithms have been tested to provide a feasible classification of the possible errors present in the percussion caps.
The evolution and practical application of machine translation system (1)
NASA Astrophysics Data System (ADS)
Tominaga, Isao; Sato, Masayuki
This paper describes a development, practical applicatioin, problem of a system, evaluation of practical system, and development trend of machine translation. Most recent system contains next four problems. 1) the vagueness of a text, 2) a difference of the definition of the terminology between different language, 3) the preparing of a large-scale translation dictionary, 4) the development of a software for the logical inference. Machine translation system is already used practically in many industry fields. However, many problems are not solved. The implementation of an ideal system will be after 15 years. Also, this paper described seven evaluation items detailedly. This English abstract was made by Mu system.
Electricity Usage Scheduling in Smart Building Environments Using Smart Devices
Lee, Eunji; Bahn, Hyokyung
2013-01-01
With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%. PMID:24453860
Jiang, Yuyi; Shao, Zhiqing; Guo, Yi
2014-01-01
A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems. PMID:25143977
Jiang, Yuyi; Shao, Zhiqing; Guo, Yi
2014-01-01
A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems.
NASA Technical Reports Server (NTRS)
Sadovsky, Alexander V.; Davis, Damek; Isaacson, Douglas R.
2012-01-01
A class of problems in air traffic management asks for a scheduling algorithm that supplies the air traffic services authority not only with a schedule of arrivals and departures, but also with speed advisories. Since advisories must be finite, a scheduling algorithm must ultimately produce a finite data set, hence must either start with a purely discrete model or involve a discretization of a continuous one. The former choice, often preferred for intuitive clarity, naturally leads to mixed-integer programs, hindering proofs of correctness and computational cost bounds (crucial for real-time operations). In this paper, a hybrid control system is used to model air traffic scheduling, capturing both the discrete and continuous aspects. This framework is applied to a class of problems, called the Fully Routed Nominal Problem. We prove a number of geometric results on feasible schedules and use these results to formulate an algorithm that attempts to compute a collective speed advisory, effectively finite, and has computational cost polynomial in the number of aircraft. This work is a first step toward optimization and models refined with more realistic detail.
Electricity usage scheduling in smart building environments using smart devices.
Lee, Eunji; Bahn, Hyokyung
2013-01-01
With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%.
Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks
Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang
2016-01-01
The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN. PMID:27916807
Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks.
Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang
2016-11-28
The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN.
Choi, Woong-Kirl; Kim, Seong-Hyun; Choi, Seung-Geon; Lee, Eun-Sang
2018-01-01
Ultra-precision products which contain a micro-hole array have recently shown remarkable demand growth in many fields, especially in the semiconductor and display industries. Photoresist etching and electrochemical machining are widely known as precision methods for machining micro-holes with no residual stress and lower surface roughness on the fabricated products. The Invar shadow masks used for organic light-emitting diodes (OLEDs) contain numerous micro-holes and are currently machined by a photoresist etching method. However, this method has several problems, such as uncontrollable hole machining accuracy, non-etched areas, and overcutting. To solve these problems, a machining method that combines photoresist etching and electrochemical machining can be applied. In this study, negative photoresist with a quadrilateral hole array pattern was dry coated onto 30-µm-thick Invar thin film, and then exposure and development were carried out. After that, photoresist single-side wet etching and a fusion method of wet etching-electrochemical machining were used to machine micro-holes on the Invar. The hole machining geometry, surface quality, and overcutting characteristics of the methods were studied. Wet etching and electrochemical fusion machining can improve the accuracy and surface quality. The overcutting phenomenon can also be controlled by the fusion machining. Experimental results show that the proposed method is promising for the fabrication of Invar film shadow masks. PMID:29351235