Sample records for machine svm based

  1. Support vector machine in machine condition monitoring and fault diagnosis

    NASA Astrophysics Data System (ADS)

    Widodo, Achmad; Yang, Bo-Suk

    2007-08-01

    Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a survey of machine condition monitoring and fault diagnosis using support vector machine (SVM). It attempts to summarize and review the recent research and developments of SVM in machine condition monitoring and diagnosis. Numerous methods have been developed based on intelligent systems such as artificial neural network, fuzzy expert system, condition-based reasoning, random forest, etc. However, the use of SVM for machine condition monitoring and fault diagnosis is still rare. SVM has excellent performance in generalization so it can produce high accuracy in classification for machine condition monitoring and diagnosis. Until 2006, the use of SVM in machine condition monitoring and fault diagnosis is tending to develop towards expertise orientation and problem-oriented domain. Finally, the ability to continually change and obtain a novel idea for machine condition monitoring and fault diagnosis using SVM will be future works.

  2. Generalized SMO algorithm for SVM-based multitask learning.

    PubMed

    Cai, Feng; Cherkassky, Vladimir

    2012-06-01

    Exploiting additional information to improve traditional inductive learning is an active research area in machine learning. In many supervised-learning applications, training data can be naturally separated into several groups, and incorporating this group information into learning may improve generalization. Recently, Vapnik proposed a general approach to formalizing such problems, known as "learning with structured data" and its support vector machine (SVM) based optimization formulation called SVM+. Liang and Cherkassky showed the connection between SVM+ and multitask learning (MTL) approaches in machine learning, and proposed an SVM-based formulation for MTL called SVM+MTL for classification. Training the SVM+MTL classifier requires the solution of a large quadratic programming optimization problem which scales as O(n(3)) with sample size n. So there is a need to develop computationally efficient algorithms for implementing SVM+MTL. This brief generalizes Platt's sequential minimal optimization (SMO) algorithm to the SVM+MTL setting. Empirical results show that, for typical SVM+MTL problems, the proposed generalized SMO achieves over 100 times speed-up, in comparison with general-purpose optimization routines.

  3. The construction of support vector machine classifier using the firefly algorithm.

    PubMed

    Chao, Chih-Feng; Horng, Ming-Huwi

    2015-01-01

    The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy.

  4. The Construction of Support Vector Machine Classifier Using the Firefly Algorithm

    PubMed Central

    Chao, Chih-Feng; Horng, Ming-Huwi

    2015-01-01

    The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy. PMID:25802511

  5. Machine learning modelling for predicting soil liquefaction susceptibility

    NASA Astrophysics Data System (ADS)

    Samui, P.; Sitharam, T. G.

    2011-01-01

    This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT) data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN) based on multi-layer perceptions (MLP) that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM) that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT [(N1)60] and cyclic stress ratio (CSR). Further, an attempt has been made to simplify the models, requiring only the two parameters [(N1)60 and peck ground acceleration (amax/g)], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.

  6. Gradient Evolution-based Support Vector Machine Algorithm for Classification

    NASA Astrophysics Data System (ADS)

    Zulvia, Ferani E.; Kuo, R. J.

    2018-03-01

    This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.

  7. Agricultural mapping using Support Vector Machine-Based Endmember Extraction (SVM-BEE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archibald, Richard K; Filippi, Anthony M; Bhaduri, Budhendra L

    Extracting endmembers from remotely sensed images of vegetated areas can present difficulties. In this research, we applied a recently developed endmember-extraction algorithm based on Support Vector Machines (SVMs) to the problem of semi-autonomous estimation of vegetation endmembers from a hyperspectral image. This algorithm, referred to as Support Vector Machine-Based Endmember Extraction (SVM-BEE), accurately and rapidly yields a computed representation of hyperspectral data that can accommodate multiple distributions. The number of distributions is identified without prior knowledge, based upon this representation. Prior work established that SVM-BEE is robustly noise-tolerant and can semi-automatically and effectively estimate endmembers; synthetic data and a geologicmore » scene were previously analyzed. Here we compared the efficacies of the SVM-BEE and N-FINDR algorithms in extracting endmembers from a predominantly agricultural scene. SVM-BEE was able to estimate vegetation and other endmembers for all classes in the image, which N-FINDR failed to do. Classifications based on SVM-BEE endmembers were markedly more accurate compared with those based on N-FINDR endmembers.« less

  8. Extended robust support vector machine based on financial risk minimization.

    PubMed

    Takeda, Akiko; Fujiwara, Shuhei; Kanamori, Takafumi

    2014-11-01

    Financial risk measures have been used recently in machine learning. For example, ν-support vector machine ν-SVM) minimizes the conditional value at risk (CVaR) of margin distribution. The measure is popular in finance because of the subadditivity property, but it is very sensitive to a few outliers in the tail of the distribution. We propose a new classification method, extended robust SVM (ER-SVM), which minimizes an intermediate risk measure between the CVaR and value at risk (VaR) by expecting that the resulting model becomes less sensitive than ν-SVM to outliers. We can regard ER-SVM as an extension of robust SVM, which uses a truncated hinge loss. Numerical experiments imply the ER-SVM's possibility of achieving a better prediction performance with proper parameter setting.

  9. Combining MLC and SVM Classifiers for Learning Based Decision Making: Analysis and Evaluations

    PubMed Central

    Zhang, Yi; Ren, Jinchang; Jiang, Jianmin

    2015-01-01

    Maximum likelihood classifier (MLC) and support vector machines (SVM) are two commonly used approaches in machine learning. MLC is based on Bayesian theory in estimating parameters of a probabilistic model, whilst SVM is an optimization based nonparametric method in this context. Recently, it is found that SVM in some cases is equivalent to MLC in probabilistically modeling the learning process. In this paper, MLC and SVM are combined in learning and classification, which helps to yield probabilistic output for SVM and facilitate soft decision making. In total four groups of data are used for evaluations, covering sonar, vehicle, breast cancer, and DNA sequences. The data samples are characterized in terms of Gaussian/non-Gaussian distributed and balanced/unbalanced samples which are then further used for performance assessment in comparing the SVM and the combined SVM-MLC classifier. Interesting results are reported to indicate how the combined classifier may work under various conditions. PMID:26089862

  10. Combining MLC and SVM Classifiers for Learning Based Decision Making: Analysis and Evaluations.

    PubMed

    Zhang, Yi; Ren, Jinchang; Jiang, Jianmin

    2015-01-01

    Maximum likelihood classifier (MLC) and support vector machines (SVM) are two commonly used approaches in machine learning. MLC is based on Bayesian theory in estimating parameters of a probabilistic model, whilst SVM is an optimization based nonparametric method in this context. Recently, it is found that SVM in some cases is equivalent to MLC in probabilistically modeling the learning process. In this paper, MLC and SVM are combined in learning and classification, which helps to yield probabilistic output for SVM and facilitate soft decision making. In total four groups of data are used for evaluations, covering sonar, vehicle, breast cancer, and DNA sequences. The data samples are characterized in terms of Gaussian/non-Gaussian distributed and balanced/unbalanced samples which are then further used for performance assessment in comparing the SVM and the combined SVM-MLC classifier. Interesting results are reported to indicate how the combined classifier may work under various conditions.

  11. A Power Transformers Fault Diagnosis Model Based on Three DGA Ratios and PSO Optimization SVM

    NASA Astrophysics Data System (ADS)

    Ma, Hongzhe; Zhang, Wei; Wu, Rongrong; Yang, Chunyan

    2018-03-01

    In order to make up for the shortcomings of existing transformer fault diagnosis methods in dissolved gas-in-oil analysis (DGA) feature selection and parameter optimization, a transformer fault diagnosis model based on the three DGA ratios and particle swarm optimization (PSO) optimize support vector machine (SVM) is proposed. Using transforming support vector machine to the nonlinear and multi-classification SVM, establishing the particle swarm optimization to optimize the SVM multi classification model, and conducting transformer fault diagnosis combined with the cross validation principle. The fault diagnosis results show that the average accuracy of test method is better than the standard support vector machine and genetic algorithm support vector machine, and the proposed method can effectively improve the accuracy of transformer fault diagnosis is proved.

  12. Semisupervised learning using Bayesian interpretation: application to LS-SVM.

    PubMed

    Adankon, Mathias M; Cheriet, Mohamed; Biem, Alain

    2011-04-01

    Bayesian reasoning provides an ideal basis for representing and manipulating uncertain knowledge, with the result that many interesting algorithms in machine learning are based on Bayesian inference. In this paper, we use the Bayesian approach with one and two levels of inference to model the semisupervised learning problem and give its application to the successful kernel classifier support vector machine (SVM) and its variant least-squares SVM (LS-SVM). Taking advantage of Bayesian interpretation of LS-SVM, we develop a semisupervised learning algorithm for Bayesian LS-SVM using our approach based on two levels of inference. Experimental results on both artificial and real pattern recognition problems show the utility of our method.

  13. SVM and SVM Ensembles in Breast Cancer Prediction.

    PubMed

    Huang, Min-Wei; Chen, Chih-Wen; Lin, Wei-Chao; Ke, Shih-Wen; Tsai, Chih-Fong

    2017-01-01

    Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM) have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers.

  14. SVM and SVM Ensembles in Breast Cancer Prediction

    PubMed Central

    Huang, Min-Wei; Chen, Chih-Wen; Lin, Wei-Chao; Ke, Shih-Wen; Tsai, Chih-Fong

    2017-01-01

    Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM) have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers. PMID:28060807

  15. Interpreting support vector machine models for multivariate group wise analysis in neuroimaging

    PubMed Central

    Gaonkar, Bilwaj; Shinohara, Russell T; Davatzikos, Christos

    2015-01-01

    Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913

  16. Improved Prediction of Blood-Brain Barrier Permeability Through Machine Learning with Combined Use of Molecular Property-Based Descriptors and Fingerprints.

    PubMed

    Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo

    2018-03-21

    Blood-brain barrier (BBB) permeability of a compound determines whether the compound can effectively enter the brain. It is an essential property which must be accounted for in drug discovery with a target in the brain. Several computational methods have been used to predict the BBB permeability. In particular, support vector machine (SVM), which is a kernel-based machine learning method, has been used popularly in this field. For SVM training and prediction, the compounds are characterized by molecular descriptors. Some SVM models were based on the use of molecular property-based descriptors (including 1D, 2D, and 3D descriptors) or fragment-based descriptors (known as the fingerprints of a molecule). The selection of descriptors is critical for the performance of a SVM model. In this study, we aimed to develop a generally applicable new SVM model by combining all of the features of the molecular property-based descriptors and fingerprints to improve the accuracy for the BBB permeability prediction. The results indicate that our SVM model has improved accuracy compared to the currently available models of the BBB permeability prediction.

  17. Analysis of miRNA expression profile based on SVM algorithm

    NASA Astrophysics Data System (ADS)

    Ting-ting, Dai; Chang-ji, Shan; Yan-shou, Dong; Yi-duo, Bian

    2018-05-01

    Based on mirna expression spectrum data set, a new data mining algorithm - tSVM - KNN (t statistic with support vector machine - k nearest neighbor) is proposed. the idea of the algorithm is: firstly, the feature selection of the data set is carried out by the unified measurement method; Secondly, SVM - KNN algorithm, which combines support vector machine (SVM) and k - nearest neighbor (k - nearest neighbor) is used as classifier. Simulation results show that SVM - KNN algorithm has better classification ability than SVM and KNN alone. Tsvm - KNN algorithm only needs 5 mirnas to obtain 96.08 % classification accuracy in terms of the number of mirna " tags" and recognition accuracy. compared with similar algorithms, tsvm - KNN algorithm has obvious advantages.

  18. A Fast Reduced Kernel Extreme Learning Machine.

    PubMed

    Deng, Wan-Yu; Ong, Yew-Soon; Zheng, Qing-Hua

    2016-04-01

    In this paper, we present a fast and accurate kernel-based supervised algorithm referred to as the Reduced Kernel Extreme Learning Machine (RKELM). In contrast to the work on Support Vector Machine (SVM) or Least Square SVM (LS-SVM), which identifies the support vectors or weight vectors iteratively, the proposed RKELM randomly selects a subset of the available data samples as support vectors (or mapping samples). By avoiding the iterative steps of SVM, significant cost savings in the training process can be readily attained, especially on Big datasets. RKELM is established based on the rigorous proof of universal learning involving reduced kernel-based SLFN. In particular, we prove that RKELM can approximate any nonlinear functions accurately under the condition of support vectors sufficiency. Experimental results on a wide variety of real world small instance size and large instance size applications in the context of binary classification, multi-class problem and regression are then reported to show that RKELM can perform at competitive level of generalized performance as the SVM/LS-SVM at only a fraction of the computational effort incurred. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Support vector machines-based fault diagnosis for turbo-pump rotor

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng-Fa; Chu, Fu-Lei

    2006-05-01

    Most artificial intelligence methods used in fault diagnosis are based on empirical risk minimisation principle and have poor generalisation when fault samples are few. Support vector machines (SVM) is a new general machine-learning tool based on structural risk minimisation principle that exhibits good generalisation even when fault samples are few. Fault diagnosis based on SVM is discussed. Since basic SVM is originally designed for two-class classification, while most of fault diagnosis problems are multi-class cases, a new multi-class classification of SVM named 'one to others' algorithm is presented to solve the multi-class recognition problems. It is a binary tree classifier composed of several two-class classifiers organised by fault priority, which is simple, and has little repeated training amount, and the rate of training and recognition is expedited. The effectiveness of the method is verified by the application to the fault diagnosis for turbo pump rotor.

  20. SVM Classifier - a comprehensive java interface for support vector machine classification of microarray data.

    PubMed

    Pirooznia, Mehdi; Deng, Youping

    2006-12-12

    Graphical user interface (GUI) software promotes novelty by allowing users to extend the functionality. SVM Classifier is a cross-platform graphical application that handles very large datasets well. The purpose of this study is to create a GUI application that allows SVM users to perform SVM training, classification and prediction. The GUI provides user-friendly access to state-of-the-art SVM methods embodied in the LIBSVM implementation of Support Vector Machine. We implemented the java interface using standard swing libraries. We used a sample data from a breast cancer study for testing classification accuracy. We achieved 100% accuracy in classification among the BRCA1-BRCA2 samples with RBF kernel of SVM. We have developed a java GUI application that allows SVM users to perform SVM training, classification and prediction. We have demonstrated that support vector machines can accurately classify genes into functional categories based upon expression data from DNA microarray hybridization experiments. Among the different kernel functions that we examined, the SVM that uses a radial basis kernel function provides the best performance. The SVM Classifier is available at http://mfgn.usm.edu/ebl/svm/.

  1. Applications of Support Vector Machines In Chemo And Bioinformatics

    NASA Astrophysics Data System (ADS)

    Jayaraman, V. K.; Sundararajan, V.

    2010-10-01

    Conventional linear & nonlinear tools for classification, regression & data driven modeling are being replaced on a rapid scale by newer techniques & tools based on artificial intelligence and machine learning. While the linear techniques are not applicable for inherently nonlinear problems, newer methods serve as attractive alternatives for solving real life problems. Support Vector Machine (SVM) classifiers are a set of universal feed-forward network based classification algorithms that have been formulated from statistical learning theory and structural risk minimization principle. SVM regression closely follows the classification methodology. In this work recent applications of SVM in Chemo & Bioinformatics will be described with suitable illustrative examples.

  2. CompareSVM: supervised, Support Vector Machine (SVM) inference of gene regularity networks.

    PubMed

    Gillani, Zeeshan; Akash, Muhammad Sajid Hamid; Rahaman, M D Matiur; Chen, Ming

    2014-11-30

    Predication of gene regularity network (GRN) from expression data is a challenging task. There are many methods that have been developed to address this challenge ranging from supervised to unsupervised methods. Most promising methods are based on support vector machine (SVM). There is a need for comprehensive analysis on prediction accuracy of supervised method SVM using different kernels on different biological experimental conditions and network size. We developed a tool (CompareSVM) based on SVM to compare different kernel methods for inference of GRN. Using CompareSVM, we investigated and evaluated different SVM kernel methods on simulated datasets of microarray of different sizes in detail. The results obtained from CompareSVM showed that accuracy of inference method depends upon the nature of experimental condition and size of the network. For network with nodes (<200) and average (over all sizes of networks), SVM Gaussian kernel outperform on knockout, knockdown, and multifactorial datasets compared to all the other inference methods. For network with large number of nodes (~500), choice of inference method depend upon nature of experimental condition. CompareSVM is available at http://bis.zju.edu.cn/CompareSVM/ .

  3. Research on Classification of Chinese Text Data Based on SVM

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Yu, Hongzhi; Wan, Fucheng; Xu, Tao

    2017-09-01

    Data Mining has important application value in today’s industry and academia. Text classification is a very important technology in data mining. At present, there are many mature algorithms for text classification. KNN, NB, AB, SVM, decision tree and other classification methods all show good classification performance. Support Vector Machine’ (SVM) classification method is a good classifier in machine learning research. This paper will study the classification effect based on the SVM method in the Chinese text data, and use the support vector machine method in the chinese text to achieve the classify chinese text, and to able to combination of academia and practical application.

  4. PVP-SVM: Sequence-Based Prediction of Phage Virion Proteins Using a Support Vector Machine

    PubMed Central

    Manavalan, Balachandran; Shin, Tae H.; Lee, Gwang

    2018-01-01

    Accurately identifying bacteriophage virion proteins from uncharacterized sequences is important to understand interactions between the phage and its host bacteria in order to develop new antibacterial drugs. However, identification of such proteins using experimental techniques is expensive and often time consuming; hence, development of an efficient computational algorithm for the prediction of phage virion proteins (PVPs) prior to in vitro experimentation is needed. Here, we describe a support vector machine (SVM)-based PVP predictor, called PVP-SVM, which was trained with 136 optimal features. A feature selection protocol was employed to identify the optimal features from a large set that included amino acid composition, dipeptide composition, atomic composition, physicochemical properties, and chain-transition-distribution. PVP-SVM achieved an accuracy of 0.870 during leave-one-out cross-validation, which was 6% higher than control SVM predictors trained with all features, indicating the efficiency of the feature selection method. Furthermore, PVP-SVM displayed superior performance compared to the currently available method, PVPred, and two other machine-learning methods developed in this study when objectively evaluated with an independent dataset. For the convenience of the scientific community, a user-friendly and publicly accessible web server has been established at www.thegleelab.org/PVP-SVM/PVP-SVM.html. PMID:29616000

  5. PVP-SVM: Sequence-Based Prediction of Phage Virion Proteins Using a Support Vector Machine.

    PubMed

    Manavalan, Balachandran; Shin, Tae H; Lee, Gwang

    2018-01-01

    Accurately identifying bacteriophage virion proteins from uncharacterized sequences is important to understand interactions between the phage and its host bacteria in order to develop new antibacterial drugs. However, identification of such proteins using experimental techniques is expensive and often time consuming; hence, development of an efficient computational algorithm for the prediction of phage virion proteins (PVPs) prior to in vitro experimentation is needed. Here, we describe a support vector machine (SVM)-based PVP predictor, called PVP-SVM, which was trained with 136 optimal features. A feature selection protocol was employed to identify the optimal features from a large set that included amino acid composition, dipeptide composition, atomic composition, physicochemical properties, and chain-transition-distribution. PVP-SVM achieved an accuracy of 0.870 during leave-one-out cross-validation, which was 6% higher than control SVM predictors trained with all features, indicating the efficiency of the feature selection method. Furthermore, PVP-SVM displayed superior performance compared to the currently available method, PVPred, and two other machine-learning methods developed in this study when objectively evaluated with an independent dataset. For the convenience of the scientific community, a user-friendly and publicly accessible web server has been established at www.thegleelab.org/PVP-SVM/PVP-SVM.html.

  6. Face recognition using total margin-based adaptive fuzzy support vector machines.

    PubMed

    Liu, Yi-Hung; Chen, Yen-Ting

    2007-01-01

    This paper presents a new classifier called total margin-based adaptive fuzzy support vector machines (TAF-SVM) that deals with several problems that may occur in support vector machines (SVMs) when applied to the face recognition. The proposed TAF-SVM not only solves the overfitting problem resulted from the outlier with the approach of fuzzification of the penalty, but also corrects the skew of the optimal separating hyperplane due to the very imbalanced data sets by using different cost algorithm. In addition, by introducing the total margin algorithm to replace the conventional soft margin algorithm, a lower generalization error bound can be obtained. Those three functions are embodied into the traditional SVM so that the TAF-SVM is proposed and reformulated in both linear and nonlinear cases. By using two databases, the Chung Yuan Christian University (CYCU) multiview and the facial recognition technology (FERET) face databases, and using the kernel Fisher's discriminant analysis (KFDA) algorithm to extract discriminating face features, experimental results show that the proposed TAF-SVM is superior to SVM in terms of the face-recognition accuracy. The results also indicate that the proposed TAF-SVM can achieve smaller error variances than SVM over a number of tests such that better recognition stability can be obtained.

  7. Hybrid Model Based on Genetic Algorithms and SVM Applied to Variable Selection within Fruit Juice Classification

    PubMed Central

    Fernandez-Lozano, C.; Canto, C.; Gestal, M.; Andrade-Garda, J. M.; Rabuñal, J. R.; Dorado, J.; Pazos, A.

    2013-01-01

    Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected. PMID:24453933

  8. A real-time neutron-gamma discriminator based on the support vector machine method for the time-of-flight neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Wei, ZHANG; Tongyu, WU; Bowen, ZHENG; Shiping, LI; Yipo, ZHANG; Zejie, YIN

    2018-04-01

    A new neutron-gamma discriminator based on the support vector machine (SVM) method is proposed to improve the performance of the time-of-flight neutron spectrometer. The neutron detector is an EJ-299-33 plastic scintillator with pulse-shape discrimination (PSD) property. The SVM algorithm is implemented in field programmable gate array (FPGA) to carry out the real-time sifting of neutrons in neutron-gamma mixed radiation fields. This study compares the ability of the pulse gradient analysis method and the SVM method. The results show that this SVM discriminator can provide a better discrimination accuracy of 99.1%. The accuracy and performance of the SVM discriminator based on FPGA have been evaluated in the experiments. It can get a figure of merit of 1.30.

  9. Comparing SVM and ANN based Machine Learning Methods for Species Identification of Food Contaminating Beetles.

    PubMed

    Bisgin, Halil; Bera, Tanmay; Ding, Hongjian; Semey, Howard G; Wu, Leihong; Liu, Zhichao; Barnes, Amy E; Langley, Darryl A; Pava-Ripoll, Monica; Vyas, Himansu J; Tong, Weida; Xu, Joshua

    2018-04-25

    Insect pests, such as pantry beetles, are often associated with food contaminations and public health risks. Machine learning has the potential to provide a more accurate and efficient solution in detecting their presence in food products, which is currently done manually. In our previous research, we demonstrated such feasibility where Artificial Neural Network (ANN) based pattern recognition techniques could be implemented for species identification in the context of food safety. In this study, we present a Support Vector Machine (SVM) model which improved the average accuracy up to 85%. Contrary to this, the ANN method yielded ~80% accuracy after extensive parameter optimization. Both methods showed excellent genus level identification, but SVM showed slightly better accuracy  for most species. Highly accurate species level identification remains a challenge, especially in distinguishing between species from the same genus which may require improvements in both imaging and machine learning techniques. In summary, our work does illustrate a new SVM based technique and provides a good comparison with the ANN model in our context. We believe such insights will pave better way forward for the application of machine learning towards species identification and food safety.

  10. Study of support vector machine and serum surface-enhanced Raman spectroscopy for noninvasive esophageal cancer detection

    NASA Astrophysics Data System (ADS)

    Li, Shao-Xin; Zeng, Qiu-Yao; Li, Lin-Fang; Zhang, Yan-Jiao; Wan, Ming-Ming; Liu, Zhi-Ming; Xiong, Hong-Lian; Guo, Zhou-Yi; Liu, Song-Hao

    2013-02-01

    The ability of combining serum surface-enhanced Raman spectroscopy (SERS) with support vector machine (SVM) for improving classification esophageal cancer patients from normal volunteers is investigated. Two groups of serum SERS spectra based on silver nanoparticles (AgNPs) are obtained: one group from patients with pathologically confirmed esophageal cancer (n=30) and the other group from healthy volunteers (n=31). Principal components analysis (PCA), conventional SVM (C-SVM) and conventional SVM combination with PCA (PCA-SVM) methods are implemented to classify the same spectral dataset. Results show that a diagnostic accuracy of 77.0% is acquired for PCA technique, while diagnostic accuracies of 83.6% and 85.2% are obtained for C-SVM and PCA-SVM methods based on radial basis functions (RBF) models. The results prove that RBF SVM models are superior to PCA algorithm in classification serum SERS spectra. The study demonstrates that serum SERS in combination with SVM technique has great potential to provide an effective and accurate diagnostic schema for noninvasive detection of esophageal cancer.

  11. A collaborative framework for Distributed Privacy-Preserving Support Vector Machine learning.

    PubMed

    Que, Jialan; Jiang, Xiaoqian; Ohno-Machado, Lucila

    2012-01-01

    A Support Vector Machine (SVM) is a popular tool for decision support. The traditional way to build an SVM model is to estimate parameters based on a centralized repository of data. However, in the field of biomedicine, patient data are sometimes stored in local repositories or institutions where they were collected, and may not be easily shared due to privacy concerns. This creates a substantial barrier for researchers to effectively learn from the distributed data using machine learning tools like SVMs. To overcome this difficulty and promote efficient information exchange without sharing sensitive raw data, we developed a Distributed Privacy Preserving Support Vector Machine (DPP-SVM). The DPP-SVM enables privacy-preserving collaborative learning, in which a trusted server integrates "privacy-insensitive" intermediary results. The globally learned model is guaranteed to be exactly the same as learned from combined data. We also provide a free web-service (http://privacy.ucsd.edu:8080/ppsvm/) for multiple participants to collaborate and complete the SVM-learning task in an efficient and privacy-preserving manner.

  12. Intelligent Gearbox Diagnosis Methods Based on SVM, Wavelet Lifting and RBR

    PubMed Central

    Gao, Lixin; Ren, Zhiqiang; Tang, Wenliang; Wang, Huaqing; Chen, Peng

    2010-01-01

    Given the problems in intelligent gearbox diagnosis methods, it is difficult to obtain the desired information and a large enough sample size to study; therefore, we propose the application of various methods for gearbox fault diagnosis, including wavelet lifting, a support vector machine (SVM) and rule-based reasoning (RBR). In a complex field environment, it is less likely for machines to have the same fault; moreover, the fault features can also vary. Therefore, a SVM could be used for the initial diagnosis. First, gearbox vibration signals were processed with wavelet packet decomposition, and the signal energy coefficients of each frequency band were extracted and used as input feature vectors in SVM for normal and faulty pattern recognition. Second, precision analysis using wavelet lifting could successfully filter out the noisy signals while maintaining the impulse characteristics of the fault; thus effectively extracting the fault frequency of the machine. Lastly, the knowledge base was built based on the field rules summarized by experts to identify the detailed fault type. Results have shown that SVM is a powerful tool to accomplish gearbox fault pattern recognition when the sample size is small, whereas the wavelet lifting scheme can effectively extract fault features, and rule-based reasoning can be used to identify the detailed fault type. Therefore, a method that combines SVM, wavelet lifting and rule-based reasoning ensures effective gearbox fault diagnosis. PMID:22399894

  13. Intelligent gearbox diagnosis methods based on SVM, wavelet lifting and RBR.

    PubMed

    Gao, Lixin; Ren, Zhiqiang; Tang, Wenliang; Wang, Huaqing; Chen, Peng

    2010-01-01

    Given the problems in intelligent gearbox diagnosis methods, it is difficult to obtain the desired information and a large enough sample size to study; therefore, we propose the application of various methods for gearbox fault diagnosis, including wavelet lifting, a support vector machine (SVM) and rule-based reasoning (RBR). In a complex field environment, it is less likely for machines to have the same fault; moreover, the fault features can also vary. Therefore, a SVM could be used for the initial diagnosis. First, gearbox vibration signals were processed with wavelet packet decomposition, and the signal energy coefficients of each frequency band were extracted and used as input feature vectors in SVM for normal and faulty pattern recognition. Second, precision analysis using wavelet lifting could successfully filter out the noisy signals while maintaining the impulse characteristics of the fault; thus effectively extracting the fault frequency of the machine. Lastly, the knowledge base was built based on the field rules summarized by experts to identify the detailed fault type. Results have shown that SVM is a powerful tool to accomplish gearbox fault pattern recognition when the sample size is small, whereas the wavelet lifting scheme can effectively extract fault features, and rule-based reasoning can be used to identify the detailed fault type. Therefore, a method that combines SVM, wavelet lifting and rule-based reasoning ensures effective gearbox fault diagnosis.

  14. A method of neighbor classes based SVM classification for optical printed Chinese character recognition.

    PubMed

    Zhang, Jie; Wu, Xiaohong; Yu, Yanmei; Luo, Daisheng

    2013-01-01

    In optical printed Chinese character recognition (OPCCR), many classifiers have been proposed for the recognition. Among the classifiers, support vector machine (SVM) might be the best classifier. However, SVM is a classifier for two classes. When it is used for multi-classes in OPCCR, its computation is time-consuming. Thus, we propose a neighbor classes based SVM (NC-SVM) to reduce the computation consumption of SVM. Experiments of NC-SVM classification for OPCCR have been done. The results of the experiments have shown that the NC-SVM we proposed can effectively reduce the computation time in OPCCR.

  15. Daily River Flow Forecasting with Hybrid Support Vector Machine – Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Zaini, N.; Malek, M. A.; Yusoff, M.; Mardi, N. H.; Norhisham, S.

    2018-04-01

    The application of artificial intelligence techniques for river flow forecasting can further improve the management of water resources and flood prevention. This study concerns the development of support vector machine (SVM) based model and its hybridization with particle swarm optimization (PSO) to forecast short term daily river flow at Upper Bertam Catchment located in Cameron Highland, Malaysia. Ten years duration of historical rainfall, antecedent river flow data and various meteorology parameters data from 2003 to 2012 are used in this study. Four SVM based models are proposed which are SVM1, SVM2, SVM-PSO1 and SVM-PSO2 to forecast 1 to 7 day ahead of river flow. SVM1 and SVM-PSO1 are the models with historical rainfall and antecedent river flow as its input, while SVM2 and SVM-PSO2 are the models with historical rainfall, antecedent river flow data and additional meteorological parameters as input. The performances of the proposed model are measured in term of RMSE and R2 . It is found that, SVM2 outperformed SVM1 and SVM-PSO2 outperformed SVM-PSO1 which meant the additional meteorology parameters used as input to the proposed models significantly affect the model performances. Hybrid models SVM-PSO1 and SVM-PSO2 yield higher performances as compared to SVM1 and SVM2. It is found that hybrid models are more effective in forecasting river flow at 1 to 7 day ahead at the study area.

  16. Noninvasive extraction of fetal electrocardiogram based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Fu, Yumei; Xiang, Shihan; Chen, Tianyi; Zhou, Ping; Huang, Weiyan

    2015-10-01

    The fetal electrocardiogram (FECG) signal has important clinical value for diagnosing the fetal heart diseases and choosing suitable therapeutics schemes to doctors. So, the noninvasive extraction of FECG from electrocardiogram (ECG) signals becomes a hot research point. A new method, the Support Vector Machine (SVM) is utilized for the extraction of FECG with limited size of data. Firstly, the theory of the SVM and the principle of the extraction based on the SVM are studied. Secondly, the transformation of maternal electrocardiogram (MECG) component in abdominal composite signal is verified to be nonlinear and fitted with the SVM. Then, the SVM is trained, and the training results are compared with the real data to ensure the effect of the training. Meanwhile, the parameters of the SVM are optimized to achieve the best performance so that the learning machine can be utilized to fit the unknown samples. Finally, the FECG is extracted by removing the optimal estimation of MECG component from the abdominal composite signal. In order to evaluate the performance of FECG extraction based on the SVM, the Signal-to-Noise Ratio (SNR) and the visual test are used. The experimental results show that the FECG with good quality can be extracted, its SNR ratio is significantly increased as high as 9.2349 dB and the time cost is significantly decreased as short as 0.802 seconds. Compared with the traditional method, the noninvasive extraction method based on the SVM has a simple realization, the shorter treatment time and the better extraction quality under the same conditions.

  17. Automated discrimination of dementia spectrum disorders using extreme learning machine and structural T1 MRI features.

    PubMed

    Jongin Kim; Boreom Lee

    2017-07-01

    The classification of neuroimaging data for the diagnosis of Alzheimer's Disease (AD) is one of the main research goals of the neuroscience and clinical fields. In this study, we performed extreme learning machine (ELM) classifier to discriminate the AD, mild cognitive impairment (MCI) from normal control (NC). We compared the performance of ELM with that of a linear kernel support vector machine (SVM) for 718 structural MRI images from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The data consisted of normal control, MCI converter (MCI-C), MCI non-converter (MCI-NC), and AD. We employed SVM-based recursive feature elimination (RFE-SVM) algorithm to find the optimal subset of features. In this study, we found that the RFE-SVM feature selection approach in combination with ELM shows the superior classification accuracy to that of linear kernel SVM for structural T1 MRI data.

  18. [A prediction model for the activity of insecticidal crystal proteins from Bacillus thuringiensis based on support vector machine].

    PubMed

    Lin, Yi; Cai, Fu-Ying; Zhang, Guang-Ya

    2007-01-01

    A quantitative structure-property relationship (QSPR) model in terms of amino acid composition and the activity of Bacillus thuringiensis insecticidal crystal proteins was established. Support vector machine (SVM) is a novel general machine-learning tool based on the structural risk minimization principle that exhibits good generalization when fault samples are few; it is especially suitable for classification, forecasting, and estimation in cases where small amounts of samples are involved such as fault diagnosis; however, some parameters of SVM are selected based on the experience of the operator, which has led to decreased efficiency of SVM in practical application. The uniform design (UD) method was applied to optimize the running parameters of SVM. It was found that the average accuracy rate approached 73% when the penalty factor was 0.01, the epsilon 0.2, the gamma 0.05, and the range 0.5. The results indicated that UD might be used an effective method to optimize the parameters of SVM and SVM and could be used as an alternative powerful modeling tool for QSPR studies of the activity of Bacillus thuringiensis (Bt) insecticidal crystal proteins. Therefore, a novel method for predicting the insecticidal activity of Bt insecticidal crystal proteins was proposed by the authors of this study.

  19. A Support Vector Machine-Based Gender Identification Using Speech Signal

    NASA Astrophysics Data System (ADS)

    Lee, Kye-Hwan; Kang, Sang-Ick; Kim, Deok-Hwan; Chang, Joon-Hyuk

    We propose an effective voice-based gender identification method using a support vector machine (SVM). The SVM is a binary classification algorithm that classifies two groups by finding the voluntary nonlinear boundary in a feature space and is known to yield high classification performance. In the present work, we compare the identification performance of the SVM with that of a Gaussian mixture model (GMM)-based method using the mel frequency cepstral coefficients (MFCC). A novel approach of incorporating a features fusion scheme based on a combination of the MFCC and the fundamental frequency is proposed with the aim of improving the performance of gender identification. Experimental results demonstrate that the gender identification performance using the SVM is significantly better than that of the GMM-based scheme. Moreover, the performance is substantially improved when the proposed features fusion technique is applied.

  20. A feasibility study of automatic lung nodule detection in chest digital tomosynthesis with machine learning based on support vector machine

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Jo, Byungdu; Choi, Seungyeon; Shin, Jungwook; Kim, Hee-Joung

    2017-03-01

    The chest digital tomosynthesis(CDT) is recently developed medical device that has several advantage for diagnosing lung disease. For example, CDT provides depth information with relatively low radiation dose compared to computed tomography (CT). However, a major problem with CDT is the image artifacts associated with data incompleteness resulting from limited angle data acquisition in CDT geometry. For this reason, the sensitivity of lung disease was not clear compared to CT. In this study, to improve sensitivity of lung disease detection in CDT, we developed computer aided diagnosis (CAD) systems based on machine learning. For design CAD systems, we used 100 cases of lung nodules cropped images and 100 cases of normal lesion cropped images acquired by lung man phantoms and proto type CDT. We used machine learning techniques based on support vector machine and Gabor filter. The Gabor filter was used for extracting characteristics of lung nodules and we compared performance of feature extraction of Gabor filter with various scale and orientation parameters. We used 3, 4, 5 scales and 4, 6, 8 orientations. After extracting features, support vector machine (SVM) was used for classifying feature of lesions. The linear, polynomial and Gaussian kernels of SVM were compared to decide the best SVM conditions for CDT reconstruction images. The results of CAD system with machine learning showed the capability of automatically lung lesion detection. Furthermore detection performance was the best when Gabor filter with 5 scale and 8 orientation and SVM with Gaussian kernel were used. In conclusion, our suggested CAD system showed improving sensitivity of lung lesion detection in CDT and decide Gabor filter and SVM conditions to achieve higher detection performance of our developed CAD system for CDT.

  1. Boosted Regression Trees Outperforms Support Vector Machines in Predicting (Regional) Yields of Winter Wheat from Single and Cumulated Dekadal Spot-VGT Derived Normalized Difference Vegetation Indices

    NASA Astrophysics Data System (ADS)

    Stas, Michiel; Dong, Qinghan; Heremans, Stien; Zhang, Beier; Van Orshoven, Jos

    2016-08-01

    This paper compares two machine learning techniques to predict regional winter wheat yields. The models, based on Boosted Regression Trees (BRT) and Support Vector Machines (SVM), are constructed of Normalized Difference Vegetation Indices (NDVI) derived from low resolution SPOT VEGETATION satellite imagery. Three types of NDVI-related predictors were used: Single NDVI, Incremental NDVI and Targeted NDVI. BRT and SVM were first used to select features with high relevance for predicting the yield. Although the exact selections differed between the prefectures, certain periods with high influence scores for multiple prefectures could be identified. The same period of high influence stretching from March to June was detected by both machine learning methods. After feature selection, BRT and SVM models were applied to the subset of selected features for actual yield forecasting. Whereas both machine learning methods returned very low prediction errors, BRT seems to slightly but consistently outperform SVM.

  2. A Method of Neighbor Classes Based SVM Classification for Optical Printed Chinese Character Recognition

    PubMed Central

    Zhang, Jie; Wu, Xiaohong; Yu, Yanmei; Luo, Daisheng

    2013-01-01

    In optical printed Chinese character recognition (OPCCR), many classifiers have been proposed for the recognition. Among the classifiers, support vector machine (SVM) might be the best classifier. However, SVM is a classifier for two classes. When it is used for multi-classes in OPCCR, its computation is time-consuming. Thus, we propose a neighbor classes based SVM (NC-SVM) to reduce the computation consumption of SVM. Experiments of NC-SVM classification for OPCCR have been done. The results of the experiments have shown that the NC-SVM we proposed can effectively reduce the computation time in OPCCR. PMID:23536777

  3. Power line identification of millimeter wave radar based on PCA-GS-SVM

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Zhang, Guifeng; Cheng, Yansheng

    2017-12-01

    Aiming at the problem that the existing detection method can not effectively solve the security of UAV's ultra low altitude flight caused by power line, a power line recognition method based on grid search (GS) and the principal component analysis and support vector machine (PCA-SVM) is proposed. Firstly, the candidate line of Hough transform is reduced by PCA, and the main feature of candidate line is extracted. Then, upport vector machine (SVM is) optimized by grid search method (GS). Finally, using support vector machine classifier optimized parameters to classify the candidate line. MATLAB simulation results show that this method can effectively identify the power line and noise, and has high recognition accuracy and algorithm efficiency.

  4. Support-vector-machine tree-based domain knowledge learning toward automated sports video classification

    NASA Astrophysics Data System (ADS)

    Xiao, Guoqiang; Jiang, Yang; Song, Gang; Jiang, Jianmin

    2010-12-01

    We propose a support-vector-machine (SVM) tree to hierarchically learn from domain knowledge represented by low-level features toward automatic classification of sports videos. The proposed SVM tree adopts a binary tree structure to exploit the nature of SVM's binary classification, where each internal node is a single SVM learning unit, and each external node represents the classified output type. Such a SVM tree presents a number of advantages, which include: 1. low computing cost; 2. integrated learning and classification while preserving individual SVM's learning strength; and 3. flexibility in both structure and learning modules, where different numbers of nodes and features can be added to address specific learning requirements, and various learning models can be added as individual nodes, such as neural networks, AdaBoost, hidden Markov models, dynamic Bayesian networks, etc. Experiments support that the proposed SVM tree achieves good performances in sports video classifications.

  5. A Collaborative Framework for Distributed Privacy-Preserving Support Vector Machine Learning

    PubMed Central

    Que, Jialan; Jiang, Xiaoqian; Ohno-Machado, Lucila

    2012-01-01

    A Support Vector Machine (SVM) is a popular tool for decision support. The traditional way to build an SVM model is to estimate parameters based on a centralized repository of data. However, in the field of biomedicine, patient data are sometimes stored in local repositories or institutions where they were collected, and may not be easily shared due to privacy concerns. This creates a substantial barrier for researchers to effectively learn from the distributed data using machine learning tools like SVMs. To overcome this difficulty and promote efficient information exchange without sharing sensitive raw data, we developed a Distributed Privacy Preserving Support Vector Machine (DPP-SVM). The DPP-SVM enables privacy-preserving collaborative learning, in which a trusted server integrates “privacy-insensitive” intermediary results. The globally learned model is guaranteed to be exactly the same as learned from combined data. We also provide a free web-service (http://privacy.ucsd.edu:8080/ppsvm/) for multiple participants to collaborate and complete the SVM-learning task in an efficient and privacy-preserving manner. PMID:23304414

  6. The generalization ability of online SVM classification based on Markov sampling.

    PubMed

    Xu, Jie; Yan Tang, Yuan; Zou, Bin; Xu, Zongben; Li, Luoqing; Lu, Yang

    2015-03-01

    In this paper, we consider online support vector machine (SVM) classification learning algorithms with uniformly ergodic Markov chain (u.e.M.c.) samples. We establish the bound on the misclassification error of an online SVM classification algorithm with u.e.M.c. samples based on reproducing kernel Hilbert spaces and obtain a satisfactory convergence rate. We also introduce a novel online SVM classification algorithm based on Markov sampling, and present the numerical studies on the learning ability of online SVM classification based on Markov sampling for benchmark repository. The numerical studies show that the learning performance of the online SVM classification algorithm based on Markov sampling is better than that of classical online SVM classification based on random sampling as the size of training samples is larger.

  7. Classification of different kinds of pesticide residues on lettuce based on fluorescence spectra and WT-BCC-SVM algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Jun, Sun; Zhang, Bing; Jun, Wu

    2017-07-01

    In order to improve the reliability of the spectrum feature extracted by wavelet transform, a method combining wavelet transform (WT) with bacterial colony chemotaxis algorithm and support vector machine (BCC-SVM) algorithm (WT-BCC-SVM) was proposed in this paper. Besides, we aimed to identify different kinds of pesticide residues on lettuce leaves in a novel and rapid non-destructive way by using fluorescence spectra technology. The fluorescence spectral data of 150 lettuce leaf samples of five different kinds of pesticide residues on the surface of lettuce were obtained using Cary Eclipse fluorescence spectrometer. Standard normalized variable detrending (SNV detrending), Savitzky-Golay coupled with Standard normalized variable detrending (SG-SNV detrending) were used to preprocess the raw spectra, respectively. Bacterial colony chemotaxis combined with support vector machine (BCC-SVM) and support vector machine (SVM) classification models were established based on full spectra (FS) and wavelet transform characteristics (WTC), respectively. Moreover, WTC were selected by WT. The results showed that the accuracy of training set, calibration set and the prediction set of the best optimal classification model (SG-SNV detrending-WT-BCC-SVM) were 100%, 98% and 93.33%, respectively. In addition, the results indicated that it was feasible to use WT-BCC-SVM to establish diagnostic model of different kinds of pesticide residues on lettuce leaves.

  8. A Genetic Algorithm Based Support Vector Machine Model for Blood-Brain Barrier Penetration Prediction

    PubMed Central

    Zhang, Daqing; Xiao, Jianfeng; Zhou, Nannan; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian

    2015-01-01

    Blood-brain barrier (BBB) is a highly complex physical barrier determining what substances are allowed to enter the brain. Support vector machine (SVM) is a kernel-based machine learning method that is widely used in QSAR study. For a successful SVM model, the kernel parameters for SVM and feature subset selection are the most important factors affecting prediction accuracy. In most studies, they are treated as two independent problems, but it has been proven that they could affect each other. We designed and implemented genetic algorithm (GA) to optimize kernel parameters and feature subset selection for SVM regression and applied it to the BBB penetration prediction. The results show that our GA/SVM model is more accurate than other currently available log BB models. Therefore, to optimize both SVM parameters and feature subset simultaneously with genetic algorithm is a better approach than other methods that treat the two problems separately. Analysis of our log BB model suggests that carboxylic acid group, polar surface area (PSA)/hydrogen-bonding ability, lipophilicity, and molecular charge play important role in BBB penetration. Among those properties relevant to BBB penetration, lipophilicity could enhance the BBB penetration while all the others are negatively correlated with BBB penetration. PMID:26504797

  9. Weighted K-means support vector machine for cancer prediction.

    PubMed

    Kim, SungHwan

    2016-01-01

    To date, the support vector machine (SVM) has been widely applied to diverse bio-medical fields to address disease subtype identification and pathogenicity of genetic variants. In this paper, I propose the weighted K-means support vector machine (wKM-SVM) and weighted support vector machine (wSVM), for which I allow the SVM to impose weights to the loss term. Besides, I demonstrate the numerical relations between the objective function of the SVM and weights. Motivated by general ensemble techniques, which are known to improve accuracy, I directly adopt the boosting algorithm to the newly proposed weighted KM-SVM (and wSVM). For predictive performance, a range of simulation studies demonstrate that the weighted KM-SVM (and wSVM) with boosting outperforms the standard KM-SVM (and SVM) including but not limited to many popular classification rules. I applied the proposed methods to simulated data and two large-scale real applications in the TCGA pan-cancer methylation data of breast and kidney cancer. In conclusion, the weighted KM-SVM (and wSVM) increases accuracy of the classification model, and will facilitate disease diagnosis and clinical treatment decisions to benefit patients. A software package (wSVM) is publicly available at the R-project webpage (https://www.r-project.org).

  10. A Comparative Experimental Study on the Use of Machine Learning Approaches for Automated Valve Monitoring Based on Acoustic Emission Parameters

    NASA Astrophysics Data System (ADS)

    Ali, Salah M.; Hui, K. H.; Hee, L. M.; Salman Leong, M.; Al-Obaidi, M. A.; Ali, Y. H.; Abdelrhman, Ahmed M.

    2018-03-01

    Acoustic emission (AE) analysis has become a vital tool for initiating the maintenance tasks in many industries. However, the analysis process and interpretation has been found to be highly dependent on the experts. Therefore, an automated monitoring method would be required to reduce the cost and time consumed in the interpretation of AE signal. This paper investigates the application of two of the most common machine learning approaches namely artificial neural network (ANN) and support vector machine (SVM) to automate the diagnosis of valve faults in reciprocating compressor based on AE signal parameters. Since the accuracy is an essential factor in any automated diagnostic system, this paper also provides a comparative study based on predictive performance of ANN and SVM. AE parameters data was acquired from single stage reciprocating air compressor with different operational and valve conditions. ANN and SVM diagnosis models were subsequently devised by combining AE parameters of different conditions. Results demonstrate that ANN and SVM models have the same results in term of prediction accuracy. However, SVM model is recommended to automate diagnose the valve condition in due to the ability of handling a high number of input features with low sampling data sets.

  11. A support vector machine based control application to the experimental three-tank system.

    PubMed

    Iplikci, Serdar

    2010-07-01

    This paper presents a support vector machine (SVM) approach to generalized predictive control (GPC) of multiple-input multiple-output (MIMO) nonlinear systems. The possession of higher generalization potential and at the same time avoidance of getting stuck into the local minima have motivated us to employ SVM algorithms for modeling MIMO systems. Based on the SVM model, detailed and compact formulations for calculating predictions and gradient information, which are used in the computation of the optimal control action, are given in the paper. The proposed MIMO SVM-based GPC method has been verified on an experimental three-tank liquid level control system. Experimental results have shown that the proposed method can handle the control task successfully for different reference trajectories. Moreover, a detailed discussion on data gathering, model selection and effects of the control parameters have been given in this paper. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  12. [Identification of varieties of cashmere by Vis/NIR spectroscopy technology based on PCA-SVM].

    PubMed

    Wu, Gui-Fang; He, Yong

    2009-06-01

    One mixed algorithm was presented to discriminate cashmere varieties with principal component analysis (PCA) and support vector machine (SVM). Cashmere fiber has such characteristics as threadlike, softness, glossiness and high tensile strength. The quality characters and economic value of each breed of cashmere are very different. In order to safeguard the consumer's rights and guarantee the quality of cashmere product, quickly, efficiently and correctly identifying cashmere has significant meaning to the production and transaction of cashmere material. The present research adopts Vis/NIRS spectroscopy diffuse techniques to collect the spectral data of cashmere. The near infrared fingerprint of cashmere was acquired by principal component analysis (PCA), and support vector machine (SVM) methods were used to further identify the cashmere material. The result of PCA indicated that the score map made by the scores of PC1, PC2 and PC3 was used, and 10 principal components (PCs) were selected as the input of support vector machine (SVM) based on the reliabilities of PCs of 99.99%. One hundred cashmere samples were used for calibration and the remaining 75 cashmere samples were used for validation. A one-against-all multi-class SVM model was built, the capabilities of SVM with different kernel function were comparatively analyzed, and the result showed that SVM possessing with the Gaussian kernel function has the best identification capabilities with the accuracy of 100%. This research indicated that the data mining method of PCA-SVM has a good identification effect, and can work as a new method for rapid identification of cashmere material varieties.

  13. Fuzzy support vector machine for microarray imbalanced data classification

    NASA Astrophysics Data System (ADS)

    Ladayya, Faroh; Purnami, Santi Wulan; Irhamah

    2017-11-01

    DNA microarrays are data containing gene expression with small sample sizes and high number of features. Furthermore, imbalanced classes is a common problem in microarray data. This occurs when a dataset is dominated by a class which have significantly more instances than the other minority classes. Therefore, it is needed a classification method that solve the problem of high dimensional and imbalanced data. Support Vector Machine (SVM) is one of the classification methods that is capable of handling large or small samples, nonlinear, high dimensional, over learning and local minimum issues. SVM has been widely applied to DNA microarray data classification and it has been shown that SVM provides the best performance among other machine learning methods. However, imbalanced data will be a problem because SVM treats all samples in the same importance thus the results is bias for minority class. To overcome the imbalanced data, Fuzzy SVM (FSVM) is proposed. This method apply a fuzzy membership to each input point and reformulate the SVM such that different input points provide different contributions to the classifier. The minority classes have large fuzzy membership so FSVM can pay more attention to the samples with larger fuzzy membership. Given DNA microarray data is a high dimensional data with a very large number of features, it is necessary to do feature selection first using Fast Correlation based Filter (FCBF). In this study will be analyzed by SVM, FSVM and both methods by applying FCBF and get the classification performance of them. Based on the overall results, FSVM on selected features has the best classification performance compared to SVM.

  14. Tuning support vector machines for minimax and Neyman-Pearson classification.

    PubMed

    Davenport, Mark A; Baraniuk, Richard G; Scott, Clayton D

    2010-10-01

    This paper studies the training of support vector machine (SVM) classifiers with respect to the minimax and Neyman-Pearson criteria. In principle, these criteria can be optimized in a straightforward way using a cost-sensitive SVM. In practice, however, because these criteria require especially accurate error estimation, standard techniques for tuning SVM parameters, such as cross-validation, can lead to poor classifier performance. To address this issue, we first prove that the usual cost-sensitive SVM, here called the 2C-SVM, is equivalent to another formulation called the 2nu-SVM. We then exploit a characterization of the 2nu-SVM parameter space to develop a simple yet powerful approach to error estimation based on smoothing. In an extensive experimental study, we demonstrate that smoothing significantly improves the accuracy of cross-validation error estimates, leading to dramatic performance gains. Furthermore, we propose coordinate descent strategies that offer significant gains in computational efficiency, with little to no loss in performance.

  15. Predicting complications of percutaneous coronary intervention using a novel support vector method.

    PubMed

    Lee, Gyemin; Gurm, Hitinder S; Syed, Zeeshan

    2013-01-01

    To explore the feasibility of a novel approach using an augmented one-class learning algorithm to model in-laboratory complications of percutaneous coronary intervention (PCI). Data from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) multicenter registry for the years 2007 and 2008 (n=41 016) were used to train models to predict 13 different in-laboratory PCI complications using a novel one-plus-class support vector machine (OP-SVM) algorithm. The performance of these models in terms of discrimination and calibration was compared to the performance of models trained using the following classification algorithms on BMC2 data from 2009 (n=20 289): logistic regression (LR), one-class support vector machine classification (OC-SVM), and two-class support vector machine classification (TC-SVM). For the OP-SVM and TC-SVM approaches, variants of the algorithms with cost-sensitive weighting were also considered. The OP-SVM algorithm and its cost-sensitive variant achieved the highest area under the receiver operating characteristic curve for the majority of the PCI complications studied (eight cases). Similar improvements were observed for the Hosmer-Lemeshow χ(2) value (seven cases) and the mean cross-entropy error (eight cases). The OP-SVM algorithm based on an augmented one-class learning problem improved discrimination and calibration across different PCI complications relative to LR and traditional support vector machine classification. Such an approach may have value in a broader range of clinical domains.

  16. Application of machine learning on brain cancer multiclass classification

    NASA Astrophysics Data System (ADS)

    Panca, V.; Rustam, Z.

    2017-07-01

    Classification of brain cancer is a problem of multiclass classification. One approach to solve this problem is by first transforming it into several binary problems. The microarray gene expression dataset has the two main characteristics of medical data: extremely many features (genes) and only a few number of samples. The application of machine learning on microarray gene expression dataset mainly consists of two steps: feature selection and classification. In this paper, the features are selected using a method based on support vector machine recursive feature elimination (SVM-RFE) principle which is improved to solve multiclass classification, called multiple multiclass SVM-RFE. Instead of using only the selected features on a single classifier, this method combines the result of multiple classifiers. The features are divided into subsets and SVM-RFE is used on each subset. Then, the selected features on each subset are put on separate classifiers. This method enhances the feature selection ability of each single SVM-RFE. Twin support vector machine (TWSVM) is used as the method of the classifier to reduce computational complexity. While ordinary SVM finds single optimum hyperplane, the main objective Twin SVM is to find two non-parallel optimum hyperplanes. The experiment on the brain cancer microarray gene expression dataset shows this method could classify 71,4% of the overall test data correctly, using 100 and 1000 genes selected from multiple multiclass SVM-RFE feature selection method. Furthermore, the per class results show that this method could classify data of normal and MD class with 100% accuracy.

  17. Predicting complications of percutaneous coronary intervention using a novel support vector method

    PubMed Central

    Lee, Gyemin; Gurm, Hitinder S; Syed, Zeeshan

    2013-01-01

    Objective To explore the feasibility of a novel approach using an augmented one-class learning algorithm to model in-laboratory complications of percutaneous coronary intervention (PCI). Materials and methods Data from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) multicenter registry for the years 2007 and 2008 (n=41 016) were used to train models to predict 13 different in-laboratory PCI complications using a novel one-plus-class support vector machine (OP-SVM) algorithm. The performance of these models in terms of discrimination and calibration was compared to the performance of models trained using the following classification algorithms on BMC2 data from 2009 (n=20 289): logistic regression (LR), one-class support vector machine classification (OC-SVM), and two-class support vector machine classification (TC-SVM). For the OP-SVM and TC-SVM approaches, variants of the algorithms with cost-sensitive weighting were also considered. Results The OP-SVM algorithm and its cost-sensitive variant achieved the highest area under the receiver operating characteristic curve for the majority of the PCI complications studied (eight cases). Similar improvements were observed for the Hosmer–Lemeshow χ2 value (seven cases) and the mean cross-entropy error (eight cases). Conclusions The OP-SVM algorithm based on an augmented one-class learning problem improved discrimination and calibration across different PCI complications relative to LR and traditional support vector machine classification. Such an approach may have value in a broader range of clinical domains. PMID:23599229

  18. Osteoporosis risk prediction using machine learning and conventional methods.

    PubMed

    Kim, Sung Kean; Yoo, Tae Keun; Oh, Ein; Kim, Deok Won

    2013-01-01

    A number of clinical decision tools for osteoporosis risk assessment have been developed to select postmenopausal women for the measurement of bone mineral density. We developed and validated machine learning models with the aim of more accurately identifying the risk of osteoporosis in postmenopausal women, and compared with the ability of a conventional clinical decision tool, osteoporosis self-assessment tool (OST). We collected medical records from Korean postmenopausal women based on the Korea National Health and Nutrition Surveys (KNHANES V-1). The training data set was used to construct models based on popular machine learning algorithms such as support vector machines (SVM), random forests (RF), artificial neural networks (ANN), and logistic regression (LR) based on various predictors associated with low bone density. The learning models were compared with OST. SVM had significantly better area under the curve (AUC) of the receiver operating characteristic (ROC) than ANN, LR, and OST. Validation on the test set showed that SVM predicted osteoporosis risk with an AUC of 0.827, accuracy of 76.7%, sensitivity of 77.8%, and specificity of 76.0%. We were the first to perform comparisons of the performance of osteoporosis prediction between the machine learning and conventional methods using population-based epidemiological data. The machine learning methods may be effective tools for identifying postmenopausal women at high risk for osteoporosis.

  19. sw-SVM: sensor weighting support vector machines for EEG-based brain-computer interfaces.

    PubMed

    Jrad, N; Congedo, M; Phlypo, R; Rousseau, S; Flamary, R; Yger, F; Rakotomamonjy, A

    2011-10-01

    In many machine learning applications, like brain-computer interfaces (BCI), high-dimensional sensor array data are available. Sensor measurements are often highly correlated and signal-to-noise ratio is not homogeneously spread across sensors. Thus, collected data are highly variable and discrimination tasks are challenging. In this work, we focus on sensor weighting as an efficient tool to improve the classification procedure. We present an approach integrating sensor weighting in the classification framework. Sensor weights are considered as hyper-parameters to be learned by a support vector machine (SVM). The resulting sensor weighting SVM (sw-SVM) is designed to satisfy a margin criterion, that is, the generalization error. Experimental studies on two data sets are presented, a P300 data set and an error-related potential (ErrP) data set. For the P300 data set (BCI competition III), for which a large number of trials is available, the sw-SVM proves to perform equivalently with respect to the ensemble SVM strategy that won the competition. For the ErrP data set, for which a small number of trials are available, the sw-SVM shows superior performances as compared to three state-of-the art approaches. Results suggest that the sw-SVM promises to be useful in event-related potentials classification, even with a small number of training trials.

  20. Multi-view L2-SVM and its multi-view core vector machine.

    PubMed

    Huang, Chengquan; Chung, Fu-lai; Wang, Shitong

    2016-03-01

    In this paper, a novel L2-SVM based classifier Multi-view L2-SVM is proposed to address multi-view classification tasks. The proposed Multi-view L2-SVM classifier does not have any bias in its objective function and hence has the flexibility like μ-SVC in the sense that the number of the yielded support vectors can be controlled by a pre-specified parameter. The proposed Multi-view L2-SVM classifier can make full use of the coherence and the difference of different views through imposing the consensus among multiple views to improve the overall classification performance. Besides, based on the generalized core vector machine GCVM, the proposed Multi-view L2-SVM classifier is extended into its GCVM version MvCVM which can realize its fast training on large scale multi-view datasets, with its asymptotic linear time complexity with the sample size and its space complexity independent of the sample size. Our experimental results demonstrated the effectiveness of the proposed Multi-view L2-SVM classifier for small scale multi-view datasets and the proposed MvCVM classifier for large scale multi-view datasets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment

    NASA Astrophysics Data System (ADS)

    Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty

    2017-12-01

    Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.

  2. Automated Quality Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised Machine Learning Algorithm.

    PubMed

    Pizarro, Ricardo A; Cheng, Xi; Barnett, Alan; Lemaitre, Herve; Verchinski, Beth A; Goldman, Aaron L; Xiao, Ena; Luo, Qian; Berman, Karen F; Callicott, Joseph H; Weinberger, Daniel R; Mattay, Venkata S

    2016-01-01

    High-resolution three-dimensional magnetic resonance imaging (3D-MRI) is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use. Currently, quality assessment involves slice-wise visual inspection of 3D-MRI volumes, a procedure that is both subjective and time consuming. Automating the quality rating of 3D-MRI could improve the efficiency and reproducibility of the procedure. The present study is one of the first efforts to apply a support vector machine (SVM) algorithm in the quality assessment of structural brain images, using global and region of interest (ROI) automated image quality features developed in-house. SVM is a supervised machine-learning algorithm that can predict the category of test datasets based on the knowledge acquired from a learning dataset. The performance (accuracy) of the automated SVM approach was assessed, by comparing the SVM-predicted quality labels to investigator-determined quality labels. The accuracy for classifying 1457 3D-MRI volumes from our database using the SVM approach is around 80%. These results are promising and illustrate the possibility of using SVM as an automated quality assessment tool for 3D-MRI.

  3. A Support Vector Machine based method to distinguish proteobacterial proteins from eukaryotic plant proteins

    PubMed Central

    2012-01-01

    Background Members of the phylum Proteobacteria are most prominent among bacteria causing plant diseases that result in a diminution of the quantity and quality of food produced by agriculture. To ameliorate these losses, there is a need to identify infections in early stages. Recent developments in next generation nucleic acid sequencing and mass spectrometry open the door to screening plants by the sequences of their macromolecules. Such an approach requires the ability to recognize the organismal origin of unknown DNA or peptide fragments. There are many ways to approach this problem but none have emerged as the best protocol. Here we attempt a systematic way to determine organismal origins of peptides by using a machine learning algorithm. The algorithm that we implement is a Support Vector Machine (SVM). Result The amino acid compositions of proteobacterial proteins were found to be different from those of plant proteins. We developed an SVM model based on amino acid and dipeptide compositions to distinguish between a proteobacterial protein and a plant protein. The amino acid composition (AAC) based SVM model had an accuracy of 92.44% with 0.85 Matthews correlation coefficient (MCC) while the dipeptide composition (DC) based SVM model had a maximum accuracy of 94.67% and 0.89 MCC. We also developed SVM models based on a hybrid approach (AAC and DC), which gave a maximum accuracy 94.86% and a 0.90 MCC. The models were tested on unseen or untrained datasets to assess their validity. Conclusion The results indicate that the SVM based on the AAC and DC hybrid approach can be used to distinguish proteobacterial from plant protein sequences. PMID:23046503

  4. Prediction on sunspot activity based on fuzzy information granulation and support vector machine

    NASA Astrophysics Data System (ADS)

    Peng, Lingling; Yan, Haisheng; Yang, Zhigang

    2018-04-01

    In order to analyze the range of sunspots, a combined prediction method of forecasting the fluctuation range of sunspots based on fuzzy information granulation (FIG) and support vector machine (SVM) was put forward. Firstly, employing the FIG to granulate sample data and extract va)alid information of each window, namely the minimum value, the general average value and the maximum value of each window. Secondly, forecasting model is built respectively with SVM and then cross method is used to optimize these parameters. Finally, the fluctuation range of sunspots is forecasted with the optimized SVM model. Case study demonstrates that the model have high accuracy and can effectively predict the fluctuation of sunspots.

  5. Scaling Support Vector Machines On Modern HPC Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Fu, Haohuan; Song, Shuaiwen

    2015-02-01

    We designed and implemented MIC-SVM, a highly efficient parallel SVM for x86 based multicore and many-core architectures, such as the Intel Ivy Bridge CPUs and Intel Xeon Phi co-processor (MIC). We propose various novel analysis methods and optimization techniques to fully utilize the multilevel parallelism provided by these architectures and serve as general optimization methods for other machine learning tools.

  6. Osteoporosis risk prediction for bone mineral density assessment of postmenopausal women using machine learning.

    PubMed

    Yoo, Tae Keun; Kim, Sung Kean; Kim, Deok Won; Choi, Joon Yul; Lee, Wan Hyung; Oh, Ein; Park, Eun-Cheol

    2013-11-01

    A number of clinical decision tools for osteoporosis risk assessment have been developed to select postmenopausal women for the measurement of bone mineral density. We developed and validated machine learning models with the aim of more accurately identifying the risk of osteoporosis in postmenopausal women compared to the ability of conventional clinical decision tools. We collected medical records from Korean postmenopausal women based on the Korea National Health and Nutrition Examination Surveys. The training data set was used to construct models based on popular machine learning algorithms such as support vector machines (SVM), random forests, artificial neural networks (ANN), and logistic regression (LR) based on simple surveys. The machine learning models were compared to four conventional clinical decision tools: osteoporosis self-assessment tool (OST), osteoporosis risk assessment instrument (ORAI), simple calculated osteoporosis risk estimation (SCORE), and osteoporosis index of risk (OSIRIS). SVM had significantly better area under the curve (AUC) of the receiver operating characteristic than ANN, LR, OST, ORAI, SCORE, and OSIRIS for the training set. SVM predicted osteoporosis risk with an AUC of 0.827, accuracy of 76.7%, sensitivity of 77.8%, and specificity of 76.0% at total hip, femoral neck, or lumbar spine for the testing set. The significant factors selected by SVM were age, height, weight, body mass index, duration of menopause, duration of breast feeding, estrogen therapy, hyperlipidemia, hypertension, osteoarthritis, and diabetes mellitus. Considering various predictors associated with low bone density, the machine learning methods may be effective tools for identifying postmenopausal women at high risk for osteoporosis.

  7. Implementation of support vector machine for classification of speech marked hijaiyah letters based on Mel frequency cepstrum coefficient feature extraction

    NASA Astrophysics Data System (ADS)

    Adhi Pradana, Wisnu; Adiwijaya; Novia Wisesty, Untari

    2018-03-01

    Support Vector Machine or commonly called SVM is one method that can be used to process the classification of a data. SVM classifies data from 2 different classes with hyperplane. In this study, the system was built using SVM to develop Arabic Speech Recognition. In the development of the system, there are 2 kinds of speakers that have been tested that is dependent speakers and independent speakers. The results from this system is an accuracy of 85.32% for speaker dependent and 61.16% for independent speakers.

  8. Pulmonary Nodule Recognition Based on Multiple Kernel Learning Support Vector Machine-PSO

    PubMed Central

    Zhu, Zhichuan; Zhao, Qingdong; Liu, Liwei; Zhang, Lijuan

    2018-01-01

    Pulmonary nodule recognition is the core module of lung CAD. The Support Vector Machine (SVM) algorithm has been widely used in pulmonary nodule recognition, and the algorithm of Multiple Kernel Learning Support Vector Machine (MKL-SVM) has achieved good results therein. Based on grid search, however, the MKL-SVM algorithm needs long optimization time in course of parameter optimization; also its identification accuracy depends on the fineness of grid. In the paper, swarm intelligence is introduced and the Particle Swarm Optimization (PSO) is combined with MKL-SVM algorithm to be MKL-SVM-PSO algorithm so as to realize global optimization of parameters rapidly. In order to obtain the global optimal solution, different inertia weights such as constant inertia weight, linear inertia weight, and nonlinear inertia weight are applied to pulmonary nodules recognition. The experimental results show that the model training time of the proposed MKL-SVM-PSO algorithm is only 1/7 of the training time of the MKL-SVM grid search algorithm, achieving better recognition effect. Moreover, Euclidean norm of normalized error vector is proposed to measure the proximity between the average fitness curve and the optimal fitness curve after convergence. Through statistical analysis of the average of 20 times operation results with different inertial weights, it can be seen that the dynamic inertial weight is superior to the constant inertia weight in the MKL-SVM-PSO algorithm. In the dynamic inertial weight algorithm, the parameter optimization time of nonlinear inertia weight is shorter; the average fitness value after convergence is much closer to the optimal fitness value, which is better than the linear inertial weight. Besides, a better nonlinear inertial weight is verified. PMID:29853983

  9. Pulmonary Nodule Recognition Based on Multiple Kernel Learning Support Vector Machine-PSO.

    PubMed

    Li, Yang; Zhu, Zhichuan; Hou, Alin; Zhao, Qingdong; Liu, Liwei; Zhang, Lijuan

    2018-01-01

    Pulmonary nodule recognition is the core module of lung CAD. The Support Vector Machine (SVM) algorithm has been widely used in pulmonary nodule recognition, and the algorithm of Multiple Kernel Learning Support Vector Machine (MKL-SVM) has achieved good results therein. Based on grid search, however, the MKL-SVM algorithm needs long optimization time in course of parameter optimization; also its identification accuracy depends on the fineness of grid. In the paper, swarm intelligence is introduced and the Particle Swarm Optimization (PSO) is combined with MKL-SVM algorithm to be MKL-SVM-PSO algorithm so as to realize global optimization of parameters rapidly. In order to obtain the global optimal solution, different inertia weights such as constant inertia weight, linear inertia weight, and nonlinear inertia weight are applied to pulmonary nodules recognition. The experimental results show that the model training time of the proposed MKL-SVM-PSO algorithm is only 1/7 of the training time of the MKL-SVM grid search algorithm, achieving better recognition effect. Moreover, Euclidean norm of normalized error vector is proposed to measure the proximity between the average fitness curve and the optimal fitness curve after convergence. Through statistical analysis of the average of 20 times operation results with different inertial weights, it can be seen that the dynamic inertial weight is superior to the constant inertia weight in the MKL-SVM-PSO algorithm. In the dynamic inertial weight algorithm, the parameter optimization time of nonlinear inertia weight is shorter; the average fitness value after convergence is much closer to the optimal fitness value, which is better than the linear inertial weight. Besides, a better nonlinear inertial weight is verified.

  10. Density-Dependent Quantized Least Squares Support Vector Machine for Large Data Sets.

    PubMed

    Nan, Shengyu; Sun, Lei; Chen, Badong; Lin, Zhiping; Toh, Kar-Ann

    2017-01-01

    Based on the knowledge that input data distribution is important for learning, a data density-dependent quantization scheme (DQS) is proposed for sparse input data representation. The usefulness of the representation scheme is demonstrated by using it as a data preprocessing unit attached to the well-known least squares support vector machine (LS-SVM) for application on big data sets. Essentially, the proposed DQS adopts a single shrinkage threshold to obtain a simple quantization scheme, which adapts its outputs to input data density. With this quantization scheme, a large data set is quantized to a small subset where considerable sample size reduction is generally obtained. In particular, the sample size reduction can save significant computational cost when using the quantized subset for feature approximation via the Nyström method. Based on the quantized subset, the approximated features are incorporated into LS-SVM to develop a data density-dependent quantized LS-SVM (DQLS-SVM), where an analytic solution is obtained in the primal solution space. The developed DQLS-SVM is evaluated on synthetic and benchmark data with particular emphasis on large data sets. Extensive experimental results show that the learning machine incorporating DQS attains not only high computational efficiency but also good generalization performance.

  11. Prediction and early detection of delirium in the intensive care unit by using heart rate variability and machine learning.

    PubMed

    Oh, Jooyoung; Cho, Dongrae; Park, Jaesub; Na, Se Hee; Kim, Jongin; Heo, Jaeseok; Shin, Cheung Soo; Kim, Jae-Jin; Park, Jin Young; Lee, Boreom

    2018-03-27

    Delirium is an important syndrome found in patients in the intensive care unit (ICU), however, it is usually under-recognized during treatment. This study was performed to investigate whether delirious patients can be successfully distinguished from non-delirious patients by using heart rate variability (HRV) and machine learning. Electrocardiography data of 140 patients was acquired during daily ICU care, and HRV data were analyzed. Delirium, including its type, severity, and etiologies, was evaluated daily by trained psychiatrists. HRV data and various machine learning algorithms including linear support vector machine (SVM), SVM with radial basis function (RBF) kernels, linear extreme learning machine (ELM), ELM with RBF kernels, linear discriminant analysis, and quadratic discriminant analysis were utilized to distinguish delirium patients from non-delirium patients. HRV data of 4797 ECGs were included, and 39 patients had delirium at least once during their ICU stay. The maximum classification accuracy was acquired using SVM with RBF kernels. Our prediction method based on HRV with machine learning was comparable to previous delirium prediction models using massive amounts of clinical information. Our results show that autonomic alterations could be a significant feature of patients with delirium in the ICU, suggesting the potential for the automatic prediction and early detection of delirium based on HRV with machine learning.

  12. Optimizing support vector machine learning for semi-arid vegetation mapping by using clustering analysis

    NASA Astrophysics Data System (ADS)

    Su, Lihong

    In remote sensing communities, support vector machine (SVM) learning has recently received increasing attention. SVM learning usually requires large memory and enormous amounts of computation time on large training sets. According to SVM algorithms, the SVM classification decision function is fully determined by support vectors, which compose a subset of the training sets. In this regard, a solution to optimize SVM learning is to efficiently reduce training sets. In this paper, a data reduction method based on agglomerative hierarchical clustering is proposed to obtain smaller training sets for SVM learning. Using a multiple angle remote sensing dataset of a semi-arid region, the effectiveness of the proposed method is evaluated by classification experiments with a series of reduced training sets. The experiments show that there is no loss of SVM accuracy when the original training set is reduced to 34% using the proposed approach. Maximum likelihood classification (MLC) also is applied on the reduced training sets. The results show that MLC can also maintain the classification accuracy. This implies that the most informative data instances can be retained by this approach.

  13. Ranking Support Vector Machine with Kernel Approximation

    PubMed Central

    Dou, Yong

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms. PMID:28293256

  14. Ranking Support Vector Machine with Kernel Approximation.

    PubMed

    Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  15. Combatting nonlinear phase noise in coherent optical systems with an optimized decision processor based on machine learning

    NASA Astrophysics Data System (ADS)

    Wang, Danshi; Zhang, Min; Cai, Zhongle; Cui, Yue; Li, Ze; Han, Huanhuan; Fu, Meixia; Luo, Bin

    2016-06-01

    An effective machine learning algorithm, the support vector machine (SVM), is presented in the context of a coherent optical transmission system. As a classifier, the SVM can create nonlinear decision boundaries to mitigate the distortions caused by nonlinear phase noise (NLPN). Without any prior information or heuristic assumptions, the SVM can learn and capture the link properties from only a few training data. Compared with the maximum likelihood estimation (MLE) algorithm, a lower bit-error rate (BER) is achieved by the SVM for a given launch power; moreover, the launch power dynamic range (LPDR) is increased by 3.3 dBm for 8 phase-shift keying (8 PSK), 1.2 dBm for QPSK, and 0.3 dBm for BPSK. The maximum transmission distance corresponding to a BER of 1 ×10-3 is increased by 480 km for the case of 8 PSK. The larger launch power range and longer transmission distance improve the tolerance to amplitude and phase noise, which demonstrates the feasibility of the SVM in digital signal processing for M-PSK formats. Meanwhile, in order to apply the SVM method to 16 quadratic amplitude modulation (16 QAM) detection, we propose a parameter optimization scheme. By utilizing a cross-validation and grid-search techniques, the optimal parameters of SVM can be selected, thus leading to the LPDR improvement by 2.8 dBm. Additionally, we demonstrate that the SVM is also effective in combating the laser phase noise combined with the inphase and quadrature (I/Q) modulator imperfections, but the improvement is insignificant for the linear noise and separate I/Q imbalance. The computational complexity of SVM is also discussed. The relatively low complexity makes it possible for SVM to implement the real-time processing.

  16. A prediction model of drug-induced ototoxicity developed by an optimal support vector machine (SVM) method.

    PubMed

    Zhou, Shu; Li, Guo-Bo; Huang, Lu-Yi; Xie, Huan-Zhang; Zhao, Ying-Lan; Chen, Yu-Zong; Li, Lin-Li; Yang, Sheng-Yong

    2014-08-01

    Drug-induced ototoxicity, as a toxic side effect, is an important issue needed to be considered in drug discovery. Nevertheless, current experimental methods used to evaluate drug-induced ototoxicity are often time-consuming and expensive, indicating that they are not suitable for a large-scale evaluation of drug-induced ototoxicity in the early stage of drug discovery. We thus, in this investigation, established an effective computational prediction model of drug-induced ototoxicity using an optimal support vector machine (SVM) method, GA-CG-SVM. Three GA-CG-SVM models were developed based on three training sets containing agents bearing different risk levels of drug-induced ototoxicity. For comparison, models based on naïve Bayesian (NB) and recursive partitioning (RP) methods were also used on the same training sets. Among all the prediction models, the GA-CG-SVM model II showed the best performance, which offered prediction accuracies of 85.33% and 83.05% for two independent test sets, respectively. Overall, the good performance of the GA-CG-SVM model II indicates that it could be used for the prediction of drug-induced ototoxicity in the early stage of drug discovery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. [Application of near infrared spectroscopy combined with particle swarm optimization based least square support vactor machine to rapid quantitative analysis of Corni Fructus].

    PubMed

    Liu, Xue-song; Sun, Fen-fang; Jin, Ye; Wu, Yong-jiang; Gu, Zhi-xin; Zhu, Li; Yan, Dong-lan

    2015-12-01

    A novel method was developed for the rapid determination of multi-indicators in corni fructus by means of near infrared (NIR) spectroscopy. Particle swarm optimization (PSO) based least squares support vector machine was investigated to increase the levels of quality control. The calibration models of moisture, extractum, morroniside and loganin were established using the PSO-LS-SVM algorithm. The performance of PSO-LS-SVM models was compared with partial least squares regression (PLSR) and back propagation artificial neural network (BP-ANN). The calibration and validation results of PSO-LS-SVM were superior to both PLS and BP-ANN. For PSO-LS-SVM models, the correlation coefficients (r) of calibrations were all above 0.942. The optimal prediction results were also achieved by PSO-LS-SVM models with the RMSEP (root mean square error of prediction) and RSEP (relative standard errors of prediction) less than 1.176 and 15.5% respectively. The results suggest that PSO-LS-SVM algorithm has a good model performance and high prediction accuracy. NIR has a potential value for rapid determination of multi-indicators in Corni Fructus.

  18. Optimal Parameter Selection for Support Vector Machine Based on Artificial Bee Colony Algorithm: A Case Study of Grid-Connected PV System Power Prediction.

    PubMed

    Gao, Xiang-Ming; Yang, Shi-Feng; Pan, San-Bo

    2017-01-01

    Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization.

  19. Optimal Parameter Selection for Support Vector Machine Based on Artificial Bee Colony Algorithm: A Case Study of Grid-Connected PV System Power Prediction

    PubMed Central

    2017-01-01

    Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization. PMID:28912803

  20. MIC-SVM: Designing A Highly Efficient Support Vector Machine For Advanced Modern Multi-Core and Many-Core Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Song, Shuaiwen; Fu, Haohuan

    2014-08-16

    Support Vector Machine (SVM) has been widely used in data-mining and Big Data applications as modern commercial databases start to attach an increasing importance to the analytic capabilities. In recent years, SVM was adapted to the field of High Performance Computing for power/performance prediction, auto-tuning, and runtime scheduling. However, even at the risk of losing prediction accuracy due to insufficient runtime information, researchers can only afford to apply offline model training to avoid significant runtime training overhead. To address the challenges above, we designed and implemented MICSVM, a highly efficient parallel SVM for x86 based multi-core and many core architectures,more » such as the Intel Ivy Bridge CPUs and Intel Xeon Phi coprocessor (MIC).« less

  1. Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma.

    PubMed

    Feng, Zhichao; Rong, Pengfei; Cao, Peng; Zhou, Qingyu; Zhu, Wenwei; Yan, Zhimin; Liu, Qianyun; Wang, Wei

    2018-04-01

    To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.

  2. New KF-PP-SVM classification method for EEG in brain-computer interfaces.

    PubMed

    Yang, Banghua; Han, Zhijun; Zan, Peng; Wang, Qian

    2014-01-01

    Classification methods are a crucial direction in the current study of brain-computer interfaces (BCIs). To improve the classification accuracy for electroencephalogram (EEG) signals, a novel KF-PP-SVM (kernel fisher, posterior probability, and support vector machine) classification method is developed. Its detailed process entails the use of common spatial patterns to obtain features, based on which the within-class scatter is calculated. Then the scatter is added into the kernel function of a radial basis function to construct a new kernel function. This new kernel is integrated into the SVM to obtain a new classification model. Finally, the output of SVM is calculated based on posterior probability and the final recognition result is obtained. To evaluate the effectiveness of the proposed KF-PP-SVM method, EEG data collected from laboratory are processed with four different classification schemes (KF-PP-SVM, KF-SVM, PP-SVM, and SVM). The results showed that the overall average improvements arising from the use of the KF-PP-SVM scheme as opposed to KF-SVM, PP-SVM and SVM schemes are 2.49%, 5.83 % and 6.49 % respectively.

  3. Density-based penalty parameter optimization on C-SVM.

    PubMed

    Liu, Yun; Lian, Jie; Bartolacci, Michael R; Zeng, Qing-An

    2014-01-01

    The support vector machine (SVM) is one of the most widely used approaches for data classification and regression. SVM achieves the largest distance between the positive and negative support vectors, which neglects the remote instances away from the SVM interface. In order to avoid a position change of the SVM interface as the result of an error system outlier, C-SVM was implemented to decrease the influences of the system's outliers. Traditional C-SVM holds a uniform parameter C for both positive and negative instances; however, according to the different number proportions and the data distribution, positive and negative instances should be set with different weights for the penalty parameter of the error terms. Therefore, in this paper, we propose density-based penalty parameter optimization of C-SVM. The experiential results indicated that our proposed algorithm has outstanding performance with respect to both precision and recall.

  4. Multiclass Classification of Cardiac Arrhythmia Using Improved Feature Selection and SVM Invariants.

    PubMed

    Mustaqeem, Anam; Anwar, Syed Muhammad; Majid, Muahammad

    2018-01-01

    Arrhythmia is considered a life-threatening disease causing serious health issues in patients, when left untreated. An early diagnosis of arrhythmias would be helpful in saving lives. This study is conducted to classify patients into one of the sixteen subclasses, among which one class represents absence of disease and the other fifteen classes represent electrocardiogram records of various subtypes of arrhythmias. The research is carried out on the dataset taken from the University of California at Irvine Machine Learning Data Repository. The dataset contains a large volume of feature dimensions which are reduced using wrapper based feature selection technique. For multiclass classification, support vector machine (SVM) based approaches including one-against-one (OAO), one-against-all (OAA), and error-correction code (ECC) are employed to detect the presence and absence of arrhythmias. The SVM method results are compared with other standard machine learning classifiers using varying parameters and the performance of the classifiers is evaluated using accuracy, kappa statistics, and root mean square error. The results show that OAO method of SVM outperforms all other classifiers by achieving an accuracy rate of 81.11% when used with 80/20 data split and 92.07% using 90/10 data split option.

  5. Arbitrary norm support vector machines.

    PubMed

    Huang, Kaizhu; Zheng, Danian; King, Irwin; Lyu, Michael R

    2009-02-01

    Support vector machines (SVM) are state-of-the-art classifiers. Typically L2-norm or L1-norm is adopted as a regularization term in SVMs, while other norm-based SVMs, for example, the L0-norm SVM or even the L(infinity)-norm SVM, are rarely seen in the literature. The major reason is that L0-norm describes a discontinuous and nonconvex term, leading to a combinatorially NP-hard optimization problem. In this letter, motivated by Bayesian learning, we propose a novel framework that can implement arbitrary norm-based SVMs in polynomial time. One significant feature of this framework is that only a sequence of sequential minimal optimization problems needs to be solved, thus making it practical in many real applications. The proposed framework is important in the sense that Bayesian priors can be efficiently plugged into most learning methods without knowing the explicit form. Hence, this builds a connection between Bayesian learning and the kernel machines. We derive the theoretical framework, demonstrate how our approach works on the L0-norm SVM as a typical example, and perform a series of experiments to validate its advantages. Experimental results on nine benchmark data sets are very encouraging. The implemented L0-norm is competitive with or even better than the standard L2-norm SVM in terms of accuracy but with a reduced number of support vectors, -9.46% of the number on average. When compared with another sparse model, the relevance vector machine, our proposed algorithm also demonstrates better sparse properties with a training speed over seven times faster.

  6. An SVM-Based Classifier for Estimating the State of Various Rotating Components in Agro-Industrial Machinery with a Vibration Signal Acquired from a Single Point on the Machine Chassis

    PubMed Central

    Ruiz-Gonzalez, Ruben; Gomez-Gil, Jaime; Gomez-Gil, Francisco Javier; Martínez-Martínez, Víctor

    2014-01-01

    The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM)-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i) accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii) the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels. PMID:25372618

  7. An SVM-based classifier for estimating the state of various rotating components in agro-industrial machinery with a vibration signal acquired from a single point on the machine chassis.

    PubMed

    Ruiz-Gonzalez, Ruben; Gomez-Gil, Jaime; Gomez-Gil, Francisco Javier; Martínez-Martínez, Víctor

    2014-11-03

    The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM)-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i) accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii) the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels.

  8. Optimization of Support Vector Machine (SVM) for Object Classification

    NASA Technical Reports Server (NTRS)

    Scholten, Matthew; Dhingra, Neil; Lu, Thomas T.; Chao, Tien-Hsin

    2012-01-01

    The Support Vector Machine (SVM) is a powerful algorithm, useful in classifying data into species. The SVMs implemented in this research were used as classifiers for the final stage in a Multistage Automatic Target Recognition (ATR) system. A single kernel SVM known as SVMlight, and a modified version known as a SVM with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SVM as a method for classification. From trial to trial, SVM produces consistent results.

  9. An assessment of support vector machines for land cover classification

    USGS Publications Warehouse

    Huang, C.; Davis, L.S.; Townshend, J.R.G.

    2002-01-01

    The support vector machine (SVM) is a group of theoretically superior machine learning algorithms. It was found competitive with the best available machine learning algorithms in classifying high-dimensional data sets. This paper gives an introduction to the theoretical development of the SVM and an experimental evaluation of its accuracy, stability and training speed in deriving land cover classifications from satellite images. The SVM was compared to three other popular classifiers, including the maximum likelihood classifier (MLC), neural network classifiers (NNC) and decision tree classifiers (DTC). The impacts of kernel configuration on the performance of the SVM and of the selection of training data and input variables on the four classifiers were also evaluated in this experiment.

  10. Prediction of CO concentrations based on a hybrid Partial Least Square and Support Vector Machine model

    NASA Astrophysics Data System (ADS)

    Yeganeh, B.; Motlagh, M. Shafie Pour; Rashidi, Y.; Kamalan, H.

    2012-08-01

    Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS-SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS-SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65-85% for hybrid PLS-SVM model respectively. Also it was found that the hybrid PLS-SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS-SVM model.

  11. Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction: a review

    NASA Astrophysics Data System (ADS)

    Quitadamo, L. R.; Cavrini, F.; Sbernini, L.; Riillo, F.; Bianchi, L.; Seri, S.; Saggio, G.

    2017-02-01

    Support vector machines (SVMs) are widely used classifiers for detecting physiological patterns in human-computer interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the applications of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported.

  12. Online Least Squares One-Class Support Vector Machines-Based Abnormal Visual Event Detection

    PubMed Central

    Wang, Tian; Chen, Jie; Zhou, Yi; Snoussi, Hichem

    2013-01-01

    The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM), combined with its sparsified version (sparse online LS-OC-SVM). LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method. PMID:24351629

  13. Online least squares one-class support vector machines-based abnormal visual event detection.

    PubMed

    Wang, Tian; Chen, Jie; Zhou, Yi; Snoussi, Hichem

    2013-12-12

    The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM), combined with its sparsified version (sparse online LS-OC-SVM). LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method.

  14. Application of support vector machine for the separation of mineralised zones in the Takht-e-Gonbad porphyry deposit, SE Iran

    NASA Astrophysics Data System (ADS)

    Mahvash Mohammadi, Neda; Hezarkhani, Ardeshir

    2018-07-01

    Classification of mineralised zones is an important factor for the analysis of economic deposits. In this paper, the support vector machine (SVM), a supervised learning algorithm, based on subsurface data is proposed for classification of mineralised zones in the Takht-e-Gonbad porphyry Cu-deposit (SE Iran). The effects of the input features are evaluated via calculating the accuracy rates on the SVM performance. Ultimately, the SVM model, is developed based on input features namely lithology, alteration, mineralisation, the level and, radial basis function (RBF) as a kernel function. Moreover, the optimal amount of parameters λ and C, using n-fold cross-validation method, are calculated at level 0.001 and 0.01 respectively. The accuracy of this model is 0.931 for classification of mineralised zones in the Takht-e-Gonbad porphyry deposit. The results of the study confirm the efficiency of SVM method for classification the mineralised zones.

  15. Inline Measurement of Particle Concentrations in Multicomponent Suspensions using Ultrasonic Sensor and Least Squares Support Vector Machines.

    PubMed

    Zhan, Xiaobin; Jiang, Shulan; Yang, Yili; Liang, Jian; Shi, Tielin; Li, Xiwen

    2015-09-18

    This paper proposes an ultrasonic measurement system based on least squares support vector machines (LS-SVM) for inline measurement of particle concentrations in multicomponent suspensions. Firstly, the ultrasonic signals are analyzed and processed, and the optimal feature subset that contributes to the best model performance is selected based on the importance of features. Secondly, the LS-SVM model is tuned, trained and tested with different feature subsets to obtain the optimal model. In addition, a comparison is made between the partial least square (PLS) model and the LS-SVM model. Finally, the optimal LS-SVM model with the optimal feature subset is applied to inline measurement of particle concentrations in the mixing process. The results show that the proposed method is reliable and accurate for inline measuring the particle concentrations in multicomponent suspensions and the measurement accuracy is sufficiently high for industrial application. Furthermore, the proposed method is applicable to the modeling of the nonlinear system dynamically and provides a feasible way to monitor industrial processes.

  16. Identification of eggs from different production systems based on hyperspectra and CS-SVM.

    PubMed

    Sun, J; Cong, S L; Mao, H P; Zhou, X; Wu, X H; Zhang, X D

    2017-06-01

    1. To identify the origin of table eggs more accurately, a method based on hyperspectral imaging technology was studied. 2. The hyperspectral data of 200 samples of intensive and extensive eggs were collected. Standard normalised variables combined with a Savitzky-Golay were used to eliminate noise, then stepwise regression (SWR) was used for feature selection. Grid search algorithm (GS), genetic search algorithm (GA), particle swarm optimisation algorithm (PSO) and cuckoo search algorithm (CS) were applied by support vector machine (SVM) methods to establish an SVM identification model with the optimal parameters. The full spectrum data and the data after feature selection were the input of the model, while egg category was the output. 3. The SWR-CS-SVM model performed better than the other models, including SWR-GS-SVM, SWR-GA-SVM, SWR-PSO-SVM and others based on full spectral data. The training and test classification accuracy of the SWR-CS-SVM model were respectively 99.3% and 96%. 4. SWR-CS-SVM proved effective for identifying egg varieties and could also be useful for the non-destructive identification of other types of egg.

  17. Patient classification as an outlier detection problem: An application of the One-Class Support Vector Machine

    PubMed Central

    Mourão-Miranda, Janaina; Hardoon, David R.; Hahn, Tim; Marquand, Andre F.; Williams, Steve C.R.; Shawe-Taylor, John; Brammer, Michael

    2011-01-01

    Pattern recognition approaches, such as the Support Vector Machine (SVM), have been successfully used to classify groups of individuals based on their patterns of brain activity or structure. However these approaches focus on finding group differences and are not applicable to situations where one is interested in accessing deviations from a specific class or population. In the present work we propose an application of the one-class SVM (OC-SVM) to investigate if patterns of fMRI response to sad facial expressions in depressed patients would be classified as outliers in relation to patterns of healthy control subjects. We defined features based on whole brain voxels and anatomical regions. In both cases we found a significant correlation between the OC-SVM predictions and the patients' Hamilton Rating Scale for Depression (HRSD), i.e. the more depressed the patients were the more of an outlier they were. In addition the OC-SVM split the patient groups into two subgroups whose membership was associated with future response to treatment. When applied to region-based features the OC-SVM classified 52% of patients as outliers. However among the patients classified as outliers 70% did not respond to treatment and among those classified as non-outliers 89% responded to treatment. In addition 89% of the healthy controls were classified as non-outliers. PMID:21723950

  18. Prediction of p38 map kinase inhibitory activity of 3, 4-dihydropyrido [3, 2-d] pyrimidone derivatives using an expert system based on principal component analysis and least square support vector machine

    PubMed Central

    Shahlaei, M.; Saghaie, L.

    2014-01-01

    A quantitative structure–activity relationship (QSAR) study is suggested for the prediction of biological activity (pIC50) of 3, 4-dihydropyrido [3,2-d] pyrimidone derivatives as p38 inhibitors. Modeling of the biological activities of compounds of interest as a function of molecular structures was established by means of principal component analysis (PCA) and least square support vector machine (LS-SVM) methods. The results showed that the pIC50 values calculated by LS-SVM are in good agreement with the experimental data, and the performance of the LS-SVM regression model is superior to the PCA-based model. The developed LS-SVM model was applied for the prediction of the biological activities of pyrimidone derivatives, which were not in the modeling procedure. The resulted model showed high prediction ability with root mean square error of prediction of 0.460 for LS-SVM. The study provided a novel and effective approach for predicting biological activities of 3, 4-dihydropyrido [3,2-d] pyrimidone derivatives as p38 inhibitors and disclosed that LS-SVM can be used as a powerful chemometrics tool for QSAR studies. PMID:26339262

  19. Comparison of SVM RBF-NN and DT for crop and weed identification based on spectral measurement over corn fields

    USDA-ARS?s Scientific Manuscript database

    It is important to find an appropriate pattern-recognition method for in-field plant identification based on spectral measurement in order to classify the crop and weeds accurately. In this study, the method of Support Vector Machine (SVM) was evaluated and compared with two other methods, Decision ...

  20. Support vector machine regression (SVR/LS-SVM)--an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data.

    PubMed

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-04-21

    In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.

  1. Predicting distant failure in early stage NSCLC treated with SBRT using clinical parameters.

    PubMed

    Zhou, Zhiguo; Folkert, Michael; Cannon, Nathan; Iyengar, Puneeth; Westover, Kenneth; Zhang, Yuanyuan; Choy, Hak; Timmerman, Robert; Yan, Jingsheng; Xie, Xian-J; Jiang, Steve; Wang, Jing

    2016-06-01

    The aim of this study is to predict early distant failure in early stage non-small cell lung cancer (NSCLC) treated with stereotactic body radiation therapy (SBRT) using clinical parameters by machine learning algorithms. The dataset used in this work includes 81 early stage NSCLC patients with at least 6months of follow-up who underwent SBRT between 2006 and 2012 at a single institution. The clinical parameters (n=18) for each patient include demographic parameters, tumor characteristics, treatment fraction schemes, and pretreatment medications. Three predictive models were constructed based on different machine learning algorithms: (1) artificial neural network (ANN), (2) logistic regression (LR) and (3) support vector machine (SVM). Furthermore, to select an optimal clinical parameter set for the model construction, three strategies were adopted: (1) clonal selection algorithm (CSA) based selection strategy; (2) sequential forward selection (SFS) method; and (3) statistical analysis (SA) based strategy. 5-cross-validation is used to validate the performance of each predictive model. The accuracy was assessed by area under the receiver operating characteristic (ROC) curve (AUC), sensitivity and specificity of the system was also evaluated. The AUCs for ANN, LR and SVM were 0.75, 0.73, and 0.80, respectively. The sensitivity values for ANN, LR and SVM were 71.2%, 72.9% and 83.1%, while the specificity values for ANN, LR and SVM were 59.1%, 63.6% and 63.6%, respectively. Meanwhile, the CSA based strategy outperformed SFS and SA in terms of AUC, sensitivity and specificity. Based on clinical parameters, the SVM with the CSA optimal parameter set selection strategy achieves better performance than other strategies for predicting distant failure in lung SBRT patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb-Robertson, Bobbie-Jo M.

    Accurate identification of peptides is a current challenge in mass spectrometry (MS) based proteomics. The standard approach uses a search routine to compare tandem mass spectra to a database of peptides associated with the target organism. These database search routines yield multiple metrics associated with the quality of the mapping of the experimental spectrum to the theoretical spectrum of a peptide. The structure of these results make separating correct from false identifications difficult and has created a false identification problem. Statistical confidence scores are an approach to battle this false positive problem that has led to significant improvements in peptidemore » identification. We have shown that machine learning, specifically support vector machine (SVM), is an effective approach to separating true peptide identifications from false ones. The SVM-based peptide statistical scoring method transforms a peptide into a vector representation based on database search metrics to train and validate the SVM. In practice, following the database search routine, a peptides is denoted in its vector representation and the SVM generates a single statistical score that is then used to classify presence or absence in the sample« less

  3. A hybrid PSO-SVM-based method for predicting the friction coefficient between aircraft tire and coating

    NASA Astrophysics Data System (ADS)

    Zhan, Liwei; Li, Chengwei

    2017-02-01

    A hybrid PSO-SVM-based model is proposed to predict the friction coefficient between aircraft tire and coating. The presented hybrid model combines a support vector machine (SVM) with particle swarm optimization (PSO) technique. SVM has been adopted to solve regression problems successfully. Its regression accuracy is greatly related to optimizing parameters such as the regularization constant C , the parameter gamma γ corresponding to RBF kernel and the epsilon parameter \\varepsilon in the SVM training procedure. However, the friction coefficient which is predicted based on SVM has yet to be explored between aircraft tire and coating. The experiment reveals that drop height and tire rotational speed are the factors affecting friction coefficient. Bearing in mind, the friction coefficient can been predicted using the hybrid PSO-SVM-based model by the measured friction coefficient between aircraft tire and coating. To compare regression accuracy, a grid search (GS) method and a genetic algorithm (GA) are used to optimize the relevant parameters (C , γ and \\varepsilon ), respectively. The regression accuracy could be reflected by the coefficient of determination ({{R}2} ). The result shows that the hybrid PSO-RBF-SVM-based model has better accuracy compared with the GS-RBF-SVM- and GA-RBF-SVM-based models. The agreement of this model (PSO-RBF-SVM) with experiment data confirms its good performance.

  4. LMethyR-SVM: Predict Human Enhancers Using Low Methylated Regions based on Weighted Support Vector Machines.

    PubMed

    Xu, Jingting; Hu, Hong; Dai, Yang

    The identification of enhancers is a challenging task. Various types of epigenetic information including histone modification have been utilized in the construction of enhancer prediction models based on a diverse panel of machine learning schemes. However, DNA methylation profiles generated from the whole genome bisulfite sequencing (WGBS) have not been fully explored for their potential in enhancer prediction despite the fact that low methylated regions (LMRs) have been implied to be distal active regulatory regions. In this work, we propose a prediction framework, LMethyR-SVM, using LMRs identified from cell-type-specific WGBS DNA methylation profiles and a weighted support vector machine learning framework. In LMethyR-SVM, the set of cell-type-specific LMRs is further divided into three sets: reliable positive, like positive and likely negative, according to their resemblance to a small set of experimentally validated enhancers in the VISTA database based on an estimated non-parametric density distribution. Then, the prediction model is obtained by solving a weighted support vector machine. We demonstrate the performance of LMethyR-SVM by using the WGBS DNA methylation profiles derived from the human embryonic stem cell type (H1) and the fetal lung fibroblast cell type (IMR90). The predicted enhancers are highly conserved with a reasonable validation rate based on a set of commonly used positive markers including transcription factors, p300 binding and DNase-I hypersensitive sites. In addition, we show evidence that the large fraction of the LMethyR-SVM predicted enhancers are not predicted by ChromHMM in H1 cell type and they are more enriched for the FANTOM5 enhancers. Our work suggests that low methylated regions detected from the WGBS data are useful as complementary resources to histone modification marks in developing models for the prediction of cell-type-specific enhancers.

  5. Machine learning-based methods for prediction of linear B-cell epitopes.

    PubMed

    Wang, Hsin-Wei; Pai, Tun-Wen

    2014-01-01

    B-cell epitope prediction facilitates immunologists in designing peptide-based vaccine, diagnostic test, disease prevention, treatment, and antibody production. In comparison with T-cell epitope prediction, the performance of variable length B-cell epitope prediction is still yet to be satisfied. Fortunately, due to increasingly available verified epitope databases, bioinformaticians could adopt machine learning-based algorithms on all curated data to design an improved prediction tool for biomedical researchers. Here, we have reviewed related epitope prediction papers, especially those for linear B-cell epitope prediction. It should be noticed that a combination of selected propensity scales and statistics of epitope residues with machine learning-based tools formulated a general way for constructing linear B-cell epitope prediction systems. It is also observed from most of the comparison results that the kernel method of support vector machine (SVM) classifier outperformed other machine learning-based approaches. Hence, in this chapter, except reviewing recently published papers, we have introduced the fundamentals of B-cell epitope and SVM techniques. In addition, an example of linear B-cell prediction system based on physicochemical features and amino acid combinations is illustrated in details.

  6. Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation

    PubMed Central

    2018-01-01

    Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site. PMID:29370230

  7. Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation.

    PubMed

    Illias, Hazlee Azil; Zhao Liang, Wee

    2018-01-01

    Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site.

  8. Support vector machine-based facial-expression recognition method combining shape and appearance

    NASA Astrophysics Data System (ADS)

    Han, Eun Jung; Kang, Byung Jun; Park, Kang Ryoung; Lee, Sangyoun

    2010-11-01

    Facial expression recognition can be widely used for various applications, such as emotion-based human-machine interaction, intelligent robot interfaces, face recognition robust to expression variation, etc. Previous studies have been classified as either shape- or appearance-based recognition. The shape-based method has the disadvantage that the individual variance of facial feature points exists irrespective of similar expressions, which can cause a reduction of the recognition accuracy. The appearance-based method has a limitation in that the textural information of the face is very sensitive to variations in illumination. To overcome these problems, a new facial-expression recognition method is proposed, which combines both shape and appearance information, based on the support vector machine (SVM). This research is novel in the following three ways as compared to previous works. First, the facial feature points are automatically detected by using an active appearance model. From these, the shape-based recognition is performed by using the ratios between the facial feature points based on the facial-action coding system. Second, the SVM, which is trained to recognize the same and different expression classes, is proposed to combine two matching scores obtained from the shape- and appearance-based recognitions. Finally, a single SVM is trained to discriminate four different expressions, such as neutral, a smile, anger, and a scream. By determining the expression of the input facial image whose SVM output is at a minimum, the accuracy of the expression recognition is much enhanced. The experimental results showed that the recognition accuracy of the proposed method was better than previous researches and other fusion methods.

  9. An implementation of support vector machine on sentiment classification of movie reviews

    NASA Astrophysics Data System (ADS)

    Yulietha, I. M.; Faraby, S. A.; Adiwijaya; Widyaningtyas, W. C.

    2018-03-01

    With technological advances, all information about movie is available on the internet. If the information is processed properly, it will get the quality of the information. This research proposes to the classify sentiments on movie review documents. This research uses Support Vector Machine (SVM) method because it can classify high dimensional data in accordance with the data used in this research in the form of text. Support Vector Machine is a popular machine learning technique for text classification because it can classify by learning from a collection of documents that have been classified previously and can provide good result. Based on number of datasets, the 90-10 composition has the best result that is 85.6%. Based on SVM kernel, kernel linear with constant 1 has the best result that is 84.9%

  10. Comparison of water extraction methods in Tibet based on GF-1 data

    NASA Astrophysics Data System (ADS)

    Jia, Lingjun; Shang, Kun; Liu, Jing; Sun, Zhongqing

    2018-03-01

    In this study, we compared four different water extraction methods with GF-1 data according to different water types in Tibet, including Support Vector Machine (SVM), Principal Component Analysis (PCA), Decision Tree Classifier based on False Normalized Difference Water Index (FNDWI-DTC), and PCA-SVM. The results show that all of the four methods can extract large area water body, but only SVM and PCA-SVM can obtain satisfying extraction results for small size water body. The methods were evaluated by both overall accuracy (OAA) and Kappa coefficient (KC). The OAA of PCA-SVM, SVM, FNDWI-DTC, PCA are 96.68%, 94.23%, 93.99%, 93.01%, and the KCs are 0.9308, 0.8995, 0.8962, 0.8842, respectively, in consistent with visual inspection. In summary, SVM is better for narrow rivers extraction and PCA-SVM is suitable for water extraction of various types. As for dark blue lakes, the methods using PCA can extract more quickly and accurately.

  11. SVM-Prot 2016: A Web-Server for Machine Learning Prediction of Protein Functional Families from Sequence Irrespective of Similarity.

    PubMed

    Li, Ying Hong; Xu, Jing Yu; Tao, Lin; Li, Xiao Feng; Li, Shuang; Zeng, Xian; Chen, Shang Ying; Zhang, Peng; Qin, Chu; Zhang, Cheng; Chen, Zhe; Zhu, Feng; Chen, Yu Zong

    2016-01-01

    Knowledge of protein function is important for biological, medical and therapeutic studies, but many proteins are still unknown in function. There is a need for more improved functional prediction methods. Our SVM-Prot web-server employed a machine learning method for predicting protein functional families from protein sequences irrespective of similarity, which complemented those similarity-based and other methods in predicting diverse classes of proteins including the distantly-related proteins and homologous proteins of different functions. Since its publication in 2003, we made major improvements to SVM-Prot with (1) expanded coverage from 54 to 192 functional families, (2) more diverse protein descriptors protein representation, (3) improved predictive performances due to the use of more enriched training datasets and more variety of protein descriptors, (4) newly integrated BLAST analysis option for assessing proteins in the SVM-Prot predicted functional families that were similar in sequence to a query protein, and (5) newly added batch submission option for supporting the classification of multiple proteins. Moreover, 2 more machine learning approaches, K nearest neighbor and probabilistic neural networks, were added for facilitating collective assessment of protein functions by multiple methods. SVM-Prot can be accessed at http://bidd2.nus.edu.sg/cgi-bin/svmprot/svmprot.cgi.

  12. SVM-based feature extraction and classification of aflatoxin contaminated corn using fluorescence hyperspectral data

    USDA-ARS?s Scientific Manuscript database

    Support Vector Machine (SVM) was used in the Genetic Algorithms (GA) process to select and classify a subset of hyperspectral image bands. The method was applied to fluorescence hyperspectral data for the detection of aflatoxin contamination in Aspergillus flavus infected single corn kernels. In the...

  13. Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends.

    PubMed

    Lu, Wei-Zhen; Wang, Wen-Jian

    2005-04-01

    Monitoring and forecasting of air quality parameters are popular and important topics of atmospheric and environmental research today due to the health impact caused by exposing to air pollutants existing in urban air. The accurate models for air pollutant prediction are needed because such models would allow forecasting and diagnosing potential compliance or non-compliance in both short- and long-term aspects. Artificial neural networks (ANN) are regarded as reliable and cost-effective method to achieve such tasks and have produced some promising results to date. Although ANN has addressed more attentions to environmental researchers, its inherent drawbacks, e.g., local minima, over-fitting training, poor generalization performance, determination of the appropriate network architecture, etc., impede the practical application of ANN. Support vector machine (SVM), a novel type of learning machine based on statistical learning theory, can be used for regression and time series prediction and have been reported to perform well by some promising results. The work presented in this paper aims to examine the feasibility of applying SVM to predict air pollutant levels in advancing time series based on the monitored air pollutant database in Hong Kong downtown area. At the same time, the functional characteristics of SVM are investigated in the study. The experimental comparisons between the SVM model and the classical radial basis function (RBF) network demonstrate that the SVM is superior to the conventional RBF network in predicting air quality parameters with different time series and of better generalization performance than the RBF model.

  14. GAPscreener: an automatic tool for screening human genetic association literature in PubMed using the support vector machine technique.

    PubMed

    Yu, Wei; Clyne, Melinda; Dolan, Siobhan M; Yesupriya, Ajay; Wulf, Anja; Liu, Tiebin; Khoury, Muin J; Gwinn, Marta

    2008-04-22

    Synthesis of data from published human genetic association studies is a critical step in the translation of human genome discoveries into health applications. Although genetic association studies account for a substantial proportion of the abstracts in PubMed, identifying them with standard queries is not always accurate or efficient. Further automating the literature-screening process can reduce the burden of a labor-intensive and time-consuming traditional literature search. The Support Vector Machine (SVM), a well-established machine learning technique, has been successful in classifying text, including biomedical literature. The GAPscreener, a free SVM-based software tool, can be used to assist in screening PubMed abstracts for human genetic association studies. The data source for this research was the HuGE Navigator, formerly known as the HuGE Pub Lit database. Weighted SVM feature selection based on a keyword list obtained by the two-way z score method demonstrated the best screening performance, achieving 97.5% recall, 98.3% specificity and 31.9% precision in performance testing. Compared with the traditional screening process based on a complex PubMed query, the SVM tool reduced by about 90% the number of abstracts requiring individual review by the database curator. The tool also ascertained 47 articles that were missed by the traditional literature screening process during the 4-week test period. We examined the literature on genetic associations with preterm birth as an example. Compared with the traditional, manual process, the GAPscreener both reduced effort and improved accuracy. GAPscreener is the first free SVM-based application available for screening the human genetic association literature in PubMed with high recall and specificity. The user-friendly graphical user interface makes this a practical, stand-alone application. The software can be downloaded at no charge.

  15. Vision based nutrient deficiency classification in maize plants using multi class support vector machines

    NASA Astrophysics Data System (ADS)

    Leena, N.; Saju, K. K.

    2018-04-01

    Nutritional deficiencies in plants are a major concern for farmers as it affects productivity and thus profit. The work aims to classify nutritional deficiencies in maize plant in a non-destructive mannerusing image processing and machine learning techniques. The colored images of the leaves are analyzed and classified with multi-class support vector machine (SVM) method. Several images of maize leaves with known deficiencies like nitrogen, phosphorous and potassium (NPK) are used to train the SVM classifier prior to the classification of test images. The results show that the method was able to classify and identify nutritional deficiencies.

  16. Multiclass Classification for the Differential Diagnosis on the ADHD Subtypes Using Recursive Feature Elimination and Hierarchical Extreme Learning Machine: Structural MRI Study

    PubMed Central

    Qureshi, Muhammad Naveed Iqbal; Min, Beomjun; Jo, Hang Joon; Lee, Boreom

    2016-01-01

    The classification of neuroimaging data for the diagnosis of certain brain diseases is one of the main research goals of the neuroscience and clinical communities. In this study, we performed multiclass classification using a hierarchical extreme learning machine (H-ELM) classifier. We compared the performance of this classifier with that of a support vector machine (SVM) and basic extreme learning machine (ELM) for cortical MRI data from attention deficit/hyperactivity disorder (ADHD) patients. We used 159 structural MRI images of children from the publicly available ADHD-200 MRI dataset. The data consisted of three types, namely, typically developing (TDC), ADHD-inattentive (ADHD-I), and ADHD-combined (ADHD-C). We carried out feature selection by using standard SVM-based recursive feature elimination (RFE-SVM) that enabled us to achieve good classification accuracy (60.78%). In this study, we found the RFE-SVM feature selection approach in combination with H-ELM to effectively enable the acquisition of high multiclass classification accuracy rates for structural neuroimaging data. In addition, we found that the most important features for classification were the surface area of the superior frontal lobe, and the cortical thickness, volume, and mean surface area of the whole cortex. PMID:27500640

  17. Multiclass Classification for the Differential Diagnosis on the ADHD Subtypes Using Recursive Feature Elimination and Hierarchical Extreme Learning Machine: Structural MRI Study.

    PubMed

    Qureshi, Muhammad Naveed Iqbal; Min, Beomjun; Jo, Hang Joon; Lee, Boreom

    2016-01-01

    The classification of neuroimaging data for the diagnosis of certain brain diseases is one of the main research goals of the neuroscience and clinical communities. In this study, we performed multiclass classification using a hierarchical extreme learning machine (H-ELM) classifier. We compared the performance of this classifier with that of a support vector machine (SVM) and basic extreme learning machine (ELM) for cortical MRI data from attention deficit/hyperactivity disorder (ADHD) patients. We used 159 structural MRI images of children from the publicly available ADHD-200 MRI dataset. The data consisted of three types, namely, typically developing (TDC), ADHD-inattentive (ADHD-I), and ADHD-combined (ADHD-C). We carried out feature selection by using standard SVM-based recursive feature elimination (RFE-SVM) that enabled us to achieve good classification accuracy (60.78%). In this study, we found the RFE-SVM feature selection approach in combination with H-ELM to effectively enable the acquisition of high multiclass classification accuracy rates for structural neuroimaging data. In addition, we found that the most important features for classification were the surface area of the superior frontal lobe, and the cortical thickness, volume, and mean surface area of the whole cortex.

  18. Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees.

    PubMed

    Anam, Khairul; Al-Jumaily, Adel

    2017-01-01

    The success of myoelectric pattern recognition (M-PR) mostly relies on the features extracted and classifier employed. This paper proposes and evaluates a fast classifier, extreme learning machine (ELM), to classify individual and combined finger movements on amputees and non-amputees. ELM is a single hidden layer feed-forward network (SLFN) that avoids iterative learning by determining input weights randomly and output weights analytically. Therefore, it can accelerate the training time of SLFNs. In addition to the classifier evaluation, this paper evaluates various feature combinations to improve the performance of M-PR and investigate some feature projections to improve the class separability of the features. Different from other studies on the implementation of ELM in the myoelectric controller, this paper presents a complete and thorough investigation of various types of ELMs including the node-based and kernel-based ELM. Furthermore, this paper provides comparisons of ELMs and other well-known classifiers such as linear discriminant analysis (LDA), k-nearest neighbour (kNN), support vector machine (SVM) and least-square SVM (LS-SVM). The experimental results show the most accurate ELM classifier is radial basis function ELM (RBF-ELM). The comparison of RBF-ELM and other well-known classifiers shows that RBF-ELM is as accurate as SVM and LS-SVM but faster than the SVM family; it is superior to LDA and kNN. The experimental results also indicate that the accuracy gap of the M-PR on the amputees and non-amputees is not too much with the accuracy of 98.55% on amputees and 99.5% on the non-amputees using six electromyography (EMG) channels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders.

    PubMed

    Subasi, Abdulhamit

    2013-06-01

    Support vector machine (SVM) is an extensively used machine learning method with many biomedical signal classification applications. In this study, a novel PSO-SVM model has been proposed that hybridized the particle swarm optimization (PSO) and SVM to improve the EMG signal classification accuracy. This optimization mechanism involves kernel parameter setting in the SVM training procedure, which significantly influences the classification accuracy. The experiments were conducted on the basis of EMG signal to classify into normal, neurogenic or myopathic. In the proposed method the EMG signals were decomposed into the frequency sub-bands using discrete wavelet transform (DWT) and a set of statistical features were extracted from these sub-bands to represent the distribution of wavelet coefficients. The obtained results obviously validate the superiority of the SVM method compared to conventional machine learning methods, and suggest that further significant enhancements in terms of classification accuracy can be achieved by the proposed PSO-SVM classification system. The PSO-SVM yielded an overall accuracy of 97.41% on 1200 EMG signals selected from 27 subject records against 96.75%, 95.17% and 94.08% for the SVM, the k-NN and the RBF classifiers, respectively. PSO-SVM is developed as an efficient tool so that various SVMs can be used conveniently as the core of PSO-SVM for diagnosis of neuromuscular disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Hybrid wavelet-support vector machine approach for modelling rainfall-runoff process.

    PubMed

    Komasi, Mehdi; Sharghi, Soroush

    2016-01-01

    Because of the importance of water resources management, the need for accurate modeling of the rainfall-runoff process has rapidly grown in the past decades. Recently, the support vector machine (SVM) approach has been used by hydrologists for rainfall-runoff modeling and the other fields of hydrology. Similar to the other artificial intelligence models, such as artificial neural network (ANN) and adaptive neural fuzzy inference system, the SVM model is based on the autoregressive properties. In this paper, the wavelet analysis was linked to the SVM model concept for modeling the rainfall-runoff process of Aghchai and Eel River watersheds. In this way, the main time series of two variables, rainfall and runoff, were decomposed to multiple frequent time series by wavelet theory; then, these time series were imposed as input data on the SVM model in order to predict the runoff discharge one day ahead. The obtained results show that the wavelet SVM model can predict both short- and long-term runoff discharges by considering the seasonality effects. Also, the proposed hybrid model is relatively more appropriate than classical autoregressive ones such as ANN and SVM because it uses the multi-scale time series of rainfall and runoff data in the modeling process.

  1. Optimal classification for the diagnosis of duchenne muscular dystrophy images using support vector machines.

    PubMed

    Zhang, Ming-Huan; Ma, Jun-Shan; Shen, Ying; Chen, Ying

    2016-09-01

    This study aimed to investigate the optimal support vector machines (SVM)-based classifier of duchenne muscular dystrophy (DMD) magnetic resonance imaging (MRI) images. T1-weighted (T1W) and T2-weighted (T2W) images of the 15 boys with DMD and 15 normal controls were obtained. Textural features of the images were extracted and wavelet decomposed, and then, principal features were selected. Scale transform was then performed for MRI images. Afterward, SVM-based classifiers of MRI images were analyzed based on the radical basis function and decomposition levels. The cost (C) parameter and kernel parameter [Formula: see text] were used for classification. Then, the optimal SVM-based classifier, expressed as [Formula: see text]), was identified by performance evaluation (sensitivity, specificity and accuracy). Eight of 12 textural features were selected as principal features (eigenvalues [Formula: see text]). The 16 SVM-based classifiers were obtained using combination of (C, [Formula: see text]), and those with lower C and [Formula: see text] values showed higher performances, especially classifier of [Formula: see text]). The SVM-based classifiers of T1W images showed higher performance than T1W images at the same decomposition level. The T1W images in classifier of [Formula: see text]) at level 2 decomposition showed the highest performance of all, and its overall correct sensitivity, specificity, and accuracy reached 96.9, 97.3, and 97.1 %, respectively. The T1W images in SVM-based classifier [Formula: see text] at level 2 decomposition showed the highest performance of all, demonstrating that it was the optimal classification for the diagnosis of DMD.

  2. Prostate cancer detection using machine learning techniques by employing combination of features extracting strategies.

    PubMed

    Hussain, Lal; Ahmed, Adeel; Saeed, Sharjil; Rathore, Saima; Awan, Imtiaz Ahmed; Shah, Saeed Arif; Majid, Abdul; Idris, Adnan; Awan, Anees Ahmed

    2018-02-06

    Prostate is a second leading causes of cancer deaths among men. Early detection of cancer can effectively reduce the rate of mortality caused by Prostate cancer. Due to high and multiresolution of MRIs from prostate cancer require a proper diagnostic systems and tools. In the past researchers developed Computer aided diagnosis (CAD) systems that help the radiologist to detect the abnormalities. In this research paper, we have employed novel Machine learning techniques such as Bayesian approach, Support vector machine (SVM) kernels: polynomial, radial base function (RBF) and Gaussian and Decision Tree for detecting prostate cancer. Moreover, different features extracting strategies are proposed to improve the detection performance. The features extracting strategies are based on texture, morphological, scale invariant feature transform (SIFT), and elliptic Fourier descriptors (EFDs) features. The performance was evaluated based on single as well as combination of features using Machine Learning Classification techniques. The Cross validation (Jack-knife k-fold) was performed and performance was evaluated in term of receiver operating curve (ROC) and specificity, sensitivity, Positive predictive value (PPV), negative predictive value (NPV), false positive rate (FPR). Based on single features extracting strategies, SVM Gaussian Kernel gives the highest accuracy of 98.34% with AUC of 0.999. While, using combination of features extracting strategies, SVM Gaussian kernel with texture + morphological, and EFDs + morphological features give the highest accuracy of 99.71% and AUC of 1.00.

  3. Integrating support vector machines and random forests to classify crops in time series of Worldview-2 images

    NASA Astrophysics Data System (ADS)

    Zafari, A.; Zurita-Milla, R.; Izquierdo-Verdiguier, E.

    2017-10-01

    Crop maps are essential inputs for the agricultural planning done at various governmental and agribusinesses agencies. Remote sensing offers timely and costs efficient technologies to identify and map crop types over large areas. Among the plethora of classification methods, Support Vector Machine (SVM) and Random Forest (RF) are widely used because of their proven performance. In this work, we study the synergic use of both methods by introducing a random forest kernel (RFK) in an SVM classifier. A time series of multispectral WorldView-2 images acquired over Mali (West Africa) in 2014 was used to develop our case study. Ground truth containing five common crop classes (cotton, maize, millet, peanut, and sorghum) were collected at 45 farms and used to train and test the classifiers. An SVM with the standard Radial Basis Function (RBF) kernel, a RF, and an SVM-RFK were trained and tested over 10 random training and test subsets generated from the ground data. Results show that the newly proposed SVM-RFK classifier can compete with both RF and SVM-RBF. The overall accuracies based on the spectral bands only are of 83, 82 and 83% respectively. Adding vegetation indices to the analysis result in the classification accuracy of 82, 81 and 84% for SVM-RFK, RF, and SVM-RBF respectively. Overall, it can be observed that the newly tested RFK can compete with SVM-RBF and RF classifiers in terms of classification accuracy.

  4. A Two-Layer Least Squares Support Vector Machine Approach to Credit Risk Assessment

    NASA Astrophysics Data System (ADS)

    Liu, Jingli; Li, Jianping; Xu, Weixuan; Shi, Yong

    Least squares support vector machine (LS-SVM) is a revised version of support vector machine (SVM) and has been proved to be a useful tool for pattern recognition. LS-SVM had excellent generalization performance and low computational cost. In this paper, we propose a new method called two-layer least squares support vector machine which combines kernel principle component analysis (KPCA) and linear programming form of least square support vector machine. With this method sparseness and robustness is obtained while solving large dimensional and large scale database. A U.S. commercial credit card database is used to test the efficiency of our method and the result proved to be a satisfactory one.

  5. Process service quality evaluation based on Dempster-Shafer theory and support vector machine.

    PubMed

    Pei, Feng-Que; Li, Dong-Bo; Tong, Yi-Fei; He, Fei

    2017-01-01

    Human involvement influences traditional service quality evaluations, which triggers an evaluation's low accuracy, poor reliability and less impressive predictability. This paper proposes a method by employing a support vector machine (SVM) and Dempster-Shafer evidence theory to evaluate the service quality of a production process by handling a high number of input features with a low sampling data set, which is called SVMs-DS. Features that can affect production quality are extracted by a large number of sensors. Preprocessing steps such as feature simplification and normalization are reduced. Based on three individual SVM models, the basic probability assignments (BPAs) are constructed, which can help the evaluation in a qualitative and quantitative way. The process service quality evaluation results are validated by the Dempster rules; the decision threshold to resolve conflicting results is generated from three SVM models. A case study is presented to demonstrate the effectiveness of the SVMs-DS method.

  6. Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine

    NASA Astrophysics Data System (ADS)

    Li, Shaoxin; Zhang, Yanjiao; Xu, Junfa; Li, Linfang; Zeng, Qiuyao; Lin, Lin; Guo, Zhouyi; Liu, Zhiming; Xiong, Honglian; Liu, Songhao

    2014-09-01

    This study aims to present a noninvasive prostate cancer screening methods using serum surface-enhanced Raman scattering (SERS) and support vector machine (SVM) techniques through peripheral blood sample. SERS measurements are performed using serum samples from 93 prostate cancer patients and 68 healthy volunteers by silver nanoparticles. Three types of kernel functions including linear, polynomial, and Gaussian radial basis function (RBF) are employed to build SVM diagnostic models for classifying measured SERS spectra. For comparably evaluating the performance of SVM classification models, the standard multivariate statistic analysis method of principal component analysis (PCA) is also applied to classify the same datasets. The study results show that for the RBF kernel SVM diagnostic model, the diagnostic accuracy of 98.1% is acquired, which is superior to the results of 91.3% obtained from PCA methods. The receiver operating characteristic curve of diagnostic models further confirm above research results. This study demonstrates that label-free serum SERS analysis technique combined with SVM diagnostic algorithm has great potential for noninvasive prostate cancer screening.

  7. Support Vector Machine-Based Endmember Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippi, Anthony M; Archibald, Richard K

    Introduced in this paper is the utilization of Support Vector Machines (SVMs) to automatically perform endmember extraction from hyperspectral data. The strengths of SVM are exploited to provide a fast and accurate calculated representation of high-dimensional data sets that may consist of multiple distributions. Once this representation is computed, the number of distributions can be determined without prior knowledge. For each distribution, an optimal transform can be determined that preserves informational content while reducing the data dimensionality, and hence, the computational cost. Finally, endmember extraction for the whole data set is accomplished. Results indicate that this Support Vector Machine-Based Endmembermore » Extraction (SVM-BEE) algorithm has the capability of autonomously determining endmembers from multiple clusters with computational speed and accuracy, while maintaining a robust tolerance to noise.« less

  8. Objective research of auscultation signals in Traditional Chinese Medicine based on wavelet packet energy and support vector machine.

    PubMed

    Yan, Jianjun; Shen, Xiaojing; Wang, Yiqin; Li, Fufeng; Xia, Chunming; Guo, Rui; Chen, Chunfeng; Shen, Qingwei

    2010-01-01

    This study aims at utilising Wavelet Packet Transform (WPT) and Support Vector Machine (SVM) algorithm to make objective analysis and quantitative research for the auscultation in Traditional Chinese Medicine (TCM) diagnosis. First, Wavelet Packet Decomposition (WPD) at level 6 was employed to split more elaborate frequency bands of the auscultation signals. Then statistic analysis was made based on the extracted Wavelet Packet Energy (WPE) features from WPD coefficients. Furthermore, the pattern recognition was used to distinguish mixed subjects' statistical feature values of sample groups through SVM. Finally, the experimental results showed that the classification accuracies were at a high level.

  9. Electrocardiographic signals and swarm-based support vector machine for hypoglycemia detection.

    PubMed

    Nuryani, Nuryani; Ling, Steve S H; Nguyen, H T

    2012-04-01

    Cardiac arrhythmia relating to hypoglycemia is suggested as a cause of death in diabetic patients. This article introduces electrocardiographic (ECG) parameters for artificially induced hypoglycemia detection. In addition, a hybrid technique of swarm-based support vector machine (SVM) is introduced for hypoglycemia detection using the ECG parameters as inputs. In this technique, a particle swarm optimization (PSO) is proposed to optimize the SVM to detect hypoglycemia. In an experiment using medical data of patients with Type 1 diabetes, the introduced ECG parameters show significant contributions to the performance of the hypoglycemia detection and the proposed detection technique performs well in terms of sensitivity and specificity.

  10. [MicroRNA Target Prediction Based on Support Vector Machine Ensemble Classification Algorithm of Under-sampling Technique].

    PubMed

    Chen, Zhiru; Hong, Wenxue

    2016-02-01

    Considering the low accuracy of prediction in the positive samples and poor overall classification effects caused by unbalanced sample data of MicroRNA (miRNA) target, we proposes a support vector machine (SVM)-integration of under-sampling and weight (IUSM) algorithm in this paper, an under-sampling based on the ensemble learning algorithm. The algorithm adopts SVM as learning algorithm and AdaBoost as integration framework, and embeds clustering-based under-sampling into the iterative process, aiming at reducing the degree of unbalanced distribution of positive and negative samples. Meanwhile, in the process of adaptive weight adjustment of the samples, the SVM-IUSM algorithm eliminates the abnormal ones in negative samples with robust sample weights smoothing mechanism so as to avoid over-learning. Finally, the prediction of miRNA target integrated classifier is achieved with the combination of multiple weak classifiers through the voting mechanism. The experiment revealed that the SVM-IUSW, compared with other algorithms on unbalanced dataset collection, could not only improve the accuracy of positive targets and the overall effect of classification, but also enhance the generalization ability of miRNA target classifier.

  11. Classification of stellar spectra with SVM based on within-class scatter and between-class scatter

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-bao; Zhou, Fang-xiao; Qin, Zhen-tao; Luo, Xue-gang; Zhang, Jing

    2018-07-01

    Support Vector Machine (SVM) is a popular data mining technique, and it has been widely applied in astronomical tasks, especially in stellar spectra classification. Since SVM doesn't take the data distribution into consideration, and therefore, its classification efficiencies can't be greatly improved. Meanwhile, SVM ignores the internal information of the training dataset, such as the within-class structure and between-class structure. In view of this, we propose a new classification algorithm-SVM based on Within-Class Scatter and Between-Class Scatter (WBS-SVM) in this paper. WBS-SVM tries to find an optimal hyperplane to separate two classes. The difference is that it incorporates minimum within-class scatter and maximum between-class scatter in Linear Discriminant Analysis (LDA) into SVM. These two scatters represent the distributions of the training dataset, and the optimization of WBS-SVM ensures the samples in the same class are as close as possible and the samples in different classes are as far as possible. Experiments on the K-, F-, G-type stellar spectra from Sloan Digital Sky Survey (SDSS), Data Release 8 show that our proposed WBS-SVM can greatly improve the classification accuracies.

  12. Modeling the milling tool wear by using an evolutionary SVM-based model from milling runs experimental data

    NASA Astrophysics Data System (ADS)

    Nieto, Paulino José García; García-Gonzalo, Esperanza; Vilán, José Antonio Vilán; Robleda, Abraham Segade

    2015-12-01

    The main aim of this research work is to build a new practical hybrid regression model to predict the milling tool wear in a regular cut as well as entry cut and exit cut of a milling tool. The model was based on Particle Swarm Optimization (PSO) in combination with support vector machines (SVMs). This optimization mechanism involved kernel parameter setting in the SVM training procedure, which significantly influences the regression accuracy. Bearing this in mind, a PSO-SVM-based model, which is based on the statistical learning theory, was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc. To accomplish the objective of this study, the experimental dataset represents experiments from runs on a milling machine under various operating conditions. In this way, data sampled by three different types of sensors (acoustic emission sensor, vibration sensor and current sensor) were acquired at several positions. A second aim is to determine the factors with the greatest bearing on the milling tool flank wear with a view to proposing milling machine's improvements. Firstly, this hybrid PSO-SVM-based regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the flank wear (output variable) and input variables (time, depth of cut, feed, etc.). Indeed, regression with optimal hyperparameters was performed and a determination coefficient of 0.95 was obtained. The agreement of this model with experimental data confirmed its good performance. Secondly, the main advantages of this PSO-SVM-based model are its capacity to produce a simple, easy-to-interpret model, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, the main conclusions of this study are exposed.

  13. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    PubMed Central

    Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584

  14. A Wavelet Support Vector Machine Combination Model for Singapore Tourist Arrival to Malaysia

    NASA Astrophysics Data System (ADS)

    Rafidah, A.; Shabri, Ani; Nurulhuda, A.; Suhaila, Y.

    2017-08-01

    In this study, wavelet support vector machine model (WSVM) is proposed and applied for monthly data Singapore tourist time series prediction. The WSVM model is combination between wavelet analysis and support vector machine (SVM). In this study, we have two parts, first part we compare between the kernel function and second part we compare between the developed models with single model, SVM. The result showed that kernel function linear better than RBF while WSVM outperform with single model SVM to forecast monthly Singapore tourist arrival to Malaysia.

  15. An Improved TA-SVM Method Without Matrix Inversion and Its Fast Implementation for Nonstationary Datasets.

    PubMed

    Shi, Yingzhong; Chung, Fu-Lai; Wang, Shitong

    2015-09-01

    Recently, a time-adaptive support vector machine (TA-SVM) is proposed for handling nonstationary datasets. While attractive performance has been reported and the new classifier is distinctive in simultaneously solving several SVM subclassifiers locally and globally by using an elegant SVM formulation in an alternative kernel space, the coupling of subclassifiers brings in the computation of matrix inversion, thus resulting to suffer from high computational burden in large nonstationary dataset applications. To overcome this shortcoming, an improved TA-SVM (ITA-SVM) is proposed using a common vector shared by all the SVM subclassifiers involved. ITA-SVM not only keeps an SVM formulation, but also avoids the computation of matrix inversion. Thus, we can realize its fast version, that is, improved time-adaptive core vector machine (ITA-CVM) for large nonstationary datasets by using the CVM technique. ITA-CVM has the merit of asymptotic linear time complexity for large nonstationary datasets as well as inherits the advantage of TA-SVM. The effectiveness of the proposed classifiers ITA-SVM and ITA-CVM is also experimentally confirmed.

  16. Discrimination of plant root zone water status in greenhouse production based on phenotyping and machine learning techniques.

    PubMed

    Guo, Doudou; Juan, Jiaxiang; Chang, Liying; Zhang, Jingjin; Huang, Danfeng

    2017-08-15

    Plant-based sensing on water stress can provide sensitive and direct reference for precision irrigation system in greenhouse. However, plant information acquisition, interpretation, and systematical application remain insufficient. This study developed a discrimination method for plant root zone water status in greenhouse by integrating phenotyping and machine learning techniques. Pakchoi plants were used and treated by three root zone moisture levels, 40%, 60%, and 80% relative water content. Three classification models, Random Forest (RF), Neural Network (NN), and Support Vector Machine (SVM) were developed and validated in different scenarios with overall accuracy over 90% for all. SVM model had the highest value, but it required the longest training time. All models had accuracy over 85% in all scenarios, and more stable performance was observed in RF model. Simplified SVM model developed by the top five most contributing traits had the largest accuracy reduction as 29.5%, while simplified RF and NN model still maintained approximately 80%. For real case application, factors such as operation cost, precision requirement, and system reaction time should be synthetically considered in model selection. Our work shows it is promising to discriminate plant root zone water status by implementing phenotyping and machine learning techniques for precision irrigation management.

  17. Wire connector classification with machine vision and a novel hybrid SVM

    NASA Astrophysics Data System (ADS)

    Chauhan, Vedang; Joshi, Keyur D.; Surgenor, Brian W.

    2018-04-01

    A machine vision-based system has been developed and tested that uses a novel hybrid Support Vector Machine (SVM) in a part inspection application with clear plastic wire connectors. The application required the system to differentiate between 4 different known styles of connectors plus one unknown style, for a total of 5 classes. The requirement to handle an unknown class is what necessitated the hybrid approach. The system was trained with the 4 known classes and tested with 5 classes (the 4 known plus the 1 unknown). The hybrid classification approach used two layers of SVMs: one layer was semi-supervised and the other layer was supervised. The semi-supervised SVM was a special case of unsupervised machine learning that classified test images as one of the 4 known classes (to accept) or as the unknown class (to reject). The supervised SVM classified test images as one of the 4 known classes and consequently would give false positives (FPs). Two methods were tested. The difference between the methods was that the order of the layers was switched. The method with the semi-supervised layer first gave an accuracy of 80% with 20% FPs. The method with the supervised layer first gave an accuracy of 98% with 0% FPs. Further work is being conducted to see if the hybrid approach works with other applications that have an unknown class requirement.

  18. A Bayesian least squares support vector machines based framework for fault diagnosis and failure prognosis

    NASA Astrophysics Data System (ADS)

    Khawaja, Taimoor Saleem

    A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior and any abnormal or novel data during real-time operation. The results of the scheme are interpreted as a posterior probability of health (1 - probability of fault). As shown through two case studies in Chapter 3, the scheme is well suited for diagnosing imminent faults in dynamical non-linear systems. Finally, the failure prognosis scheme is based on an incremental weighted Bayesian LS-SVR machine. It is particularly suited for online deployment given the incremental nature of the algorithm and the quick optimization problem solved in the LS-SVR algorithm. By way of kernelization and a Gaussian Mixture Modeling (GMM) scheme, the algorithm can estimate "possibly" non-Gaussian posterior distributions for complex non-linear systems. An efficient regression scheme associated with the more rigorous core algorithm allows for long-term predictions, fault growth estimation with confidence bounds and remaining useful life (RUL) estimation after a fault is detected. The leading contributions of this thesis are (a) the development of a novel Bayesian Anomaly Detector for efficient and reliable Fault Detection and Identification (FDI) based on Least Squares Support Vector Machines, (b) the development of a data-driven real-time architecture for long-term Failure Prognosis using Least Squares Support Vector Machines, (c) Uncertainty representation and management using Bayesian Inference for posterior distribution estimation and hyper-parameter tuning, and finally (d) the statistical characterization of the performance of diagnosis and prognosis algorithms in order to relate the efficiency and reliability of the proposed schemes.

  19. pDHS-SVM: A prediction method for plant DNase I hypersensitive sites based on support vector machine.

    PubMed

    Zhang, Shanxin; Zhou, Zhiping; Chen, Xinmeng; Hu, Yong; Yang, Lindong

    2017-08-07

    DNase I hypersensitive sites (DHSs) are accessible chromatin regions hypersensitive to cleavages by DNase I endonucleases. DHSs are indicative of cis-regulatory DNA elements (CREs), all of which play important roles in global gene expression regulation. It is helpful for discovering CREs by recognition of DHSs in genome. To accelerate the investigation, it is an important complement to develop cost-effective computational methods to identify DHSs. However, there is a lack of tools used for identifying DHSs in plant genome. Here we presented pDHS-SVM, a computational predictor to identify plant DHSs. To integrate the global sequence-order information and local DNA properties, reverse complement kmer and dinucleotide-based auto covariance of DNA sequences were applied to construct the feature space. In this work, fifteen physical-chemical properties of dinucleotides were used and Support Vector Machine (SVM) was employed. To further improve the performance of the predictor and extract an optimized subset of nucleotide physical-chemical properties positive for the DHSs, a heuristic nucleotide physical-chemical property selection algorithm was introduced. With the optimized subset of properties, experimental results of Arabidopsis thaliana and rice (Oryza sativa) showed that pDHS-SVM could achieve accuracies up to 87.00%, and 85.79%, respectively. The results indicated the effectiveness of proposed method for predicting DHSs. Furthermore, pDHS-SVM could provide a helpful complement for predicting CREs in plant genome. Our implementation of the novel proposed method pDHS-SVM is freely available as source code, at https://github.com/shanxinzhang/pDHS-SVM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier.

    PubMed

    Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W M; Li, R K; Jiang, Bo-Ru

    2014-01-01

    Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases.

  1. SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier

    PubMed Central

    Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W. M.; Li, R. K.; Jiang, Bo-Ru

    2014-01-01

    Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases. PMID:25295306

  2. Effluent composition prediction of a two-stage anaerobic digestion process: machine learning and stoichiometry techniques.

    PubMed

    Alejo, Luz; Atkinson, John; Guzmán-Fierro, Víctor; Roeckel, Marlene

    2018-05-16

    Computational self-adapting methods (Support Vector Machines, SVM) are compared with an analytical method in effluent composition prediction of a two-stage anaerobic digestion (AD) process. Experimental data for the AD of poultry manure were used. The analytical method considers the protein as the only source of ammonia production in AD after degradation. Total ammonia nitrogen (TAN), total solids (TS), chemical oxygen demand (COD), and total volatile solids (TVS) were measured in the influent and effluent of the process. The TAN concentration in the effluent was predicted, this being the most inhibiting and polluting compound in AD. Despite the limited data available, the SVM-based model outperformed the analytical method for the TAN prediction, achieving a relative average error of 15.2% against 43% for the analytical method. Moreover, SVM showed higher prediction accuracy in comparison with Artificial Neural Networks. This result reveals the future promise of SVM for prediction in non-linear and dynamic AD processes. Graphical abstract ᅟ.

  3. Multiclass Reduced-Set Support Vector Machines

    NASA Technical Reports Server (NTRS)

    Tang, Benyang; Mazzoni, Dominic

    2006-01-01

    There are well-established methods for reducing the number of support vectors in a trained binary support vector machine, often with minimal impact on accuracy. We show how reduced-set methods can be applied to multiclass SVMs made up of several binary SVMs, with significantly better results than reducing each binary SVM independently. Our approach is based on Burges' approach that constructs each reduced-set vector as the pre-image of a vector in kernel space, but we extend this by recomputing the SVM weights and bias optimally using the original SVM objective function. This leads to greater accuracy for a binary reduced-set SVM, and also allows vectors to be 'shared' between multiple binary SVMs for greater multiclass accuracy with fewer reduced-set vectors. We also propose computing pre-images using differential evolution, which we have found to be more robust than gradient descent alone. We show experimental results on a variety of problems and find that this new approach is consistently better than previous multiclass reduced-set methods, sometimes with a dramatic difference.

  4. Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT.

    PubMed

    Bizios, Dimitrios; Heijl, Anders; Hougaard, Jesper Leth; Bengtsson, Boel

    2010-02-01

    To compare the performance of two machine learning classifiers (MLCs), artificial neural networks (ANNs) and support vector machines (SVMs), with input based on retinal nerve fibre layer thickness (RNFLT) measurements by optical coherence tomography (OCT), on the diagnosis of glaucoma, and to assess the effects of different input parameters. We analysed Stratus OCT data from 90 healthy persons and 62 glaucoma patients. Performance of MLCs was compared using conventional OCT RNFLT parameters plus novel parameters such as minimum RNFLT values, 10th and 90th percentiles of measured RNFLT, and transformations of A-scan measurements. For each input parameter and MLC, the area under the receiver operating characteristic curve (AROC) was calculated. There were no statistically significant differences between ANNs and SVMs. The best AROCs for both ANN (0.982, 95%CI: 0.966-0.999) and SVM (0.989, 95% CI: 0.979-1.0) were based on input of transformed A-scan measurements. Our SVM trained on this input performed better than ANNs or SVMs trained on any of the single RNFLT parameters (p < or = 0.038). The performance of ANNs and SVMs trained on minimum thickness values and the 10th and 90th percentiles were at least as good as ANNs and SVMs with input based on the conventional RNFLT parameters. No differences between ANN and SVM were observed in this study. Both MLCs performed very well, with similar diagnostic performance. Input parameters have a larger impact on diagnostic performance than the type of machine classifier. Our results suggest that parameters based on transformed A-scan thickness measurements of the RNFL processed by machine classifiers can improve OCT-based glaucoma diagnosis.

  5. Generative Models for Similarity-based Classification

    DTIC Science & Technology

    2007-01-01

    NC), local nearest centroid (local NC), k-nearest neighbors ( kNN ), and condensed nearest neighbors (CNN) are all similarity-based classifiers which...vector machine to the k nearest neighbors of the test sample [80]. The SVM- KNN method was developed to address the robustness and dimensionality...concerns that afflict nearest neighbors and SVMs. Similarly to the nearest-means classifier, the SVM- KNN is a hybrid local and global classifier developed

  6. Mapping membrane activity in undiscovered peptide sequence space using machine learning

    PubMed Central

    Fulan, Benjamin M.; Wong, Gerard C. L.

    2016-01-01

    There are some ∼1,100 known antimicrobial peptides (AMPs), which permeabilize microbial membranes but have diverse sequences. Here, we develop a support vector machine (SVM)-based classifier to investigate ⍺-helical AMPs and the interrelated nature of their functional commonality and sequence homology. SVM is used to search the undiscovered peptide sequence space and identify Pareto-optimal candidates that simultaneously maximize the distance σ from the SVM hyperplane (thus maximize its “antimicrobialness”) and its ⍺-helicity, but minimize mutational distance to known AMPs. By calibrating SVM machine learning results with killing assays and small-angle X-ray scattering (SAXS), we find that the SVM metric σ correlates not with a peptide’s minimum inhibitory concentration (MIC), but rather its ability to generate negative Gaussian membrane curvature. This surprising result provides a topological basis for membrane activity common to AMPs. Moreover, we highlight an important distinction between the maximal recognizability of a sequence to a trained AMP classifier (its ability to generate membrane curvature) and its maximal antimicrobial efficacy. As mutational distances are increased from known AMPs, we find AMP-like sequences that are increasingly difficult for nature to discover via simple mutation. Using the sequence map as a discovery tool, we find a unexpectedly diverse taxonomy of sequences that are just as membrane-active as known AMPs, but with a broad range of primary functions distinct from AMP functions, including endogenous neuropeptides, viral fusion proteins, topogenic peptides, and amyloids. The SVM classifier is useful as a general detector of membrane activity in peptide sequences. PMID:27849600

  7. Protein-protein interaction site prediction in Homo sapiens and E. coli using an interaction-affinity based membership function in fuzzy SVM.

    PubMed

    Sriwastava, Brijesh Kumar; Basu, Subhadip; Maulik, Ujjwal

    2015-10-01

    Protein-protein interaction (PPI) site prediction aids to ascertain the interface residues that participate in interaction processes. Fuzzy support vector machine (F-SVM) is proposed as an effective method to solve this problem, and we have shown that the performance of the classical SVM can be enhanced with the help of an interaction-affinity based fuzzy membership function. The performances of both SVM and F-SVM on the PPI databases of the Homo sapiens and E. coli organisms are evaluated and estimated the statistical significance of the developed method over classical SVM and other fuzzy membership-based SVM methods available in the literature. Our membership function uses the residue-level interaction affinity scores for each pair of positive and negative sequence fragments. The average AUC scores in the 10-fold cross-validation experiments are measured as 79.94% and 80.48% for the Homo sapiens and E. coli organisms respectively. On the independent test datasets, AUC scores are obtained as 76.59% and 80.17% respectively for the two organisms. In almost all cases, the developed F-SVM method improves the performances obtained by the corresponding classical SVM and the other classifiers, available in the literature.

  8. Comparison of SVM, RF and ELM on an Electronic Nose for the Intelligent Evaluation of Paraffin Samples.

    PubMed

    Men, Hong; Fu, Songlin; Yang, Jialin; Cheng, Meiqi; Shi, Yan; Liu, Jingjing

    2018-01-18

    Paraffin odor intensity is an important quality indicator when a paraffin inspection is performed. Currently, paraffin odor level assessment is mainly dependent on an artificial sensory evaluation. In this paper, we developed a paraffin odor analysis system to classify and grade four kinds of paraffin samples. The original feature set was optimized using Principal Component Analysis (PCA) and Partial Least Squares (PLS). Support Vector Machine (SVM), Random Forest (RF), and Extreme Learning Machine (ELM) were applied to three different feature data sets for classification and level assessment of paraffin. For classification, the model based on SVM, with an accuracy rate of 100%, was superior to that based on RF, with an accuracy rate of 98.33-100%, and ELM, with an accuracy rate of 98.01-100%. For level assessment, the R² related to the training set was above 0.97 and the R² related to the test set was above 0.87. Through comprehensive comparison, the generalization of the model based on ELM was superior to those based on SVM and RF. The scoring errors for the three models were 0.0016-0.3494, lower than the error of 0.5-1.0 measured by industry standard experts, meaning these methods have a higher prediction accuracy for scoring paraffin level.

  9. Epithelial–mesenchymal transition biomarkers and support vector machine guided model in preoperatively predicting regional lymph node metastasis for rectal cancer

    PubMed Central

    Fan, X-J; Wan, X-B; Huang, Y; Cai, H-M; Fu, X-H; Yang, Z-L; Chen, D-K; Song, S-X; Wu, P-H; Liu, Q; Wang, L; Wang, J-P

    2012-01-01

    Background: Current imaging modalities are inadequate in preoperatively predicting regional lymph node metastasis (RLNM) status in rectal cancer (RC). Here, we designed support vector machine (SVM) model to address this issue by integrating epithelial–mesenchymal-transition (EMT)-related biomarkers along with clinicopathological variables. Methods: Using tissue microarrays and immunohistochemistry, the EMT-related biomarkers expression was measured in 193 RC patients. Of which, 74 patients were assigned to the training set to select the robust variables for designing SVM model. The SVM model predictive value was validated in the testing set (119 patients). Results: In training set, eight variables, including six EMT-related biomarkers and two clinicopathological variables, were selected to devise SVM model. In testing set, we identified 63 patients with high risk to RLNM and 56 patients with low risk. The sensitivity, specificity and overall accuracy of SVM in predicting RLNM were 68.3%, 81.1% and 72.3%, respectively. Importantly, multivariate logistic regression analysis showed that SVM model was indeed an independent predictor of RLNM status (odds ratio, 11.536; 95% confidence interval, 4.113–32.361; P<0.0001). Conclusion: Our SVM-based model displayed moderately strong predictive power in defining the RLNM status in RC patients, providing an important approach to select RLNM high-risk subgroup for neoadjuvant chemoradiotherapy. PMID:22538975

  10. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes.

    PubMed

    Srinivasulu, Yerukala Sathipati; Wang, Jyun-Rong; Hsu, Kai-Ti; Tsai, Ming-Ju; Charoenkwan, Phasit; Huang, Wen-Lin; Huang, Hui-Ling; Ho, Shinn-Ying

    2015-01-01

    Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein complexes. The characterization analysis revealed that the average numbers of beta turns and hydrogen bonds at protein-protein interfaces in high binding affinity complexes are more than those in low binding affinity complexes.

  11. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes

    PubMed Central

    2015-01-01

    Background Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. Results This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. Conclusions The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein complexes. The characterization analysis revealed that the average numbers of beta turns and hydrogen bonds at protein-protein interfaces in high binding affinity complexes are more than those in low binding affinity complexes. PMID:26681483

  12. EEG-based driver fatigue detection using hybrid deep generic model.

    PubMed

    Phyo Phyo San; Sai Ho Ling; Rifai Chai; Tran, Yvonne; Craig, Ashley; Hung Nguyen

    2016-08-01

    Classification of electroencephalography (EEG)-based application is one of the important process for biomedical engineering. Driver fatigue is a major case of traffic accidents worldwide and considered as a significant problem in recent decades. In this paper, a hybrid deep generic model (DGM)-based support vector machine is proposed for accurate detection of driver fatigue. Traditionally, a probabilistic DGM with deep architecture is quite good at learning invariant features, but it is not always optimal for classification due to its trainable parameters are in the middle layer. Alternatively, Support Vector Machine (SVM) itself is unable to learn complicated invariance, but produces good decision surface when applied to well-behaved features. Consolidating unsupervised high-level feature extraction techniques, DGM and SVM classification makes the integrated framework stronger and enhance mutually in feature extraction and classification. The experimental results showed that the proposed DBN-based driver fatigue monitoring system achieves better testing accuracy of 73.29 % with 91.10 % sensitivity and 55.48 % specificity. In short, the proposed hybrid DGM-based SVM is an effective method for the detection of driver fatigue in EEG.

  13. [Based on the LS-SVM modeling method determination of soil available N and available K by using near-infrared spectroscopy].

    PubMed

    Liu, Xue-Mei; Liu, Jian-She

    2012-11-01

    Visible infrared spectroscopy (Vis/SW-NIRS) was investigated in the present study for measurement accuracy of soil properties,namely, available nitrogen(N) and available potassium(K). Three types of pretreatments including standard normal variate (SNV), multiplicative scattering correction (MSC) and Savitzky-Golay smoothing+first derivative were adopted to eliminate the system noises and external disturbances. Then partial least squares (PLS) and least squares-support vector machine (LS-SVM) models analysis were implemented for calibration models. Simultaneously, the performance of least squares-support vector machine (LS-SVM) models was compared with three kinds of inputs, including PCA(PCs), latent variables (LVs), and effective wavelengths (EWs). The results indicated that all LS-SVM models outperformed PLS models. The performance of the model was evaluated by the correlation coefficient (r2) and RMSEP. The optimal EWs-LS-SVM models were achieved, and the correlation coefficient (r2) and RMSEP were 0.82 and 17.2 for N and 0.72 and 15.0 for K, respectively. The results indicated that visible and short wave-near infrared spectroscopy (Vis/SW-NIRS)(325-1 075 nm) combined with LS-SVM could be utilized as a precision method for the determination of soil properties.

  14. Classification of the Regional Ionospheric Disturbance Based on Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Terzi, Merve Begum; Arikan, Orhan; Karatay, Secil; Arikan, Feza; Gulyaeva, Tamara

    2016-08-01

    In this study, Total Electron Content (TEC) estimated from GPS receivers is used to model the regional and local variability that differs from global activity along with solar and geomagnetic indices. For the automated classification of regional disturbances, a classification technique based on a robust machine learning technique that have found wide spread use, Support Vector Machine (SVM) is proposed. Performance of developed classification technique is demonstrated for midlatitude ionosphere over Anatolia using TEC estimates generated from GPS data provided by Turkish National Permanent GPS Network (TNPGN-Active) for solar maximum year of 2011. As a result of implementing developed classification technique to Global Ionospheric Map (GIM) TEC data, which is provided by the NASA Jet Propulsion Laboratory (JPL), it is shown that SVM can be a suitable learning method to detect anomalies in TEC variations.

  15. Testing of the Support Vector Machine for Binary-Class Classification

    NASA Technical Reports Server (NTRS)

    Scholten, Matthew

    2011-01-01

    The Support Vector Machine is a powerful algorithm, useful in classifying data in to species. The Support Vector Machines implemented in this research were used as classifiers for the final stage in a Multistage Autonomous Target Recognition system. A single kernel SVM known as SVMlight, and a modified version known as a Support Vector Machine with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SMV as a method for classification. From trial to trial, SVM produces consistent results

  16. Identification of Alzheimer's disease and mild cognitive impairment using multimodal sparse hierarchical extreme learning machine.

    PubMed

    Kim, Jongin; Lee, Boreom

    2018-05-07

    Different modalities such as structural MRI, FDG-PET, and CSF have complementary information, which is likely to be very useful for diagnosis of AD and MCI. Therefore, it is possible to develop a more effective and accurate AD/MCI automatic diagnosis method by integrating complementary information of different modalities. In this paper, we propose multi-modal sparse hierarchical extreme leaning machine (MSH-ELM). We used volume and mean intensity extracted from 93 regions of interest (ROIs) as features of MRI and FDG-PET, respectively, and used p-tau, t-tau, and Aβ42 as CSF features. In detail, high-level representation was individually extracted from each of MRI, FDG-PET, and CSF using a stacked sparse extreme learning machine auto-encoder (sELM-AE). Then, another stacked sELM-AE was devised to acquire a joint hierarchical feature representation by fusing the high-level representations obtained from each modality. Finally, we classified joint hierarchical feature representation using a kernel-based extreme learning machine (KELM). The results of MSH-ELM were compared with those of conventional ELM, single kernel support vector machine (SK-SVM), multiple kernel support vector machine (MK-SVM) and stacked auto-encoder (SAE). Performance was evaluated through 10-fold cross-validation. In the classification of AD vs. HC and MCI vs. HC problem, the proposed MSH-ELM method showed mean balanced accuracies of 96.10% and 86.46%, respectively, which is much better than those of competing methods. In summary, the proposed algorithm exhibits consistently better performance than SK-SVM, ELM, MK-SVM and SAE in the two binary classification problems (AD vs. HC and MCI vs. HC). © 2018 Wiley Periodicals, Inc.

  17. Feature Selection and Parameters Optimization of SVM Using Particle Swarm Optimization for Fault Classification in Power Distribution Systems.

    PubMed

    Cho, Ming-Yuan; Hoang, Thi Thom

    2017-01-01

    Fast and accurate fault classification is essential to power system operations. In this paper, in order to classify electrical faults in radial distribution systems, a particle swarm optimization (PSO) based support vector machine (SVM) classifier has been proposed. The proposed PSO based SVM classifier is able to select appropriate input features and optimize SVM parameters to increase classification accuracy. Further, a time-domain reflectometry (TDR) method with a pseudorandom binary sequence (PRBS) stimulus has been used to generate a dataset for purposes of classification. The proposed technique has been tested on a typical radial distribution network to identify ten different types of faults considering 12 given input features generated by using Simulink software and MATLAB Toolbox. The success rate of the SVM classifier is over 97%, which demonstrates the effectiveness and high efficiency of the developed method.

  18. Landslide susceptibility mapping & prediction using Support Vector Machine for Mandakini River Basin, Garhwal Himalaya, India

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Thakur, Manoj; Dubey, Chandra S.; Shukla, Dericks P.

    2017-10-01

    In recent years, various machine learning techniques have been applied for landslide susceptibility mapping. In this study, three different variants of support vector machine viz., SVM, Proximal Support Vector Machine (PSVM) and L2-Support Vector Machine - Modified Finite Newton (L2-SVM-MFN) have been applied on the Mandakini River Basin in Uttarakhand, India to carry out the landslide susceptibility mapping. Eight thematic layers such as elevation, slope, aspect, drainages, geology/lithology, buffer of thrusts/faults, buffer of streams and soil along with the past landslide data were mapped in GIS environment and used for landslide susceptibility mapping in MATLAB. The study area covering 1625 km2 has merely 0.11% of area under landslides. There are 2009 pixels for past landslides out of which 50% (1000) landslides were considered as training set while remaining 50% as testing set. The performance of these techniques has been evaluated and the computational results show that L2-SVM-MFN obtains higher prediction values (0.829) of receiver operating characteristic curve (AUC-area under the curve) as compared to 0.807 for PSVM model and 0.79 for SVM. The results obtained from L2-SVM-MFN model are found to be superior than other SVM prediction models and suggest the usefulness of this technique to problem of landslide susceptibility mapping where training data is very less. However, these techniques can be used for satisfactory determination of susceptible zones with these inputs.

  19. The employment of Support Vector Machine to classify high and low performance archers based on bio-physiological variables

    NASA Astrophysics Data System (ADS)

    Taha, Zahari; Muazu Musa, Rabiu; Majeed, Anwar P. P. Abdul; Razali Abdullah, Mohamad; Amirul Abdullah, Muhammad; Hasnun Arif Hassan, Mohd; Khalil, Zubair

    2018-04-01

    The present study employs a machine learning algorithm namely support vector machine (SVM) to classify high and low potential archers from a collection of bio-physiological variables trained on different SVMs. 50 youth archers with the average age and standard deviation of (17.0 ±.056) gathered from various archery programmes completed a one end shooting score test. The bio-physiological variables namely resting heart rate, resting respiratory rate, resting diastolic blood pressure, resting systolic blood pressure, as well as calories intake, were measured prior to their shooting tests. k-means cluster analysis was applied to cluster the archers based on their scores on variables assessed. SVM models i.e. linear, quadratic and cubic kernel functions, were trained on the aforementioned variables. The k-means clustered the archers into high (HPA) and low potential archers (LPA), respectively. It was demonstrated that the linear SVM exhibited good accuracy with a classification accuracy of 94% in comparison the other tested models. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from the selected bio-physiological variables examined.

  20. Spatial-spectral blood cell classification with microscopic hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Ran, Qiong; Chang, Lan; Li, Wei; Xu, Xiaofeng

    2017-10-01

    Microscopic hyperspectral images provide a new way for blood cell examination. The hyperspectral imagery can greatly facilitate the classification of different blood cells. In this paper, the microscopic hyperspectral images are acquired by connecting the microscope and the hyperspectral imager, and then tested for blood cell classification. For combined use of the spectral and spatial information provided by hyperspectral images, a spatial-spectral classification method is improved from the classical extreme learning machine (ELM) by integrating spatial context into the image classification task with Markov random field (MRF) model. Comparisons are done among ELM, ELM-MRF, support vector machines(SVM) and SVMMRF methods. Results show the spatial-spectral classification methods(ELM-MRF, SVM-MRF) perform better than pixel-based methods(ELM, SVM), and the proposed ELM-MRF has higher precision and show more accurate location of cells.

  1. Quantum optimization for training support vector machines.

    PubMed

    Anguita, Davide; Ridella, Sandro; Rivieccio, Fabio; Zunino, Rodolfo

    2003-01-01

    Refined concepts, such as Rademacher estimates of model complexity and nonlinear criteria for weighting empirical classification errors, represent recent and promising approaches to characterize the generalization ability of Support Vector Machines (SVMs). The advantages of those techniques lie in both improving the SVM representation ability and yielding tighter generalization bounds. On the other hand, they often make Quadratic-Programming algorithms no longer applicable, and SVM training cannot benefit from efficient, specialized optimization techniques. The paper considers the application of Quantum Computing to solve the problem of effective SVM training, especially in the case of digital implementations. The presented research compares the behavioral aspects of conventional and enhanced SVMs; experiments in both a synthetic and real-world problems support the theoretical analysis. At the same time, the related differences between Quadratic-Programming and Quantum-based optimization techniques are considered.

  2. A low cost implementation of multi-parameter patient monitor using intersection kernel support vector machine classifier

    NASA Astrophysics Data System (ADS)

    Mohan, Dhanya; Kumar, C. Santhosh

    2016-03-01

    Predicting the physiological condition (normal/abnormal) of a patient is highly desirable to enhance the quality of health care. Multi-parameter patient monitors (MPMs) using heart rate, arterial blood pressure, respiration rate and oxygen saturation (S pO2) as input parameters were developed to monitor the condition of patients, with minimum human resource utilization. The Support vector machine (SVM), an advanced machine learning approach popularly used for classification and regression is used for the realization of MPMs. For making MPMs cost effective, we experiment on the hardware implementation of the MPM using support vector machine classifier. The training of the system is done using the matlab environment and the detection of the alarm/noalarm condition is implemented in hardware. We used different kernels for SVM classification and note that the best performance was obtained using intersection kernel SVM (IKSVM). The intersection kernel support vector machine classifier MPM has outperformed the best known MPM using radial basis function kernel by an absoute improvement of 2.74% in accuracy, 1.86% in sensitivity and 3.01% in specificity. The hardware model was developed based on the improved performance system using Verilog Hardware Description Language and was implemented on Altera cyclone-II development board.

  3. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue.

    PubMed

    Chen, Zhenyu; Li, Jianping; Wei, Liwei

    2007-10-01

    Recently, gene expression profiling using microarray techniques has been shown as a promising tool to improve the diagnosis and treatment of cancer. Gene expression data contain high level of noise and the overwhelming number of genes relative to the number of available samples. It brings out a great challenge for machine learning and statistic techniques. Support vector machine (SVM) has been successfully used to classify gene expression data of cancer tissue. In the medical field, it is crucial to deliver the user a transparent decision process. How to explain the computed solutions and present the extracted knowledge becomes a main obstacle for SVM. A multiple kernel support vector machine (MK-SVM) scheme, consisting of feature selection, rule extraction and prediction modeling is proposed to improve the explanation capacity of SVM. In this scheme, we show that the feature selection problem can be translated into an ordinary multiple parameters learning problem. And a shrinkage approach: 1-norm based linear programming is proposed to obtain the sparse parameters and the corresponding selected features. We propose a novel rule extraction approach using the information provided by the separating hyperplane and support vectors to improve the generalization capacity and comprehensibility of rules and reduce the computational complexity. Two public gene expression datasets: leukemia dataset and colon tumor dataset are used to demonstrate the performance of this approach. Using the small number of selected genes, MK-SVM achieves encouraging classification accuracy: more than 90% for both two datasets. Moreover, very simple rules with linguist labels are extracted. The rule sets have high diagnostic power because of their good classification performance.

  4. Improving near-infrared prediction model robustness with support vector machine regression: a pharmaceutical tablet assay example.

    PubMed

    Igne, Benoît; Drennen, James K; Anderson, Carl A

    2014-01-01

    Changes in raw materials and process wear and tear can have significant effects on the prediction error of near-infrared calibration models. When the variability that is present during routine manufacturing is not included in the calibration, test, and validation sets, the long-term performance and robustness of the model will be limited. Nonlinearity is a major source of interference. In near-infrared spectroscopy, nonlinearity can arise from light path-length differences that can come from differences in particle size or density. The usefulness of support vector machine (SVM) regression to handle nonlinearity and improve the robustness of calibration models in scenarios where the calibration set did not include all the variability present in test was evaluated. Compared to partial least squares (PLS) regression, SVM regression was less affected by physical (particle size) and chemical (moisture) differences. The linearity of the SVM predicted values was also improved. Nevertheless, although visualization and interpretation tools have been developed to enhance the usability of SVM-based methods, work is yet to be done to provide chemometricians in the pharmaceutical industry with a regression method that can supplement PLS-based methods.

  5. GAPscreener: An automatic tool for screening human genetic association literature in PubMed using the support vector machine technique

    PubMed Central

    Yu, Wei; Clyne, Melinda; Dolan, Siobhan M; Yesupriya, Ajay; Wulf, Anja; Liu, Tiebin; Khoury, Muin J; Gwinn, Marta

    2008-01-01

    Background Synthesis of data from published human genetic association studies is a critical step in the translation of human genome discoveries into health applications. Although genetic association studies account for a substantial proportion of the abstracts in PubMed, identifying them with standard queries is not always accurate or efficient. Further automating the literature-screening process can reduce the burden of a labor-intensive and time-consuming traditional literature search. The Support Vector Machine (SVM), a well-established machine learning technique, has been successful in classifying text, including biomedical literature. The GAPscreener, a free SVM-based software tool, can be used to assist in screening PubMed abstracts for human genetic association studies. Results The data source for this research was the HuGE Navigator, formerly known as the HuGE Pub Lit database. Weighted SVM feature selection based on a keyword list obtained by the two-way z score method demonstrated the best screening performance, achieving 97.5% recall, 98.3% specificity and 31.9% precision in performance testing. Compared with the traditional screening process based on a complex PubMed query, the SVM tool reduced by about 90% the number of abstracts requiring individual review by the database curator. The tool also ascertained 47 articles that were missed by the traditional literature screening process during the 4-week test period. We examined the literature on genetic associations with preterm birth as an example. Compared with the traditional, manual process, the GAPscreener both reduced effort and improved accuracy. Conclusion GAPscreener is the first free SVM-based application available for screening the human genetic association literature in PubMed with high recall and specificity. The user-friendly graphical user interface makes this a practical, stand-alone application. The software can be downloaded at no charge. PMID:18430222

  6. Rare events modeling with support vector machine: Application to forecasting large-amplitude geomagnetic substorms and extreme events in financial markets.

    NASA Astrophysics Data System (ADS)

    Gavrishchaka, V. V.; Ganguli, S. B.

    2001-12-01

    Reliable forecasting of rare events in a complex dynamical system is a challenging problem that is important for many practical applications. Due to the nature of rare events, data set available for construction of the statistical and/or machine learning model is often very limited and incomplete. Therefore many widely used approaches including such robust algorithms as neural networks can easily become inadequate for rare events prediction. Moreover in many practical cases models with high-dimensional inputs are required. This limits applications of the existing rare event modeling techniques (e.g., extreme value theory) that focus on univariate cases. These approaches are not easily extended to multivariate cases. Support vector machine (SVM) is a machine learning system that can provide an optimal generalization using very limited and incomplete training data sets and can efficiently handle high-dimensional data. These features may allow to use SVM to model rare events in some applications. We have applied SVM-based system to the problem of large-amplitude substorm prediction and extreme event forecasting in stock and currency exchange markets. Encouraging preliminary results will be presented and other possible applications of the system will be discussed.

  7. Predicting metabolic syndrome using decision tree and support vector machine methods.

    PubMed

    Karimi-Alavijeh, Farzaneh; Jalili, Saeed; Sadeghi, Masoumeh

    2016-05-01

    Metabolic syndrome which underlies the increased prevalence of cardiovascular disease and Type 2 diabetes is considered as a group of metabolic abnormalities including central obesity, hypertriglyceridemia, glucose intolerance, hypertension, and dyslipidemia. Recently, artificial intelligence based health-care systems are highly regarded because of its success in diagnosis, prediction, and choice of treatment. This study employs machine learning technics for predict the metabolic syndrome. This study aims to employ decision tree and support vector machine (SVM) to predict the 7-year incidence of metabolic syndrome. This research is a practical one in which data from 2107 participants of Isfahan Cohort Study has been utilized. The subjects without metabolic syndrome according to the ATPIII criteria were selected. The features that have been used in this data set include: gender, age, weight, body mass index, waist circumference, waist-to-hip ratio, hip circumference, physical activity, smoking, hypertension, antihypertensive medication use, systolic blood pressure (BP), diastolic BP, fasting blood sugar, 2-hour blood glucose, triglycerides (TGs), total cholesterol, low-density lipoprotein, high density lipoprotein-cholesterol, mean corpuscular volume, and mean corpuscular hemoglobin. Metabolic syndrome was diagnosed based on ATPIII criteria and two methods of decision tree and SVM were selected to predict the metabolic syndrome. The criteria of sensitivity, specificity and accuracy were used for validation. SVM and decision tree methods were examined according to the criteria of sensitivity, specificity and accuracy. Sensitivity, specificity and accuracy were 0.774 (0.758), 0.74 (0.72) and 0.757 (0.739) in SVM (decision tree) method. The results show that SVM method sensitivity, specificity and accuracy is more efficient than decision tree. The results of decision tree method show that the TG is the most important feature in predicting metabolic syndrome. According to this study, in cases where only the final result of the decision is regarded significant, SVM method can be used with acceptable accuracy in decision making medical issues. This method has not been implemented in the previous research.

  8. New support vector machine-based method for microRNA target prediction.

    PubMed

    Li, L; Gao, Q; Mao, X; Cao, Y

    2014-06-09

    MicroRNA (miRNA) plays important roles in cell differentiation, proliferation, growth, mobility, and apoptosis. An accurate list of precise target genes is necessary in order to fully understand the importance of miRNAs in animal development and disease. Several computational methods have been proposed for miRNA target-gene identification. However, these methods still have limitations with respect to their sensitivity and accuracy. Thus, we developed a new miRNA target-prediction method based on the support vector machine (SVM) model. The model supplies information of two binding sites (primary and secondary) for a radial basis function kernel as a similarity measure for SVM features. The information is categorized based on structural, thermodynamic, and sequence conservation. Using high-confidence datasets selected from public miRNA target databases, we obtained a human miRNA target SVM classifier model with high performance and provided an efficient tool for human miRNA target gene identification. Experiments have shown that our method is a reliable tool for miRNA target-gene prediction, and a successful application of an SVM classifier. Compared with other methods, the method proposed here improves the sensitivity and accuracy of miRNA prediction. Its performance can be further improved by providing more training examples.

  9. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features

    PubMed Central

    Hu, Yu-Chuan; Li, Gang; Yang, Yang; Han, Yu; Sun, Ying-Zhi; Liu, Zhi-Cheng; Tian, Qiang; Han, Zi-Yang; Liu, Le-De; Hu, Bin-Quan; Qiu, Zi-Yu; Wang, Wen; Cui, Guang-Bin

    2017-01-01

    Current machine learning techniques provide the opportunity to develop noninvasive and automated glioma grading tools, by utilizing quantitative parameters derived from multi-modal magnetic resonance imaging (MRI) data. However, the efficacies of different machine learning methods in glioma grading have not been investigated.A comprehensive comparison of varied machine learning methods in differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well as WHO grade II, III and IV gliomas based on multi-parametric MRI images was proposed in the current study. The parametric histogram and image texture attributes of 120 glioma patients were extracted from the perfusion, diffusion and permeability parametric maps of preoperative MRI. Then, 25 commonly used machine learning classifiers combined with 8 independent attribute selection methods were applied and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the influences of parameter selection on the classifying performances were investigated. We found that support vector machine (SVM) exhibited superior performance to other classifiers. By combining all tumor attributes with synthetic minority over-sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive Feature Elimination (RFE) attribute selection strategy further improved the classifying accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising tool in developing automated preoperative glioma grading system, especially when being combined with RFE strategy. Model parameters should be considered in glioma grading model optimization. PMID:28599282

  10. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features.

    PubMed

    Zhang, Xin; Yan, Lin-Feng; Hu, Yu-Chuan; Li, Gang; Yang, Yang; Han, Yu; Sun, Ying-Zhi; Liu, Zhi-Cheng; Tian, Qiang; Han, Zi-Yang; Liu, Le-De; Hu, Bin-Quan; Qiu, Zi-Yu; Wang, Wen; Cui, Guang-Bin

    2017-07-18

    Current machine learning techniques provide the opportunity to develop noninvasive and automated glioma grading tools, by utilizing quantitative parameters derived from multi-modal magnetic resonance imaging (MRI) data. However, the efficacies of different machine learning methods in glioma grading have not been investigated.A comprehensive comparison of varied machine learning methods in differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well as WHO grade II, III and IV gliomas based on multi-parametric MRI images was proposed in the current study. The parametric histogram and image texture attributes of 120 glioma patients were extracted from the perfusion, diffusion and permeability parametric maps of preoperative MRI. Then, 25 commonly used machine learning classifiers combined with 8 independent attribute selection methods were applied and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the influences of parameter selection on the classifying performances were investigated. We found that support vector machine (SVM) exhibited superior performance to other classifiers. By combining all tumor attributes with synthetic minority over-sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive Feature Elimination (RFE) attribute selection strategy further improved the classifying accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising tool in developing automated preoperative glioma grading system, especially when being combined with RFE strategy. Model parameters should be considered in glioma grading model optimization.

  11. Lamb wave based damage detection using Matching Pursuit and Support Vector Machine classifier

    NASA Astrophysics Data System (ADS)

    Agarwal, Sushant; Mitra, Mira

    2014-03-01

    In this paper, the suitability of using Matching Pursuit (MP) and Support Vector Machine (SVM) for damage detection using Lamb wave response of thin aluminium plate is explored. Lamb wave response of thin aluminium plate with or without damage is simulated using finite element. Simulations are carried out at different frequencies for various kinds of damage. The procedure is divided into two parts - signal processing and machine learning. Firstly, MP is used for denoising and to maintain the sparsity of the dataset. In this study, MP is extended by using a combination of time-frequency functions as the dictionary and is deployed in two stages. Selection of a particular type of atoms lead to extraction of important features while maintaining the sparsity of the waveform. The resultant waveform is then passed as input data for SVM classifier. SVM is used to detect the location of the potential damage from the reduced data. The study demonstrates that SVM is a robust classifier in presence of noise and more efficient as compared to Artificial Neural Network (ANN). Out-of-sample data is used for the validation of the trained and tested classifier. Trained classifiers are found successful in detection of the damage with more than 95% detection rate.

  12. Research on gesture recognition of augmented reality maintenance guiding system based on improved SVM

    NASA Astrophysics Data System (ADS)

    Zhao, Shouwei; Zhang, Yong; Zhou, Bin; Ma, Dongxi

    2014-09-01

    Interaction is one of the key techniques of augmented reality (AR) maintenance guiding system. Because of the complexity of the maintenance guiding system's image background and the high dimensionality of gesture characteristics, the whole process of gesture recognition can be divided into three stages which are gesture segmentation, gesture characteristic feature modeling and trick recognition. In segmentation stage, for solving the misrecognition of skin-like region, a segmentation algorithm combing background mode and skin color to preclude some skin-like regions is adopted. In gesture characteristic feature modeling of image attributes stage, plenty of characteristic features are analyzed and acquired, such as structure characteristics, Hu invariant moments features and Fourier descriptor. In trick recognition stage, a classifier based on Support Vector Machine (SVM) is introduced into the augmented reality maintenance guiding process. SVM is a novel learning method based on statistical learning theory, processing academic foundation and excellent learning ability, having a lot of issues in machine learning area and special advantages in dealing with small samples, non-linear pattern recognition at high dimension. The gesture recognition of augmented reality maintenance guiding system is realized by SVM after the granulation of all the characteristic features. The experimental results of the simulation of number gesture recognition and its application in augmented reality maintenance guiding system show that the real-time performance and robustness of gesture recognition of AR maintenance guiding system can be greatly enhanced by improved SVM.

  13. A hybrid approach to select features and classify diseases based on medical data

    NASA Astrophysics Data System (ADS)

    AbdelLatif, Hisham; Luo, Jiawei

    2018-03-01

    Feature selection is popular problem in the classification of diseases in clinical medicine. Here, we developing a hybrid methodology to classify diseases, based on three medical datasets, Arrhythmia, Breast cancer, and Hepatitis datasets. This methodology called k-means ANOVA Support Vector Machine (K-ANOVA-SVM) uses K-means cluster with ANOVA statistical to preprocessing data and selection the significant features, and Support Vector Machines in the classification process. To compare and evaluate the performance, we choice three classification algorithms, decision tree Naïve Bayes, Support Vector Machines and applied the medical datasets direct to these algorithms. Our methodology was a much better classification accuracy is given of 98% in Arrhythmia datasets, 92% in Breast cancer datasets and 88% in Hepatitis datasets, Compare to use the medical data directly with decision tree Naïve Bayes, and Support Vector Machines. Also, the ROC curve and precision with (K-ANOVA-SVM) Achieved best results than other algorithms

  14. Age group classification and gender detection based on forced expiratory spirometry.

    PubMed

    Cosgun, Sema; Ozbek, I Yucel

    2015-08-01

    This paper investigates the utility of forced expiratory spirometry (FES) test with efficient machine learning algorithms for the purpose of gender detection and age group classification. The proposed method has three main stages: feature extraction, training of the models and detection. In the first stage, some features are extracted from volume-time curve and expiratory flow-volume loop obtained from FES test. In the second stage, the probabilistic models for each gender and age group are constructed by training Gaussian mixture models (GMMs) and Support vector machine (SVM) algorithm. In the final stage, the gender (or age group) of test subject is estimated by using the trained GMM (or SVM) model. Experiments have been evaluated on a large database from 4571 subjects. The experimental results show that average correct classification rate performance of both GMM and SVM methods based on the FES test is more than 99.3 % and 96.8 % for gender and age group classification, respectively.

  15. A study of the effectiveness of machine learning methods for classification of clinical interview fragments into a large number of categories.

    PubMed

    Hasan, Mehedi; Kotov, Alexander; Carcone, April; Dong, Ming; Naar, Sylvie; Hartlieb, Kathryn Brogan

    2016-08-01

    This study examines the effectiveness of state-of-the-art supervised machine learning methods in conjunction with different feature types for the task of automatic annotation of fragments of clinical text based on codebooks with a large number of categories. We used a collection of motivational interview transcripts consisting of 11,353 utterances, which were manually annotated by two human coders as the gold standard, and experimented with state-of-art classifiers, including Naïve Bayes, J48 Decision Tree, Support Vector Machine (SVM), Random Forest (RF), AdaBoost, DiscLDA, Conditional Random Fields (CRF) and Convolutional Neural Network (CNN) in conjunction with lexical, contextual (label of the previous utterance) and semantic (distribution of words in the utterance across the Linguistic Inquiry and Word Count dictionaries) features. We found out that, when the number of classes is large, the performance of CNN and CRF is inferior to SVM. When only lexical features were used, interview transcripts were automatically annotated by SVM with the highest classification accuracy among all classifiers of 70.8%, 61% and 53.7% based on the codebooks consisting of 17, 20 and 41 codes, respectively. Using contextual and semantic features, as well as their combination, in addition to lexical ones, improved the accuracy of SVM for annotation of utterances in motivational interview transcripts with a codebook consisting of 17 classes to 71.5%, 74.2%, and 75.1%, respectively. Our results demonstrate the potential of using machine learning methods in conjunction with lexical, semantic and contextual features for automatic annotation of clinical interview transcripts with near-human accuracy. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Assessing the druggability of protein-protein interactions by a supervised machine-learning method.

    PubMed

    Sugaya, Nobuyoshi; Ikeda, Kazuyoshi

    2009-08-25

    Protein-protein interactions (PPIs) are challenging but attractive targets of small molecule drugs for therapeutic interventions of human diseases. In this era of rapid accumulation of PPI data, there is great need for a methodology that can efficiently select drug target PPIs by holistically assessing the druggability of PPIs. To address this need, we propose here a novel approach based on a supervised machine-learning method, support vector machine (SVM). To assess the druggability of the PPIs, 69 attributes were selected to cover a wide range of structural, drug and chemical, and functional information on the PPIs. These attributes were used as feature vectors in the SVM-based method. Thirty PPIs known to be druggable were carefully selected from previous studies; these were used as positive instances. Our approach was applied to 1,295 human PPIs with tertiary structures of their protein complexes already solved. The best SVM model constructed discriminated the already-known target PPIs from others at an accuracy of 81% (sensitivity, 82%; specificity, 79%) in cross-validation. Among the attributes, the two with the greatest discriminative power in the best SVM model were the number of interacting proteins and the number of pathways. Using the model, we predicted several promising candidates for druggable PPIs, such as SMAD4/SKI. As more PPI data are accumulated in the near future, our method will have increased ability to accelerate the discovery of druggable PPIs.

  17. Non-metallic coating thickness prediction using artificial neural network and support vector machine with time resolved thermography

    NASA Astrophysics Data System (ADS)

    Wang, Hongjin; Hsieh, Sheng-Jen; Peng, Bo; Zhou, Xunfei

    2016-07-01

    A method without requirements on knowledge about thermal properties of coatings or those of substrates will be interested in the industrial application. Supervised machine learning regressions may provide possible solution to the problem. This paper compares the performances of two regression models (artificial neural networks (ANN) and support vector machines for regression (SVM)) with respect to coating thickness estimations made based on surface temperature increments collected via time resolved thermography. We describe SVM roles in coating thickness prediction. Non-dimensional analyses are conducted to illustrate the effects of coating thicknesses and various factors on surface temperature increments. It's theoretically possible to correlate coating thickness with surface increment. Based on the analyses, the laser power is selected in such a way: during the heating, the temperature increment is high enough to determine the coating thickness variance but low enough to avoid surface melting. Sixty-one pain-coated samples with coating thicknesses varying from 63.5 μm to 571 μm are used to train models. Hyper-parameters of the models are optimized by 10-folder cross validation. Another 28 sets of data are then collected to test the performance of the three methods. The study shows that SVM can provide reliable predictions of unknown data, due to its deterministic characteristics, and it works well when used for a small input data group. The SVM model generates more accurate coating thickness estimates than the ANN model.

  18. Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization.

    PubMed

    Nishio, Mizuho; Nishizawa, Mitsuo; Sugiyama, Osamu; Kojima, Ryosuke; Yakami, Masahiro; Kuroda, Tomohiro; Togashi, Kaori

    2018-01-01

    We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine learning algorithm), (ii) comparison between support vector machine (SVM) and gradient tree boosting (XGBoost) as machine learning algorithms, and (iii) effectiveness of parameter optimization using Bayesian optimization and random search. Data on 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of the local binary pattern was used for calculating a feature vector. SVM or XGBoost was trained using the feature vector and its corresponding label. Tree Parzen Estimator (TPE) was used as Bayesian optimization for parameters of SVM and XGBoost. Random search was done for comparison with TPE. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost was 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. Bayesian optimization of SVM and XGBoost parameters was more efficient than random search. Based on observer study, AUC values of two board-certified radiologists were 0.898 and 0.822. The results show that diagnostic accuracy of our CADx system was comparable to that of radiologists with respect to classifying lung nodules.

  19. Epileptic seizure detection in EEG signal using machine learning techniques.

    PubMed

    Jaiswal, Abeg Kumar; Banka, Haider

    2018-03-01

    Epilepsy is a well-known nervous system disorder characterized by seizures. Electroencephalograms (EEGs), which capture brain neural activity, can detect epilepsy. Traditional methods for analyzing an EEG signal for epileptic seizure detection are time-consuming. Recently, several automated seizure detection frameworks using machine learning technique have been proposed to replace these traditional methods. The two basic steps involved in machine learning are feature extraction and classification. Feature extraction reduces the input pattern space by keeping informative features and the classifier assigns the appropriate class label. In this paper, we propose two effective approaches involving subpattern based PCA (SpPCA) and cross-subpattern correlation-based PCA (SubXPCA) with Support Vector Machine (SVM) for automated seizure detection in EEG signals. Feature extraction was performed using SpPCA and SubXPCA. Both techniques explore the subpattern correlation of EEG signals, which helps in decision-making process. SVM is used for classification of seizure and non-seizure EEG signals. The SVM was trained with radial basis kernel. All the experiments have been carried out on the benchmark epilepsy EEG dataset. The entire dataset consists of 500 EEG signals recorded under different scenarios. Seven different experimental cases for classification have been conducted. The classification accuracy was evaluated using tenfold cross validation. The classification results of the proposed approaches have been compared with the results of some of existing techniques proposed in the literature to establish the claim.

  20. Discrimination of raw and processed Dipsacus asperoides by near infrared spectroscopy combined with least squares-support vector machine and random forests

    NASA Astrophysics Data System (ADS)

    Xin, Ni; Gu, Xiao-Feng; Wu, Hao; Hu, Yu-Zhu; Yang, Zhong-Lin

    2012-04-01

    Most herbal medicines could be processed to fulfill the different requirements of therapy. The purpose of this study was to discriminate between raw and processed Dipsacus asperoides, a common traditional Chinese medicine, based on their near infrared (NIR) spectra. Least squares-support vector machine (LS-SVM) and random forests (RF) were employed for full-spectrum classification. Three types of kernels, including linear kernel, polynomial kernel and radial basis function kernel (RBF), were checked for optimization of LS-SVM model. For comparison, a linear discriminant analysis (LDA) model was performed for classification, and the successive projections algorithm (SPA) was executed prior to building an LDA model to choose an appropriate subset of wavelengths. The three methods were applied to a dataset containing 40 raw herbs and 40 corresponding processed herbs. We ran 50 runs of 10-fold cross validation to evaluate the model's efficiency. The performance of the LS-SVM with RBF kernel (RBF LS-SVM) was better than the other two kernels. The RF, RBF LS-SVM and SPA-LDA successfully classified all test samples. The mean error rates for the 50 runs of 10-fold cross validation were 1.35% for RBF LS-SVM, 2.87% for RF, and 2.50% for SPA-LDA. The best classification results were obtained by using LS-SVM with RBF kernel, while RF was fast in the training and making predictions.

  1. The combination of a histogram-based clustering algorithm and support vector machine for the diagnosis of osteoporosis.

    PubMed

    Kavitha, Muthu Subash; Asano, Akira; Taguchi, Akira; Heo, Min-Suk

    2013-09-01

    To prevent low bone mineral density (BMD), that is, osteoporosis, in postmenopausal women, it is essential to diagnose osteoporosis more precisely. This study presented an automatic approach utilizing a histogram-based automatic clustering (HAC) algorithm with a support vector machine (SVM) to analyse dental panoramic radiographs (DPRs) and thus improve diagnostic accuracy by identifying postmenopausal women with low BMD or osteoporosis. We integrated our newly-proposed histogram-based automatic clustering (HAC) algorithm with our previously-designed computer-aided diagnosis system. The extracted moment-based features (mean, variance, skewness, and kurtosis) of the mandibular cortical width for the radial basis function (RBF) SVM classifier were employed. We also compared the diagnostic efficacy of the SVM model with the back propagation (BP) neural network model. In this study, DPRs and BMD measurements of 100 postmenopausal women patients (aged >50 years), with no previous record of osteoporosis, were randomly selected for inclusion. The accuracy, sensitivity, and specificity of the BMD measurements using our HAC-SVM model to identify women with low BMD were 93.0% (88.0%-98.0%), 95.8% (91.9%-99.7%) and 86.6% (79.9%-93.3%), respectively, at the lumbar spine; and 89.0% (82.9%-95.1%), 96.0% (92.2%-99.8%) and 84.0% (76.8%-91.2%), respectively, at the femoral neck. Our experimental results predict that the proposed HAC-SVM model combination applied on DPRs could be useful to assist dentists in early diagnosis and help to reduce the morbidity and mortality associated with low BMD and osteoporosis.

  2. Construction of Pancreatic Cancer Classifier Based on SVM Optimized by Improved FOA

    PubMed Central

    Ma, Xiaoqi

    2015-01-01

    A novel method is proposed to establish the pancreatic cancer classifier. Firstly, the concept of quantum and fruit fly optimal algorithm (FOA) are introduced, respectively. Then FOA is improved by quantum coding and quantum operation, and a new smell concentration determination function is defined. Finally, the improved FOA is used to optimize the parameters of support vector machine (SVM) and the classifier is established by optimized SVM. In order to verify the effectiveness of the proposed method, SVM and other classification methods have been chosen as the comparing methods. The experimental results show that the proposed method can improve the classifier performance and cost less time. PMID:26543867

  3. [Measurement of soil organic matter and available K based on SPA-LS-SVM].

    PubMed

    Zhang, Hai-Liang; Liu, Xue-Mei; He, Yong

    2014-05-01

    Visible and short wave infrared spectroscopy (Vis/SW-NIRS) was investigated in the present study for measurement of soil organic matter (OM) and available potassium (K). Four types of pretreatments including smoothing, SNV, MSC and SG smoothing+first derivative were adopted to eliminate the system noises and external disturbances. Then partial least squares regression (PLSR) and least squares-support vector machine (LS-SVM) models were implemented for calibration models. The LS-SVM model was built by using characteristic wavelength based on successive projections algorithm (SPA). Simultaneously, the performance of LSSVM models was compared with PLSR models. The results indicated that LS-SVM models using characteristic wavelength as inputs based on SPA outperformed PLSR models. The optimal SPA-LS-SVM models were achieved, and the correlation coefficient (r), and RMSEP were 0. 860 2 and 2. 98 for OM and 0. 730 5 and 15. 78 for K, respectively. The results indicated that visible and short wave near infrared spectroscopy (Vis/SW-NIRS) (325 approximately 1 075 nm) combined with LS-SVM based on SPA could be utilized as a precision method for the determination of soil properties.

  4. Comparison of SVM, RF and ELM on an Electronic Nose for the Intelligent Evaluation of Paraffin Samples

    PubMed Central

    Men, Hong; Fu, Songlin; Yang, Jialin; Cheng, Meiqi; Shi, Yan

    2018-01-01

    Paraffin odor intensity is an important quality indicator when a paraffin inspection is performed. Currently, paraffin odor level assessment is mainly dependent on an artificial sensory evaluation. In this paper, we developed a paraffin odor analysis system to classify and grade four kinds of paraffin samples. The original feature set was optimized using Principal Component Analysis (PCA) and Partial Least Squares (PLS). Support Vector Machine (SVM), Random Forest (RF), and Extreme Learning Machine (ELM) were applied to three different feature data sets for classification and level assessment of paraffin. For classification, the model based on SVM, with an accuracy rate of 100%, was superior to that based on RF, with an accuracy rate of 98.33–100%, and ELM, with an accuracy rate of 98.01–100%. For level assessment, the R2 related to the training set was above 0.97 and the R2 related to the test set was above 0.87. Through comprehensive comparison, the generalization of the model based on ELM was superior to those based on SVM and RF. The scoring errors for the three models were 0.0016–0.3494, lower than the error of 0.5–1.0 measured by industry standard experts, meaning these methods have a higher prediction accuracy for scoring paraffin level. PMID:29346328

  5. Incremental Support Vector Machine Framework for Visual Sensor Networks

    NASA Astrophysics Data System (ADS)

    Awad, Mariette; Jiang, Xianhua; Motai, Yuichi

    2006-12-01

    Motivated by the emerging requirements of surveillance networks, we present in this paper an incremental multiclassification support vector machine (SVM) technique as a new framework for action classification based on real-time multivideo collected by homogeneous sites. The technique is based on an adaptation of least square SVM (LS-SVM) formulation but extends beyond the static image-based learning of current SVM methodologies. In applying the technique, an initial supervised offline learning phase is followed by a visual behavior data acquisition and an online learning phase during which the cluster head performs an ensemble of model aggregations based on the sensor nodes inputs. The cluster head then selectively switches on designated sensor nodes for future incremental learning. Combining sensor data offers an improvement over single camera sensing especially when the latter has an occluded view of the target object. The optimization involved alleviates the burdens of power consumption and communication bandwidth requirements. The resulting misclassification error rate, the iterative error reduction rate of the proposed incremental learning, and the decision fusion technique prove its validity when applied to visual sensor networks. Furthermore, the enabled online learning allows an adaptive domain knowledge insertion and offers the advantage of reducing both the model training time and the information storage requirements of the overall system which makes it even more attractive for distributed sensor networks communication.

  6. Environmental noise forecasting based on support vector machine

    NASA Astrophysics Data System (ADS)

    Fu, Yumei; Zan, Xinwu; Chen, Tianyi; Xiang, Shihan

    2018-01-01

    As an important pollution source, the noise pollution is always the researcher's focus. Especially in recent years, the noise pollution is seriously harmful to the human beings' environment, so the research about the noise pollution is a very hot spot. Some noise monitoring technologies and monitoring systems are applied in the environmental noise test, measurement and evaluation. But, the research about the environmental noise forecasting is weak. In this paper, a real-time environmental noise monitoring system is introduced briefly. This monitoring system is working in Mianyang City, Sichuan Province. It is monitoring and collecting the environmental noise about more than 20 enterprises in this district. Based on the large amount of noise data, the noise forecasting by the Support Vector Machine (SVM) is studied in detail. Compared with the time series forecasting model and the artificial neural network forecasting model, the SVM forecasting model has some advantages such as the smaller data size, the higher precision and stability. The noise forecasting results based on the SVM can provide the important and accuracy reference to the prevention and control of the environmental noise.

  7. Support vector machine in crash prediction at the level of traffic analysis zones: Assessing the spatial proximity effects.

    PubMed

    Dong, Ni; Huang, Helai; Zheng, Liang

    2015-09-01

    In zone-level crash prediction, accounting for spatial dependence has become an extensively studied topic. This study proposes Support Vector Machine (SVM) model to address complex, large and multi-dimensional spatial data in crash prediction. Correlation-based Feature Selector (CFS) was applied to evaluate candidate factors possibly related to zonal crash frequency in handling high-dimension spatial data. To demonstrate the proposed approaches and to compare them with the Bayesian spatial model with conditional autoregressive prior (i.e., CAR), a dataset in Hillsborough county of Florida was employed. The results showed that SVM models accounting for spatial proximity outperform the non-spatial model in terms of model fitting and predictive performance, which indicates the reasonableness of considering cross-zonal spatial correlations. The best model predictive capability, relatively, is associated with the model considering proximity of the centroid distance by choosing the RBF kernel and setting the 10% of the whole dataset as the testing data, which further exhibits SVM models' capacity for addressing comparatively complex spatial data in regional crash prediction modeling. Moreover, SVM models exhibit the better goodness-of-fit compared with CAR models when utilizing the whole dataset as the samples. A sensitivity analysis of the centroid-distance-based spatial SVM models was conducted to capture the impacts of explanatory variables on the mean predicted probabilities for crash occurrence. While the results conform to the coefficient estimation in the CAR models, which supports the employment of the SVM model as an alternative in regional safety modeling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?

    PubMed

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-06-28

    A multilayer feed-forward artificial neural network (MLP-ANN) with a single, hidden layer that contains a finite number of neurons can be regarded as a universal non-linear approximator. Today, the ANN method and linear regression (MLR) model are widely used for quantum chemistry (QC) data analysis (e.g., thermochemistry) to improve their accuracy (e.g., Gaussian G2-G4, B3LYP/B3-LYP, X1, or W1 theoretical methods). In this study, an alternative approach based on support vector machines (SVMs) is used, the least squares support vector machine (LS-SVM) regression. It has been applied to ab initio (first principle) and density functional theory (DFT) quantum chemistry data. So, QC + SVM methodology is an alternative to QC + ANN one. The task of the study was to estimate the Møller-Plesset (MPn) or DFT (B3LYP, BLYP, BMK) energies calculated with large basis sets (e.g., 6-311G(3df,3pd)) using smaller ones (6-311G, 6-311G*, 6-311G**) plus molecular descriptors. A molecular set (BRM-208) containing a total of 208 organic molecules was constructed and used for the LS-SVM training, cross-validation, and testing. MP2, MP3, MP4(DQ), MP4(SDQ), and MP4/MP4(SDTQ) ab initio methods were tested. Hartree-Fock (HF/SCF) results were also reported for comparison. Furthermore, constitutional (CD: total number of atoms and mole fractions of different atoms) and quantum-chemical (QD: HOMO-LUMO gap, dipole moment, average polarizability, and quadrupole moment) molecular descriptors were used for the building of the LS-SVM calibration model. Prediction accuracies (MADs) of 1.62 ± 0.51 and 0.85 ± 0.24 kcal mol(-1) (1 kcal mol(-1) = 4.184 kJ mol(-1)) were reached for SVM-based approximations of ab initio and DFT energies, respectively. The LS-SVM model was more accurate than the MLR model. A comparison with the artificial neural network approach shows that the accuracy of the LS-SVM method is similar to the accuracy of ANN. The extrapolation and interpolation results show that LS-SVM is superior by almost an order of magnitude over the ANN method in terms of the stability, generality, and robustness of the final model. The LS-SVM model needs a much smaller numbers of samples (a much smaller sample set) to make accurate prediction results. Potential energy surface (PES) approximations for molecular dynamics (MD) studies are discussed as a promising application for the LS-SVM calibration approach. This journal is © the Owner Societies 2011

  9. Optimal algorithm for automatic detection of microaneurysms based on receiver operating characteristic curve

    NASA Astrophysics Data System (ADS)

    Xu, Lili; Luo, Shuqian

    2010-11-01

    Microaneurysms (MAs) are the first manifestations of the diabetic retinopathy (DR) as well as an indicator for its progression. Their automatic detection plays a key role for both mass screening and monitoring and is therefore in the core of any system for computer-assisted diagnosis of DR. The algorithm basically comprises the following stages: candidate detection aiming at extracting the patterns possibly corresponding to MAs based on mathematical morphological black top hat, feature extraction to characterize these candidates, and classification based on support vector machine (SVM), to validate MAs. Feature vector and kernel function of SVM selection is very important to the algorithm. We use the receiver operating characteristic (ROC) curve to evaluate the distinguishing performance of different feature vectors and different kernel functions of SVM. The ROC analysis indicates the quadratic polynomial SVM with a combination of features as the input shows the best discriminating performance.

  10. Optimal algorithm for automatic detection of microaneurysms based on receiver operating characteristic curve.

    PubMed

    Xu, Lili; Luo, Shuqian

    2010-01-01

    Microaneurysms (MAs) are the first manifestations of the diabetic retinopathy (DR) as well as an indicator for its progression. Their automatic detection plays a key role for both mass screening and monitoring and is therefore in the core of any system for computer-assisted diagnosis of DR. The algorithm basically comprises the following stages: candidate detection aiming at extracting the patterns possibly corresponding to MAs based on mathematical morphological black top hat, feature extraction to characterize these candidates, and classification based on support vector machine (SVM), to validate MAs. Feature vector and kernel function of SVM selection is very important to the algorithm. We use the receiver operating characteristic (ROC) curve to evaluate the distinguishing performance of different feature vectors and different kernel functions of SVM. The ROC analysis indicates the quadratic polynomial SVM with a combination of features as the input shows the best discriminating performance.

  11. Application of Support Vector Machine to Forex Monitoring

    NASA Astrophysics Data System (ADS)

    Kamruzzaman, Joarder; Sarker, Ruhul A.

    Previous studies have demonstrated superior performance of artificial neural network (ANN) based forex forecasting models over traditional regression models. This paper applies support vector machines to build a forecasting model from the historical data using six simple technical indicators and presents a comparison with an ANN based model trained by scaled conjugate gradient (SCG) learning algorithm. The models are evaluated and compared on the basis of five commonly used performance metrics that measure closeness of prediction as well as correctness in directional change. Forecasting results of six different currencies against Australian dollar reveal superior performance of SVM model using simple linear kernel over ANN-SCG model in terms of all the evaluation metrics. The effect of SVM parameter selection on prediction performance is also investigated and analyzed.

  12. Application of Artificial Neural Network and Support Vector Machines in Predicting Metabolizable Energy in Compound Feeds for Pigs.

    PubMed

    Ahmadi, Hamed; Rodehutscord, Markus

    2017-01-01

    In the nutrition literature, there are several reports on the use of artificial neural network (ANN) and multiple linear regression (MLR) approaches for predicting feed composition and nutritive value, while the use of support vector machines (SVM) method as a new alternative approach to MLR and ANN models is still not fully investigated. The MLR, ANN, and SVM models were developed to predict metabolizable energy (ME) content of compound feeds for pigs based on the German energy evaluation system from analyzed contents of crude protein (CP), ether extract (EE), crude fiber (CF), and starch. A total of 290 datasets from standardized digestibility studies with compound feeds was provided from several institutions and published papers, and ME was calculated thereon. Accuracy and precision of developed models were evaluated, given their produced prediction values. The results revealed that the developed ANN [ R 2  = 0.95; root mean square error (RMSE) = 0.19 MJ/kg of dry matter] and SVM ( R 2  = 0.95; RMSE = 0.21 MJ/kg of dry matter) models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR ( R 2  = 0.89; RMSE = 0.27 MJ/kg of dry matter). The developed ANN and SVM models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR; however, there were not obvious differences between performance of ANN and SVM models. Thus, SVM model may also be considered as a promising tool for modeling the relationship between chemical composition and ME of compound feeds for pigs. To provide the readers and nutritionist with the easy and rapid tool, an Excel ® calculator, namely, SVM_ME_pig, was created to predict the metabolizable energy values in compound feeds for pigs using developed support vector machine model.

  13. Modelling and Prediction of Spark-ignition Engine Power Performance Using Incremental Least Squares Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Wong, Pak-kin; Vong, Chi-man; Wong, Hang-cheong; Li, Ke

    2010-05-01

    Modern automotive spark-ignition (SI) power performance usually refers to output power and torque, and they are significantly affected by the setup of control parameters in the engine management system (EMS). EMS calibration is done empirically through tests on the dynamometer (dyno) because no exact mathematical engine model is yet available. With an emerging nonlinear function estimation technique of Least squares support vector machines (LS-SVM), the approximate power performance model of a SI engine can be determined by training the sample data acquired from the dyno. A novel incremental algorithm based on typical LS-SVM is also proposed in this paper, so the power performance models built from the incremental LS-SVM can be updated whenever new training data arrives. With updating the models, the model accuracies can be continuously increased. The predicted results using the estimated models from the incremental LS-SVM are good agreement with the actual test results and with the almost same average accuracy of retraining the models from scratch, but the incremental algorithm can significantly shorten the model construction time when new training data arrives.

  14. Per-field crop classification in irrigated agricultural regions in middle Asia using random forest and support vector machine ensemble

    NASA Astrophysics Data System (ADS)

    Löw, Fabian; Schorcht, Gunther; Michel, Ulrich; Dech, Stefan; Conrad, Christopher

    2012-10-01

    Accurate crop identification and crop area estimation are important for studies on irrigated agricultural systems, yield and water demand modeling, and agrarian policy development. In this study a novel combination of Random Forest (RF) and Support Vector Machine (SVM) classifiers is presented that (i) enhances crop classification accuracy and (ii) provides spatial information on map uncertainty. The methodology was implemented over four distinct irrigated sites in Middle Asia using RapidEye time series data. The RF feature importance statistics was used as feature-selection strategy for the SVM to assess possible negative effects on classification accuracy caused by an oversized feature space. The results of the individual RF and SVM classifications were combined with rules based on posterior classification probability and estimates of classification probability entropy. SVM classification performance was increased by feature selection through RF. Further experimental results indicate that the hybrid classifier improves overall classification accuracy in comparison to the single classifiers as well as useŕs and produceŕs accuracy.

  15. Novel Hybrid of LS-SVM and Kalman Filter for GPS/INS Integration

    NASA Astrophysics Data System (ADS)

    Xu, Zhenkai; Li, Yong; Rizos, Chris; Xu, Xiaosu

    Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) technologies can overcome the drawbacks of the individual systems. One of the advantages is that the integrated solution can provide continuous navigation capability even during GPS outages. However, bridging the GPS outages is still a challenge when Micro-Electro-Mechanical System (MEMS) inertial sensors are used. Methods being currently explored by the research community include applying vehicle motion constraints, optimal smoother, and artificial intelligence (AI) techniques. In the research area of AI, the neural network (NN) approach has been extensively utilised up to the present. In an NN-based integrated system, a Kalman filter (KF) estimates position, velocity and attitude errors, as well as the inertial sensor errors, to output navigation solutions while GPS signals are available. At the same time, an NN is trained to map the vehicle dynamics with corresponding KF states, and to correct INS measurements when GPS measurements are unavailable. To achieve good performance it is critical to select suitable quality and an optimal number of samples for the NN. This is sometimes too rigorous a requirement which limits real world application of NN-based methods.The support vector machine (SVM) approach is based on the structural risk minimisation principle, instead of the minimised empirical error principle that is commonly implemented in an NN. The SVM can avoid local minimisation and over-fitting problems in an NN, and therefore potentially can achieve a higher level of global performance. This paper focuses on the least squares support vector machine (LS-SVM), which can solve highly nonlinear and noisy black-box modelling problems. This paper explores the application of the LS-SVM to aid the GPS/INS integrated system, especially during GPS outages. The paper describes the principles of the LS-SVM and of the KF hybrid method, and introduces the LS-SVM regression algorithm. Field test data is processed to evaluate the performance of the proposed approach.

  16. SVM Based Descriptor Selection and Classification of Neurodegenerative Disease Drugs for Pharmacological Modeling.

    PubMed

    Shahid, Mohammad; Shahzad Cheema, Muhammad; Klenner, Alexander; Younesi, Erfan; Hofmann-Apitius, Martin

    2013-03-01

    Systems pharmacological modeling of drug mode of action for the next generation of multitarget drugs may open new routes for drug design and discovery. Computational methods are widely used in this context amongst which support vector machines (SVM) have proven successful in addressing the challenge of classifying drugs with similar features. We have applied a variety of such SVM-based approaches, namely SVM-based recursive feature elimination (SVM-RFE). We use the approach to predict the pharmacological properties of drugs widely used against complex neurodegenerative disorders (NDD) and to build an in-silico computational model for the binary classification of NDD drugs from other drugs. Application of an SVM-RFE model to a set of drugs successfully classified NDD drugs from non-NDD drugs and resulted in overall accuracy of ∼80 % with 10 fold cross validation using 40 top ranked molecular descriptors selected out of total 314 descriptors. Moreover, SVM-RFE method outperformed linear discriminant analysis (LDA) based feature selection and classification. The model reduced the multidimensional descriptors space of drugs dramatically and predicted NDD drugs with high accuracy, while avoiding over fitting. Based on these results, NDD-specific focused libraries of drug-like compounds can be designed and existing NDD-specific drugs can be characterized by a well-characterized set of molecular descriptors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ecological footprint model using the support vector machine technique.

    PubMed

    Ma, Haibo; Chang, Wenjuan; Cui, Guangbai

    2012-01-01

    The per capita ecological footprint (EF) is one of the most widely recognized measures of environmental sustainability. It aims to quantify the Earth's biological resources required to support human activity. In this paper, we summarize relevant previous literature, and present five factors that influence per capita EF. These factors are: National gross domestic product (GDP), urbanization (independent of economic development), distribution of income (measured by the Gini coefficient), export dependence (measured by the percentage of exports to total GDP), and service intensity (measured by the percentage of service to total GDP). A new ecological footprint model based on a support vector machine (SVM), which is a machine-learning method based on the structural risk minimization principle from statistical learning theory was conducted to calculate the per capita EF of 24 nations using data from 123 nations. The calculation accuracy was measured by average absolute error and average relative error. They were 0.004883 and 0.351078% respectively. Our results demonstrate that the EF model based on SVM has good calculation performance.

  18. Comparison of four machine learning methods for object-oriented change detection in high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Bai, Ting; Sun, Kaimin; Deng, Shiquan; Chen, Yan

    2018-03-01

    High resolution image change detection is one of the key technologies of remote sensing application, which is of great significance for resource survey, environmental monitoring, fine agriculture, military mapping and battlefield environment detection. In this paper, for high-resolution satellite imagery, Random Forest (RF), Support Vector Machine (SVM), Deep belief network (DBN), and Adaboost models were established to verify the possibility of different machine learning applications in change detection. In order to compare detection accuracy of four machine learning Method, we applied these four machine learning methods for two high-resolution images. The results shows that SVM has higher overall accuracy at small samples compared to RF, Adaboost, and DBN for binary and from-to change detection. With the increase in the number of samples, RF has higher overall accuracy compared to Adaboost, SVM and DBN.

  19. CARSVM: a class association rule-based classification framework and its application to gene expression data.

    PubMed

    Kianmehr, Keivan; Alhajj, Reda

    2008-09-01

    In this study, we aim at building a classification framework, namely the CARSVM model, which integrates association rule mining and support vector machine (SVM). The goal is to benefit from advantages of both, the discriminative knowledge represented by class association rules and the classification power of the SVM algorithm, to construct an efficient and accurate classifier model that improves the interpretability problem of SVM as a traditional machine learning technique and overcomes the efficiency issues of associative classification algorithms. In our proposed framework: instead of using the original training set, a set of rule-based feature vectors, which are generated based on the discriminative ability of class association rules over the training samples, are presented to the learning component of the SVM algorithm. We show that rule-based feature vectors present a high-qualified source of discrimination knowledge that can impact substantially the prediction power of SVM and associative classification techniques. They provide users with more conveniences in terms of understandability and interpretability as well. We have used four datasets from UCI ML repository to evaluate the performance of the developed system in comparison with five well-known existing classification methods. Because of the importance and popularity of gene expression analysis as real world application of the classification model, we present an extension of CARSVM combined with feature selection to be applied to gene expression data. Then, we describe how this combination will provide biologists with an efficient and understandable classifier model. The reported test results and their biological interpretation demonstrate the applicability, efficiency and effectiveness of the proposed model. From the results, it can be concluded that a considerable increase in classification accuracy can be obtained when the rule-based feature vectors are integrated in the learning process of the SVM algorithm. In the context of applicability, according to the results obtained from gene expression analysis, we can conclude that the CARSVM system can be utilized in a variety of real world applications with some adjustments.

  20. Optimal structural design of the midship of a VLCC based on the strategy integrating SVM and GA

    NASA Astrophysics Data System (ADS)

    Sun, Li; Wang, Deyu

    2012-03-01

    In this paper a hybrid process of modeling and optimization, which integrates a support vector machine (SVM) and genetic algorithm (GA), was introduced to reduce the high time cost in structural optimization of ships. SVM, which is rooted in statistical learning theory and an approximate implementation of the method of structural risk minimization, can provide a good generalization performance in metamodeling the input-output relationship of real problems and consequently cuts down on high time cost in the analysis of real problems, such as FEM analysis. The GA, as a powerful optimization technique, possesses remarkable advantages for the problems that can hardly be optimized with common gradient-based optimization methods, which makes it suitable for optimizing models built by SVM. Based on the SVM-GA strategy, optimization of structural scantlings in the midship of a very large crude carrier (VLCC) ship was carried out according to the direct strength assessment method in common structural rules (CSR), which eventually demonstrates the high efficiency of SVM-GA in optimizing the ship structural scantlings under heavy computational complexity. The time cost of this optimization with SVM-GA has been sharply reduced, many more loops have been processed within a small amount of time and the design has been improved remarkably.

  1. GI-SVM: A sensitive method for predicting genomic islands based on unannotated sequence of a single genome.

    PubMed

    Lu, Bingxin; Leong, Hon Wai

    2016-02-01

    Genomic islands (GIs) are clusters of functionally related genes acquired by lateral genetic transfer (LGT), and they are present in many bacterial genomes. GIs are extremely important for bacterial research, because they not only promote genome evolution but also contain genes that enhance adaption and enable antibiotic resistance. Many methods have been proposed to predict GI. But most of them rely on either annotations or comparisons with other closely related genomes. Hence these methods cannot be easily applied to new genomes. As the number of newly sequenced bacterial genomes rapidly increases, there is a need for methods to detect GI based solely on sequences of a single genome. In this paper, we propose a novel method, GI-SVM, to predict GIs given only the unannotated genome sequence. GI-SVM is based on one-class support vector machine (SVM), utilizing composition bias in terms of k-mer content. From our evaluations on three real genomes, GI-SVM can achieve higher recall compared with current methods, without much loss of precision. Besides, GI-SVM allows flexible parameter tuning to get optimal results for each genome. In short, GI-SVM provides a more sensitive method for researchers interested in a first-pass detection of GI in newly sequenced genomes.

  2. A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM.

    PubMed

    Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei; Song, Houbing

    2018-01-15

    Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model's performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM's parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models' performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors.

  3. SU-C-BRA-05: Delineating High-Dose Clinical Target Volumes for Head and Neck Tumors Using Machine Learning Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, C; The University of Texas Graduate School of Biomedical Sciences, Houston, TX; Wong, A

    Purpose: To develop and test population-based machine learning algorithms for delineating high-dose clinical target volumes (CTVs) in H&N tumors. Automating and standardizing the contouring of CTVs can reduce both physician contouring time and inter-physician variability, which is one of the largest sources of uncertainty in H&N radiotherapy. Methods: Twenty-five node-negative patients treated with definitive radiotherapy were selected (6 right base of tongue, 11 left and 9 right tonsil). All patients had GTV and CTVs manually contoured by an experienced radiation oncologist prior to treatment. This contouring process, which is driven by anatomical, pathological, and patient specific information, typically results inmore » non-uniform margin expansions about the GTV. Therefore, we tested two methods to delineate high-dose CTV given a manually-contoured GTV: (1) regression-support vector machines(SVM) and (2) classification-SVM. These models were trained and tested on each patient group using leave-one-out cross-validation. The volume difference(VD) and Dice similarity coefficient(DSC) between the manual and auto-contoured CTV were calculated to evaluate the results. Distances from GTV-to-CTV were computed about each patient’s GTV and these distances, in addition to distances from GTV to surrounding anatomy in the expansion direction, were utilized in the regression-SVM method. The classification-SVM method used categorical voxel-information (GTV, selected anatomical structures, else) from a 3×3×3cm3 ROI centered about the voxel to classify voxels as CTV. Results: Volumes for the auto-contoured CTVs ranged from 17.1 to 149.1cc and 17.4 to 151.9cc; the average(range) VD between manual and auto-contoured CTV were 0.93 (0.48–1.59) and 1.16(0.48–1.97); while average(range) DSC values were 0.75(0.59–0.88) and 0.74(0.59–0.81) for the regression-SVM and classification-SVM methods, respectively. Conclusion: We developed two novel machine learning methods to delineate high-dose CTV for H&N patients. Both methods showed promising results that hint to a solution to the standardization of the contouring process of clinical target volumes. Varian Medical Systems grant.« less

  4. Classification of Multiple Chinese Liquors by Means of a QCM-based E-Nose and MDS-SVM Classifier.

    PubMed

    Li, Qiang; Gu, Yu; Jia, Jing

    2017-01-30

    Chinese liquors are internationally well-known fermentative alcoholic beverages. They have unique flavors attributable to the use of various bacteria and fungi, raw materials, and production processes. Developing a novel, rapid, and reliable method to identify multiple Chinese liquors is of positive significance. This paper presents a pattern recognition system for classifying ten brands of Chinese liquors based on multidimensional scaling (MDS) and support vector machine (SVM) algorithms in a quartz crystal microbalance (QCM)-based electronic nose (e-nose) we designed. We evaluated the comprehensive performance of the MDS-SVM classifier that predicted all ten brands of Chinese liquors individually. The prediction accuracy (98.3%) showed superior performance of the MDS-SVM classifier over the back-propagation artificial neural network (BP-ANN) classifier (93.3%) and moving average-linear discriminant analysis (MA-LDA) classifier (87.6%). The MDS-SVM classifier has reasonable reliability, good fitting and prediction (generalization) performance in classification of the Chinese liquors. Taking both application of the e-nose and validation of the MDS-SVM classifier into account, we have thus created a useful method for the classification of multiple Chinese liquors.

  5. Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study.

    PubMed

    Lima, Clodoaldo A M; Coelho, André L V

    2011-10-01

    We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely, Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Support vector machine learning model for the prediction of sentinel node status in patients with cutaneous melanoma.

    PubMed

    Mocellin, Simone; Ambrosi, Alessandro; Montesco, Maria Cristina; Foletto, Mirto; Zavagno, Giorgio; Nitti, Donato; Lise, Mario; Rossi, Carlo Riccardo

    2006-08-01

    Currently, approximately 80% of melanoma patients undergoing sentinel node biopsy (SNB) have negative sentinel lymph nodes (SLNs), and no prediction system is reliable enough to be implemented in the clinical setting to reduce the number of SNB procedures. In this study, the predictive power of support vector machine (SVM)-based statistical analysis was tested. The clinical records of 246 patients who underwent SNB at our institution were used for this analysis. The following clinicopathologic variables were considered: the patient's age and sex and the tumor's histological subtype, Breslow thickness, Clark level, ulceration, mitotic index, lymphocyte infiltration, regression, angiolymphatic invasion, microsatellitosis, and growth phase. The results of SVM-based prediction of SLN status were compared with those achieved with logistic regression. The SLN positivity rate was 22% (52 of 234). When the accuracy was > or = 80%, the negative predictive value, positive predictive value, specificity, and sensitivity were 98%, 54%, 94%, and 77% and 82%, 41%, 69%, and 93% by using SVM and logistic regression, respectively. Moreover, SVM and logistic regression were associated with a diagnostic error and an SNB percentage reduction of (1) 1% and 60% and (2) 15% and 73%, respectively. The results from this pilot study suggest that SVM-based prediction of SLN status might be evaluated as a prognostic method to avoid the SNB procedure in 60% of patients currently eligible, with a very low error rate. If validated in larger series, this strategy would lead to obvious advantages in terms of both patient quality of life and costs for the health care system.

  7. Machine Learning Classification of Cirrhotic Patients with and without Minimal Hepatic Encephalopathy Based on Regional Homogeneity of Intrinsic Brain Activity.

    PubMed

    Chen, Qiu-Feng; Chen, Hua-Jun; Liu, Jun; Sun, Tao; Shen, Qun-Tai

    2016-01-01

    Machine learning-based approaches play an important role in examining functional magnetic resonance imaging (fMRI) data in a multivariate manner and extracting features predictive of group membership. This study was performed to assess the potential for measuring brain intrinsic activity to identify minimal hepatic encephalopathy (MHE) in cirrhotic patients, using the support vector machine (SVM) method. Resting-state fMRI data were acquired in 16 cirrhotic patients with MHE and 19 cirrhotic patients without MHE. The regional homogeneity (ReHo) method was used to investigate the local synchrony of intrinsic brain activity. Psychometric Hepatic Encephalopathy Score (PHES) was used to define MHE condition. SVM-classifier was then applied using leave-one-out cross-validation, to determine the discriminative ReHo-map for MHE. The discrimination map highlights a set of regions, including the prefrontal cortex, anterior cingulate cortex, anterior insular cortex, inferior parietal lobule, precentral and postcentral gyri, superior and medial temporal cortices, and middle and inferior occipital gyri. The optimized discriminative model showed total accuracy of 82.9% and sensitivity of 81.3%. Our results suggested that a combination of the SVM approach and brain intrinsic activity measurement could be helpful for detection of MHE in cirrhotic patients.

  8. Voltammetric Electronic Tongue and Support Vector Machines for Identification of Selected Features in Mexican Coffee

    PubMed Central

    Domínguez, Rocio Berenice; Moreno-Barón, Laura; Muñoz, Roberto; Gutiérrez, Juan Manuel

    2014-01-01

    This paper describes a new method based on a voltammetric electronic tongue (ET) for the recognition of distinctive features in coffee samples. An ET was directly applied to different samples from the main Mexican coffee regions without any pretreatment before the analysis. The resulting electrochemical information was modeled with two different mathematical tools, namely Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). Growing conditions (i.e., organic or non-organic practices and altitude of crops) were considered for a first classification. LDA results showed an average discrimination rate of 88% ± 6.53% while SVM successfully accomplished an overall accuracy of 96.4% ± 3.50% for the same task. A second classification based on geographical origin of samples was carried out. Results showed an overall accuracy of 87.5% ± 7.79% for LDA and a superior performance of 97.5% ± 3.22% for SVM. Given the complexity of coffee samples, the high accuracy percentages achieved by ET coupled with SVM in both classification problems suggested a potential applicability of ET in the assessment of selected coffee features with a simpler and faster methodology along with a null sample pretreatment. In addition, the proposed method can be applied to authentication assessment while improving cost, time and accuracy of the general procedure. PMID:25254303

  9. Voltammetric electronic tongue and support vector machines for identification of selected features in Mexican coffee.

    PubMed

    Domínguez, Rocio Berenice; Moreno-Barón, Laura; Muñoz, Roberto; Gutiérrez, Juan Manuel

    2014-09-24

    This paper describes a new method based on a voltammetric electronic tongue (ET) for the recognition of distinctive features in coffee samples. An ET was directly applied to different samples from the main Mexican coffee regions without any pretreatment before the analysis. The resulting electrochemical information was modeled with two different mathematical tools, namely Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). Growing conditions (i.e., organic or non-organic practices and altitude of crops) were considered for a first classification. LDA results showed an average discrimination rate of 88% ± 6.53% while SVM successfully accomplished an overall accuracy of 96.4% ± 3.50% for the same task. A second classification based on geographical origin of samples was carried out. Results showed an overall accuracy of 87.5% ± 7.79% for LDA and a superior performance of 97.5% ± 3.22% for SVM. Given the complexity of coffee samples, the high accuracy percentages achieved by ET coupled with SVM in both classification problems suggested a potential applicability of ET in the assessment of selected coffee features with a simpler and faster methodology along with a null sample pretreatment. In addition, the proposed method can be applied to authentication assessment while improving cost, time and accuracy of the general procedure.

  10. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics

    PubMed Central

    HUANG, SHUJUN; CAI, NIANGUANG; PACHECO, PEDRO PENZUTI; NARANDES, SHAVIRA; WANG, YANG; XU, WAYNE

    2017-01-01

    Machine learning with maximization (support) of separating margin (vector), called support vector machine (SVM) learning, is a powerful classification tool that has been used for cancer genomic classification or subtyping. Today, as advancements in high-throughput technologies lead to production of large amounts of genomic and epigenomic data, the classification feature of SVMs is expanding its use in cancer genomics, leading to the discovery of new biomarkers, new drug targets, and a better understanding of cancer driver genes. Herein we reviewed the recent progress of SVMs in cancer genomic studies. We intend to comprehend the strength of the SVM learning and its future perspective in cancer genomic applications. PMID:29275361

  11. A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, China

    PubMed Central

    Yu, Xianyu; Wang, Yi; Niu, Ruiqing; Hu, Youjian

    2016-01-01

    In this study, a novel coupling model for landslide susceptibility mapping is presented. In practice, environmental factors may have different impacts at a local scale in study areas. To provide better predictions, a geographically weighted regression (GWR) technique is firstly used in our method to segment study areas into a series of prediction regions with appropriate sizes. Meanwhile, a support vector machine (SVM) classifier is exploited in each prediction region for landslide susceptibility mapping. To further improve the prediction performance, the particle swarm optimization (PSO) algorithm is used in the prediction regions to obtain optimal parameters for the SVM classifier. To evaluate the prediction performance of our model, several SVM-based prediction models are utilized for comparison on a study area of the Wanzhou district in the Three Gorges Reservoir. Experimental results, based on three objective quantitative measures and visual qualitative evaluation, indicate that our model can achieve better prediction accuracies and is more effective for landslide susceptibility mapping. For instance, our model can achieve an overall prediction accuracy of 91.10%, which is 7.8%–19.1% higher than the traditional SVM-based models. In addition, the obtained landslide susceptibility map by our model can demonstrate an intensive correlation between the classified very high-susceptibility zone and the previously investigated landslides. PMID:27187430

  12. A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, China.

    PubMed

    Yu, Xianyu; Wang, Yi; Niu, Ruiqing; Hu, Youjian

    2016-05-11

    In this study, a novel coupling model for landslide susceptibility mapping is presented. In practice, environmental factors may have different impacts at a local scale in study areas. To provide better predictions, a geographically weighted regression (GWR) technique is firstly used in our method to segment study areas into a series of prediction regions with appropriate sizes. Meanwhile, a support vector machine (SVM) classifier is exploited in each prediction region for landslide susceptibility mapping. To further improve the prediction performance, the particle swarm optimization (PSO) algorithm is used in the prediction regions to obtain optimal parameters for the SVM classifier. To evaluate the prediction performance of our model, several SVM-based prediction models are utilized for comparison on a study area of the Wanzhou district in the Three Gorges Reservoir. Experimental results, based on three objective quantitative measures and visual qualitative evaluation, indicate that our model can achieve better prediction accuracies and is more effective for landslide susceptibility mapping. For instance, our model can achieve an overall prediction accuracy of 91.10%, which is 7.8%-19.1% higher than the traditional SVM-based models. In addition, the obtained landslide susceptibility map by our model can demonstrate an intensive correlation between the classified very high-susceptibility zone and the previously investigated landslides.

  13. The identification of high potential archers based on relative psychological coping skills variables: A Support Vector Machine approach

    NASA Astrophysics Data System (ADS)

    Taha, Zahari; Muazu Musa, Rabiu; Majeed, A. P. P. Abdul; Razali Abdullah, Mohamad; Aizzat Zakaria, Muhammad; Muaz Alim, Muhammad; Arif Mat Jizat, Jessnor; Fauzi Ibrahim, Mohamad

    2018-03-01

    Support Vector Machine (SVM) has been revealed to be a powerful learning algorithm for classification and prediction. However, the use of SVM for prediction and classification in sport is at its inception. The present study classified and predicted high and low potential archers from a collection of psychological coping skills variables trained on different SVMs. 50 youth archers with the average age and standard deviation of (17.0 ±.056) gathered from various archery programmes completed a one end shooting score test. Psychological coping skills inventory which evaluates the archers level of related coping skills were filled out by the archers prior to their shooting tests. k-means cluster analysis was applied to cluster the archers based on their scores on variables assessed. SVM models, i.e. linear and fine radial basis function (RBF) kernel functions, were trained on the psychological variables. The k-means clustered the archers into high psychologically prepared archers (HPPA) and low psychologically prepared archers (LPPA), respectively. It was demonstrated that the linear SVM exhibited good accuracy and precision throughout the exercise with an accuracy of 92% and considerably fewer error rate for the prediction of the HPPA and the LPPA as compared to the fine RBF SVM. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from the selected psychological coping skills variables examined which would consequently save time and energy during talent identification and development programme.

  14. Seminal quality prediction using data mining methods.

    PubMed

    Sahoo, Anoop J; Kumar, Yugal

    2014-01-01

    Now-a-days, some new classes of diseases have come into existences which are known as lifestyle diseases. The main reasons behind these diseases are changes in the lifestyle of people such as alcohol drinking, smoking, food habits etc. After going through the various lifestyle diseases, it has been found that the fertility rates (sperm quantity) in men has considerably been decreasing in last two decades. Lifestyle factors as well as environmental factors are mainly responsible for the change in the semen quality. The objective of this paper is to identify the lifestyle and environmental features that affects the seminal quality and also fertility rate in man using data mining methods. The five artificial intelligence techniques such as Multilayer perceptron (MLP), Decision Tree (DT), Navie Bayes (Kernel), Support vector machine+Particle swarm optimization (SVM+PSO) and Support vector machine (SVM) have been applied on fertility dataset to evaluate the seminal quality and also to predict the person is either normal or having altered fertility rate. While the eight feature selection techniques such as support vector machine (SVM), neural network (NN), evolutionary logistic regression (LR), support vector machine plus particle swarm optimization (SVM+PSO), principle component analysis (PCA), chi-square test, correlation and T-test methods have been used to identify more relevant features which affect the seminal quality. These techniques are applied on fertility dataset which contains 100 instances with nine attribute with two classes. The experimental result shows that SVM+PSO provides higher accuracy and area under curve (AUC) rate (94% & 0.932) among multi-layer perceptron (MLP) (92% & 0.728), Support Vector Machines (91% & 0.758), Navie Bayes (Kernel) (89% & 0.850) and Decision Tree (89% & 0.735) for some of the seminal parameters. This paper also focuses on the feature selection process i.e. how to select the features which are more important for prediction of fertility rate. In this paper, eight feature selection methods are applied on fertility dataset to find out a set of good features. The investigational results shows that childish diseases (0.079) and high fever features (0.057) has less impact on fertility rate while age (0.8685), season (0.843), surgical intervention (0.7683), alcohol consumption (0.5992), smoking habit (0.575), number of hours spent on setting (0.4366) and accident (0.5973) features have more impact. It is also observed that feature selection methods increase the accuracy of above mentioned techniques (multilayer perceptron 92%, support vector machine 91%, SVM+PSO 94%, Navie Bayes (Kernel) 89% and decision tree 89%) as compared to without feature selection methods (multilayer perceptron 86%, support vector machine 86%, SVM+PSO 85%, Navie Bayes (Kernel) 83% and decision tree 84%) which shows the applicability of feature selection methods in prediction. This paper lightens the application of artificial techniques in medical domain. From this paper, it can be concluded that data mining methods can be used to predict a person with or without disease based on environmental and lifestyle parameters/features rather than undergoing various medical test. In this paper, five data mining techniques are used to predict the fertility rate and among which SVM+PSO provide more accurate results than support vector machine and decision tree.

  15. HYBRID NEURAL NETWORK AND SUPPORT VECTOR MACHINE METHOD FOR OPTIMIZATION

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor)

    2005-01-01

    System and method for optimization of a design associated with a response function, using a hybrid neural net and support vector machine (NN/SVM) analysis to minimize or maximize an objective function, optionally subject to one or more constraints. As a first example, the NN/SVM analysis is applied iteratively to design of an aerodynamic component, such as an airfoil shape, where the objective function measures deviation from a target pressure distribution on the perimeter of the aerodynamic component. As a second example, the NN/SVM analysis is applied to data classification of a sequence of data points in a multidimensional space. The NN/SVM analysis is also applied to data regression.

  16. Hybrid Neural Network and Support Vector Machine Method for Optimization

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor)

    2007-01-01

    System and method for optimization of a design associated with a response function, using a hybrid neural net and support vector machine (NN/SVM) analysis to minimize or maximize an objective function, optionally subject to one or more constraints. As a first example, the NN/SVM analysis is applied iteratively to design of an aerodynamic component, such as an airfoil shape, where the objective function measures deviation from a target pressure distribution on the perimeter of the aerodynamic component. As a second example, the NN/SVM analysis is applied to data classification of a sequence of data points in a multidimensional space. The NN/SVM analysis is also applied to data regression.

  17. Relevance Vector Machine and Support Vector Machine Classifier Analysis of Scanning Laser Polarimetry Retinal Nerve Fiber Layer Measurements

    PubMed Central

    Bowd, Christopher; Medeiros, Felipe A.; Zhang, Zuohua; Zangwill, Linda M.; Hao, Jiucang; Lee, Te-Won; Sejnowski, Terrence J.; Weinreb, Robert N.; Goldbaum, Michael H.

    2010-01-01

    Purpose To classify healthy and glaucomatous eyes using relevance vector machine (RVM) and support vector machine (SVM) learning classifiers trained on retinal nerve fiber layer (RNFL) thickness measurements obtained by scanning laser polarimetry (SLP). Methods Seventy-two eyes of 72 healthy control subjects (average age = 64.3 ± 8.8 years, visual field mean deviation =−0.71 ± 1.2 dB) and 92 eyes of 92 patients with glaucoma (average age = 66.9 ± 8.9 years, visual field mean deviation =−5.32 ± 4.0 dB) were imaged with SLP with variable corneal compensation (GDx VCC; Laser Diagnostic Technologies, San Diego, CA). RVM and SVM learning classifiers were trained and tested on SLP-determined RNFL thickness measurements from 14 standard parameters and 64 sectors (approximately 5.6° each) obtained in the circumpapillary area under the instrument-defined measurement ellipse (total 78 parameters). Tenfold cross-validation was used to train and test RVM and SVM classifiers on unique subsets of the full 164-eye data set and areas under the receiver operating characteristic (AUROC) curve for the classification of eyes in the test set were generated. AUROC curve results from RVM and SVM were compared to those for 14 SLP software-generated global and regional RNFL thickness parameters. Also reported was the AUROC curve for the GDx VCC software-generated nerve fiber indicator (NFI). Results The AUROC curves for RVM and SVM were 0.90 and 0.91, respectively, and increased to 0.93 and 0.94 when the training sets were optimized with sequential forward and backward selection (resulting in reduced dimensional data sets). AUROC curves for optimized RVM and SVM were significantly larger than those for all individual SLP parameters. The AUROC curve for the NFI was 0.87. Conclusions Results from RVM and SVM trained on SLP RNFL thickness measurements are similar and provide accurate classification of glaucomatous and healthy eyes. RVM may be preferable to SVM, because it provides a Bayesian-derived probability of glaucoma as an output. These results suggest that these machine learning classifiers show good potential for glaucoma diagnosis. PMID:15790898

  18. Predicting Protein-Protein Interaction Sites with a Novel Membership Based Fuzzy SVM Classifier.

    PubMed

    Sriwastava, Brijesh K; Basu, Subhadip; Maulik, Ujjwal

    2015-01-01

    Predicting residues that participate in protein-protein interactions (PPI) helps to identify, which amino acids are located at the interface. In this paper, we show that the performance of the classical support vector machine (SVM) algorithm can further be improved with the use of a custom-designed fuzzy membership function, for the partner-specific PPI interface prediction problem. We evaluated the performances of both classical SVM and fuzzy SVM (F-SVM) on the PPI databases of three different model proteomes of Homo sapiens, Escherichia coli and Saccharomyces Cerevisiae and calculated the statistical significance of the developed F-SVM over classical SVM algorithm. We also compared our performance with the available state-of-the-art fuzzy methods in this domain and observed significant performance improvements. To predict interaction sites in protein complexes, local composition of amino acids together with their physico-chemical characteristics are used, where the F-SVM based prediction method exploits the membership function for each pair of sequence fragments. The average F-SVM performance (area under ROC curve) on the test samples in 10-fold cross validation experiment are measured as 77.07, 78.39, and 74.91 percent for the aforementioned organisms respectively. Performances on independent test sets are obtained as 72.09, 73.24 and 82.74 percent respectively. The software is available for free download from http://code.google.com/p/cmater-bioinfo.

  19. Intelligent diagnosis of short hydraulic signal based on improved EEMD and SVM with few low-dimensional training samples

    NASA Astrophysics Data System (ADS)

    Zhang, Meijun; Tang, Jian; Zhang, Xiaoming; Zhang, Jiaojiao

    2016-03-01

    The high accurate classification ability of an intelligent diagnosis method often needs a large amount of training samples with high-dimensional eigenvectors, however the characteristics of the signal need to be extracted accurately. Although the existing EMD(empirical mode decomposition) and EEMD(ensemble empirical mode decomposition) are suitable for processing non-stationary and non-linear signals, but when a short signal, such as a hydraulic impact signal, is concerned, their decomposition accuracy become very poor. An improve EEMD is proposed specifically for short hydraulic impact signals. The improvements of this new EEMD are mainly reflected in four aspects, including self-adaptive de-noising based on EEMD, signal extension based on SVM(support vector machine), extreme center fitting based on cubic spline interpolation, and pseudo component exclusion based on cross-correlation analysis. After the energy eigenvector is extracted from the result of the improved EEMD, the fault pattern recognition based on SVM with small amount of low-dimensional training samples is studied. At last, the diagnosis ability of improved EEMD+SVM method is compared with the EEMD+SVM and EMD+SVM methods, and its diagnosis accuracy is distinctly higher than the other two methods no matter the dimension of the eigenvectors are low or high. The improved EEMD is very propitious for the decomposition of short signal, such as hydraulic impact signal, and its combination with SVM has high ability for the diagnosis of hydraulic impact faults.

  20. A Scatter-Based Prototype Framework and Multi-Class Extension of Support Vector Machines

    PubMed Central

    Jenssen, Robert; Kloft, Marius; Zien, Alexander; Sonnenburg, Sören; Müller, Klaus-Robert

    2012-01-01

    We provide a novel interpretation of the dual of support vector machines (SVMs) in terms of scatter with respect to class prototypes and their mean. As a key contribution, we extend this framework to multiple classes, providing a new joint Scatter SVM algorithm, at the level of its binary counterpart in the number of optimization variables. This enables us to implement computationally efficient solvers based on sequential minimal and chunking optimization. As a further contribution, the primal problem formulation is developed in terms of regularized risk minimization and the hinge loss, revealing the score function to be used in the actual classification of test patterns. We investigate Scatter SVM properties related to generalization ability, computational efficiency, sparsity and sensitivity maps, and report promising results. PMID:23118845

  1. Using the Relevance Vector Machine Model Combined with Local Phase Quantization to Predict Protein-Protein Interactions from Protein Sequences.

    PubMed

    An, Ji-Yong; Meng, Fan-Rong; You, Zhu-Hong; Fang, Yu-Hong; Zhao, Yu-Jun; Zhang, Ming

    2016-01-01

    We propose a novel computational method known as RVM-LPQ that combines the Relevance Vector Machine (RVM) model and Local Phase Quantization (LPQ) to predict PPIs from protein sequences. The main improvements are the results of representing protein sequences using the LPQ feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classifier. We perform 5-fold cross-validation experiments on Yeast and Human datasets, and we achieve very high accuracies of 92.65% and 97.62%, respectively, which is significantly better than previous works. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the Yeast dataset. The experimental results demonstrate that our RVM-LPQ method is obviously better than the SVM-based method. The promising experimental results show the efficiency and simplicity of the proposed method, which can be an automatic decision support tool for future proteomics research.

  2. Cerebral 18F-FDG PET in macrophagic myofasciitis: An individual SVM-based approach.

    PubMed

    Blanc-Durand, Paul; Van Der Gucht, Axel; Guedj, Eric; Abulizi, Mukedaisi; Aoun-Sebaiti, Mehdi; Lerman, Lionel; Verger, Antoine; Authier, François-Jérôme; Itti, Emmanuel

    2017-01-01

    Macrophagic myofasciitis (MMF) is an emerging condition with highly specific myopathological alterations. A peculiar spatial pattern of a cerebral glucose hypometabolism involving occipito-temporal cortex and cerebellum have been reported in patients with MMF; however, the full pattern is not systematically present in routine interpretation of scans, and with varying degrees of severity depending on the cognitive profile of patients. Aim was to generate and evaluate a support vector machine (SVM) procedure to classify patients between healthy or MMF 18F-FDG brain profiles. 18F-FDG PET brain images of 119 patients with MMF and 64 healthy subjects were retrospectively analyzed. The whole-population was divided into two groups; a training set (100 MMF, 44 healthy subjects) and a testing set (19 MMF, 20 healthy subjects). Dimensionality reduction was performed using a t-map from statistical parametric mapping (SPM) and a SVM with a linear kernel was trained on the training set. To evaluate the performance of the SVM classifier, values of sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV) and accuracy (Acc) were calculated. The SPM12 analysis on the training set exhibited the already reported hypometabolism pattern involving occipito-temporal and fronto-parietal cortices, limbic system and cerebellum. The SVM procedure, based on the t-test mask generated from the training set, correctly classified MMF patients of the testing set with following Se, Sp, PPV, NPV and Acc: 89%, 85%, 85%, 89%, and 87%. We developed an original and individual approach including a SVM to classify patients between healthy or MMF metabolic brain profiles using 18F-FDG-PET. Machine learning algorithms are promising for computer-aided diagnosis but will need further validation in prospective cohorts.

  3. Failure prediction using machine learning and time series in optical network.

    PubMed

    Wang, Zhilong; Zhang, Min; Wang, Danshi; Song, Chuang; Liu, Min; Li, Jin; Lou, Liqi; Liu, Zhuo

    2017-08-07

    In this paper, we propose a performance monitoring and failure prediction method in optical networks based on machine learning. The primary algorithms of this method are the support vector machine (SVM) and double exponential smoothing (DES). With a focus on risk-aware models in optical networks, the proposed protection plan primarily investigates how to predict the risk of an equipment failure. To the best of our knowledge, this important problem has not yet been fully considered. Experimental results showed that the average prediction accuracy of our method was 95% when predicting the optical equipment failure state. This finding means that our method can forecast an equipment failure risk with high accuracy. Therefore, our proposed DES-SVM method can effectively improve traditional risk-aware models to protect services from possible failures and enhance the optical network stability.

  4. An Auto-flag Method of Radio Visibility Data Based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Dai, Hui-mei; Mei, Ying; Wang, Wei; Deng, Hui; Wang, Feng

    2017-01-01

    The Mingantu Ultrawide Spectral Radioheliograph (MUSER) has entered a test observation stage. After the construction of the data acquisition and storage system, it is urgent to automatically flag and eliminate the abnormal visibility data so as to improve the imaging quality. In this paper, according to the observational records, we create a credible visibility set, and further obtain the corresponding flag model of visibility data by using the support vector machine (SVM) technique. The results show that the SVM is a robust approach to flag the MUSER visibility data, and can attain an accuracy of about 86%. Meanwhile, this method will not be affected by solar activities, such as flare eruptions.

  5. SVM-PB-Pred: SVM based protein block prediction method using sequence profiles and secondary structures.

    PubMed

    Suresh, V; Parthasarathy, S

    2014-01-01

    We developed a support vector machine based web server called SVM-PB-Pred, to predict the Protein Block for any given amino acid sequence. The input features of SVM-PB-Pred include i) sequence profiles (PSSM) and ii) actual secondary structures (SS) from DSSP method or predicted secondary structures from NPS@ and GOR4 methods. There were three combined input features PSSM+SS(DSSP), PSSM+SS(NPS@) and PSSM+SS(GOR4) used to test and train the SVM models. Similarly, four datasets RS90, DB433, LI1264 and SP1577 were used to develop the SVM models. These four SVM models developed were tested using three different benchmarking tests namely; (i) self consistency, (ii) seven fold cross validation test and (iii) independent case test. The maximum possible prediction accuracy of ~70% was observed in self consistency test for the SVM models of both LI1264 and SP1577 datasets, where PSSM+SS(DSSP) input features was used to test. The prediction accuracies were reduced to ~53% for PSSM+SS(NPS@) and ~43% for PSSM+SS(GOR4) in independent case test, for the SVM models of above two same datasets. Using our method, it is possible to predict the protein block letters for any query protein sequence with ~53% accuracy, when the SP1577 dataset and predicted secondary structure from NPS@ server were used. The SVM-PB-Pred server can be freely accessed through http://bioinfo.bdu.ac.in/~svmpbpred.

  6. lncRScan-SVM: A Tool for Predicting Long Non-Coding RNAs Using Support Vector Machine.

    PubMed

    Sun, Lei; Liu, Hui; Zhang, Lin; Meng, Jia

    2015-01-01

    Functional long non-coding RNAs (lncRNAs) have been bringing novel insight into biological study, however it is still not trivial to accurately distinguish the lncRNA transcripts (LNCTs) from the protein coding ones (PCTs). As various information and data about lncRNAs are preserved by previous studies, it is appealing to develop novel methods to identify the lncRNAs more accurately. Our method lncRScan-SVM aims at classifying PCTs and LNCTs using support vector machine (SVM). The gold-standard datasets for lncRScan-SVM model training, lncRNA prediction and method comparison were constructed according to the GENCODE gene annotations of human and mouse respectively. By integrating features derived from gene structure, transcript sequence, potential codon sequence and conservation, lncRScan-SVM outperforms other approaches, which is evaluated by several criteria such as sensitivity, specificity, accuracy, Matthews correlation coefficient (MCC) and area under curve (AUC). In addition, several known human lncRNA datasets were assessed using lncRScan-SVM. LncRScan-SVM is an efficient tool for predicting the lncRNAs, and it is quite useful for current lncRNA study.

  7. [Discrimination of varieties of borneol using terahertz spectra based on principal component analysis and support vector machine].

    PubMed

    Li, Wu; Hu, Bing; Wang, Ming-wei

    2014-12-01

    In the present paper, the terahertz time-domain spectroscopy (THz-TDS) identification model of borneol based on principal component analysis (PCA) and support vector machine (SVM) was established. As one Chinese common agent, borneol needs a rapid, simple and accurate detection and identification method for its different source and being easily confused in the pharmaceutical and trade links. In order to assure the quality of borneol product and guard the consumer's right, quickly, efficiently and correctly identifying borneol has significant meaning to the production and transaction of borneol. Terahertz time-domain spectroscopy is a new spectroscopy approach to characterize material using terahertz pulse. The absorption terahertz spectra of blumea camphor, borneol camphor and synthetic borneol were measured in the range of 0.2 to 2 THz with the transmission THz-TDS. The PCA scores of 2D plots (PC1 X PC2) and 3D plots (PC1 X PC2 X PC3) of three kinds of borneol samples were obtained through PCA analysis, and both of them have good clustering effect on the 3 different kinds of borneol. The value matrix of the first 10 principal components (PCs) was used to replace the original spectrum data, and the 60 samples of the three kinds of borneol were trained and then the unknown 60 samples were identified. Four kinds of support vector machine model of different kernel functions were set up in this way. Results show that the accuracy of identification and classification of SVM RBF kernel function for three kinds of borneol is 100%, and we selected the SVM with the radial basis kernel function to establish the borneol identification model, in addition, in the noisy case, the classification accuracy rates of four SVM kernel function are above 85%, and this indicates that SVM has strong generalization ability. This study shows that PCA with SVM method of borneol terahertz spectroscopy has good classification and identification effects, and provides a new method for species identification of borneol in Chinese medicine.

  8. A New Method of Facial Expression Recognition Based on SPE Plus SVM

    NASA Astrophysics Data System (ADS)

    Ying, Zilu; Huang, Mingwei; Wang, Zhen; Wang, Zhewei

    A novel method of facial expression recognition (FER) is presented, which uses stochastic proximity embedding (SPE) for data dimension reduction, and support vector machine (SVM) for expression classification. The proposed algorithm is applied to Japanese Female Facial Expression (JAFFE) database for FER, better performance is obtained compared with some traditional algorithms, such as PCA and LDA etc.. The result have further proved the effectiveness of the proposed algorithm.

  9. Design of Clinical Support Systems Using Integrated Genetic Algorithm and Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Fu; Huang, Yung-Fa; Jiang, Xiaoyi; Hsu, Yuan-Nian; Lin, Hsuan-Hung

    Clinical decision support system (CDSS) provides knowledge and specific information for clinicians to enhance diagnostic efficiency and improving healthcare quality. An appropriate CDSS can highly elevate patient safety, improve healthcare quality, and increase cost-effectiveness. Support vector machine (SVM) is believed to be superior to traditional statistical and neural network classifiers. However, it is critical to determine suitable combination of SVM parameters regarding classification performance. Genetic algorithm (GA) can find optimal solution within an acceptable time, and is faster than greedy algorithm with exhaustive searching strategy. By taking the advantage of GA in quickly selecting the salient features and adjusting SVM parameters, a method using integrated GA and SVM (IGS), which is different from the traditional method with GA used for feature selection and SVM for classification, was used to design CDSSs for prediction of successful ventilation weaning, diagnosis of patients with severe obstructive sleep apnea, and discrimination of different cell types form Pap smear. The results show that IGS is better than methods using SVM alone or linear discriminator.

  10. Time-Frequency Learning Machines for Nonstationarity Detection Using Surrogates

    NASA Astrophysics Data System (ADS)

    Borgnat, Pierre; Flandrin, Patrick; Richard, Cédric; Ferrari, André; Amoud, Hassan; Honeine, Paul

    2012-03-01

    Time-frequency representations provide a powerful tool for nonstationary signal analysis and classification, supporting a wide range of applications [12]. As opposed to conventional Fourier analysis, these techniques reveal the evolution in time of the spectral content of signals. In Ref. [7,38], time-frequency analysis is used to test stationarity of any signal. The proposed method consists of a comparison between global and local time-frequency features. The originality is to make use of a family of stationary surrogate signals for defining the null hypothesis of stationarity and, based upon this information, to derive statistical tests. An open question remains, however, about how to choose relevant time-frequency features. Over the last decade, a number of new pattern recognition methods based on reproducing kernels have been introduced. These learning machines have gained popularity due to their conceptual simplicity and their outstanding performance [30]. Initiated by Vapnik’s support vector machines (SVM) [35], they offer now a wide class of supervised and unsupervised learning algorithms. In Ref. [17-19], the authors have shown how the most effective and innovative learning machines can be tuned to operate in the time-frequency domain. This chapter follows this line of research by taking advantage of learning machines to test and quantify stationarity. Based on one-class SVM, our approach uses the entire time-frequency representation and does not require arbitrary feature extraction. Applied to a set of surrogates, it provides the domain boundary that includes most of these stationarized signals. This allows us to test the stationarity of the signal under investigation. This chapter is organized as follows. In Section 22.2, we introduce the surrogate data method to generate stationarized signals, namely, the null hypothesis of stationarity. The concept of time-frequency learning machines is presented in Section 22.3, and applied to one-class SVM in order to derive a stationarity test in Section 22.4. The relevance of the latter is illustrated by simulation results in Section 22.5.

  11. TargetCrys: protein crystallization prediction by fusing multi-view features with two-layered SVM.

    PubMed

    Hu, Jun; Han, Ke; Li, Yang; Yang, Jing-Yu; Shen, Hong-Bin; Yu, Dong-Jun

    2016-11-01

    The accurate prediction of whether a protein will crystallize plays a crucial role in improving the success rate of protein crystallization projects. A common critical problem in the development of machine-learning-based protein crystallization predictors is how to effectively utilize protein features extracted from different views. In this study, we aimed to improve the efficiency of fusing multi-view protein features by proposing a new two-layered SVM (2L-SVM) which switches the feature-level fusion problem to a decision-level fusion problem: the SVMs in the 1st layer of the 2L-SVM are trained on each of the multi-view feature sets; then, the outputs of the 1st layer SVMs, which are the "intermediate" decisions made based on the respective feature sets, are further ensembled by a 2nd layer SVM. Based on the proposed 2L-SVM, we implemented a sequence-based protein crystallization predictor called TargetCrys. Experimental results on several benchmark datasets demonstrated the efficacy of the proposed 2L-SVM for fusing multi-view features. We also compared TargetCrys with existing sequence-based protein crystallization predictors and demonstrated that the proposed TargetCrys outperformed most of the existing predictors and is competitive with the state-of-the-art predictors. The TargetCrys webserver and datasets used in this study are freely available for academic use at: http://csbio.njust.edu.cn/bioinf/TargetCrys .

  12. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics.

    PubMed

    Huang, Shujun; Cai, Nianguang; Pacheco, Pedro Penzuti; Narrandes, Shavira; Wang, Yang; Xu, Wayne

    2018-01-01

    Machine learning with maximization (support) of separating margin (vector), called support vector machine (SVM) learning, is a powerful classification tool that has been used for cancer genomic classification or subtyping. Today, as advancements in high-throughput technologies lead to production of large amounts of genomic and epigenomic data, the classification feature of SVMs is expanding its use in cancer genomics, leading to the discovery of new biomarkers, new drug targets, and a better understanding of cancer driver genes. Herein we reviewed the recent progress of SVMs in cancer genomic studies. We intend to comprehend the strength of the SVM learning and its future perspective in cancer genomic applications. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. LBP and SIFT based facial expression recognition

    NASA Astrophysics Data System (ADS)

    Sumer, Omer; Gunes, Ece O.

    2015-02-01

    This study compares the performance of local binary patterns (LBP) and scale invariant feature transform (SIFT) with support vector machines (SVM) in automatic classification of discrete facial expressions. Facial expression recognition is a multiclass classification problem and seven classes; happiness, anger, sadness, disgust, surprise, fear and comtempt are classified. Using SIFT feature vectors and linear SVM, 93.1% mean accuracy is acquired on CK+ database. On the other hand, the performance of LBP-based classifier with linear SVM is reported on SFEW using strictly person independent (SPI) protocol. Seven-class mean accuracy on SFEW is 59.76%. Experiments on both databases showed that LBP features can be used in a fairly descriptive way if a good localization of facial points and partitioning strategy are followed.

  14. Recursive feature selection with significant variables of support vectors.

    PubMed

    Tsai, Chen-An; Huang, Chien-Hsun; Chang, Ching-Wei; Chen, Chun-Houh

    2012-01-01

    The development of DNA microarray makes researchers screen thousands of genes simultaneously and it also helps determine high- and low-expression level genes in normal and disease tissues. Selecting relevant genes for cancer classification is an important issue. Most of the gene selection methods use univariate ranking criteria and arbitrarily choose a threshold to choose genes. However, the parameter setting may not be compatible to the selected classification algorithms. In this paper, we propose a new gene selection method (SVM-t) based on the use of t-statistics embedded in support vector machine. We compared the performance to two similar SVM-based methods: SVM recursive feature elimination (SVMRFE) and recursive support vector machine (RSVM). The three methods were compared based on extensive simulation experiments and analyses of two published microarray datasets. In the simulation experiments, we found that the proposed method is more robust in selecting informative genes than SVMRFE and RSVM and capable to attain good classification performance when the variations of informative and noninformative genes are different. In the analysis of two microarray datasets, the proposed method yields better performance in identifying fewer genes with good prediction accuracy, compared to SVMRFE and RSVM.

  15. Semi-supervised manifold learning with affinity regularization for Alzheimer's disease identification using positron emission tomography imaging.

    PubMed

    Lu, Shen; Xia, Yong; Cai, Tom Weidong; Feng, David Dagan

    2015-01-01

    Dementia, Alzheimer's disease (AD) in particular is a global problem and big threat to the aging population. An image based computer-aided dementia diagnosis method is needed to providing doctors help during medical image examination. Many machine learning based dementia classification methods using medical imaging have been proposed and most of them achieve accurate results. However, most of these methods make use of supervised learning requiring fully labeled image dataset, which usually is not practical in real clinical environment. Using large amount of unlabeled images can improve the dementia classification performance. In this study we propose a new semi-supervised dementia classification method based on random manifold learning with affinity regularization. Three groups of spatial features are extracted from positron emission tomography (PET) images to construct an unsupervised random forest which is then used to regularize the manifold learning objective function. The proposed method, stat-of-the-art Laplacian support vector machine (LapSVM) and supervised SVM are applied to classify AD and normal controls (NC). The experiment results show that learning with unlabeled images indeed improves the classification performance. And our method outperforms LapSVM on the same dataset.

  16. Comparison of Random Forest and Support Vector Machine classifiers using UAV remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Piragnolo, Marco; Masiero, Andrea; Pirotti, Francesco

    2017-04-01

    Since recent years surveying with unmanned aerial vehicles (UAV) is getting a great amount of attention due to decreasing costs, higher precision and flexibility of usage. UAVs have been applied for geomorphological investigations, forestry, precision agriculture, cultural heritage assessment and for archaeological purposes. It can be used for land use and land cover classification (LULC). In literature, there are two main types of approaches for classification of remote sensing imagery: pixel-based and object-based. On one hand, pixel-based approach mostly uses training areas to define classes and respective spectral signatures. On the other hand, object-based classification considers pixels, scale, spatial information and texture information for creating homogeneous objects. Machine learning methods have been applied successfully for classification, and their use is increasing due to the availability of faster computing capabilities. The methods learn and train the model from previous computation. Two machine learning methods which have given good results in previous investigations are Random Forest (RF) and Support Vector Machine (SVM). The goal of this work is to compare RF and SVM methods for classifying LULC using images collected with a fixed wing UAV. The processing chain regarding classification uses packages in R, an open source scripting language for data analysis, which provides all necessary algorithms. The imagery was acquired and processed in November 2015 with cameras providing information over the red, blue, green and near infrared wavelength reflectivity over a testing area in the campus of Agripolis, in Italy. Images were elaborated and ortho-rectified through Agisoft Photoscan. The ortho-rectified image is the full data set, and the test set is derived from partial sub-setting of the full data set. Different tests have been carried out, using a percentage from 2 % to 20 % of the total. Ten training sets and ten validation sets are obtained from each test set. The control dataset consist of an independent visual classification done by an expert over the whole area. The classes are (i) broadleaf, (ii) building, (iii) grass, (iv) headland access path, (v) road, (vi) sowed land, (vii) vegetable. The RF and SVM are applied to the test set. The performances of the methods are evaluated using the three following accuracy metrics: Kappa index, Classification accuracy and Classification Error. All three are calculated in three different ways: with K-fold cross validation, using the validation test set and using the full test set. The analysis indicates that SVM gets better results in terms of good scores using K-fold cross or validation test set. Using the full test set, RF achieves a better result in comparison to SVM. It also seems that SVM performs better with smaller training sets, whereas RF performs better as training sets get larger.

  17. [Study on application of SVM in prediction of coronary heart disease].

    PubMed

    Zhu, Yue; Wu, Jianghua; Fang, Ying

    2013-12-01

    Base on the data of blood pressure, plasma lipid, Glu and UA by physical test, Support Vector Machine (SVM) was applied to identify coronary heart disease (CHD) in patients and non-CHD individuals in south China population for guide of further prevention and treatment of the disease. Firstly, the SVM classifier was built using radial basis kernel function, liner kernel function and polynomial kernel function, respectively. Secondly, the SVM penalty factor C and kernel parameter sigma were optimized by particle swarm optimization (PSO) and then employed to diagnose and predict the CHD. By comparison with those from artificial neural network with the back propagation (BP) model, linear discriminant analysis, logistic regression method and non-optimized SVM, the overall results of our calculation demonstrated that the classification performance of optimized RBF-SVM model could be superior to other classifier algorithm with higher accuracy rate, sensitivity and specificity, which were 94.51%, 92.31% and 96.67%, respectively. So, it is well concluded that SVM could be used as a valid method for assisting diagnosis of CHD.

  18. An SVM-based solution for fault detection in wind turbines.

    PubMed

    Santos, Pedro; Villa, Luisa F; Reñones, Aníbal; Bustillo, Andres; Maudes, Jesús

    2015-03-09

    Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets.

  19. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition

    PubMed Central

    Melvin, Iain; Ie, Eugene; Kuang, Rui; Weston, Jason; Stafford, William Noble; Leslie, Christina

    2007-01-01

    Background Predicting a protein's structural class from its amino acid sequence is a fundamental problem in computational biology. Much recent work has focused on developing new representations for protein sequences, called string kernels, for use with support vector machine (SVM) classifiers. However, while some of these approaches exhibit state-of-the-art performance at the binary protein classification problem, i.e. discriminating between a particular protein class and all other classes, few of these studies have addressed the real problem of multi-class superfamily or fold recognition. Moreover, there are only limited software tools and systems for SVM-based protein classification available to the bioinformatics community. Results We present a new multi-class SVM-based protein fold and superfamily recognition system and web server called SVM-Fold, which can be found at . Our system uses an efficient implementation of a state-of-the-art string kernel for sequence profiles, called the profile kernel, where the underlying feature representation is a histogram of inexact matching k-mer frequencies. We also employ a novel machine learning approach to solve the difficult multi-class problem of classifying a sequence of amino acids into one of many known protein structural classes. Binary one-vs-the-rest SVM classifiers that are trained to recognize individual structural classes yield prediction scores that are not comparable, so that standard "one-vs-all" classification fails to perform well. Moreover, SVMs for classes at different levels of the protein structural hierarchy may make useful predictions, but one-vs-all does not try to combine these multiple predictions. To deal with these problems, our method learns relative weights between one-vs-the-rest classifiers and encodes information about the protein structural hierarchy for multi-class prediction. In large-scale benchmark results based on the SCOP database, our code weighting approach significantly improves on the standard one-vs-all method for both the superfamily and fold prediction in the remote homology setting and on the fold recognition problem. Moreover, our code weight learning algorithm strongly outperforms nearest-neighbor methods based on PSI-BLAST in terms of prediction accuracy on every structure classification problem we consider. Conclusion By combining state-of-the-art SVM kernel methods with a novel multi-class algorithm, the SVM-Fold system delivers efficient and accurate protein fold and superfamily recognition. PMID:17570145

  20. VLSI Design of SVM-Based Seizure Detection System With On-Chip Learning Capability.

    PubMed

    Feng, Lichen; Li, Zunchao; Wang, Yuanfa

    2018-02-01

    Portable automatic seizure detection system is very convenient for epilepsy patients to carry. In order to make the system on-chip trainable with high efficiency and attain high detection accuracy, this paper presents a very large scale integration (VLSI) design based on the nonlinear support vector machine (SVM). The proposed design mainly consists of a feature extraction (FE) module and an SVM module. The FE module performs the three-level Daubechies discrete wavelet transform to fit the physiological bands of the electroencephalogram (EEG) signal and extracts the time-frequency domain features reflecting the nonstationary signal properties. The SVM module integrates the modified sequential minimal optimization algorithm with the table-driven-based Gaussian kernel to enable efficient on-chip learning. The presented design is verified on an Altera Cyclone II field-programmable gate array and tested using the two publicly available EEG datasets. Experiment results show that the designed VLSI system improves the detection accuracy and training efficiency.

  1. SVM-based tree-type neural networks as a critic in adaptive critic designs for control.

    PubMed

    Deb, Alok Kanti; Jayadeva; Gopal, Madan; Chandra, Suresh

    2007-07-01

    In this paper, we use the approach of adaptive critic design (ACD) for control, specifically, the action-dependent heuristic dynamic programming (ADHDP) method. A least squares support vector machine (SVM) regressor has been used for generating the control actions, while an SVM-based tree-type neural network (NN) is used as the critic. After a failure occurs, the critic and action are retrained in tandem using the failure data. Failure data is binary classification data, where the number of failure states are very few as compared to the number of no-failure states. The difficulty of conventional multilayer feedforward NNs in learning this type of classification data has been overcome by using the SVM-based tree-type NN, which due to its feature to add neurons to learn misclassified data, has the capability to learn any binary classification data without a priori choice of the number of neurons or the structure of the network. The capability of the trained controller to handle unforeseen situations is demonstrated.

  2. Markerless gating for lung cancer radiotherapy based on machine learning techniques

    NASA Astrophysics Data System (ADS)

    Lin, Tong; Li, Ruijiang; Tang, Xiaoli; Dy, Jennifer G.; Jiang, Steve B.

    2009-03-01

    In lung cancer radiotherapy, radiation to a mobile target can be delivered by respiratory gating, for which we need to know whether the target is inside or outside a predefined gating window at any time point during the treatment. This can be achieved by tracking one or more fiducial markers implanted inside or near the target, either fluoroscopically or electromagnetically. However, the clinical implementation of marker tracking is limited for lung cancer radiotherapy mainly due to the risk of pneumothorax. Therefore, gating without implanted fiducial markers is a promising clinical direction. We have developed several template-matching methods for fluoroscopic marker-less gating. Recently, we have modeled the gating problem as a binary pattern classification problem, in which principal component analysis (PCA) and support vector machine (SVM) are combined to perform the classification task. Following the same framework, we investigated different combinations of dimensionality reduction techniques (PCA and four nonlinear manifold learning methods) and two machine learning classification methods (artificial neural networks—ANN and SVM). Performance was evaluated on ten fluoroscopic image sequences of nine lung cancer patients. We found that among all combinations of dimensionality reduction techniques and classification methods, PCA combined with either ANN or SVM achieved a better performance than the other nonlinear manifold learning methods. ANN when combined with PCA achieves a better performance than SVM in terms of classification accuracy and recall rate, although the target coverage is similar for the two classification methods. Furthermore, the running time for both ANN and SVM with PCA is within tolerance for real-time applications. Overall, ANN combined with PCA is a better candidate than other combinations we investigated in this work for real-time gated radiotherapy.

  3. Development and experimental test of support vector machines virtual screening method for searching Src inhibitors from large compound libraries.

    PubMed

    Han, Bucong; Ma, Xiaohua; Zhao, Ruiying; Zhang, Jingxian; Wei, Xiaona; Liu, Xianghui; Liu, Xin; Zhang, Cunlong; Tan, Chunyan; Jiang, Yuyang; Chen, Yuzong

    2012-11-23

    Src plays various roles in tumour progression, invasion, metastasis, angiogenesis and survival. It is one of the multiple targets of multi-target kinase inhibitors in clinical uses and trials for the treatment of leukemia and other cancers. These successes and appearances of drug resistance in some patients have raised significant interest and efforts in discovering new Src inhibitors. Various in-silico methods have been used in some of these efforts. It is desirable to explore additional in-silico methods, particularly those capable of searching large compound libraries at high yields and reduced false-hit rates. We evaluated support vector machines (SVM) as virtual screening tools for searching Src inhibitors from large compound libraries. SVM trained and tested by 1,703 inhibitors and 63,318 putative non-inhibitors correctly identified 93.53%~ 95.01% inhibitors and 99.81%~ 99.90% non-inhibitors in 5-fold cross validation studies. SVM trained by 1,703 inhibitors reported before 2011 and 63,318 putative non-inhibitors correctly identified 70.45% of the 44 inhibitors reported since 2011, and predicted as inhibitors 44,843 (0.33%) of 13.56M PubChem, 1,496 (0.89%) of 168 K MDDR, and 719 (7.73%) of 9,305 MDDR compounds similar to the known inhibitors. SVM showed comparable yield and reduced false hit rates in searching large compound libraries compared to the similarity-based and other machine-learning VS methods developed from the same set of training compounds and molecular descriptors. We tested three virtual hits of the same novel scaffold from in-house chemical libraries not reported as Src inhibitor, one of which showed moderate activity. SVM may be potentially explored for searching Src inhibitors from large compound libraries at low false-hit rates.

  4. Support vector machine as a binary classifier for automated object detection in remotely sensed data

    NASA Astrophysics Data System (ADS)

    Wardaya, P. D.

    2014-02-01

    In the present paper, author proposes the application of Support Vector Machine (SVM) for the analysis of satellite imagery. One of the advantages of SVM is that, with limited training data, it may generate comparable or even better results than the other methods. The SVM algorithm is used for automated object detection and characterization. Specifically, the SVM is applied in its basic nature as a binary classifier where it classifies two classes namely, object and background. The algorithm aims at effectively detecting an object from its background with the minimum training data. The synthetic image containing noises is used for algorithm testing. Furthermore, it is implemented to perform remote sensing image analysis such as identification of Island vegetation, water body, and oil spill from the satellite imagery. It is indicated that SVM provides the fast and accurate analysis with the acceptable result.

  5. Exploring QSARs of the interaction of flavonoids with GABA (A) receptor using MLR, ANN and SVM techniques.

    PubMed

    Deeb, Omar; Shaik, Basheerulla; Agrawal, Vijay K

    2014-10-01

    Quantitative Structure-Activity Relationship (QSAR) models for binding affinity constants (log Ki) of 78 flavonoid ligands towards the benzodiazepine site of GABA (A) receptor complex were calculated using the machine learning methods: artificial neural network (ANN) and support vector machine (SVM) techniques. The models obtained were compared with those obtained using multiple linear regression (MLR) analysis. The descriptor selection and model building were performed with 10-fold cross-validation using the training data set. The SVM and MLR coefficient of determination values are 0.944 and 0.879, respectively, for the training set and are higher than those of ANN models. Though the SVM model shows improvement of training set fitting, the ANN model was superior to SVM and MLR in predicting the test set. Randomization test is employed to check the suitability of the models.

  6. a Gsa-Svm Hybrid System for Classification of Binary Problems

    NASA Astrophysics Data System (ADS)

    Sarafrazi, Soroor; Nezamabadi-pour, Hossein; Barahman, Mojgan

    2011-06-01

    This paperhybridizesgravitational search algorithm (GSA) with support vector machine (SVM) and made a novel GSA-SVM hybrid system to improve the classification accuracy in binary problems. GSA is an optimization heuristic toolused to optimize the value of SVM kernel parameter (in this paper, radial basis function (RBF) is chosen as the kernel function). The experimental results show that this newapproach can achieve high classification accuracy and is comparable to or better than the particle swarm optimization (PSO)-SVM and genetic algorithm (GA)-SVM, which are two hybrid systems for classification.

  7. A Comparison of Artificial Intelligence Methods on Determining Coronary Artery Disease

    NASA Astrophysics Data System (ADS)

    Babaoğlu, Ismail; Baykan, Ömer Kaan; Aygül, Nazif; Özdemir, Kurtuluş; Bayrak, Mehmet

    The aim of this study is to show a comparison of multi-layered perceptron neural network (MLPNN) and support vector machine (SVM) on determination of coronary artery disease existence upon exercise stress testing (EST) data. EST and coronary angiography were performed on 480 patients with acquiring 23 verifying features from each. The robustness of the proposed methods is examined using classification accuracy, k-fold cross-validation method and Cohen's kappa coefficient. The obtained classification accuracies are approximately 78% and 79% for MLPNN and SVM respectively. Both MLPNN and SVM methods are rather satisfactory than human-based method looking to Cohen's kappa coefficients. Besides, SVM is slightly better than MLPNN when looking to the diagnostic accuracy, average of sensitivity and specificity, and also Cohen's kappa coefficient.

  8. Machine learning algorithms to classify spinal muscular atrophy subtypes.

    PubMed

    Srivastava, Tuhin; Darras, Basil T; Wu, Jim S; Rutkove, Seward B

    2012-07-24

    The development of better biomarkers for disease assessment remains an ongoing effort across the spectrum of neurologic illnesses. One approach for refining biomarkers is based on the concept of machine learning, in which individual, unrelated biomarkers are simultaneously evaluated. In this cross-sectional study, we assess the possibility of using machine learning, incorporating both quantitative muscle ultrasound (QMU) and electrical impedance myography (EIM) data, for classification of muscles affected by spinal muscular atrophy (SMA). Twenty-one normal subjects, 15 subjects with SMA type 2, and 10 subjects with SMA type 3 underwent EIM and QMU measurements of unilateral biceps, wrist extensors, quadriceps, and tibialis anterior. EIM and QMU parameters were then applied in combination using a support vector machine (SVM), a type of machine learning, in an attempt to accurately categorize 165 individual muscles. For all 3 classification problems, normal vs SMA, normal vs SMA 3, and SMA 2 vs SMA 3, use of SVM provided the greatest accuracy in discrimination, surpassing both EIM and QMU individually. For example, the accuracy, as measured by the receiver operating characteristic area under the curve (ROC-AUC) for the SVM discriminating SMA 2 muscles from SMA 3 muscles was 0.928; in comparison, the ROC-AUCs for EIM and QMU parameters alone were only 0.877 (p < 0.05) and 0.627 (p < 0.05), respectively. Combining EIM and QMU data categorizes individual SMA-affected muscles with very high accuracy. Further investigation of this approach for classifying and for following the progression of neuromuscular illness is warranted.

  9. Classification of Breast Cancer Resistant Protein (BCRP) Inhibitors and Non-Inhibitors Using Machine Learning Approaches.

    PubMed

    Belekar, Vilas; Lingineni, Karthik; Garg, Prabha

    2015-01-01

    The breast cancer resistant protein (BCRP) is an important transporter and its inhibitors play an important role in cancer treatment by improving the oral bioavailability as well as blood brain barrier (BBB) permeability of anticancer drugs. In this work, a computational model was developed to predict the compounds as BCRP inhibitors or non-inhibitors. Various machine learning approaches like, support vector machine (SVM), k-nearest neighbor (k-NN) and artificial neural network (ANN) were used to develop the models. The Matthews correlation coefficients (MCC) of developed models using ANN, k-NN and SVM are 0.67, 0.71 and 0.77, and prediction accuracies are 85.2%, 88.3% and 90.8% respectively. The developed models were tested with a test set of 99 compounds and further validated with external set of 98 compounds. Distribution plot analysis and various machine learning models were also developed based on druglikeness descriptors. Applicability domain is used to check the prediction reliability of the new molecules.

  10. Using distances between Top-n-gram and residue pairs for protein remote homology detection.

    PubMed

    Liu, Bin; Xu, Jinghao; Zou, Quan; Xu, Ruifeng; Wang, Xiaolong; Chen, Qingcai

    2014-01-01

    Protein remote homology detection is one of the central problems in bioinformatics, which is important for both basic research and practical application. Currently, discriminative methods based on Support Vector Machines (SVMs) achieve the state-of-the-art performance. Exploring feature vectors incorporating the position information of amino acids or other protein building blocks is a key step to improve the performance of the SVM-based methods. Two new methods for protein remote homology detection were proposed, called SVM-DR and SVM-DT. SVM-DR is a sequence-based method, in which the feature vector representation for protein is based on the distances between residue pairs. SVM-DT is a profile-based method, which considers the distances between Top-n-gram pairs. Top-n-gram can be viewed as a profile-based building block of proteins, which is calculated from the frequency profiles. These two methods are position dependent approaches incorporating the sequence-order information of protein sequences. Various experiments were conducted on a benchmark dataset containing 54 families and 23 superfamilies. Experimental results showed that these two new methods are very promising. Compared with the position independent methods, the performance improvement is obvious. Furthermore, the proposed methods can also provide useful insights for studying the features of protein families. The better performance of the proposed methods demonstrates that the position dependant approaches are efficient for protein remote homology detection. Another advantage of our methods arises from the explicit feature space representation, which can be used to analyze the characteristic features of protein families. The source code of SVM-DT and SVM-DR is available at http://bioinformatics.hitsz.edu.cn/DistanceSVM/index.jsp.

  11. Stable Isotope Ratio and Elemental Profile Combined with Support Vector Machine for Provenance Discrimination of Oolong Tea (Wuyi-Rock Tea)

    PubMed Central

    Lou, Yun-xiao; Fu, Xian-shu; Yu, Xiao-ping; Zhang, Ya-fen

    2017-01-01

    This paper focused on an effective method to discriminate the geographical origin of Wuyi-Rock tea by the stable isotope ratio (SIR) and metallic element profiling (MEP) combined with support vector machine (SVM) analysis. Wuyi-Rock tea (n = 99) collected from nine producing areas and non-Wuyi-Rock tea (n = 33) from eleven nonproducing areas were analysed for SIR and MEP by established methods. The SVM model based on coupled data produced the best prediction accuracy (0.9773). This prediction shows that instrumental methods combined with a classification model can provide an effective and stable tool for provenance discrimination. Moreover, every feature variable in stable isotope and metallic element data was ranked by its contribution to the model. The results show that δ2H, δ18O, Cs, Cu, Ca, and Rb contents are significant indications for provenance discrimination and not all of the metallic elements improve the prediction accuracy of the SVM model. PMID:28473941

  12. Support vector machine firefly algorithm based optimization of lens system.

    PubMed

    Shamshirband, Shahaboddin; Petković, Dalibor; Pavlović, Nenad T; Ch, Sudheer; Altameem, Torki A; Gani, Abdullah

    2015-01-01

    Lens system design is an important factor in image quality. The main aspect of the lens system design methodology is the optimization procedure. Since optimization is a complex, nonlinear task, soft computing optimization algorithms can be used. There are many tools that can be employed to measure optical performance, but the spot diagram is the most useful. The spot diagram gives an indication of the image of a point object. In this paper, the spot size radius is considered an optimization criterion. Intelligent soft computing scheme support vector machines (SVMs) coupled with the firefly algorithm (FFA) are implemented. The performance of the proposed estimators is confirmed with the simulation results. The result of the proposed SVM-FFA model has been compared with support vector regression (SVR), artificial neural networks, and generic programming methods. The results show that the SVM-FFA model performs more accurately than the other methodologies. Therefore, SVM-FFA can be used as an efficient soft computing technique in the optimization of lens system designs.

  13. An IPSO-SVM algorithm for security state prediction of mine production logistics system

    NASA Astrophysics Data System (ADS)

    Zhang, Yanliang; Lei, Junhui; Ma, Qiuli; Chen, Xin; Bi, Runfang

    2017-06-01

    A theoretical basis for the regulation of corporate security warning and resources was provided in order to reveal the laws behind the security state in mine production logistics. Considering complex mine production logistics system and the variable is difficult to acquire, a superior security status predicting model of mine production logistics system based on the improved particle swarm optimization and support vector machine (IPSO-SVM) is proposed in this paper. Firstly, through the linear adjustments of inertia weight and learning weights, the convergence speed and search accuracy are enhanced with the aim to deal with situations associated with the changeable complexity and the data acquisition difficulty. The improved particle swarm optimization (IPSO) is then introduced to resolve the problem of parameter settings in traditional support vector machines (SVM). At the same time, security status index system is built to determine the classification standards of safety status. The feasibility and effectiveness of this method is finally verified using the experimental results.

  14. Performance evaluation for epileptic electroencephalogram (EEG) detection by using Neyman-Pearson criteria and a support vector machine

    NASA Astrophysics Data System (ADS)

    Wang, Chun-mei; Zhang, Chong-ming; Zou, Jun-zhong; Zhang, Jian

    2012-02-01

    The diagnosis of several neurological disorders is based on the detection of typical pathological patterns in electroencephalograms (EEGs). This is a time-consuming task requiring significant training and experience. A lot of effort has been devoted to developing automatic detection techniques which might help not only in accelerating this process but also in avoiding the disagreement among readers of the same record. In this work, Neyman-Pearson criteria and a support vector machine (SVM) are applied for detecting an epileptic EEG. Decision making is performed in two stages: feature extraction by computing the wavelet coefficients and the approximate entropy (ApEn) and detection by using Neyman-Pearson criteria and an SVM. Then the detection performance of the proposed method is evaluated. Simulation results demonstrate that the wavelet coefficients and the ApEn are features that represent the EEG signals well. By comparison with Neyman-Pearson criteria, an SVM applied on these features achieved higher detection accuracies.

  15. The Automation System Censor Speech for the Indonesian Rude Swear Words Based on Support Vector Machine and Pitch Analysis

    NASA Astrophysics Data System (ADS)

    Endah, S. N.; Nugraheni, D. M. K.; Adhy, S.; Sutikno

    2017-04-01

    According to Law No. 32 of 2002 and the Indonesian Broadcasting Commission Regulation No. 02/P/KPI/12/2009 & No. 03/P/KPI/12/2009, stated that broadcast programs should not scold with harsh words, not harass, insult or demean minorities and marginalized groups. However, there are no suitable tools to censor those words automatically. Therefore, researches to develop a system of intelligent software to censor the words automatically are needed. To conduct censor, the system must be able to recognize the words in question. This research proposes the classification of speech divide into two classes using Support Vector Machine (SVM), first class is set of rude words and the second class is set of properly words. The speech pitch values as an input in SVM, it used for the development of the system for the Indonesian rude swear word. The results of the experiment show that SVM is good for this system.

  16. [Hyperspectral remote sensing image classification based on SVM optimized by clonal selection].

    PubMed

    Liu, Qing-Jie; Jing, Lin-Hai; Wang, Meng-Fei; Lin, Qi-Zhong

    2013-03-01

    Model selection for support vector machine (SVM) involving kernel and the margin parameter values selection is usually time-consuming, impacts training efficiency of SVM model and final classification accuracies of SVM hyperspectral remote sensing image classifier greatly. Firstly, based on combinatorial optimization theory and cross-validation method, artificial immune clonal selection algorithm is introduced to the optimal selection of SVM (CSSVM) kernel parameter a and margin parameter C to improve the training efficiency of SVM model. Then an experiment of classifying AVIRIS in India Pine site of USA was performed for testing the novel CSSVM, as well as a traditional SVM classifier with general Grid Searching cross-validation method (GSSVM) for comparison. And then, evaluation indexes including SVM model training time, classification overall accuracy (OA) and Kappa index of both CSSVM and GSSVM were all analyzed quantitatively. It is demonstrated that OA of CSSVM on test samples and whole image are 85.1% and 81.58, the differences from that of GSSVM are both within 0.08% respectively; And Kappa indexes reach 0.8213 and 0.7728, the differences from that of GSSVM are both within 0.001; While the ratio of model training time of CSSVM and GSSVM is between 1/6 and 1/10. Therefore, CSSVM is fast and accurate algorithm for hyperspectral image classification and is superior to GSSVM.

  17. A novel one-class SVM based negative data sampling method for reconstructing proteome-wide HTLV-human protein interaction networks.

    PubMed

    Mei, Suyu; Zhu, Hao

    2015-01-26

    Protein-protein interaction (PPI) prediction is generally treated as a problem of binary classification wherein negative data sampling is still an open problem to be addressed. The commonly used random sampling is prone to yield less representative negative data with considerable false negatives. Meanwhile rational constraints are seldom exerted on model selection to reduce the risk of false positive predictions for most of the existing computational methods. In this work, we propose a novel negative data sampling method based on one-class SVM (support vector machine, SVM) to predict proteome-wide protein interactions between HTLV retrovirus and Homo sapiens, wherein one-class SVM is used to choose reliable and representative negative data, and two-class SVM is used to yield proteome-wide outcomes as predictive feedback for rational model selection. Computational results suggest that one-class SVM is more suited to be used as negative data sampling method than two-class PPI predictor, and the predictive feedback constrained model selection helps to yield a rational predictive model that reduces the risk of false positive predictions. Some predictions have been validated by the recent literature. Lastly, gene ontology based clustering of the predicted PPI networks is conducted to provide valuable cues for the pathogenesis of HTLV retrovirus.

  18. Solution Path for Pin-SVM Classifiers With Positive and Negative $\\tau $ Values.

    PubMed

    Huang, Xiaolin; Shi, Lei; Suykens, Johan A K

    2017-07-01

    Applying the pinball loss in a support vector machine (SVM) classifier results in pin-SVM. The pinball loss is characterized by a parameter τ . Its value is related to the quantile level and different τ values are suitable for different problems. In this paper, we establish an algorithm to find the entire solution path for pin-SVM with different τ values. This algorithm is based on the fact that the optimal solution to pin-SVM is continuous and piecewise linear with respect to τ . We also show that the nonnegativity constraint on τ is not necessary, i.e., τ can be extended to negative values. First, in some applications, a negative τ leads to better accuracy. Second, τ = -1 corresponds to a simple solution that links SVM and the classical kernel rule. The solution for τ = -1 can be obtained directly and then be used as a starting point of the solution path. The proposed method efficiently traverses τ values through the solution path, and then achieves good performance by a suitable τ . In particular, τ = 0 corresponds to C-SVM, meaning that the traversal algorithm can output a result at least as good as C-SVM with respect to validation error.

  19. Impact of pixel-based machine-learning techniques on automated frameworks for delineation of gross tumor volume regions for stereotactic body radiation therapy.

    PubMed

    Kawata, Yasuo; Arimura, Hidetaka; Ikushima, Koujirou; Jin, Ze; Morita, Kento; Tokunaga, Chiaki; Yabu-Uchi, Hidetake; Shioyama, Yoshiyuki; Sasaki, Tomonari; Honda, Hiroshi; Sasaki, Masayuki

    2017-10-01

    The aim of this study was to investigate the impact of pixel-based machine learning (ML) techniques, i.e., fuzzy-c-means clustering method (FCM), and the artificial neural network (ANN) and support vector machine (SVM), on an automated framework for delineation of gross tumor volume (GTV) regions of lung cancer for stereotactic body radiation therapy. The morphological and metabolic features for GTV regions, which were determined based on the knowledge of radiation oncologists, were fed on a pixel-by-pixel basis into the respective FCM, ANN, and SVM ML techniques. Then, the ML techniques were incorporated into the automated delineation framework of GTVs followed by an optimum contour selection (OCS) method, which we proposed in a previous study. The three-ML-based frameworks were evaluated for 16 lung cancer cases (six solid, four ground glass opacity (GGO), six part-solid GGO) with the datasets of planning computed tomography (CT) and 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT images using the three-dimensional Dice similarity coefficient (DSC). DSC denotes the degree of region similarity between the GTVs contoured by radiation oncologists and those estimated using the automated framework. The FCM-based framework achieved the highest DSCs of 0.79±0.06, whereas DSCs of the ANN-based and SVM-based frameworks were 0.76±0.14 and 0.73±0.14, respectively. The FCM-based framework provided the highest segmentation accuracy and precision without a learning process (lowest calculation cost). Therefore, the FCM-based framework can be useful for delineation of tumor regions in practical treatment planning. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Supervised learning methods for pathological arterial pulse wave differentiation: A SVM and neural networks approach.

    PubMed

    Paiva, Joana S; Cardoso, João; Pereira, Tânia

    2018-01-01

    The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system. The APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN). SVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917±0.0024 and a F-Measure of 0.9925±0.0019, in comparison with ANN, which reached the values of 0.9847±0.0032 and 0.9852±0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available. The comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The Bi-Directional Prediction of Carbon Fiber Production Using a Combination of Improved Particle Swarm Optimization and Support Vector Machine.

    PubMed

    Xiao, Chuncai; Hao, Kuangrong; Ding, Yongsheng

    2014-12-30

    This paper creates a bi-directional prediction model to predict the performance of carbon fiber and the productive parameters based on a support vector machine (SVM) and improved particle swarm optimization (IPSO) algorithm (SVM-IPSO). In the SVM, it is crucial to select the parameters that have an important impact on the performance of prediction. The IPSO is proposed to optimize them, and then the SVM-IPSO model is applied to the bi-directional prediction of carbon fiber production. The predictive accuracy of SVM is mainly dependent on its parameters, and IPSO is thus exploited to seek the optimal parameters for SVM in order to improve its prediction capability. Inspired by a cell communication mechanism, we propose IPSO by incorporating information of the global best solution into the search strategy to improve exploitation, and we employ IPSO to establish the bi-directional prediction model: in the direction of the forward prediction, we consider productive parameters as input and property indexes as output; in the direction of the backward prediction, we consider property indexes as input and productive parameters as output, and in this case, the model becomes a scheme design for novel style carbon fibers. The results from a set of the experimental data show that the proposed model can outperform the radial basis function neural network (RNN), the basic particle swarm optimization (PSO) method and the hybrid approach of genetic algorithm and improved particle swarm optimization (GA-IPSO) method in most of the experiments. In other words, simulation results demonstrate the effectiveness and advantages of the SVM-IPSO model in dealing with the problem of forecasting.

  2. Support vector machine for breast cancer classification using diffusion-weighted MRI histogram features: Preliminary study.

    PubMed

    Vidić, Igor; Egnell, Liv; Jerome, Neil P; Teruel, Jose R; Sjøbakk, Torill E; Østlie, Agnes; Fjøsne, Hans E; Bathen, Tone F; Goa, Pål Erik

    2018-05-01

    Diffusion-weighted MRI (DWI) is currently one of the fastest developing MRI-based techniques in oncology. Histogram properties from model fitting of DWI are useful features for differentiation of lesions, and classification can potentially be improved by machine learning. To evaluate classification of malignant and benign tumors and breast cancer subtypes using support vector machine (SVM). Prospective. Fifty-one patients with benign (n = 23) and malignant (n = 28) breast tumors (26 ER+, whereof six were HER2+). Patients were imaged with DW-MRI (3T) using twice refocused spin-echo echo-planar imaging with echo time / repetition time (TR/TE) = 9000/86 msec, 90 × 90 matrix size, 2 × 2 mm in-plane resolution, 2.5 mm slice thickness, and 13 b-values. Apparent diffusion coefficient (ADC), relative enhanced diffusivity (RED), and the intravoxel incoherent motion (IVIM) parameters diffusivity (D), pseudo-diffusivity (D*), and perfusion fraction (f) were calculated. The histogram properties (median, mean, standard deviation, skewness, kurtosis) were used as features in SVM (10-fold cross-validation) for differentiation of lesions and subtyping. Accuracies of the SVM classifications were calculated to find the combination of features with highest prediction accuracy. Mann-Whitney tests were performed for univariate comparisons. For benign versus malignant tumors, univariate analysis found 11 histogram properties to be significant differentiators. Using SVM, the highest accuracy (0.96) was achieved from a single feature (mean of RED), or from three feature combinations of IVIM or ADC. Combining features from all models gave perfect classification. No single feature predicted HER2 status of ER + tumors (univariate or SVM), although high accuracy (0.90) was achieved with SVM combining several features. Importantly, these features had to include higher-order statistics (kurtosis and skewness), indicating the importance to account for heterogeneity. Our findings suggest that SVM, using features from a combination of diffusion models, improves prediction accuracy for differentiation of benign versus malignant breast tumors, and may further assist in subtyping of breast cancer. 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1205-1216. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Identification and classification of similar looking food grains

    NASA Astrophysics Data System (ADS)

    Anami, B. S.; Biradar, Sunanda D.; Savakar, D. G.; Kulkarni, P. V.

    2013-01-01

    This paper describes the comparative study of Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers by taking a case study of identification and classification of four pairs of similar looking food grains namely, Finger Millet, Mustard, Soyabean, Pigeon Pea, Aniseed, Cumin-seeds, Split Greengram and Split Blackgram. Algorithms are developed to acquire and process color images of these grains samples. The developed algorithms are used to extract 18 colors-Hue Saturation Value (HSV), and 42 wavelet based texture features. Back Propagation Neural Network (BPNN)-based classifier is designed using three feature sets namely color - HSV, wavelet-texture and their combined model. SVM model for color- HSV model is designed for the same set of samples. The classification accuracies ranging from 93% to 96% for color-HSV, ranging from 78% to 94% for wavelet texture model and from 92% to 97% for combined model are obtained for ANN based models. The classification accuracy ranging from 80% to 90% is obtained for color-HSV based SVM model. Training time required for the SVM based model is substantially lesser than ANN for the same set of images.

  4. Recognition of genetically modified product based on affinity propagation clustering and terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jianjun; Kan, Jianquan

    2018-04-01

    In this paper, based on the terahertz spectrum, a new identification method of genetically modified material by support vector machine (SVM) based on affinity propagation clustering is proposed. This algorithm mainly uses affinity propagation clustering algorithm to make cluster analysis and labeling on unlabeled training samples, and in the iterative process, the existing SVM training data are continuously updated, when establishing the identification model, it does not need to manually label the training samples, thus, the error caused by the human labeled samples is reduced, and the identification accuracy of the model is greatly improved.

  5. A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data.

    PubMed

    Hu, Yongli; Hase, Takeshi; Li, Hui Peng; Prabhakar, Shyam; Kitano, Hiroaki; Ng, See Kiong; Ghosh, Samik; Wee, Lawrence Jin Kiat

    2016-12-22

    The ability to sequence the transcriptomes of single cells using single-cell RNA-seq sequencing technologies presents a shift in the scientific paradigm where scientists, now, are able to concurrently investigate the complex biology of a heterogeneous population of cells, one at a time. However, till date, there has not been a suitable computational methodology for the analysis of such intricate deluge of data, in particular techniques which will aid the identification of the unique transcriptomic profiles difference between the different cellular subtypes. In this paper, we describe the novel methodology for the analysis of single-cell RNA-seq data, obtained from neocortical cells and neural progenitor cells, using machine learning algorithms (Support Vector machine (SVM) and Random Forest (RF)). Thirty-eight key transcripts were identified, using the SVM-based recursive feature elimination (SVM-RFE) method of feature selection, to best differentiate developing neocortical cells from neural progenitor cells in the SVM and RF classifiers built. Also, these genes possessed a higher discriminative power (enhanced prediction accuracy) as compared commonly used statistical techniques or geneset-based approaches. Further downstream network reconstruction analysis was carried out to unravel hidden general regulatory networks where novel interactions could be further validated in web-lab experimentation and be useful candidates to be targeted for the treatment of neuronal developmental diseases. This novel approach reported for is able to identify transcripts, with reported neuronal involvement, which optimally differentiate neocortical cells and neural progenitor cells. It is believed to be extensible and applicable to other single-cell RNA-seq expression profiles like that of the study of the cancer progression and treatment within a highly heterogeneous tumour.

  6. Bands selection and classification of hyperspectral images based on hybrid kernels SVM by evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Yan-Yan; Li, Dong-Sheng

    2016-01-01

    The hyperspectral images(HSI) consist of many closely spaced bands carrying the most object information. While due to its high dimensionality and high volume nature, it is hard to get satisfactory classification performance. In order to reduce HSI data dimensionality preparation for high classification accuracy, it is proposed to combine a band selection method of artificial immune systems (AIS) with a hybrid kernels support vector machine (SVM-HK) algorithm. In fact, after comparing different kernels for hyperspectral analysis, the approach mixed radial basis function kernel (RBF-K) with sigmoid kernel (Sig-K) and applied the optimized hybrid kernels in SVM classifiers. Then the SVM-HK algorithm used to induce the bands selection of an improved version of AIS. The AIS was composed of clonal selection and elite antibody mutation, including evaluation process with optional index factor (OIF). Experimental classification performance was on a San Diego Naval Base acquired by AVIRIS, the HRS dataset shows that the method is able to efficiently achieve bands redundancy removal while outperforming the traditional SVM classifier.

  7. Tuning to optimize SVM approach for assisting ovarian cancer diagnosis with photoacoustic imaging.

    PubMed

    Wang, Rui; Li, Rui; Lei, Yanyan; Zhu, Quing

    2015-01-01

    Support vector machine (SVM) is one of the most effective classification methods for cancer detection. The efficiency and quality of a SVM classifier depends strongly on several important features and a set of proper parameters. Here, a series of classification analyses, with one set of photoacoustic data from ovarian tissues ex vivo and a widely used breast cancer dataset- the Wisconsin Diagnostic Breast Cancer (WDBC), revealed the different accuracy of a SVM classification in terms of the number of features used and the parameters selected. A pattern recognition system is proposed by means of SVM-Recursive Feature Elimination (RFE) with the Radial Basis Function (RBF) kernel. To improve the effectiveness and robustness of the system, an optimized tuning ensemble algorithm called as SVM-RFE(C) with correlation filter was implemented to quantify feature and parameter information based on cross validation. The proposed algorithm is first demonstrated outperforming SVM-RFE on WDBC. Then the best accuracy of 94.643% and sensitivity of 94.595% were achieved when using SVM-RFE(C) to test 57 new PAT data from 19 patients. The experiment results show that the classifier constructed with SVM-RFE(C) algorithm is able to learn additional information from new data and has significant potential in ovarian cancer diagnosis.

  8. Simulated Annealing Based Hybrid Forecast for Improving Daily Municipal Solid Waste Generation Prediction

    PubMed Central

    Song, Jingwei; He, Jiaying; Zhu, Menghua; Tan, Debao; Zhang, Yu; Ye, Song; Shen, Dingtao; Zou, Pengfei

    2014-01-01

    A simulated annealing (SA) based variable weighted forecast model is proposed to combine and weigh local chaotic model, artificial neural network (ANN), and partial least square support vector machine (PLS-SVM) to build a more accurate forecast model. The hybrid model was built and multistep ahead prediction ability was tested based on daily MSW generation data from Seattle, Washington, the United States. The hybrid forecast model was proved to produce more accurate and reliable results and to degrade less in longer predictions than three individual models. The average one-week step ahead prediction has been raised from 11.21% (chaotic model), 12.93% (ANN), and 12.94% (PLS-SVM) to 9.38%. Five-week average has been raised from 13.02% (chaotic model), 15.69% (ANN), and 15.92% (PLS-SVM) to 11.27%. PMID:25301508

  9. Computer-aided classification of optical images for diagnosis of osteoarthritis in the finger joints.

    PubMed

    Zhang, Jiang; Wang, James Z; Yuan, Zhen; Sobel, Eric S; Jiang, Huabei

    2011-01-01

    This study presents a computer-aided classification method to distinguish osteoarthritis finger joints from healthy ones based on the functional images captured by x-ray guided diffuse optical tomography. Three imaging features, joint space width, optical absorption, and scattering coefficients, are employed to train a Least Squares Support Vector Machine (LS-SVM) classifier for osteoarthritis classification. The 10-fold validation results show that all osteoarthritis joints are clearly identified and all healthy joints are ruled out by the LS-SVM classifier. The best sensitivity, specificity, and overall accuracy of the classification by experienced technicians based on manual calculation of optical properties and visual examination of optical images are only 85%, 93%, and 90%, respectively. Therefore, our LS-SVM based computer-aided classification is a considerably improved method for osteoarthritis diagnosis.

  10. Machine learning algorithms for mode-of-action classification in toxicity assessment.

    PubMed

    Zhang, Yile; Wong, Yau Shu; Deng, Jian; Anton, Cristina; Gabos, Stephan; Zhang, Weiping; Huang, Dorothy Yu; Jin, Can

    2016-01-01

    Real Time Cell Analysis (RTCA) technology is used to monitor cellular changes continuously over the entire exposure period. Combining with different testing concentrations, the profiles have potential in probing the mode of action (MOA) of the testing substances. In this paper, we present machine learning approaches for MOA assessment. Computational tools based on artificial neural network (ANN) and support vector machine (SVM) are developed to analyze the time-concentration response curves (TCRCs) of human cell lines responding to tested chemicals. The techniques are capable of learning data from given TCRCs with known MOA information and then making MOA classification for the unknown toxicity. A novel data processing step based on wavelet transform is introduced to extract important features from the original TCRC data. From the dose response curves, time interval leading to higher classification success rate can be selected as input to enhance the performance of the machine learning algorithm. This is particularly helpful when handling cases with limited and imbalanced data. The validation of the proposed method is demonstrated by the supervised learning algorithm applied to the exposure data of HepG2 cell line to 63 chemicals with 11 concentrations in each test case. Classification success rate in the range of 85 to 95 % are obtained using SVM for MOA classification with two clusters to cases up to four clusters. Wavelet transform is capable of capturing important features of TCRCs for MOA classification. The proposed SVM scheme incorporated with wavelet transform has a great potential for large scale MOA classification and high-through output chemical screening.

  11. Mapping the spatial distribution of Aedes aegypti and Aedes albopictus.

    PubMed

    Ding, Fangyu; Fu, Jingying; Jiang, Dong; Hao, Mengmeng; Lin, Gang

    2018-02-01

    Mosquito-borne infectious diseases, such as Rift Valley fever, Dengue, Chikungunya and Zika, have caused mass human death with the transnational expansion fueled by economic globalization. Simulating the distribution of the disease vectors is of great importance in formulating public health planning and disease control strategies. In the present study, we simulated the global distribution of Aedes aegypti and Aedes albopictus at a 5×5km spatial resolution with high-dimensional multidisciplinary datasets and machine learning methods Three relatively popular and robust machine learning models, including support vector machine (SVM), gradient boosting machine (GBM) and random forest (RF), were used. During the fine-tuning process based on training datasets of A. aegypti and A. albopictus, RF models achieved the highest performance with an area under the curve (AUC) of 0.973 and 0.974, respectively, followed by GBM (AUC of 0.971 and 0.972, respectively) and SVM (AUC of 0.963 and 0.964, respectively) models. The simulation difference between RF and GBM models was not statistically significant (p>0.05) based on the validation datasets, whereas statistically significant differences (p<0.05) were observed for RF and GBM simulations compared with SVM simulations. From the simulated maps derived from RF models, we observed that the distribution of A. albopictus was wider than that of A. aegypti along a latitudinal gradient. The discriminatory power of each factor in simulating the global distribution of the two species was also analyzed. Our results provided fundamental information for further study on disease transmission simulation and risk assessment. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Financial Distress Prediction using Linear Discriminant Analysis and Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Santoso, Noviyanti; Wibowo, Wahyu

    2018-03-01

    A financial difficulty is the early stages before the bankruptcy. Bankruptcies caused by the financial distress can be seen from the financial statements of the company. The ability to predict financial distress became an important research topic because it can provide early warning for the company. In addition, predicting financial distress is also beneficial for investors and creditors. This research will be made the prediction model of financial distress at industrial companies in Indonesia by comparing the performance of Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) combined with variable selection technique. The result of this research is prediction model based on hybrid Stepwise-SVM obtains better balance among fitting ability, generalization ability and model stability than the other models.

  13. Data on Support Vector Machines (SVM) model to forecast photovoltaic power.

    PubMed

    Malvoni, M; De Giorgi, M G; Congedo, P M

    2016-12-01

    The data concern the photovoltaic (PV) power, forecasted by a hybrid model that considers weather variations and applies a technique to reduce the input data size, as presented in the paper entitled "Photovoltaic forecast based on hybrid pca-lssvm using dimensionality reducted data" (M. Malvoni, M.G. De Giorgi, P.M. Congedo, 2015) [1]. The quadratic Renyi entropy criteria together with the principal component analysis (PCA) are applied to the Least Squares Support Vector Machines (LS-SVM) to predict the PV power in the day-ahead time frame. The data here shared represent the proposed approach results. Hourly PV power predictions for 1,3,6,12, 24 ahead hours and for different data reduction sizes are provided in Supplementary material.

  14. A Novel Bearing Multi-Fault Diagnosis Approach Based on Weighted Permutation Entropy and an Improved SVM Ensemble Classifier.

    PubMed

    Zhou, Shenghan; Qian, Silin; Chang, Wenbing; Xiao, Yiyong; Cheng, Yang

    2018-06-14

    Timely and accurate state detection and fault diagnosis of rolling element bearings are very critical to ensuring the reliability of rotating machinery. This paper proposes a novel method of rolling bearing fault diagnosis based on a combination of ensemble empirical mode decomposition (EEMD), weighted permutation entropy (WPE) and an improved support vector machine (SVM) ensemble classifier. A hybrid voting (HV) strategy that combines SVM-based classifiers and cloud similarity measurement (CSM) was employed to improve the classification accuracy. First, the WPE value of the bearing vibration signal was calculated to detect the fault. Secondly, if a bearing fault occurred, the vibration signal was decomposed into a set of intrinsic mode functions (IMFs) by EEMD. The WPE values of the first several IMFs were calculated to form the fault feature vectors. Then, the SVM ensemble classifier was composed of binary SVM and the HV strategy to identify the bearing multi-fault types. Finally, the proposed model was fully evaluated by experiments and comparative studies. The results demonstrate that the proposed method can effectively detect bearing faults and maintain a high accuracy rate of fault recognition when a small number of training samples are available.

  15. Potential of cancer screening with serum surface-enhanced Raman spectroscopy and a support vector machine

    NASA Astrophysics Data System (ADS)

    Li, S. X.; Zhang, Y. J.; Zeng, Q. Y.; Li, L. F.; Guo, Z. Y.; Liu, Z. M.; Xiong, H. L.; Liu, S. H.

    2014-06-01

    Cancer is the most common disease to threaten human health. The ability to screen individuals with malignant tumours with only a blood sample would be greatly advantageous to early diagnosis and intervention. This study explores the possibility of discriminating between cancer patients and normal subjects with serum surface-enhanced Raman spectroscopy (SERS) and a support vector machine (SVM) through a peripheral blood sample. A total of 130 blood samples were obtained from patients with liver cancer, colonic cancer, esophageal cancer, nasopharyngeal cancer, gastric cancer, as well as 113 blood samples from normal volunteers. Several diagnostic models were built with the serum SERS spectra using SVM and principal component analysis (PCA) techniques. The results show that a diagnostic accuracy of 85.5% is acquired with a PCA algorithm, while a diagnostic accuracy of 95.8% is obtained using radial basis function (RBF), PCA-SVM methods. The results prove that a RBF kernel PCA-SVM technique is superior to PCA and conventional SVM (C-SVM) algorithms in classification serum SERS spectra. The study demonstrates that serum SERS, in combination with SVM techniques, has great potential for screening cancerous patients with any solid malignant tumour through a peripheral blood sample.

  16. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms.

    PubMed

    Karthick, P A; Ghosh, Diptasree Maitra; Ramakrishnan, S

    2018-02-01

    Surface electromyography (sEMG) based muscle fatigue research is widely preferred in sports science and occupational/rehabilitation studies due to its noninvasiveness. However, these signals are complex, multicomponent and highly nonstationary with large inter-subject variations, particularly during dynamic contractions. Hence, time-frequency based machine learning methodologies can improve the design of automated system for these signals. In this work, the analysis based on high-resolution time-frequency methods, namely, Stockwell transform (S-transform), B-distribution (BD) and extended modified B-distribution (EMBD) are proposed to differentiate the dynamic muscle nonfatigue and fatigue conditions. The nonfatigue and fatigue segments of sEMG signals recorded from the biceps brachii of 52 healthy volunteers are preprocessed and subjected to S-transform, BD and EMBD. Twelve features are extracted from each method and prominent features are selected using genetic algorithm (GA) and binary particle swarm optimization (BPSO). Five machine learning algorithms, namely, naïve Bayes, support vector machine (SVM) of polynomial and radial basis kernel, random forest and rotation forests are used for the classification. The results show that all the proposed time-frequency distributions (TFDs) are able to show the nonstationary variations of sEMG signals. Most of the features exhibit statistically significant difference in the muscle fatigue and nonfatigue conditions. The maximum number of features (66%) is reduced by GA and BPSO for EMBD and BD-TFD respectively. The combination of EMBD- polynomial kernel based SVM is found to be most accurate (91% accuracy) in classifying the conditions with the features selected using GA. The proposed methods are found to be capable of handling the nonstationary and multicomponent variations of sEMG signals recorded in dynamic fatiguing contractions. Particularly, the combination of EMBD- polynomial kernel based SVM could be used to detect the dynamic muscle fatigue conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Source localization in an ocean waveguide using supervised machine learning.

    PubMed

    Niu, Haiqiang; Reeves, Emma; Gerstoft, Peter

    2017-09-01

    Source localization in ocean acoustics is posed as a machine learning problem in which data-driven methods learn source ranges directly from observed acoustic data. The pressure received by a vertical linear array is preprocessed by constructing a normalized sample covariance matrix and used as the input for three machine learning methods: feed-forward neural networks (FNN), support vector machines (SVM), and random forests (RF). The range estimation problem is solved both as a classification problem and as a regression problem by these three machine learning algorithms. The results of range estimation for the Noise09 experiment are compared for FNN, SVM, RF, and conventional matched-field processing and demonstrate the potential of machine learning for underwater source localization.

  18. Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals

    NASA Astrophysics Data System (ADS)

    Meyer, Hanna; Kühnlein, Meike; Appelhans, Tim; Nauss, Thomas

    2016-03-01

    Machine learning (ML) algorithms have successfully been demonstrated to be valuable tools in satellite-based rainfall retrievals which show the practicability of using ML algorithms when faced with high dimensional and complex data. Moreover, recent developments in parallel computing with ML present new possibilities for training and prediction speed and therefore make their usage in real-time systems feasible. This study compares four ML algorithms - random forests (RF), neural networks (NNET), averaged neural networks (AVNNET) and support vector machines (SVM) - for rainfall area detection and rainfall rate assignment using MSG SEVIRI data over Germany. Satellite-based proxies for cloud top height, cloud top temperature, cloud phase and cloud water path serve as predictor variables. The results indicate an overestimation of rainfall area delineation regardless of the ML algorithm (averaged bias = 1.8) but a high probability of detection ranging from 81% (SVM) to 85% (NNET). On a 24-hour basis, the performance of the rainfall rate assignment yielded R2 values between 0.39 (SVM) and 0.44 (AVNNET). Though the differences in the algorithms' performance were rather small, NNET and AVNNET were identified as the most suitable algorithms. On average, they demonstrated the best performance in rainfall area delineation as well as in rainfall rate assignment. NNET's computational speed is an additional advantage in work with large datasets such as in remote sensing based rainfall retrievals. However, since no single algorithm performed considerably better than the others we conclude that further research in providing suitable predictors for rainfall is of greater necessity than an optimization through the choice of the ML algorithm.

  19. A study of speech emotion recognition based on hybrid algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Ju-xia; Zhang, Chao; Lv, Zhao; Rao, Yao-quan; Wu, Xiao-pei

    2011-10-01

    To effectively improve the recognition accuracy of the speech emotion recognition system, a hybrid algorithm which combines Continuous Hidden Markov Model (CHMM), All-Class-in-One Neural Network (ACON) and Support Vector Machine (SVM) is proposed. In SVM and ACON methods, some global statistics are used as emotional features, while in CHMM method, instantaneous features are employed. The recognition rate by the proposed method is 92.25%, with the rejection rate to be 0.78%. Furthermore, it obtains the relative increasing of 8.53%, 4.69% and 0.78% compared with ACON, CHMM and SVM methods respectively. The experiment result confirms the efficiency of distinguishing anger, happiness, neutral and sadness emotional states.

  20. Cancer survival classification using integrated data sets and intermediate information.

    PubMed

    Kim, Shinuk; Park, Taesung; Kon, Mark

    2014-09-01

    Although numerous studies related to cancer survival have been published, increasing the prediction accuracy of survival classes still remains a challenge. Integration of different data sets, such as microRNA (miRNA) and mRNA, might increase the accuracy of survival class prediction. Therefore, we suggested a machine learning (ML) approach to integrate different data sets, and developed a novel method based on feature selection with Cox proportional hazard regression model (FSCOX) to improve the prediction of cancer survival time. FSCOX provides us with intermediate survival information, which is usually discarded when separating survival into 2 groups (short- and long-term), and allows us to perform survival analysis. We used an ML-based protocol for feature selection, integrating information from miRNA and mRNA expression profiles at the feature level. To predict survival phenotypes, we used the following classifiers, first, existing ML methods, support vector machine (SVM) and random forest (RF), second, a new median-based classifier using FSCOX (FSCOX_median), and third, an SVM classifier using FSCOX (FSCOX_SVM). We compared these methods using 3 types of cancer tissue data sets: (i) miRNA expression, (ii) mRNA expression, and (iii) combined miRNA and mRNA expression. The latter data set included features selected either from the combined miRNA/mRNA profile or independently from miRNAs and mRNAs profiles (IFS). In the ovarian data set, the accuracy of survival classification using the combined miRNA/mRNA profiles with IFS was 75% using RF, 86.36% using SVM, 84.09% using FSCOX_median, and 88.64% using FSCOX_SVM with a balanced 22 short-term and 22 long-term survivor data set. These accuracies are higher than those using miRNA alone (70.45%, RF; 75%, SVM; 75%, FSCOX_median; and 75%, FSCOX_SVM) or mRNA alone (65.91%, RF; 63.64%, SVM; 72.73%, FSCOX_median; and 70.45%, FSCOX_SVM). Similarly in the glioblastoma multiforme data, the accuracy of miRNA/mRNA using IFS was 75.51% (RF), 87.76% (SVM) 85.71% (FSCOX_median), 85.71% (FSCOX_SVM). These results are higher than the results of using miRNA expression and mRNA expression alone. In addition we predict 16 hsa-miR-23b and hsa-miR-27b target genes in ovarian cancer data sets, obtained by SVM-based feature selection through integration of sequence information and gene expression profiles. Among the approaches used, the integrated miRNA and mRNA data set yielded better results than the individual data sets. The best performance was achieved using the FSCOX_SVM method with independent feature selection, which uses intermediate survival information between short-term and long-term survival time and the combination of the 2 different data sets. The results obtained using the combined data set suggest that there are some strong interactions between miRNA and mRNA features that are not detectable in the individual analyses. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Wavelet SVM in Reproducing Kernel Hilbert Space for hyperspectral remote sensing image classification

    NASA Astrophysics Data System (ADS)

    Du, Peijun; Tan, Kun; Xing, Xiaoshi

    2010-12-01

    Combining Support Vector Machine (SVM) with wavelet analysis, we constructed wavelet SVM (WSVM) classifier based on wavelet kernel functions in Reproducing Kernel Hilbert Space (RKHS). In conventional kernel theory, SVM is faced with the bottleneck of kernel parameter selection which further results in time-consuming and low classification accuracy. The wavelet kernel in RKHS is a kind of multidimensional wavelet function that can approximate arbitrary nonlinear functions. Implications on semiparametric estimation are proposed in this paper. Airborne Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing image with 64 bands and Reflective Optics System Imaging Spectrometer (ROSIS) data with 115 bands were used to experiment the performance and accuracy of the proposed WSVM classifier. The experimental results indicate that the WSVM classifier can obtain the highest accuracy when using the Coiflet Kernel function in wavelet transform. In contrast with some traditional classifiers, including Spectral Angle Mapping (SAM) and Minimum Distance Classification (MDC), and SVM classifier using Radial Basis Function kernel, the proposed wavelet SVM classifier using the wavelet kernel function in Reproducing Kernel Hilbert Space is capable of improving classification accuracy obviously.

  2. Combining SVM and flame radiation to forecast BOF end-point

    NASA Astrophysics Data System (ADS)

    Wen, Hongyuan; Zhao, Qi; Xu, Lingfei; Zhou, Munchun; Chen, Yanru

    2009-05-01

    Because of complex reactions in Basic Oxygen Furnace (BOF) for steelmaking, the main end-point control methods of steelmaking have insurmountable difficulties. Aiming at these problems, a support vector machine (SVM) method for forecasting the BOF steelmaking end-point is presented based on flame radiation information. The basis is that the furnace flame is the performance of the carbon oxygen reaction, because the carbon oxygen reaction is the major reaction in the steelmaking furnace. The system can acquire spectrum and image data quickly in the steelmaking adverse environment. The structure of SVM and the multilayer feed-ward neural network are similar, but SVM model could overcome the inherent defects of the latter. The model is trained and forecasted by using SVM and some appropriate variables of light and image characteristic information. The model training process follows the structure risk minimum (SRM) criterion and the design parameter can be adjusted automatically according to the sampled data in the training process. Experimental results indicate that the prediction precision of the SVM model and the executive time both meet the requirements of end-point judgment online.

  3. Comparison of two Classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia

    NASA Astrophysics Data System (ADS)

    Rokni Deilmai, B.; Ahmad, B. Bin; Zabihi, H.

    2014-06-01

    Mapping is essential for the analysis of the land use and land cover, which influence many environmental processes and properties. For the purpose of the creation of land cover maps, it is important to minimize error. These errors will propagate into later analyses based on these land cover maps. The reliability of land cover maps derived from remotely sensed data depends on an accurate classification. In this study, we have analyzed multispectral data using two different classifiers including Maximum Likelihood Classifier (MLC) and Support Vector Machine (SVM). To pursue this aim, Landsat Thematic Mapper data and identical field-based training sample datasets in Johor Malaysia used for each classification method, which results indicate in five land cover classes forest, oil palm, urban area, water, rubber. Classification results indicate that SVM was more accurate than MLC. With demonstrated capability to produce reliable cover results, the SVM methods should be especially useful for land cover classification.

  4. Use of Machine Learning Classifiers and Sensor Data to Detect Neurological Deficit in Stroke Patients.

    PubMed

    Park, Eunjeong; Chang, Hyuk-Jae; Nam, Hyo Suk

    2017-04-18

    The pronator drift test (PDT), a neurological examination, is widely used in clinics to measure motor weakness of stroke patients. The aim of this study was to develop a PDT tool with machine learning classifiers to detect stroke symptoms based on quantification of proximal arm weakness using inertial sensors and signal processing. We extracted features of drift and pronation from accelerometer signals of wearable devices on the inner wrists of 16 stroke patients and 10 healthy controls. Signal processing and feature selection approach were applied to discriminate PDT features used to classify stroke patients. A series of machine learning techniques, namely support vector machine (SVM), radial basis function network (RBFN), and random forest (RF), were implemented to discriminate stroke patients from controls with leave-one-out cross-validation. Signal processing by the PDT tool extracted a total of 12 PDT features from sensors. Feature selection abstracted the major attributes from the 12 PDT features to elucidate the dominant characteristics of proximal weakness of stroke patients using machine learning classification. Our proposed PDT classifiers had an area under the receiver operating characteristic curve (AUC) of .806 (SVM), .769 (RBFN), and .900 (RF) without feature selection, and feature selection improves the AUCs to .913 (SVM), .956 (RBFN), and .975 (RF), representing an average performance enhancement of 15.3%. Sensors and machine learning methods can reliably detect stroke signs and quantify proximal arm weakness. Our proposed solution will facilitate pervasive monitoring of stroke patients. ©Eunjeong Park, Hyuk-Jae Chang, Hyo Suk Nam. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 18.04.2017.

  5. A Matter of Time: Faster Percolator Analysis via Efficient SVM Learning for Large-Scale Proteomics.

    PubMed

    Halloran, John T; Rocke, David M

    2018-05-04

    Percolator is an important tool for greatly improving the results of a database search and subsequent downstream analysis. Using support vector machines (SVMs), Percolator recalibrates peptide-spectrum matches based on the learned decision boundary between targets and decoys. To improve analysis time for large-scale data sets, we update Percolator's SVM learning engine through software and algorithmic optimizations rather than heuristic approaches that necessitate the careful study of their impact on learned parameters across different search settings and data sets. We show that by optimizing Percolator's original learning algorithm, l 2 -SVM-MFN, large-scale SVM learning requires nearly only a third of the original runtime. Furthermore, we show that by employing the widely used Trust Region Newton (TRON) algorithm instead of l 2 -SVM-MFN, large-scale Percolator SVM learning is reduced to nearly only a fifth of the original runtime. Importantly, these speedups only affect the speed at which Percolator converges to a global solution and do not alter recalibration performance. The upgraded versions of both l 2 -SVM-MFN and TRON are optimized within the Percolator codebase for multithreaded and single-thread use and are available under Apache license at bitbucket.org/jthalloran/percolator_upgrade .

  6. Identification of handwriting by using the genetic algorithm (GA) and support vector machine (SVM)

    NASA Astrophysics Data System (ADS)

    Zhang, Qigui; Deng, Kai

    2016-12-01

    As portable digital camera and a camera phone comes more and more popular, and equally pressing is meeting the requirements of people to shoot at any time, to identify and storage handwritten character. In this paper, genetic algorithm(GA) and support vector machine(SVM)are used for identification of handwriting. Compare with parameters-optimized method, this technique overcomes two defects: first, it's easy to trap in the local optimum; second, finding the best parameters in the larger range will affects the efficiency of classification and prediction. As the experimental results suggest, GA-SVM has a higher recognition rate.

  7. Evaluating uncertainties in multi-layer soil moisture estimation with support vector machines and ensemble Kalman filtering

    NASA Astrophysics Data System (ADS)

    Liu, Di; Mishra, Ashok K.; Yu, Zhongbo

    2016-07-01

    This paper examines the combination of support vector machines (SVM) and the dual ensemble Kalman filter (EnKF) technique to estimate root zone soil moisture at different soil layers up to 100 cm depth. Multiple experiments are conducted in a data rich environment to construct and validate the SVM model and to explore the effectiveness and robustness of the EnKF technique. It was observed that the performance of SVM relies more on the initial length of training set than other factors (e.g., cost function, regularization parameter, and kernel parameters). The dual EnKF technique proved to be efficient to improve SVM with observed data either at each time step or at a flexible time steps. The EnKF technique can reach its maximum efficiency when the updating ensemble size approaches a certain threshold. It was observed that the SVM model performance for the multi-layer soil moisture estimation can be influenced by the rainfall magnitude (e.g., dry and wet spells).

  8. Support Vector Machine algorithm for regression and classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Chenggang; Zavaljevski, Nela

    2001-08-01

    The software is an implementation of the Support Vector Machine (SVM) algorithm that was invented and developed by Vladimir Vapnik and his co-workers at AT&T Bell Laboratories. The specific implementation reported here is an Active Set method for solving a quadratic optimization problem that forms the major part of any SVM program. The implementation is tuned to specific constraints generated in the SVM learning. Thus, it is more efficient than general-purpose quadratic optimization programs. A decomposition method has been implemented in the software that enables processing large data sets. The size of the learning data is virtually unlimited by themore » capacity of the computer physical memory. The software is flexible and extensible. Two upper bounds are implemented to regulate the SVM learning for classification, which allow users to adjust the false positive and false negative rates. The software can be used either as a standalone, general-purpose SVM regression or classification program, or be embedded into a larger software system.« less

  9. Support vector machine classification and characterization of age-related reorganization of functional brain networks

    PubMed Central

    Meier, Timothy B.; Desphande, Alok S.; Vergun, Svyatoslav; Nair, Veena A.; Song, Jie; Biswal, Bharat B.; Meyerand, Mary E.; Birn, Rasmus M.; Prabhakaran, Vivek

    2012-01-01

    Most of what is known about the reorganization of functional brain networks that accompanies normal aging is based on neuroimaging studies in which participants perform specific tasks. In these studies, reorganization is defined by the differences in task activation between young and old adults. However, task activation differences could be the result of differences in task performance, strategy, or motivation, and not necessarily reflect reorganization. Resting-state fMRI provides a method of investigating functional brain networks without such confounds. Here, a support vector machine (SVM) classifier was used in an attempt to differentiate older adults from younger adults based on their resting-state functional connectivity. In addition, the information used by the SVM was investigated to see what functional connections best differentiated younger adult brains from older adult brains. Three separate resting-state scans from 26 younger adults (18-35 yrs) and 26 older adults (55-85) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available in the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 100 seed-regions from four functional networks with 5 mm3 radius were defined based on a recent study using machine learning classifiers on adolescent brains. Time-series for every seed-region were averaged and three matrices of z-transformed correlation coefficients were created for each subject corresponding to each individual’s three resting-state scans. SVM was then applied using leave-one-out cross-validation. The SVM classifier was 84% accurate in classifying older and younger adult brains. The majority of the connections used by the classifier to distinguish subjects by age came from seed-regions belonging to the sensorimotor and cingulo-opercular networks. These results suggest that age-related decreases in positive correlations within the cingulo-opercular and default networks, and decreases in negative correlations between the default and sensorimotor networks, are the distinguishing characteristics of age-related reorganization. PMID:22227886

  10. Support vector machine classification and characterization of age-related reorganization of functional brain networks.

    PubMed

    Meier, Timothy B; Desphande, Alok S; Vergun, Svyatoslav; Nair, Veena A; Song, Jie; Biswal, Bharat B; Meyerand, Mary E; Birn, Rasmus M; Prabhakaran, Vivek

    2012-03-01

    Most of what is known about the reorganization of functional brain networks that accompanies normal aging is based on neuroimaging studies in which participants perform specific tasks. In these studies, reorganization is defined by the differences in task activation between young and old adults. However, task activation differences could be the result of differences in task performance, strategy, or motivation, and not necessarily reflect reorganization. Resting-state fMRI provides a method of investigating functional brain networks without such confounds. Here, a support vector machine (SVM) classifier was used in an attempt to differentiate older adults from younger adults based on their resting-state functional connectivity. In addition, the information used by the SVM was investigated to see what functional connections best differentiated younger adult brains from older adult brains. Three separate resting-state scans from 26 younger adults (18-35 yrs) and 26 older adults (55-85) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available in the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 100 seed-regions from four functional networks with 5mm(3) radius were defined based on a recent study using machine learning classifiers on adolescent brains. Time-series for every seed-region were averaged and three matrices of z-transformed correlation coefficients were created for each subject corresponding to each individual's three resting-state scans. SVM was then applied using leave-one-out cross-validation. The SVM classifier was 84% accurate in classifying older and younger adult brains. The majority of the connections used by the classifier to distinguish subjects by age came from seed-regions belonging to the sensorimotor and cingulo-opercular networks. These results suggest that age-related decreases in positive correlations within the cingulo-opercular and default networks, and decreases in negative correlations between the default and sensorimotor networks, are the distinguishing characteristics of age-related reorganization. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. SVM classifier on chip for melanoma detection.

    PubMed

    Afifi, Shereen; GholamHosseini, Hamid; Sinha, Roopak

    2017-07-01

    Support Vector Machine (SVM) is a common classifier used for efficient classification with high accuracy. SVM shows high accuracy for classifying melanoma (skin cancer) clinical images within computer-aided diagnosis systems used by skin cancer specialists to detect melanoma early and save lives. We aim to develop a medical low-cost handheld device that runs a real-time embedded SVM-based diagnosis system for use in primary care for early detection of melanoma. In this paper, an optimized SVM classifier is implemented onto a recent FPGA platform using the latest design methodology to be embedded into the proposed device for realizing online efficient melanoma detection on a single system on chip/device. The hardware implementation results demonstrate a high classification accuracy of 97.9% and a significant acceleration factor of 26 from equivalent software implementation on an embedded processor, with 34% of resources utilization and 2 watts for power consumption. Consequently, the implemented system meets crucial embedded systems constraints of high performance and low cost, resources utilization and power consumption, while achieving high classification accuracy.

  12. Constructing and Validating High-Performance MIEC-SVM Models in Virtual Screening for Kinases: A Better Way for Actives Discovery

    PubMed Central

    Sun, Huiyong; Pan, Peichen; Tian, Sheng; Xu, Lei; Kong, Xiaotian; Li, Youyong; Dan Li; Hou, Tingjun

    2016-01-01

    The MIEC-SVM approach, which combines molecular interaction energy components (MIEC) derived from free energy decomposition and support vector machine (SVM), has been found effective in capturing the energetic patterns of protein-peptide recognition. However, the performance of this approach in identifying small molecule inhibitors of drug targets has not been well assessed and validated by experiments. Thereafter, by combining different model construction protocols, the issues related to developing best MIEC-SVM models were firstly discussed upon three kinase targets (ABL, ALK, and BRAF). As for the investigated targets, the optimized MIEC-SVM models performed much better than the models based on the default SVM parameters and Autodock for the tested datasets. Then, the proposed strategy was utilized to screen the Specs database for discovering potential inhibitors of the ALK kinase. The experimental results showed that the optimized MIEC-SVM model, which identified 7 actives with IC50 < 10 μM from 50 purchased compounds (namely hit rate of 14%, and 4 in nM level) and performed much better than Autodock (3 actives with IC50 < 10 μM from 50 purchased compounds, namely hit rate of 6%, and 2 in nM level), suggesting that the proposed strategy is a powerful tool in structure-based virtual screening. PMID:27102549

  13. Constructing and Validating High-Performance MIEC-SVM Models in Virtual Screening for Kinases: A Better Way for Actives Discovery.

    PubMed

    Sun, Huiyong; Pan, Peichen; Tian, Sheng; Xu, Lei; Kong, Xiaotian; Li, Youyong; Dan Li; Hou, Tingjun

    2016-04-22

    The MIEC-SVM approach, which combines molecular interaction energy components (MIEC) derived from free energy decomposition and support vector machine (SVM), has been found effective in capturing the energetic patterns of protein-peptide recognition. However, the performance of this approach in identifying small molecule inhibitors of drug targets has not been well assessed and validated by experiments. Thereafter, by combining different model construction protocols, the issues related to developing best MIEC-SVM models were firstly discussed upon three kinase targets (ABL, ALK, and BRAF). As for the investigated targets, the optimized MIEC-SVM models performed much better than the models based on the default SVM parameters and Autodock for the tested datasets. Then, the proposed strategy was utilized to screen the Specs database for discovering potential inhibitors of the ALK kinase. The experimental results showed that the optimized MIEC-SVM model, which identified 7 actives with IC50 < 10 μM from 50 purchased compounds (namely hit rate of 14%, and 4 in nM level) and performed much better than Autodock (3 actives with IC50 < 10 μM from 50 purchased compounds, namely hit rate of 6%, and 2 in nM level), suggesting that the proposed strategy is a powerful tool in structure-based virtual screening.

  14. Selecting Feature Subsets Based on SVM-RFE and the Overlapping Ratio with Applications in Bioinformatics.

    PubMed

    Lin, Xiaohui; Li, Chao; Zhang, Yanhui; Su, Benzhe; Fan, Meng; Wei, Hai

    2017-12-26

    Feature selection is an important topic in bioinformatics. Defining informative features from complex high dimensional biological data is critical in disease study, drug development, etc. Support vector machine-recursive feature elimination (SVM-RFE) is an efficient feature selection technique that has shown its power in many applications. It ranks the features according to the recursive feature deletion sequence based on SVM. In this study, we propose a method, SVM-RFE-OA, which combines the classification accuracy rate and the average overlapping ratio of the samples to determine the number of features to be selected from the feature rank of SVM-RFE. Meanwhile, to measure the feature weights more accurately, we propose a modified SVM-RFE-OA (M-SVM-RFE-OA) algorithm that temporally screens out the samples lying in a heavy overlapping area in each iteration. The experiments on the eight public biological datasets show that the discriminative ability of the feature subset could be measured more accurately by combining the classification accuracy rate with the average overlapping degree of the samples compared with using the classification accuracy rate alone, and shielding the samples in the overlapping area made the calculation of the feature weights more stable and accurate. The methods proposed in this study can also be used with other RFE techniques to define potential biomarkers from big biological data.

  15. Compound Structure-Independent Activity Prediction in High-Dimensional Target Space.

    PubMed

    Balfer, Jenny; Hu, Ye; Bajorath, Jürgen

    2014-08-01

    Profiling of compound libraries against arrays of targets has become an important approach in pharmaceutical research. The prediction of multi-target compound activities also represents an attractive task for machine learning with potential for drug discovery applications. Herein, we have explored activity prediction in high-dimensional target space. Different types of models were derived to predict multi-target activities. The models included naïve Bayesian (NB) and support vector machine (SVM) classifiers based upon compound structure information and NB models derived on the basis of activity profiles, without considering compound structure. Because the latter approach can be applied to incomplete training data and principally depends on the feature independence assumption, SVM modeling was not applicable in this case. Furthermore, iterative hybrid NB models making use of both activity profiles and compound structure information were built. In high-dimensional target space, NB models utilizing activity profile data were found to yield more accurate activity predictions than structure-based NB and SVM models or hybrid models. An in-depth analysis of activity profile-based models revealed the presence of correlation effects across different targets and rationalized prediction accuracy. Taken together, the results indicate that activity profile information can be effectively used to predict the activity of test compounds against novel targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Pharmaceutical Raw Material Identification Using Miniature Near-Infrared (MicroNIR) Spectroscopy and Supervised Pattern Recognition Using Support Vector Machine

    PubMed Central

    Hsiung, Chang; Pederson, Christopher G.; Zou, Peng; Smith, Valton; von Gunten, Marc; O’Brien, Nada A.

    2016-01-01

    Near-infrared spectroscopy as a rapid and non-destructive analytical technique offers great advantages for pharmaceutical raw material identification (RMID) to fulfill the quality and safety requirements in pharmaceutical industry. In this study, we demonstrated the use of portable miniature near-infrared (MicroNIR) spectrometers for NIR-based pharmaceutical RMID and solved two challenges in this area, model transferability and large-scale classification, with the aid of support vector machine (SVM) modeling. We used a set of 19 pharmaceutical compounds including various active pharmaceutical ingredients (APIs) and excipients and six MicroNIR spectrometers to test model transferability. For the test of large-scale classification, we used another set of 253 pharmaceutical compounds comprised of both chemically and physically different APIs and excipients. We compared SVM with conventional chemometric modeling techniques, including soft independent modeling of class analogy, partial least squares discriminant analysis, linear discriminant analysis, and quadratic discriminant analysis. Support vector machine modeling using a linear kernel, especially when combined with a hierarchical scheme, exhibited excellent performance in both model transferability and large-scale classification. Hence, ultra-compact, portable and robust MicroNIR spectrometers coupled with SVM modeling can make on-site and in situ pharmaceutical RMID for large-volume applications highly achievable. PMID:27029624

  17. Constructing and validating readability models: the method of integrating multilevel linguistic features with machine learning.

    PubMed

    Sung, Yao-Ting; Chen, Ju-Ling; Cha, Ji-Her; Tseng, Hou-Chiang; Chang, Tao-Hsing; Chang, Kuo-En

    2015-06-01

    Multilevel linguistic features have been proposed for discourse analysis, but there have been few applications of multilevel linguistic features to readability models and also few validations of such models. Most traditional readability formulae are based on generalized linear models (GLMs; e.g., discriminant analysis and multiple regression), but these models have to comply with certain statistical assumptions about data properties and include all of the data in formulae construction without pruning the outliers in advance. The use of such readability formulae tends to produce a low text classification accuracy, while using a support vector machine (SVM) in machine learning can enhance the classification outcome. The present study constructed readability models by integrating multilevel linguistic features with SVM, which is more appropriate for text classification. Taking the Chinese language as an example, this study developed 31 linguistic features as the predicting variables at the word, semantic, syntax, and cohesion levels, with grade levels of texts as the criterion variable. The study compared four types of readability models by integrating unilevel and multilevel linguistic features with GLMs and an SVM. The results indicate that adopting a multilevel approach in readability analysis provides a better representation of the complexities of both texts and the reading comprehension process.

  18. Exploiting machine learning algorithms for tree species classification in a semiarid woodland using RapidEye image

    NASA Astrophysics Data System (ADS)

    Adelabu, Samuel; Mutanga, Onisimo; Adam, Elhadi; Cho, Moses Azong

    2013-01-01

    Classification of different tree species in semiarid areas can be challenging as a result of the change in leaf structure and orientation due to soil moisture constraints. Tree species mapping is, however, a key parameter for forest management in semiarid environments. In this study, we examined the suitability of 5-band RapidEye satellite data for the classification of five tree species in mopane woodland of Botswana using machine leaning algorithms with limited training samples.We performed classification using random forest (RF) and support vector machines (SVM) based on EnMap box. The overall accuracies for classifying the five tree species was 88.75 and 85% for both SVM and RF, respectively. We also demonstrated that the new red-edge band in the RapidEye sensor has the potential for classifying tree species in semiarid environments when integrated with other standard bands. Similarly, we observed that where there are limited training samples, SVM is preferred over RF. Finally, we demonstrated that the two accuracy measures of quantity and allocation disagreement are simpler and more helpful for the vast majority of remote sensing classification process than the kappa coefficient. Overall, high species classification can be achieved using strategically located RapidEye bands integrated with advanced processing algorithms.

  19. Prediction and analysis of beta-turns in proteins by support vector machine.

    PubMed

    Pham, Tho Hoan; Satou, Kenji; Ho, Tu Bao

    2003-01-01

    Tight turn has long been recognized as one of the three important features of proteins after the alpha-helix and beta-sheet. Tight turns play an important role in globular proteins from both the structural and functional points of view. More than 90% tight turns are beta-turns. Analysis and prediction of beta-turns in particular and tight turns in general are very useful for the design of new molecules such as drugs, pesticides, and antigens. In this paper, we introduce a support vector machine (SVM) approach to prediction and analysis of beta-turns. We have investigated two aspects of applying SVM to the prediction and analysis of beta-turns. First, we developed a new SVM method, called BTSVM, which predicts beta-turns of a protein from its sequence. The prediction results on the dataset of 426 non-homologous protein chains by sevenfold cross-validation technique showed that our method is superior to the other previous methods. Second, we analyzed how amino acid positions support (or prevent) the formation of beta-turns based on the "multivariable" classification model of a linear SVM. This model is more general than the other ones of previous statistical methods. Our analysis results are more comprehensive and easier to use than previously published analysis results.

  20. Intelligent Fault Diagnosis of Delta 3D Printers Using Attitude Sensors Based on Support Vector Machines

    PubMed Central

    He, Kun; Yang, Zhijun; Bai, Yun; Long, Jianyu; Li, Chuan

    2018-01-01

    Health condition is a vital factor affecting printing quality for a 3D printer. In this work, an attitude monitoring approach is proposed to diagnose the fault of the delta 3D printer using support vector machines (SVM). An attitude sensor was mounted on the moving platform of the printer to monitor its 3-axial attitude angle, angular velocity, vibratory acceleration and magnetic field intensity. The attitude data of the working printer were collected under different conditions involving 12 fault types and a normal condition. The collected data were analyzed for diagnosing the health condition. To this end, the combination of binary classification, one-against-one with least-square SVM, was adopted for fault diagnosis modelling by using all channels of attitude monitoring data in the experiment. For comparison, each one channel of the attitude monitoring data was employed for model training and testing. On the other hand, a back propagation neural network (BPNN) was also applied to diagnose fault using the same data. The best fault diagnosis accuracy (94.44%) was obtained when all channels of the attitude monitoring data were used with SVM modelling. The results indicate that the attitude monitoring with SVM is an effective method for the fault diagnosis of delta 3D printers. PMID:29690641

  1. Intelligent Fault Diagnosis of Delta 3D Printers Using Attitude Sensors Based on Support Vector Machines.

    PubMed

    He, Kun; Yang, Zhijun; Bai, Yun; Long, Jianyu; Li, Chuan

    2018-04-23

    Health condition is a vital factor affecting printing quality for a 3D printer. In this work, an attitude monitoring approach is proposed to diagnose the fault of the delta 3D printer using support vector machines (SVM). An attitude sensor was mounted on the moving platform of the printer to monitor its 3-axial attitude angle, angular velocity, vibratory acceleration and magnetic field intensity. The attitude data of the working printer were collected under different conditions involving 12 fault types and a normal condition. The collected data were analyzed for diagnosing the health condition. To this end, the combination of binary classification, one-against-one with least-square SVM, was adopted for fault diagnosis modelling by using all channels of attitude monitoring data in the experiment. For comparison, each one channel of the attitude monitoring data was employed for model training and testing. On the other hand, a back propagation neural network (BPNN) was also applied to diagnose fault using the same data. The best fault diagnosis accuracy (94.44%) was obtained when all channels of the attitude monitoring data were used with SVM modelling. The results indicate that the attitude monitoring with SVM is an effective method for the fault diagnosis of delta 3D printers.

  2. An SVM-Based Solution for Fault Detection in Wind Turbines

    PubMed Central

    Santos, Pedro; Villa, Luisa F.; Reñones, Aníbal; Bustillo, Andres; Maudes, Jesús

    2015-01-01

    Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets. PMID:25760051

  3. Prediction of human disease-associated phosphorylation sites with combined feature selection approach and support vector machine.

    PubMed

    Xu, Xiaoyi; Li, Ao; Wang, Minghui

    2015-08-01

    Phosphorylation is a crucial post-translational modification, which regulates almost all cellular processes in life. It has long been recognised that protein phosphorylation has close relationship with diseases, and therefore many researches are undertaken to predict phosphorylation sites for disease treatment and drug design. However, despite the success achieved by these approaches, no method focuses on disease-associated phosphorylation sites prediction. Herein, for the first time the authors propose a novel approach that is specially designed to identify associations between phosphorylation sites and human diseases. To take full advantage of local sequence information, a combined feature selection method-based support vector machine (CFS-SVM) that incorporates minimum-redundancy-maximum-relevance filtering process and forward feature selection process is developed. Performance evaluation shows that CFS-SVM is significantly better than the widely used classifiers including Bayesian decision theory, k nearest neighbour and random forest. With the extremely high specificity of 99%, CFS-SVM can still achieve a high sensitivity. Besides, tests on extra data confirm the effectiveness and general applicability of CFS-SVM approach on a variety of diseases. Finally, the analysis of selected features and corresponding kinases also help the understanding of the potential mechanism of disease-phosphorylation relationships and guide further experimental validations.

  4. Evaluation of effectiveness of wavelet based denoising schemes using ANN and SVM for bearing condition classification.

    PubMed

    Vijay, G S; Kumar, H S; Srinivasa Pai, P; Sriram, N S; Rao, Raj B K N

    2012-01-01

    The wavelet based denoising has proven its ability to denoise the bearing vibration signals by improving the signal-to-noise ratio (SNR) and reducing the root-mean-square error (RMSE). In this paper seven wavelet based denoising schemes have been evaluated based on the performance of the Artificial Neural Network (ANN) and the Support Vector Machine (SVM), for the bearing condition classification. The work consists of two parts, the first part in which a synthetic signal simulating the defective bearing vibration signal with Gaussian noise was subjected to these denoising schemes. The best scheme based on the SNR and the RMSE was identified. In the second part, the vibration signals collected from a customized Rolling Element Bearing (REB) test rig for four bearing conditions were subjected to these denoising schemes. Several time and frequency domain features were extracted from the denoised signals, out of which a few sensitive features were selected using the Fisher's Criterion (FC). Extracted features were used to train and test the ANN and the SVM. The best denoising scheme identified, based on the classification performances of the ANN and the SVM, was found to be the same as the one obtained using the synthetic signal.

  5. [Research on airborne hyperspectral identification of red tide organism dominant species based on SVM].

    PubMed

    Ma, Yi; Zhang, Jie; Cui, Ting-wei

    2006-12-01

    Airborne hyperspectral identification of red tide organism dominant species can provide technique for distinguishing red tide and its toxin, and provide support for scaling the disaster. Based on support vector machine(SVM), the present paper provides an identification model of red tide dominant species. Utilizing this model, the authors accomplished three identification experiments with the hyperspectral data obtained on 16th July, and 19th and 25th August, 2001. It is shown from the identification results that the model has a high precision and is not restricted by high dimension of the hyperspectral data.

  6. Unresolved Galaxy Classifier for ESA/Gaia mission: Support Vector Machines approach

    NASA Astrophysics Data System (ADS)

    Bellas-Velidis, Ioannis; Kontizas, Mary; Dapergolas, Anastasios; Livanou, Evdokia; Kontizas, Evangelos; Karampelas, Antonios

    A software package Unresolved Galaxy Classifier (UGC) is being developed for the ground-based pipeline of ESA's Gaia mission. It aims to provide an automated taxonomic classification and specific parameters estimation analyzing Gaia BP/RP instrument low-dispersion spectra of unresolved galaxies. The UGC algorithm is based on a supervised learning technique, the Support Vector Machines (SVM). The software is implemented in Java as two separate modules. An offline learning module provides functions for SVM-models training. Once trained, the set of models can be repeatedly applied to unknown galaxy spectra by the pipeline's application module. A library of galaxy models synthetic spectra, simulated for the BP/RP instrument, is used to train and test the modules. Science tests show a very good classification performance of UGC and relatively good regression performance, except for some of the parameters. Possible approaches to improve the performance are discussed.

  7. A Personalized Electronic Movie Recommendation System Based on Support Vector Machine and Improved Particle Swarm Optimization

    PubMed Central

    Wang, Xibin; Luo, Fengji; Qian, Ying; Ranzi, Gianluca

    2016-01-01

    With the rapid development of ICT and Web technologies, a large an amount of information is becoming available and this is producing, in some instances, a condition of information overload. Under these conditions, it is difficult for a person to locate and access useful information for making decisions. To address this problem, there are information filtering systems, such as the personalized recommendation system (PRS) considered in this paper, that assist a person in identifying possible products or services of interest based on his/her preferences. Among available approaches, collaborative Filtering (CF) is one of the most widely used recommendation techniques. However, CF has some limitations, e.g., the relatively simple similarity calculation, cold start problem, etc. In this context, this paper presents a new regression model based on the support vector machine (SVM) classification and an improved PSO (IPSO) for the development of an electronic movie PRS. In its implementation, a SVM classification model is first established to obtain a preliminary movie recommendation list based on which a SVM regression model is applied to predict movies’ ratings. The proposed PRS not only considers the movie’s content information but also integrates the users’ demographic and behavioral information to better capture the users’ interests and preferences. The efficiency of the proposed method is verified by a series of experiments based on the MovieLens benchmark data set. PMID:27898691

  8. A Personalized Electronic Movie Recommendation System Based on Support Vector Machine and Improved Particle Swarm Optimization.

    PubMed

    Wang, Xibin; Luo, Fengji; Qian, Ying; Ranzi, Gianluca

    2016-01-01

    With the rapid development of ICT and Web technologies, a large an amount of information is becoming available and this is producing, in some instances, a condition of information overload. Under these conditions, it is difficult for a person to locate and access useful information for making decisions. To address this problem, there are information filtering systems, such as the personalized recommendation system (PRS) considered in this paper, that assist a person in identifying possible products or services of interest based on his/her preferences. Among available approaches, collaborative Filtering (CF) is one of the most widely used recommendation techniques. However, CF has some limitations, e.g., the relatively simple similarity calculation, cold start problem, etc. In this context, this paper presents a new regression model based on the support vector machine (SVM) classification and an improved PSO (IPSO) for the development of an electronic movie PRS. In its implementation, a SVM classification model is first established to obtain a preliminary movie recommendation list based on which a SVM regression model is applied to predict movies' ratings. The proposed PRS not only considers the movie's content information but also integrates the users' demographic and behavioral information to better capture the users' interests and preferences. The efficiency of the proposed method is verified by a series of experiments based on the MovieLens benchmark data set.

  9. Using a Support Vector Machine and a Land Surface Model to Estimate Large-Scale Passive Microwave Temperatures over Snow-Covered Land in North America

    NASA Technical Reports Server (NTRS)

    Forman, Barton A.; Reichle, Rolf Helmut

    2014-01-01

    A support vector machine (SVM), a machine learning technique developed from statistical learning theory, is employed for the purpose of estimating passive microwave (PMW) brightness temperatures over snow-covered land in North America as observed by the Advanced Microwave Scanning Radiometer (AMSR-E) satellite sensor. The capability of the trained SVM is compared relative to the artificial neural network (ANN) estimates originally presented in [14]. The results suggest the SVM outperforms the ANN at 10.65 GHz, 18.7 GHz, and 36.5 GHz for both vertically and horizontally-polarized PMW radiation. When compared against daily AMSR-E measurements not used during the training procedure and subsequently averaged across the North American domain over the 9-year study period, the root mean squared error in the SVM output is 8 K or less while the anomaly correlation coefficient is 0.7 or greater. When compared relative to the results from the ANN at any of the six frequency and polarization combinations tested, the root mean squared error was reduced by more than 18 percent while the anomaly correlation coefficient was increased by more than 52 percent. Further, the temporal and spatial variability in the modeled brightness temperatures via the SVM more closely agrees with that found in the original AMSR-E measurements. These findings suggest the SVM is a superior alternative to the ANN for eventual use as a measurement operator within a data assimilation framework.

  10. An improved chaotic fruit fly optimization based on a mutation strategy for simultaneous feature selection and parameter optimization for SVM and its applications.

    PubMed

    Ye, Fei; Lou, Xin Yuan; Sun, Lin Fu

    2017-01-01

    This paper proposes a new support vector machine (SVM) optimization scheme based on an improved chaotic fly optimization algorithm (FOA) with a mutation strategy to simultaneously perform parameter setting turning for the SVM and feature selection. In the improved FOA, the chaotic particle initializes the fruit fly swarm location and replaces the expression of distance for the fruit fly to find the food source. However, the proposed mutation strategy uses two distinct generative mechanisms for new food sources at the osphresis phase, allowing the algorithm procedure to search for the optimal solution in both the whole solution space and within the local solution space containing the fruit fly swarm location. In an evaluation based on a group of ten benchmark problems, the proposed algorithm's performance is compared with that of other well-known algorithms, and the results support the superiority of the proposed algorithm. Moreover, this algorithm is successfully applied in a SVM to perform both parameter setting turning for the SVM and feature selection to solve real-world classification problems. This method is called chaotic fruit fly optimization algorithm (CIFOA)-SVM and has been shown to be a more robust and effective optimization method than other well-known methods, particularly in terms of solving the medical diagnosis problem and the credit card problem.

  11. An improved chaotic fruit fly optimization based on a mutation strategy for simultaneous feature selection and parameter optimization for SVM and its applications

    PubMed Central

    Lou, Xin Yuan; Sun, Lin Fu

    2017-01-01

    This paper proposes a new support vector machine (SVM) optimization scheme based on an improved chaotic fly optimization algorithm (FOA) with a mutation strategy to simultaneously perform parameter setting turning for the SVM and feature selection. In the improved FOA, the chaotic particle initializes the fruit fly swarm location and replaces the expression of distance for the fruit fly to find the food source. However, the proposed mutation strategy uses two distinct generative mechanisms for new food sources at the osphresis phase, allowing the algorithm procedure to search for the optimal solution in both the whole solution space and within the local solution space containing the fruit fly swarm location. In an evaluation based on a group of ten benchmark problems, the proposed algorithm’s performance is compared with that of other well-known algorithms, and the results support the superiority of the proposed algorithm. Moreover, this algorithm is successfully applied in a SVM to perform both parameter setting turning for the SVM and feature selection to solve real-world classification problems. This method is called chaotic fruit fly optimization algorithm (CIFOA)-SVM and has been shown to be a more robust and effective optimization method than other well-known methods, particularly in terms of solving the medical diagnosis problem and the credit card problem. PMID:28369096

  12. Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure☆

    PubMed Central

    Frick, Andreas; Gingnell, Malin; Marquand, Andre F.; Howner, Katarina; Fischer, Håkan; Kristiansson, Marianne; Williams, Steven C.R.; Fredrikson, Mats; Furmark, Tomas

    2014-01-01

    Functional neuroimaging of social anxiety disorder (SAD) support altered neural activation to threat-provoking stimuli focally in the fear network, while structural differences are distributed over the temporal and frontal cortices as well as limbic structures. Previous neuroimaging studies have investigated the brain at the voxel level using mass-univariate methods which do not enable detection of more complex patterns of activity and structural alterations that may separate SAD from healthy individuals. Support vector machine (SVM) is a supervised machine learning method that capitalizes on brain activation and structural patterns to classify individuals. The aim of this study was to investigate if it is possible to discriminate SAD patients (n = 14) from healthy controls (n = 12) using SVM based on (1) functional magnetic resonance imaging during fearful face processing and (2) regional gray matter volume. Whole brain and region of interest (fear network) SVM analyses were performed for both modalities. For functional scans, significant classifications were obtained both at whole brain level and when restricting the analysis to the fear network while gray matter SVM analyses correctly classified participants only when using the whole brain search volume. These results support that SAD is characterized by aberrant neural activation to affective stimuli in the fear network, while disorder-related alterations in regional gray matter volume are more diffusely distributed over the whole brain. SVM may thus be useful for identifying imaging biomarkers of SAD. PMID:24239689

  13. Machinery Bearing Fault Diagnosis Using Variational Mode Decomposition and Support Vector Machine as a Classifier

    NASA Astrophysics Data System (ADS)

    Rama Krishna, K.; Ramachandran, K. I.

    2018-02-01

    Crack propagation is a major cause of failure in rotating machines. It adversely affects the productivity, safety, and the machining quality. Hence, detecting the crack’s severity accurately is imperative for the predictive maintenance of such machines. Fault diagnosis is an established concept in identifying the faults, for observing the non-linear behaviour of the vibration signals at various operating conditions. In this work, we find the classification efficiencies for both original and the reconstructed vibrational signals. The reconstructed signals are obtained using Variational Mode Decomposition (VMD), by splitting the original signal into three intrinsic mode functional components and framing them accordingly. Feature extraction, feature selection and feature classification are the three phases in obtaining the classification efficiencies. All the statistical features from the original signals and reconstructed signals are found out in feature extraction process individually. A few statistical parameters are selected in feature selection process and are classified using the SVM classifier. The obtained results show the best parameters and appropriate kernel in SVM classifier for detecting the faults in bearings. Hence, we conclude that better results were obtained by VMD and SVM process over normal process using SVM. This is owing to denoising and filtering the raw vibrational signals.

  14. Training set extension for SVM ensemble in P300-speller with familiar face paradigm.

    PubMed

    Li, Qi; Shi, Kaiyang; Gao, Ning; Li, Jian; Bai, Ou

    2018-03-27

    P300-spellers are brain-computer interface (BCI)-based character input systems. Support vector machine (SVM) ensembles are trained with large-scale training sets and used as classifiers in these systems. However, the required large-scale training data necessitate a prolonged collection time for each subject, which results in data collected toward the end of the period being contaminated by the subject's fatigue. This study aimed to develop a method for acquiring more training data based on a collected small training set. A new method was developed in which two corresponding training datasets in two sequences are superposed and averaged to extend the training set. The proposed method was tested offline on a P300-speller with the familiar face paradigm. The SVM ensemble with extended training set achieved 85% classification accuracy for the averaged results of four sequences, and 100% for 11 sequences in the P300-speller. In contrast, the conventional SVM ensemble with non-extended training set achieved only 65% accuracy for four sequences, and 92% for 11 sequences. The SVM ensemble with extended training set achieves higher classification accuracies than the conventional SVM ensemble, which verifies that the proposed method effectively improves the classification performance of BCI P300-spellers, thus enhancing their practicality.

  15. Study on for soluble solids contents measurement of grape juice beverage based on Vis/NIRS and chemomtrics

    NASA Astrophysics Data System (ADS)

    Wu, Di; He, Yong

    2007-11-01

    The aim of this study is to investigate the potential of the visible and near infrared spectroscopy (Vis/NIRS) technique for non-destructive measurement of soluble solids contents (SSC) in grape juice beverage. 380 samples were studied in this paper. Smoothing way of Savitzky-Golay and standard normal variate were applied for the pre-processing of spectral data. Least-squares support vector machines (LS-SVM) with RBF kernel function was applied to developing the SSC prediction model based on the Vis/NIRS absorbance data. The determination coefficient for prediction (Rp2) of the results predicted by LS-SVM model was 0. 962 and root mean square error (RMSEP) was 0. 434137. It is concluded that Vis/NIRS technique can quantify the SSC of grape juice beverage fast and non-destructively.. At the same time, LS-SVM model was compared with PLS and back propagation neural network (BP-NN) methods. The results showed that LS-SVM was superior to the conventional linear and non-linear methods in predicting SSC of grape juice beverage. In this study, the generation ability of LS-SVM, PLS and BP-NN models were also investigated. It is concluded that LS-SVM regression method is a promising technique for chemometrics in quantitative prediction.

  16. A Mass Spectrometric Analysis Method Based on PPCA and SVM for Early Detection of Ovarian Cancer.

    PubMed

    Wu, Jiang; Ji, Yanju; Zhao, Ling; Ji, Mengying; Ye, Zhuang; Li, Suyi

    2016-01-01

    Background. Surfaced-enhanced laser desorption-ionization-time of flight mass spectrometry (SELDI-TOF-MS) technology plays an important role in the early diagnosis of ovarian cancer. However, the raw MS data is highly dimensional and redundant. Therefore, it is necessary to study rapid and accurate detection methods from the massive MS data. Methods. The clinical data set used in the experiments for early cancer detection consisted of 216 SELDI-TOF-MS samples. An MS analysis method based on probabilistic principal components analysis (PPCA) and support vector machine (SVM) was proposed and applied to the ovarian cancer early classification in the data set. Additionally, by the same data set, we also established a traditional PCA-SVM model. Finally we compared the two models in detection accuracy, specificity, and sensitivity. Results. Using independent training and testing experiments 10 times to evaluate the ovarian cancer detection models, the average prediction accuracy, sensitivity, and specificity of the PCA-SVM model were 83.34%, 82.70%, and 83.88%, respectively. In contrast, those of the PPCA-SVM model were 90.80%, 92.98%, and 88.97%, respectively. Conclusions. The PPCA-SVM model had better detection performance. And the model combined with the SELDI-TOF-MS technology had a prospect in early clinical detection and diagnosis of ovarian cancer.

  17. DCS-SVM: a novel semi-automated method for human brain MR image segmentation.

    PubMed

    Ahmadvand, Ali; Daliri, Mohammad Reza; Hajiali, Mohammadtaghi

    2017-11-27

    In this paper, a novel method is proposed which appropriately segments magnetic resonance (MR) brain images into three main tissues. This paper proposes an extension of our previous work in which we suggested a combination of multiple classifiers (CMC)-based methods named dynamic classifier selection-dynamic local training local Tanimoto index (DCS-DLTLTI) for MR brain image segmentation into three main cerebral tissues. This idea is used here and a novel method is developed that tries to use more complex and accurate classifiers like support vector machine (SVM) in the ensemble. This work is challenging because the CMC-based methods are time consuming, especially on huge datasets like three-dimensional (3D) brain MR images. Moreover, SVM is a powerful method that is used for modeling datasets with complex feature space, but it also has huge computational cost for big datasets, especially those with strong interclass variability problems and with more than two classes such as 3D brain images; therefore, we cannot use SVM in DCS-DLTLTI. Therefore, we propose a novel approach named "DCS-SVM" to use SVM in DCS-DLTLTI to improve the accuracy of segmentation results. The proposed method is applied on well-known datasets of the Internet Brain Segmentation Repository (IBSR) and promising results are obtained.

  18. A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM

    PubMed Central

    Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei

    2018-01-01

    Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model’s performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM’s parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models’ performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors. PMID:29342942

  19. Support vector machine for day ahead electricity price forecasting

    NASA Astrophysics Data System (ADS)

    Razak, Intan Azmira binti Wan Abdul; Abidin, Izham bin Zainal; Siah, Yap Keem; Rahman, Titik Khawa binti Abdul; Lada, M. Y.; Ramani, Anis Niza binti; Nasir, M. N. M.; Ahmad, Arfah binti

    2015-05-01

    Electricity price forecasting has become an important part of power system operation and planning. In a pool- based electric energy market, producers submit selling bids consisting in energy blocks and their corresponding minimum selling prices to the market operator. Meanwhile, consumers submit buying bids consisting in energy blocks and their corresponding maximum buying prices to the market operator. Hence, both producers and consumers use day ahead price forecasts to derive their respective bidding strategies to the electricity market yet reduce the cost of electricity. However, forecasting electricity prices is a complex task because price series is a non-stationary and highly volatile series. Many factors cause for price spikes such as volatility in load and fuel price as well as power import to and export from outside the market through long term contract. This paper introduces an approach of machine learning algorithm for day ahead electricity price forecasting with Least Square Support Vector Machine (LS-SVM). Previous day data of Hourly Ontario Electricity Price (HOEP), generation's price and demand from Ontario power market are used as the inputs for training data. The simulation is held using LSSVMlab in Matlab with the training and testing data of 2004. SVM that widely used for classification and regression has great generalization ability with structured risk minimization principle rather than empirical risk minimization. Moreover, same parameter settings in trained SVM give same results that absolutely reduce simulation process compared to other techniques such as neural network and time series. The mean absolute percentage error (MAPE) for the proposed model shows that SVM performs well compared to neural network.

  20. An evaluation of open set recognition for FLIR images

    NASA Astrophysics Data System (ADS)

    Scherreik, Matthew; Rigling, Brian

    2015-05-01

    Typical supervised classification algorithms label inputs according to what was learned in a training phase. Thus, test inputs that were not seen in training are always given incorrect labels. Open set recognition algorithms address this issue by accounting for inputs that are not present in training and providing the classifier with an option to reject" unknown samples. A number of such techniques have been developed in the literature, many of which are based on support vector machines (SVMs). One approach, the 1-vs-set machine, constructs a slab" in feature space using the SVM hyperplane. Inputs falling on one side of the slab or within the slab belong to a training class, while inputs falling on the far side of the slab are rejected. We note that rejection of unknown inputs can be achieved by thresholding class posterior probabilities. Another recently developed approach, the Probabilistic Open Set SVM (POS-SVM), empirically determines good probability thresholds. We apply the 1-vs-set machine, POS-SVM, and closed set SVMs to FLIR images taken from the Comanche SIG dataset. Vehicles in the dataset are divided into three general classes: wheeled, armored personnel carrier (APC), and tank. For each class, a coarse pose estimate (front, rear, left, right) is taken. In a closed set sense, we analyze these algorithms for prediction of vehicle class and pose. To test open set performance, one or more vehicle classes are held out from training. By considering closed and open set performance separately, we may closely analyze both inter-class discrimination and threshold effectiveness.

  1. Lamb Wave Damage Quantification Using GA-Based LS-SVM.

    PubMed

    Sun, Fuqiang; Wang, Ning; He, Jingjing; Guan, Xuefei; Yang, Jinsong

    2017-06-12

    Lamb waves have been reported to be an efficient tool for non-destructive evaluations (NDE) for various application scenarios. However, accurate and reliable damage quantification using the Lamb wave method is still a practical challenge, due to the complex underlying mechanism of Lamb wave propagation and damage detection. This paper presents a Lamb wave damage quantification method using a least square support vector machine (LS-SVM) and a genetic algorithm (GA). Three damage sensitive features, namely, normalized amplitude, phase change, and correlation coefficient, were proposed to describe changes of Lamb wave characteristics caused by damage. In view of commonly used data-driven methods, the GA-based LS-SVM model using the proposed three damage sensitive features was implemented to evaluate the crack size. The GA method was adopted to optimize the model parameters. The results of GA-based LS-SVM were validated using coupon test data and lap joint component test data with naturally developed fatigue cracks. Cases of different loading and manufacturer were also included to further verify the robustness of the proposed method for crack quantification.

  2. Lamb Wave Damage Quantification Using GA-Based LS-SVM

    PubMed Central

    Sun, Fuqiang; Wang, Ning; He, Jingjing; Guan, Xuefei; Yang, Jinsong

    2017-01-01

    Lamb waves have been reported to be an efficient tool for non-destructive evaluations (NDE) for various application scenarios. However, accurate and reliable damage quantification using the Lamb wave method is still a practical challenge, due to the complex underlying mechanism of Lamb wave propagation and damage detection. This paper presents a Lamb wave damage quantification method using a least square support vector machine (LS-SVM) and a genetic algorithm (GA). Three damage sensitive features, namely, normalized amplitude, phase change, and correlation coefficient, were proposed to describe changes of Lamb wave characteristics caused by damage. In view of commonly used data-driven methods, the GA-based LS-SVM model using the proposed three damage sensitive features was implemented to evaluate the crack size. The GA method was adopted to optimize the model parameters. The results of GA-based LS-SVM were validated using coupon test data and lap joint component test data with naturally developed fatigue cracks. Cases of different loading and manufacturer were also included to further verify the robustness of the proposed method for crack quantification. PMID:28773003

  3. Fault diagnosis method based on FFT-RPCA-SVM for Cascaded-Multilevel Inverter.

    PubMed

    Wang, Tianzhen; Qi, Jie; Xu, Hao; Wang, Yide; Liu, Lei; Gao, Diju

    2016-01-01

    Thanks to reduced switch stress, high quality of load wave, easy packaging and good extensibility, the cascaded H-bridge multilevel inverter is widely used in wind power system. To guarantee stable operation of system, a new fault diagnosis method, based on Fast Fourier Transform (FFT), Relative Principle Component Analysis (RPCA) and Support Vector Machine (SVM), is proposed for H-bridge multilevel inverter. To avoid the influence of load variation on fault diagnosis, the output voltages of the inverter is chosen as the fault characteristic signals. To shorten the time of diagnosis and improve the diagnostic accuracy, the main features of the fault characteristic signals are extracted by FFT. To further reduce the training time of SVM, the feature vector is reduced based on RPCA that can get a lower dimensional feature space. The fault classifier is constructed via SVM. An experimental prototype of the inverter is built to test the proposed method. Compared to other fault diagnosis methods, the experimental results demonstrate the high accuracy and efficiency of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Detection of Splice Sites Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Varadwaj, Pritish; Purohit, Neetesh; Arora, Bhumika

    Automatic identification and annotation of exon and intron region of gene, from DNA sequences has been an important research area in field of computational biology. Several approaches viz. Hidden Markov Model (HMM), Artificial Intelligence (AI) based machine learning and Digital Signal Processing (DSP) techniques have extensively and independently been used by various researchers to cater this challenging task. In this work, we propose a Support Vector Machine based kernel learning approach for detection of splice sites (the exon-intron boundary) in a gene. Electron-Ion Interaction Potential (EIIP) values of nucleotides have been used for mapping character sequences to corresponding numeric sequences. Radial Basis Function (RBF) SVM kernel is trained using EIIP numeric sequences. Furthermore this was tested on test gene dataset for detection of splice site by window (of 12 residues) shifting. Optimum values of window size, various important parameters of SVM kernel have been optimized for a better accuracy. Receiver Operating Characteristic (ROC) curves have been utilized for displaying the sensitivity rate of the classifier and results showed 94.82% accuracy for splice site detection on test dataset.

  5. Novel SVM-based technique to improve rainfall estimation over the Mediterranean region (north of Algeria) using the multispectral MSG SEVIRI imagery

    NASA Astrophysics Data System (ADS)

    Sehad, Mounir; Lazri, Mourad; Ameur, Soltane

    2017-03-01

    In this work, a new rainfall estimation technique based on the high spatial and temporal resolution of the Spinning Enhanced Visible and Infra Red Imager (SEVIRI) aboard the Meteosat Second Generation (MSG) is presented. This work proposes efficient scheme rainfall estimation based on two multiclass support vector machine (SVM) algorithms: SVM_D for daytime and SVM_N for night time rainfall estimations. Both SVM models are trained using relevant rainfall parameters based on optical, microphysical and textural cloud proprieties. The cloud parameters are derived from the Spectral channels of the SEVIRI MSG radiometer. The 3-hourly and daily accumulated rainfall are derived from the 15 min-rainfall estimation given by the SVM classifiers for each MSG observation image pixel. The SVMs were trained with ground meteorological radar precipitation scenes recorded from November 2006 to March 2007 over the north of Algeria located in the Mediterranean region. Further, the SVM_D and SVM_N models were used to estimate 3-hourly and daily rainfall using data set gathered from November 2010 to March 2011 over north Algeria. The results were validated against collocated rainfall observed by rain gauge network. Indeed, the statistical scores given by correlation coefficient, bias, root mean square error and mean absolute error, showed good accuracy of rainfall estimates by the present technique. Moreover, rainfall estimates of our technique were compared with two high accuracy rainfall estimates methods based on MSG SEVIRI imagery namely: random forests (RF) based approach and an artificial neural network (ANN) based technique. The findings of the present technique indicate higher correlation coefficient (3-hourly: 0.78; daily: 0.94), and lower mean absolute error and root mean square error values. The results show that the new technique assign 3-hourly and daily rainfall with good and better accuracy than ANN technique and (RF) model.

  6. Clinical risk assessment of patients with chronic kidney disease by using clinical data and multivariate models.

    PubMed

    Chen, Zewei; Zhang, Xin; Zhang, Zhuoyong

    2016-12-01

    Timely risk assessment of chronic kidney disease (CKD) and proper community-based CKD monitoring are important to prevent patients with potential risk from further kidney injuries. As many symptoms are associated with the progressive development of CKD, evaluating risk of CKD through a set of clinical data of symptoms coupled with multivariate models can be considered as an available method for prevention of CKD and would be useful for community-based CKD monitoring. Three common used multivariate models, i.e., K-nearest neighbor (KNN), support vector machine (SVM), and soft independent modeling of class analogy (SIMCA), were used to evaluate risk of 386 patients based on a series of clinical data taken from UCI machine learning repository. Different types of composite data, in which proportional disturbances were added to simulate measurement deviations caused by environment and instrument noises, were also utilized to evaluate the feasibility and robustness of these models in risk assessment of CKD. For the original data set, three mentioned multivariate models can differentiate patients with CKD and non-CKD with the overall accuracies over 93 %. KNN and SVM have better performances than SIMCA has in this study. For the composite data set, SVM model has the best ability to tolerate noise disturbance and thus are more robust than the other two models. Using clinical data set on symptoms coupled with multivariate models has been proved to be feasible approach for assessment of patient with potential CKD risk. SVM model can be used as useful and robust tool in this study.

  7. PSOFuzzySVM-TMH: identification of transmembrane helix segments using ensemble feature space by incorporated fuzzy support vector machine.

    PubMed

    Hayat, Maqsood; Tahir, Muhammad

    2015-08-01

    Membrane protein is a central component of the cell that manages intra and extracellular processes. Membrane proteins execute a diversity of functions that are vital for the survival of organisms. The topology of transmembrane proteins describes the number of transmembrane (TM) helix segments and its orientation. However, owing to the lack of its recognized structures, the identification of TM helix and its topology through experimental methods is laborious with low throughput. In order to identify TM helix segments reliably, accurately, and effectively from topogenic sequences, we propose the PSOFuzzySVM-TMH model. In this model, evolutionary based information position specific scoring matrix and discrete based information 6-letter exchange group are used to formulate transmembrane protein sequences. The noisy and extraneous attributes are eradicated using an optimization selection technique, particle swarm optimization, from both feature spaces. Finally, the selected feature spaces are combined in order to form ensemble feature space. Fuzzy-support vector Machine is utilized as a classification algorithm. Two benchmark datasets, including low and high resolution datasets, are used. At various levels, the performance of the PSOFuzzySVM-TMH model is assessed through 10-fold cross validation test. The empirical results reveal that the proposed framework PSOFuzzySVM-TMH outperforms in terms of classification performance in the examined datasets. It is ascertained that the proposed model might be a useful and high throughput tool for academia and research community for further structure and functional studies on transmembrane proteins.

  8. Support vector machine learning-based fMRI data group analysis.

    PubMed

    Wang, Ze; Childress, Anna R; Wang, Jiongjiong; Detre, John A

    2007-07-15

    To explore the multivariate nature of fMRI data and to consider the inter-subject brain response discrepancies, a multivariate and brain response model-free method is fundamentally required. Two such methods are presented in this paper by integrating a machine learning algorithm, the support vector machine (SVM), and the random effect model. Without any brain response modeling, SVM was used to extract a whole brain spatial discriminance map (SDM), representing the brain response difference between the contrasted experimental conditions. Population inference was then obtained through the random effect analysis (RFX) or permutation testing (PMU) on the individual subjects' SDMs. Applied to arterial spin labeling (ASL) perfusion fMRI data, SDM RFX yielded lower false-positive rates in the null hypothesis test and higher detection sensitivity for synthetic activations with varying cluster size and activation strengths, compared to the univariate general linear model (GLM)-based RFX. For a sensory-motor ASL fMRI study, both SDM RFX and SDM PMU yielded similar activation patterns to GLM RFX and GLM PMU, respectively, but with higher t values and cluster extensions at the same significance level. Capitalizing on the absence of temporal noise correlation in ASL data, this study also incorporated PMU in the individual-level GLM and SVM analyses accompanied by group-level analysis through RFX or group-level PMU. Providing inferences on the probability of being activated or deactivated at each voxel, these individual-level PMU-based group analysis methods can be used to threshold the analysis results of GLM RFX, SDM RFX or SDM PMU.

  9. Using support vector machines with tract-based spatial statistics for automated classification of Tourette syndrome children

    NASA Astrophysics Data System (ADS)

    Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Zhang, Jishui; Peng, Yun; He, Huiguang

    2016-03-01

    Tourette syndrome (TS) is a developmental neuropsychiatric disorder with the cardinal symptoms of motor and vocal tics which emerges in early childhood and fluctuates in severity in later years. To date, the neural basis of TS is not fully understood yet and TS has a long-term prognosis that is difficult to accurately estimate. Few studies have looked at the potential of using diffusion tensor imaging (DTI) in conjunction with machine learning algorithms in order to automate the classification of healthy children and TS children. Here we apply Tract-Based Spatial Statistics (TBSS) method to 44 TS children and 48 age and gender matched healthy children in order to extract the diffusion values from each voxel in the white matter (WM) skeleton, and a feature selection algorithm (ReliefF) was used to select the most salient voxels for subsequent classification with support vector machine (SVM). We use a nested cross validation to yield an unbiased assessment of the classification method and prevent overestimation. The accuracy (88.04%), sensitivity (88.64%) and specificity (87.50%) were achieved in our method as peak performance of the SVM classifier was achieved using the axial diffusion (AD) metric, demonstrating the potential of a joint TBSS and SVM pipeline for fast, objective classification of healthy and TS children. These results support that our methods may be useful for the early identification of subjects with TS, and hold promise for predicting prognosis and treatment outcome for individuals with TS.

  10. Supervised machine learning-based classification scheme to segment the brainstem on MRI in multicenter brain tumor treatment context.

    PubMed

    Dolz, Jose; Laprie, Anne; Ken, Soléakhéna; Leroy, Henri-Arthur; Reyns, Nicolas; Massoptier, Laurent; Vermandel, Maximilien

    2016-01-01

    To constrain the risk of severe toxicity in radiotherapy and radiosurgery, precise volume delineation of organs at risk is required. This task is still manually performed, which is time-consuming and prone to observer variability. To address these issues, and as alternative to atlas-based segmentation methods, machine learning techniques, such as support vector machines (SVM), have been recently presented to segment subcortical structures on magnetic resonance images (MRI). SVM is proposed to segment the brainstem on MRI in multicenter brain cancer context. A dataset composed by 14 adult brain MRI scans is used to evaluate its performance. In addition to spatial and probabilistic information, five different image intensity values (IIVs) configurations are evaluated as features to train the SVM classifier. Segmentation accuracy is evaluated by computing the Dice similarity coefficient (DSC), absolute volumes difference (AVD) and percentage volume difference between automatic and manual contours. Mean DSC for all proposed IIVs configurations ranged from 0.89 to 0.90. Mean AVD values were below 1.5 cm(3), where the value for best performing IIVs configuration was 0.85 cm(3), representing an absolute mean difference of 3.99% with respect to the manual segmented volumes. Results suggest consistent volume estimation and high spatial similarity with respect to expert delineations. The proposed approach outperformed presented methods to segment the brainstem, not only in volume similarity metrics, but also in segmentation time. Preliminary results showed that the approach might be promising for adoption in clinical use.

  11. Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images.

    PubMed

    Lu, Xiaobing; Yang, Yongzhe; Wu, Fengchun; Gao, Minjian; Xu, Yong; Zhang, Yue; Yao, Yongcheng; Du, Xin; Li, Chengwei; Wu, Lei; Zhong, Xiaomei; Zhou, Yanling; Fan, Ni; Zheng, Yingjun; Xiong, Dongsheng; Peng, Hongjun; Escudero, Javier; Huang, Biao; Li, Xiaobo; Ning, Yuping; Wu, Kai

    2016-07-01

    Structural abnormalities in schizophrenia (SZ) patients have been well documented with structural magnetic resonance imaging (MRI) data using voxel-based morphometry (VBM) and region of interest (ROI) analyses. However, these analyses can only detect group-wise differences and thus, have a poor predictive value for individuals. In the present study, we applied a machine learning method that combined support vector machine (SVM) with recursive feature elimination (RFE) to discriminate SZ patients from normal controls (NCs) using their structural MRI data. We first employed both VBM and ROI analyses to compare gray matter volume (GMV) and white matter volume (WMV) between 41 SZ patients and 42 age- and sex-matched NCs. The method of SVM combined with RFE was used to discriminate SZ patients from NCs using significant between-group differences in both GMV and WMV as input features. We found that SZ patients showed GM and WM abnormalities in several brain structures primarily involved in the emotion, memory, and visual systems. An SVM with a RFE classifier using the significant structural abnormalities identified by the VBM analysis as input features achieved the best performance (an accuracy of 88.4%, a sensitivity of 91.9%, and a specificity of 84.4%) in the discriminative analyses of SZ patients. These results suggested that distinct neuroanatomical profiles associated with SZ patients might provide a potential biomarker for disease diagnosis, and machine-learning methods can reveal neurobiological mechanisms in psychiatric diseases.

  12. Modeling Personalized Email Prioritization: Classification-based and Regression-based Approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo S.; Yang, Y.; Carbonell, J.

    2011-10-24

    Email overload, even after spam filtering, presents a serious productivity challenge for busy professionals and executives. One solution is automated prioritization of incoming emails to ensure the most important are read and processed quickly, while others are processed later as/if time permits in declining priority levels. This paper presents a study of machine learning approaches to email prioritization into discrete levels, comparing ordinal regression versus classier cascades. Given the ordinal nature of discrete email priority levels, SVM ordinal regression would be expected to perform well, but surprisingly a cascade of SVM classifiers significantly outperforms ordinal regression for email prioritization. Inmore » contrast, SVM regression performs well -- better than classifiers -- on selected UCI data sets. This unexpected performance inversion is analyzed and results are presented, providing core functionality for email prioritization systems.« less

  13. Classification of burst and suppression in the neonatal electroencephalogram

    NASA Astrophysics Data System (ADS)

    Löfhede, J.; Löfgren, N.; Thordstein, M.; Flisberg, A.; Kjellmer, I.; Lindecrantz, K.

    2008-12-01

    Fisher's linear discriminant (FLD), a feed-forward artificial neural network (ANN) and a support vector machine (SVM) were compared with respect to their ability to distinguish bursts from suppressions in electroencephalograms (EEG) displaying a burst-suppression pattern. Five features extracted from the EEG were used as inputs. The study was based on EEG signals from six full-term infants who had suffered from perinatal asphyxia, and the methods have been trained with reference data classified by an experienced electroencephalographer. The results are summarized as the area under the curve (AUC), derived from receiver operating characteristic (ROC) curves for the three methods. Based on this, the SVM performs slightly better than the others. Testing the three methods with combinations of increasing numbers of the five features shows that the SVM handles the increasing amount of information better than the other methods.

  14. Satellite Fault Diagnosis Using Support Vector Machines Based on a Hybrid Voting Mechanism

    PubMed Central

    Yang, Shuqiang; Zhu, Xiaoqian; Jin, Songchang; Wang, Xiang

    2014-01-01

    The satellite fault diagnosis has an important role in enhancing the safety, reliability, and availability of the satellite system. However, the problem of enormous parameters and multiple faults makes a challenge to the satellite fault diagnosis. The interactions between parameters and misclassifications from multiple faults will increase the false alarm rate and the false negative rate. On the other hand, for each satellite fault, there is not enough fault data for training. To most of the classification algorithms, it will degrade the performance of model. In this paper, we proposed an improving SVM based on a hybrid voting mechanism (HVM-SVM) to deal with the problem of enormous parameters, multiple faults, and small samples. Many experimental results show that the accuracy of fault diagnosis using HVM-SVM is improved. PMID:25215324

  15. Progress in computational toxicology.

    PubMed

    Ekins, Sean

    2014-01-01

    Computational methods have been widely applied to toxicology across pharmaceutical, consumer product and environmental fields over the past decade. Progress in computational toxicology is now reviewed. A literature review was performed on computational models for hepatotoxicity (e.g. for drug-induced liver injury (DILI)), cardiotoxicity, renal toxicity and genotoxicity. In addition various publications have been highlighted that use machine learning methods. Several computational toxicology model datasets from past publications were used to compare Bayesian and Support Vector Machine (SVM) learning methods. The increasing amounts of data for defined toxicology endpoints have enabled machine learning models that have been increasingly used for predictions. It is shown that across many different models Bayesian and SVM perform similarly based on cross validation data. Considerable progress has been made in computational toxicology in a decade in both model development and availability of larger scale or 'big data' models. The future efforts in toxicology data generation will likely provide us with hundreds of thousands of compounds that are readily accessible for machine learning models. These models will cover relevant chemistry space for pharmaceutical, consumer product and environmental applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Analysing the accuracy of machine learning techniques to develop an integrated influent time series model: case study of a sewage treatment plant, Malaysia.

    PubMed

    Ansari, Mozafar; Othman, Faridah; Abunama, Taher; El-Shafie, Ahmed

    2018-04-01

    The function of a sewage treatment plant is to treat the sewage to acceptable standards before being discharged into the receiving waters. To design and operate such plants, it is necessary to measure and predict the influent flow rate. In this research, the influent flow rate of a sewage treatment plant (STP) was modelled and predicted by autoregressive integrated moving average (ARIMA), nonlinear autoregressive network (NAR) and support vector machine (SVM) regression time series algorithms. To evaluate the models' accuracy, the root mean square error (RMSE) and coefficient of determination (R 2 ) were calculated as initial assessment measures, while relative error (RE), peak flow criterion (PFC) and low flow criterion (LFC) were calculated as final evaluation measures to demonstrate the detailed accuracy of the selected models. An integrated model was developed based on the individual models' prediction ability for low, average and peak flow. An initial assessment of the results showed that the ARIMA model was the least accurate and the NAR model was the most accurate. The RE results also prove that the SVM model's frequency of errors above 10% or below - 10% was greater than the NAR model's. The influent was also forecasted up to 44 weeks ahead by both models. The graphical results indicate that the NAR model made better predictions than the SVM model. The final evaluation of NAR and SVM demonstrated that SVM made better predictions at peak flow and NAR fit well for low and average inflow ranges. The integrated model developed includes the NAR model for low and average influent and the SVM model for peak inflow.

  17. Automated detection of heart ailments from 12-lead ECG using complex wavelet sub-band bi-spectrum features.

    PubMed

    Tripathy, Rajesh Kumar; Dandapat, Samarendra

    2017-04-01

    The complex wavelet sub-band bi-spectrum (CWSB) features are proposed for detection and classification of myocardial infarction (MI), heart muscle disease (HMD) and bundle branch block (BBB) from 12-lead ECG. The dual tree CW transform of 12-lead ECG produces CW coefficients at different sub-bands. The higher-order CW analysis is used for evaluation of CWSB. The mean of the absolute value of CWSB, and the number of negative phase angle and the number of positive phase angle features from the phase of CWSB of 12-lead ECG are evaluated. Extreme learning machine and support vector machine (SVM) classifiers are used to evaluate the performance of CWSB features. Experimental results show that the proposed CWSB features of 12-lead ECG and the SVM classifier are successful for classification of various heart pathologies. The individual accuracy values for MI, HMD and BBB classes are obtained as 98.37, 97.39 and 96.40%, respectively, using SVM classifier and radial basis function kernel function. A comparison has also been made with existing 12-lead ECG-based cardiac disease detection techniques.

  18. Intrusion detection using rough set classification.

    PubMed

    Zhang, Lian-hua; Zhang, Guan-hua; Zhang, Jie; Bai, Ying-cai

    2004-09-01

    Recently machine learning-based intrusion detection approaches have been subjected to extensive researches because they can detect both misuse and anomaly. In this paper, rough set classification (RSC), a modern learning algorithm, is used to rank the features extracted for detecting intrusions and generate intrusion detection models. Feature ranking is a very critical step when building the model. RSC performs feature ranking before generating rules, and converts the feature ranking to minimal hitting set problem addressed by using genetic algorithm (GA). This is done in classical approaches using Support Vector Machine (SVM) by executing many iterations, each of which removes one useless feature. Compared with those methods, our method can avoid many iterations. In addition, a hybrid genetic algorithm is proposed to increase the convergence speed and decrease the training time of RSC. The models generated by RSC take the form of "IF-THEN" rules, which have the advantage of explication. Tests and comparison of RSC with SVM on DARPA benchmark data showed that for Probe and DoS attacks both RSC and SVM yielded highly accurate results (greater than 99% accuracy on testing set).

  19. Classifying machinery condition using oil samples and binary logistic regression

    NASA Astrophysics Data System (ADS)

    Phillips, J.; Cripps, E.; Lau, John W.; Hodkiewicz, M. R.

    2015-08-01

    The era of big data has resulted in an explosion of condition monitoring information. The result is an increasing motivation to automate the costly and time consuming human elements involved in the classification of machine health. When working with industry it is important to build an understanding and hence some trust in the classification scheme for those who use the analysis to initiate maintenance tasks. Typically "black box" approaches such as artificial neural networks (ANN) and support vector machines (SVM) can be difficult to provide ease of interpretability. In contrast, this paper argues that logistic regression offers easy interpretability to industry experts, providing insight to the drivers of the human classification process and to the ramifications of potential misclassification. Of course, accuracy is of foremost importance in any automated classification scheme, so we also provide a comparative study based on predictive performance of logistic regression, ANN and SVM. A real world oil analysis data set from engines on mining trucks is presented and using cross-validation we demonstrate that logistic regression out-performs the ANN and SVM approaches in terms of prediction for healthy/not healthy engines.

  20. High-performance Chinese multiclass traffic sign detection via coarse-to-fine cascade and parallel support vector machine detectors

    NASA Astrophysics Data System (ADS)

    Chang, Faliang; Liu, Chunsheng

    2017-09-01

    The high variability of sign colors and shapes in uncontrolled environments has made the detection of traffic signs a challenging problem in computer vision. We propose a traffic sign detection (TSD) method based on coarse-to-fine cascade and parallel support vector machine (SVM) detectors to detect Chinese warning and danger traffic signs. First, a region of interest (ROI) extraction method is proposed to extract ROIs using color contrast features in local regions. The ROI extraction can reduce scanning regions and save detection time. For multiclass TSD, we propose a structure that combines a coarse-to-fine cascaded tree with a parallel structure of histogram of oriented gradients (HOG) + SVM detectors. The cascaded tree is designed to detect different types of traffic signs in a coarse-to-fine process. The parallel HOG + SVM detectors are designed to do fine detection of different types of traffic signs. The experiments demonstrate the proposed TSD method can rapidly detect multiclass traffic signs with different colors and shapes in high accuracy.

  1. Terminator Detection by Support Vector Machine Utilizing aStochastic Context-Free Grammar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis-Lyon, Patricia; Cristianini, Nello; Holbrook, Stephen

    2006-12-30

    A 2-stage detector was designed to find rho-independent transcription terminators in the Escherichia coli genome. The detector includes a Stochastic Context Free Grammar (SCFG) component and a Support Vector Machine (SVM) component. To find terminators, the SCFG searches the intergenic regions of nucleotide sequence for local matches to a terminator grammar that was designed and trained utilizing examples of known terminators. The grammar selects sequences that are the best candidates for terminators and assigns them a prefix, stem-loop, suffix structure using the Cocke-Younger-Kasaami (CYK) algorithm, modified to incorporate energy affects of base pairing. The parameters from this inferred structure aremore » passed to the SVM classifier, which distinguishes terminators from non-terminators that score high according to the terminator grammar. The SVM was trained with negative examples drawn from intergenic sequences that include both featureless and RNA gene regions (which were assigned prefix, stem-loop, suffix structure by the SCFG), so that it successfully distinguishes terminators from either of these. The classifier was found to be 96.4% successful during testing.« less

  2. The dynamic financial distress prediction method of EBW-VSTW-SVM

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Li, Hui; Chang, Pei-Chann; He, Kai-Yu

    2016-07-01

    Financial distress prediction (FDP) takes important role in corporate financial risk management. Most of former researches in this field tried to construct effective static FDP (SFDP) models that are difficult to be embedded into enterprise information systems, because they are based on horizontal data-sets collected outside the modelling enterprise by defining the financial distress as the absolute conditions such as bankruptcy or insolvency. This paper attempts to propose an approach for dynamic evaluation and prediction of financial distress based on the entropy-based weighting (EBW), the support vector machine (SVM) and an enterprise's vertical sliding time window (VSTW). The dynamic FDP (DFDP) method is named EBW-VSTW-SVM, which keeps updating the FDP model dynamically with time goes on and only needs the historic financial data of the modelling enterprise itself and thus is easier to be embedded into enterprise information systems. The DFDP method of EBW-VSTW-SVM consists of four steps, namely evaluation of vertical relative financial distress (VRFD) based on EBW, construction of training data-set for DFDP modelling according to VSTW, training of DFDP model based on SVM and DFDP for the future time point. We carry out case studies for two listed pharmaceutical companies and experimental analysis for some other companies to simulate the sliding of enterprise vertical time window. The results indicated that the proposed approach was feasible and efficient to help managers improve corporate financial management.

  3. A Real-Time Interference Monitoring Technique for GNSS Based on a Twin Support Vector Machine Method.

    PubMed

    Li, Wutao; Huang, Zhigang; Lang, Rongling; Qin, Honglei; Zhou, Kai; Cao, Yongbin

    2016-03-04

    Interferences can severely degrade the performance of Global Navigation Satellite System (GNSS) receivers. As the first step of GNSS any anti-interference measures, interference monitoring for GNSS is extremely essential and necessary. Since interference monitoring can be considered as a classification problem, a real-time interference monitoring technique based on Twin Support Vector Machine (TWSVM) is proposed in this paper. A TWSVM model is established, and TWSVM is solved by the Least Squares Twin Support Vector Machine (LSTWSVM) algorithm. The interference monitoring indicators are analyzed to extract features from the interfered GNSS signals. The experimental results show that the chosen observations can be used as the interference monitoring indicators. The interference monitoring performance of the proposed method is verified by using GPS L1 C/A code signal and being compared with that of standard SVM. The experimental results indicate that the TWSVM-based interference monitoring is much faster than the conventional SVM. Furthermore, the training time of TWSVM is on millisecond (ms) level and the monitoring time is on microsecond (μs) level, which make the proposed approach usable in practical interference monitoring applications.

  4. A Real-Time Interference Monitoring Technique for GNSS Based on a Twin Support Vector Machine Method

    PubMed Central

    Li, Wutao; Huang, Zhigang; Lang, Rongling; Qin, Honglei; Zhou, Kai; Cao, Yongbin

    2016-01-01

    Interferences can severely degrade the performance of Global Navigation Satellite System (GNSS) receivers. As the first step of GNSS any anti-interference measures, interference monitoring for GNSS is extremely essential and necessary. Since interference monitoring can be considered as a classification problem, a real-time interference monitoring technique based on Twin Support Vector Machine (TWSVM) is proposed in this paper. A TWSVM model is established, and TWSVM is solved by the Least Squares Twin Support Vector Machine (LSTWSVM) algorithm. The interference monitoring indicators are analyzed to extract features from the interfered GNSS signals. The experimental results show that the chosen observations can be used as the interference monitoring indicators. The interference monitoring performance of the proposed method is verified by using GPS L1 C/A code signal and being compared with that of standard SVM. The experimental results indicate that the TWSVM-based interference monitoring is much faster than the conventional SVM. Furthermore, the training time of TWSVM is on millisecond (ms) level and the monitoring time is on microsecond (μs) level, which make the proposed approach usable in practical interference monitoring applications. PMID:26959020

  5. Support Vector Machine-Based Prediction of Local Tumor Control After Stereotactic Body Radiation Therapy for Early-Stage Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klement, Rainer J., E-mail: rainer_klement@gmx.de; Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital, Schweinfurt; Allgäuer, Michael

    2014-03-01

    Background: Several prognostic factors for local tumor control probability (TCP) after stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) have been described, but no attempts have been undertaken to explore whether a nonlinear combination of potential factors might synergistically improve the prediction of local control. Methods and Materials: We investigated a support vector machine (SVM) for predicting TCP in a cohort of 399 patients treated at 13 German and Austrian institutions. Among 7 potential input features for the SVM we selected those most important on the basis of forward feature selection, thereby evaluating classifier performancemore » by using 10-fold cross-validation and computing the area under the ROC curve (AUC). The final SVM classifier was built by repeating the feature selection 10 times with different splitting of the data for cross-validation and finally choosing only those features that were selected at least 5 out of 10 times. It was compared with a multivariate logistic model that was built by forward feature selection. Results: Local failure occurred in 12% of patients. Biologically effective dose (BED) at the isocenter (BED{sub ISO}) was the strongest predictor of TCP in the logistic model and also the most frequently selected input feature for the SVM. A bivariate logistic function of BED{sub ISO} and the pulmonary function indicator forced expiratory volume in 1 second (FEV1) yielded the best description of the data but resulted in a significantly smaller AUC than the final SVM classifier with the input features BED{sub ISO}, age, baseline Karnofsky index, and FEV1 (0.696 ± 0.040 vs 0.789 ± 0.001, P<.03). The final SVM resulted in sensitivity and specificity of 67.0% ± 0.5% and 78.7% ± 0.3%, respectively. Conclusions: These results confirm that machine learning techniques like SVMs can be successfully applied to predict treatment outcome after SBRT. Improvements over traditional TCP modeling are expected through a nonlinear combination of multiple features, eventually helping in the task of personalized treatment planning.« less

  6. Support vector machine-based prediction of local tumor control after stereotactic body radiation therapy for early-stage non-small cell lung cancer.

    PubMed

    Klement, Rainer J; Allgäuer, Michael; Appold, Steffen; Dieckmann, Karin; Ernst, Iris; Ganswindt, Ute; Holy, Richard; Nestle, Ursula; Nevinny-Stickel, Meinhard; Semrau, Sabine; Sterzing, Florian; Wittig, Andrea; Andratschke, Nicolaus; Guckenberger, Matthias

    2014-03-01

    Several prognostic factors for local tumor control probability (TCP) after stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) have been described, but no attempts have been undertaken to explore whether a nonlinear combination of potential factors might synergistically improve the prediction of local control. We investigated a support vector machine (SVM) for predicting TCP in a cohort of 399 patients treated at 13 German and Austrian institutions. Among 7 potential input features for the SVM we selected those most important on the basis of forward feature selection, thereby evaluating classifier performance by using 10-fold cross-validation and computing the area under the ROC curve (AUC). The final SVM classifier was built by repeating the feature selection 10 times with different splitting of the data for cross-validation and finally choosing only those features that were selected at least 5 out of 10 times. It was compared with a multivariate logistic model that was built by forward feature selection. Local failure occurred in 12% of patients. Biologically effective dose (BED) at the isocenter (BED(ISO)) was the strongest predictor of TCP in the logistic model and also the most frequently selected input feature for the SVM. A bivariate logistic function of BED(ISO) and the pulmonary function indicator forced expiratory volume in 1 second (FEV1) yielded the best description of the data but resulted in a significantly smaller AUC than the final SVM classifier with the input features BED(ISO), age, baseline Karnofsky index, and FEV1 (0.696 ± 0.040 vs 0.789 ± 0.001, P<.03). The final SVM resulted in sensitivity and specificity of 67.0% ± 0.5% and 78.7% ± 0.3%, respectively. These results confirm that machine learning techniques like SVMs can be successfully applied to predict treatment outcome after SBRT. Improvements over traditional TCP modeling are expected through a nonlinear combination of multiple features, eventually helping in the task of personalized treatment planning. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Carbon Nanotube Growth Rate Regression using Support Vector Machines and Artificial Neural Networks

    DTIC Science & Technology

    2014-03-27

    intensity D peak. Reprinted with permission from [38]. The SVM classifier is trained using custom written Java code leveraging the Sequential Minimal...Society Encog is a machine learning framework for Java , C++ and .Net applications that supports Bayesian Networks, Hidden Markov Models, SVMs and ANNs [13...SVM classifiers are trained using Weka libraries and leveraging custom written Java code. The data set is created as an Attribute Relationship File

  8. Nonlinear detection for a high rate extended binary phase shift keying system.

    PubMed

    Chen, Xian-Qing; Wu, Le-Nan

    2013-03-28

    The algorithm and the results of a nonlinear detector using a machine learning technique called support vector machine (SVM) on an efficient modulation system with high data rate and low energy consumption is presented in this paper. Simulation results showed that the performance achieved by the SVM detector is comparable to that of a conventional threshold decision (TD) detector. The two detectors detect the received signals together with the special impacting filter (SIF) that can improve the energy utilization efficiency. However, unlike the TD detector, the SVM detector concentrates not only on reducing the BER of the detector, but also on providing accurate posterior probability estimates (PPEs), which can be used as soft-inputs of the LDPC decoder. The complexity of this detector is considered in this paper by using four features and simplifying the decision function. In addition, a bandwidth efficient transmission is analyzed with both SVM and TD detector. The SVM detector is more robust to sampling rate than TD detector. We find that the SVM is suitable for extended binary phase shift keying (EBPSK) signal detection and can provide accurate posterior probability for LDPC decoding.

  9. Nonlinear Detection for a High Rate Extended Binary Phase Shift Keying System

    PubMed Central

    Chen, Xian-Qing; Wu, Le-Nan

    2013-01-01

    The algorithm and the results of a nonlinear detector using a machine learning technique called support vector machine (SVM) on an efficient modulation system with high data rate and low energy consumption is presented in this paper. Simulation results showed that the performance achieved by the SVM detector is comparable to that of a conventional threshold decision (TD) detector. The two detectors detect the received signals together with the special impacting filter (SIF) that can improve the energy utilization efficiency. However, unlike the TD detector, the SVM detector concentrates not only on reducing the BER of the detector, but also on providing accurate posterior probability estimates (PPEs), which can be used as soft-inputs of the LDPC decoder. The complexity of this detector is considered in this paper by using four features and simplifying the decision function. In addition, a bandwidth efficient transmission is analyzed with both SVM and TD detector. The SVM detector is more robust to sampling rate than TD detector. We find that the SVM is suitable for extended binary phase shift keying (EBPSK) signal detection and can provide accurate posterior probability for LDPC decoding. PMID:23539034

  10. Classification of Stellar Spectra with Fuzzy Minimum Within-Class Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Zhong-bao, Liu; Wen-ai, Song; Jing, Zhang; Wen-juan, Zhao

    2017-06-01

    Classification is one of the important tasks in astronomy, especially in spectra analysis. Support Vector Machine (SVM) is a typical classification method, which is widely used in spectra classification. Although it performs well in practice, its classification accuracies can not be greatly improved because of two limitations. One is it does not take the distribution of the classes into consideration. The other is it is sensitive to noise. In order to solve the above problems, inspired by the maximization of the Fisher's Discriminant Analysis (FDA) and the SVM separability constraints, fuzzy minimum within-class support vector machine (FMWSVM) is proposed in this paper. In FMWSVM, the distribution of the classes is reflected by the within-class scatter in FDA and the fuzzy membership function is introduced to decrease the influence of the noise. The comparative experiments with SVM on the SDSS datasets verify the effectiveness of the proposed classifier FMWSVM.

  11. Comparative Performance Analysis of Support Vector Machine, Random Forest, Logistic Regression and k-Nearest Neighbours in Rainbow Trout (Oncorhynchus Mykiss) Classification Using Image-Based Features

    PubMed Central

    Císař, Petr; Labbé, Laurent; Souček, Pavel; Pelissier, Pablo; Kerneis, Thierry

    2018-01-01

    The main aim of this study was to develop a new objective method for evaluating the impacts of different diets on the live fish skin using image-based features. In total, one-hundred and sixty rainbow trout (Oncorhynchus mykiss) were fed either a fish-meal based diet (80 fish) or a 100% plant-based diet (80 fish) and photographed using consumer-grade digital camera. Twenty-three colour features and four texture features were extracted. Four different classification methods were used to evaluate fish diets including Random forest (RF), Support vector machine (SVM), Logistic regression (LR) and k-Nearest neighbours (k-NN). The SVM with radial based kernel provided the best classifier with correct classification rate (CCR) of 82% and Kappa coefficient of 0.65. Although the both LR and RF methods were less accurate than SVM, they achieved good classification with CCR 75% and 70% respectively. The k-NN was the least accurate (40%) classification model. Overall, it can be concluded that consumer-grade digital cameras could be employed as the fast, accurate and non-invasive sensor for classifying rainbow trout based on their diets. Furthermore, these was a close association between image-based features and fish diet received during cultivation. These procedures can be used as non-invasive, accurate and precise approaches for monitoring fish status during the cultivation by evaluating diet’s effects on fish skin. PMID:29596375

  12. Comparative Performance Analysis of Support Vector Machine, Random Forest, Logistic Regression and k-Nearest Neighbours in Rainbow Trout (Oncorhynchus Mykiss) Classification Using Image-Based Features.

    PubMed

    Saberioon, Mohammadmehdi; Císař, Petr; Labbé, Laurent; Souček, Pavel; Pelissier, Pablo; Kerneis, Thierry

    2018-03-29

    The main aim of this study was to develop a new objective method for evaluating the impacts of different diets on the live fish skin using image-based features. In total, one-hundred and sixty rainbow trout ( Oncorhynchus mykiss ) were fed either a fish-meal based diet (80 fish) or a 100% plant-based diet (80 fish) and photographed using consumer-grade digital camera. Twenty-three colour features and four texture features were extracted. Four different classification methods were used to evaluate fish diets including Random forest (RF), Support vector machine (SVM), Logistic regression (LR) and k -Nearest neighbours ( k -NN). The SVM with radial based kernel provided the best classifier with correct classification rate (CCR) of 82% and Kappa coefficient of 0.65. Although the both LR and RF methods were less accurate than SVM, they achieved good classification with CCR 75% and 70% respectively. The k -NN was the least accurate (40%) classification model. Overall, it can be concluded that consumer-grade digital cameras could be employed as the fast, accurate and non-invasive sensor for classifying rainbow trout based on their diets. Furthermore, these was a close association between image-based features and fish diet received during cultivation. These procedures can be used as non-invasive, accurate and precise approaches for monitoring fish status during the cultivation by evaluating diet's effects on fish skin.

  13. Semi-supervised vibration-based classification and condition monitoring of compressors

    NASA Astrophysics Data System (ADS)

    Potočnik, Primož; Govekar, Edvard

    2017-09-01

    Semi-supervised vibration-based classification and condition monitoring of the reciprocating compressors installed in refrigeration appliances is proposed in this paper. The method addresses the problem of industrial condition monitoring where prior class definitions are often not available or difficult to obtain from local experts. The proposed method combines feature extraction, principal component analysis, and statistical analysis for the extraction of initial class representatives, and compares the capability of various classification methods, including discriminant analysis (DA), neural networks (NN), support vector machines (SVM), and extreme learning machines (ELM). The use of the method is demonstrated on a case study which was based on industrially acquired vibration measurements of reciprocating compressors during the production of refrigeration appliances. The paper presents a comparative qualitative analysis of the applied classifiers, confirming the good performance of several nonlinear classifiers. If the model parameters are properly selected, then very good classification performance can be obtained from NN trained by Bayesian regularization, SVM and ELM classifiers. The method can be effectively applied for the industrial condition monitoring of compressors.

  14. Objective Auscultation of TCM Based on Wavelet Packet Fractal Dimension and Support Vector Machine.

    PubMed

    Yan, Jian-Jun; Guo, Rui; Wang, Yi-Qin; Liu, Guo-Ping; Yan, Hai-Xia; Xia, Chun-Ming; Shen, Xiaojing

    2014-01-01

    This study was conducted to illustrate that auscultation features based on the fractal dimension combined with wavelet packet transform (WPT) were conducive to the identification the pattern of syndromes of Traditional Chinese Medicine (TCM). The WPT and the fractal dimension were employed to extract features of auscultation signals of 137 patients with lung Qi-deficient pattern, 49 patients with lung Yin-deficient pattern, and 43 healthy subjects. With these features, the classification model was constructed based on multiclass support vector machine (SVM). When all auscultation signals were trained by SVM to decide the patterns of TCM syndromes, the overall recognition rate of model was 79.49%; when male and female auscultation signals were trained, respectively, to decide the patterns, the overall recognition rate of model reached 86.05%. The results showed that the methods proposed in this paper were effective to analyze auscultation signals, and the performance of model can be greatly improved when the distinction of gender was considered.

  15. Objective Auscultation of TCM Based on Wavelet Packet Fractal Dimension and Support Vector Machine

    PubMed Central

    Yan, Jian-Jun; Wang, Yi-Qin; Liu, Guo-Ping; Yan, Hai-Xia; Xia, Chun-Ming; Shen, Xiaojing

    2014-01-01

    This study was conducted to illustrate that auscultation features based on the fractal dimension combined with wavelet packet transform (WPT) were conducive to the identification the pattern of syndromes of Traditional Chinese Medicine (TCM). The WPT and the fractal dimension were employed to extract features of auscultation signals of 137 patients with lung Qi-deficient pattern, 49 patients with lung Yin-deficient pattern, and 43 healthy subjects. With these features, the classification model was constructed based on multiclass support vector machine (SVM). When all auscultation signals were trained by SVM to decide the patterns of TCM syndromes, the overall recognition rate of model was 79.49%; when male and female auscultation signals were trained, respectively, to decide the patterns, the overall recognition rate of model reached 86.05%. The results showed that the methods proposed in this paper were effective to analyze auscultation signals, and the performance of model can be greatly improved when the distinction of gender was considered. PMID:24883068

  16. The prediction of food additives in the fruit juice based on electronic nose with chemometrics.

    PubMed

    Qiu, Shanshan; Wang, Jun

    2017-09-01

    Food additives are added to products to enhance their taste, and preserve flavor or appearance. While their use should be restricted to achieve a technological benefit, the contents of food additives should be also strictly controlled. In this study, E-nose was applied as an alternative to traditional monitoring technologies for determining two food additives, namely benzoic acid and chitosan. For quantitative monitoring, support vector machine (SVM), random forest (RF), extreme learning machine (ELM) and partial least squares regression (PLSR) were applied to establish regression models between E-nose signals and the amount of food additives in fruit juices. The monitoring models based on ELM and RF reached higher correlation coefficients (R 2 s) and lower root mean square errors (RMSEs) than models based on PLSR and SVM. This work indicates that E-nose combined with RF or ELM can be a cost-effective, easy-to-build and rapid detection system for food additive monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Machine learning-based assessment tool for imbalance and vestibular dysfunction with virtual reality rehabilitation system.

    PubMed

    Yeh, Shih-Ching; Huang, Ming-Chun; Wang, Pa-Chun; Fang, Te-Yung; Su, Mu-Chun; Tsai, Po-Yi; Rizzo, Albert

    2014-10-01

    Dizziness is a major consequence of imbalance and vestibular dysfunction. Compared to surgery and drug treatments, balance training is non-invasive and more desired. However, training exercises are usually tedious and the assessment tool is insufficient to diagnose patient's severity rapidly. An interactive virtual reality (VR) game-based rehabilitation program that adopted Cawthorne-Cooksey exercises, and a sensor-based measuring system were introduced. To verify the therapeutic effect, a clinical experiment with 48 patients and 36 normal subjects was conducted. Quantified balance indices were measured and analyzed by statistical tools and a Support Vector Machine (SVM) classifier. In terms of balance indices, patients who completed the training process are progressed and the difference between normal subjects and patients is obvious. Further analysis by SVM classifier show that the accuracy of recognizing the differences between patients and normal subject is feasible, and these results can be used to evaluate patients' severity and make rapid assessment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Multiplex coherent anti-Stokes Raman scattering microspectroscopy of brain tissue with higher ranking data classification for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Pohling, Christoph; Bocklitz, Thomas; Duarte, Alex S.; Emmanuello, Cinzia; Ishikawa, Mariana S.; Dietzeck, Benjamin; Buckup, Tiago; Uckermann, Ortrud; Schackert, Gabriele; Kirsch, Matthias; Schmitt, Michael; Popp, Jürgen; Motzkus, Marcus

    2017-06-01

    Multiplex coherent anti-Stokes Raman scattering (MCARS) microscopy was carried out to map a solid tumor in mouse brain tissue. The border between normal and tumor tissue was visualized using support vector machines (SVM) as a higher ranking type of data classification. Training data were collected separately in both tissue types, and the image contrast is based on class affiliation of the single spectra. Color coding in the image generated by SVM is then related to pathological information instead of single spectral intensities or spectral differences within the data set. The results show good agreement with the H&E stained reference and spontaneous Raman microscopy, proving the validity of the MCARS approach in combination with SVM.

  19. Prediction of mutagenic toxicity by combination of Recursive Partitioning and Support Vector Machines.

    PubMed

    Liao, Quan; Yao, Jianhua; Yuan, Shengang

    2007-05-01

    The study of prediction of toxicity is very important and necessary because measurement of toxicity is typically time-consuming and expensive. In this paper, Recursive Partitioning (RP) method was used to select descriptors. RP and Support Vector Machines (SVM) were used to construct structure-toxicity relationship models, RP model and SVM model, respectively. The performances of the two models are different. The prediction accuracies of the RP model are 80.2% for mutagenic compounds in MDL's toxicity database, 83.4% for compounds in CMC and 84.9% for agrochemicals in in-house database respectively. Those of SVM model are 81.4%, 87.0% and 87.3% respectively.

  20. Toward a functional near-infrared spectroscopy-based monitoring of pain assessment for nonverbal patients

    NASA Astrophysics Data System (ADS)

    Fernandez Rojas, Raul; Huang, Xu; Ou, Keng-Liang

    2017-10-01

    Pain diagnosis for nonverbal patients represents a challenge in clinical settings. Neuroimaging methods, such as functional magnetic resonance imaging and functional near-infrared spectroscopy (fNIRS), have shown promising results to assess neuronal function in response to nociception and pain. Recent studies suggest that neuroimaging in conjunction with machine learning models can be used to predict different cognitive tasks. The aim of this study is to expand previous studies by exploring the classification of fNIRS signals (oxyhaemoglobin) according to temperature level (cold and hot) and corresponding pain intensity (low and high) using machine learning models. Toward this aim, we used the quantitative sensory testing to determine pain threshold and pain tolerance to cold and heat in 18 healthy subjects (three females), mean age±standard deviation (31.9±5.5). The classification model is based on the bag-of-words approach, a histogram representation used in document classification based on the frequencies of extracted words and adapted for time series; two learning algorithms were used separately, K-nearest neighbor (K-NN) and support vector machines (SVM). A comparison between two sets of fNIRS channels was also made in the classification task, all 24 channels and 8 channels from the somatosensory region defined as our region of interest (RoI). The results showed that K-NN obtained slightly better results (92.08%) than SVM (91.25%) using the 24 channels; however, the performance slightly dropped using only channels from the RoI with K-NN (91.53%) and SVM (90.83%). These results indicate potential applications of fNIRS in the development of a physiologically based diagnosis of human pain that would benefit vulnerable patients who cannot self-report pain.

  1. Derivation and validation of different machine-learning models in mortality prediction of trauma in motorcycle riders: a cross-sectional retrospective study in southern Taiwan

    PubMed Central

    Kuo, Pao-Jen; Wu, Shao-Chun; Chien, Peng-Chen; Rau, Cheng-Shyuan; Chen, Yi-Chun; Hsieh, Hsiao-Yun; Hsieh, Ching-Hua

    2018-01-01

    Objectives This study aimed to build and test the models of machine learning (ML) to predict the mortality of hospitalised motorcycle riders. Setting The study was conducted in a level-1 trauma centre in southern Taiwan. Participants Motorcycle riders who were hospitalised between January 2009 and December 2015 were classified into a training set (n=6306) and test set (n=946). Using the demographic information, injury characteristics and laboratory data of patients, logistic regression (LR), support vector machine (SVM) and decision tree (DT) analyses were performed to determine the mortality of individual motorcycle riders, under different conditions, using all samples or reduced samples, as well as all variables or selected features in the algorithm. Primary and secondary outcome measures The predictive performance of the model was evaluated based on accuracy, sensitivity, specificity and geometric mean, and an analysis of the area under the receiver operating characteristic curves of the two different models was carried out. Results In the training set, both LR and SVM had a significantly higher area under the receiver operating characteristic curve (AUC) than DT. No significant difference was observed in the AUC of LR and SVM, regardless of whether all samples or reduced samples and whether all variables or selected features were used. In the test set, the performance of the SVM model for all samples with selected features was better than that of all other models, with an accuracy of 98.73%, sensitivity of 86.96%, specificity of 99.02%, geometric mean of 92.79% and AUC of 0.9517, in mortality prediction. Conclusion ML can provide a feasible level of accuracy in predicting the mortality of motorcycle riders. Integration of the ML model, particularly the SVM algorithm in the trauma system, may help identify high-risk patients and, therefore, guide appropriate interventions by the clinical staff. PMID:29306885

  2. Development and experimental test of support vector machines virtual screening method for searching Src inhibitors from large compound libraries

    PubMed Central

    2012-01-01

    Background Src plays various roles in tumour progression, invasion, metastasis, angiogenesis and survival. It is one of the multiple targets of multi-target kinase inhibitors in clinical uses and trials for the treatment of leukemia and other cancers. These successes and appearances of drug resistance in some patients have raised significant interest and efforts in discovering new Src inhibitors. Various in-silico methods have been used in some of these efforts. It is desirable to explore additional in-silico methods, particularly those capable of searching large compound libraries at high yields and reduced false-hit rates. Results We evaluated support vector machines (SVM) as virtual screening tools for searching Src inhibitors from large compound libraries. SVM trained and tested by 1,703 inhibitors and 63,318 putative non-inhibitors correctly identified 93.53%~ 95.01% inhibitors and 99.81%~ 99.90% non-inhibitors in 5-fold cross validation studies. SVM trained by 1,703 inhibitors reported before 2011 and 63,318 putative non-inhibitors correctly identified 70.45% of the 44 inhibitors reported since 2011, and predicted as inhibitors 44,843 (0.33%) of 13.56M PubChem, 1,496 (0.89%) of 168 K MDDR, and 719 (7.73%) of 9,305 MDDR compounds similar to the known inhibitors. Conclusions SVM showed comparable yield and reduced false hit rates in searching large compound libraries compared to the similarity-based and other machine-learning VS methods developed from the same set of training compounds and molecular descriptors. We tested three virtual hits of the same novel scaffold from in-house chemical libraries not reported as Src inhibitor, one of which showed moderate activity. SVM may be potentially explored for searching Src inhibitors from large compound libraries at low false-hit rates. PMID:23173901

  3. Prediction of B-cell linear epitopes with a combination of support vector machine classification and amino acid propensity identification.

    PubMed

    Wang, Hsin-Wei; Lin, Ya-Chi; Pai, Tun-Wen; Chang, Hao-Teng

    2011-01-01

    Epitopes are antigenic determinants that are useful because they induce B-cell antibody production and stimulate T-cell activation. Bioinformatics can enable rapid, efficient prediction of potential epitopes. Here, we designed a novel B-cell linear epitope prediction system called LEPS, Linear Epitope Prediction by Propensities and Support Vector Machine, that combined physico-chemical propensity identification and support vector machine (SVM) classification. We tested the LEPS on four datasets: AntiJen, HIV, a newly generated PC, and AHP, a combination of these three datasets. Peptides with globally or locally high physicochemical propensities were first identified as primitive linear epitope (LE) candidates. Then, candidates were classified with the SVM based on the unique features of amino acid segments. This reduced the number of predicted epitopes and enhanced the positive prediction value (PPV). Compared to four other well-known LE prediction systems, the LEPS achieved the highest accuracy (72.52%), specificity (84.22%), PPV (32.07%), and Matthews' correlation coefficient (10.36%).

  4. Comparative Study of SVM Methods Combined with Voxel Selection for Object Category Classification on fMRI Data

    PubMed Central

    Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li

    2011-01-01

    Background Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Methodology/Principal Findings Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. Conclusions/Significance The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice. PMID:21359184

  5. Comparative study of SVM methods combined with voxel selection for object category classification on fMRI data.

    PubMed

    Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li

    2011-02-16

    Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice.

  6. [Different wavelengths selection methods for identification of early blight on tomato leaves by using hyperspectral imaging technique].

    PubMed

    Cheng, Shu-Xi; Xie, Chuan-Qi; Wang, Qiao-Nan; He, Yong; Shao, Yong-Ni

    2014-05-01

    Identification of early blight on tomato leaves by using hyperspectral imaging technique based on different effective wavelengths selection methods (successive projections algorithm, SPA; x-loading weights, x-LW; gram-schmidt orthogonaliza-tion, GSO) was studied in the present paper. Hyperspectral images of seventy healthy and seventy infected tomato leaves were obtained by hyperspectral imaging system across the wavelength range of 380-1023 nm. Reflectance of all pixels in region of interest (ROI) was extracted by ENVI 4. 7 software. Least squares-support vector machine (LS-SVM) model was established based on the full spectral wavelengths. It obtained an excellent result with the highest identification accuracy (100%) in both calibration and prediction sets. Then, EW-LS-SVM and EW-LDA models were established based on the selected wavelengths suggested by SPA, x-LW and GSO, respectively. The results showed that all of the EW-LS-SVM and EW-LDA models performed well with the identification accuracy of 100% in EW-LS-SVM model and 100%, 100% and 97. 83% in EW-LDA model, respectively. Moreover, the number of input wavelengths of SPA-LS-SVM, x-LW-LS-SVM and GSO-LS-SVM models were four (492, 550, 633 and 680 nm), three (631, 719 and 747 nm) and two (533 and 657 nm), respectively. Fewer input variables were beneficial for the development of identification instrument. It demonstrated that it is feasible to identify early blight on tomato leaves by using hyperspectral imaging, and SPA, x-LW and GSO were effective wavelengths selection methods.

  7. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region

    NASA Astrophysics Data System (ADS)

    He, Zhibin; Wen, Xiaohu; Liu, Hu; Du, Jun

    2014-02-01

    Data driven models are very useful for river flow forecasting when the underlying physical relationships are not fully understand, but it is not clear whether these data driven models still have a good performance in the small river basin of semiarid mountain regions where have complicated topography. In this study, the potential of three different data driven methods, artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for forecasting river flow in the semiarid mountain region, northwestern China. The models analyzed different combinations of antecedent river flow values and the appropriate input vector has been selected based on the analysis of residuals. The performance of the ANN, ANFIS and SVM models in training and validation sets are compared with the observed data. The model which consists of three antecedent values of flow has been selected as the best fit model for river flow forecasting. To get more accurate evaluation of the results of ANN, ANFIS and SVM models, the four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), root mean squared error (RMSE), Nash-Sutcliffe efficiency coefficient (NS) and mean absolute relative error (MARE), were employed to evaluate the performances of various models developed. The results indicate that the performance obtained by ANN, ANFIS and SVM in terms of different evaluation criteria during the training and validation period does not vary substantially; the performance of the ANN, ANFIS and SVM models in river flow forecasting was satisfactory. A detailed comparison of the overall performance indicated that the SVM model performed better than ANN and ANFIS in river flow forecasting for the validation data sets. The results also suggest that ANN, ANFIS and SVM method can be successfully applied to establish river flow with complicated topography forecasting models in the semiarid mountain regions.

  8. Effect of training data size and noise level on support vector machines virtual screening of genotoxic compounds from large compound libraries.

    PubMed

    Kumar, Pankaj; Ma, Xiaohua; Liu, Xianghui; Jia, Jia; Bucong, Han; Xue, Ying; Li, Ze Rong; Yang, Sheng Yong; Wei, Yu Quan; Chen, Yu Zong

    2011-05-01

    Various in vitro and in-silico methods have been used for drug genotoxicity tests, which show limited genotoxicity (GT+) and non-genotoxicity (GT-) identification rates. New methods and combinatorial approaches have been explored for enhanced collective identification capability. The rates of in-silco methods may be further improved by significantly diversified training data enriched by the large number of recently reported GT+ and GT- compounds, but a major concern is the increased noise levels arising from high false-positive rates of in vitro data. In this work, we evaluated the effect of training data size and noise level on the performance of support vector machines (SVM) method known to tolerate high noise levels in training data. Two SVMs of different diversity/noise levels were developed and tested. H-SVM trained by higher diversity higher noise data (GT+ in any in vivo or in vitro test) outperforms L-SVM trained by lower noise lower diversity data (GT+ in in vivo or Ames test only). H-SVM trained by 4,763 GT+ compounds reported before 2008 and 8,232 GT- compounds excluding clinical trial drugs correctly identified 81.6% of the 38 GT+ compounds reported since 2008, predicted 83.1% of the 2,008 clinical trial drugs as GT-, and 23.96% of 168 K MDDR and 27.23% of 17.86M PubChem compounds as GT+. These are comparable to the 43.1-51.9% GT+ and 75-93% GT- rates of existing in-silico methods, 58.8% GT+ and 79% GT- rates of Ames method, and the estimated percentages of 23% in vivo and 31-33% in vitro GT+ compounds in the "universe of chemicals". There is a substantial level of agreement between H-SVM and L-SVM predicted GT+ and GT- MDDR compounds and the prediction from TOPKAT. SVM showed good potential in identifying GT+ compounds from large compound libraries based on higher diversity and higher noise training data.

  9. Using machine learning algorithms to guide rehabilitation planning for home care clients.

    PubMed

    Zhu, Mu; Zhang, Zhanyang; Hirdes, John P; Stolee, Paul

    2007-12-20

    Targeting older clients for rehabilitation is a clinical challenge and a research priority. We investigate the potential of machine learning algorithms - Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) - to guide rehabilitation planning for home care clients. This study is a secondary analysis of data on 24,724 longer-term clients from eight home care programs in Ontario. Data were collected with the RAI-HC assessment system, in which the Activities of Daily Living Clinical Assessment Protocol (ADLCAP) is used to identify clients with rehabilitation potential. For study purposes, a client is defined as having rehabilitation potential if there was: i) improvement in ADL functioning, or ii) discharge home. SVM and KNN results are compared with those obtained using the ADLCAP. For comparison, the machine learning algorithms use the same functional and health status indicators as the ADLCAP. The KNN and SVM algorithms achieved similar substantially improved performance over the ADLCAP, although false positive and false negative rates were still fairly high (FP > .18, FN > .34 versus FP > .29, FN. > .58 for ADLCAP). Results are used to suggest potential revisions to the ADLCAP. Machine learning algorithms achieved superior predictions than the current protocol. Machine learning results are less readily interpretable, but can also be used to guide development of improved clinical protocols.

  10. PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons.

    PubMed

    Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Zhao, Guang-Yu; Xu, Guo-Qiang; He, Long; Mao, Xi-Wang; Dong, Wei

    2016-09-02

    Locomotion mode identification is essential for the control of a robotic rehabilitation exoskeletons. This paper proposes an online support vector machine (SVM) optimized by particle swarm optimization (PSO) to identify different locomotion modes to realize a smooth and automatic locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better overall performance. Signals measured by the foot pressure sensors integrated in the insoles of wearable shoes and the MEMS-based attitude and heading reference systems (AHRS) attached on the shoes and shanks of leg segments are fused together as the input information of SVM. Based on the chosen window whose size is 200 ms (with sampling frequency of 40 Hz), a three-layer wavelet packet analysis (WPA) is used for feature extraction, after which, the kernel principal component analysis (kPCA) is utilized to reduce the dimension of the feature set to reduce computation cost of the SVM. Since the signals are from two types of different sensors, the normalization is conducted to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments are performed for different locomotion modes and experimental results show the effectiveness of the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority vote algorithm (MVA) is used for post-processing, with which the identification accuracy is better than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic rehabilitation and assistance.

  11. PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons

    PubMed Central

    Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Zhao, Guang-Yu; Xu, Guo-Qiang; He, Long; Mao, Xi-Wang; Dong, Wei

    2016-01-01

    Locomotion mode identification is essential for the control of a robotic rehabilitation exoskeletons. This paper proposes an online support vector machine (SVM) optimized by particle swarm optimization (PSO) to identify different locomotion modes to realize a smooth and automatic locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better overall performance. Signals measured by the foot pressure sensors integrated in the insoles of wearable shoes and the MEMS-based attitude and heading reference systems (AHRS) attached on the shoes and shanks of leg segments are fused together as the input information of SVM. Based on the chosen window whose size is 200 ms (with sampling frequency of 40 Hz), a three-layer wavelet packet analysis (WPA) is used for feature extraction, after which, the kernel principal component analysis (kPCA) is utilized to reduce the dimension of the feature set to reduce computation cost of the SVM. Since the signals are from two types of different sensors, the normalization is conducted to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments are performed for different locomotion modes and experimental results show the effectiveness of the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority vote algorithm (MVA) is used for post-processing, with which the identification accuracy is better than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic rehabilitation and assistance. PMID:27598160

  12. Geographical traceability of wild Boletus edulis based on data fusion of FT-MIR and ICP-AES coupled with data mining methods (SVM)

    NASA Astrophysics Data System (ADS)

    Li, Yun; Zhang, Ji; Li, Tao; Liu, Honggao; Li, Jieqing; Wang, Yuanzhong

    2017-04-01

    In this work, the data fusion strategy of Fourier transform mid infrared (FT-MIR) spectroscopy and inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used in combination with Support Vector Machine (SVM) to determine the geographic origin of Boletus edulis collected from nine regions of Yunnan Province in China. Firstly, competitive adaptive reweighted sampling (CARS) was used for selecting an optimal combination of key wavenumbers of second derivative FT-MIR spectra, and thirteen elements were sorted with variable importance in projection (VIP) scores. Secondly, thirteen subsets of multi-elements with the best VIP score were generated and each subset was used to fuse with FT-MIR. Finally, the classification models were established by SVM, and the combination of parameter C and γ (gamma) of SVM models was calculated by the approaches of grid search (GS) and genetic algorithm (GA). The results showed that both GS-SVM and GA-SVM models achieved good performances based on the #9 subset and the prediction accuracy in calibration and validation sets of the two models were 81.40% and 90.91%, correspondingly. In conclusion, it indicated that the data fusion strategy of FT-MIR and ICP-AES coupled with the algorithm of SVM can be used as a reliable tool for accurate identification of B. edulis, and it can provide a useful way of thinking for the quality control of edible mushrooms.

  13. Geographical traceability of wild Boletus edulis based on data fusion of FT-MIR and ICP-AES coupled with data mining methods (SVM).

    PubMed

    Li, Yun; Zhang, Ji; Li, Tao; Liu, Honggao; Li, Jieqing; Wang, Yuanzhong

    2017-04-15

    In this work, the data fusion strategy of Fourier transform mid infrared (FT-MIR) spectroscopy and inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used in combination with Support Vector Machine (SVM) to determine the geographic origin of Boletus edulis collected from nine regions of Yunnan Province in China. Firstly, competitive adaptive reweighted sampling (CARS) was used for selecting an optimal combination of key wavenumbers of second derivative FT-MIR spectra, and thirteen elements were sorted with variable importance in projection (VIP) scores. Secondly, thirteen subsets of multi-elements with the best VIP score were generated and each subset was used to fuse with FT-MIR. Finally, the classification models were established by SVM, and the combination of parameter C and γ (gamma) of SVM models was calculated by the approaches of grid search (GS) and genetic algorithm (GA). The results showed that both GS-SVM and GA-SVM models achieved good performances based on the #9 subset and the prediction accuracy in calibration and validation sets of the two models were 81.40% and 90.91%, correspondingly. In conclusion, it indicated that the data fusion strategy of FT-MIR and ICP-AES coupled with the algorithm of SVM can be used as a reliable tool for accurate identification of B. edulis, and it can provide a useful way of thinking for the quality control of edible mushrooms. Copyright © 2017. Published by Elsevier B.V.

  14. Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis.

    PubMed

    You, Zhu-Hong; Lei, Ying-Ke; Zhu, Lin; Xia, Junfeng; Wang, Bing

    2013-01-01

    Protein-protein interactions (PPIs) play crucial roles in the execution of various cellular processes and form the basis of biological mechanisms. Although large amount of PPIs data for different species has been generated by high-throughput experimental techniques, current PPI pairs obtained with experimental methods cover only a fraction of the complete PPI networks, and further, the experimental methods for identifying PPIs are both time-consuming and expensive. Hence, it is urgent and challenging to develop automated computational methods to efficiently and accurately predict PPIs. We present here a novel hierarchical PCA-EELM (principal component analysis-ensemble extreme learning machine) model to predict protein-protein interactions only using the information of protein sequences. In the proposed method, 11188 protein pairs retrieved from the DIP database were encoded into feature vectors by using four kinds of protein sequences information. Focusing on dimension reduction, an effective feature extraction method PCA was then employed to construct the most discriminative new feature set. Finally, multiple extreme learning machines were trained and then aggregated into a consensus classifier by majority voting. The ensembling of extreme learning machine removes the dependence of results on initial random weights and improves the prediction performance. When performed on the PPI data of Saccharomyces cerevisiae, the proposed method achieved 87.00% prediction accuracy with 86.15% sensitivity at the precision of 87.59%. Extensive experiments are performed to compare our method with state-of-the-art techniques Support Vector Machine (SVM). Experimental results demonstrate that proposed PCA-EELM outperforms the SVM method by 5-fold cross-validation. Besides, PCA-EELM performs faster than PCA-SVM based method. Consequently, the proposed approach can be considered as a new promising and powerful tools for predicting PPI with excellent performance and less time.

  15. Algorithm for detection the QRS complexes based on support vector machine

    NASA Astrophysics Data System (ADS)

    Van, G. V.; Podmasteryev, K. V.

    2017-11-01

    The efficiency of computer ECG analysis depends on the accurate detection of QRS-complexes. This paper presents an algorithm for QRS complex detection based of support vector machine (SVM). The proposed algorithm is evaluated on annotated standard databases such as MIT-BIH Arrhythmia database. The QRS detector obtained a sensitivity Se = 98.32% and specificity Sp = 95.46% for MIT-BIH Arrhythmia database. This algorithm can be used as the basis for the software to diagnose electrical activity of the heart.

  16. Deep neural mapping support vector machines.

    PubMed

    Li, Yujian; Zhang, Ting

    2017-09-01

    The choice of kernel has an important effect on the performance of a support vector machine (SVM). The effect could be reduced by NEUROSVM, an architecture using multilayer perceptron for feature extraction and SVM for classification. In binary classification, a general linear kernel NEUROSVM can be theoretically simplified as an input layer, many hidden layers, and an SVM output layer. As a feature extractor, the sub-network composed of the input and hidden layers is first trained together with a virtual ordinary output layer by backpropagation, then with the output of its last hidden layer taken as input of the SVM classifier for further training separately. By taking the sub-network as a kernel mapping from the original input space into a feature space, we present a novel model, called deep neural mapping support vector machine (DNMSVM), from the viewpoint of deep learning. This model is also a new and general kernel learning method, where the kernel mapping is indeed an explicit function expressed as a sub-network, different from an implicit function induced by a kernel function traditionally. Moreover, we exploit a two-stage procedure of contrastive divergence learning and gradient descent for DNMSVM to jointly training an adaptive kernel mapping instead of a kernel function, without requirement of kernel tricks. As a whole of the sub-network and the SVM classifier, the joint training of DNMSVM is done by using gradient descent to optimize the objective function with the sub-network layer-wise pre-trained via contrastive divergence learning of restricted Boltzmann machines. Compared to the separate training of NEUROSVM, the joint training is a new algorithm for DNMSVM to have advantages over NEUROSVM. Experimental results show that DNMSVM can outperform NEUROSVM and RBFSVM (i.e., SVM with the kernel of radial basis function), demonstrating its effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Construction accident narrative classification: An evaluation of text mining techniques.

    PubMed

    Goh, Yang Miang; Ubeynarayana, C U

    2017-11-01

    Learning from past accidents is fundamental to accident prevention. Thus, accident and near miss reporting are encouraged by organizations and regulators. However, for organizations managing large safety databases, the time taken to accurately classify accident and near miss narratives will be very significant. This study aims to evaluate the utility of various text mining classification techniques in classifying 1000 publicly available construction accident narratives obtained from the US OSHA website. The study evaluated six machine learning algorithms, including support vector machine (SVM), linear regression (LR), random forest (RF), k-nearest neighbor (KNN), decision tree (DT) and Naive Bayes (NB), and found that SVM produced the best performance in classifying the test set of 251 cases. Further experimentation with tokenization of the processed text and non-linear SVM were also conducted. In addition, a grid search was conducted on the hyperparameters of the SVM models. It was found that the best performing classifiers were linear SVM with unigram tokenization and radial basis function (RBF) SVM with uni-gram tokenization. In view of its relative simplicity, the linear SVM is recommended. Across the 11 labels of accident causes or types, the precision of the linear SVM ranged from 0.5 to 1, recall ranged from 0.36 to 0.9 and F1 score was between 0.45 and 0.92. The reasons for misclassification were discussed and suggestions on ways to improve the performance were provided. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Optimizing classification performance in an object-based very-high-resolution land use-land cover urban application

    NASA Astrophysics Data System (ADS)

    Georganos, Stefanos; Grippa, Tais; Vanhuysse, Sabine; Lennert, Moritz; Shimoni, Michal; Wolff, Eléonore

    2017-10-01

    This study evaluates the impact of three Feature Selection (FS) algorithms in an Object Based Image Analysis (OBIA) framework for Very-High-Resolution (VHR) Land Use-Land Cover (LULC) classification. The three selected FS algorithms, Correlation Based Selection (CFS), Mean Decrease in Accuracy (MDA) and Random Forest (RF) based Recursive Feature Elimination (RFE), were tested on Support Vector Machine (SVM), K-Nearest Neighbor, and Random Forest (RF) classifiers. The results demonstrate that the accuracy of SVM and KNN classifiers are the most sensitive to FS. The RF appeared to be more robust to high dimensionality, although a significant increase in accuracy was found by using the RFE method. In terms of classification accuracy, SVM performed the best using FS, followed by RF and KNN. Finally, only a small number of features is needed to achieve the highest performance using each classifier. This study emphasizes the benefits of rigorous FS for maximizing performance, as well as for minimizing model complexity and interpretation.

  19. The system evaluation for report writing skills of summary by HGA-SVM with Ontology: Medical case study in problem based learning

    NASA Astrophysics Data System (ADS)

    Yenaeng, Sasikanchana; Saelee, Somkid; Samai, Wirachai

    2018-01-01

    The system evaluation for report writing skills of summary by Hybrid Genetic Algorithm-Support Vector Machines (HGA-SVM) with Ontology of Medical Case Study in Problem Based Learning (PBL) is a system was developed as a guideline of scoring for the facilitators or medical teacher. The essay answers come from medical student of medical education courses in the nervous system motion and Behavior I and II subject, a third year medical student 20 groups of 9-10 people, the Faculty of Medicine in Prince of Songkla University (PSU). The audit committee have the opinion that the ratings of individual facilitators are inadequate, this system to solve such problems. In this paper proposes a development of the system evaluation for report writing skills of summary by HGA-SVM with Ontology of medical case study in PBL which the mean scores of machine learning score and humans (facilitators) score were not different at the significantly level .05 all 3 essay parts contain problem essay part, hypothesis essay part and learning objective essay part. The result show that, the average score all 3 essay parts that were not significantly different from the rate at the level of significance .05.

  20. The Effect of Personalization on Smartphone-Based Fall Detectors

    PubMed Central

    Medrano, Carlos; Plaza, Inmaculada; Igual, Raúl; Sánchez, Ángel; Castro, Manuel

    2016-01-01

    The risk of falling is high among different groups of people, such as older people, individuals with Parkinson's disease or patients in neuro-rehabilitation units. Developing robust fall detectors is important for acting promptly in case of a fall. Therefore, in this study we propose to personalize smartphone-based detectors to boost their performance as compared to a non-personalized system. Four algorithms were investigated using a public dataset: three novelty detection algorithms—Nearest Neighbor (NN), Local Outlier Factor (LOF) and One-Class Support Vector Machine (OneClass-SVM)—and a traditional supervised algorithm, Support Vector Machine (SVM). The effect of personalization was studied for each subject by considering two different training conditions: data coming only from that subject or data coming from the remaining subjects. The area under the receiver operating characteristic curve (AUC) was selected as the primary figure of merit. The results show that there is a general trend towards the increase in performance by personalizing the detector, but the effect depends on the individual being considered. A personalized NN can reach the performance of a non-personalized SVM (average AUC of 0.9861 and 0.9795, respectively), which is remarkable since NN only uses activities of daily living for training. PMID:26797614

  1. Association between abnormal brain functional connectivity in children and psychopathology: A study based on graph theory and machine learning.

    PubMed

    Sato, João Ricardo; Biazoli, Claudinei Eduardo; Salum, Giovanni Abrahão; Gadelha, Ary; Crossley, Nicolas; Vieira, Gilson; Zugman, André; Picon, Felipe Almeida; Pan, Pedro Mario; Hoexter, Marcelo Queiroz; Amaro, Edson; Anés, Mauricio; Moura, Luciana Monteiro; Del'Aquilla, Marco Antonio Gomes; Mcguire, Philip; Rohde, Luis Augusto; Miguel, Euripedes Constantino; Jackowski, Andrea Parolin; Bressan, Rodrigo Affonseca

    2018-03-01

    One of the major challenges facing psychiatry is how to incorporate biological measures in the classification of mental health disorders. Many of these disorders affect brain development and its connectivity. In this study, we propose a novel method for assessing brain networks based on the combination of a graph theory measure (eigenvector centrality) and a one-class support vector machine (OC-SVM). We applied this approach to resting-state fMRI data from 622 children and adolescents. Eigenvector centrality (EVC) of nodes from positive- and negative-task networks were extracted from each subject and used as input to an OC-SVM to label individual brain networks as typical or atypical. We hypothesised that classification of these subjects regarding the pattern of brain connectivity would predict the level of psychopathology. Subjects with atypical brain network organisation had higher levels of psychopathology (p < 0.001). There was a greater EVC in the typical group at the bilateral posterior cingulate and bilateral posterior temporal cortices; and significant decreases in EVC at left temporal pole. The combination of graph theory methods and an OC-SVM is a promising method to characterise neurodevelopment, and may be useful to understand the deviations leading to mental disorders.

  2. Hidden Markov Model and Support Vector Machine based decoding of finger movements using Electrocorticography

    PubMed Central

    Wissel, Tobias; Pfeiffer, Tim; Frysch, Robert; Knight, Robert T.; Chang, Edward F.; Hinrichs, Hermann; Rieger, Jochem W.; Rose, Georg

    2013-01-01

    Objective Support Vector Machines (SVM) have developed into a gold standard for accurate classification in Brain-Computer-Interfaces (BCI). The choice of the most appropriate classifier for a particular application depends on several characteristics in addition to decoding accuracy. Here we investigate the implementation of Hidden Markov Models (HMM)for online BCIs and discuss strategies to improve their performance. Approach We compare the SVM, serving as a reference, and HMMs for classifying discrete finger movements obtained from the Electrocorticograms of four subjects doing a finger tapping experiment. The classifier decisions are based on a subset of low-frequency time domain and high gamma oscillation features. Main results We show that decoding optimization between the two approaches is due to the way features are extracted and selected and less dependent on the classifier. An additional gain in HMM performance of up to 6% was obtained by introducing model constraints. Comparable accuracies of up to 90% were achieved with both SVM and HMM with the high gamma cortical response providing the most important decoding information for both techniques. Significance We discuss technical HMM characteristics and adaptations in the context of the presented data as well as for general BCI applications. Our findings suggest that HMMs and their characteristics are promising for efficient online brain-computer interfaces. PMID:24045504

  3. Multi-temporal Land Use Mapping of Coastal Wetlands Area using Machine Learning in Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Farda, N. M.

    2017-12-01

    Coastal wetlands provide ecosystem services essential to people and the environment. Changes in coastal wetlands, especially on land use, are important to monitor by utilizing multi-temporal imagery. The Google Earth Engine (GEE) provides many machine learning algorithms (10 algorithms) that are very useful for extracting land use from imagery. The research objective is to explore machine learning in Google Earth Engine and its accuracy for multi-temporal land use mapping of coastal wetland area. Landsat 3 MSS (1978), Landsat 5 TM (1991), Landsat 7 ETM+ (2001), and Landsat 8 OLI (2014) images located in Segara Anakan lagoon are selected to represent multi temporal images. The input for machine learning are visible and near infrared bands, PCA band, invers PCA bands, bare soil index, vegetation index, wetness index, elevation from ASTER GDEM, and GLCM (Harralick) texture, and also polygon samples in 140 locations. There are 10 machine learning algorithms applied to extract coastal wetlands land use from Landsat imagery. The algorithms are Fast Naive Bayes, CART (Classification and Regression Tree), Random Forests, GMO Max Entropy, Perceptron (Multi Class Perceptron), Winnow, Voting SVM, Margin SVM, Pegasos (Primal Estimated sub-GrAdient SOlver for Svm), IKPamir (Intersection Kernel Passive Aggressive Method for Information Retrieval, SVM). Machine learning in Google Earth Engine are very helpful in multi-temporal land use mapping, the highest accuracy for land use mapping of coastal wetland is CART with 96.98 % Overall Accuracy using K-Fold Cross Validation (K = 10). GEE is particularly useful for multi-temporal land use mapping with ready used image and classification algorithms, and also very challenging for other applications.

  4. Neural network and SVM classifiers accurately predict lipid binding proteins, irrespective of sequence homology.

    PubMed

    Bakhtiarizadeh, Mohammad Reza; Moradi-Shahrbabak, Mohammad; Ebrahimi, Mansour; Ebrahimie, Esmaeil

    2014-09-07

    Due to the central roles of lipid binding proteins (LBPs) in many biological processes, sequence based identification of LBPs is of great interest. The major challenge is that LBPs are diverse in sequence, structure, and function which results in low accuracy of sequence homology based methods. Therefore, there is a need for developing alternative functional prediction methods irrespective of sequence similarity. To identify LBPs from non-LBPs, the performances of support vector machine (SVM) and neural network were compared in this study. Comprehensive protein features and various techniques were employed to create datasets. Five-fold cross-validation (CV) and independent evaluation (IE) tests were used to assess the validity of the two methods. The results indicated that SVM outperforms neural network. SVM achieved 89.28% (CV) and 89.55% (IE) overall accuracy in identification of LBPs from non-LBPs and 92.06% (CV) and 92.90% (IE) (in average) for classification of different LBPs classes. Increasing the number and the range of extracted protein features as well as optimization of the SVM parameters significantly increased the efficiency of LBPs class prediction in comparison to the only previous report in this field. Altogether, the results showed that the SVM algorithm can be run on broad, computationally calculated protein features and offers a promising tool in detection of LBPs classes. The proposed approach has the potential to integrate and improve the common sequence alignment based methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A Hybrid Hierarchical Approach for Brain Tissue Segmentation by Combining Brain Atlas and Least Square Support Vector Machine

    PubMed Central

    Kasiri, Keyvan; Kazemi, Kamran; Dehghani, Mohammad Javad; Helfroush, Mohammad Sadegh

    2013-01-01

    In this paper, we present a new semi-automatic brain tissue segmentation method based on a hybrid hierarchical approach that combines a brain atlas as a priori information and a least-square support vector machine (LS-SVM). The method consists of three steps. In the first two steps, the skull is removed and the cerebrospinal fluid (CSF) is extracted. These two steps are performed using the toolbox FMRIB's automated segmentation tool integrated in the FSL software (FSL-FAST) developed in Oxford Centre for functional MRI of the brain (FMRIB). Then, in the third step, the LS-SVM is used to segment grey matter (GM) and white matter (WM). The training samples for LS-SVM are selected from the registered brain atlas. The voxel intensities and spatial positions are selected as the two feature groups for training and test. SVM as a powerful discriminator is able to handle nonlinear classification problems; however, it cannot provide posterior probability. Thus, we use a sigmoid function to map the SVM output into probabilities. The proposed method is used to segment CSF, GM and WM from the simulated magnetic resonance imaging (MRI) using Brainweb MRI simulator and real data provided by Internet Brain Segmentation Repository. The semi-automatically segmented brain tissues were evaluated by comparing to the corresponding ground truth. The Dice and Jaccard similarity coefficients, sensitivity and specificity were calculated for the quantitative validation of the results. The quantitative results show that the proposed method segments brain tissues accurately with respect to corresponding ground truth. PMID:24696800

  6. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS

    NASA Astrophysics Data System (ADS)

    Tehrany, Mahyat Shafapour; Pradhan, Biswajeet; Jebur, Mustafa Neamah

    2014-05-01

    Flood is one of the most devastating natural disasters that occur frequently in Terengganu, Malaysia. Recently, ensemble based techniques are getting extremely popular in flood modeling. In this paper, weights-of-evidence (WoE) model was utilized first, to assess the impact of classes of each conditioning factor on flooding through bivariate statistical analysis (BSA). Then, these factors were reclassified using the acquired weights and entered into the support vector machine (SVM) model to evaluate the correlation between flood occurrence and each conditioning factor. Through this integration, the weak point of WoE can be solved and the performance of the SVM will be enhanced. The spatial database included flood inventory, slope, stream power index (SPI), topographic wetness index (TWI), altitude, curvature, distance from the river, geology, rainfall, land use/cover (LULC), and soil type. Four kernel types of SVM (linear kernel (LN), polynomial kernel (PL), radial basis function kernel (RBF), and sigmoid kernel (SIG)) were used to investigate the performance of each kernel type. The efficiency of the new ensemble WoE and SVM method was tested using area under curve (AUC) which measured the prediction and success rates. The validation results proved the strength and efficiency of the ensemble method over the individual methods. The best results were obtained from RBF kernel when compared with the other kernel types. Success rate and prediction rate for ensemble WoE and RBF-SVM method were 96.48% and 95.67% respectively. The proposed ensemble flood susceptibility mapping method could assist researchers and local governments in flood mitigation strategies.

  7. Granular support vector machines with association rules mining for protein homology prediction.

    PubMed

    Tang, Yuchun; Jin, Bo; Zhang, Yan-Qing

    2005-01-01

    Protein homology prediction between protein sequences is one of critical problems in computational biology. Such a complex classification problem is common in medical or biological information processing applications. How to build a model with superior generalization capability from training samples is an essential issue for mining knowledge to accurately predict/classify unseen new samples and to effectively support human experts to make correct decisions. A new learning model called granular support vector machines (GSVM) is proposed based on our previous work. GSVM systematically and formally combines the principles from statistical learning theory and granular computing theory and thus provides an interesting new mechanism to address complex classification problems. It works by building a sequence of information granules and then building support vector machines (SVM) in some of these information granules on demand. A good granulation method to find suitable granules is crucial for modeling a GSVM with good performance. In this paper, we also propose an association rules-based granulation method. For the granules induced by association rules with high enough confidence and significant support, we leave them as they are because of their high "purity" and significant effect on simplifying the classification task. For every other granule, a SVM is modeled to discriminate the corresponding data. In this way, a complex classification problem is divided into multiple smaller problems so that the learning task is simplified. The proposed algorithm, here named GSVM-AR, is compared with SVM by KDDCUP04 protein homology prediction data. The experimental results show that finding the splitting hyperplane is not a trivial task (we should be careful to select the association rules to avoid overfitting) and GSVM-AR does show significant improvement compared to building one single SVM in the whole feature space. Another advantage is that the utility of GSVM-AR is very good because it is easy to be implemented. More importantly and more interestingly, GSVM provides a new mechanism to address complex classification problems.

  8. Fault detection of Tennessee Eastman process based on topological features and SVM

    NASA Astrophysics Data System (ADS)

    Zhao, Huiyang; Hu, Yanzhu; Ai, Xinbo; Hu, Yu; Meng, Zhen

    2018-03-01

    Fault detection in industrial process is a popular research topic. Although the distributed control system(DCS) has been introduced to monitor the state of industrial process, it still cannot satisfy all the requirements for fault detection of all the industrial systems. In this paper, we proposed a novel method based on topological features and support vector machine(SVM), for fault detection of industrial process. The proposed method takes global information of measured variables into account by complex network model and predicts whether a system has generated some faults or not by SVM. The proposed method can be divided into four steps, i.e. network construction, network analysis, model training and model testing respectively. Finally, we apply the model to Tennessee Eastman process(TEP). The results show that this method works well and can be a useful supplement for fault detection of industrial process.

  9. Application of the support vector machine to predict subclinical mastitis in dairy cattle.

    PubMed

    Mammadova, Nazira; Keskin, Ismail

    2013-01-01

    This study presented a potentially useful alternative approach to ascertain the presence of subclinical and clinical mastitis in dairy cows using support vector machine (SVM) techniques. The proposed method detected mastitis in a cross-sectional representative sample of Holstein dairy cattle milked using an automatic milking system. The study used such suspected indicators of mastitis as lactation rank, milk yield, electrical conductivity, average milking duration, and control season as input data. The output variable was somatic cell counts obtained from milk samples collected monthly throughout the 15 months of the control period. Cattle were judged to be healthy or infected based on those somatic cell counts. This study undertook a detailed scrutiny of the SVM methodology, constructing and examining a model which showed 89% sensitivity, 92% specificity, and 50% error in mastitis detection.

  10. Application of a support vector machine algorithm to the safety precaution technique of medium-low pressure gas regulators

    NASA Astrophysics Data System (ADS)

    Hao, Xuejun; An, Xaioran; Wu, Bo; He, Shaoping

    2018-02-01

    In the gas pipeline system, safe operation of a gas regulator determines the stability of the fuel gas supply, and the medium-low pressure gas regulator of the safety precaution system is not perfect at the present stage in the Beijing Gas Group; therefore, safety precaution technique optimization has important social and economic significance. In this paper, according to the running status of the medium-low pressure gas regulator in the SCADA system, a new method for gas regulator safety precaution based on the support vector machine (SVM) is presented. This method takes the gas regulator outlet pressure data as input variables of the SVM model, the fault categories and degree as output variables, which will effectively enhance the precaution accuracy as well as save significant manpower and material resources.

  11. Modelling soil water retention using support vector machines with genetic algorithm optimisation.

    PubMed

    Lamorski, Krzysztof; Sławiński, Cezary; Moreno, Felix; Barna, Gyöngyi; Skierucha, Wojciech; Arrue, José L

    2014-01-01

    This work presents point pedotransfer function (PTF) models of the soil water retention curve. The developed models allowed for estimation of the soil water content for the specified soil water potentials: -0.98, -3.10, -9.81, -31.02, -491.66, and -1554.78 kPa, based on the following soil characteristics: soil granulometric composition, total porosity, and bulk density. Support Vector Machines (SVM) methodology was used for model development. A new methodology for elaboration of retention function models is proposed. Alternative to previous attempts known from literature, the ν-SVM method was used for model development and the results were compared with the formerly used the C-SVM method. For the purpose of models' parameters search, genetic algorithms were used as an optimisation framework. A new form of the aim function used for models parameters search is proposed which allowed for development of models with better prediction capabilities. This new aim function avoids overestimation of models which is typically encountered when root mean squared error is used as an aim function. Elaborated models showed good agreement with measured soil water retention data. Achieved coefficients of determination values were in the range 0.67-0.92. Studies demonstrated usability of ν-SVM methodology together with genetic algorithm optimisation for retention modelling which gave better performing models than other tested approaches.

  12. Recurrence predictive models for patients with hepatocellular carcinoma after radiofrequency ablation using support vector machines with feature selection methods.

    PubMed

    Liang, Ja-Der; Ping, Xiao-Ou; Tseng, Yi-Ju; Huang, Guan-Tarn; Lai, Feipei; Yang, Pei-Ming

    2014-12-01

    Recurrence of hepatocellular carcinoma (HCC) is an important issue despite effective treatments with tumor eradication. Identification of patients who are at high risk for recurrence may provide more efficacious screening and detection of tumor recurrence. The aim of this study was to develop recurrence predictive models for HCC patients who received radiofrequency ablation (RFA) treatment. From January 2007 to December 2009, 83 newly diagnosed HCC patients receiving RFA as their first treatment were enrolled. Five feature selection methods including genetic algorithm (GA), simulated annealing (SA) algorithm, random forests (RF) and hybrid methods (GA+RF and SA+RF) were utilized for selecting an important subset of features from a total of 16 clinical features. These feature selection methods were combined with support vector machine (SVM) for developing predictive models with better performance. Five-fold cross-validation was used to train and test SVM models. The developed SVM-based predictive models with hybrid feature selection methods and 5-fold cross-validation had averages of the sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and area under the ROC curve as 67%, 86%, 82%, 69%, 90%, and 0.69, respectively. The SVM derived predictive model can provide suggestive high-risk recurrent patients, who should be closely followed up after complete RFA treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Classifying Lower Extremity Muscle Fatigue during Walking using Machine Learning and Inertial Sensors

    PubMed Central

    Zhang, Jian; Lockhart, Thurmon E.; Soangra, Rahul

    2013-01-01

    Fatigue in lower extremity musculature is associated with decline in postural stability, motor performance and alters normal walking patterns in human subjects. Automated recognition of lower extremity muscle fatigue condition may be advantageous in early detection of fall and injury risks. Supervised machine learning methods such as Support Vector Machines (SVM) have been previously used for classifying healthy and pathological gait patterns and also for separating old and young gait patterns. In this study we explore the classification potential of SVM in recognition of gait patterns utilizing an inertial measurement unit associated with lower extremity muscular fatigue. Both kinematic and kinetic gait patterns of 17 participants (29±11 years) were recorded and analyzed in normal and fatigued state of walking. Lower extremities were fatigued by performance of a squatting exercise until the participants reached 60% of their baseline maximal voluntary exertion level. Feature selection methods were used to classify fatigue and no-fatigue conditions based on temporal and frequency information of the signals. Additionally, influences of three different kernel schemes (i.e., linear, polynomial, and radial basis function) were investigated for SVM classification. The results indicated that lower extremity muscle fatigue condition influenced gait and loading responses. In terms of the SVM classification results, an accuracy of 96% was reached in distinguishing the two gait patterns (fatigue and no-fatigue) within the same subject using the kinematic, time and frequency domain features. It is also found that linear kernel and RBF kernel were equally good to identify intra-individual fatigue characteristics. These results suggest that intra-subject fatigue classification using gait patterns from an inertial sensor holds considerable potential in identifying “at-risk” gait due to muscle fatigue. PMID:24081829

  14. Binding Affinity prediction with Property Encoded Shape Distribution signatures

    PubMed Central

    Das, Sourav; Krein, Michael P.

    2010-01-01

    We report the use of the molecular signatures known as “Property-Encoded Shape Distributions” (PESD) together with standard Support Vector Machine (SVM) techniques to produce validated models that can predict the binding affinity of a large number of protein ligand complexes. This “PESD-SVM” method uses PESD signatures that encode molecular shapes and property distributions on protein and ligand surfaces as features to build SVM models that require no subjective feature selection. A simple protocol was employed for tuning the SVM models during their development, and the results were compared to SFCscore – a regression-based method that was previously shown to perform better than 14 other scoring functions. Although the PESD-SVM method is based on only two surface property maps, the overall results were comparable. For most complexes with a dominant enthalpic contribution to binding (ΔH/-TΔS > 3), a good correlation between true and predicted affinities was observed. Entropy and solvent were not considered in the present approach and further improvement in accuracy would require accounting for these components rigorously. PMID:20095526

  15. [New method of mixed gas infrared spectrum analysis based on SVM].

    PubMed

    Bai, Peng; Xie, Wen-Jun; Liu, Jun-Hua

    2007-07-01

    A new method of infrared spectrum analysis based on support vector machine (SVM) for mixture gas was proposed. The kernel function in SVM was used to map the seriously overlapping absorption spectrum into high-dimensional space, and after transformation, the high-dimensional data could be processed in the original space, so the regression calibration model was established, then the regression calibration model with was applied to analyze the concentration of component gas. Meanwhile it was proved that the regression calibration model with SVM also could be used for component recognition of mixture gas. The method was applied to the analysis of different data samples. Some factors such as scan interval, range of the wavelength, kernel function and penalty coefficient C that affect the model were discussed. Experimental results show that the component concentration maximal Mean AE is 0.132%, and the component recognition accuracy is higher than 94%. The problems of overlapping absorption spectrum, using the same method for qualitative and quantitative analysis, and limit number of training sample, were solved. The method could be used in other mixture gas infrared spectrum analyses, promising theoretic and application values.

  16. A hybrid feature selection method using multiclass SVM for diagnosis of erythemato-squamous disease

    NASA Astrophysics Data System (ADS)

    Maryam, Setiawan, Noor Akhmad; Wahyunggoro, Oyas

    2017-08-01

    The diagnosis of erythemato-squamous disease is a complex problem and difficult to detect in dermatology. Besides that, it is a major cause of skin cancer. Data mining implementation in the medical field helps expert to diagnose precisely, accurately, and inexpensively. In this research, we use data mining technique to developed a diagnosis model based on multiclass SVM with a novel hybrid feature selection method to diagnose erythemato-squamous disease. Our hybrid feature selection method, named ChiGA (Chi Square and Genetic Algorithm), uses the advantages from filter and wrapper methods to select the optimal feature subset from original feature. Chi square used as filter method to remove redundant features and GA as wrapper method to select the ideal feature subset with SVM used as classifier. Experiment performed with 10 fold cross validation on erythemato-squamous diseases dataset taken from University of California Irvine (UCI) machine learning database. The experimental result shows that the proposed model based multiclass SVM with Chi Square and GA can give an optimum feature subset. There are 18 optimum features with 99.18% accuracy.

  17. Feature Selection Methods for Robust Decoding of Finger Movements in a Non-human Primate

    PubMed Central

    Padmanaban, Subash; Baker, Justin; Greger, Bradley

    2018-01-01

    Objective: The performance of machine learning algorithms used for neural decoding of dexterous tasks may be impeded due to problems arising when dealing with high-dimensional data. The objective of feature selection algorithms is to choose a near-optimal subset of features from the original feature space to improve the performance of the decoding algorithm. The aim of our study was to compare the effects of four feature selection techniques, Wilcoxon signed-rank test, Relative Importance, Principal Component Analysis (PCA), and Mutual Information Maximization on SVM classification performance for a dexterous decoding task. Approach: A nonhuman primate (NHP) was trained to perform small coordinated movements—similar to typing. An array of microelectrodes was implanted in the hand area of the motor cortex of the NHP and used to record action potentials (AP) during finger movements. A Support Vector Machine (SVM) was used to classify which finger movement the NHP was making based upon AP firing rates. We used the SVM classification to examine the functional parameters of (i) robustness to simulated failure and (ii) longevity of classification. We also compared the effect of using isolated-neuron and multi-unit firing rates as the feature vector supplied to the SVM. Main results: The average decoding accuracy for multi-unit features and single-unit features using Mutual Information Maximization (MIM) across 47 sessions was 96.74 ± 3.5% and 97.65 ± 3.36% respectively. The reduction in decoding accuracy between using 100% of the features and 10% of features based on MIM was 45.56% (from 93.7 to 51.09%) and 4.75% (from 95.32 to 90.79%) for multi-unit and single-unit features respectively. MIM had best performance compared to other feature selection methods. Significance: These results suggest improved decoding performance can be achieved by using optimally selected features. The results based on clinically relevant performance metrics also suggest that the decoding algorithm can be made robust by using optimal features and feature selection algorithms. We believe that even a few percent increase in performance is important and improves the decoding accuracy of the machine learning algorithm potentially increasing the ease of use of a brain machine interface. PMID:29467602

  18. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.

    PubMed

    Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A

    2016-03-01

    In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/. © 2016 Wiley Periodicals, Inc.

  19. Steganalysis using logistic regression

    NASA Astrophysics Data System (ADS)

    Lubenko, Ivans; Ker, Andrew D.

    2011-02-01

    We advocate Logistic Regression (LR) as an alternative to the Support Vector Machine (SVM) classifiers commonly used in steganalysis. LR offers more information than traditional SVM methods - it estimates class probabilities as well as providing a simple classification - and can be adapted more easily and efficiently for multiclass problems. Like SVM, LR can be kernelised for nonlinear classification, and it shows comparable classification accuracy to SVM methods. This work is a case study, comparing accuracy and speed of SVM and LR classifiers in detection of LSB Matching and other related spatial-domain image steganography, through the state-of-art 686-dimensional SPAM feature set, in three image sets.

  20. Classifying low-grade and high-grade bladder cancer using label-free serum surface-enhanced Raman spectroscopy and support vector machine

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjiao; Lai, Xiaoping; Zeng, Qiuyao; Li, Linfang; Lin, Lin; Li, Shaoxin; Liu, Zhiming; Su, Chengkang; Qi, Minni; Guo, Zhouyi

    2018-03-01

    This study aims to classify low-grade and high-grade bladder cancer (BC) patients using serum surface-enhanced Raman scattering (SERS) spectra and support vector machine (SVM) algorithms. Serum SERS spectra are acquired from 88 serum samples with silver nanoparticles as the SERS-active substrate. Diagnostic accuracies of 96.4% and 95.4% are obtained when differentiating the serum SERS spectra of all BC patients versus normal subjects and low-grade versus high-grade BC patients, respectively, with optimal SVM classifier models. This study demonstrates that the serum SERS technique combined with SVM has great potential to noninvasively detect and classify high-grade and low-grade BC patients.

  1. Downscaling of Aircraft-, Landsat-, and MODIS-based Land Surface Temperature Images with Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Ha, W.; Gowda, P. H.; Oommen, T.; Howell, T. A.; Hernandez, J. E.

    2010-12-01

    High spatial resolution Land Surface Temperature (LST) images are required to estimate evapotranspiration (ET) at a field scale for irrigation scheduling purposes. Satellite sensors such as Landsat 5 Thematic Mapper (TM) and Moderate Resolution Imaging Spectroradiometer (MODIS) can offer images at several spectral bandwidths including visible, near-infrared (NIR), shortwave-infrared, and thermal-infrared (TIR). The TIR images usually have coarser spatial resolutions than those from non-thermal infrared bands. Due to this technical constraint of the satellite sensors on these platforms, image downscaling has been proposed in the field of ET remote sensing. This paper explores the potential of the Support Vector Machines (SVM) to perform downscaling of LST images derived from aircraft (4 m spatial resolution), TM (120 m), and MODIS (1000 m) using normalized difference vegetation index images derived from simultaneously acquired high resolution visible and NIR data (1 m for aircraft, 30 m for TM, and 250 m for MODIS). The SVM is a new generation machine learning algorithm that has found a wide application in the field of pattern recognition and time series analysis. The SVM would be ideally suited for downscaling problems due to its generalization ability in capturing non-linear regression relationship between the predictand and the multiple predictors. Remote sensing data acquired over the Texas High Plains during the 2008 summer growing season will be used in this study. Accuracy assessment of the downscaled 1, 30, and 250 m LST images will be made by comparing them with LST data measured with infrared thermometers at a small spatial scale, upscaled 30 m aircraft-based LST images, and upscaled 250 m TM-based LST images, respectively.

  2. Efficient brain lesion segmentation using multi-modality tissue-based feature selection and support vector machines.

    PubMed

    Fiot, Jean-Baptiste; Cohen, Laurent D; Raniga, Parnesh; Fripp, Jurgen

    2013-09-01

    Support vector machines (SVM) are machine learning techniques that have been used for segmentation and classification of medical images, including segmentation of white matter hyper-intensities (WMH). Current approaches using SVM for WMH segmentation extract features from the brain and classify these followed by complex post-processing steps to remove false positives. The method presented in this paper combines advanced pre-processing, tissue-based feature selection and SVM classification to obtain efficient and accurate WMH segmentation. Features from 125 patients, generated from up to four MR modalities [T1-w, T2-w, proton-density and fluid attenuated inversion recovery(FLAIR)], differing neighbourhood sizes and the use of multi-scale features were compared. We found that although using all four modalities gave the best overall classification (average Dice scores of 0.54  ±  0.12, 0.72  ±  0.06 and 0.82  ±  0.06 respectively for small, moderate and severe lesion loads); this was not significantly different (p = 0.50) from using just T1-w and FLAIR sequences (Dice scores of 0.52  ±  0.13, 0.71  ±  0.08 and 0.81  ±  0.07). Furthermore, there was a negligible difference between using 5 × 5 × 5 and 3 × 3 × 3 features (p = 0.93). Finally, we show that careful consideration of features and pre-processing techniques not only saves storage space and computation time but also leads to more efficient classification, which outperforms the one based on all features with post-processing. Copyright © 2013 John Wiley & Sons, Ltd.

  3. GWAS-based machine learning approach to predict duloxetine response in major depressive disorder.

    PubMed

    Maciukiewicz, Malgorzata; Marshe, Victoria S; Hauschild, Anne-Christin; Foster, Jane A; Rotzinger, Susan; Kennedy, James L; Kennedy, Sidney H; Müller, Daniel J; Geraci, Joseph

    2018-04-01

    Major depressive disorder (MDD) is one of the most prevalent psychiatric disorders and is commonly treated with antidepressant drugs. However, large variability is observed in terms of response to antidepressants. Machine learning (ML) models may be useful to predict treatment outcomes. A sample of 186 MDD patients received treatment with duloxetine for up to 8 weeks were categorized as "responders" based on a MADRS change >50% from baseline; or "remitters" based on a MADRS score ≤10 at end point. The initial dataset (N = 186) was randomly divided into training and test sets in a nested 5-fold cross-validation, where 80% was used as a training set and 20% made up five independent test sets. We performed genome-wide logistic regression to identify potentially significant variants related to duloxetine response/remission and extracted the most promising predictors using LASSO regression. Subsequently, classification-regression trees (CRT) and support vector machines (SVM) were applied to construct models, using ten-fold cross-validation. With regards to response, none of the pairs performed significantly better than chance (accuracy p > .1). For remission, SVM achieved moderate performance with an accuracy = 0.52, a sensitivity = 0.58, and a specificity = 0.46, and 0.51 for all coefficients for CRT. The best performing SVM fold was characterized by an accuracy = 0.66 (p = .071), sensitivity = 0.70 and a sensitivity = 0.61. In this study, the potential of using GWAS data to predict duloxetine outcomes was examined using ML models. The models were characterized by a promising sensitivity, but specificity remained moderate at best. The inclusion of additional non-genetic variables to create integrated models may improve prediction. Copyright © 2017. Published by Elsevier Ltd.

  4. Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM.

    PubMed

    Hojjati, Seyed Hani; Ebrahimzadeh, Ata; Khazaee, Ali; Babajani-Feremi, Abbas

    2017-04-15

    We investigated identifying patients with mild cognitive impairment (MCI) who progress to Alzheimer's disease (AD), MCI converter (MCI-C), from those with MCI who do not progress to AD, MCI non-converter (MCI-NC), based on resting-state fMRI (rs-fMRI). Graph theory and machine learning approach were utilized to predict progress of patients with MCI to AD using rs-fMRI. Eighteen MCI converts (average age 73.6 years; 11 male) and 62 age-matched MCI non-converters (average age 73.0 years, 28 male) were included in this study. We trained and tested a support vector machine (SVM) to classify MCI-C from MCI-NC using features constructed based on the local and global graph measures. A novel feature selection algorithm was developed and utilized to select an optimal subset of features. Using subset of optimal features in SVM, we classified MCI-C from MCI-NC with an accuracy, sensitivity, specificity, and the area under the receiver operating characteristic (ROC) curve of 91.4%, 83.24%, 90.1%, and 0.95, respectively. Furthermore, results of our statistical analyses were used to identify the affected brain regions in AD. To the best of our knowledge, this is the first study that combines the graph measures (constructed based on rs-fMRI) with machine learning approach and accurately classify MCI-C from MCI-NC. Results of this study demonstrate potential of the proposed approach for early AD diagnosis and demonstrate capability of rs-fMRI to predict conversion from MCI to AD by identifying affected brain regions underlying this conversion. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Research on software behavior trust based on hierarchy evaluation

    NASA Astrophysics Data System (ADS)

    Long, Ke; Xu, Haishui

    2017-08-01

    In view of the correlation software behavior, we evaluate software behavior credibility from two levels of control flow and data flow. In control flow level, method of the software behavior of trace based on support vector machine (SVM) is proposed. In data flow level, behavioral evidence evaluation based on fuzzy decision analysis method is put forward.

  6. Understanding user intents in online health forums.

    PubMed

    Zhang, Thomas; Cho, Jason H D; Zhai, Chengxiang

    2015-07-01

    Online health forums provide a convenient way for patients to obtain medical information and connect with physicians and peers outside of clinical settings. However, large quantities of unstructured and diversified content generated on these forums make it difficult for users to digest and extract useful information. Understanding user intents would enable forums to find and recommend relevant information to users by filtering out threads that do not match particular intents. In this paper, we derive a taxonomy of intents to capture user information needs in online health forums and propose novel pattern-based features for use with a multiclass support vector machine (SVM) classifier to classify original thread posts according to their underlying intents. Since no dataset existed for this task, we employ three annotators to manually label a dataset of 1192 HealthBoards posts spanning four forum topics. Experimental results show that a SVM using pattern-based features is highly capable of identifying user intents in forum posts, reaching a maximum precision of 75%, and that a SVM-based hierarchical classifier using both pattern and word features outperforms its SVM counterpart that uses only word features. Furthermore, comparable classification performance can be achieved by training and testing on posts from different forum topics.

  7. Efficient HIK SVM learning for image classification.

    PubMed

    Wu, Jianxin

    2012-10-01

    Histograms are used in almost every aspect of image processing and computer vision, from visual descriptors to image representations. Histogram intersection kernel (HIK) and support vector machine (SVM) classifiers are shown to be very effective in dealing with histograms. This paper presents contributions concerning HIK SVM for image classification. First, we propose intersection coordinate descent (ICD), a deterministic and scalable HIK SVM solver. ICD is much faster than, and has similar accuracies to, general purpose SVM solvers and other fast HIK SVM training methods. We also extend ICD to the efficient training of a broader family of kernels. Second, we show an important empirical observation that ICD is not sensitive to the C parameter in SVM, and we provide some theoretical analyses to explain this observation. ICD achieves high accuracies in many problems, using its default parameters. This is an attractive property for practitioners, because many image processing tasks are too large to choose SVM parameters using cross-validation.

  8. An ensemble of SVM classifiers based on gene pairs.

    PubMed

    Tong, Muchenxuan; Liu, Kun-Hong; Xu, Chungui; Ju, Wenbin

    2013-07-01

    In this paper, a genetic algorithm (GA) based ensemble support vector machine (SVM) classifier built on gene pairs (GA-ESP) is proposed. The SVMs (base classifiers of the ensemble system) are trained on different informative gene pairs. These gene pairs are selected by the top scoring pair (TSP) criterion. Each of these pairs projects the original microarray expression onto a 2-D space. Extensive permutation of gene pairs may reveal more useful information and potentially lead to an ensemble classifier with satisfactory accuracy and interpretability. GA is further applied to select an optimized combination of base classifiers. The effectiveness of the GA-ESP classifier is evaluated on both binary-class and multi-class datasets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Document page structure learning for fixed-layout e-books using conditional random fields

    NASA Astrophysics Data System (ADS)

    Tao, Xin; Tang, Zhi; Xu, Canhui

    2013-12-01

    In this paper, a model is proposed to learn logical structure of fixed-layout document pages by combining support vector machine (SVM) and conditional random fields (CRF). Features related to each logical label and their dependencies are extracted from various original Portable Document Format (PDF) attributes. Both local evidence and contextual dependencies are integrated in the proposed model so as to achieve better logical labeling performance. With the merits of SVM as local discriminative classifier and CRF modeling contextual correlations of adjacent fragments, it is capable of resolving the ambiguities of semantic labels. The experimental results show that CRF based models with both tree and chain graph structures outperform the SVM model with an increase of macro-averaged F1 by about 10%.

  10. Design of a multiple kernel learning algorithm for LS-SVM by convex programming.

    PubMed

    Jian, Ling; Xia, Zhonghang; Liang, Xijun; Gao, Chuanhou

    2011-06-01

    As a kernel based method, the performance of least squares support vector machine (LS-SVM) depends on the selection of the kernel as well as the regularization parameter (Duan, Keerthi, & Poo, 2003). Cross-validation is efficient in selecting a single kernel and the regularization parameter; however, it suffers from heavy computational cost and is not flexible to deal with multiple kernels. In this paper, we address the issue of multiple kernel learning for LS-SVM by formulating it as semidefinite programming (SDP). Furthermore, we show that the regularization parameter can be optimized in a unified framework with the kernel, which leads to an automatic process for model selection. Extensive experimental validations are performed and analyzed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Optical biopsy using fluorescence spectroscopy for prostate cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Gao, Xin; Smith, Jason; Bailin, Jacob

    2017-02-01

    Native fluorescence spectra are acquired from fresh normal and cancerous human prostate tissues. The fluorescence data are analyzed using a multivariate analysis algorithm such as non-negative matrix factorization. The nonnegative spectral components are retrieved and attributed to the native fluorophores such as collagen, reduced nicotinamide adenine dinucleotide (NADH), and flavin adenine dinucleotide (FAD) in tissue. The retrieved weights of the components, e.g. NADH and FAD are used to estimate the relative concentrations of the native fluorophores and the redox ratio. A machine learning algorithm such as support vector machine (SVM) is used for classification to distinguish normal and cancerous tissue samples based on either the relative concentrations of NADH and FAD or the redox ratio alone. The classification performance is shown based on statistical measures such as sensitivity, specificity, and accuracy, along with the area under receiver operating characteristic (ROC) curve. A cross validation method such as leave-one-out is used to evaluate the predictive performance of the SVM classifier to avoid bias due to overfitting.

  12. Computational approaches for the classification of seed storage proteins.

    PubMed

    Radhika, V; Rao, V Sree Hari

    2015-07-01

    Seed storage proteins comprise a major part of the protein content of the seed and have an important role on the quality of the seed. These storage proteins are important because they determine the total protein content and have an effect on the nutritional quality and functional properties for food processing. Transgenic plants are being used to develop improved lines for incorporation into plant breeding programs and the nutrient composition of seeds is a major target of molecular breeding programs. Hence, classification of these proteins is crucial for the development of superior varieties with improved nutritional quality. In this study we have applied machine learning algorithms for classification of seed storage proteins. We have presented an algorithm based on nearest neighbor approach for classification of seed storage proteins and compared its performance with decision tree J48, multilayer perceptron neural (MLP) network and support vector machine (SVM) libSVM. The model based on our algorithm has been able to give higher classification accuracy in comparison to the other methods.

  13. Ranking support vector machine for multiple kernels output combination in protein-protein interaction extraction from biomedical literature.

    PubMed

    Yang, Zhihao; Lin, Yuan; Wu, Jiajin; Tang, Nan; Lin, Hongfei; Li, Yanpeng

    2011-10-01

    Knowledge about protein-protein interactions (PPIs) unveils the molecular mechanisms of biological processes. However, the volume and content of published biomedical literature on protein interactions is expanding rapidly, making it increasingly difficult for interaction database curators to detect and curate protein interaction information manually. We present a multiple kernel learning-based approach for automatic PPI extraction from biomedical literature. The approach combines the following kernels: feature-based, tree, and graph and combines their output with Ranking support vector machine (SVM). Experimental evaluations show that the features in individual kernels are complementary and the kernel combined with Ranking SVM achieves better performance than those of the individual kernels, equal weight combination and optimal weight combination. Our approach can achieve state-of-the-art performance with respect to the comparable evaluations, with 64.88% F-score and 88.02% AUC on the AImed corpus. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Elucidation of Metallic Plume and Spatter Characteristics Based on SVM During High-Power Disk Laser Welding

    NASA Astrophysics Data System (ADS)

    Gao, Xiangdong; Liu, Guiqian

    2015-01-01

    During deep penetration laser welding, there exist plume (weak plasma) and spatters, which are the results of weld material ejection due to strong laser heating. The characteristics of plume and spatters are related to welding stability and quality. Characteristics of metallic plume and spatters were investigated during high-power disk laser bead-on-plate welding of Type 304 austenitic stainless steel plates at a continuous wave laser power of 10 kW. An ultraviolet and visible sensitive high-speed camera was used to capture the metallic plume and spatter images. Plume area, laser beam path through the plume, swing angle, distance between laser beam focus and plume image centroid, abscissa of plume centroid and spatter numbers are defined as eigenvalues, and the weld bead width was used as a characteristic parameter that reflected welding stability. Welding status was distinguished by SVM (support vector machine) after data normalization and characteristic analysis. Also, PCA (principal components analysis) feature extraction was used to reduce the dimensions of feature space, and PSO (particle swarm optimization) was used to optimize the parameters of SVM. Finally a classification model based on SVM was established to estimate the weld bead width and welding stability. Experimental results show that the established algorithm based on SVM could effectively distinguish the variation of weld bead width, thus providing an experimental example of monitoring high-power disk laser welding quality.

  15. a Comparison Study of Different Kernel Functions for Svm-Based Classification of Multi-Temporal Polarimetry SAR Data

    NASA Astrophysics Data System (ADS)

    Yekkehkhany, B.; Safari, A.; Homayouni, S.; Hasanlou, M.

    2014-10-01

    In this paper, a framework is developed based on Support Vector Machines (SVM) for crop classification using polarimetric features extracted from multi-temporal Synthetic Aperture Radar (SAR) imageries. The multi-temporal integration of data not only improves the overall retrieval accuracy but also provides more reliable estimates with respect to single-date data. Several kernel functions are employed and compared in this study for mapping the input space to higher Hilbert dimension space. These kernel functions include linear, polynomials and Radial Based Function (RBF). The method is applied to several UAVSAR L-band SAR images acquired over an agricultural area near Winnipeg, Manitoba, Canada. In this research, the temporal alpha features of H/A/α decomposition method are used in classification. The experimental tests show an SVM classifier with RBF kernel for three dates of data increases the Overall Accuracy (OA) to up to 3% in comparison to using linear kernel function, and up to 1% in comparison to a 3rd degree polynomial kernel function.

  16. Differential spatial activity patterns of acupuncture by a machine learning based analysis

    NASA Astrophysics Data System (ADS)

    You, Youbo; Bai, Lijun; Xue, Ting; Zhong, Chongguang; Liu, Zhenyu; Tian, Jie

    2011-03-01

    Acupoint specificity, lying at the core of the Traditional Chinese Medicine, underlies the theoretical basis of acupuncture application. However, recent studies have reported that acupuncture stimulation at nonacupoint and acupoint can both evoke similar signal intensity decreases in multiple regions. And these regions were spatially overlapped. We used a machine learning based Support Vector Machine (SVM) approach to elucidate the specific neural response pattern induced by acupuncture stimulation. Group analysis demonstrated that stimulation at two different acupoints (belong to the same nerve segment but different meridians) could elicit distinct neural response patterns. Our findings may provide evidence for acupoint specificity.

  17. Successful classification of cocaine dependence using brain imaging: a generalizable machine learning approach.

    PubMed

    Mete, Mutlu; Sakoglu, Unal; Spence, Jeffrey S; Devous, Michael D; Harris, Thomas S; Adinoff, Bryon

    2016-10-06

    Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction. However, these advances have not explored extensively for diagnostic accuracy in human subjects. The aim of this study was to develop a statistical approach, using a machine learning framework, to correctly classify brain images of cocaine-dependent participants and healthy controls. In this study, a framework suitable for educing potential brain regions that differed between the two groups was developed and implemented. Single Photon Emission Computerized Tomography (SPECT) images obtained during rest or a saline infusion in three cohorts of 2-4 week abstinent cocaine-dependent participants (n = 93) and healthy controls (n = 69) were used to develop a classification model. An information theoretic-based feature selection algorithm was first conducted to reduce the number of voxels. A density-based clustering algorithm was then used to form spatially connected voxel clouds in three-dimensional space. A statistical classifier, Support Vectors Machine (SVM), was then used for participant classification. Statistically insignificant voxels of spatially connected brain regions were removed iteratively and classification accuracy was reported through the iterations. The voxel-based analysis identified 1,500 spatially connected voxels in 30 distinct clusters after a grid search in SVM parameters. Participants were successfully classified with 0.88 and 0.89 F-measure accuracies in 10-fold cross validation (10xCV) and leave-one-out (LOO) approaches, respectively. Sensitivity and specificity were 0.90 and 0.89 for LOO; 0.83 and 0.83 for 10xCV. Many of the 30 selected clusters are highly relevant to the addictive process, including regions relevant to cognitive control, default mode network related self-referential thought, behavioral inhibition, and contextual memories. Relative hyperactivity and hypoactivity of regional cerebral blood flow in brain regions in cocaine-dependent participants are presented with corresponding level of significance. The SVM-based approach successfully classified cocaine-dependent and healthy control participants using voxels selected with information theoretic-based and statistical methods from participants' SPECT data. The regions found in this study align with brain regions reported in the literature. These findings support the future use of brain imaging and SVM-based classifier in the diagnosis of substance use disorders and furthering an understanding of their underlying pathology.

  18. Biomarkers of Eating Disorders Using Support Vector Machine Analysis of Structural Neuroimaging Data: Preliminary Results

    PubMed Central

    Cerasa, Antonio; Castiglioni, Isabella; Salvatore, Christian; Funaro, Angela; Martino, Iolanda; Alfano, Stefania; Donzuso, Giulia; Perrotta, Paolo; Gioia, Maria Cecilia; Gilardi, Maria Carla; Quattrone, Aldo

    2015-01-01

    Presently, there are no valid biomarkers to identify individuals with eating disorders (ED). The aim of this work was to assess the feasibility of a machine learning method for extracting reliable neuroimaging features allowing individual categorization of patients with ED. Support Vector Machine (SVM) technique, combined with a pattern recognition method, was employed utilizing structural magnetic resonance images. Seventeen females with ED (six with diagnosis of anorexia nervosa and 11 with bulimia nervosa) were compared against 17 body mass index-matched healthy controls (HC). Machine learning allowed individual diagnosis of ED versus HC with an Accuracy ≥ 0.80. Voxel-based pattern recognition analysis demonstrated that voxels influencing the classification Accuracy involved the occipital cortex, the posterior cerebellar lobule, precuneus, sensorimotor/premotor cortices, and the medial prefrontal cortex, all critical regions known to be strongly involved in the pathophysiological mechanisms of ED. Although these findings should be considered preliminary given the small size investigated, SVM analysis highlights the role of well-known brain regions as possible biomarkers to distinguish ED from HC at an individual level, thus encouraging the translational implementation of this new multivariate approach in the clinical practice. PMID:26648660

  19. Simultaneous data pre-processing and SVM classification model selection based on a parallel genetic algorithm applied to spectroscopic data of olive oils.

    PubMed

    Devos, Olivier; Downey, Gerard; Duponchel, Ludovic

    2014-04-01

    Classification is an important task in chemometrics. For several years now, support vector machines (SVMs) have proven to be powerful for infrared spectral data classification. However such methods require optimisation of parameters in order to control the risk of overfitting and the complexity of the boundary. Furthermore, it is established that the prediction ability of classification models can be improved using pre-processing in order to remove unwanted variance in the spectra. In this paper we propose a new methodology based on genetic algorithm (GA) for the simultaneous optimisation of SVM parameters and pre-processing (GENOPT-SVM). The method has been tested for the discrimination of the geographical origin of Italian olive oil (Ligurian and non-Ligurian) on the basis of near infrared (NIR) or mid infrared (FTIR) spectra. Different classification models (PLS-DA, SVM with mean centre data, GENOPT-SVM) have been tested and statistically compared using McNemar's statistical test. For the two datasets, SVM with optimised pre-processing give models with higher accuracy than the one obtained with PLS-DA on pre-processed data. In the case of the NIR dataset, most of this accuracy improvement (86.3% compared with 82.8% for PLS-DA) occurred using only a single pre-processing step. For the FTIR dataset, three optimised pre-processing steps are required to obtain SVM model with significant accuracy improvement (82.2%) compared to the one obtained with PLS-DA (78.6%). Furthermore, this study demonstrates that even SVM models have to be developed on the basis of well-corrected spectral data in order to obtain higher classification rates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Automated detection of heart ailments from 12-lead ECG using complex wavelet sub-band bi-spectrum features

    PubMed Central

    Dandapat, Samarendra

    2017-01-01

    The complex wavelet sub-band bi-spectrum (CWSB) features are proposed for detection and classification of myocardial infarction (MI), heart muscle disease (HMD) and bundle branch block (BBB) from 12-lead ECG. The dual tree CW transform of 12-lead ECG produces CW coefficients at different sub-bands. The higher-order CW analysis is used for evaluation of CWSB. The mean of the absolute value of CWSB, and the number of negative phase angle and the number of positive phase angle features from the phase of CWSB of 12-lead ECG are evaluated. Extreme learning machine and support vector machine (SVM) classifiers are used to evaluate the performance of CWSB features. Experimental results show that the proposed CWSB features of 12-lead ECG and the SVM classifier are successful for classification of various heart pathologies. The individual accuracy values for MI, HMD and BBB classes are obtained as 98.37, 97.39 and 96.40%, respectively, using SVM classifier and radial basis function kernel function. A comparison has also been made with existing 12-lead ECG-based cardiac disease detection techniques. PMID:28894589

  1. Quantitative structure-retention relationship models for the prediction of the reversed-phase HPLC gradient retention based on the heuristic method and support vector machine.

    PubMed

    Du, Hongying; Wang, Jie; Yao, Xiaojun; Hu, Zhide

    2009-01-01

    The heuristic method (HM) and support vector machine (SVM) were used to construct quantitative structure-retention relationship models by a series of compounds to predict the gradient retention times of reversed-phase high-performance liquid chromatography (HPLC) in three different columns. The aims of this investigation were to predict the retention times of multifarious compounds, to find the main properties of the three columns, and to indicate the theory of separation procedures. In our method, we correlated the retention times of many diverse structural analytes in three columns (Symmetry C18, Chromolith, and SG-MIX) with their representative molecular descriptors, calculated from the molecular structures alone. HM was used to select the most important molecular descriptors and build linear regression models. Furthermore, non-linear regression models were built using the SVM method; the performance of the SVM models were better than that of the HM models, and the prediction results were in good agreement with the experimental values. This paper could give some insights into the factors that were likely to govern the gradient retention process of the three investigated HPLC columns, which could theoretically supervise the practical experiment.

  2. Efficient and Privacy-Preserving Online Medical Prediagnosis Framework Using Nonlinear SVM.

    PubMed

    Zhu, Hui; Liu, Xiaoxia; Lu, Rongxing; Li, Hui

    2017-05-01

    With the advances of machine learning algorithms and the pervasiveness of network terminals, the online medical prediagnosis system, which can provide the diagnosis of healthcare provider anywhere anytime, has attracted considerable interest recently. However, the flourish of online medical prediagnosis system still faces many challenges including information security and privacy preservation. In this paper, we propose an e fficient and privacy-preserving online medical prediagnosis framework, called eDiag, by using nonlinear kernel support vector machine (SVM). With eDiag, the sensitive personal health information can be processed without privacy disclosure during online prediagnosis service. Specifically, based on an improved expression for the nonlinear SVM, an efficient and privacy-preserving classification scheme is introduced with lightweight multiparty random masking and polynomial aggregation techniques. The encrypted user query is directly operated at the service provider without decryption, and the diagnosis result can only be decrypted by user. Through extensive analysis, we show that eDiag can ensure that users' health information and healthcare provider's prediction model are kept confidential, and has significantly less computation and communication overhead than existing schemes. In addition, performance evaluations via implementing eDiag on smartphone and computer demonstrate eDiag's effectiveness in term of real online environment.

  3. Sentiment analysis: a comparison of deep learning neural network algorithm with SVM and naϊve Bayes for Indonesian text

    NASA Astrophysics Data System (ADS)

    Calvin Frans Mariel, Wahyu; Mariyah, Siti; Pramana, Setia

    2018-03-01

    Deep learning is a new era of machine learning techniques that essentially imitate the structure and function of the human brain. It is a development of deeper Artificial Neural Network (ANN) that uses more than one hidden layer. Deep Learning Neural Network has a great ability on recognizing patterns from various data types such as picture, audio, text, and many more. In this paper, the authors tries to measure that algorithm’s ability by applying it into the text classification. The classification task herein is done by considering the content of sentiment in a text which is also called as sentiment analysis. By using several combinations of text preprocessing and feature extraction techniques, we aim to compare the precise modelling results of Deep Learning Neural Network with the other two commonly used algorithms, the Naϊve Bayes and Support Vector Machine (SVM). This algorithm comparison uses Indonesian text data with balanced and unbalanced sentiment composition. Based on the experimental simulation, Deep Learning Neural Network clearly outperforms the Naϊve Bayes and SVM and offers a better F-1 Score while for the best feature extraction technique which improves that modelling result is Bigram.

  4. Least-Squares Support Vector Machine Approach to Viral Replication Origin Prediction

    PubMed Central

    Cruz-Cano, Raul; Chew, David S.H.; Kwok-Pui, Choi; Ming-Ying, Leung

    2010-01-01

    Replication of their DNA genomes is a central step in the reproduction of many viruses. Procedures to find replication origins, which are initiation sites of the DNA replication process, are therefore of great importance for controlling the growth and spread of such viruses. Existing computational methods for viral replication origin prediction have mostly been tested within the family of herpesviruses. This paper proposes a new approach by least-squares support vector machines (LS-SVMs) and tests its performance not only on the herpes family but also on a collection of caudoviruses coming from three viral families under the order of caudovirales. The LS-SVM approach provides sensitivities and positive predictive values superior or comparable to those given by the previous methods. When suitably combined with previous methods, the LS-SVM approach further improves the prediction accuracy for the herpesvirus replication origins. Furthermore, by recursive feature elimination, the LS-SVM has also helped find the most significant features of the data sets. The results suggest that the LS-SVMs will be a highly useful addition to the set of computational tools for viral replication origin prediction and illustrate the value of optimization-based computing techniques in biomedical applications. PMID:20729987

  5. Least-Squares Support Vector Machine Approach to Viral Replication Origin Prediction.

    PubMed

    Cruz-Cano, Raul; Chew, David S H; Kwok-Pui, Choi; Ming-Ying, Leung

    2010-06-01

    Replication of their DNA genomes is a central step in the reproduction of many viruses. Procedures to find replication origins, which are initiation sites of the DNA replication process, are therefore of great importance for controlling the growth and spread of such viruses. Existing computational methods for viral replication origin prediction have mostly been tested within the family of herpesviruses. This paper proposes a new approach by least-squares support vector machines (LS-SVMs) and tests its performance not only on the herpes family but also on a collection of caudoviruses coming from three viral families under the order of caudovirales. The LS-SVM approach provides sensitivities and positive predictive values superior or comparable to those given by the previous methods. When suitably combined with previous methods, the LS-SVM approach further improves the prediction accuracy for the herpesvirus replication origins. Furthermore, by recursive feature elimination, the LS-SVM has also helped find the most significant features of the data sets. The results suggest that the LS-SVMs will be a highly useful addition to the set of computational tools for viral replication origin prediction and illustrate the value of optimization-based computing techniques in biomedical applications.

  6. Research on bearing fault diagnosis of large machinery based on mathematical morphology

    NASA Astrophysics Data System (ADS)

    Wang, Yu

    2018-04-01

    To study the automatic diagnosis of large machinery fault based on support vector machine, combining the four common faults of the large machinery, the support vector machine is used to classify and identify the fault. The extracted feature vectors are entered. The feature vector is trained and identified by multi - classification method. The optimal parameters of the support vector machine are searched by trial and error method and cross validation method. Then, the support vector machine is compared with BP neural network. The results show that the support vector machines are short in time and high in classification accuracy. It is more suitable for the research of fault diagnosis in large machinery. Therefore, it can be concluded that the training speed of support vector machines (SVM) is fast and the performance is good.

  7. Protein subcellular localization prediction using multiple kernel learning based support vector machine.

    PubMed

    Hasan, Md Al Mehedi; Ahmad, Shamim; Molla, Md Khademul Islam

    2017-03-28

    Predicting the subcellular locations of proteins can provide useful hints that reveal their functions, increase our understanding of the mechanisms of some diseases, and finally aid in the development of novel drugs. As the number of newly discovered proteins has been growing exponentially, which in turns, makes the subcellular localization prediction by purely laboratory tests prohibitively laborious and expensive. In this context, to tackle the challenges, computational methods are being developed as an alternative choice to aid biologists in selecting target proteins and designing related experiments. However, the success of protein subcellular localization prediction is still a complicated and challenging issue, particularly, when query proteins have multi-label characteristics, i.e., if they exist simultaneously in more than one subcellular location or if they move between two or more different subcellular locations. To date, to address this problem, several types of subcellular localization prediction methods with different levels of accuracy have been proposed. The support vector machine (SVM) has been employed to provide potential solutions to the protein subcellular localization prediction problem. However, the practicability of an SVM is affected by the challenges of selecting an appropriate kernel and selecting the parameters of the selected kernel. To address this difficulty, in this study, we aimed to develop an efficient multi-label protein subcellular localization prediction system, named as MKLoc, by introducing multiple kernel learning (MKL) based SVM. We evaluated MKLoc using a combined dataset containing 5447 single-localized proteins (originally published as part of the Höglund dataset) and 3056 multi-localized proteins (originally published as part of the DBMLoc set). Note that this dataset was used by Briesemeister et al. in their extensive comparison of multi-localization prediction systems. Finally, our experimental results indicate that MKLoc not only achieves higher accuracy than a single kernel based SVM system but also shows significantly better results than those obtained from other top systems (MDLoc, BNCs, YLoc+). Moreover, MKLoc requires less computation time to tune and train the system than that required for BNCs and single kernel based SVM.

  8. Distributed support vector machine in master-slave mode.

    PubMed

    Chen, Qingguo; Cao, Feilong

    2018-05-01

    It is well known that the support vector machine (SVM) is an effective learning algorithm. The alternating direction method of multipliers (ADMM) algorithm has emerged as a powerful technique for solving distributed optimisation models. This paper proposes a distributed SVM algorithm in a master-slave mode (MS-DSVM), which integrates a distributed SVM and ADMM acting in a master-slave configuration where the master node and slave nodes are connected, meaning the results can be broadcasted. The distributed SVM is regarded as a regularised optimisation problem and modelled as a series of convex optimisation sub-problems that are solved by ADMM. Additionally, the over-relaxation technique is utilised to accelerate the convergence rate of the proposed MS-DSVM. Our theoretical analysis demonstrates that the proposed MS-DSVM has linear convergence, meaning it possesses the fastest convergence rate among existing standard distributed ADMM algorithms. Numerical examples demonstrate that the convergence and accuracy of the proposed MS-DSVM are superior to those of existing methods under the ADMM framework. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Prediction of Backbreak in Open-Pit Blasting Operations Using the Machine Learning Method

    NASA Astrophysics Data System (ADS)

    Khandelwal, Manoj; Monjezi, M.

    2013-03-01

    Backbreak is an undesirable phenomenon in blasting operations. It can cause instability of mine walls, falling down of machinery, improper fragmentation, reduced efficiency of drilling, etc. The existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, the application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict backbreak in blasting operations of Soungun iron mine, Iran, incorporating rock properties and blast design parameters using the support vector machine (SVM) method. To investigate the suitability of this approach, the predictions by SVM have been compared with multivariate regression analysis (MVRA). The coefficient of determination (CoD) and the mean absolute error (MAE) were taken as performance measures. It was found that the CoD between measured and predicted backbreak was 0.987 and 0.89 by SVM and MVRA, respectively, whereas the MAE was 0.29 and 1.07 by SVM and MVRA, respectively.

  10. Signal peptide discrimination and cleavage site identification using SVM and NN.

    PubMed

    Kazemian, H B; Yusuf, S A; White, K

    2014-02-01

    About 15% of all proteins in a genome contain a signal peptide (SP) sequence, at the N-terminus, that targets the protein to intracellular secretory pathways. Once the protein is targeted correctly in the cell, the SP is cleaved, releasing the mature protein. Accurate prediction of the presence of these short amino-acid SP chains is crucial for modelling the topology of membrane proteins, since SP sequences can be confused with transmembrane domains due to similar composition of hydrophobic amino acids. This paper presents a cascaded Support Vector Machine (SVM)-Neural Network (NN) classification methodology for SP discrimination and cleavage site identification. The proposed method utilises a dual phase classification approach using SVM as a primary classifier to discriminate SP sequences from Non-SP. The methodology further employs NNs to predict the most suitable cleavage site candidates. In phase one, a SVM classification utilises hydrophobic propensities as a primary feature vector extraction using symmetric sliding window amino-acid sequence analysis for discrimination of SP and Non-SP. In phase two, a NN classification uses asymmetric sliding window sequence analysis for prediction of cleavage site identification. The proposed SVM-NN method was tested using Uni-Prot non-redundant datasets of eukaryotic and prokaryotic proteins with SP and Non-SP N-termini. Computer simulation results demonstrate an overall accuracy of 0.90 for SP and Non-SP discrimination based on Matthews Correlation Coefficient (MCC) tests using SVM. For SP cleavage site prediction, the overall accuracy is 91.5% based on cross-validation tests using the novel SVM-NN model. © 2013 Published by Elsevier Ltd.

  11. Soft Computing Application in Fault Detection of Induction Motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konar, P.; Puhan, P. S.; Chattopadhyay, P. Dr.

    2010-10-26

    The paper investigates the effectiveness of different patter classifier like Feed Forward Back Propagation (FFBPN), Radial Basis Function (RBF) and Support Vector Machine (SVM) for detection of bearing faults in Induction Motor. The steady state motor current with Park's Transformation has been used for discrimination of inner race and outer race bearing defects. The RBF neural network shows very encouraging results for multi-class classification problems and is hoped to set up a base for incipient fault detection of induction motor. SVM is also found to be a very good fault classifier which is highly competitive with RBF.

  12. A support vector machine approach for classification of welding defects from ultrasonic signals

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Ma, Hong-Wei; Zhang, Guang-Ming

    2014-07-01

    Defect classification is an important issue in ultrasonic non-destructive evaluation. A layered multi-class support vector machine (LMSVM) classification system, which combines multiple SVM classifiers through a layered architecture, is proposed in this paper. The proposed LMSVM classification system is applied to the classification of welding defects from ultrasonic test signals. The measured ultrasonic defect echo signals are first decomposed into wavelet coefficients by the wavelet packet transform. The energy of the wavelet coefficients at different frequency channels are used to construct the feature vectors. The bees algorithm (BA) is then used for feature selection and SVM parameter optimisation for the LMSVM classification system. The BA-based feature selection optimises the energy feature vectors. The optimised feature vectors are input to the LMSVM classification system for training and testing. Experimental results of classifying welding defects demonstrate that the proposed technique is highly robust, precise and reliable for ultrasonic defect classification.

  13. Support vector machines and generalisation in HEP

    NASA Astrophysics Data System (ADS)

    Bevan, Adrian; Gamboa Goñi, Rodrigo; Hays, Jon; Stevenson, Tom

    2017-10-01

    We review the concept of Support Vector Machines (SVMs) and discuss examples of their use in a number of scenarios. Several SVM implementations have been used in HEP and we exemplify this algorithm using the Toolkit for Multivariate Analysis (TMVA) implementation. We discuss examples relevant to HEP including background suppression for H → τ + τ - at the LHC with several different kernel functions. Performance benchmarking leads to the issue of generalisation of hyper-parameter selection. The avoidance of fine tuning (over training or over fitting) in MVA hyper-parameter optimisation, i.e. the ability to ensure generalised performance of an MVA that is independent of the training, validation and test samples, is of utmost importance. We discuss this issue and compare and contrast performance of hold-out and k-fold cross-validation. We have extended the SVM functionality and introduced tools to facilitate cross validation in TMVA and present results based on these improvements.

  14. Explosive hazard detection using MIMO forward-looking ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Shaw, Darren; Ho, K. C.; Stone, Kevin; Keller, James M.; Popescu, Mihail; Anderson, Derek T.; Luke, Robert H.; Burns, Brian

    2015-05-01

    This paper proposes a machine learning algorithm for subsurface object detection on multiple-input-multiple-output (MIMO) forward-looking ground-penetrating radar (FLGPR). By detecting hazards using FLGPR, standoff distances of up to tens of meters can be acquired, but this is at the degradation of performance due to high false alarm rates. The proposed system utilizes an anomaly detection prescreener to identify potential object locations. Alarm locations have multiple one-dimensional (ML) spectral features, two-dimensional (2D) spectral features, and log-Gabor statistic features extracted. The ability of these features to reduce the number of false alarms and increase the probability of detection is evaluated for both co-polarizations present in the Akela MIMO array. Classification is performed by a Support Vector Machine (SVM) with lane-based cross-validation for training and testing. Class imbalance and optimized SVM kernel parameters are considered during classifier training.

  15. Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system

    NASA Astrophysics Data System (ADS)

    Wu, Qi

    2010-03-01

    Demand forecasts play a crucial role in supply chain management. The future demand for a certain product is the basis for the respective replenishment systems. Aiming at demand series with small samples, seasonal character, nonlinearity, randomicity and fuzziness, the existing support vector kernel does not approach the random curve of the sales time series in the space (quadratic continuous integral space). In this paper, we present a hybrid intelligent system combining the wavelet kernel support vector machine and particle swarm optimization for demand forecasting. The results of application in car sale series forecasting show that the forecasting approach based on the hybrid PSOWv-SVM model is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves that this method is, for the discussed example, better than hybrid PSOv-SVM and other traditional methods.

  16. Breast Cancer Recognition Using a Novel Hybrid Intelligent Method

    PubMed Central

    Addeh, Jalil; Ebrahimzadeh, Ata

    2012-01-01

    Breast cancer is the second largest cause of cancer deaths among women. At the same time, it is also among the most curable cancer types if it can be diagnosed early. This paper presents a novel hybrid intelligent method for recognition of breast cancer tumors. The proposed method includes three main modules: the feature extraction module, the classifier module, and the optimization module. In the feature extraction module, fuzzy features are proposed as the efficient characteristic of the patterns. In the classifier module, because of the promising generalization capability of support vector machines (SVM), a SVM-based classifier is proposed. In support vector machine training, the hyperparameters have very important roles for its recognition accuracy. Therefore, in the optimization module, the bees algorithm (BA) is proposed for selecting appropriate parameters of the classifier. The proposed system is tested on Wisconsin Breast Cancer database and simulation results show that the recommended system has a high accuracy. PMID:23626945

  17. In-Vivo Imaging of Cell Migration Using Contrast Enhanced MRI and SVM Based Post-Processing.

    PubMed

    Weis, Christian; Hess, Andreas; Budinsky, Lubos; Fabry, Ben

    2015-01-01

    The migration of cells within a living organism can be observed with magnetic resonance imaging (MRI) in combination with iron oxide nanoparticles as an intracellular contrast agent. This method, however, suffers from low sensitivity and specificty. Here, we developed a quantitative non-invasive in-vivo cell localization method using contrast enhanced multiparametric MRI and support vector machines (SVM) based post-processing. Imaging phantoms consisting of agarose with compartments containing different concentrations of cancer cells labeled with iron oxide nanoparticles were used to train and evaluate the SVM for cell localization. From the magnitude and phase data acquired with a series of T2*-weighted gradient-echo scans at different echo-times, we extracted features that are characteristic for the presence of superparamagnetic nanoparticles, in particular hyper- and hypointensities, relaxation rates, short-range phase perturbations, and perturbation dynamics. High detection quality was achieved by SVM analysis of the multiparametric feature-space. The in-vivo applicability was validated in animal studies. The SVM detected the presence of iron oxide nanoparticles in the imaging phantoms with high specificity and sensitivity with a detection limit of 30 labeled cells per mm3, corresponding to 19 μM of iron oxide. As proof-of-concept, we applied the method to follow the migration of labeled cancer cells injected in rats. The combination of iron oxide labeled cells, multiparametric MRI and a SVM based post processing provides high spatial resolution, specificity, and sensitivity, and is therefore suitable for non-invasive in-vivo cell detection and cell migration studies over prolonged time periods.

  18. Effective Sequential Classifier Training for SVM-Based Multitemporal Remote Sensing Image Classification

    NASA Astrophysics Data System (ADS)

    Guo, Yiqing; Jia, Xiuping; Paull, David

    2018-06-01

    The explosive availability of remote sensing images has challenged supervised classification algorithms such as Support Vector Machines (SVM), as training samples tend to be highly limited due to the expensive and laborious task of ground truthing. The temporal correlation and spectral similarity between multitemporal images have opened up an opportunity to alleviate this problem. In this study, a SVM-based Sequential Classifier Training (SCT-SVM) approach is proposed for multitemporal remote sensing image classification. The approach leverages the classifiers of previous images to reduce the required number of training samples for the classifier training of an incoming image. For each incoming image, a rough classifier is firstly predicted based on the temporal trend of a set of previous classifiers. The predicted classifier is then fine-tuned into a more accurate position with current training samples. This approach can be applied progressively to sequential image data, with only a small number of training samples being required from each image. Experiments were conducted with Sentinel-2A multitemporal data over an agricultural area in Australia. Results showed that the proposed SCT-SVM achieved better classification accuracies compared with two state-of-the-art model transfer algorithms. When training data are insufficient, the overall classification accuracy of the incoming image was improved from 76.18% to 94.02% with the proposed SCT-SVM, compared with those obtained without the assistance from previous images. These results demonstrate that the leverage of a priori information from previous images can provide advantageous assistance for later images in multitemporal image classification.

  19. A new automated assessment method for contrast-detail images by applying support vector machine and its robustness to nonlinear image processing.

    PubMed

    Takei, Takaaki; Ikeda, Mitsuru; Imai, Kuniharu; Yamauchi-Kawaura, Chiyo; Kato, Katsuhiko; Isoda, Haruo

    2013-09-01

    The automated contrast-detail (C-D) analysis methods developed so-far cannot be expected to work well on images processed with nonlinear methods, such as noise reduction methods. Therefore, we have devised a new automated C-D analysis method by applying support vector machine (SVM), and tested for its robustness to nonlinear image processing. We acquired the CDRAD (a commercially available C-D test object) images at a tube voltage of 120 kV and a milliampere-second product (mAs) of 0.5-5.0. A partial diffusion equation based technique was used as noise reduction method. Three radiologists and three university students participated in the observer performance study. The training data for our SVM method was the classification data scored by the one radiologist for the CDRAD images acquired at 1.6 and 3.2 mAs and their noise-reduced images. We also compared the performance of our SVM method with the CDRAD Analyser algorithm. The mean C-D diagrams (that is a plot of the mean of the smallest visible hole diameter vs. hole depth) obtained from our devised SVM method agreed well with the ones averaged across the six human observers for both original and noise-reduced CDRAD images, whereas the mean C-D diagrams from the CDRAD Analyser algorithm disagreed with the ones from the human observers for both original and noise-reduced CDRAD images. In conclusion, our proposed SVM method for C-D analysis will work well for the images processed with the non-linear noise reduction method as well as for the original radiographic images.

  20. Incorporation of support vector machines in the LIBS toolbox for sensitive and robust classification amidst unexpected sample and system variability

    PubMed Central

    ChariDingari, Narahara; Barman, Ishan; Myakalwar, Ashwin Kumar; Tewari, Surya P.; Kumar, G. Manoj

    2012-01-01

    Despite the intrinsic elemental analysis capability and lack of sample preparation requirements, laser-induced breakdown spectroscopy (LIBS) has not been extensively used for real world applications, e.g. quality assurance and process monitoring. Specifically, variability in sample, system and experimental parameters in LIBS studies present a substantive hurdle for robust classification, even when standard multivariate chemometric techniques are used for analysis. Considering pharmaceutical sample investigation as an example, we propose the use of support vector machines (SVM) as a non-linear classification method over conventional linear techniques such as soft independent modeling of class analogy (SIMCA) and partial least-squares discriminant analysis (PLS-DA) for discrimination based on LIBS measurements. Using over-the-counter pharmaceutical samples, we demonstrate that application of SVM enables statistically significant improvements in prospective classification accuracy (sensitivity), due to its ability to address variability in LIBS sample ablation and plasma self-absorption behavior. Furthermore, our results reveal that SVM provides nearly 10% improvement in correct allocation rate and a concomitant reduction in misclassification rates of 75% (cf. PLS-DA) and 80% (cf. SIMCA)-when measurements from samples not included in the training set are incorporated in the test data – highlighting its robustness. While further studies on a wider matrix of sample types performed using different LIBS systems is needed to fully characterize the capability of SVM to provide superior predictions, we anticipate that the improved sensitivity and robustness observed here will facilitate application of the proposed LIBS-SVM toolbox for screening drugs and detecting counterfeit samples as well as in related areas of forensic and biological sample analysis. PMID:22292496

  1. Accuracy of land use change detection using support vector machine and maximum likelihood techniques for open-cast coal mining areas.

    PubMed

    Karan, Shivesh Kishore; Samadder, Sukha Ranjan

    2016-08-01

    One objective of the present study was to evaluate the performance of support vector machine (SVM)-based image classification technique with the maximum likelihood classification (MLC) technique for a rapidly changing landscape of an open-cast mine. The other objective was to assess the change in land use pattern due to coal mining from 2006 to 2016. Assessing the change in land use pattern accurately is important for the development and monitoring of coalfields in conjunction with sustainable development. For the present study, Landsat 5 Thematic Mapper (TM) data of 2006 and Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) data of 2016 of a part of Jharia Coalfield, Dhanbad, India, were used. The SVM classification technique provided greater overall classification accuracy when compared to the MLC technique in classifying heterogeneous landscape with limited training dataset. SVM exceeded MLC in handling a difficult challenge of classifying features having near similar reflectance on the mean signature plot, an improvement of over 11 % was observed in classification of built-up area, and an improvement of 24 % was observed in classification of surface water using SVM; similarly, the SVM technique improved the overall land use classification accuracy by almost 6 and 3 % for Landsat 5 and Landsat 8 images, respectively. Results indicated that land degradation increased significantly from 2006 to 2016 in the study area. This study will help in quantifying the changes and can also serve as a basis for further decision support system studies aiding a variety of purposes such as planning and management of mines and environmental impact assessment.

  2. Incorporation of support vector machines in the LIBS toolbox for sensitive and robust classification amidst unexpected sample and system variability.

    PubMed

    Dingari, Narahara Chari; Barman, Ishan; Myakalwar, Ashwin Kumar; Tewari, Surya P; Kumar Gundawar, Manoj

    2012-03-20

    Despite the intrinsic elemental analysis capability and lack of sample preparation requirements, laser-induced breakdown spectroscopy (LIBS) has not been extensively used for real-world applications, e.g., quality assurance and process monitoring. Specifically, variability in sample, system, and experimental parameters in LIBS studies present a substantive hurdle for robust classification, even when standard multivariate chemometric techniques are used for analysis. Considering pharmaceutical sample investigation as an example, we propose the use of support vector machines (SVM) as a nonlinear classification method over conventional linear techniques such as soft independent modeling of class analogy (SIMCA) and partial least-squares discriminant analysis (PLS-DA) for discrimination based on LIBS measurements. Using over-the-counter pharmaceutical samples, we demonstrate that the application of SVM enables statistically significant improvements in prospective classification accuracy (sensitivity), because of its ability to address variability in LIBS sample ablation and plasma self-absorption behavior. Furthermore, our results reveal that SVM provides nearly 10% improvement in correct allocation rate and a concomitant reduction in misclassification rates of 75% (cf. PLS-DA) and 80% (cf. SIMCA)-when measurements from samples not included in the training set are incorporated in the test data-highlighting its robustness. While further studies on a wider matrix of sample types performed using different LIBS systems is needed to fully characterize the capability of SVM to provide superior predictions, we anticipate that the improved sensitivity and robustness observed here will facilitate application of the proposed LIBS-SVM toolbox for screening drugs and detecting counterfeit samples, as well as in related areas of forensic and biological sample analysis.

  3. Stroke localization and classification using microwave tomography with k-means clustering and support vector machine.

    PubMed

    Guo, Lei; Abbosh, Amin

    2018-05-01

    For any chance for stroke patients to survive, the stroke type should be classified to enable giving medication within a few hours of the onset of symptoms. In this paper, a microwave-based stroke localization and classification framework is proposed. It is based on microwave tomography, k-means clustering, and a support vector machine (SVM) method. The dielectric profile of the brain is first calculated using the Born iterative method, whereas the amplitude of the dielectric profile is then taken as the input to k-means clustering. The cluster is selected as the feature vector for constructing and testing the SVM. A database of MRI-derived realistic head phantoms at different signal-to-noise ratios is used in the classification procedure. The performance of the proposed framework is evaluated using the receiver operating characteristic (ROC) curve. The results based on a two-dimensional framework show that 88% classification accuracy, with a sensitivity of 91% and a specificity of 87%, can be achieved. Bioelectromagnetics. 39:312-324, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  4. Classification of hadith into positive suggestion, negative suggestion, and information

    NASA Astrophysics Data System (ADS)

    Faraby, Said Al; Riviera Rachmawati Jasin, Eliza; Kusumaningrum, Andina; Adiwijaya

    2018-03-01

    As one of the Muslim life guidelines, based on the meaning of its sentence(s), a hadith can be viewed as a suggestion for doing something, or a suggestion for not doing something, or just information without any suggestion. In this paper, we tried to classify the Bahasa translation of hadith into the three categories using machine learning approach. We tried stemming and stopword removal in preprocessing, and TF-IDF of unigram, bigram, and trigram as the extracted features. As the classifier, we compared between SVM and Neural Network. Since the categories are new, so in order to compare the results of the previous pipelines, we created a baseline classifier using simple rule-based string matching technique. The rule-based algorithm conditions on the occurrence of words such as “janganlah, sholatlah, and so on” to determine the category. The baseline method achieved F1-Score of 0.69, while the best F1-Score from the machine learning approach was 0.88, and it was produced by SVM model with the linear kernel.

  5. In silico toxicity prediction by support vector machine and SMILES representation-based string kernel.

    PubMed

    Cao, D-S; Zhao, J-C; Yang, Y-N; Zhao, C-X; Yan, J; Liu, S; Hu, Q-N; Xu, Q-S; Liang, Y-Z

    2012-01-01

    There is a great need to assess the harmful effects or toxicities of chemicals to which man is exposed. In the present paper, the simplified molecular input line entry specification (SMILES) representation-based string kernel, together with the state-of-the-art support vector machine (SVM) algorithm, were used to classify the toxicity of chemicals from the US Environmental Protection Agency Distributed Structure-Searchable Toxicity (DSSTox) database network. In this method, the molecular structure can be directly encoded by a series of SMILES substrings that represent the presence of some chemical elements and different kinds of chemical bonds (double, triple and stereochemistry) in the molecules. Thus, SMILES string kernel can accurately and directly measure the similarities of molecules by a series of local information hidden in the molecules. Two model validation approaches, five-fold cross-validation and independent validation set, were used for assessing the predictive capability of our developed models. The results obtained indicate that SVM based on the SMILES string kernel can be regarded as a very promising and alternative modelling approach for potential toxicity prediction of chemicals.

  6. Using statistical and machine learning to help institutions detect suspicious access to electronic health records.

    PubMed

    Boxwala, Aziz A; Kim, Jihoon; Grillo, Janice M; Ohno-Machado, Lucila

    2011-01-01

    To determine whether statistical and machine-learning methods, when applied to electronic health record (EHR) access data, could help identify suspicious (ie, potentially inappropriate) access to EHRs. From EHR access logs and other organizational data collected over a 2-month period, the authors extracted 26 features likely to be useful in detecting suspicious accesses. Selected events were marked as either suspicious or appropriate by privacy officers, and served as the gold standard set for model evaluation. The authors trained logistic regression (LR) and support vector machine (SVM) models on 10-fold cross-validation sets of 1291 labeled events. The authors evaluated the sensitivity of final models on an external set of 58 events that were identified as truly inappropriate and investigated independently from this study using standard operating procedures. The area under the receiver operating characteristic curve of the models on the whole data set of 1291 events was 0.91 for LR, and 0.95 for SVM. The sensitivity of the baseline model on this set was 0.8. When the final models were evaluated on the set of 58 investigated events, all of which were determined as truly inappropriate, the sensitivity was 0 for the baseline method, 0.76 for LR, and 0.79 for SVM. The LR and SVM models may not generalize because of interinstitutional differences in organizational structures, applications, and workflows. Nevertheless, our approach for constructing the models using statistical and machine-learning techniques can be generalized. An important limitation is the relatively small sample used for the training set due to the effort required for its construction. The results suggest that statistical and machine-learning methods can play an important role in helping privacy officers detect suspicious accesses to EHRs.

  7. Using statistical and machine learning to help institutions detect suspicious access to electronic health records

    PubMed Central

    Kim, Jihoon; Grillo, Janice M; Ohno-Machado, Lucila

    2011-01-01

    Objective To determine whether statistical and machine-learning methods, when applied to electronic health record (EHR) access data, could help identify suspicious (ie, potentially inappropriate) access to EHRs. Methods From EHR access logs and other organizational data collected over a 2-month period, the authors extracted 26 features likely to be useful in detecting suspicious accesses. Selected events were marked as either suspicious or appropriate by privacy officers, and served as the gold standard set for model evaluation. The authors trained logistic regression (LR) and support vector machine (SVM) models on 10-fold cross-validation sets of 1291 labeled events. The authors evaluated the sensitivity of final models on an external set of 58 events that were identified as truly inappropriate and investigated independently from this study using standard operating procedures. Results The area under the receiver operating characteristic curve of the models on the whole data set of 1291 events was 0.91 for LR, and 0.95 for SVM. The sensitivity of the baseline model on this set was 0.8. When the final models were evaluated on the set of 58 investigated events, all of which were determined as truly inappropriate, the sensitivity was 0 for the baseline method, 0.76 for LR, and 0.79 for SVM. Limitations The LR and SVM models may not generalize because of interinstitutional differences in organizational structures, applications, and workflows. Nevertheless, our approach for constructing the models using statistical and machine-learning techniques can be generalized. An important limitation is the relatively small sample used for the training set due to the effort required for its construction. Conclusion The results suggest that statistical and machine-learning methods can play an important role in helping privacy officers detect suspicious accesses to EHRs. PMID:21672912

  8. An improved conjugate gradient scheme to the solution of least squares SVM.

    PubMed

    Chu, Wei; Ong, Chong Jin; Keerthi, S Sathiya

    2005-03-01

    The least square support vector machines (LS-SVM) formulation corresponds to the solution of a linear system of equations. Several approaches to its numerical solutions have been proposed in the literature. In this letter, we propose an improved method to the numerical solution of LS-SVM and show that the problem can be solved using one reduced system of linear equations. Compared with the existing algorithm for LS-SVM, the approach used in this letter is about twice as efficient. Numerical results using the proposed method are provided for comparisons with other existing algorithms.

  9. A linear-RBF multikernel SVM to classify big text corpora.

    PubMed

    Romero, R; Iglesias, E L; Borrajo, L

    2015-01-01

    Support vector machine (SVM) is a powerful technique for classification. However, SVM is not suitable for classification of large datasets or text corpora, because the training complexity of SVMs is highly dependent on the input size. Recent developments in the literature on the SVM and other kernel methods emphasize the need to consider multiple kernels or parameterizations of kernels because they provide greater flexibility. This paper shows a multikernel SVM to manage highly dimensional data, providing an automatic parameterization with low computational cost and improving results against SVMs parameterized under a brute-force search. The model consists in spreading the dataset into cohesive term slices (clusters) to construct a defined structure (multikernel). The new approach is tested on different text corpora. Experimental results show that the new classifier has good accuracy compared with the classic SVM, while the training is significantly faster than several other SVM classifiers.

  10. Energy-Based Metrics for Arthroscopic Skills Assessment.

    PubMed

    Poursartip, Behnaz; LeBel, Marie-Eve; McCracken, Laura C; Escoto, Abelardo; Patel, Rajni V; Naish, Michael D; Trejos, Ana Luisa

    2017-08-05

    Minimally invasive skills assessment methods are essential in developing efficient surgical simulators and implementing consistent skills evaluation. Although numerous methods have been investigated in the literature, there is still a need to further improve the accuracy of surgical skills assessment. Energy expenditure can be an indication of motor skills proficiency. The goals of this study are to develop objective metrics based on energy expenditure, normalize these metrics, and investigate classifying trainees using these metrics. To this end, different forms of energy consisting of mechanical energy and work were considered and their values were divided by the related value of an ideal performance to develop normalized metrics. These metrics were used as inputs for various machine learning algorithms including support vector machines (SVM) and neural networks (NNs) for classification. The accuracy of the combination of the normalized energy-based metrics with these classifiers was evaluated through a leave-one-subject-out cross-validation. The proposed method was validated using 26 subjects at two experience levels (novices and experts) in three arthroscopic tasks. The results showed that there are statistically significant differences between novices and experts for almost all of the normalized energy-based metrics. The accuracy of classification using SVM and NN methods was between 70% and 95% for the various tasks. The results show that the normalized energy-based metrics and their combination with SVM and NN classifiers are capable of providing accurate classification of trainees. The assessment method proposed in this study can enhance surgical training by providing appropriate feedback to trainees about their level of expertise and can be used in the evaluation of proficiency.

  11. Comparative evaluation of support vector machine classification for computer aided detection of breast masses in mammography

    NASA Astrophysics Data System (ADS)

    Lesniak, J. M.; Hupse, R.; Blanc, R.; Karssemeijer, N.; Székely, G.

    2012-08-01

    False positive (FP) marks represent an obstacle for effective use of computer-aided detection (CADe) of breast masses in mammography. Typically, the problem can be approached either by developing more discriminative features or by employing different classifier designs. In this paper, the usage of support vector machine (SVM) classification for FP reduction in CADe is investigated, presenting a systematic quantitative evaluation against neural networks, k-nearest neighbor classification, linear discriminant analysis and random forests. A large database of 2516 film mammography examinations and 73 input features was used to train the classifiers and evaluate for their performance on correctly diagnosed exams as well as false negatives. Further, classifier robustness was investigated using varying training data and feature sets as input. The evaluation was based on the mean exam sensitivity in 0.05-1 FPs on normals on the free-response receiver operating characteristic curve (FROC), incorporated into a tenfold cross validation framework. It was found that SVM classification using a Gaussian kernel offered significantly increased detection performance (P = 0.0002) compared to the reference methods. Varying training data and input features, SVMs showed improved exploitation of large feature sets. It is concluded that with the SVM-based CADe a significant reduction of FPs is possible outperforming other state-of-the-art approaches for breast mass CADe.

  12. Predicting beta-turns in proteins using support vector machines with fractional polynomials

    PubMed Central

    2013-01-01

    Background β-turns are secondary structure type that have essential role in molecular recognition, protein folding, and stability. They are found to be the most common type of non-repetitive structures since 25% of amino acids in protein structures are situated on them. Their prediction is considered to be one of the crucial problems in bioinformatics and molecular biology, which can provide valuable insights and inputs for the fold recognition and drug design. Results We propose an approach that combines support vector machines (SVMs) and logistic regression (LR) in a hybrid prediction method, which we call (H-SVM-LR) to predict β-turns in proteins. Fractional polynomials are used for LR modeling. We utilize position specific scoring matrices (PSSMs) and predicted secondary structure (PSS) as features. Our simulation studies show that H-SVM-LR achieves Qtotal of 82.87%, 82.84%, and 82.32% on the BT426, BT547, and BT823 datasets respectively. These values are the highest among other β-turns prediction methods that are based on PSSMs and secondary structure information. H-SVM-LR also achieves favorable performance in predicting β-turns as measured by the Matthew's correlation coefficient (MCC) on these datasets. Furthermore, H-SVM-LR shows good performance when considering shape strings as additional features. Conclusions In this paper, we present a comprehensive approach for β-turns prediction. Experiments show that our proposed approach achieves better performance compared to other competing prediction methods. PMID:24565438

  13. Predicting beta-turns in proteins using support vector machines with fractional polynomials.

    PubMed

    Elbashir, Murtada; Wang, Jianxin; Wu, Fang-Xiang; Wang, Lusheng

    2013-11-07

    β-turns are secondary structure type that have essential role in molecular recognition, protein folding, and stability. They are found to be the most common type of non-repetitive structures since 25% of amino acids in protein structures are situated on them. Their prediction is considered to be one of the crucial problems in bioinformatics and molecular biology, which can provide valuable insights and inputs for the fold recognition and drug design. We propose an approach that combines support vector machines (SVMs) and logistic regression (LR) in a hybrid prediction method, which we call (H-SVM-LR) to predict β-turns in proteins. Fractional polynomials are used for LR modeling. We utilize position specific scoring matrices (PSSMs) and predicted secondary structure (PSS) as features. Our simulation studies show that H-SVM-LR achieves Qtotal of 82.87%, 82.84%, and 82.32% on the BT426, BT547, and BT823 datasets respectively. These values are the highest among other β-turns prediction methods that are based on PSSMs and secondary structure information. H-SVM-LR also achieves favorable performance in predicting β-turns as measured by the Matthew's correlation coefficient (MCC) on these datasets. Furthermore, H-SVM-LR shows good performance when considering shape strings as additional features. In this paper, we present a comprehensive approach for β-turns prediction. Experiments show that our proposed approach achieves better performance compared to other competing prediction methods.

  14. Comparison of ANN and SVM for classification of eye movements in EOG signals

    NASA Astrophysics Data System (ADS)

    Qi, Lim Jia; Alias, Norma

    2018-03-01

    Nowadays, electrooculogram is regarded as one of the most important biomedical signal in measuring and analyzing eye movement patterns. Thus, it is helpful in designing EOG-based Human Computer Interface (HCI). In this research, electrooculography (EOG) data was obtained from five volunteers. The (EOG) data was then preprocessed before feature extraction methods were employed to further reduce the dimensionality of data. Three feature extraction approaches were put forward, namely statistical parameters, autoregressive (AR) coefficients using Burg method, and power spectral density (PSD) using Yule-Walker method. These features would then become input to both artificial neural network (ANN) and support vector machine (SVM). The performance of the combination of different feature extraction methods and classifiers was presented and analyzed. It was found that statistical parameters + SVM achieved the highest classification accuracy of 69.75%.

  15. Conditional Density Estimation with HMM Based Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Hu, Fasheng; Liu, Zhenqiu; Jia, Chunxin; Chen, Dechang

    Conditional density estimation is very important in financial engineer, risk management, and other engineering computing problem. However, most regression models have a latent assumption that the probability density is a Gaussian distribution, which is not necessarily true in many real life applications. In this paper, we give a framework to estimate or predict the conditional density mixture dynamically. Through combining the Input-Output HMM with SVM regression together and building a SVM model in each state of the HMM, we can estimate a conditional density mixture instead of a single gaussian. With each SVM in each node, this model can be applied for not only regression but classifications as well. We applied this model to denoise the ECG data. The proposed method has the potential to apply to other time series such as stock market return predictions.

  16. Comparison of Different Machine Learning Algorithms for Lithological Mapping Using Remote Sensing Data and Morphological Features: A Case Study in Kurdistan Region, NE Iraq

    NASA Astrophysics Data System (ADS)

    Othman, Arsalan; Gloaguen, Richard

    2015-04-01

    Topographic effects and complex vegetation cover hinder lithology classification in mountain regions based not only in field, but also in reflectance remote sensing data. The area of interest "Bardi-Zard" is located in the NE of Iraq. It is part of the Zagros orogenic belt, where seven lithological units outcrop and is known for its chromite deposit. The aim of this study is to compare three machine learning algorithms (MLAs): Maximum Likelihood (ML), Support Vector Machines (SVM), and Random Forest (RF) in the context of a supervised lithology classification task using Advanced Space-borne Thermal Emission and Reflection radiometer (ASTER) satellite, its derived, spatial information (spatial coordinates) and geomorphic data. We emphasize the enhancement in remote sensing lithological mapping accuracy that arises from the integration of geomorphic features and spatial information (spatial coordinates) in classifications. This study identifies that RF is better than ML and SVM algorithms in almost the sixteen combination datasets, which were tested. The overall accuracy of the best dataset combination with the RF map for the all seven classes reach ~80% and the producer and user's accuracies are ~73.91% and 76.09% respectively while the kappa coefficient is ~0.76. TPI is more effective with SVM algorithm than an RF algorithm. This paper demonstrates that adding geomorphic indices such as TPI and spatial information in the dataset increases the lithological classification accuracy.

  17. Automated image segmentation using support vector machines

    NASA Astrophysics Data System (ADS)

    Powell, Stephanie; Magnotta, Vincent A.; Andreasen, Nancy C.

    2007-03-01

    Neurodegenerative and neurodevelopmental diseases demonstrate problems associated with brain maturation and aging. Automated methods to delineate brain structures of interest are required to analyze large amounts of imaging data like that being collected in several on going multi-center studies. We have previously reported on using artificial neural networks (ANN) to define subcortical brain structures including the thalamus (0.88), caudate (0.85) and the putamen (0.81). In this work, apriori probability information was generated using Thirion's demons registration algorithm. The input vector consisted of apriori probability, spherical coordinates, and an iris of surrounding signal intensity values. We have applied the support vector machine (SVM) machine learning algorithm to automatically segment subcortical and cerebellar regions using the same input vector information. SVM architecture was derived from the ANN framework. Training was completed using a radial-basis function kernel with gamma equal to 5.5. Training was performed using 15,000 vectors collected from 15 training images in approximately 10 minutes. The resulting support vectors were applied to delineate 10 images not part of the training set. Relative overlap calculated for the subcortical structures was 0.87 for the thalamus, 0.84 for the caudate, 0.84 for the putamen, and 0.72 for the hippocampus. Relative overlap for the cerebellar lobes ranged from 0.76 to 0.86. The reliability of the SVM based algorithm was similar to the inter-rater reliability between manual raters and can be achieved without rater intervention.

  18. A new method for the prediction of chatter stability lobes based on dynamic cutting force simulation model and support vector machine

    NASA Astrophysics Data System (ADS)

    Peng, Chong; Wang, Lun; Liao, T. Warren

    2015-10-01

    Currently, chatter has become the critical factor in hindering machining quality and productivity in machining processes. To avoid cutting chatter, a new method based on dynamic cutting force simulation model and support vector machine (SVM) is presented for the prediction of chatter stability lobes. The cutting force is selected as the monitoring signal, and the wavelet energy entropy theory is used to extract the feature vectors. A support vector machine is constructed using the MATLAB LIBSVM toolbox for pattern classification based on the feature vectors derived from the experimental cutting data. Then combining with the dynamic cutting force simulation model, the stability lobes diagram (SLD) can be estimated. Finally, the predicted results are compared with existing methods such as zero-order analytical (ZOA) and semi-discretization (SD) method as well as actual cutting experimental results to confirm the validity of this new method.

  19. Classification of radiological errors in chest radiographs, using support vector machine on the spatial frequency features of false- negative and false-positive regions

    NASA Astrophysics Data System (ADS)

    Pietrzyk, Mariusz W.; Donovan, Tim; Brennan, Patrick C.; Dix, Alan; Manning, David J.

    2011-03-01

    Aim: To optimize automated classification of radiological errors during lung nodule detection from chest radiographs (CxR) using a support vector machine (SVM) run on the spatial frequency features extracted from the local background of selected regions. Background: The majority of the unreported pulmonary nodules are visually detected but not recognized; shown by the prolonged dwell time values at false-negative regions. Similarly, overestimated nodule locations are capturing substantial amounts of foveal attention. Spatial frequency properties of selected local backgrounds are correlated with human observer responses either in terms of accuracy in indicating abnormality position or in the precision of visual sampling the medical images. Methods: Seven radiologists participated in the eye tracking experiments conducted under conditions of pulmonary nodule detection from a set of 20 postero-anterior CxR. The most dwelled locations have been identified and subjected to spatial frequency (SF) analysis. The image-based features of selected ROI were extracted with un-decimated Wavelet Packet Transform. An analysis of variance was run to select SF features and a SVM schema was implemented to classify False-Negative and False-Positive from all ROI. Results: A relative high overall accuracy was obtained for each individually developed Wavelet-SVM algorithm, with over 90% average correct ratio for errors recognition from all prolonged dwell locations. Conclusion: The preliminary results show that combined eye-tracking and image-based features can be used for automated detection of radiological error with SVM. The work is still in progress and not all analytical procedures have been completed, which might have an effect on the specificity of the algorithm.

  20. Ensemble Feature Learning of Genomic Data Using Support Vector Machine

    PubMed Central

    Anaissi, Ali; Goyal, Madhu; Catchpoole, Daniel R.; Braytee, Ali; Kennedy, Paul J.

    2016-01-01

    The identification of a subset of genes having the ability to capture the necessary information to distinguish classes of patients is crucial in bioinformatics applications. Ensemble and bagging methods have been shown to work effectively in the process of gene selection and classification. Testament to that is random forest which combines random decision trees with bagging to improve overall feature selection and classification accuracy. Surprisingly, the adoption of these methods in support vector machines has only recently received attention but mostly on classification not gene selection. This paper introduces an ensemble SVM-Recursive Feature Elimination (ESVM-RFE) for gene selection that follows the concepts of ensemble and bagging used in random forest but adopts the backward elimination strategy which is the rationale of RFE algorithm. The rationale behind this is, building ensemble SVM models using randomly drawn bootstrap samples from the training set, will produce different feature rankings which will be subsequently aggregated as one feature ranking. As a result, the decision for elimination of features is based upon the ranking of multiple SVM models instead of choosing one particular model. Moreover, this approach will address the problem of imbalanced datasets by constructing a nearly balanced bootstrap sample. Our experiments show that ESVM-RFE for gene selection substantially increased the classification performance on five microarray datasets compared to state-of-the-art methods. Experiments on the childhood leukaemia dataset show that an average 9% better accuracy is achieved by ESVM-RFE over SVM-RFE, and 5% over random forest based approach. The selected genes by the ESVM-RFE algorithm were further explored with Singular Value Decomposition (SVD) which reveals significant clusters with the selected data. PMID:27304923

  1. Prediction of plant pre-microRNAs and their microRNAs in genome-scale sequences using structure-sequence features and support vector machine.

    PubMed

    Meng, Jun; Liu, Dong; Sun, Chao; Luan, Yushi

    2014-12-30

    MicroRNAs (miRNAs) are a family of non-coding RNAs approximately 21 nucleotides in length that play pivotal roles at the post-transcriptional level in animals, plants and viruses. These molecules silence their target genes by degrading transcription or suppressing translation. Studies have shown that miRNAs are involved in biological responses to a variety of biotic and abiotic stresses. Identification of these molecules and their targets can aid the understanding of regulatory processes. Recently, prediction methods based on machine learning have been widely used for miRNA prediction. However, most of these methods were designed for mammalian miRNA prediction, and few are available for predicting miRNAs in the pre-miRNAs of specific plant species. Although the complete Solanum lycopersicum genome has been published, only 77 Solanum lycopersicum miRNAs have been identified, far less than the estimated number. Therefore, it is essential to develop a prediction method based on machine learning to identify new plant miRNAs. A novel classification model based on a support vector machine (SVM) was trained to identify real and pseudo plant pre-miRNAs together with their miRNAs. An initial set of 152 novel features related to sequential structures was used to train the model. By applying feature selection, we obtained the best subset of 47 features for use with the Back Support Vector Machine-Recursive Feature Elimination (B-SVM-RFE) method for the classification of plant pre-miRNAs. Using this method, 63 features were obtained for plant miRNA classification. We then developed an integrated classification model, miPlantPreMat, which comprises MiPlantPre and MiPlantMat, to identify plant pre-miRNAs and their miRNAs. This model achieved approximately 90% accuracy using plant datasets from nine plant species, including Arabidopsis thaliana, Glycine max, Oryza sativa, Physcomitrella patens, Medicago truncatula, Sorghum bicolor, Arabidopsis lyrata, Zea mays and Solanum lycopersicum. Using miPlantPreMat, 522 Solanum lycopersicum miRNAs were identified in the Solanum lycopersicum genome sequence. We developed an integrated classification model, miPlantPreMat, based on structure-sequence features and SVM. MiPlantPreMat was used to identify both plant pre-miRNAs and the corresponding mature miRNAs. An improved feature selection method was proposed, resulting in high classification accuracy, sensitivity and specificity.

  2. Structural analysis of online handwritten mathematical symbols based on support vector machines

    NASA Astrophysics Data System (ADS)

    Simistira, Foteini; Papavassiliou, Vassilis; Katsouros, Vassilis; Carayannis, George

    2013-01-01

    Mathematical expression recognition is still a very challenging task for the research community mainly because of the two-dimensional (2d) structure of mathematical expressions (MEs). In this paper, we present a novel approach for the structural analysis between two on-line handwritten mathematical symbols of a ME, based on spatial features of the symbols. We introduce six features to represent the spatial affinity of the symbols and compare two multi-class classification methods that employ support vector machines (SVMs): one based on the "one-against-one" technique and one based on the "one-against-all", in identifying the relation between a pair of symbols (i.e. subscript, numerator, etc). A dataset containing 1906 spatial relations derived from the Competition on Recognition of Online Handwritten Mathematical Expressions (CROHME) 2012 training dataset is constructed to evaluate the classifiers and compare them with the rule-based classifier of the ILSP-1 system participated in the contest. The experimental results give an overall mean error rate of 2.61% for the "one-against-one" SVM approach, 6.57% for the "one-against-all" SVM technique and 12.31% error rate for the ILSP-1 classifier.

  3. Hyperspectral recognition of processing tomato early blight based on GA and SVM

    NASA Astrophysics Data System (ADS)

    Yin, Xiaojun; Zhao, SiFeng

    2013-03-01

    Processing tomato early blight seriously affect the yield and quality of its.Determine the leaves spectrum of different disease severity level of processing tomato early blight.We take the sensitive bands of processing tomato early blight as support vector machine input vector.Through the genetic algorithm(GA) to optimize the parameters of SVM, We could recognize different disease severity level of processing tomato early blight.The result show:the sensitive bands of different disease severity levels of processing tomato early blight is 628-643nm and 689-692nm.The sensitive bands are as the GA and SVM input vector.We get the best penalty parameters is 0.129 and kernel function parameters is 3.479.We make classification training and testing by polynomial nuclear,radial basis function nuclear,Sigmoid nuclear.The best classification model is the radial basis function nuclear of SVM. Training accuracy is 84.615%,Testing accuracy is 80.681%.It is combined GA and SVM to achieve multi-classification of processing tomato early blight.It is provided the technical support of prediction processing tomato early blight occurrence, development and diffusion rule in large areas.

  4. LMD Based Features for the Automatic Seizure Detection of EEG Signals Using SVM.

    PubMed

    Zhang, Tao; Chen, Wanzhong

    2017-08-01

    Achieving the goal of detecting seizure activity automatically using electroencephalogram (EEG) signals is of great importance and significance for the treatment of epileptic seizures. To realize this aim, a newly-developed time-frequency analytical algorithm, namely local mean decomposition (LMD), is employed in the presented study. LMD is able to decompose an arbitrary signal into a series of product functions (PFs). Primarily, the raw EEG signal is decomposed into several PFs, and then the temporal statistical and non-linear features of the first five PFs are calculated. The features of each PF are fed into five classifiers, including back propagation neural network (BPNN), K-nearest neighbor (KNN), linear discriminant analysis (LDA), un-optimized support vector machine (SVM) and SVM optimized by genetic algorithm (GA-SVM), for five classification cases, respectively. Confluent features of all PFs and raw EEG are further passed into the high-performance GA-SVM for the same classification tasks. Experimental results on the international public Bonn epilepsy EEG dataset show that the average classification accuracy of the presented approach are equal to or higher than 98.10% in all the five cases, and this indicates the effectiveness of the proposed approach for automated seizure detection.

  5. Unified framework for triaxial accelerometer-based fall event detection and classification using cumulants and hierarchical decision tree classifier.

    PubMed

    Kambhampati, Satya Samyukta; Singh, Vishal; Manikandan, M Sabarimalai; Ramkumar, Barathram

    2015-08-01

    In this Letter, the authors present a unified framework for fall event detection and classification using the cumulants extracted from the acceleration (ACC) signals acquired using a single waist-mounted triaxial accelerometer. The main objective of this Letter is to find suitable representative cumulants and classifiers in effectively detecting and classifying different types of fall and non-fall events. It was discovered that the first level of the proposed hierarchical decision tree algorithm implements fall detection using fifth-order cumulants and support vector machine (SVM) classifier. In the second level, the fall event classification algorithm uses the fifth-order cumulants and SVM. Finally, human activity classification is performed using the second-order cumulants and SVM. The detection and classification results are compared with those of the decision tree, naive Bayes, multilayer perceptron and SVM classifiers with different types of time-domain features including the second-, third-, fourth- and fifth-order cumulants and the signal magnitude vector and signal magnitude area. The experimental results demonstrate that the second- and fifth-order cumulant features and SVM classifier can achieve optimal detection and classification rates of above 95%, as well as the lowest false alarm rate of 1.03%.

  6. Identifying Novel Type ZBGs and Nonhydroxamate HDAC Inhibitors Through a SVM Based Virtual Screening Approach.

    PubMed

    Liu, X H; Song, H Y; Zhang, J X; Han, B C; Wei, X N; Ma, X H; Cui, W K; Chen, Y Z

    2010-05-17

    Histone deacetylase inhibitors (HDACi) have been successfully used for the treatment of cancers and other diseases. Search for novel type ZBGs and development of non-hydroxamate HDACi has become a focus in current research. To complement this, it is desirable to explore a virtual screening (VS) tool capable of identifying different types of potential inhibitors from large compound libraries with high yields and low false-hit rates similar to HTS. This work explored the use of support vector machines (SVM) combined with our newly developed putative non-inhibitor generation method as such a tool. SVM trained by 702 pre-2008 hydroxamate HDACi and 64334 putative non-HDACi showed good yields and low false-hit rates in cross-validation test and independent test using 220 diverse types of HDACi reported since 2008. The SVM hit rates in scanning 13.56 M PubChem and 168K MDDR compounds are comparable to HTS rates. Further structural analysis of SVM virtual hits suggests its potential for identification of non-hydroxamate HDACi. From this analysis, a series of novel ZBG and cap groups were proposed for HDACi design. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Age and gender estimation using Region-SIFT and multi-layered SVM

    NASA Astrophysics Data System (ADS)

    Kim, Hyunduk; Lee, Sang-Heon; Sohn, Myoung-Kyu; Hwang, Byunghun

    2018-04-01

    In this paper, we propose an age and gender estimation framework using the region-SIFT feature and multi-layered SVM classifier. The suggested framework entails three processes. The first step is landmark based face alignment. The second step is the feature extraction step. In this step, we introduce the region-SIFT feature extraction method based on facial landmarks. First, we define sub-regions of the face. We then extract SIFT features from each sub-region. In order to reduce the dimensions of features we employ a Principal Component Analysis (PCA) and a Linear Discriminant Analysis (LDA). Finally, we classify age and gender using a multi-layered Support Vector Machines (SVM) for efficient classification. Rather than performing gender estimation and age estimation independently, the use of the multi-layered SVM can improve the classification rate by constructing a classifier that estimate the age according to gender. Moreover, we collect a dataset of face images, called by DGIST_C, from the internet. A performance evaluation of proposed method was performed with the FERET database, CACD database, and DGIST_C database. The experimental results demonstrate that the proposed approach classifies age and performs gender estimation very efficiently and accurately.

  8. Predicting the Types of Ion Channel-Targeted Conotoxins Based on AVC-SVM Model.

    PubMed

    Xianfang, Wang; Junmei, Wang; Xiaolei, Wang; Yue, Zhang

    2017-01-01

    The conotoxin proteins are disulfide-rich small peptides. Predicting the types of ion channel-targeted conotoxins has great value in the treatment of chronic diseases, epilepsy, and cardiovascular diseases. To solve the problem of information redundancy existing when using current methods, a new model is presented to predict the types of ion channel-targeted conotoxins based on AVC (Analysis of Variance and Correlation) and SVM (Support Vector Machine). First, the F value is used to measure the significance level of the feature for the result, and the attribute with smaller F value is filtered by rough selection. Secondly, redundancy degree is calculated by Pearson Correlation Coefficient. And the threshold is set to filter attributes with weak independence to get the result of the refinement. Finally, SVM is used to predict the types of ion channel-targeted conotoxins. The experimental results show the proposed AVC-SVM model reaches an overall accuracy of 91.98%, an average accuracy of 92.17%, and the total number of parameters of 68. The proposed model provides highly useful information for further experimental research. The prediction model will be accessed free of charge at our web server.

  9. Predicting the Types of Ion Channel-Targeted Conotoxins Based on AVC-SVM Model

    PubMed Central

    Xiaolei, Wang

    2017-01-01

    The conotoxin proteins are disulfide-rich small peptides. Predicting the types of ion channel-targeted conotoxins has great value in the treatment of chronic diseases, epilepsy, and cardiovascular diseases. To solve the problem of information redundancy existing when using current methods, a new model is presented to predict the types of ion channel-targeted conotoxins based on AVC (Analysis of Variance and Correlation) and SVM (Support Vector Machine). First, the F value is used to measure the significance level of the feature for the result, and the attribute with smaller F value is filtered by rough selection. Secondly, redundancy degree is calculated by Pearson Correlation Coefficient. And the threshold is set to filter attributes with weak independence to get the result of the refinement. Finally, SVM is used to predict the types of ion channel-targeted conotoxins. The experimental results show the proposed AVC-SVM model reaches an overall accuracy of 91.98%, an average accuracy of 92.17%, and the total number of parameters of 68. The proposed model provides highly useful information for further experimental research. The prediction model will be accessed free of charge at our web server. PMID:28497044

  10. Comparison of four statistical and machine learning methods for crash severity prediction.

    PubMed

    Iranitalab, Amirfarrokh; Khattak, Aemal

    2017-11-01

    Crash severity prediction models enable different agencies to predict the severity of a reported crash with unknown severity or the severity of crashes that may be expected to occur sometime in the future. This paper had three main objectives: comparison of the performance of four statistical and machine learning methods including Multinomial Logit (MNL), Nearest Neighbor Classification (NNC), Support Vector Machines (SVM) and Random Forests (RF), in predicting traffic crash severity; developing a crash costs-based approach for comparison of crash severity prediction methods; and investigating the effects of data clustering methods comprising K-means Clustering (KC) and Latent Class Clustering (LCC), on the performance of crash severity prediction models. The 2012-2015 reported crash data from Nebraska, United States was obtained and two-vehicle crashes were extracted as the analysis data. The dataset was split into training/estimation (2012-2014) and validation (2015) subsets. The four prediction methods were trained/estimated using the training/estimation dataset and the correct prediction rates for each crash severity level, overall correct prediction rate and a proposed crash costs-based accuracy measure were obtained for the validation dataset. The correct prediction rates and the proposed approach showed NNC had the best prediction performance in overall and in more severe crashes. RF and SVM had the next two sufficient performances and MNL was the weakest method. Data clustering did not affect the prediction results of SVM, but KC improved the prediction performance of MNL, NNC and RF, while LCC caused improvement in MNL and RF but weakened the performance of NNC. Overall correct prediction rate had almost the exact opposite results compared to the proposed approach, showing that neglecting the crash costs can lead to misjudgment in choosing the right prediction method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines.

    PubMed

    Lajnef, Tarek; Chaibi, Sahbi; Ruby, Perrine; Aguera, Pierre-Emmanuel; Eichenlaub, Jean-Baptiste; Samet, Mounir; Kachouri, Abdennaceur; Jerbi, Karim

    2015-07-30

    Sleep staging is a critical step in a range of electrophysiological signal processing pipelines used in clinical routine as well as in sleep research. Although the results currently achievable with automatic sleep staging methods are promising, there is need for improvement, especially given the time-consuming and tedious nature of visual sleep scoring. Here we propose a sleep staging framework that consists of a multi-class support vector machine (SVM) classification based on a decision tree approach. The performance of the method was evaluated using polysomnographic data from 15 subjects (electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) recordings). The decision tree, or dendrogram, was obtained using a hierarchical clustering technique and a wide range of time and frequency-domain features were extracted. Feature selection was carried out using forward sequential selection and classification was evaluated using k-fold cross-validation. The dendrogram-based SVM (DSVM) achieved mean specificity, sensitivity and overall accuracy of 0.92, 0.74 and 0.88 respectively, compared to expert visual scoring. Restricting DSVM classification to data where both experts' scoring was consistent (76.73% of the data) led to a mean specificity, sensitivity and overall accuracy of 0.94, 0.82 and 0.92 respectively. The DSVM framework outperforms classification with more standard multi-class "one-against-all" SVM and linear-discriminant analysis. The promising results of the proposed methodology suggest that it may be a valuable alternative to existing automatic methods and that it could accelerate visual scoring by providing a robust starting hypnogram that can be further fine-tuned by expert inspection. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination.

    PubMed

    Sørensen, Lauge; Nielsen, Mads

    2018-05-15

    The International Challenge for Automated Prediction of MCI from MRI data offered independent, standardized comparison of machine learning algorithms for multi-class classification of normal control (NC), mild cognitive impairment (MCI), converting MCI (cMCI), and Alzheimer's disease (AD) using brain imaging and general cognition. We proposed to use an ensemble of support vector machines (SVMs) that combined bagging without replacement and feature selection. SVM is the most commonly used algorithm in multivariate classification of dementia, and it was therefore valuable to evaluate the potential benefit of ensembling this type of classifier. The ensemble SVM, using either a linear or a radial basis function (RBF) kernel, achieved multi-class classification accuracies of 55.6% and 55.0% in the challenge test set (60 NC, 60 MCI, 60 cMCI, 60 AD), resulting in a third place in the challenge. Similar feature subset sizes were obtained for both kernels, and the most frequently selected MRI features were the volumes of the two hippocampal subregions left presubiculum and right subiculum. Post-challenge analysis revealed that enforcing a minimum number of selected features and increasing the number of ensemble classifiers improved classification accuracy up to 59.1%. The ensemble SVM outperformed single SVM classifications consistently in the challenge test set. Ensemble methods using bagging and feature selection can improve the performance of the commonly applied SVM classifier in dementia classification. This resulted in competitive classification accuracies in the International Challenge for Automated Prediction of MCI from MRI data. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Assessment of various supervised learning algorithms using different performance metrics

    NASA Astrophysics Data System (ADS)

    Susheel Kumar, S. M.; Laxkar, Deepak; Adhikari, Sourav; Vijayarajan, V.

    2017-11-01

    Our work brings out comparison based on the performance of supervised machine learning algorithms on a binary classification task. The supervised machine learning algorithms which are taken into consideration in the following work are namely Support Vector Machine(SVM), Decision Tree(DT), K Nearest Neighbour (KNN), Naïve Bayes(NB) and Random Forest(RF). This paper mostly focuses on comparing the performance of above mentioned algorithms on one binary classification task by analysing the Metrics such as Accuracy, F-Measure, G-Measure, Precision, Misclassification Rate, False Positive Rate, True Positive Rate, Specificity, Prevalence.

  14. An Android malware detection system based on machine learning

    NASA Astrophysics Data System (ADS)

    Wen, Long; Yu, Haiyang

    2017-08-01

    The Android smartphone, with its open source character and excellent performance, has attracted many users. However, the convenience of the Android platform also has motivated the development of malware. The traditional method which detects the malware based on the signature is unable to detect unknown applications. The article proposes a machine learning-based lightweight system that is capable of identifying malware on Android devices. In this system we extract features based on the static analysis and the dynamitic analysis, then a new feature selection approach based on principle component analysis (PCA) and relief are presented in the article to decrease the dimensions of the features. After that, a model will be constructed with support vector machine (SVM) for classification. Experimental results show that our system provides an effective method in Android malware detection.

  15. On the use of feature selection to improve the detection of sea oil spills in SAR images

    NASA Astrophysics Data System (ADS)

    Mera, David; Bolon-Canedo, Veronica; Cotos, J. M.; Alonso-Betanzos, Amparo

    2017-03-01

    Fast and effective oil spill detection systems are crucial to ensure a proper response to environmental emergencies caused by hydrocarbon pollution on the ocean's surface. Typically, these systems uncover not only oil spills, but also a high number of look-alikes. The feature extraction is a critical and computationally intensive phase where each detected dark spot is independently examined. Traditionally, detection systems use an arbitrary set of features to discriminate between oil spills and look-alikes phenomena. However, Feature Selection (FS) methods based on Machine Learning (ML) have proved to be very useful in real domains for enhancing the generalization capabilities of the classifiers, while discarding the existing irrelevant features. In this work, we present a generic and systematic approach, based on FS methods, for choosing a concise and relevant set of features to improve the oil spill detection systems. We have compared five FS methods: Correlation-based feature selection (CFS), Consistency-based filter, Information Gain, ReliefF and Recursive Feature Elimination for Support Vector Machine (SVM-RFE). They were applied on a 141-input vector composed of features from a collection of outstanding studies. Selected features were validated via a Support Vector Machine (SVM) classifier and the results were compared with previous works. Test experiments revealed that the classifier trained with the 6-input feature vector proposed by SVM-RFE achieved the best accuracy and Cohen's kappa coefficient (87.1% and 74.06% respectively). This is a smaller feature combination with similar or even better classification accuracy than previous works. The presented finding allows to speed up the feature extraction phase without reducing the classifier accuracy. Experiments also confirmed the significance of the geometrical features since 75.0% of the different features selected by the applied FS methods as well as 66.67% of the proposed 6-input feature vector belong to this category.

  16. Beyond where to how: a machine learning approach for sensing mobility contexts using smartphone sensors.

    PubMed

    Guinness, Robert E

    2015-04-28

    This paper presents the results of research on the use of smartphone sensors (namely, GPS and accelerometers), geospatial information (points of interest, such as bus stops and train stations) and machine learning (ML) to sense mobility contexts. Our goal is to develop techniques to continuously and automatically detect a smartphone user's mobility activities, including walking, running, driving and using a bus or train, in real-time or near-real-time (<5 s). We investigated a wide range of supervised learning techniques for classification, including decision trees (DT), support vector machines (SVM), naive Bayes classifiers (NB), Bayesian networks (BN), logistic regression (LR), artificial neural networks (ANN) and several instance-based classifiers (KStar, LWLand IBk). Applying ten-fold cross-validation, the best performers in terms of correct classification rate (i.e., recall) were DT (96.5%), BN (90.9%), LWL (95.5%) and KStar (95.6%). In particular, the DT-algorithm RandomForest exhibited the best overall performance. After a feature selection process for a subset of algorithms, the performance was improved slightly. Furthermore, after tuning the parameters of RandomForest, performance improved to above 97.5%. Lastly, we measured the computational complexity of the classifiers, in terms of central processing unit (CPU) time needed for classification, to provide a rough comparison between the algorithms in terms of battery usage requirements. As a result, the classifiers can be ranked from lowest to highest complexity (i.e., computational cost) as follows: SVM, ANN, LR, BN, DT, NB, IBk, LWL and KStar. The instance-based classifiers take considerably more computational time than the non-instance-based classifiers, whereas the slowest non-instance-based classifier (NB) required about five-times the amount of CPU time as the fastest classifier (SVM). The above results suggest that DT algorithms are excellent candidates for detecting mobility contexts in smartphones, both in terms of performance and computational complexity.

  17. Beyond Where to How: A Machine Learning Approach for Sensing Mobility Contexts Using Smartphone Sensors †

    PubMed Central

    Guinness, Robert E.

    2015-01-01

    This paper presents the results of research on the use of smartphone sensors (namely, GPS and accelerometers), geospatial information (points of interest, such as bus stops and train stations) and machine learning (ML) to sense mobility contexts. Our goal is to develop techniques to continuously and automatically detect a smartphone user's mobility activities, including walking, running, driving and using a bus or train, in real-time or near-real-time (<5 s). We investigated a wide range of supervised learning techniques for classification, including decision trees (DT), support vector machines (SVM), naive Bayes classifiers (NB), Bayesian networks (BN), logistic regression (LR), artificial neural networks (ANN) and several instance-based classifiers (KStar, LWLand IBk). Applying ten-fold cross-validation, the best performers in terms of correct classification rate (i.e., recall) were DT (96.5%), BN (90.9%), LWL (95.5%) and KStar (95.6%). In particular, the DT-algorithm RandomForest exhibited the best overall performance. After a feature selection process for a subset of algorithms, the performance was improved slightly. Furthermore, after tuning the parameters of RandomForest, performance improved to above 97.5%. Lastly, we measured the computational complexity of the classifiers, in terms of central processing unit (CPU) time needed for classification, to provide a rough comparison between the algorithms in terms of battery usage requirements. As a result, the classifiers can be ranked from lowest to highest complexity (i.e., computational cost) as follows: SVM, ANN, LR, BN, DT, NB, IBk, LWL and KStar. The instance-based classifiers take considerably more computational time than the non-instance-based classifiers, whereas the slowest non-instance-based classifier (NB) required about five-times the amount of CPU time as the fastest classifier (SVM). The above results suggest that DT algorithms are excellent candidates for detecting mobility contexts in smartphones, both in terms of performance and computational complexity. PMID:25928060

  18. Mediterranean Land Use and Land Cover Classification Assessment Using High Spatial Resolution Data

    NASA Astrophysics Data System (ADS)

    Elhag, Mohamed; Boteva, Silvena

    2016-10-01

    Landscape fragmentation is noticeably practiced in Mediterranean regions and imposes substantial complications in several satellite image classification methods. To some extent, high spatial resolution data were able to overcome such complications. For better classification performances in Land Use Land Cover (LULC) mapping, the current research adopts different classification methods comparison for LULC mapping using Sentinel-2 satellite as a source of high spatial resolution. Both of pixel-based and an object-based classification algorithms were assessed; the pixel-based approach employs Maximum Likelihood (ML), Artificial Neural Network (ANN) algorithms, Support Vector Machine (SVM), and, the object-based classification uses the Nearest Neighbour (NN) classifier. Stratified Masking Process (SMP) that integrates a ranking process within the classes based on spectral fluctuation of the sum of the training and testing sites was implemented. An analysis of the overall and individual accuracy of the classification results of all four methods reveals that the SVM classifier was the most efficient overall by distinguishing most of the classes with the highest accuracy. NN succeeded to deal with artificial surface classes in general while agriculture area classes, and forest and semi-natural area classes were segregated successfully with SVM. Furthermore, a comparative analysis indicates that the conventional classification method yielded better accuracy results than the SMP method overall with both classifiers used, ML and SVM.

  19. Grouped fuzzy SVM with EM-based partition of sample space for clustered microcalcification detection.

    PubMed

    Wang, Huiya; Feng, Jun; Wang, Hongyu

    2017-07-20

    Detection of clustered microcalcification (MC) from mammograms plays essential roles in computer-aided diagnosis for early stage breast cancer. To tackle problems associated with the diversity of data structures of MC lesions and the variability of normal breast tissues, multi-pattern sample space learning is required. In this paper, a novel grouped fuzzy Support Vector Machine (SVM) algorithm with sample space partition based on Expectation-Maximization (EM) (called G-FSVM) is proposed for clustered MC detection. The diversified pattern of training data is partitioned into several groups based on EM algorithm. Then a series of fuzzy SVM are integrated for classification with each group of samples from the MC lesions and normal breast tissues. From DDSM database, a total of 1,064 suspicious regions are selected from 239 mammography, and the measurement of Accuracy, True Positive Rate (TPR), False Positive Rate (FPR) and EVL = TPR* 1-FPR are 0.82, 0.78, 0.14 and 0.72, respectively. The proposed method incorporates the merits of fuzzy SVM and multi-pattern sample space learning, decomposing the MC detection problem into serial simple two-class classification. Experimental results from synthetic data and DDSM database demonstrate that our integrated classification framework reduces the false positive rate significantly while maintaining the true positive rate.

  20. Smile detectors correlation

    NASA Astrophysics Data System (ADS)

    Yuksel, Kivanc; Chang, Xin; Skarbek, Władysław

    2017-08-01

    The novel smile recognition algorithm is presented based on extraction of 68 facial salient points (fp68) using the ensemble of regression trees. The smile detector exploits the Support Vector Machine linear model. It is trained with few hundreds exemplar images by SVM algorithm working in 136 dimensional space. It is shown by the strict statistical data analysis that such geometric detector strongly depends on the geometry of mouth opening area, measured by triangulation of outer lip contour. To this goal two Bayesian detectors were developed and compared with SVM detector. The first uses the mouth area in 2D image, while the second refers to the mouth area in 3D animated face model. The 3D modeling is based on Candide-3 model and it is performed in real time along with three smile detectors and statistics estimators. The mouth area/Bayesian detectors exhibit high correlation with fp68/SVM detector in a range [0:8; 1:0], depending mainly on light conditions and individual features with advantage of 3D technique, especially in hard light conditions.

  1. Prediction of troponin-T degradation using color image texture features in 10d aged beef longissimus steaks.

    PubMed

    Sun, X; Chen, K J; Berg, E P; Newman, D J; Schwartz, C A; Keller, W L; Maddock Carlin, K R

    2014-02-01

    The objective was to use digital color image texture features to predict troponin-T degradation in beef. Image texture features, including 88 gray level co-occurrence texture features, 81 two-dimension fast Fourier transformation texture features, and 48 Gabor wavelet filter texture features, were extracted from color images of beef strip steaks (longissimus dorsi, n = 102) aged for 10d obtained using a digital camera and additional lighting. Steaks were designated degraded or not-degraded based on troponin-T degradation determined on d 3 and d 10 postmortem by immunoblotting. Statistical analysis (STEPWISE regression model) and artificial neural network (support vector machine model, SVM) methods were designed to classify protein degradation. The d 3 and d 10 STEPWISE models were 94% and 86% accurate, respectively, while the d 3 and d 10 SVM models were 63% and 71%, respectively, in predicting protein degradation in aged meat. STEPWISE and SVM models based on image texture features show potential to predict troponin-T degradation in meat. © 2013.

  2. Robust Least-Squares Support Vector Machine With Minimization of Mean and Variance of Modeling Error.

    PubMed

    Lu, Xinjiang; Liu, Wenbo; Zhou, Chuang; Huang, Minghui

    2017-06-13

    The least-squares support vector machine (LS-SVM) is a popular data-driven modeling method and has been successfully applied to a wide range of applications. However, it has some disadvantages, including being ineffective at handling non-Gaussian noise as well as being sensitive to outliers. In this paper, a robust LS-SVM method is proposed and is shown to have more reliable performance when modeling a nonlinear system under conditions where Gaussian or non-Gaussian noise is present. The construction of a new objective function allows for a reduction of the mean of the modeling error as well as the minimization of its variance, and it does not constrain the mean of the modeling error to zero. This differs from the traditional LS-SVM, which uses a worst-case scenario approach in order to minimize the modeling error and constrains the mean of the modeling error to zero. In doing so, the proposed method takes the modeling error distribution information into consideration and is thus less conservative and more robust in regards to random noise. A solving method is then developed in order to determine the optimal parameters for the proposed robust LS-SVM. An additional analysis indicates that the proposed LS-SVM gives a smaller weight to a large-error training sample and a larger weight to a small-error training sample, and is thus more robust than the traditional LS-SVM. The effectiveness of the proposed robust LS-SVM is demonstrated using both artificial and real life cases.

  3. Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming.

    PubMed

    Wu, Stephen Gang; Wang, Yuxuan; Jiang, Wu; Oyetunde, Tolutola; Yao, Ruilian; Zhang, Xuehong; Shimizu, Kazuyuki; Tang, Yinjie J; Bao, Forrest Sheng

    2016-04-01

    13C metabolic flux analysis (13C-MFA) has been widely used to measure in vivo enzyme reaction rates (i.e., metabolic flux) in microorganisms. Mining the relationship between environmental and genetic factors and metabolic fluxes hidden in existing fluxomic data will lead to predictive models that can significantly accelerate flux quantification. In this paper, we present a web-based platform MFlux (http://mflux.org) that predicts the bacterial central metabolism via machine learning, leveraging data from approximately 100 13C-MFA papers on heterotrophic bacterial metabolisms. Three machine learning methods, namely Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), and Decision Tree, were employed to study the sophisticated relationship between influential factors and metabolic fluxes. We performed a grid search of the best parameter set for each algorithm and verified their performance through 10-fold cross validations. SVM yields the highest accuracy among all three algorithms. Further, we employed quadratic programming to adjust flux profiles to satisfy stoichiometric constraints. Multiple case studies have shown that MFlux can reasonably predict fluxomes as a function of bacterial species, substrate types, growth rate, oxygen conditions, and cultivation methods. Due to the interest of studying model organism under particular carbon sources, bias of fluxome in the dataset may limit the applicability of machine learning models. This problem can be resolved after more papers on 13C-MFA are published for non-model species.

  4. Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming

    PubMed Central

    Wu, Stephen Gang; Wang, Yuxuan; Jiang, Wu; Oyetunde, Tolutola; Yao, Ruilian; Zhang, Xuehong; Shimizu, Kazuyuki; Tang, Yinjie J.; Bao, Forrest Sheng

    2016-01-01

    13C metabolic flux analysis (13C-MFA) has been widely used to measure in vivo enzyme reaction rates (i.e., metabolic flux) in microorganisms. Mining the relationship between environmental and genetic factors and metabolic fluxes hidden in existing fluxomic data will lead to predictive models that can significantly accelerate flux quantification. In this paper, we present a web-based platform MFlux (http://mflux.org) that predicts the bacterial central metabolism via machine learning, leveraging data from approximately 100 13C-MFA papers on heterotrophic bacterial metabolisms. Three machine learning methods, namely Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), and Decision Tree, were employed to study the sophisticated relationship between influential factors and metabolic fluxes. We performed a grid search of the best parameter set for each algorithm and verified their performance through 10-fold cross validations. SVM yields the highest accuracy among all three algorithms. Further, we employed quadratic programming to adjust flux profiles to satisfy stoichiometric constraints. Multiple case studies have shown that MFlux can reasonably predict fluxomes as a function of bacterial species, substrate types, growth rate, oxygen conditions, and cultivation methods. Due to the interest of studying model organism under particular carbon sources, bias of fluxome in the dataset may limit the applicability of machine learning models. This problem can be resolved after more papers on 13C-MFA are published for non-model species. PMID:27092947

  5. Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis

    PubMed Central

    2013-01-01

    Background Protein-protein interactions (PPIs) play crucial roles in the execution of various cellular processes and form the basis of biological mechanisms. Although large amount of PPIs data for different species has been generated by high-throughput experimental techniques, current PPI pairs obtained with experimental methods cover only a fraction of the complete PPI networks, and further, the experimental methods for identifying PPIs are both time-consuming and expensive. Hence, it is urgent and challenging to develop automated computational methods to efficiently and accurately predict PPIs. Results We present here a novel hierarchical PCA-EELM (principal component analysis-ensemble extreme learning machine) model to predict protein-protein interactions only using the information of protein sequences. In the proposed method, 11188 protein pairs retrieved from the DIP database were encoded into feature vectors by using four kinds of protein sequences information. Focusing on dimension reduction, an effective feature extraction method PCA was then employed to construct the most discriminative new feature set. Finally, multiple extreme learning machines were trained and then aggregated into a consensus classifier by majority voting. The ensembling of extreme learning machine removes the dependence of results on initial random weights and improves the prediction performance. Conclusions When performed on the PPI data of Saccharomyces cerevisiae, the proposed method achieved 87.00% prediction accuracy with 86.15% sensitivity at the precision of 87.59%. Extensive experiments are performed to compare our method with state-of-the-art techniques Support Vector Machine (SVM). Experimental results demonstrate that proposed PCA-EELM outperforms the SVM method by 5-fold cross-validation. Besides, PCA-EELM performs faster than PCA-SVM based method. Consequently, the proposed approach can be considered as a new promising and powerful tools for predicting PPI with excellent performance and less time. PMID:23815620

  6. Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review.

    PubMed

    Orrù, Graziella; Pettersson-Yeo, William; Marquand, Andre F; Sartori, Giuseppe; Mechelli, Andrea

    2012-04-01

    Standard univariate analysis of neuroimaging data has revealed a host of neuroanatomical and functional differences between healthy individuals and patients suffering a wide range of neurological and psychiatric disorders. Significant only at group level however these findings have had limited clinical translation, and recent attention has turned toward alternative forms of analysis, including Support-Vector-Machine (SVM). A type of machine learning, SVM allows categorisation of an individual's previously unseen data into a predefined group using a classification algorithm, developed on a training data set. In recent years, SVM has been successfully applied in the context of disease diagnosis, transition prediction and treatment prognosis, using both structural and functional neuroimaging data. Here we provide a brief overview of the method and review those studies that applied it to the investigation of Alzheimer's disease, schizophrenia, major depression, bipolar disorder, presymptomatic Huntington's disease, Parkinson's disease and autistic spectrum disorder. We conclude by discussing the main theoretical and practical challenges associated with the implementation of this method into the clinic and possible future directions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Weighted Feature Gaussian Kernel SVM for Emotion Recognition

    PubMed Central

    Jia, Qingxuan

    2016-01-01

    Emotion recognition with weighted feature based on facial expression is a challenging research topic and has attracted great attention in the past few years. This paper presents a novel method, utilizing subregion recognition rate to weight kernel function. First, we divide the facial expression image into some uniform subregions and calculate corresponding recognition rate and weight. Then, we get a weighted feature Gaussian kernel function and construct a classifier based on Support Vector Machine (SVM). At last, the experimental results suggest that the approach based on weighted feature Gaussian kernel function has good performance on the correct rate in emotion recognition. The experiments on the extended Cohn-Kanade (CK+) dataset show that our method has achieved encouraging recognition results compared to the state-of-the-art methods. PMID:27807443

  8. Object recognition of ladar with support vector machine

    NASA Astrophysics Data System (ADS)

    Sun, Jian-Feng; Li, Qi; Wang, Qi

    2005-01-01

    Intensity, range and Doppler images can be obtained by using laser radar. Laser radar can detect much more object information than other detecting sensor, such as passive infrared imaging and synthetic aperture radar (SAR), so it is well suited as the sensor of object recognition. Traditional method of laser radar object recognition is extracting target features, which can be influenced by noise. In this paper, a laser radar recognition method-Support Vector Machine is introduced. Support Vector Machine (SVM) is a new hotspot of recognition research after neural network. It has well performance on digital written and face recognition. Two series experiments about SVM designed for preprocessing and non-preprocessing samples are performed by real laser radar images, and the experiments results are compared.

  9. Using support vector machines to identify literacy skills: Evidence from eye movements.

    PubMed

    Lou, Ya; Liu, Yanping; Kaakinen, Johanna K; Li, Xingshan

    2017-06-01

    Is inferring readers' literacy skills possible by analyzing their eye movements during text reading? This study used Support Vector Machines (SVM) to analyze eye movement data from 61 undergraduate students who read a multiple-paragraph, multiple-topic expository text. Forward fixation time, first-pass rereading time, second-pass fixation time, and regression path reading time on different regions of the text were provided as features. The SVM classification algorithm assisted in distinguishing high-literacy-skilled readers from low-literacy-skilled readers with 80.3 % accuracy. Results demonstrate the effectiveness of combining eye tracking and machine learning techniques to detect readers with low literacy skills, and suggest that such approaches can be potentially used in predicting other cognitive abilities.

  10. A comparison of non-parametric techniques to estimate incident photosynthetically active radiation from MODIS for monitoring primary production

    NASA Astrophysics Data System (ADS)

    Brown, M. G. L.; He, T.; Liang, S.

    2016-12-01

    Satellite-derived estimates of incident photosynthetically active radiation (PAR) can be used to monitor global change, are required by most terrestrial ecosystem models, and can be used to estimate primary production according to the theory of light use efficiency. Compared with parametric approaches, non-parametric techniques that include an artificial neural network (ANN), support vector machine regression (SVM), an artificial bee colony (ABC), and a look-up table (LUT) do not require many ancillary data as inputs for the estimation of PAR from satellite data. In this study, a selection of machine learning methods to estimate PAR from MODIS top of atmosphere (TOA) radiances are compared to a LUT approach to determine which techniques might best handle the nonlinear relationship between TOA radiance and incident PAR. Evaluation of these methods (ANN, SVM, and LUT) is performed with ground measurements at seven SURFRAD sites. Due to the design of the ANN, it can handle the nonlinear relationship between TOA radiance and PAR better than linearly interpolating between the values in the LUT; however, training the ANN has to be carried out on an angular-bin basis, which results in a LUT of ANNs. The SVM model may be better for incorporating multiple viewing angles than the ANN; however, both techniques require a large amount of training data, which may introduce a regional bias based on where the most training and validation data are available. Based on the literature, the ABC is a promising alternative to an ANN, SVM regression and a LUT, but further development for this application is required before concrete conclusions can be drawn. For now, the LUT method outperforms the machine-learning techniques, but future work should be directed at developing and testing the ABC method. A simple, robust method to estimate direct and diffuse incident PAR, with minimal inputs and a priori knowledge, would be very useful for monitoring global change of primary production, particularly of pastures and rangeland, which have implications for livestock and food security. Future work will delve deeper into the utility of satellite-derived PAR estimation for monitoring primary production in pasture and rangelands.

  11. Classification of Regional Ionospheric Disturbances Based on Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Begüm Terzi, Merve; Arikan, Feza; Arikan, Orhan; Karatay, Secil

    2016-07-01

    Ionosphere is an anisotropic, inhomogeneous, time varying and spatio-temporally dispersive medium whose parameters can be estimated almost always by using indirect measurements. Geomagnetic, gravitational, solar or seismic activities cause variations of ionosphere at various spatial and temporal scales. This complex spatio-temporal variability is challenging to be identified due to extensive scales in period, duration, amplitude and frequency of disturbances. Since geomagnetic and solar indices such as Disturbance storm time (Dst), F10.7 solar flux, Sun Spot Number (SSN), Auroral Electrojet (AE), Kp and W-index provide information about variability on a global scale, identification and classification of regional disturbances poses a challenge. The main aim of this study is to classify the regional effects of global geomagnetic storms and classify them according to their risk levels. For this purpose, Total Electron Content (TEC) estimated from GPS receivers, which is one of the major parameters of ionosphere, will be used to model the regional and local variability that differs from global activity along with solar and geomagnetic indices. In this work, for the automated classification of the regional disturbances, a classification technique based on a robust machine learning technique that have found wide spread use, Support Vector Machine (SVM) is proposed. SVM is a supervised learning model used for classification with associated learning algorithm that analyze the data and recognize patterns. In addition to performing linear classification, SVM can efficiently perform nonlinear classification by embedding data into higher dimensional feature spaces. Performance of the developed classification technique is demonstrated for midlatitude ionosphere over Anatolia using TEC estimates generated from the GPS data provided by Turkish National Permanent GPS Network (TNPGN-Active) for solar maximum year of 2011. As a result of implementing the developed classification technique to the Global Ionospheric Map (GIM) TEC data which is provided by the NASA Jet Propulsion Laboratory (JPL), it will be shown that SVM can be a suitable learning method to detect the anomalies in Total Electron Content (TEC) variations. This study is supported by TUBITAK 114E541 project as a part of the Scientific and Technological Research Projects Funding Program (1001).

  12. Analysis of programming properties and the row-column generation method for 1-norm support vector machines.

    PubMed

    Zhang, Li; Zhou, WeiDa

    2013-12-01

    This paper deals with fast methods for training a 1-norm support vector machine (SVM). First, we define a specific class of linear programming with many sparse constraints, i.e., row-column sparse constraint linear programming (RCSC-LP). In nature, the 1-norm SVM is a sort of RCSC-LP. In order to construct subproblems for RCSC-LP and solve them, a family of row-column generation (RCG) methods is introduced. RCG methods belong to a category of decomposition techniques, and perform row and column generations in a parallel fashion. Specially, for the 1-norm SVM, the maximum size of subproblems of RCG is identical with the number of Support Vectors (SVs). We also introduce a semi-deleting rule for RCG methods and prove the convergence of RCG methods when using the semi-deleting rule. Experimental results on toy data and real-world datasets illustrate that it is efficient to use RCG to train the 1-norm SVM, especially in the case of small SVs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Tissue multifractality and hidden Markov model based integrated framework for optimum precancer detection

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sabyasachi; Das, Nandan K.; Kurmi, Indrajit; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.

    2017-10-01

    We report the application of a hidden Markov model (HMM) on multifractal tissue optical properties derived via the Born approximation-based inverse light scattering method for effective discrimination of precancerous human cervical tissue sites from the normal ones. Two global fractal parameters, generalized Hurst exponent and the corresponding singularity spectrum width, computed by multifractal detrended fluctuation analysis (MFDFA), are used here as potential biomarkers. We develop a methodology that makes use of these multifractal parameters by integrating with different statistical classifiers like the HMM and support vector machine (SVM). It is shown that the MFDFA-HMM integrated model achieves significantly better discrimination between normal and different grades of cancer as compared to the MFDFA-SVM integrated model.

  14. Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor MRI measures in individuals with major depressive disorder.

    PubMed

    Schnyer, David M; Clasen, Peter C; Gonzalez, Christopher; Beevers, Christopher G

    2017-06-30

    Using MRI to diagnose mental disorders has been a long-term goal. Despite this, the vast majority of prior neuroimaging work has been descriptive rather than predictive. The current study applies support vector machine (SVM) learning to MRI measures of brain white matter to classify adults with Major Depressive Disorder (MDD) and healthy controls. In a precisely matched group of individuals with MDD (n =25) and healthy controls (n =25), SVM learning accurately (74%) classified patients and controls across a brain map of white matter fractional anisotropy values (FA). The study revealed three main findings: 1) SVM applied to DTI derived FA maps can accurately classify MDD vs. healthy controls; 2) prediction is strongest when only right hemisphere white matter is examined; and 3) removing FA values from a region identified by univariate contrast as significantly different between MDD and healthy controls does not change the SVM accuracy. These results indicate that SVM learning applied to neuroimaging data can classify the presence versus absence of MDD and that predictive information is distributed across brain networks rather than being highly localized. Finally, MDD group differences revealed through typical univariate contrasts do not necessarily reveal patterns that provide accurate predictive information. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  15. SELF-BLM: Prediction of drug-target interactions via self-training SVM.

    PubMed

    Keum, Jongsoo; Nam, Hojung

    2017-01-01

    Predicting drug-target interactions is important for the development of novel drugs and the repositioning of drugs. To predict such interactions, there are a number of methods based on drug and target protein similarity. Although these methods, such as the bipartite local model (BLM), show promise, they often categorize unknown interactions as negative interaction. Therefore, these methods are not ideal for finding potential drug-target interactions that have not yet been validated as positive interactions. Thus, here we propose a method that integrates machine learning techniques, such as self-training support vector machine (SVM) and BLM, to develop a self-training bipartite local model (SELF-BLM) that facilitates the identification of potential interactions. The method first categorizes unlabeled interactions and negative interactions among unknown interactions using a clustering method. Then, using the BLM method and self-training SVM, the unlabeled interactions are self-trained and final local classification models are constructed. When applied to four classes of proteins that include enzymes, G-protein coupled receptors (GPCRs), ion channels, and nuclear receptors, SELF-BLM showed the best performance for predicting not only known interactions but also potential interactions in three protein classes compare to other related studies. The implemented software and supporting data are available at https://github.com/GIST-CSBL/SELF-BLM.

  16. Analyzing Kernel Matrices for the Identification of Differentially Expressed Genes

    PubMed Central

    Xia, Xiao-Lei; Xing, Huanlai; Liu, Xueqin

    2013-01-01

    One of the most important applications of microarray data is the class prediction of biological samples. For this purpose, statistical tests have often been applied to identify the differentially expressed genes (DEGs), followed by the employment of the state-of-the-art learning machines including the Support Vector Machines (SVM) in particular. The SVM is a typical sample-based classifier whose performance comes down to how discriminant samples are. However, DEGs identified by statistical tests are not guaranteed to result in a training dataset composed of discriminant samples. To tackle this problem, a novel gene ranking method namely the Kernel Matrix Gene Selection (KMGS) is proposed. The rationale of the method, which roots in the fundamental ideas of the SVM algorithm, is described. The notion of ''the separability of a sample'' which is estimated by performing -like statistics on each column of the kernel matrix, is first introduced. The separability of a classification problem is then measured, from which the significance of a specific gene is deduced. Also described is a method of Kernel Matrix Sequential Forward Selection (KMSFS) which shares the KMGS method's essential ideas but proceeds in a greedy manner. On three public microarray datasets, our proposed algorithms achieved noticeably competitive performance in terms of the B.632+ error rate. PMID:24349110

  17. A Non-Parametric Approach for the Activation Detection of Block Design fMRI Simulated Data Using Self-Organizing Maps and Support Vector Machine.

    PubMed

    Bahrami, Sheyda; Shamsi, Mousa

    2017-01-01

    Functional magnetic resonance imaging (fMRI) is a popular method to probe the functional organization of the brain using hemodynamic responses. In this method, volume images of the entire brain are obtained with a very good spatial resolution and low temporal resolution. However, they always suffer from high dimensionality in the face of classification algorithms. In this work, we combine a support vector machine (SVM) with a self-organizing map (SOM) for having a feature-based classification by using SVM. Then, a linear kernel SVM is used for detecting the active areas. Here, we use SOM for feature extracting and labeling the datasets. SOM has two major advances: (i) it reduces dimension of data sets for having less computational complexity and (ii) it is useful for identifying brain regions with small onset differences in hemodynamic responses. Our non-parametric model is compared with parametric and non-parametric methods. We use simulated fMRI data sets and block design inputs in this paper and consider the contrast to noise ratio (CNR) value equal to 0.6 for simulated datasets. fMRI simulated dataset has contrast 1-4% in active areas. The accuracy of our proposed method is 93.63% and the error rate is 6.37%.

  18. Prediction of BP reactivity to talking using hybrid soft computing approaches.

    PubMed

    Kaur, Gurmanik; Arora, Ajat Shatru; Jain, Vijender Kumar

    2014-01-01

    High blood pressure (BP) is associated with an increased risk of cardiovascular diseases. Therefore, optimal precision in measurement of BP is appropriate in clinical and research studies. In this work, anthropometric characteristics including age, height, weight, body mass index (BMI), and arm circumference (AC) were used as independent predictor variables for the prediction of BP reactivity to talking. Principal component analysis (PCA) was fused with artificial neural network (ANN), adaptive neurofuzzy inference system (ANFIS), and least square-support vector machine (LS-SVM) model to remove the multicollinearity effect among anthropometric predictor variables. The statistical tests in terms of coefficient of determination (R (2)), root mean square error (RMSE), and mean absolute percentage error (MAPE) revealed that PCA based LS-SVM (PCA-LS-SVM) model produced a more efficient prediction of BP reactivity as compared to other models. This assessment presents the importance and advantages posed by PCA fused prediction models for prediction of biological variables.

  19. A SVM-based method for sentiment analysis in Persian language

    NASA Astrophysics Data System (ADS)

    Hajmohammadi, Mohammad Sadegh; Ibrahim, Roliana

    2013-03-01

    Persian language is the official language of Iran, Tajikistan and Afghanistan. Local online users often represent their opinions and experiences on the web with written Persian. Although the information in those reviews is valuable to potential consumers and sellers, the huge amount of web reviews make it difficult to give an unbiased evaluation to a product. In this paper, standard machine learning techniques SVM and naive Bayes are incorporated into the domain of online Persian Movie reviews to automatically classify user reviews as positive or negative and performance of these two classifiers is compared with each other in this language. The effects of feature presentations on classification performance are discussed. We find that accuracy is influenced by interaction between the classification models and the feature options. The SVM classifier achieves as well as or better accuracy than naive Bayes in Persian movie. Unigrams are proved better features than bigrams and trigrams in capturing Persian sentiment orientation.

  20. Improving urban land use and land cover classification from high-spatial-resolution hyperspectral imagery using contextual information

    USDA-ARS?s Scientific Manuscript database

    In this paper, we propose approaches to improve the pixel-based support vector machine (SVM) classification for urban land use and land cover (LULC) mapping from airborne hyperspectral imagery with high spatial resolution. Class spatial neighborhood relationship is used to correct the misclassified ...

Top