Sample records for machine svm linear

  1. Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment

    NASA Astrophysics Data System (ADS)

    Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty

    2017-12-01

    Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.

  2. Automated discrimination of dementia spectrum disorders using extreme learning machine and structural T1 MRI features.

    PubMed

    Jongin Kim; Boreom Lee

    2017-07-01

    The classification of neuroimaging data for the diagnosis of Alzheimer's Disease (AD) is one of the main research goals of the neuroscience and clinical fields. In this study, we performed extreme learning machine (ELM) classifier to discriminate the AD, mild cognitive impairment (MCI) from normal control (NC). We compared the performance of ELM with that of a linear kernel support vector machine (SVM) for 718 structural MRI images from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The data consisted of normal control, MCI converter (MCI-C), MCI non-converter (MCI-NC), and AD. We employed SVM-based recursive feature elimination (RFE-SVM) algorithm to find the optimal subset of features. In this study, we found that the RFE-SVM feature selection approach in combination with ELM shows the superior classification accuracy to that of linear kernel SVM for structural T1 MRI data.

  3. Applications of Support Vector Machines In Chemo And Bioinformatics

    NASA Astrophysics Data System (ADS)

    Jayaraman, V. K.; Sundararajan, V.

    2010-10-01

    Conventional linear & nonlinear tools for classification, regression & data driven modeling are being replaced on a rapid scale by newer techniques & tools based on artificial intelligence and machine learning. While the linear techniques are not applicable for inherently nonlinear problems, newer methods serve as attractive alternatives for solving real life problems. Support Vector Machine (SVM) classifiers are a set of universal feed-forward network based classification algorithms that have been formulated from statistical learning theory and structural risk minimization principle. SVM regression closely follows the classification methodology. In this work recent applications of SVM in Chemo & Bioinformatics will be described with suitable illustrative examples.

  4. Construction accident narrative classification: An evaluation of text mining techniques.

    PubMed

    Goh, Yang Miang; Ubeynarayana, C U

    2017-11-01

    Learning from past accidents is fundamental to accident prevention. Thus, accident and near miss reporting are encouraged by organizations and regulators. However, for organizations managing large safety databases, the time taken to accurately classify accident and near miss narratives will be very significant. This study aims to evaluate the utility of various text mining classification techniques in classifying 1000 publicly available construction accident narratives obtained from the US OSHA website. The study evaluated six machine learning algorithms, including support vector machine (SVM), linear regression (LR), random forest (RF), k-nearest neighbor (KNN), decision tree (DT) and Naive Bayes (NB), and found that SVM produced the best performance in classifying the test set of 251 cases. Further experimentation with tokenization of the processed text and non-linear SVM were also conducted. In addition, a grid search was conducted on the hyperparameters of the SVM models. It was found that the best performing classifiers were linear SVM with unigram tokenization and radial basis function (RBF) SVM with uni-gram tokenization. In view of its relative simplicity, the linear SVM is recommended. Across the 11 labels of accident causes or types, the precision of the linear SVM ranged from 0.5 to 1, recall ranged from 0.36 to 0.9 and F1 score was between 0.45 and 0.92. The reasons for misclassification were discussed and suggestions on ways to improve the performance were provided. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A Wavelet Support Vector Machine Combination Model for Singapore Tourist Arrival to Malaysia

    NASA Astrophysics Data System (ADS)

    Rafidah, A.; Shabri, Ani; Nurulhuda, A.; Suhaila, Y.

    2017-08-01

    In this study, wavelet support vector machine model (WSVM) is proposed and applied for monthly data Singapore tourist time series prediction. The WSVM model is combination between wavelet analysis and support vector machine (SVM). In this study, we have two parts, first part we compare between the kernel function and second part we compare between the developed models with single model, SVM. The result showed that kernel function linear better than RBF while WSVM outperform with single model SVM to forecast monthly Singapore tourist arrival to Malaysia.

  6. A Two-Layer Least Squares Support Vector Machine Approach to Credit Risk Assessment

    NASA Astrophysics Data System (ADS)

    Liu, Jingli; Li, Jianping; Xu, Weixuan; Shi, Yong

    Least squares support vector machine (LS-SVM) is a revised version of support vector machine (SVM) and has been proved to be a useful tool for pattern recognition. LS-SVM had excellent generalization performance and low computational cost. In this paper, we propose a new method called two-layer least squares support vector machine which combines kernel principle component analysis (KPCA) and linear programming form of least square support vector machine. With this method sparseness and robustness is obtained while solving large dimensional and large scale database. A U.S. commercial credit card database is used to test the efficiency of our method and the result proved to be a satisfactory one.

  7. Ranking Support Vector Machine with Kernel Approximation

    PubMed Central

    Dou, Yong

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms. PMID:28293256

  8. Ranking Support Vector Machine with Kernel Approximation.

    PubMed

    Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  9. Prediction and early detection of delirium in the intensive care unit by using heart rate variability and machine learning.

    PubMed

    Oh, Jooyoung; Cho, Dongrae; Park, Jaesub; Na, Se Hee; Kim, Jongin; Heo, Jaeseok; Shin, Cheung Soo; Kim, Jae-Jin; Park, Jin Young; Lee, Boreom

    2018-03-27

    Delirium is an important syndrome found in patients in the intensive care unit (ICU), however, it is usually under-recognized during treatment. This study was performed to investigate whether delirious patients can be successfully distinguished from non-delirious patients by using heart rate variability (HRV) and machine learning. Electrocardiography data of 140 patients was acquired during daily ICU care, and HRV data were analyzed. Delirium, including its type, severity, and etiologies, was evaluated daily by trained psychiatrists. HRV data and various machine learning algorithms including linear support vector machine (SVM), SVM with radial basis function (RBF) kernels, linear extreme learning machine (ELM), ELM with RBF kernels, linear discriminant analysis, and quadratic discriminant analysis were utilized to distinguish delirium patients from non-delirium patients. HRV data of 4797 ECGs were included, and 39 patients had delirium at least once during their ICU stay. The maximum classification accuracy was acquired using SVM with RBF kernels. Our prediction method based on HRV with machine learning was comparable to previous delirium prediction models using massive amounts of clinical information. Our results show that autonomic alterations could be a significant feature of patients with delirium in the ICU, suggesting the potential for the automatic prediction and early detection of delirium based on HRV with machine learning.

  10. Comparative Study of SVM Methods Combined with Voxel Selection for Object Category Classification on fMRI Data

    PubMed Central

    Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li

    2011-01-01

    Background Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Methodology/Principal Findings Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. Conclusions/Significance The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice. PMID:21359184

  11. Comparative study of SVM methods combined with voxel selection for object category classification on fMRI data.

    PubMed

    Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li

    2011-02-16

    Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice.

  12. An improved conjugate gradient scheme to the solution of least squares SVM.

    PubMed

    Chu, Wei; Ong, Chong Jin; Keerthi, S Sathiya

    2005-03-01

    The least square support vector machines (LS-SVM) formulation corresponds to the solution of a linear system of equations. Several approaches to its numerical solutions have been proposed in the literature. In this letter, we propose an improved method to the numerical solution of LS-SVM and show that the problem can be solved using one reduced system of linear equations. Compared with the existing algorithm for LS-SVM, the approach used in this letter is about twice as efficient. Numerical results using the proposed method are provided for comparisons with other existing algorithms.

  13. An Improved TA-SVM Method Without Matrix Inversion and Its Fast Implementation for Nonstationary Datasets.

    PubMed

    Shi, Yingzhong; Chung, Fu-Lai; Wang, Shitong

    2015-09-01

    Recently, a time-adaptive support vector machine (TA-SVM) is proposed for handling nonstationary datasets. While attractive performance has been reported and the new classifier is distinctive in simultaneously solving several SVM subclassifiers locally and globally by using an elegant SVM formulation in an alternative kernel space, the coupling of subclassifiers brings in the computation of matrix inversion, thus resulting to suffer from high computational burden in large nonstationary dataset applications. To overcome this shortcoming, an improved TA-SVM (ITA-SVM) is proposed using a common vector shared by all the SVM subclassifiers involved. ITA-SVM not only keeps an SVM formulation, but also avoids the computation of matrix inversion. Thus, we can realize its fast version, that is, improved time-adaptive core vector machine (ITA-CVM) for large nonstationary datasets by using the CVM technique. ITA-CVM has the merit of asymptotic linear time complexity for large nonstationary datasets as well as inherits the advantage of TA-SVM. The effectiveness of the proposed classifiers ITA-SVM and ITA-CVM is also experimentally confirmed.

  14. Machine learning-based methods for prediction of linear B-cell epitopes.

    PubMed

    Wang, Hsin-Wei; Pai, Tun-Wen

    2014-01-01

    B-cell epitope prediction facilitates immunologists in designing peptide-based vaccine, diagnostic test, disease prevention, treatment, and antibody production. In comparison with T-cell epitope prediction, the performance of variable length B-cell epitope prediction is still yet to be satisfied. Fortunately, due to increasingly available verified epitope databases, bioinformaticians could adopt machine learning-based algorithms on all curated data to design an improved prediction tool for biomedical researchers. Here, we have reviewed related epitope prediction papers, especially those for linear B-cell epitope prediction. It should be noticed that a combination of selected propensity scales and statistics of epitope residues with machine learning-based tools formulated a general way for constructing linear B-cell epitope prediction systems. It is also observed from most of the comparison results that the kernel method of support vector machine (SVM) classifier outperformed other machine learning-based approaches. Hence, in this chapter, except reviewing recently published papers, we have introduced the fundamentals of B-cell epitope and SVM techniques. In addition, an example of linear B-cell prediction system based on physicochemical features and amino acid combinations is illustrated in details.

  15. Data mining for the analysis of hippocampal zones in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Ovando Vázquez, Cesaré M.

    2012-02-01

    In this work, a methodology to classify people with Alzheimer's Disease (AD), Healthy Controls (HC) and people with Mild Cognitive Impairment (MCI) is presented. This methodology consists of an ensemble of Support Vector Machines (SVM) with the hippocampal boxes (HB) as input data, these hippocampal zones are taken from Magnetic Resonance (MRI) and Positron Emission Tomography (PET) images. Two ways of constructing this ensemble are presented, the first consists of linear SVM models and the second of non-linear SVM models. Results demonstrate that the linear models classify HBs more accurately than the non-linear models between HC and MCI and that there are no differences between HC and AD.

  16. Pulmonary Nodule Recognition Based on Multiple Kernel Learning Support Vector Machine-PSO

    PubMed Central

    Zhu, Zhichuan; Zhao, Qingdong; Liu, Liwei; Zhang, Lijuan

    2018-01-01

    Pulmonary nodule recognition is the core module of lung CAD. The Support Vector Machine (SVM) algorithm has been widely used in pulmonary nodule recognition, and the algorithm of Multiple Kernel Learning Support Vector Machine (MKL-SVM) has achieved good results therein. Based on grid search, however, the MKL-SVM algorithm needs long optimization time in course of parameter optimization; also its identification accuracy depends on the fineness of grid. In the paper, swarm intelligence is introduced and the Particle Swarm Optimization (PSO) is combined with MKL-SVM algorithm to be MKL-SVM-PSO algorithm so as to realize global optimization of parameters rapidly. In order to obtain the global optimal solution, different inertia weights such as constant inertia weight, linear inertia weight, and nonlinear inertia weight are applied to pulmonary nodules recognition. The experimental results show that the model training time of the proposed MKL-SVM-PSO algorithm is only 1/7 of the training time of the MKL-SVM grid search algorithm, achieving better recognition effect. Moreover, Euclidean norm of normalized error vector is proposed to measure the proximity between the average fitness curve and the optimal fitness curve after convergence. Through statistical analysis of the average of 20 times operation results with different inertial weights, it can be seen that the dynamic inertial weight is superior to the constant inertia weight in the MKL-SVM-PSO algorithm. In the dynamic inertial weight algorithm, the parameter optimization time of nonlinear inertia weight is shorter; the average fitness value after convergence is much closer to the optimal fitness value, which is better than the linear inertial weight. Besides, a better nonlinear inertial weight is verified. PMID:29853983

  17. Pulmonary Nodule Recognition Based on Multiple Kernel Learning Support Vector Machine-PSO.

    PubMed

    Li, Yang; Zhu, Zhichuan; Hou, Alin; Zhao, Qingdong; Liu, Liwei; Zhang, Lijuan

    2018-01-01

    Pulmonary nodule recognition is the core module of lung CAD. The Support Vector Machine (SVM) algorithm has been widely used in pulmonary nodule recognition, and the algorithm of Multiple Kernel Learning Support Vector Machine (MKL-SVM) has achieved good results therein. Based on grid search, however, the MKL-SVM algorithm needs long optimization time in course of parameter optimization; also its identification accuracy depends on the fineness of grid. In the paper, swarm intelligence is introduced and the Particle Swarm Optimization (PSO) is combined with MKL-SVM algorithm to be MKL-SVM-PSO algorithm so as to realize global optimization of parameters rapidly. In order to obtain the global optimal solution, different inertia weights such as constant inertia weight, linear inertia weight, and nonlinear inertia weight are applied to pulmonary nodules recognition. The experimental results show that the model training time of the proposed MKL-SVM-PSO algorithm is only 1/7 of the training time of the MKL-SVM grid search algorithm, achieving better recognition effect. Moreover, Euclidean norm of normalized error vector is proposed to measure the proximity between the average fitness curve and the optimal fitness curve after convergence. Through statistical analysis of the average of 20 times operation results with different inertial weights, it can be seen that the dynamic inertial weight is superior to the constant inertia weight in the MKL-SVM-PSO algorithm. In the dynamic inertial weight algorithm, the parameter optimization time of nonlinear inertia weight is shorter; the average fitness value after convergence is much closer to the optimal fitness value, which is better than the linear inertial weight. Besides, a better nonlinear inertial weight is verified.

  18. Face recognition using total margin-based adaptive fuzzy support vector machines.

    PubMed

    Liu, Yi-Hung; Chen, Yen-Ting

    2007-01-01

    This paper presents a new classifier called total margin-based adaptive fuzzy support vector machines (TAF-SVM) that deals with several problems that may occur in support vector machines (SVMs) when applied to the face recognition. The proposed TAF-SVM not only solves the overfitting problem resulted from the outlier with the approach of fuzzification of the penalty, but also corrects the skew of the optimal separating hyperplane due to the very imbalanced data sets by using different cost algorithm. In addition, by introducing the total margin algorithm to replace the conventional soft margin algorithm, a lower generalization error bound can be obtained. Those three functions are embodied into the traditional SVM so that the TAF-SVM is proposed and reformulated in both linear and nonlinear cases. By using two databases, the Chung Yuan Christian University (CYCU) multiview and the facial recognition technology (FERET) face databases, and using the kernel Fisher's discriminant analysis (KFDA) algorithm to extract discriminating face features, experimental results show that the proposed TAF-SVM is superior to SVM in terms of the face-recognition accuracy. The results also indicate that the proposed TAF-SVM can achieve smaller error variances than SVM over a number of tests such that better recognition stability can be obtained.

  19. An SVM-based solution for fault detection in wind turbines.

    PubMed

    Santos, Pedro; Villa, Luisa F; Reñones, Aníbal; Bustillo, Andres; Maudes, Jesús

    2015-03-09

    Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets.

  20. Source localization in an ocean waveguide using supervised machine learning.

    PubMed

    Niu, Haiqiang; Reeves, Emma; Gerstoft, Peter

    2017-09-01

    Source localization in ocean acoustics is posed as a machine learning problem in which data-driven methods learn source ranges directly from observed acoustic data. The pressure received by a vertical linear array is preprocessed by constructing a normalized sample covariance matrix and used as the input for three machine learning methods: feed-forward neural networks (FNN), support vector machines (SVM), and random forests (RF). The range estimation problem is solved both as a classification problem and as a regression problem by these three machine learning algorithms. The results of range estimation for the Noise09 experiment are compared for FNN, SVM, RF, and conventional matched-field processing and demonstrate the potential of machine learning for underwater source localization.

  1. Exploring QSARs of the interaction of flavonoids with GABA (A) receptor using MLR, ANN and SVM techniques.

    PubMed

    Deeb, Omar; Shaik, Basheerulla; Agrawal, Vijay K

    2014-10-01

    Quantitative Structure-Activity Relationship (QSAR) models for binding affinity constants (log Ki) of 78 flavonoid ligands towards the benzodiazepine site of GABA (A) receptor complex were calculated using the machine learning methods: artificial neural network (ANN) and support vector machine (SVM) techniques. The models obtained were compared with those obtained using multiple linear regression (MLR) analysis. The descriptor selection and model building were performed with 10-fold cross-validation using the training data set. The SVM and MLR coefficient of determination values are 0.944 and 0.879, respectively, for the training set and are higher than those of ANN models. Though the SVM model shows improvement of training set fitting, the ANN model was superior to SVM and MLR in predicting the test set. Randomization test is employed to check the suitability of the models.

  2. Prediction of B-cell linear epitopes with a combination of support vector machine classification and amino acid propensity identification.

    PubMed

    Wang, Hsin-Wei; Lin, Ya-Chi; Pai, Tun-Wen; Chang, Hao-Teng

    2011-01-01

    Epitopes are antigenic determinants that are useful because they induce B-cell antibody production and stimulate T-cell activation. Bioinformatics can enable rapid, efficient prediction of potential epitopes. Here, we designed a novel B-cell linear epitope prediction system called LEPS, Linear Epitope Prediction by Propensities and Support Vector Machine, that combined physico-chemical propensity identification and support vector machine (SVM) classification. We tested the LEPS on four datasets: AntiJen, HIV, a newly generated PC, and AHP, a combination of these three datasets. Peptides with globally or locally high physicochemical propensities were first identified as primitive linear epitope (LE) candidates. Then, candidates were classified with the SVM based on the unique features of amino acid segments. This reduced the number of predicted epitopes and enhanced the positive prediction value (PPV). Compared to four other well-known LE prediction systems, the LEPS achieved the highest accuracy (72.52%), specificity (84.22%), PPV (32.07%), and Matthews' correlation coefficient (10.36%).

  3. Design of Clinical Support Systems Using Integrated Genetic Algorithm and Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Fu; Huang, Yung-Fa; Jiang, Xiaoyi; Hsu, Yuan-Nian; Lin, Hsuan-Hung

    Clinical decision support system (CDSS) provides knowledge and specific information for clinicians to enhance diagnostic efficiency and improving healthcare quality. An appropriate CDSS can highly elevate patient safety, improve healthcare quality, and increase cost-effectiveness. Support vector machine (SVM) is believed to be superior to traditional statistical and neural network classifiers. However, it is critical to determine suitable combination of SVM parameters regarding classification performance. Genetic algorithm (GA) can find optimal solution within an acceptable time, and is faster than greedy algorithm with exhaustive searching strategy. By taking the advantage of GA in quickly selecting the salient features and adjusting SVM parameters, a method using integrated GA and SVM (IGS), which is different from the traditional method with GA used for feature selection and SVM for classification, was used to design CDSSs for prediction of successful ventilation weaning, diagnosis of patients with severe obstructive sleep apnea, and discrimination of different cell types form Pap smear. The results show that IGS is better than methods using SVM alone or linear discriminator.

  4. SVM and SVM Ensembles in Breast Cancer Prediction.

    PubMed

    Huang, Min-Wei; Chen, Chih-Wen; Lin, Wei-Chao; Ke, Shih-Wen; Tsai, Chih-Fong

    2017-01-01

    Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM) have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers.

  5. SVM and SVM Ensembles in Breast Cancer Prediction

    PubMed Central

    Huang, Min-Wei; Chen, Chih-Wen; Lin, Wei-Chao; Ke, Shih-Wen; Tsai, Chih-Fong

    2017-01-01

    Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM) have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers. PMID:28060807

  6. Analysis of programming properties and the row-column generation method for 1-norm support vector machines.

    PubMed

    Zhang, Li; Zhou, WeiDa

    2013-12-01

    This paper deals with fast methods for training a 1-norm support vector machine (SVM). First, we define a specific class of linear programming with many sparse constraints, i.e., row-column sparse constraint linear programming (RCSC-LP). In nature, the 1-norm SVM is a sort of RCSC-LP. In order to construct subproblems for RCSC-LP and solve them, a family of row-column generation (RCG) methods is introduced. RCG methods belong to a category of decomposition techniques, and perform row and column generations in a parallel fashion. Specially, for the 1-norm SVM, the maximum size of subproblems of RCG is identical with the number of Support Vectors (SVs). We also introduce a semi-deleting rule for RCG methods and prove the convergence of RCG methods when using the semi-deleting rule. Experimental results on toy data and real-world datasets illustrate that it is efficient to use RCG to train the 1-norm SVM, especially in the case of small SVs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Discrimination of raw and processed Dipsacus asperoides by near infrared spectroscopy combined with least squares-support vector machine and random forests

    NASA Astrophysics Data System (ADS)

    Xin, Ni; Gu, Xiao-Feng; Wu, Hao; Hu, Yu-Zhu; Yang, Zhong-Lin

    2012-04-01

    Most herbal medicines could be processed to fulfill the different requirements of therapy. The purpose of this study was to discriminate between raw and processed Dipsacus asperoides, a common traditional Chinese medicine, based on their near infrared (NIR) spectra. Least squares-support vector machine (LS-SVM) and random forests (RF) were employed for full-spectrum classification. Three types of kernels, including linear kernel, polynomial kernel and radial basis function kernel (RBF), were checked for optimization of LS-SVM model. For comparison, a linear discriminant analysis (LDA) model was performed for classification, and the successive projections algorithm (SPA) was executed prior to building an LDA model to choose an appropriate subset of wavelengths. The three methods were applied to a dataset containing 40 raw herbs and 40 corresponding processed herbs. We ran 50 runs of 10-fold cross validation to evaluate the model's efficiency. The performance of the LS-SVM with RBF kernel (RBF LS-SVM) was better than the other two kernels. The RF, RBF LS-SVM and SPA-LDA successfully classified all test samples. The mean error rates for the 50 runs of 10-fold cross validation were 1.35% for RBF LS-SVM, 2.87% for RF, and 2.50% for SPA-LDA. The best classification results were obtained by using LS-SVM with RBF kernel, while RF was fast in the training and making predictions.

  8. An SVM-Based Solution for Fault Detection in Wind Turbines

    PubMed Central

    Santos, Pedro; Villa, Luisa F.; Reñones, Aníbal; Bustillo, Andres; Maudes, Jesús

    2015-01-01

    Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets. PMID:25760051

  9. Combatting nonlinear phase noise in coherent optical systems with an optimized decision processor based on machine learning

    NASA Astrophysics Data System (ADS)

    Wang, Danshi; Zhang, Min; Cai, Zhongle; Cui, Yue; Li, Ze; Han, Huanhuan; Fu, Meixia; Luo, Bin

    2016-06-01

    An effective machine learning algorithm, the support vector machine (SVM), is presented in the context of a coherent optical transmission system. As a classifier, the SVM can create nonlinear decision boundaries to mitigate the distortions caused by nonlinear phase noise (NLPN). Without any prior information or heuristic assumptions, the SVM can learn and capture the link properties from only a few training data. Compared with the maximum likelihood estimation (MLE) algorithm, a lower bit-error rate (BER) is achieved by the SVM for a given launch power; moreover, the launch power dynamic range (LPDR) is increased by 3.3 dBm for 8 phase-shift keying (8 PSK), 1.2 dBm for QPSK, and 0.3 dBm for BPSK. The maximum transmission distance corresponding to a BER of 1 ×10-3 is increased by 480 km for the case of 8 PSK. The larger launch power range and longer transmission distance improve the tolerance to amplitude and phase noise, which demonstrates the feasibility of the SVM in digital signal processing for M-PSK formats. Meanwhile, in order to apply the SVM method to 16 quadratic amplitude modulation (16 QAM) detection, we propose a parameter optimization scheme. By utilizing a cross-validation and grid-search techniques, the optimal parameters of SVM can be selected, thus leading to the LPDR improvement by 2.8 dBm. Additionally, we demonstrate that the SVM is also effective in combating the laser phase noise combined with the inphase and quadrature (I/Q) modulator imperfections, but the improvement is insignificant for the linear noise and separate I/Q imbalance. The computational complexity of SVM is also discussed. The relatively low complexity makes it possible for SVM to implement the real-time processing.

  10. Financial Distress Prediction using Linear Discriminant Analysis and Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Santoso, Noviyanti; Wibowo, Wahyu

    2018-03-01

    A financial difficulty is the early stages before the bankruptcy. Bankruptcies caused by the financial distress can be seen from the financial statements of the company. The ability to predict financial distress became an important research topic because it can provide early warning for the company. In addition, predicting financial distress is also beneficial for investors and creditors. This research will be made the prediction model of financial distress at industrial companies in Indonesia by comparing the performance of Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) combined with variable selection technique. The result of this research is prediction model based on hybrid Stepwise-SVM obtains better balance among fitting ability, generalization ability and model stability than the other models.

  11. Multi-view L2-SVM and its multi-view core vector machine.

    PubMed

    Huang, Chengquan; Chung, Fu-lai; Wang, Shitong

    2016-03-01

    In this paper, a novel L2-SVM based classifier Multi-view L2-SVM is proposed to address multi-view classification tasks. The proposed Multi-view L2-SVM classifier does not have any bias in its objective function and hence has the flexibility like μ-SVC in the sense that the number of the yielded support vectors can be controlled by a pre-specified parameter. The proposed Multi-view L2-SVM classifier can make full use of the coherence and the difference of different views through imposing the consensus among multiple views to improve the overall classification performance. Besides, based on the generalized core vector machine GCVM, the proposed Multi-view L2-SVM classifier is extended into its GCVM version MvCVM which can realize its fast training on large scale multi-view datasets, with its asymptotic linear time complexity with the sample size and its space complexity independent of the sample size. Our experimental results demonstrated the effectiveness of the proposed Multi-view L2-SVM classifier for small scale multi-view datasets and the proposed MvCVM classifier for large scale multi-view datasets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A feasibility study of automatic lung nodule detection in chest digital tomosynthesis with machine learning based on support vector machine

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Jo, Byungdu; Choi, Seungyeon; Shin, Jungwook; Kim, Hee-Joung

    2017-03-01

    The chest digital tomosynthesis(CDT) is recently developed medical device that has several advantage for diagnosing lung disease. For example, CDT provides depth information with relatively low radiation dose compared to computed tomography (CT). However, a major problem with CDT is the image artifacts associated with data incompleteness resulting from limited angle data acquisition in CDT geometry. For this reason, the sensitivity of lung disease was not clear compared to CT. In this study, to improve sensitivity of lung disease detection in CDT, we developed computer aided diagnosis (CAD) systems based on machine learning. For design CAD systems, we used 100 cases of lung nodules cropped images and 100 cases of normal lesion cropped images acquired by lung man phantoms and proto type CDT. We used machine learning techniques based on support vector machine and Gabor filter. The Gabor filter was used for extracting characteristics of lung nodules and we compared performance of feature extraction of Gabor filter with various scale and orientation parameters. We used 3, 4, 5 scales and 4, 6, 8 orientations. After extracting features, support vector machine (SVM) was used for classifying feature of lesions. The linear, polynomial and Gaussian kernels of SVM were compared to decide the best SVM conditions for CDT reconstruction images. The results of CAD system with machine learning showed the capability of automatically lung lesion detection. Furthermore detection performance was the best when Gabor filter with 5 scale and 8 orientation and SVM with Gaussian kernel were used. In conclusion, our suggested CAD system showed improving sensitivity of lung lesion detection in CDT and decide Gabor filter and SVM conditions to achieve higher detection performance of our developed CAD system for CDT.

  13. The employment of Support Vector Machine to classify high and low performance archers based on bio-physiological variables

    NASA Astrophysics Data System (ADS)

    Taha, Zahari; Muazu Musa, Rabiu; Majeed, Anwar P. P. Abdul; Razali Abdullah, Mohamad; Amirul Abdullah, Muhammad; Hasnun Arif Hassan, Mohd; Khalil, Zubair

    2018-04-01

    The present study employs a machine learning algorithm namely support vector machine (SVM) to classify high and low potential archers from a collection of bio-physiological variables trained on different SVMs. 50 youth archers with the average age and standard deviation of (17.0 ±.056) gathered from various archery programmes completed a one end shooting score test. The bio-physiological variables namely resting heart rate, resting respiratory rate, resting diastolic blood pressure, resting systolic blood pressure, as well as calories intake, were measured prior to their shooting tests. k-means cluster analysis was applied to cluster the archers based on their scores on variables assessed. SVM models i.e. linear, quadratic and cubic kernel functions, were trained on the aforementioned variables. The k-means clustered the archers into high (HPA) and low potential archers (LPA), respectively. It was demonstrated that the linear SVM exhibited good accuracy with a classification accuracy of 94% in comparison the other tested models. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from the selected bio-physiological variables examined.

  14. A Bayesian least squares support vector machines based framework for fault diagnosis and failure prognosis

    NASA Astrophysics Data System (ADS)

    Khawaja, Taimoor Saleem

    A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior and any abnormal or novel data during real-time operation. The results of the scheme are interpreted as a posterior probability of health (1 - probability of fault). As shown through two case studies in Chapter 3, the scheme is well suited for diagnosing imminent faults in dynamical non-linear systems. Finally, the failure prognosis scheme is based on an incremental weighted Bayesian LS-SVR machine. It is particularly suited for online deployment given the incremental nature of the algorithm and the quick optimization problem solved in the LS-SVR algorithm. By way of kernelization and a Gaussian Mixture Modeling (GMM) scheme, the algorithm can estimate "possibly" non-Gaussian posterior distributions for complex non-linear systems. An efficient regression scheme associated with the more rigorous core algorithm allows for long-term predictions, fault growth estimation with confidence bounds and remaining useful life (RUL) estimation after a fault is detected. The leading contributions of this thesis are (a) the development of a novel Bayesian Anomaly Detector for efficient and reliable Fault Detection and Identification (FDI) based on Least Squares Support Vector Machines, (b) the development of a data-driven real-time architecture for long-term Failure Prognosis using Least Squares Support Vector Machines, (c) Uncertainty representation and management using Bayesian Inference for posterior distribution estimation and hyper-parameter tuning, and finally (d) the statistical characterization of the performance of diagnosis and prognosis algorithms in order to relate the efficiency and reliability of the proposed schemes.

  15. Applying spectral unmixing and support vector machine to airborne hyperspectral imagery for detecting giant reed

    USDA-ARS?s Scientific Manuscript database

    This study evaluated linear spectral unmixing (LSU), mixture tuned matched filtering (MTMF) and support vector machine (SVM) techniques for detecting and mapping giant reed (Arundo donax L.), an invasive weed that presents a severe threat to agroecosystems and riparian areas throughout the southern ...

  16. Machinery Bearing Fault Diagnosis Using Variational Mode Decomposition and Support Vector Machine as a Classifier

    NASA Astrophysics Data System (ADS)

    Rama Krishna, K.; Ramachandran, K. I.

    2018-02-01

    Crack propagation is a major cause of failure in rotating machines. It adversely affects the productivity, safety, and the machining quality. Hence, detecting the crack’s severity accurately is imperative for the predictive maintenance of such machines. Fault diagnosis is an established concept in identifying the faults, for observing the non-linear behaviour of the vibration signals at various operating conditions. In this work, we find the classification efficiencies for both original and the reconstructed vibrational signals. The reconstructed signals are obtained using Variational Mode Decomposition (VMD), by splitting the original signal into three intrinsic mode functional components and framing them accordingly. Feature extraction, feature selection and feature classification are the three phases in obtaining the classification efficiencies. All the statistical features from the original signals and reconstructed signals are found out in feature extraction process individually. A few statistical parameters are selected in feature selection process and are classified using the SVM classifier. The obtained results show the best parameters and appropriate kernel in SVM classifier for detecting the faults in bearings. Hence, we conclude that better results were obtained by VMD and SVM process over normal process using SVM. This is owing to denoising and filtering the raw vibrational signals.

  17. Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine

    NASA Astrophysics Data System (ADS)

    Li, Shaoxin; Zhang, Yanjiao; Xu, Junfa; Li, Linfang; Zeng, Qiuyao; Lin, Lin; Guo, Zhouyi; Liu, Zhiming; Xiong, Honglian; Liu, Songhao

    2014-09-01

    This study aims to present a noninvasive prostate cancer screening methods using serum surface-enhanced Raman scattering (SERS) and support vector machine (SVM) techniques through peripheral blood sample. SERS measurements are performed using serum samples from 93 prostate cancer patients and 68 healthy volunteers by silver nanoparticles. Three types of kernel functions including linear, polynomial, and Gaussian radial basis function (RBF) are employed to build SVM diagnostic models for classifying measured SERS spectra. For comparably evaluating the performance of SVM classification models, the standard multivariate statistic analysis method of principal component analysis (PCA) is also applied to classify the same datasets. The study results show that for the RBF kernel SVM diagnostic model, the diagnostic accuracy of 98.1% is acquired, which is superior to the results of 91.3% obtained from PCA methods. The receiver operating characteristic curve of diagnostic models further confirm above research results. This study demonstrates that label-free serum SERS analysis technique combined with SVM diagnostic algorithm has great potential for noninvasive prostate cancer screening.

  18. LBP and SIFT based facial expression recognition

    NASA Astrophysics Data System (ADS)

    Sumer, Omer; Gunes, Ece O.

    2015-02-01

    This study compares the performance of local binary patterns (LBP) and scale invariant feature transform (SIFT) with support vector machines (SVM) in automatic classification of discrete facial expressions. Facial expression recognition is a multiclass classification problem and seven classes; happiness, anger, sadness, disgust, surprise, fear and comtempt are classified. Using SIFT feature vectors and linear SVM, 93.1% mean accuracy is acquired on CK+ database. On the other hand, the performance of LBP-based classifier with linear SVM is reported on SFEW using strictly person independent (SPI) protocol. Seven-class mean accuracy on SFEW is 59.76%. Experiments on both databases showed that LBP features can be used in a fairly descriptive way if a good localization of facial points and partitioning strategy are followed.

  19. A linear-RBF multikernel SVM to classify big text corpora.

    PubMed

    Romero, R; Iglesias, E L; Borrajo, L

    2015-01-01

    Support vector machine (SVM) is a powerful technique for classification. However, SVM is not suitable for classification of large datasets or text corpora, because the training complexity of SVMs is highly dependent on the input size. Recent developments in the literature on the SVM and other kernel methods emphasize the need to consider multiple kernels or parameterizations of kernels because they provide greater flexibility. This paper shows a multikernel SVM to manage highly dimensional data, providing an automatic parameterization with low computational cost and improving results against SVMs parameterized under a brute-force search. The model consists in spreading the dataset into cohesive term slices (clusters) to construct a defined structure (multikernel). The new approach is tested on different text corpora. Experimental results show that the new classifier has good accuracy compared with the classic SVM, while the training is significantly faster than several other SVM classifiers.

  20. Effluent composition prediction of a two-stage anaerobic digestion process: machine learning and stoichiometry techniques.

    PubMed

    Alejo, Luz; Atkinson, John; Guzmán-Fierro, Víctor; Roeckel, Marlene

    2018-05-16

    Computational self-adapting methods (Support Vector Machines, SVM) are compared with an analytical method in effluent composition prediction of a two-stage anaerobic digestion (AD) process. Experimental data for the AD of poultry manure were used. The analytical method considers the protein as the only source of ammonia production in AD after degradation. Total ammonia nitrogen (TAN), total solids (TS), chemical oxygen demand (COD), and total volatile solids (TVS) were measured in the influent and effluent of the process. The TAN concentration in the effluent was predicted, this being the most inhibiting and polluting compound in AD. Despite the limited data available, the SVM-based model outperformed the analytical method for the TAN prediction, achieving a relative average error of 15.2% against 43% for the analytical method. Moreover, SVM showed higher prediction accuracy in comparison with Artificial Neural Networks. This result reveals the future promise of SVM for prediction in non-linear and dynamic AD processes. Graphical abstract ᅟ.

  1. Distributed support vector machine in master-slave mode.

    PubMed

    Chen, Qingguo; Cao, Feilong

    2018-05-01

    It is well known that the support vector machine (SVM) is an effective learning algorithm. The alternating direction method of multipliers (ADMM) algorithm has emerged as a powerful technique for solving distributed optimisation models. This paper proposes a distributed SVM algorithm in a master-slave mode (MS-DSVM), which integrates a distributed SVM and ADMM acting in a master-slave configuration where the master node and slave nodes are connected, meaning the results can be broadcasted. The distributed SVM is regarded as a regularised optimisation problem and modelled as a series of convex optimisation sub-problems that are solved by ADMM. Additionally, the over-relaxation technique is utilised to accelerate the convergence rate of the proposed MS-DSVM. Our theoretical analysis demonstrates that the proposed MS-DSVM has linear convergence, meaning it possesses the fastest convergence rate among existing standard distributed ADMM algorithms. Numerical examples demonstrate that the convergence and accuracy of the proposed MS-DSVM are superior to those of existing methods under the ADMM framework. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Pharmaceutical Raw Material Identification Using Miniature Near-Infrared (MicroNIR) Spectroscopy and Supervised Pattern Recognition Using Support Vector Machine

    PubMed Central

    Hsiung, Chang; Pederson, Christopher G.; Zou, Peng; Smith, Valton; von Gunten, Marc; O’Brien, Nada A.

    2016-01-01

    Near-infrared spectroscopy as a rapid and non-destructive analytical technique offers great advantages for pharmaceutical raw material identification (RMID) to fulfill the quality and safety requirements in pharmaceutical industry. In this study, we demonstrated the use of portable miniature near-infrared (MicroNIR) spectrometers for NIR-based pharmaceutical RMID and solved two challenges in this area, model transferability and large-scale classification, with the aid of support vector machine (SVM) modeling. We used a set of 19 pharmaceutical compounds including various active pharmaceutical ingredients (APIs) and excipients and six MicroNIR spectrometers to test model transferability. For the test of large-scale classification, we used another set of 253 pharmaceutical compounds comprised of both chemically and physically different APIs and excipients. We compared SVM with conventional chemometric modeling techniques, including soft independent modeling of class analogy, partial least squares discriminant analysis, linear discriminant analysis, and quadratic discriminant analysis. Support vector machine modeling using a linear kernel, especially when combined with a hierarchical scheme, exhibited excellent performance in both model transferability and large-scale classification. Hence, ultra-compact, portable and robust MicroNIR spectrometers coupled with SVM modeling can make on-site and in situ pharmaceutical RMID for large-volume applications highly achievable. PMID:27029624

  3. An implementation of support vector machine on sentiment classification of movie reviews

    NASA Astrophysics Data System (ADS)

    Yulietha, I. M.; Faraby, S. A.; Adiwijaya; Widyaningtyas, W. C.

    2018-03-01

    With technological advances, all information about movie is available on the internet. If the information is processed properly, it will get the quality of the information. This research proposes to the classify sentiments on movie review documents. This research uses Support Vector Machine (SVM) method because it can classify high dimensional data in accordance with the data used in this research in the form of text. Support Vector Machine is a popular machine learning technique for text classification because it can classify by learning from a collection of documents that have been classified previously and can provide good result. Based on number of datasets, the 90-10 composition has the best result that is 85.6%. Based on SVM kernel, kernel linear with constant 1 has the best result that is 84.9%

  4. The identification of high potential archers based on relative psychological coping skills variables: A Support Vector Machine approach

    NASA Astrophysics Data System (ADS)

    Taha, Zahari; Muazu Musa, Rabiu; Majeed, A. P. P. Abdul; Razali Abdullah, Mohamad; Aizzat Zakaria, Muhammad; Muaz Alim, Muhammad; Arif Mat Jizat, Jessnor; Fauzi Ibrahim, Mohamad

    2018-03-01

    Support Vector Machine (SVM) has been revealed to be a powerful learning algorithm for classification and prediction. However, the use of SVM for prediction and classification in sport is at its inception. The present study classified and predicted high and low potential archers from a collection of psychological coping skills variables trained on different SVMs. 50 youth archers with the average age and standard deviation of (17.0 ±.056) gathered from various archery programmes completed a one end shooting score test. Psychological coping skills inventory which evaluates the archers level of related coping skills were filled out by the archers prior to their shooting tests. k-means cluster analysis was applied to cluster the archers based on their scores on variables assessed. SVM models, i.e. linear and fine radial basis function (RBF) kernel functions, were trained on the psychological variables. The k-means clustered the archers into high psychologically prepared archers (HPPA) and low psychologically prepared archers (LPPA), respectively. It was demonstrated that the linear SVM exhibited good accuracy and precision throughout the exercise with an accuracy of 92% and considerably fewer error rate for the prediction of the HPPA and the LPPA as compared to the fine RBF SVM. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from the selected psychological coping skills variables examined which would consequently save time and energy during talent identification and development programme.

  5. Support vector machine in machine condition monitoring and fault diagnosis

    NASA Astrophysics Data System (ADS)

    Widodo, Achmad; Yang, Bo-Suk

    2007-08-01

    Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a survey of machine condition monitoring and fault diagnosis using support vector machine (SVM). It attempts to summarize and review the recent research and developments of SVM in machine condition monitoring and diagnosis. Numerous methods have been developed based on intelligent systems such as artificial neural network, fuzzy expert system, condition-based reasoning, random forest, etc. However, the use of SVM for machine condition monitoring and fault diagnosis is still rare. SVM has excellent performance in generalization so it can produce high accuracy in classification for machine condition monitoring and diagnosis. Until 2006, the use of SVM in machine condition monitoring and fault diagnosis is tending to develop towards expertise orientation and problem-oriented domain. Finally, the ability to continually change and obtain a novel idea for machine condition monitoring and fault diagnosis using SVM will be future works.

  6. An SVM model with hybrid kernels for hydrological time series

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wang, H.; Zhao, X.; Xie, Q.

    2017-12-01

    Support Vector Machine (SVM) models have been widely applied to the forecast of climate/weather and its impact on other environmental variables such as hydrologic response to climate/weather. When using SVM, the choice of the kernel function plays the key role. Conventional SVM models mostly use one single type of kernel function, e.g., radial basis kernel function. Provided that there are several featured kernel functions available, each having its own advantages and drawbacks, a combination of these kernel functions may give more flexibility and robustness to SVM approach, making it suitable for a wide range of application scenarios. This paper presents such a linear combination of radial basis kernel and polynomial kernel for the forecast of monthly flowrate in two gaging stations using SVM approach. The results indicate significant improvement in the accuracy of predicted series compared to the approach with either individual kernel function, thus demonstrating the feasibility and advantages of such hybrid kernel approach for SVM applications.

  7. Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?

    PubMed

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-06-28

    A multilayer feed-forward artificial neural network (MLP-ANN) with a single, hidden layer that contains a finite number of neurons can be regarded as a universal non-linear approximator. Today, the ANN method and linear regression (MLR) model are widely used for quantum chemistry (QC) data analysis (e.g., thermochemistry) to improve their accuracy (e.g., Gaussian G2-G4, B3LYP/B3-LYP, X1, or W1 theoretical methods). In this study, an alternative approach based on support vector machines (SVMs) is used, the least squares support vector machine (LS-SVM) regression. It has been applied to ab initio (first principle) and density functional theory (DFT) quantum chemistry data. So, QC + SVM methodology is an alternative to QC + ANN one. The task of the study was to estimate the Møller-Plesset (MPn) or DFT (B3LYP, BLYP, BMK) energies calculated with large basis sets (e.g., 6-311G(3df,3pd)) using smaller ones (6-311G, 6-311G*, 6-311G**) plus molecular descriptors. A molecular set (BRM-208) containing a total of 208 organic molecules was constructed and used for the LS-SVM training, cross-validation, and testing. MP2, MP3, MP4(DQ), MP4(SDQ), and MP4/MP4(SDTQ) ab initio methods were tested. Hartree-Fock (HF/SCF) results were also reported for comparison. Furthermore, constitutional (CD: total number of atoms and mole fractions of different atoms) and quantum-chemical (QD: HOMO-LUMO gap, dipole moment, average polarizability, and quadrupole moment) molecular descriptors were used for the building of the LS-SVM calibration model. Prediction accuracies (MADs) of 1.62 ± 0.51 and 0.85 ± 0.24 kcal mol(-1) (1 kcal mol(-1) = 4.184 kJ mol(-1)) were reached for SVM-based approximations of ab initio and DFT energies, respectively. The LS-SVM model was more accurate than the MLR model. A comparison with the artificial neural network approach shows that the accuracy of the LS-SVM method is similar to the accuracy of ANN. The extrapolation and interpolation results show that LS-SVM is superior by almost an order of magnitude over the ANN method in terms of the stability, generality, and robustness of the final model. The LS-SVM model needs a much smaller numbers of samples (a much smaller sample set) to make accurate prediction results. Potential energy surface (PES) approximations for molecular dynamics (MD) studies are discussed as a promising application for the LS-SVM calibration approach. This journal is © the Owner Societies 2011

  8. Quantitative structure-retention relationship models for the prediction of the reversed-phase HPLC gradient retention based on the heuristic method and support vector machine.

    PubMed

    Du, Hongying; Wang, Jie; Yao, Xiaojun; Hu, Zhide

    2009-01-01

    The heuristic method (HM) and support vector machine (SVM) were used to construct quantitative structure-retention relationship models by a series of compounds to predict the gradient retention times of reversed-phase high-performance liquid chromatography (HPLC) in three different columns. The aims of this investigation were to predict the retention times of multifarious compounds, to find the main properties of the three columns, and to indicate the theory of separation procedures. In our method, we correlated the retention times of many diverse structural analytes in three columns (Symmetry C18, Chromolith, and SG-MIX) with their representative molecular descriptors, calculated from the molecular structures alone. HM was used to select the most important molecular descriptors and build linear regression models. Furthermore, non-linear regression models were built using the SVM method; the performance of the SVM models were better than that of the HM models, and the prediction results were in good agreement with the experimental values. This paper could give some insights into the factors that were likely to govern the gradient retention process of the three investigated HPLC columns, which could theoretically supervise the practical experiment.

  9. Weighted K-means support vector machine for cancer prediction.

    PubMed

    Kim, SungHwan

    2016-01-01

    To date, the support vector machine (SVM) has been widely applied to diverse bio-medical fields to address disease subtype identification and pathogenicity of genetic variants. In this paper, I propose the weighted K-means support vector machine (wKM-SVM) and weighted support vector machine (wSVM), for which I allow the SVM to impose weights to the loss term. Besides, I demonstrate the numerical relations between the objective function of the SVM and weights. Motivated by general ensemble techniques, which are known to improve accuracy, I directly adopt the boosting algorithm to the newly proposed weighted KM-SVM (and wSVM). For predictive performance, a range of simulation studies demonstrate that the weighted KM-SVM (and wSVM) with boosting outperforms the standard KM-SVM (and SVM) including but not limited to many popular classification rules. I applied the proposed methods to simulated data and two large-scale real applications in the TCGA pan-cancer methylation data of breast and kidney cancer. In conclusion, the weighted KM-SVM (and wSVM) increases accuracy of the classification model, and will facilitate disease diagnosis and clinical treatment decisions to benefit patients. A software package (wSVM) is publicly available at the R-project webpage (https://www.r-project.org).

  10. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue.

    PubMed

    Chen, Zhenyu; Li, Jianping; Wei, Liwei

    2007-10-01

    Recently, gene expression profiling using microarray techniques has been shown as a promising tool to improve the diagnosis and treatment of cancer. Gene expression data contain high level of noise and the overwhelming number of genes relative to the number of available samples. It brings out a great challenge for machine learning and statistic techniques. Support vector machine (SVM) has been successfully used to classify gene expression data of cancer tissue. In the medical field, it is crucial to deliver the user a transparent decision process. How to explain the computed solutions and present the extracted knowledge becomes a main obstacle for SVM. A multiple kernel support vector machine (MK-SVM) scheme, consisting of feature selection, rule extraction and prediction modeling is proposed to improve the explanation capacity of SVM. In this scheme, we show that the feature selection problem can be translated into an ordinary multiple parameters learning problem. And a shrinkage approach: 1-norm based linear programming is proposed to obtain the sparse parameters and the corresponding selected features. We propose a novel rule extraction approach using the information provided by the separating hyperplane and support vectors to improve the generalization capacity and comprehensibility of rules and reduce the computational complexity. Two public gene expression datasets: leukemia dataset and colon tumor dataset are used to demonstrate the performance of this approach. Using the small number of selected genes, MK-SVM achieves encouraging classification accuracy: more than 90% for both two datasets. Moreover, very simple rules with linguist labels are extracted. The rule sets have high diagnostic power because of their good classification performance.

  11. An SVM-Based Classifier for Estimating the State of Various Rotating Components in Agro-Industrial Machinery with a Vibration Signal Acquired from a Single Point on the Machine Chassis

    PubMed Central

    Ruiz-Gonzalez, Ruben; Gomez-Gil, Jaime; Gomez-Gil, Francisco Javier; Martínez-Martínez, Víctor

    2014-01-01

    The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM)-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i) accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii) the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels. PMID:25372618

  12. An SVM-based classifier for estimating the state of various rotating components in agro-industrial machinery with a vibration signal acquired from a single point on the machine chassis.

    PubMed

    Ruiz-Gonzalez, Ruben; Gomez-Gil, Jaime; Gomez-Gil, Francisco Javier; Martínez-Martínez, Víctor

    2014-11-03

    The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM)-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i) accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii) the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels.

  13. Classifying Lower Extremity Muscle Fatigue during Walking using Machine Learning and Inertial Sensors

    PubMed Central

    Zhang, Jian; Lockhart, Thurmon E.; Soangra, Rahul

    2013-01-01

    Fatigue in lower extremity musculature is associated with decline in postural stability, motor performance and alters normal walking patterns in human subjects. Automated recognition of lower extremity muscle fatigue condition may be advantageous in early detection of fall and injury risks. Supervised machine learning methods such as Support Vector Machines (SVM) have been previously used for classifying healthy and pathological gait patterns and also for separating old and young gait patterns. In this study we explore the classification potential of SVM in recognition of gait patterns utilizing an inertial measurement unit associated with lower extremity muscular fatigue. Both kinematic and kinetic gait patterns of 17 participants (29±11 years) were recorded and analyzed in normal and fatigued state of walking. Lower extremities were fatigued by performance of a squatting exercise until the participants reached 60% of their baseline maximal voluntary exertion level. Feature selection methods were used to classify fatigue and no-fatigue conditions based on temporal and frequency information of the signals. Additionally, influences of three different kernel schemes (i.e., linear, polynomial, and radial basis function) were investigated for SVM classification. The results indicated that lower extremity muscle fatigue condition influenced gait and loading responses. In terms of the SVM classification results, an accuracy of 96% was reached in distinguishing the two gait patterns (fatigue and no-fatigue) within the same subject using the kinematic, time and frequency domain features. It is also found that linear kernel and RBF kernel were equally good to identify intra-individual fatigue characteristics. These results suggest that intra-subject fatigue classification using gait patterns from an inertial sensor holds considerable potential in identifying “at-risk” gait due to muscle fatigue. PMID:24081829

  14. Non-linear models for the detection of impaired cerebral blood flow autoregulation.

    PubMed

    Chacón, Max; Jara, José Luis; Miranda, Rodrigo; Katsogridakis, Emmanuel; Panerai, Ronney B

    2018-01-01

    The ability to discriminate between normal and impaired dynamic cerebral autoregulation (CA), based on measurements of spontaneous fluctuations in arterial blood pressure (BP) and cerebral blood flow (CBF), has considerable clinical relevance. We studied 45 normal subjects at rest and under hypercapnia induced by breathing a mixture of carbon dioxide and air. Non-linear models with BP as input and CBF velocity (CBFV) as output, were implemented with support vector machines (SVM) using separate recordings for learning and validation. Dynamic SVM implementations used either moving average or autoregressive structures. The efficiency of dynamic CA was estimated from the model's derived CBFV response to a step change in BP as an autoregulation index for both linear and non-linear models. Non-linear models with recurrences (autoregressive) showed the best results, with CA indexes of 5.9 ± 1.5 in normocapnia, and 2.5 ± 1.2 for hypercapnia with an area under the receiver-operator curve of 0.955. The high performance achieved by non-linear SVM models to detect deterioration of dynamic CA should encourage further assessment of its applicability to clinical conditions where CA might be impaired.

  15. Non-linear models for the detection of impaired cerebral blood flow autoregulation

    PubMed Central

    Miranda, Rodrigo; Katsogridakis, Emmanuel

    2018-01-01

    The ability to discriminate between normal and impaired dynamic cerebral autoregulation (CA), based on measurements of spontaneous fluctuations in arterial blood pressure (BP) and cerebral blood flow (CBF), has considerable clinical relevance. We studied 45 normal subjects at rest and under hypercapnia induced by breathing a mixture of carbon dioxide and air. Non-linear models with BP as input and CBF velocity (CBFV) as output, were implemented with support vector machines (SVM) using separate recordings for learning and validation. Dynamic SVM implementations used either moving average or autoregressive structures. The efficiency of dynamic CA was estimated from the model’s derived CBFV response to a step change in BP as an autoregulation index for both linear and non-linear models. Non-linear models with recurrences (autoregressive) showed the best results, with CA indexes of 5.9 ± 1.5 in normocapnia, and 2.5 ± 1.2 for hypercapnia with an area under the receiver-operator curve of 0.955. The high performance achieved by non-linear SVM models to detect deterioration of dynamic CA should encourage further assessment of its applicability to clinical conditions where CA might be impaired. PMID:29381724

  16. Classification of stellar spectra with SVM based on within-class scatter and between-class scatter

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-bao; Zhou, Fang-xiao; Qin, Zhen-tao; Luo, Xue-gang; Zhang, Jing

    2018-07-01

    Support Vector Machine (SVM) is a popular data mining technique, and it has been widely applied in astronomical tasks, especially in stellar spectra classification. Since SVM doesn't take the data distribution into consideration, and therefore, its classification efficiencies can't be greatly improved. Meanwhile, SVM ignores the internal information of the training dataset, such as the within-class structure and between-class structure. In view of this, we propose a new classification algorithm-SVM based on Within-Class Scatter and Between-Class Scatter (WBS-SVM) in this paper. WBS-SVM tries to find an optimal hyperplane to separate two classes. The difference is that it incorporates minimum within-class scatter and maximum between-class scatter in Linear Discriminant Analysis (LDA) into SVM. These two scatters represent the distributions of the training dataset, and the optimization of WBS-SVM ensures the samples in the same class are as close as possible and the samples in different classes are as far as possible. Experiments on the K-, F-, G-type stellar spectra from Sloan Digital Sky Survey (SDSS), Data Release 8 show that our proposed WBS-SVM can greatly improve the classification accuracies.

  17. Deep neural mapping support vector machines.

    PubMed

    Li, Yujian; Zhang, Ting

    2017-09-01

    The choice of kernel has an important effect on the performance of a support vector machine (SVM). The effect could be reduced by NEUROSVM, an architecture using multilayer perceptron for feature extraction and SVM for classification. In binary classification, a general linear kernel NEUROSVM can be theoretically simplified as an input layer, many hidden layers, and an SVM output layer. As a feature extractor, the sub-network composed of the input and hidden layers is first trained together with a virtual ordinary output layer by backpropagation, then with the output of its last hidden layer taken as input of the SVM classifier for further training separately. By taking the sub-network as a kernel mapping from the original input space into a feature space, we present a novel model, called deep neural mapping support vector machine (DNMSVM), from the viewpoint of deep learning. This model is also a new and general kernel learning method, where the kernel mapping is indeed an explicit function expressed as a sub-network, different from an implicit function induced by a kernel function traditionally. Moreover, we exploit a two-stage procedure of contrastive divergence learning and gradient descent for DNMSVM to jointly training an adaptive kernel mapping instead of a kernel function, without requirement of kernel tricks. As a whole of the sub-network and the SVM classifier, the joint training of DNMSVM is done by using gradient descent to optimize the objective function with the sub-network layer-wise pre-trained via contrastive divergence learning of restricted Boltzmann machines. Compared to the separate training of NEUROSVM, the joint training is a new algorithm for DNMSVM to have advantages over NEUROSVM. Experimental results show that DNMSVM can outperform NEUROSVM and RBFSVM (i.e., SVM with the kernel of radial basis function), demonstrating its effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Study on for soluble solids contents measurement of grape juice beverage based on Vis/NIRS and chemomtrics

    NASA Astrophysics Data System (ADS)

    Wu, Di; He, Yong

    2007-11-01

    The aim of this study is to investigate the potential of the visible and near infrared spectroscopy (Vis/NIRS) technique for non-destructive measurement of soluble solids contents (SSC) in grape juice beverage. 380 samples were studied in this paper. Smoothing way of Savitzky-Golay and standard normal variate were applied for the pre-processing of spectral data. Least-squares support vector machines (LS-SVM) with RBF kernel function was applied to developing the SSC prediction model based on the Vis/NIRS absorbance data. The determination coefficient for prediction (Rp2) of the results predicted by LS-SVM model was 0. 962 and root mean square error (RMSEP) was 0. 434137. It is concluded that Vis/NIRS technique can quantify the SSC of grape juice beverage fast and non-destructively.. At the same time, LS-SVM model was compared with PLS and back propagation neural network (BP-NN) methods. The results showed that LS-SVM was superior to the conventional linear and non-linear methods in predicting SSC of grape juice beverage. In this study, the generation ability of LS-SVM, PLS and BP-NN models were also investigated. It is concluded that LS-SVM regression method is a promising technique for chemometrics in quantitative prediction.

  19. Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees.

    PubMed

    Anam, Khairul; Al-Jumaily, Adel

    2017-01-01

    The success of myoelectric pattern recognition (M-PR) mostly relies on the features extracted and classifier employed. This paper proposes and evaluates a fast classifier, extreme learning machine (ELM), to classify individual and combined finger movements on amputees and non-amputees. ELM is a single hidden layer feed-forward network (SLFN) that avoids iterative learning by determining input weights randomly and output weights analytically. Therefore, it can accelerate the training time of SLFNs. In addition to the classifier evaluation, this paper evaluates various feature combinations to improve the performance of M-PR and investigate some feature projections to improve the class separability of the features. Different from other studies on the implementation of ELM in the myoelectric controller, this paper presents a complete and thorough investigation of various types of ELMs including the node-based and kernel-based ELM. Furthermore, this paper provides comparisons of ELMs and other well-known classifiers such as linear discriminant analysis (LDA), k-nearest neighbour (kNN), support vector machine (SVM) and least-square SVM (LS-SVM). The experimental results show the most accurate ELM classifier is radial basis function ELM (RBF-ELM). The comparison of RBF-ELM and other well-known classifiers shows that RBF-ELM is as accurate as SVM and LS-SVM but faster than the SVM family; it is superior to LDA and kNN. The experimental results also indicate that the accuracy gap of the M-PR on the amputees and non-amputees is not too much with the accuracy of 98.55% on amputees and 99.5% on the non-amputees using six electromyography (EMG) channels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. LMD Based Features for the Automatic Seizure Detection of EEG Signals Using SVM.

    PubMed

    Zhang, Tao; Chen, Wanzhong

    2017-08-01

    Achieving the goal of detecting seizure activity automatically using electroencephalogram (EEG) signals is of great importance and significance for the treatment of epileptic seizures. To realize this aim, a newly-developed time-frequency analytical algorithm, namely local mean decomposition (LMD), is employed in the presented study. LMD is able to decompose an arbitrary signal into a series of product functions (PFs). Primarily, the raw EEG signal is decomposed into several PFs, and then the temporal statistical and non-linear features of the first five PFs are calculated. The features of each PF are fed into five classifiers, including back propagation neural network (BPNN), K-nearest neighbor (KNN), linear discriminant analysis (LDA), un-optimized support vector machine (SVM) and SVM optimized by genetic algorithm (GA-SVM), for five classification cases, respectively. Confluent features of all PFs and raw EEG are further passed into the high-performance GA-SVM for the same classification tasks. Experimental results on the international public Bonn epilepsy EEG dataset show that the average classification accuracy of the presented approach are equal to or higher than 98.10% in all the five cases, and this indicates the effectiveness of the proposed approach for automated seizure detection.

  1. Application of Support Vector Machine to Forex Monitoring

    NASA Astrophysics Data System (ADS)

    Kamruzzaman, Joarder; Sarker, Ruhul A.

    Previous studies have demonstrated superior performance of artificial neural network (ANN) based forex forecasting models over traditional regression models. This paper applies support vector machines to build a forecasting model from the historical data using six simple technical indicators and presents a comparison with an ANN based model trained by scaled conjugate gradient (SCG) learning algorithm. The models are evaluated and compared on the basis of five commonly used performance metrics that measure closeness of prediction as well as correctness in directional change. Forecasting results of six different currencies against Australian dollar reveal superior performance of SVM model using simple linear kernel over ANN-SCG model in terms of all the evaluation metrics. The effect of SVM parameter selection on prediction performance is also investigated and analyzed.

  2. QSAR studies of the bioactivity of hepatitis C virus (HCV) NS3/4A protease inhibitors by multiple linear regression (MLR) and support vector machine (SVM).

    PubMed

    Qin, Zijian; Wang, Maolin; Yan, Aixia

    2017-07-01

    In this study, quantitative structure-activity relationship (QSAR) models using various descriptor sets and training/test set selection methods were explored to predict the bioactivity of hepatitis C virus (HCV) NS3/4A protease inhibitors by using a multiple linear regression (MLR) and a support vector machine (SVM) method. 512 HCV NS3/4A protease inhibitors and their IC 50 values which were determined by the same FRET assay were collected from the reported literature to build a dataset. All the inhibitors were represented with selected nine global and 12 2D property-weighted autocorrelation descriptors calculated from the program CORINA Symphony. The dataset was divided into a training set and a test set by a random and a Kohonen's self-organizing map (SOM) method. The correlation coefficients (r 2 ) of training sets and test sets were 0.75 and 0.72 for the best MLR model, 0.87 and 0.85 for the best SVM model, respectively. In addition, a series of sub-dataset models were also developed. The performances of all the best sub-dataset models were better than those of the whole dataset models. We believe that the combination of the best sub- and whole dataset SVM models can be used as reliable lead designing tools for new NS3/4A protease inhibitors scaffolds in a drug discovery pipeline. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. An IPSO-SVM algorithm for security state prediction of mine production logistics system

    NASA Astrophysics Data System (ADS)

    Zhang, Yanliang; Lei, Junhui; Ma, Qiuli; Chen, Xin; Bi, Runfang

    2017-06-01

    A theoretical basis for the regulation of corporate security warning and resources was provided in order to reveal the laws behind the security state in mine production logistics. Considering complex mine production logistics system and the variable is difficult to acquire, a superior security status predicting model of mine production logistics system based on the improved particle swarm optimization and support vector machine (IPSO-SVM) is proposed in this paper. Firstly, through the linear adjustments of inertia weight and learning weights, the convergence speed and search accuracy are enhanced with the aim to deal with situations associated with the changeable complexity and the data acquisition difficulty. The improved particle swarm optimization (IPSO) is then introduced to resolve the problem of parameter settings in traditional support vector machines (SVM). At the same time, security status index system is built to determine the classification standards of safety status. The feasibility and effectiveness of this method is finally verified using the experimental results.

  4. [Study on application of SVM in prediction of coronary heart disease].

    PubMed

    Zhu, Yue; Wu, Jianghua; Fang, Ying

    2013-12-01

    Base on the data of blood pressure, plasma lipid, Glu and UA by physical test, Support Vector Machine (SVM) was applied to identify coronary heart disease (CHD) in patients and non-CHD individuals in south China population for guide of further prevention and treatment of the disease. Firstly, the SVM classifier was built using radial basis kernel function, liner kernel function and polynomial kernel function, respectively. Secondly, the SVM penalty factor C and kernel parameter sigma were optimized by particle swarm optimization (PSO) and then employed to diagnose and predict the CHD. By comparison with those from artificial neural network with the back propagation (BP) model, linear discriminant analysis, logistic regression method and non-optimized SVM, the overall results of our calculation demonstrated that the classification performance of optimized RBF-SVM model could be superior to other classifier algorithm with higher accuracy rate, sensitivity and specificity, which were 94.51%, 92.31% and 96.67%, respectively. So, it is well concluded that SVM could be used as a valid method for assisting diagnosis of CHD.

  5. Incorporation of support vector machines in the LIBS toolbox for sensitive and robust classification amidst unexpected sample and system variability

    PubMed Central

    ChariDingari, Narahara; Barman, Ishan; Myakalwar, Ashwin Kumar; Tewari, Surya P.; Kumar, G. Manoj

    2012-01-01

    Despite the intrinsic elemental analysis capability and lack of sample preparation requirements, laser-induced breakdown spectroscopy (LIBS) has not been extensively used for real world applications, e.g. quality assurance and process monitoring. Specifically, variability in sample, system and experimental parameters in LIBS studies present a substantive hurdle for robust classification, even when standard multivariate chemometric techniques are used for analysis. Considering pharmaceutical sample investigation as an example, we propose the use of support vector machines (SVM) as a non-linear classification method over conventional linear techniques such as soft independent modeling of class analogy (SIMCA) and partial least-squares discriminant analysis (PLS-DA) for discrimination based on LIBS measurements. Using over-the-counter pharmaceutical samples, we demonstrate that application of SVM enables statistically significant improvements in prospective classification accuracy (sensitivity), due to its ability to address variability in LIBS sample ablation and plasma self-absorption behavior. Furthermore, our results reveal that SVM provides nearly 10% improvement in correct allocation rate and a concomitant reduction in misclassification rates of 75% (cf. PLS-DA) and 80% (cf. SIMCA)-when measurements from samples not included in the training set are incorporated in the test data – highlighting its robustness. While further studies on a wider matrix of sample types performed using different LIBS systems is needed to fully characterize the capability of SVM to provide superior predictions, we anticipate that the improved sensitivity and robustness observed here will facilitate application of the proposed LIBS-SVM toolbox for screening drugs and detecting counterfeit samples as well as in related areas of forensic and biological sample analysis. PMID:22292496

  6. Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination.

    PubMed

    Sørensen, Lauge; Nielsen, Mads

    2018-05-15

    The International Challenge for Automated Prediction of MCI from MRI data offered independent, standardized comparison of machine learning algorithms for multi-class classification of normal control (NC), mild cognitive impairment (MCI), converting MCI (cMCI), and Alzheimer's disease (AD) using brain imaging and general cognition. We proposed to use an ensemble of support vector machines (SVMs) that combined bagging without replacement and feature selection. SVM is the most commonly used algorithm in multivariate classification of dementia, and it was therefore valuable to evaluate the potential benefit of ensembling this type of classifier. The ensemble SVM, using either a linear or a radial basis function (RBF) kernel, achieved multi-class classification accuracies of 55.6% and 55.0% in the challenge test set (60 NC, 60 MCI, 60 cMCI, 60 AD), resulting in a third place in the challenge. Similar feature subset sizes were obtained for both kernels, and the most frequently selected MRI features were the volumes of the two hippocampal subregions left presubiculum and right subiculum. Post-challenge analysis revealed that enforcing a minimum number of selected features and increasing the number of ensemble classifiers improved classification accuracy up to 59.1%. The ensemble SVM outperformed single SVM classifications consistently in the challenge test set. Ensemble methods using bagging and feature selection can improve the performance of the commonly applied SVM classifier in dementia classification. This resulted in competitive classification accuracies in the International Challenge for Automated Prediction of MCI from MRI data. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Application of Artificial Neural Network and Support Vector Machines in Predicting Metabolizable Energy in Compound Feeds for Pigs.

    PubMed

    Ahmadi, Hamed; Rodehutscord, Markus

    2017-01-01

    In the nutrition literature, there are several reports on the use of artificial neural network (ANN) and multiple linear regression (MLR) approaches for predicting feed composition and nutritive value, while the use of support vector machines (SVM) method as a new alternative approach to MLR and ANN models is still not fully investigated. The MLR, ANN, and SVM models were developed to predict metabolizable energy (ME) content of compound feeds for pigs based on the German energy evaluation system from analyzed contents of crude protein (CP), ether extract (EE), crude fiber (CF), and starch. A total of 290 datasets from standardized digestibility studies with compound feeds was provided from several institutions and published papers, and ME was calculated thereon. Accuracy and precision of developed models were evaluated, given their produced prediction values. The results revealed that the developed ANN [ R 2  = 0.95; root mean square error (RMSE) = 0.19 MJ/kg of dry matter] and SVM ( R 2  = 0.95; RMSE = 0.21 MJ/kg of dry matter) models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR ( R 2  = 0.89; RMSE = 0.27 MJ/kg of dry matter). The developed ANN and SVM models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR; however, there were not obvious differences between performance of ANN and SVM models. Thus, SVM model may also be considered as a promising tool for modeling the relationship between chemical composition and ME of compound feeds for pigs. To provide the readers and nutritionist with the easy and rapid tool, an Excel ® calculator, namely, SVM_ME_pig, was created to predict the metabolizable energy values in compound feeds for pigs using developed support vector machine model.

  8. Improving near-infrared prediction model robustness with support vector machine regression: a pharmaceutical tablet assay example.

    PubMed

    Igne, Benoît; Drennen, James K; Anderson, Carl A

    2014-01-01

    Changes in raw materials and process wear and tear can have significant effects on the prediction error of near-infrared calibration models. When the variability that is present during routine manufacturing is not included in the calibration, test, and validation sets, the long-term performance and robustness of the model will be limited. Nonlinearity is a major source of interference. In near-infrared spectroscopy, nonlinearity can arise from light path-length differences that can come from differences in particle size or density. The usefulness of support vector machine (SVM) regression to handle nonlinearity and improve the robustness of calibration models in scenarios where the calibration set did not include all the variability present in test was evaluated. Compared to partial least squares (PLS) regression, SVM regression was less affected by physical (particle size) and chemical (moisture) differences. The linearity of the SVM predicted values was also improved. Nevertheless, although visualization and interpretation tools have been developed to enhance the usability of SVM-based methods, work is yet to be done to provide chemometricians in the pharmaceutical industry with a regression method that can supplement PLS-based methods.

  9. Generalized SMO algorithm for SVM-based multitask learning.

    PubMed

    Cai, Feng; Cherkassky, Vladimir

    2012-06-01

    Exploiting additional information to improve traditional inductive learning is an active research area in machine learning. In many supervised-learning applications, training data can be naturally separated into several groups, and incorporating this group information into learning may improve generalization. Recently, Vapnik proposed a general approach to formalizing such problems, known as "learning with structured data" and its support vector machine (SVM) based optimization formulation called SVM+. Liang and Cherkassky showed the connection between SVM+ and multitask learning (MTL) approaches in machine learning, and proposed an SVM-based formulation for MTL called SVM+MTL for classification. Training the SVM+MTL classifier requires the solution of a large quadratic programming optimization problem which scales as O(n(3)) with sample size n. So there is a need to develop computationally efficient algorithms for implementing SVM+MTL. This brief generalizes Platt's sequential minimal optimization (SMO) algorithm to the SVM+MTL setting. Empirical results show that, for typical SVM+MTL problems, the proposed generalized SMO achieves over 100 times speed-up, in comparison with general-purpose optimization routines.

  10. Extended robust support vector machine based on financial risk minimization.

    PubMed

    Takeda, Akiko; Fujiwara, Shuhei; Kanamori, Takafumi

    2014-11-01

    Financial risk measures have been used recently in machine learning. For example, ν-support vector machine ν-SVM) minimizes the conditional value at risk (CVaR) of margin distribution. The measure is popular in finance because of the subadditivity property, but it is very sensitive to a few outliers in the tail of the distribution. We propose a new classification method, extended robust SVM (ER-SVM), which minimizes an intermediate risk measure between the CVaR and value at risk (VaR) by expecting that the resulting model becomes less sensitive than ν-SVM to outliers. We can regard ER-SVM as an extension of robust SVM, which uses a truncated hinge loss. Numerical experiments imply the ER-SVM's possibility of achieving a better prediction performance with proper parameter setting.

  11. Solution Path for Pin-SVM Classifiers With Positive and Negative $\\tau $ Values.

    PubMed

    Huang, Xiaolin; Shi, Lei; Suykens, Johan A K

    2017-07-01

    Applying the pinball loss in a support vector machine (SVM) classifier results in pin-SVM. The pinball loss is characterized by a parameter τ . Its value is related to the quantile level and different τ values are suitable for different problems. In this paper, we establish an algorithm to find the entire solution path for pin-SVM with different τ values. This algorithm is based on the fact that the optimal solution to pin-SVM is continuous and piecewise linear with respect to τ . We also show that the nonnegativity constraint on τ is not necessary, i.e., τ can be extended to negative values. First, in some applications, a negative τ leads to better accuracy. Second, τ = -1 corresponds to a simple solution that links SVM and the classical kernel rule. The solution for τ = -1 can be obtained directly and then be used as a starting point of the solution path. The proposed method efficiently traverses τ values through the solution path, and then achieves good performance by a suitable τ . In particular, τ = 0 corresponds to C-SVM, meaning that the traversal algorithm can output a result at least as good as C-SVM with respect to validation error.

  12. The construction of support vector machine classifier using the firefly algorithm.

    PubMed

    Chao, Chih-Feng; Horng, Ming-Huwi

    2015-01-01

    The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy.

  13. The Construction of Support Vector Machine Classifier Using the Firefly Algorithm

    PubMed Central

    Chao, Chih-Feng; Horng, Ming-Huwi

    2015-01-01

    The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy. PMID:25802511

  14. a Comparison Study of Different Kernel Functions for Svm-Based Classification of Multi-Temporal Polarimetry SAR Data

    NASA Astrophysics Data System (ADS)

    Yekkehkhany, B.; Safari, A.; Homayouni, S.; Hasanlou, M.

    2014-10-01

    In this paper, a framework is developed based on Support Vector Machines (SVM) for crop classification using polarimetric features extracted from multi-temporal Synthetic Aperture Radar (SAR) imageries. The multi-temporal integration of data not only improves the overall retrieval accuracy but also provides more reliable estimates with respect to single-date data. Several kernel functions are employed and compared in this study for mapping the input space to higher Hilbert dimension space. These kernel functions include linear, polynomials and Radial Based Function (RBF). The method is applied to several UAVSAR L-band SAR images acquired over an agricultural area near Winnipeg, Manitoba, Canada. In this research, the temporal alpha features of H/A/α decomposition method are used in classification. The experimental tests show an SVM classifier with RBF kernel for three dates of data increases the Overall Accuracy (OA) to up to 3% in comparison to using linear kernel function, and up to 1% in comparison to a 3rd degree polynomial kernel function.

  15. SVM Classifier - a comprehensive java interface for support vector machine classification of microarray data.

    PubMed

    Pirooznia, Mehdi; Deng, Youping

    2006-12-12

    Graphical user interface (GUI) software promotes novelty by allowing users to extend the functionality. SVM Classifier is a cross-platform graphical application that handles very large datasets well. The purpose of this study is to create a GUI application that allows SVM users to perform SVM training, classification and prediction. The GUI provides user-friendly access to state-of-the-art SVM methods embodied in the LIBSVM implementation of Support Vector Machine. We implemented the java interface using standard swing libraries. We used a sample data from a breast cancer study for testing classification accuracy. We achieved 100% accuracy in classification among the BRCA1-BRCA2 samples with RBF kernel of SVM. We have developed a java GUI application that allows SVM users to perform SVM training, classification and prediction. We have demonstrated that support vector machines can accurately classify genes into functional categories based upon expression data from DNA microarray hybridization experiments. Among the different kernel functions that we examined, the SVM that uses a radial basis kernel function provides the best performance. The SVM Classifier is available at http://mfgn.usm.edu/ebl/svm/.

  16. Optimization of Support Vector Machine (SVM) for Object Classification

    NASA Technical Reports Server (NTRS)

    Scholten, Matthew; Dhingra, Neil; Lu, Thomas T.; Chao, Tien-Hsin

    2012-01-01

    The Support Vector Machine (SVM) is a powerful algorithm, useful in classifying data into species. The SVMs implemented in this research were used as classifiers for the final stage in a Multistage Automatic Target Recognition (ATR) system. A single kernel SVM known as SVMlight, and a modified version known as a SVM with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SVM as a method for classification. From trial to trial, SVM produces consistent results.

  17. An assessment of support vector machines for land cover classification

    USGS Publications Warehouse

    Huang, C.; Davis, L.S.; Townshend, J.R.G.

    2002-01-01

    The support vector machine (SVM) is a group of theoretically superior machine learning algorithms. It was found competitive with the best available machine learning algorithms in classifying high-dimensional data sets. This paper gives an introduction to the theoretical development of the SVM and an experimental evaluation of its accuracy, stability and training speed in deriving land cover classifications from satellite images. The SVM was compared to three other popular classifiers, including the maximum likelihood classifier (MLC), neural network classifiers (NNC) and decision tree classifiers (DTC). The impacts of kernel configuration on the performance of the SVM and of the selection of training data and input variables on the four classifiers were also evaluated in this experiment.

  18. Constructing and validating readability models: the method of integrating multilevel linguistic features with machine learning.

    PubMed

    Sung, Yao-Ting; Chen, Ju-Ling; Cha, Ji-Her; Tseng, Hou-Chiang; Chang, Tao-Hsing; Chang, Kuo-En

    2015-06-01

    Multilevel linguistic features have been proposed for discourse analysis, but there have been few applications of multilevel linguistic features to readability models and also few validations of such models. Most traditional readability formulae are based on generalized linear models (GLMs; e.g., discriminant analysis and multiple regression), but these models have to comply with certain statistical assumptions about data properties and include all of the data in formulae construction without pruning the outliers in advance. The use of such readability formulae tends to produce a low text classification accuracy, while using a support vector machine (SVM) in machine learning can enhance the classification outcome. The present study constructed readability models by integrating multilevel linguistic features with SVM, which is more appropriate for text classification. Taking the Chinese language as an example, this study developed 31 linguistic features as the predicting variables at the word, semantic, syntax, and cohesion levels, with grade levels of texts as the criterion variable. The study compared four types of readability models by integrating unilevel and multilevel linguistic features with GLMs and an SVM. The results indicate that adopting a multilevel approach in readability analysis provides a better representation of the complexities of both texts and the reading comprehension process.

  19. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN.

    PubMed

    Bascil, M Serdar; Tesneli, Ahmet Y; Temurtas, Feyzullah

    2016-09-01

    Brain computer interface (BCI) is a new communication way between man and machine. It identifies mental task patterns stored in electroencephalogram (EEG). So, it extracts brain electrical activities recorded by EEG and transforms them machine control commands. The main goal of BCI is to make available assistive environmental devices for paralyzed people such as computers and makes their life easier. This study deals with feature extraction and mental task pattern recognition on 2-D cursor control from EEG as offline analysis approach. The hemispherical power density changes are computed and compared on alpha-beta frequency bands with only mental imagination of cursor movements. First of all, power spectral density (PSD) features of EEG signals are extracted and high dimensional data reduced by principle component analysis (PCA) and independent component analysis (ICA) which are statistical algorithms. In the last stage, all features are classified with two types of support vector machine (SVM) which are linear and least squares (LS-SVM) and three different artificial neural network (ANN) structures which are learning vector quantization (LVQ), multilayer neural network (MLNN) and probabilistic neural network (PNN) and mental task patterns are successfully identified via k-fold cross validation technique.

  20. Prediction and analysis of beta-turns in proteins by support vector machine.

    PubMed

    Pham, Tho Hoan; Satou, Kenji; Ho, Tu Bao

    2003-01-01

    Tight turn has long been recognized as one of the three important features of proteins after the alpha-helix and beta-sheet. Tight turns play an important role in globular proteins from both the structural and functional points of view. More than 90% tight turns are beta-turns. Analysis and prediction of beta-turns in particular and tight turns in general are very useful for the design of new molecules such as drugs, pesticides, and antigens. In this paper, we introduce a support vector machine (SVM) approach to prediction and analysis of beta-turns. We have investigated two aspects of applying SVM to the prediction and analysis of beta-turns. First, we developed a new SVM method, called BTSVM, which predicts beta-turns of a protein from its sequence. The prediction results on the dataset of 426 non-homologous protein chains by sevenfold cross-validation technique showed that our method is superior to the other previous methods. Second, we analyzed how amino acid positions support (or prevent) the formation of beta-turns based on the "multivariable" classification model of a linear SVM. This model is more general than the other ones of previous statistical methods. Our analysis results are more comprehensive and easier to use than previously published analysis results.

  1. Voltammetric Electronic Tongue and Support Vector Machines for Identification of Selected Features in Mexican Coffee

    PubMed Central

    Domínguez, Rocio Berenice; Moreno-Barón, Laura; Muñoz, Roberto; Gutiérrez, Juan Manuel

    2014-01-01

    This paper describes a new method based on a voltammetric electronic tongue (ET) for the recognition of distinctive features in coffee samples. An ET was directly applied to different samples from the main Mexican coffee regions without any pretreatment before the analysis. The resulting electrochemical information was modeled with two different mathematical tools, namely Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). Growing conditions (i.e., organic or non-organic practices and altitude of crops) were considered for a first classification. LDA results showed an average discrimination rate of 88% ± 6.53% while SVM successfully accomplished an overall accuracy of 96.4% ± 3.50% for the same task. A second classification based on geographical origin of samples was carried out. Results showed an overall accuracy of 87.5% ± 7.79% for LDA and a superior performance of 97.5% ± 3.22% for SVM. Given the complexity of coffee samples, the high accuracy percentages achieved by ET coupled with SVM in both classification problems suggested a potential applicability of ET in the assessment of selected coffee features with a simpler and faster methodology along with a null sample pretreatment. In addition, the proposed method can be applied to authentication assessment while improving cost, time and accuracy of the general procedure. PMID:25254303

  2. Voltammetric electronic tongue and support vector machines for identification of selected features in Mexican coffee.

    PubMed

    Domínguez, Rocio Berenice; Moreno-Barón, Laura; Muñoz, Roberto; Gutiérrez, Juan Manuel

    2014-09-24

    This paper describes a new method based on a voltammetric electronic tongue (ET) for the recognition of distinctive features in coffee samples. An ET was directly applied to different samples from the main Mexican coffee regions without any pretreatment before the analysis. The resulting electrochemical information was modeled with two different mathematical tools, namely Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). Growing conditions (i.e., organic or non-organic practices and altitude of crops) were considered for a first classification. LDA results showed an average discrimination rate of 88% ± 6.53% while SVM successfully accomplished an overall accuracy of 96.4% ± 3.50% for the same task. A second classification based on geographical origin of samples was carried out. Results showed an overall accuracy of 87.5% ± 7.79% for LDA and a superior performance of 97.5% ± 3.22% for SVM. Given the complexity of coffee samples, the high accuracy percentages achieved by ET coupled with SVM in both classification problems suggested a potential applicability of ET in the assessment of selected coffee features with a simpler and faster methodology along with a null sample pretreatment. In addition, the proposed method can be applied to authentication assessment while improving cost, time and accuracy of the general procedure.

  3. Detection of Glutamic Acid in Oilseed Rape Leaves Using Near Infrared Spectroscopy and the Least Squares-Support Vector Machine

    PubMed Central

    Bao, Yidan; Kong, Wenwen; Liu, Fei; Qiu, Zhengjun; He, Yong

    2012-01-01

    Amino acids are quite important indices to indicate the growth status of oilseed rape under herbicide stress. Near infrared (NIR) spectroscopy combined with chemometrics was applied for fast determination of glutamic acid in oilseed rape leaves. The optimal spectral preprocessing method was obtained after comparing Savitzky-Golay smoothing, standard normal variate, multiplicative scatter correction, first and second derivatives, detrending and direct orthogonal signal correction. Linear and nonlinear calibration methods were developed, including partial least squares (PLS) and least squares-support vector machine (LS-SVM). The most effective wavelengths (EWs) were determined by the successive projections algorithm (SPA), and these wavelengths were used as the inputs of PLS and LS-SVM model. The best prediction results were achieved by SPA-LS-SVM (Raw) model with correlation coefficient r = 0.9943 and root mean squares error of prediction (RMSEP) = 0.0569 for prediction set. These results indicated that NIR spectroscopy combined with SPA-LS-SVM was feasible for the fast and effective detection of glutamic acid in oilseed rape leaves. The selected EWs could be used to develop spectral sensors, and the important and basic amino acid data were helpful to study the function mechanism of herbicide. PMID:23203052

  4. Dual linear structured support vector machine tracking method via scale correlation filter

    NASA Astrophysics Data System (ADS)

    Li, Weisheng; Chen, Yanquan; Xiao, Bin; Feng, Chen

    2018-01-01

    Adaptive tracking-by-detection methods based on structured support vector machine (SVM) performed well on recent visual tracking benchmarks. However, these methods did not adopt an effective strategy of object scale estimation, which limits the overall tracking performance. We present a tracking method based on a dual linear structured support vector machine (DLSSVM) with a discriminative scale correlation filter. The collaborative tracker comprised of a DLSSVM model and a scale correlation filter obtains good results in tracking target position and scale estimation. The fast Fourier transform is applied for detection. Extensive experiments show that our tracking approach outperforms many popular top-ranking trackers. On a benchmark including 100 challenging video sequences, the average precision of the proposed method is 82.8%.

  5. Research on gesture recognition of augmented reality maintenance guiding system based on improved SVM

    NASA Astrophysics Data System (ADS)

    Zhao, Shouwei; Zhang, Yong; Zhou, Bin; Ma, Dongxi

    2014-09-01

    Interaction is one of the key techniques of augmented reality (AR) maintenance guiding system. Because of the complexity of the maintenance guiding system's image background and the high dimensionality of gesture characteristics, the whole process of gesture recognition can be divided into three stages which are gesture segmentation, gesture characteristic feature modeling and trick recognition. In segmentation stage, for solving the misrecognition of skin-like region, a segmentation algorithm combing background mode and skin color to preclude some skin-like regions is adopted. In gesture characteristic feature modeling of image attributes stage, plenty of characteristic features are analyzed and acquired, such as structure characteristics, Hu invariant moments features and Fourier descriptor. In trick recognition stage, a classifier based on Support Vector Machine (SVM) is introduced into the augmented reality maintenance guiding process. SVM is a novel learning method based on statistical learning theory, processing academic foundation and excellent learning ability, having a lot of issues in machine learning area and special advantages in dealing with small samples, non-linear pattern recognition at high dimension. The gesture recognition of augmented reality maintenance guiding system is realized by SVM after the granulation of all the characteristic features. The experimental results of the simulation of number gesture recognition and its application in augmented reality maintenance guiding system show that the real-time performance and robustness of gesture recognition of AR maintenance guiding system can be greatly enhanced by improved SVM.

  6. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.

    PubMed

    Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A

    2016-03-01

    In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/. © 2016 Wiley Periodicals, Inc.

  7. Classification of Multiple Chinese Liquors by Means of a QCM-based E-Nose and MDS-SVM Classifier.

    PubMed

    Li, Qiang; Gu, Yu; Jia, Jing

    2017-01-30

    Chinese liquors are internationally well-known fermentative alcoholic beverages. They have unique flavors attributable to the use of various bacteria and fungi, raw materials, and production processes. Developing a novel, rapid, and reliable method to identify multiple Chinese liquors is of positive significance. This paper presents a pattern recognition system for classifying ten brands of Chinese liquors based on multidimensional scaling (MDS) and support vector machine (SVM) algorithms in a quartz crystal microbalance (QCM)-based electronic nose (e-nose) we designed. We evaluated the comprehensive performance of the MDS-SVM classifier that predicted all ten brands of Chinese liquors individually. The prediction accuracy (98.3%) showed superior performance of the MDS-SVM classifier over the back-propagation artificial neural network (BP-ANN) classifier (93.3%) and moving average-linear discriminant analysis (MA-LDA) classifier (87.6%). The MDS-SVM classifier has reasonable reliability, good fitting and prediction (generalization) performance in classification of the Chinese liquors. Taking both application of the e-nose and validation of the MDS-SVM classifier into account, we have thus created a useful method for the classification of multiple Chinese liquors.

  8. Predictive analysis of beer quality by correlating sensory evaluation with higher alcohol and ester production using multivariate statistics methods.

    PubMed

    Dong, Jian-Jun; Li, Qing-Liang; Yin, Hua; Zhong, Cheng; Hao, Jun-Guang; Yang, Pan-Fei; Tian, Yu-Hong; Jia, Shi-Ru

    2014-10-15

    Sensory evaluation is regarded as a necessary procedure to ensure a reproducible quality of beer. Meanwhile, high-throughput analytical methods provide a powerful tool to analyse various flavour compounds, such as higher alcohol and ester. In this study, the relationship between flavour compounds and sensory evaluation was established by non-linear models such as partial least squares (PLS), genetic algorithm back-propagation neural network (GA-BP), support vector machine (SVM). It was shown that SVM with a Radial Basis Function (RBF) had a better performance of prediction accuracy for both calibration set (94.3%) and validation set (96.2%) than other models. Relatively lower prediction abilities were observed for GA-BP (52.1%) and PLS (31.7%). In addition, the kernel function of SVM played an essential role of model training when the prediction accuracy of SVM with polynomial kernel function was 32.9%. As a powerful multivariate statistics method, SVM holds great potential to assess beer quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Machine learning modelling for predicting soil liquefaction susceptibility

    NASA Astrophysics Data System (ADS)

    Samui, P.; Sitharam, T. G.

    2011-01-01

    This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT) data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN) based on multi-layer perceptions (MLP) that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM) that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT [(N1)60] and cyclic stress ratio (CSR). Further, an attempt has been made to simplify the models, requiring only the two parameters [(N1)60 and peck ground acceleration (amax/g)], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.

  10. A Power Transformers Fault Diagnosis Model Based on Three DGA Ratios and PSO Optimization SVM

    NASA Astrophysics Data System (ADS)

    Ma, Hongzhe; Zhang, Wei; Wu, Rongrong; Yang, Chunyan

    2018-03-01

    In order to make up for the shortcomings of existing transformer fault diagnosis methods in dissolved gas-in-oil analysis (DGA) feature selection and parameter optimization, a transformer fault diagnosis model based on the three DGA ratios and particle swarm optimization (PSO) optimize support vector machine (SVM) is proposed. Using transforming support vector machine to the nonlinear and multi-classification SVM, establishing the particle swarm optimization to optimize the SVM multi classification model, and conducting transformer fault diagnosis combined with the cross validation principle. The fault diagnosis results show that the average accuracy of test method is better than the standard support vector machine and genetic algorithm support vector machine, and the proposed method can effectively improve the accuracy of transformer fault diagnosis is proved.

  11. Prediction of dissolved oxygen concentration in hypoxic river systems using support vector machine: a case study of Wen-Rui Tang River, China.

    PubMed

    Ji, Xiaoliang; Shang, Xu; Dahlgren, Randy A; Zhang, Minghua

    2017-07-01

    Accurate quantification of dissolved oxygen (DO) is critically important for managing water resources and controlling pollution. Artificial intelligence (AI) models have been successfully applied for modeling DO content in aquatic ecosystems with limited data. However, the efficacy of these AI models in predicting DO levels in the hypoxic river systems having multiple pollution sources and complicated pollutants behaviors is unclear. Given this dilemma, we developed a promising AI model, known as support vector machine (SVM), to predict the DO concentration in a hypoxic river in southeastern China. Four different calibration models, specifically, multiple linear regression, back propagation neural network, general regression neural network, and SVM, were established, and their prediction accuracy was systemically investigated and compared. A total of 11 hydro-chemical variables were used as model inputs. These variables were measured bimonthly at eight sampling sites along the rural-suburban-urban portion of Wen-Rui Tang River from 2004 to 2008. The performances of the established models were assessed through the mean square error (MSE), determination coefficient (R 2 ), and Nash-Sutcliffe (NS) model efficiency. The results indicated that the SVM model was superior to other models in predicting DO concentration in Wen-Rui Tang River. For SVM, the MSE, R 2 , and NS values for the testing subset were 0.9416 mg/L, 0.8646, and 0.8763, respectively. Sensitivity analysis showed that ammonium-nitrogen was the most significant input variable of the proposal SVM model. Overall, these results demonstrated that the proposed SVM model can efficiently predict water quality, especially for highly impaired and hypoxic river systems.

  12. Cerebral 18F-FDG PET in macrophagic myofasciitis: An individual SVM-based approach.

    PubMed

    Blanc-Durand, Paul; Van Der Gucht, Axel; Guedj, Eric; Abulizi, Mukedaisi; Aoun-Sebaiti, Mehdi; Lerman, Lionel; Verger, Antoine; Authier, François-Jérôme; Itti, Emmanuel

    2017-01-01

    Macrophagic myofasciitis (MMF) is an emerging condition with highly specific myopathological alterations. A peculiar spatial pattern of a cerebral glucose hypometabolism involving occipito-temporal cortex and cerebellum have been reported in patients with MMF; however, the full pattern is not systematically present in routine interpretation of scans, and with varying degrees of severity depending on the cognitive profile of patients. Aim was to generate and evaluate a support vector machine (SVM) procedure to classify patients between healthy or MMF 18F-FDG brain profiles. 18F-FDG PET brain images of 119 patients with MMF and 64 healthy subjects were retrospectively analyzed. The whole-population was divided into two groups; a training set (100 MMF, 44 healthy subjects) and a testing set (19 MMF, 20 healthy subjects). Dimensionality reduction was performed using a t-map from statistical parametric mapping (SPM) and a SVM with a linear kernel was trained on the training set. To evaluate the performance of the SVM classifier, values of sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV) and accuracy (Acc) were calculated. The SPM12 analysis on the training set exhibited the already reported hypometabolism pattern involving occipito-temporal and fronto-parietal cortices, limbic system and cerebellum. The SVM procedure, based on the t-test mask generated from the training set, correctly classified MMF patients of the testing set with following Se, Sp, PPV, NPV and Acc: 89%, 85%, 85%, 89%, and 87%. We developed an original and individual approach including a SVM to classify patients between healthy or MMF metabolic brain profiles using 18F-FDG-PET. Machine learning algorithms are promising for computer-aided diagnosis but will need further validation in prospective cohorts.

  13. Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders.

    PubMed

    Subasi, Abdulhamit

    2013-06-01

    Support vector machine (SVM) is an extensively used machine learning method with many biomedical signal classification applications. In this study, a novel PSO-SVM model has been proposed that hybridized the particle swarm optimization (PSO) and SVM to improve the EMG signal classification accuracy. This optimization mechanism involves kernel parameter setting in the SVM training procedure, which significantly influences the classification accuracy. The experiments were conducted on the basis of EMG signal to classify into normal, neurogenic or myopathic. In the proposed method the EMG signals were decomposed into the frequency sub-bands using discrete wavelet transform (DWT) and a set of statistical features were extracted from these sub-bands to represent the distribution of wavelet coefficients. The obtained results obviously validate the superiority of the SVM method compared to conventional machine learning methods, and suggest that further significant enhancements in terms of classification accuracy can be achieved by the proposed PSO-SVM classification system. The PSO-SVM yielded an overall accuracy of 97.41% on 1200 EMG signals selected from 27 subject records against 96.75%, 95.17% and 94.08% for the SVM, the k-NN and the RBF classifiers, respectively. PSO-SVM is developed as an efficient tool so that various SVMs can be used conveniently as the core of PSO-SVM for diagnosis of neuromuscular disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A New Hybrid Model FPA-SVM Considering Cointegration for Particular Matter Concentration Forecasting: A Case Study of Kunming and Yuxi, China.

    PubMed

    Li, Weide; Kong, Demeng; Wu, Jinran

    2017-01-01

    Air pollution in China is becoming more serious especially for the particular matter (PM) because of rapid economic growth and fast expansion of urbanization. To solve the growing environment problems, daily PM2.5 and PM10 concentration data form January 1, 2015, to August 23, 2016, in Kunming and Yuxi (two important cities in Yunnan Province, China) are used to present a new hybrid model CI-FPA-SVM to forecast air PM2.5 and PM10 concentration in this paper. The proposed model involves two parts. Firstly, due to its deficiency to assess the possible correlation between different variables, the cointegration theory is introduced to get the input-output relationship and then obtain the nonlinear dynamical system with support vector machine (SVM), in which the parameters c and g are optimized by flower pollination algorithm (FPA). Six benchmark models, including FPA-SVM, CI-SVM, CI-GA-SVM, CI-PSO-SVM, CI-FPA-NN, and multiple linear regression model, are considered to verify the superiority of the proposed hybrid model. The empirical study results demonstrate that the proposed model CI-FPA-SVM is remarkably superior to all considered benchmark models for its high prediction accuracy, and the application of the model for forecasting can give effective monitoring and management of further air quality.

  15. A New Hybrid Model FPA-SVM Considering Cointegration for Particular Matter Concentration Forecasting: A Case Study of Kunming and Yuxi, China

    PubMed Central

    Wu, Jinran

    2017-01-01

    Air pollution in China is becoming more serious especially for the particular matter (PM) because of rapid economic growth and fast expansion of urbanization. To solve the growing environment problems, daily PM2.5 and PM10 concentration data form January 1, 2015, to August 23, 2016, in Kunming and Yuxi (two important cities in Yunnan Province, China) are used to present a new hybrid model CI-FPA-SVM to forecast air PM2.5 and PM10 concentration in this paper. The proposed model involves two parts. Firstly, due to its deficiency to assess the possible correlation between different variables, the cointegration theory is introduced to get the input-output relationship and then obtain the nonlinear dynamical system with support vector machine (SVM), in which the parameters c and g are optimized by flower pollination algorithm (FPA). Six benchmark models, including FPA-SVM, CI-SVM, CI-GA-SVM, CI-PSO-SVM, CI-FPA-NN, and multiple linear regression model, are considered to verify the superiority of the proposed hybrid model. The empirical study results demonstrate that the proposed model CI-FPA-SVM is remarkably superior to all considered benchmark models for its high prediction accuracy, and the application of the model for forecasting can give effective monitoring and management of further air quality. PMID:28932237

  16. Prediction of HDR quality by combining perceptually transformed display measurements with machine learning

    NASA Astrophysics Data System (ADS)

    Choudhury, Anustup; Farrell, Suzanne; Atkins, Robin; Daly, Scott

    2017-09-01

    We present an approach to predict overall HDR display quality as a function of key HDR display parameters. We first performed subjective experiments on a high quality HDR display that explored five key HDR display parameters: maximum luminance, minimum luminance, color gamut, bit-depth and local contrast. Subjects rated overall quality for different combinations of these display parameters. We explored two models | a physical model solely based on physically measured display characteristics and a perceptual model that transforms physical parameters using human vision system models. For the perceptual model, we use a family of metrics based on a recently published color volume model (ICT-CP), which consists of the PQ luminance non-linearity (ST2084) and LMS-based opponent color, as well as an estimate of the display point spread function. To predict overall visual quality, we apply linear regression and machine learning techniques such as Multilayer Perceptron, RBF and SVM networks. We use RMSE and Pearson/Spearman correlation coefficients to quantify performance. We found that the perceptual model is better at predicting subjective quality than the physical model and that SVM is better at prediction than linear regression. The significance and contribution of each display parameter was investigated. In addition, we found that combined parameters such as contrast do not improve prediction. Traditional perceptual models were also evaluated and we found that models based on the PQ non-linearity performed better.

  17. A collaborative framework for Distributed Privacy-Preserving Support Vector Machine learning.

    PubMed

    Que, Jialan; Jiang, Xiaoqian; Ohno-Machado, Lucila

    2012-01-01

    A Support Vector Machine (SVM) is a popular tool for decision support. The traditional way to build an SVM model is to estimate parameters based on a centralized repository of data. However, in the field of biomedicine, patient data are sometimes stored in local repositories or institutions where they were collected, and may not be easily shared due to privacy concerns. This creates a substantial barrier for researchers to effectively learn from the distributed data using machine learning tools like SVMs. To overcome this difficulty and promote efficient information exchange without sharing sensitive raw data, we developed a Distributed Privacy Preserving Support Vector Machine (DPP-SVM). The DPP-SVM enables privacy-preserving collaborative learning, in which a trusted server integrates "privacy-insensitive" intermediary results. The globally learned model is guaranteed to be exactly the same as learned from combined data. We also provide a free web-service (http://privacy.ucsd.edu:8080/ppsvm/) for multiple participants to collaborate and complete the SVM-learning task in an efficient and privacy-preserving manner.

  18. Classification of burst and suppression in the neonatal electroencephalogram

    NASA Astrophysics Data System (ADS)

    Löfhede, J.; Löfgren, N.; Thordstein, M.; Flisberg, A.; Kjellmer, I.; Lindecrantz, K.

    2008-12-01

    Fisher's linear discriminant (FLD), a feed-forward artificial neural network (ANN) and a support vector machine (SVM) were compared with respect to their ability to distinguish bursts from suppressions in electroencephalograms (EEG) displaying a burst-suppression pattern. Five features extracted from the EEG were used as inputs. The study was based on EEG signals from six full-term infants who had suffered from perinatal asphyxia, and the methods have been trained with reference data classified by an experienced electroencephalographer. The results are summarized as the area under the curve (AUC), derived from receiver operating characteristic (ROC) curves for the three methods. Based on this, the SVM performs slightly better than the others. Testing the three methods with combinations of increasing numbers of the five features shows that the SVM handles the increasing amount of information better than the other methods.

  19. Using oceanic-atmospheric oscillations for long lead time streamflow forecasting

    NASA Astrophysics Data System (ADS)

    Kalra, Ajay; Ahmad, Sajjad

    2009-03-01

    We present a data-driven model, Support Vector Machine (SVM), for long lead time streamflow forecasting using oceanic-atmospheric oscillations. The SVM is based on statistical learning theory that uses a hypothesis space of linear functions based on Kernel approach and has been used to predict a quantity forward in time on the basis of training from past data. The strength of SVM lies in minimizing the empirical classification error and maximizing the geometric margin by solving inverse problem. The SVM model is applied to three gages, i.e., Cisco, Green River, and Lees Ferry in the Upper Colorado River Basin in the western United States. Annual oceanic-atmospheric indices, comprising Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), and El Nino-Southern Oscillations (ENSO) for a period of 1906-2001 are used to generate annual streamflow volumes with 3 years lead time. The SVM model is trained with 86 years of data (1906-1991) and tested with 10 years of data (1992-2001). On the basis of correlation coefficient, root means square error, and Nash Sutcliffe Efficiency Coefficient the model shows satisfactory results, and the predictions are in good agreement with measured streamflow volumes. Sensitivity analysis, performed to evaluate the effect of individual and coupled oscillations, reveals a strong signal for ENSO and NAO indices as compared to PDO and AMO indices for the long lead time streamflow forecast. Streamflow predictions from the SVM model are found to be better when compared with the predictions obtained from feedforward back propagation artificial neural network model and linear regression.

  20. Semisupervised learning using Bayesian interpretation: application to LS-SVM.

    PubMed

    Adankon, Mathias M; Cheriet, Mohamed; Biem, Alain

    2011-04-01

    Bayesian reasoning provides an ideal basis for representing and manipulating uncertain knowledge, with the result that many interesting algorithms in machine learning are based on Bayesian inference. In this paper, we use the Bayesian approach with one and two levels of inference to model the semisupervised learning problem and give its application to the successful kernel classifier support vector machine (SVM) and its variant least-squares SVM (LS-SVM). Taking advantage of Bayesian interpretation of LS-SVM, we develop a semisupervised learning algorithm for Bayesian LS-SVM using our approach based on two levels of inference. Experimental results on both artificial and real pattern recognition problems show the utility of our method.

  1. Gradient Evolution-based Support Vector Machine Algorithm for Classification

    NASA Astrophysics Data System (ADS)

    Zulvia, Ferani E.; Kuo, R. J.

    2018-03-01

    This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.

  2. Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis

    NASA Astrophysics Data System (ADS)

    Oguntunde, Philip G.; Lischeid, Gunnar; Dietrich, Ottfried

    2018-03-01

    This study examines the variations of climate variables and rice yield and quantifies the relationships among them using multiple linear regression, principal component analysis, and support vector machine (SVM) analysis in southwest Nigeria. The climate and yield data used was for a period of 36 years between 1980 and 2015. Similar to the observed decrease ( P < 0.001) in rice yield, pan evaporation, solar radiation, and wind speed declined significantly. Eight principal components exhibited an eigenvalue > 1 and explained 83.1% of the total variance of predictor variables. The SVM regression function using the scores of the first principal component explained about 75% of the variance in rice yield data and linear regression about 64%. SVM regression between annual solar radiation values and yield explained 67% of the variance. Only the first component of the principal component analysis (PCA) exhibited a clear long-term trend and sometimes short-term variance similar to that of rice yield. Short-term fluctuations of the scores of the PC1 are closely coupled to those of rice yield during the 1986-1993 and the 2006-2013 periods thereby revealing the inter-annual sensitivity of rice production to climate variability. Solar radiation stands out as the climate variable of highest influence on rice yield, and the influence was especially strong during monsoon and post-monsoon periods, which correspond to the vegetative, booting, flowering, and grain filling stages in the study area. The outcome is expected to provide more in-depth regional-specific climate-rice linkage for screening of better cultivars that can positively respond to future climate fluctuations as well as providing information that may help optimized planting dates for improved radiation use efficiency in the study area.

  3. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS

    NASA Astrophysics Data System (ADS)

    Tehrany, Mahyat Shafapour; Pradhan, Biswajeet; Jebur, Mustafa Neamah

    2014-05-01

    Flood is one of the most devastating natural disasters that occur frequently in Terengganu, Malaysia. Recently, ensemble based techniques are getting extremely popular in flood modeling. In this paper, weights-of-evidence (WoE) model was utilized first, to assess the impact of classes of each conditioning factor on flooding through bivariate statistical analysis (BSA). Then, these factors were reclassified using the acquired weights and entered into the support vector machine (SVM) model to evaluate the correlation between flood occurrence and each conditioning factor. Through this integration, the weak point of WoE can be solved and the performance of the SVM will be enhanced. The spatial database included flood inventory, slope, stream power index (SPI), topographic wetness index (TWI), altitude, curvature, distance from the river, geology, rainfall, land use/cover (LULC), and soil type. Four kernel types of SVM (linear kernel (LN), polynomial kernel (PL), radial basis function kernel (RBF), and sigmoid kernel (SIG)) were used to investigate the performance of each kernel type. The efficiency of the new ensemble WoE and SVM method was tested using area under curve (AUC) which measured the prediction and success rates. The validation results proved the strength and efficiency of the ensemble method over the individual methods. The best results were obtained from RBF kernel when compared with the other kernel types. Success rate and prediction rate for ensemble WoE and RBF-SVM method were 96.48% and 95.67% respectively. The proposed ensemble flood susceptibility mapping method could assist researchers and local governments in flood mitigation strategies.

  4. Using machine learning and quantum chemistry descriptors to predict the toxicity of ionic liquids.

    PubMed

    Cao, Lingdi; Zhu, Peng; Zhao, Yongsheng; Zhao, Jihong

    2018-06-15

    Large-scale application of ionic liquids (ILs) hinges on the advancement of designable and eco-friendly nature. Research of the potential toxicity of ILs towards different organisms and trophic levels is insufficient. Quantitative structure-activity relationships (QSAR) model is applied to evaluate the toxicity of ILs towards the leukemia rat cell line (ICP-81). The structures of 57 cations and 21 anions were optimized by quantum chemistry. The electrostatic potential surface area (S EP ) and charge distribution area (S σ-profile ) descriptors are calculated and used to predict the toxicity of ILs. The performance and predictive aptitude of extreme learning machine (ELM) model are analyzed and compared with those of multiple linear regression (MLR) and support vector machine (SVM) models. The highest R 2 and the lowest AARD% and RMSE of the training set, test set and total set for the ELM are observed, which validates the superior performance of the ELM than that of obtained by the MLR and SVM. The applicability domain of the model is assessed by the Williams plot. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Combining MLC and SVM Classifiers for Learning Based Decision Making: Analysis and Evaluations

    PubMed Central

    Zhang, Yi; Ren, Jinchang; Jiang, Jianmin

    2015-01-01

    Maximum likelihood classifier (MLC) and support vector machines (SVM) are two commonly used approaches in machine learning. MLC is based on Bayesian theory in estimating parameters of a probabilistic model, whilst SVM is an optimization based nonparametric method in this context. Recently, it is found that SVM in some cases is equivalent to MLC in probabilistically modeling the learning process. In this paper, MLC and SVM are combined in learning and classification, which helps to yield probabilistic output for SVM and facilitate soft decision making. In total four groups of data are used for evaluations, covering sonar, vehicle, breast cancer, and DNA sequences. The data samples are characterized in terms of Gaussian/non-Gaussian distributed and balanced/unbalanced samples which are then further used for performance assessment in comparing the SVM and the combined SVM-MLC classifier. Interesting results are reported to indicate how the combined classifier may work under various conditions. PMID:26089862

  6. Combining MLC and SVM Classifiers for Learning Based Decision Making: Analysis and Evaluations.

    PubMed

    Zhang, Yi; Ren, Jinchang; Jiang, Jianmin

    2015-01-01

    Maximum likelihood classifier (MLC) and support vector machines (SVM) are two commonly used approaches in machine learning. MLC is based on Bayesian theory in estimating parameters of a probabilistic model, whilst SVM is an optimization based nonparametric method in this context. Recently, it is found that SVM in some cases is equivalent to MLC in probabilistically modeling the learning process. In this paper, MLC and SVM are combined in learning and classification, which helps to yield probabilistic output for SVM and facilitate soft decision making. In total four groups of data are used for evaluations, covering sonar, vehicle, breast cancer, and DNA sequences. The data samples are characterized in terms of Gaussian/non-Gaussian distributed and balanced/unbalanced samples which are then further used for performance assessment in comparing the SVM and the combined SVM-MLC classifier. Interesting results are reported to indicate how the combined classifier may work under various conditions.

  7. Analysis of miRNA expression profile based on SVM algorithm

    NASA Astrophysics Data System (ADS)

    Ting-ting, Dai; Chang-ji, Shan; Yan-shou, Dong; Yi-duo, Bian

    2018-05-01

    Based on mirna expression spectrum data set, a new data mining algorithm - tSVM - KNN (t statistic with support vector machine - k nearest neighbor) is proposed. the idea of the algorithm is: firstly, the feature selection of the data set is carried out by the unified measurement method; Secondly, SVM - KNN algorithm, which combines support vector machine (SVM) and k - nearest neighbor (k - nearest neighbor) is used as classifier. Simulation results show that SVM - KNN algorithm has better classification ability than SVM and KNN alone. Tsvm - KNN algorithm only needs 5 mirnas to obtain 96.08 % classification accuracy in terms of the number of mirna " tags" and recognition accuracy. compared with similar algorithms, tsvm - KNN algorithm has obvious advantages.

  8. An improved method of early diagnosis of smoking-induced respiratory changes using machine learning algorithms.

    PubMed

    Amaral, Jorge L M; Lopes, Agnaldo J; Jansen, José M; Faria, Alvaro C D; Melo, Pedro L

    2013-12-01

    The purpose of this study was to develop an automatic classifier to increase the accuracy of the forced oscillation technique (FOT) for diagnosing early respiratory abnormalities in smoking patients. The data consisted of FOT parameters obtained from 56 volunteers, 28 healthy and 28 smokers with low tobacco consumption. Many supervised learning techniques were investigated, including logistic linear classifiers, k nearest neighbor (KNN), neural networks and support vector machines (SVM). To evaluate performance, the ROC curve of the most accurate parameter was established as baseline. To determine the best input features and classifier parameters, we used genetic algorithms and a 10-fold cross-validation using the average area under the ROC curve (AUC). In the first experiment, the original FOT parameters were used as input. We observed a significant improvement in accuracy (KNN=0.89 and SVM=0.87) compared with the baseline (0.77). The second experiment performed a feature selection on the original FOT parameters. This selection did not cause any significant improvement in accuracy, but it was useful in identifying more adequate FOT parameters. In the third experiment, we performed a feature selection on the cross products of the FOT parameters. This selection resulted in a further increase in AUC (KNN=SVM=0.91), which allows for high diagnostic accuracy. In conclusion, machine learning classifiers can help identify early smoking-induced respiratory alterations. The use of FOT cross products and the search for the best features and classifier parameters can markedly improve the performance of machine learning classifiers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Large-scale linear rankSVM.

    PubMed

    Lee, Ching-Pei; Lin, Chih-Jen

    2014-04-01

    Linear rankSVM is one of the widely used methods for learning to rank. Although its performance may be inferior to nonlinear methods such as kernel rankSVM and gradient boosting decision trees, linear rankSVM is useful to quickly produce a baseline model. Furthermore, following its recent development for classification, linear rankSVM may give competitive performance for large and sparse data. A great deal of works have studied linear rankSVM. The focus is on the computational efficiency when the number of preference pairs is large. In this letter, we systematically study existing works, discuss their advantages and disadvantages, and propose an efficient algorithm. We discuss different implementation issues and extensions with detailed experiments. Finally, we develop a robust linear rankSVM tool for public use.

  10. Hybrid Model Based on Genetic Algorithms and SVM Applied to Variable Selection within Fruit Juice Classification

    PubMed Central

    Fernandez-Lozano, C.; Canto, C.; Gestal, M.; Andrade-Garda, J. M.; Rabuñal, J. R.; Dorado, J.; Pazos, A.

    2013-01-01

    Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected. PMID:24453933

  11. Boosted Regression Trees Outperforms Support Vector Machines in Predicting (Regional) Yields of Winter Wheat from Single and Cumulated Dekadal Spot-VGT Derived Normalized Difference Vegetation Indices

    NASA Astrophysics Data System (ADS)

    Stas, Michiel; Dong, Qinghan; Heremans, Stien; Zhang, Beier; Van Orshoven, Jos

    2016-08-01

    This paper compares two machine learning techniques to predict regional winter wheat yields. The models, based on Boosted Regression Trees (BRT) and Support Vector Machines (SVM), are constructed of Normalized Difference Vegetation Indices (NDVI) derived from low resolution SPOT VEGETATION satellite imagery. Three types of NDVI-related predictors were used: Single NDVI, Incremental NDVI and Targeted NDVI. BRT and SVM were first used to select features with high relevance for predicting the yield. Although the exact selections differed between the prefectures, certain periods with high influence scores for multiple prefectures could be identified. The same period of high influence stretching from March to June was detected by both machine learning methods. After feature selection, BRT and SVM models were applied to the subset of selected features for actual yield forecasting. Whereas both machine learning methods returned very low prediction errors, BRT seems to slightly but consistently outperform SVM.

  12. A Collaborative Framework for Distributed Privacy-Preserving Support Vector Machine Learning

    PubMed Central

    Que, Jialan; Jiang, Xiaoqian; Ohno-Machado, Lucila

    2012-01-01

    A Support Vector Machine (SVM) is a popular tool for decision support. The traditional way to build an SVM model is to estimate parameters based on a centralized repository of data. However, in the field of biomedicine, patient data are sometimes stored in local repositories or institutions where they were collected, and may not be easily shared due to privacy concerns. This creates a substantial barrier for researchers to effectively learn from the distributed data using machine learning tools like SVMs. To overcome this difficulty and promote efficient information exchange without sharing sensitive raw data, we developed a Distributed Privacy Preserving Support Vector Machine (DPP-SVM). The DPP-SVM enables privacy-preserving collaborative learning, in which a trusted server integrates “privacy-insensitive” intermediary results. The globally learned model is guaranteed to be exactly the same as learned from combined data. We also provide a free web-service (http://privacy.ucsd.edu:8080/ppsvm/) for multiple participants to collaborate and complete the SVM-learning task in an efficient and privacy-preserving manner. PMID:23304414

  13. SVM Based Descriptor Selection and Classification of Neurodegenerative Disease Drugs for Pharmacological Modeling.

    PubMed

    Shahid, Mohammad; Shahzad Cheema, Muhammad; Klenner, Alexander; Younesi, Erfan; Hofmann-Apitius, Martin

    2013-03-01

    Systems pharmacological modeling of drug mode of action for the next generation of multitarget drugs may open new routes for drug design and discovery. Computational methods are widely used in this context amongst which support vector machines (SVM) have proven successful in addressing the challenge of classifying drugs with similar features. We have applied a variety of such SVM-based approaches, namely SVM-based recursive feature elimination (SVM-RFE). We use the approach to predict the pharmacological properties of drugs widely used against complex neurodegenerative disorders (NDD) and to build an in-silico computational model for the binary classification of NDD drugs from other drugs. Application of an SVM-RFE model to a set of drugs successfully classified NDD drugs from non-NDD drugs and resulted in overall accuracy of ∼80 % with 10 fold cross validation using 40 top ranked molecular descriptors selected out of total 314 descriptors. Moreover, SVM-RFE method outperformed linear discriminant analysis (LDA) based feature selection and classification. The model reduced the multidimensional descriptors space of drugs dramatically and predicted NDD drugs with high accuracy, while avoiding over fitting. Based on these results, NDD-specific focused libraries of drug-like compounds can be designed and existing NDD-specific drugs can be characterized by a well-characterized set of molecular descriptors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. PVP-SVM: Sequence-Based Prediction of Phage Virion Proteins Using a Support Vector Machine

    PubMed Central

    Manavalan, Balachandran; Shin, Tae H.; Lee, Gwang

    2018-01-01

    Accurately identifying bacteriophage virion proteins from uncharacterized sequences is important to understand interactions between the phage and its host bacteria in order to develop new antibacterial drugs. However, identification of such proteins using experimental techniques is expensive and often time consuming; hence, development of an efficient computational algorithm for the prediction of phage virion proteins (PVPs) prior to in vitro experimentation is needed. Here, we describe a support vector machine (SVM)-based PVP predictor, called PVP-SVM, which was trained with 136 optimal features. A feature selection protocol was employed to identify the optimal features from a large set that included amino acid composition, dipeptide composition, atomic composition, physicochemical properties, and chain-transition-distribution. PVP-SVM achieved an accuracy of 0.870 during leave-one-out cross-validation, which was 6% higher than control SVM predictors trained with all features, indicating the efficiency of the feature selection method. Furthermore, PVP-SVM displayed superior performance compared to the currently available method, PVPred, and two other machine-learning methods developed in this study when objectively evaluated with an independent dataset. For the convenience of the scientific community, a user-friendly and publicly accessible web server has been established at www.thegleelab.org/PVP-SVM/PVP-SVM.html. PMID:29616000

  15. PVP-SVM: Sequence-Based Prediction of Phage Virion Proteins Using a Support Vector Machine.

    PubMed

    Manavalan, Balachandran; Shin, Tae H; Lee, Gwang

    2018-01-01

    Accurately identifying bacteriophage virion proteins from uncharacterized sequences is important to understand interactions between the phage and its host bacteria in order to develop new antibacterial drugs. However, identification of such proteins using experimental techniques is expensive and often time consuming; hence, development of an efficient computational algorithm for the prediction of phage virion proteins (PVPs) prior to in vitro experimentation is needed. Here, we describe a support vector machine (SVM)-based PVP predictor, called PVP-SVM, which was trained with 136 optimal features. A feature selection protocol was employed to identify the optimal features from a large set that included amino acid composition, dipeptide composition, atomic composition, physicochemical properties, and chain-transition-distribution. PVP-SVM achieved an accuracy of 0.870 during leave-one-out cross-validation, which was 6% higher than control SVM predictors trained with all features, indicating the efficiency of the feature selection method. Furthermore, PVP-SVM displayed superior performance compared to the currently available method, PVPred, and two other machine-learning methods developed in this study when objectively evaluated with an independent dataset. For the convenience of the scientific community, a user-friendly and publicly accessible web server has been established at www.thegleelab.org/PVP-SVM/PVP-SVM.html.

  16. CompareSVM: supervised, Support Vector Machine (SVM) inference of gene regularity networks.

    PubMed

    Gillani, Zeeshan; Akash, Muhammad Sajid Hamid; Rahaman, M D Matiur; Chen, Ming

    2014-11-30

    Predication of gene regularity network (GRN) from expression data is a challenging task. There are many methods that have been developed to address this challenge ranging from supervised to unsupervised methods. Most promising methods are based on support vector machine (SVM). There is a need for comprehensive analysis on prediction accuracy of supervised method SVM using different kernels on different biological experimental conditions and network size. We developed a tool (CompareSVM) based on SVM to compare different kernel methods for inference of GRN. Using CompareSVM, we investigated and evaluated different SVM kernel methods on simulated datasets of microarray of different sizes in detail. The results obtained from CompareSVM showed that accuracy of inference method depends upon the nature of experimental condition and size of the network. For network with nodes (<200) and average (over all sizes of networks), SVM Gaussian kernel outperform on knockout, knockdown, and multifactorial datasets compared to all the other inference methods. For network with large number of nodes (~500), choice of inference method depend upon nature of experimental condition. CompareSVM is available at http://bis.zju.edu.cn/CompareSVM/ .

  17. A comparison of different chemometrics approaches for the robust classification of electronic nose data.

    PubMed

    Gromski, Piotr S; Correa, Elon; Vaughan, Andrew A; Wedge, David C; Turner, Michael L; Goodacre, Royston

    2014-11-01

    Accurate detection of certain chemical vapours is important, as these may be diagnostic for the presence of weapons, drugs of misuse or disease. In order to achieve this, chemical sensors could be deployed remotely. However, the readout from such sensors is a multivariate pattern, and this needs to be interpreted robustly using powerful supervised learning methods. Therefore, in this study, we compared the classification accuracy of four pattern recognition algorithms which include linear discriminant analysis (LDA), partial least squares-discriminant analysis (PLS-DA), random forests (RF) and support vector machines (SVM) which employed four different kernels. For this purpose, we have used electronic nose (e-nose) sensor data (Wedge et al., Sensors Actuators B Chem 143:365-372, 2009). In order to allow direct comparison between our four different algorithms, we employed two model validation procedures based on either 10-fold cross-validation or bootstrapping. The results show that LDA (91.56% accuracy) and SVM with a polynomial kernel (91.66% accuracy) were very effective at analysing these e-nose data. These two models gave superior prediction accuracy, sensitivity and specificity in comparison to the other techniques employed. With respect to the e-nose sensor data studied here, our findings recommend that SVM with a polynomial kernel should be favoured as a classification method over the other statistical models that we assessed. SVM with non-linear kernels have the advantage that they can be used for classifying non-linear as well as linear mapping from analytical data space to multi-group classifications and would thus be a suitable algorithm for the analysis of most e-nose sensor data.

  18. Testing of the Support Vector Machine for Binary-Class Classification

    NASA Technical Reports Server (NTRS)

    Scholten, Matthew

    2011-01-01

    The Support Vector Machine is a powerful algorithm, useful in classifying data in to species. The Support Vector Machines implemented in this research were used as classifiers for the final stage in a Multistage Autonomous Target Recognition system. A single kernel SVM known as SVMlight, and a modified version known as a Support Vector Machine with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SMV as a method for classification. From trial to trial, SVM produces consistent results

  19. Rhombic micro-displacement amplifier for piezoelectric actuator and its linear and hybrid model

    NASA Astrophysics Data System (ADS)

    Chen, Jinglong; Zhang, Chunlin; Xu, Minglong; Zi, Yanyang; Zhang, Xinong

    2015-01-01

    This paper proposes rhombic micro-displacement amplifier (RMDA) for piezoelectric actuator (PA). First, the geometric amplification relations are analyzed and linear model is built to analyze the mechanical and electrical properties of this amplifier. Next, the accurate modeling method of amplifier is studied for important application of precise servo control. The classical Preisach model (CPM) is generally implemented using a numerical technique based on the first-order reversal curves (FORCs). The accuracy of CPM mainly depends on the number of FORCs. However, it is generally difficult to achieve enough number of FORCs in practice. So, Support Vector Machine (SVM) is employed in the work to circumvent the deficiency of the CPM. Then the hybrid model, which is based on discrete CPM and SVM is developed to account for hysteresis and dynamic effects. Finally, experimental validation is carried out. The analyzed result shows that this amplifier with the hybrid model is suitable for control application.

  20. Classification of cardiovascular tissues using LBP based descriptors and a cascade SVM.

    PubMed

    Mazo, Claudia; Alegre, Enrique; Trujillo, Maria

    2017-08-01

    Histological images have characteristics, such as texture, shape, colour and spatial structure, that permit the differentiation of each fundamental tissue and organ. Texture is one of the most discriminative features. The automatic classification of tissues and organs based on histology images is an open problem, due to the lack of automatic solutions when treating tissues without pathologies. In this paper, we demonstrate that it is possible to automatically classify cardiovascular tissues using texture information and Support Vector Machines (SVM). Additionally, we realised that it is feasible to recognise several cardiovascular organs following the same process. The texture of histological images was described using Local Binary Patterns (LBP), LBP Rotation Invariant (LBPri), Haralick features and different concatenations between them, representing in this way its content. Using a SVM with linear kernel, we selected the more appropriate descriptor that, for this problem, was a concatenation of LBP and LBPri. Due to the small number of the images available, we could not follow an approach based on deep learning, but we selected the classifier who yielded the higher performance by comparing SVM with Random Forest and Linear Discriminant Analysis. Once SVM was selected as the classifier with a higher area under the curve that represents both higher recall and precision, we tuned it evaluating different kernels, finding that a linear SVM allowed us to accurately separate four classes of tissues: (i) cardiac muscle of the heart, (ii) smooth muscle of the muscular artery, (iii) loose connective tissue, and (iv) smooth muscle of the large vein and the elastic artery. The experimental validation was conducted using 3000 blocks of 100 × 100 sized pixels, with 600 blocks per class and the classification was assessed using a 10-fold cross-validation. using LBP as the descriptor, concatenated with LBPri and a SVM with linear kernel, the main four classes of tissues were recognised with an AUC higher than 0.98. A polynomial kernel was then used to separate the elastic artery and vein, yielding an AUC in both cases superior to 0.98. Following the proposed approach, it is possible to separate with very high precision (AUC greater than 0.98) the fundamental tissues of the cardiovascular system along with some organs, such as the heart, arteries and veins. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Support-vector-machine tree-based domain knowledge learning toward automated sports video classification

    NASA Astrophysics Data System (ADS)

    Xiao, Guoqiang; Jiang, Yang; Song, Gang; Jiang, Jianmin

    2010-12-01

    We propose a support-vector-machine (SVM) tree to hierarchically learn from domain knowledge represented by low-level features toward automatic classification of sports videos. The proposed SVM tree adopts a binary tree structure to exploit the nature of SVM's binary classification, where each internal node is a single SVM learning unit, and each external node represents the classified output type. Such a SVM tree presents a number of advantages, which include: 1. low computing cost; 2. integrated learning and classification while preserving individual SVM's learning strength; and 3. flexibility in both structure and learning modules, where different numbers of nodes and features can be added to address specific learning requirements, and various learning models can be added as individual nodes, such as neural networks, AdaBoost, hidden Markov models, dynamic Bayesian networks, etc. Experiments support that the proposed SVM tree achieves good performances in sports video classifications.

  2. Agricultural mapping using Support Vector Machine-Based Endmember Extraction (SVM-BEE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archibald, Richard K; Filippi, Anthony M; Bhaduri, Budhendra L

    Extracting endmembers from remotely sensed images of vegetated areas can present difficulties. In this research, we applied a recently developed endmember-extraction algorithm based on Support Vector Machines (SVMs) to the problem of semi-autonomous estimation of vegetation endmembers from a hyperspectral image. This algorithm, referred to as Support Vector Machine-Based Endmember Extraction (SVM-BEE), accurately and rapidly yields a computed representation of hyperspectral data that can accommodate multiple distributions. The number of distributions is identified without prior knowledge, based upon this representation. Prior work established that SVM-BEE is robustly noise-tolerant and can semi-automatically and effectively estimate endmembers; synthetic data and a geologicmore » scene were previously analyzed. Here we compared the efficacies of the SVM-BEE and N-FINDR algorithms in extracting endmembers from a predominantly agricultural scene. SVM-BEE was able to estimate vegetation and other endmembers for all classes in the image, which N-FINDR failed to do. Classifications based on SVM-BEE endmembers were markedly more accurate compared with those based on N-FINDR endmembers.« less

  3. A Fast Reduced Kernel Extreme Learning Machine.

    PubMed

    Deng, Wan-Yu; Ong, Yew-Soon; Zheng, Qing-Hua

    2016-04-01

    In this paper, we present a fast and accurate kernel-based supervised algorithm referred to as the Reduced Kernel Extreme Learning Machine (RKELM). In contrast to the work on Support Vector Machine (SVM) or Least Square SVM (LS-SVM), which identifies the support vectors or weight vectors iteratively, the proposed RKELM randomly selects a subset of the available data samples as support vectors (or mapping samples). By avoiding the iterative steps of SVM, significant cost savings in the training process can be readily attained, especially on Big datasets. RKELM is established based on the rigorous proof of universal learning involving reduced kernel-based SLFN. In particular, we prove that RKELM can approximate any nonlinear functions accurately under the condition of support vectors sufficiency. Experimental results on a wide variety of real world small instance size and large instance size applications in the context of binary classification, multi-class problem and regression are then reported to show that RKELM can perform at competitive level of generalized performance as the SVM/LS-SVM at only a fraction of the computational effort incurred. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Landslide susceptibility mapping & prediction using Support Vector Machine for Mandakini River Basin, Garhwal Himalaya, India

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Thakur, Manoj; Dubey, Chandra S.; Shukla, Dericks P.

    2017-10-01

    In recent years, various machine learning techniques have been applied for landslide susceptibility mapping. In this study, three different variants of support vector machine viz., SVM, Proximal Support Vector Machine (PSVM) and L2-Support Vector Machine - Modified Finite Newton (L2-SVM-MFN) have been applied on the Mandakini River Basin in Uttarakhand, India to carry out the landslide susceptibility mapping. Eight thematic layers such as elevation, slope, aspect, drainages, geology/lithology, buffer of thrusts/faults, buffer of streams and soil along with the past landslide data were mapped in GIS environment and used for landslide susceptibility mapping in MATLAB. The study area covering 1625 km2 has merely 0.11% of area under landslides. There are 2009 pixels for past landslides out of which 50% (1000) landslides were considered as training set while remaining 50% as testing set. The performance of these techniques has been evaluated and the computational results show that L2-SVM-MFN obtains higher prediction values (0.829) of receiver operating characteristic curve (AUC-area under the curve) as compared to 0.807 for PSVM model and 0.79 for SVM. The results obtained from L2-SVM-MFN model are found to be superior than other SVM prediction models and suggest the usefulness of this technique to problem of landslide susceptibility mapping where training data is very less. However, these techniques can be used for satisfactory determination of susceptible zones with these inputs.

  5. Daily River Flow Forecasting with Hybrid Support Vector Machine – Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Zaini, N.; Malek, M. A.; Yusoff, M.; Mardi, N. H.; Norhisham, S.

    2018-04-01

    The application of artificial intelligence techniques for river flow forecasting can further improve the management of water resources and flood prevention. This study concerns the development of support vector machine (SVM) based model and its hybridization with particle swarm optimization (PSO) to forecast short term daily river flow at Upper Bertam Catchment located in Cameron Highland, Malaysia. Ten years duration of historical rainfall, antecedent river flow data and various meteorology parameters data from 2003 to 2012 are used in this study. Four SVM based models are proposed which are SVM1, SVM2, SVM-PSO1 and SVM-PSO2 to forecast 1 to 7 day ahead of river flow. SVM1 and SVM-PSO1 are the models with historical rainfall and antecedent river flow as its input, while SVM2 and SVM-PSO2 are the models with historical rainfall, antecedent river flow data and additional meteorological parameters as input. The performances of the proposed model are measured in term of RMSE and R2 . It is found that, SVM2 outperformed SVM1 and SVM-PSO2 outperformed SVM-PSO1 which meant the additional meteorology parameters used as input to the proposed models significantly affect the model performances. Hybrid models SVM-PSO1 and SVM-PSO2 yield higher performances as compared to SVM1 and SVM2. It is found that hybrid models are more effective in forecasting river flow at 1 to 7 day ahead at the study area.

  6. Prediction of Moisture Content for Congou Black Tea Withering Leaves Using Image Features and Nonlinear Method.

    PubMed

    Liang, Gaozhen; Dong, Chunwang; Hu, Bin; Zhu, Hongkai; Yuan, Haibo; Jiang, Yongwen; Hao, Guoshuang

    2018-05-18

    Withering is the first step in the processing of congou black tea. With respect to the deficiency of traditional water content detection methods, a machine vision based NDT (Non Destructive Testing) method was established to detect the moisture content of withered leaves. First, according to the time sequences using computer visual system collected visible light images of tea leaf surfaces, and color and texture characteristics are extracted through the spatial changes of colors. Then quantitative prediction models for moisture content detection of withered tea leaves was established through linear PLS (Partial Least Squares) and non-linear SVM (Support Vector Machine). The results showed correlation coefficients higher than 0.8 between the water contents and green component mean value (G), lightness component mean value (L * ) and uniformity (U), which means that the extracted characteristics have great potential to predict the water contents. The performance parameters as correlation coefficient of prediction set (Rp), root-mean-square error of prediction (RMSEP), and relative standard deviation (RPD) of the SVM prediction model are 0.9314, 0.0411 and 1.8004, respectively. The non-linear modeling method can better describe the quantitative analytical relations between the image and water content. With superior generalization and robustness, the method would provide a new train of thought and theoretical basis for the online water content monitoring technology of automated production of black tea.

  7. Predicting complications of percutaneous coronary intervention using a novel support vector method.

    PubMed

    Lee, Gyemin; Gurm, Hitinder S; Syed, Zeeshan

    2013-01-01

    To explore the feasibility of a novel approach using an augmented one-class learning algorithm to model in-laboratory complications of percutaneous coronary intervention (PCI). Data from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) multicenter registry for the years 2007 and 2008 (n=41 016) were used to train models to predict 13 different in-laboratory PCI complications using a novel one-plus-class support vector machine (OP-SVM) algorithm. The performance of these models in terms of discrimination and calibration was compared to the performance of models trained using the following classification algorithms on BMC2 data from 2009 (n=20 289): logistic regression (LR), one-class support vector machine classification (OC-SVM), and two-class support vector machine classification (TC-SVM). For the OP-SVM and TC-SVM approaches, variants of the algorithms with cost-sensitive weighting were also considered. The OP-SVM algorithm and its cost-sensitive variant achieved the highest area under the receiver operating characteristic curve for the majority of the PCI complications studied (eight cases). Similar improvements were observed for the Hosmer-Lemeshow χ(2) value (seven cases) and the mean cross-entropy error (eight cases). The OP-SVM algorithm based on an augmented one-class learning problem improved discrimination and calibration across different PCI complications relative to LR and traditional support vector machine classification. Such an approach may have value in a broader range of clinical domains.

  8. Application of machine learning on brain cancer multiclass classification

    NASA Astrophysics Data System (ADS)

    Panca, V.; Rustam, Z.

    2017-07-01

    Classification of brain cancer is a problem of multiclass classification. One approach to solve this problem is by first transforming it into several binary problems. The microarray gene expression dataset has the two main characteristics of medical data: extremely many features (genes) and only a few number of samples. The application of machine learning on microarray gene expression dataset mainly consists of two steps: feature selection and classification. In this paper, the features are selected using a method based on support vector machine recursive feature elimination (SVM-RFE) principle which is improved to solve multiclass classification, called multiple multiclass SVM-RFE. Instead of using only the selected features on a single classifier, this method combines the result of multiple classifiers. The features are divided into subsets and SVM-RFE is used on each subset. Then, the selected features on each subset are put on separate classifiers. This method enhances the feature selection ability of each single SVM-RFE. Twin support vector machine (TWSVM) is used as the method of the classifier to reduce computational complexity. While ordinary SVM finds single optimum hyperplane, the main objective Twin SVM is to find two non-parallel optimum hyperplanes. The experiment on the brain cancer microarray gene expression dataset shows this method could classify 71,4% of the overall test data correctly, using 100 and 1000 genes selected from multiple multiclass SVM-RFE feature selection method. Furthermore, the per class results show that this method could classify data of normal and MD class with 100% accuracy.

  9. Predicting complications of percutaneous coronary intervention using a novel support vector method

    PubMed Central

    Lee, Gyemin; Gurm, Hitinder S; Syed, Zeeshan

    2013-01-01

    Objective To explore the feasibility of a novel approach using an augmented one-class learning algorithm to model in-laboratory complications of percutaneous coronary intervention (PCI). Materials and methods Data from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) multicenter registry for the years 2007 and 2008 (n=41 016) were used to train models to predict 13 different in-laboratory PCI complications using a novel one-plus-class support vector machine (OP-SVM) algorithm. The performance of these models in terms of discrimination and calibration was compared to the performance of models trained using the following classification algorithms on BMC2 data from 2009 (n=20 289): logistic regression (LR), one-class support vector machine classification (OC-SVM), and two-class support vector machine classification (TC-SVM). For the OP-SVM and TC-SVM approaches, variants of the algorithms with cost-sensitive weighting were also considered. Results The OP-SVM algorithm and its cost-sensitive variant achieved the highest area under the receiver operating characteristic curve for the majority of the PCI complications studied (eight cases). Similar improvements were observed for the Hosmer–Lemeshow χ2 value (seven cases) and the mean cross-entropy error (eight cases). Conclusions The OP-SVM algorithm based on an augmented one-class learning problem improved discrimination and calibration across different PCI complications relative to LR and traditional support vector machine classification. Such an approach may have value in a broader range of clinical domains. PMID:23599229

  10. A new automated assessment method for contrast-detail images by applying support vector machine and its robustness to nonlinear image processing.

    PubMed

    Takei, Takaaki; Ikeda, Mitsuru; Imai, Kuniharu; Yamauchi-Kawaura, Chiyo; Kato, Katsuhiko; Isoda, Haruo

    2013-09-01

    The automated contrast-detail (C-D) analysis methods developed so-far cannot be expected to work well on images processed with nonlinear methods, such as noise reduction methods. Therefore, we have devised a new automated C-D analysis method by applying support vector machine (SVM), and tested for its robustness to nonlinear image processing. We acquired the CDRAD (a commercially available C-D test object) images at a tube voltage of 120 kV and a milliampere-second product (mAs) of 0.5-5.0. A partial diffusion equation based technique was used as noise reduction method. Three radiologists and three university students participated in the observer performance study. The training data for our SVM method was the classification data scored by the one radiologist for the CDRAD images acquired at 1.6 and 3.2 mAs and their noise-reduced images. We also compared the performance of our SVM method with the CDRAD Analyser algorithm. The mean C-D diagrams (that is a plot of the mean of the smallest visible hole diameter vs. hole depth) obtained from our devised SVM method agreed well with the ones averaged across the six human observers for both original and noise-reduced CDRAD images, whereas the mean C-D diagrams from the CDRAD Analyser algorithm disagreed with the ones from the human observers for both original and noise-reduced CDRAD images. In conclusion, our proposed SVM method for C-D analysis will work well for the images processed with the non-linear noise reduction method as well as for the original radiographic images.

  11. Incorporation of support vector machines in the LIBS toolbox for sensitive and robust classification amidst unexpected sample and system variability.

    PubMed

    Dingari, Narahara Chari; Barman, Ishan; Myakalwar, Ashwin Kumar; Tewari, Surya P; Kumar Gundawar, Manoj

    2012-03-20

    Despite the intrinsic elemental analysis capability and lack of sample preparation requirements, laser-induced breakdown spectroscopy (LIBS) has not been extensively used for real-world applications, e.g., quality assurance and process monitoring. Specifically, variability in sample, system, and experimental parameters in LIBS studies present a substantive hurdle for robust classification, even when standard multivariate chemometric techniques are used for analysis. Considering pharmaceutical sample investigation as an example, we propose the use of support vector machines (SVM) as a nonlinear classification method over conventional linear techniques such as soft independent modeling of class analogy (SIMCA) and partial least-squares discriminant analysis (PLS-DA) for discrimination based on LIBS measurements. Using over-the-counter pharmaceutical samples, we demonstrate that the application of SVM enables statistically significant improvements in prospective classification accuracy (sensitivity), because of its ability to address variability in LIBS sample ablation and plasma self-absorption behavior. Furthermore, our results reveal that SVM provides nearly 10% improvement in correct allocation rate and a concomitant reduction in misclassification rates of 75% (cf. PLS-DA) and 80% (cf. SIMCA)-when measurements from samples not included in the training set are incorporated in the test data-highlighting its robustness. While further studies on a wider matrix of sample types performed using different LIBS systems is needed to fully characterize the capability of SVM to provide superior predictions, we anticipate that the improved sensitivity and robustness observed here will facilitate application of the proposed LIBS-SVM toolbox for screening drugs and detecting counterfeit samples, as well as in related areas of forensic and biological sample analysis.

  12. Pedestrian detection in crowded scenes with the histogram of gradients principle

    NASA Astrophysics Data System (ADS)

    Sidla, O.; Rosner, M.; Lypetskyy, Y.

    2006-10-01

    This paper describes a close to real-time scale invariant implementation of a pedestrian detector system which is based on the Histogram of Oriented Gradients (HOG) principle. Salient HOG features are first selected from a manually created very large database of samples with an evolutionary optimization procedure that directly trains a polynomial Support Vector Machine (SVM). Real-time operation is achieved by a cascaded 2-step classifier which uses first a very fast linear SVM (with the same features as the polynomial SVM) to reject most of the irrelevant detections and then computes the decision function with a polynomial SVM on the remaining set of candidate detections. Scale invariance is achieved by running the detector of constant size on scaled versions of the original input images and by clustering the results over all resolutions. The pedestrian detection system has been implemented in two versions: i) fully body detection, and ii) upper body only detection. The latter is especially suited for very busy and crowded scenarios. On a state-of-the-art PC it is able to run at a frequency of 8 - 20 frames/sec.

  13. Exploitation of RF-DNA for Device Classification and Verification Using GRLVQI Processing

    DTIC Science & Technology

    2012-12-01

    5 FLD Fisher’s Linear Discriminant . . . . . . . . . . . . . . . . . . . 6 kNN K-Nearest Neighbor...Neighbor ( kNN ), Support Vector Machine (SVM), and simple cross-correlation techniques [40, 57, 82, 88, 94, 95]. The RF-DNA fingerprinting research in...Expansion and the Dis- crete Gabor Transform on a Non-Separable Lattice”. 2000 IEEE Int’l Conf on Acoustics, Speech , and Signal Processing (ICASSP00

  14. Study of support vector machine and serum surface-enhanced Raman spectroscopy for noninvasive esophageal cancer detection

    NASA Astrophysics Data System (ADS)

    Li, Shao-Xin; Zeng, Qiu-Yao; Li, Lin-Fang; Zhang, Yan-Jiao; Wan, Ming-Ming; Liu, Zhi-Ming; Xiong, Hong-Lian; Guo, Zhou-Yi; Liu, Song-Hao

    2013-02-01

    The ability of combining serum surface-enhanced Raman spectroscopy (SERS) with support vector machine (SVM) for improving classification esophageal cancer patients from normal volunteers is investigated. Two groups of serum SERS spectra based on silver nanoparticles (AgNPs) are obtained: one group from patients with pathologically confirmed esophageal cancer (n=30) and the other group from healthy volunteers (n=31). Principal components analysis (PCA), conventional SVM (C-SVM) and conventional SVM combination with PCA (PCA-SVM) methods are implemented to classify the same spectral dataset. Results show that a diagnostic accuracy of 77.0% is acquired for PCA technique, while diagnostic accuracies of 83.6% and 85.2% are obtained for C-SVM and PCA-SVM methods based on radial basis functions (RBF) models. The results prove that RBF SVM models are superior to PCA algorithm in classification serum SERS spectra. The study demonstrates that serum SERS in combination with SVM technique has great potential to provide an effective and accurate diagnostic schema for noninvasive detection of esophageal cancer.

  15. sw-SVM: sensor weighting support vector machines for EEG-based brain-computer interfaces.

    PubMed

    Jrad, N; Congedo, M; Phlypo, R; Rousseau, S; Flamary, R; Yger, F; Rakotomamonjy, A

    2011-10-01

    In many machine learning applications, like brain-computer interfaces (BCI), high-dimensional sensor array data are available. Sensor measurements are often highly correlated and signal-to-noise ratio is not homogeneously spread across sensors. Thus, collected data are highly variable and discrimination tasks are challenging. In this work, we focus on sensor weighting as an efficient tool to improve the classification procedure. We present an approach integrating sensor weighting in the classification framework. Sensor weights are considered as hyper-parameters to be learned by a support vector machine (SVM). The resulting sensor weighting SVM (sw-SVM) is designed to satisfy a margin criterion, that is, the generalization error. Experimental studies on two data sets are presented, a P300 data set and an error-related potential (ErrP) data set. For the P300 data set (BCI competition III), for which a large number of trials is available, the sw-SVM proves to perform equivalently with respect to the ensemble SVM strategy that won the competition. For the ErrP data set, for which a small number of trials are available, the sw-SVM shows superior performances as compared to three state-of-the art approaches. Results suggest that the sw-SVM promises to be useful in event-related potentials classification, even with a small number of training trials.

  16. Interpreting support vector machine models for multivariate group wise analysis in neuroimaging

    PubMed Central

    Gaonkar, Bilwaj; Shinohara, Russell T; Davatzikos, Christos

    2015-01-01

    Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913

  17. Discrimination of Active and Weakly Active Human BACE1 Inhibitors Using Self-Organizing Map and Support Vector Machine.

    PubMed

    Li, Hang; Wang, Maolin; Gong, Ya-Nan; Yan, Aixia

    2016-01-01

    β-secretase (BACE1) is an aspartyl protease, which is considered as a novel vital target in Alzheimer`s disease therapy. We collected a data set of 294 BACE1 inhibitors, and built six classification models to discriminate active and weakly active inhibitors using Kohonen's Self-Organizing Map (SOM) method and Support Vector Machine (SVM) method. Each molecular descriptor was calculated using the program ADRIANA.Code. We adopted two different methods: random method and Self-Organizing Map method, for training/test set split. The descriptors were selected by F-score and stepwise linear regression analysis. The best SVM model Model2C has a good prediction performance on test set with prediction accuracy, sensitivity (SE), specificity (SP) and Matthews correlation coefficient (MCC) of 89.02%, 90%, 88%, 0.78, respectively. Model 1A is the best SOM model, whose accuracy and MCC of the test set were 94.57% and 0.98, respectively. The lone pair electronegativity and polarizability related descriptors importantly contributed to bioactivity of BACE1 inhibitor. The Extended-Connectivity Finger-Prints_4 (ECFP_4) analysis found some vitally key substructural features, which could be helpful for further drug design research. The SOM and SVM models built in this study can be obtained from the authors by email or other contacts.

  18. A Non-Parametric Approach for the Activation Detection of Block Design fMRI Simulated Data Using Self-Organizing Maps and Support Vector Machine.

    PubMed

    Bahrami, Sheyda; Shamsi, Mousa

    2017-01-01

    Functional magnetic resonance imaging (fMRI) is a popular method to probe the functional organization of the brain using hemodynamic responses. In this method, volume images of the entire brain are obtained with a very good spatial resolution and low temporal resolution. However, they always suffer from high dimensionality in the face of classification algorithms. In this work, we combine a support vector machine (SVM) with a self-organizing map (SOM) for having a feature-based classification by using SVM. Then, a linear kernel SVM is used for detecting the active areas. Here, we use SOM for feature extracting and labeling the datasets. SOM has two major advances: (i) it reduces dimension of data sets for having less computational complexity and (ii) it is useful for identifying brain regions with small onset differences in hemodynamic responses. Our non-parametric model is compared with parametric and non-parametric methods. We use simulated fMRI data sets and block design inputs in this paper and consider the contrast to noise ratio (CNR) value equal to 0.6 for simulated datasets. fMRI simulated dataset has contrast 1-4% in active areas. The accuracy of our proposed method is 93.63% and the error rate is 6.37%.

  19. A comparison of numerical and machine-learning modeling of soil water content with limited input data

    NASA Astrophysics Data System (ADS)

    Karandish, Fatemeh; Šimůnek, Jiří

    2016-12-01

    Soil water content (SWC) is a key factor in optimizing the usage of water resources in agriculture since it provides information to make an accurate estimation of crop water demand. Methods for predicting SWC that have simple data requirements are needed to achieve an optimal irrigation schedule, especially for various water-saving irrigation strategies that are required to resolve both food and water security issues under conditions of water shortages. Thus, a two-year field investigation was carried out to provide a dataset to compare the effectiveness of HYDRUS-2D, a physically-based numerical model, with various machine-learning models, including Multiple Linear Regressions (MLR), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and Support Vector Machines (SVM), for simulating time series of SWC data under water stress conditions. SWC was monitored using TDRs during the maize growing seasons of 2010 and 2011. Eight combinations of six, simple, independent parameters, including pan evaporation and average air temperature as atmospheric parameters, cumulative growth degree days (cGDD) and crop coefficient (Kc) as crop factors, and water deficit (WD) and irrigation depth (In) as crop stress factors, were adopted for the estimation of SWCs in the machine-learning models. Having Root Mean Square Errors (RMSE) in the range of 0.54-2.07 mm, HYDRUS-2D ranked first for the SWC estimation, while the ANFIS and SVM models with input datasets of cGDD, Kc, WD and In ranked next with RMSEs ranging from 1.27 to 1.9 mm and mean bias errors of -0.07 to 0.27 mm, respectively. However, the MLR models did not perform well for SWC forecasting, mainly due to non-linear changes of SWCs under the irrigation process. The results demonstrated that despite requiring only simple input data, the ANFIS and SVM models could be favorably used for SWC predictions under water stress conditions, especially when there is a lack of data. However, process-based numerical models are undoubtedly a better choice for predicting SWCs with lower uncertainties when required data are available, and thus for designing water saving strategies for agriculture and for other environmental applications requiring estimates of SWCs.

  20. Intelligent diagnosis of short hydraulic signal based on improved EEMD and SVM with few low-dimensional training samples

    NASA Astrophysics Data System (ADS)

    Zhang, Meijun; Tang, Jian; Zhang, Xiaoming; Zhang, Jiaojiao

    2016-03-01

    The high accurate classification ability of an intelligent diagnosis method often needs a large amount of training samples with high-dimensional eigenvectors, however the characteristics of the signal need to be extracted accurately. Although the existing EMD(empirical mode decomposition) and EEMD(ensemble empirical mode decomposition) are suitable for processing non-stationary and non-linear signals, but when a short signal, such as a hydraulic impact signal, is concerned, their decomposition accuracy become very poor. An improve EEMD is proposed specifically for short hydraulic impact signals. The improvements of this new EEMD are mainly reflected in four aspects, including self-adaptive de-noising based on EEMD, signal extension based on SVM(support vector machine), extreme center fitting based on cubic spline interpolation, and pseudo component exclusion based on cross-correlation analysis. After the energy eigenvector is extracted from the result of the improved EEMD, the fault pattern recognition based on SVM with small amount of low-dimensional training samples is studied. At last, the diagnosis ability of improved EEMD+SVM method is compared with the EEMD+SVM and EMD+SVM methods, and its diagnosis accuracy is distinctly higher than the other two methods no matter the dimension of the eigenvectors are low or high. The improved EEMD is very propitious for the decomposition of short signal, such as hydraulic impact signal, and its combination with SVM has high ability for the diagnosis of hydraulic impact faults.

  1. Support vector machines for prediction and analysis of beta and gamma-turns in proteins.

    PubMed

    Pham, Tho Hoan; Satou, Kenji; Ho, Tu Bao

    2005-04-01

    Tight turns have long been recognized as one of the three important features of proteins, together with alpha-helix and beta-sheet. Tight turns play an important role in globular proteins from both the structural and functional points of view. More than 90% tight turns are beta-turns and most of the rest are gamma-turns. Analysis and prediction of beta-turns and gamma-turns is very useful for design of new molecules such as drugs, pesticides, and antigens. In this paper we investigated two aspects of applying support vector machine (SVM), a promising machine learning method for bioinformatics, to prediction and analysis of beta-turns and gamma-turns. First, we developed two SVM-based methods, called BTSVM and GTSVM, which predict beta-turns and gamma-turns in a protein from its sequence. When compared with other methods, BTSVM has a superior performance and GTSVM is competitive. Second, we used SVMs with a linear kernel to estimate the support of amino acids for the formation of beta-turns and gamma-turns depending on their position in a protein. Our analysis results are more comprehensive and easier to use than the previous results in designing turns in proteins.

  2. Research on Classification of Chinese Text Data Based on SVM

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Yu, Hongzhi; Wan, Fucheng; Xu, Tao

    2017-09-01

    Data Mining has important application value in today’s industry and academia. Text classification is a very important technology in data mining. At present, there are many mature algorithms for text classification. KNN, NB, AB, SVM, decision tree and other classification methods all show good classification performance. Support Vector Machine’ (SVM) classification method is a good classifier in machine learning research. This paper will study the classification effect based on the SVM method in the Chinese text data, and use the support vector machine method in the chinese text to achieve the classify chinese text, and to able to combination of academia and practical application.

  3. Improved Prediction of Blood-Brain Barrier Permeability Through Machine Learning with Combined Use of Molecular Property-Based Descriptors and Fingerprints.

    PubMed

    Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo

    2018-03-21

    Blood-brain barrier (BBB) permeability of a compound determines whether the compound can effectively enter the brain. It is an essential property which must be accounted for in drug discovery with a target in the brain. Several computational methods have been used to predict the BBB permeability. In particular, support vector machine (SVM), which is a kernel-based machine learning method, has been used popularly in this field. For SVM training and prediction, the compounds are characterized by molecular descriptors. Some SVM models were based on the use of molecular property-based descriptors (including 1D, 2D, and 3D descriptors) or fragment-based descriptors (known as the fingerprints of a molecule). The selection of descriptors is critical for the performance of a SVM model. In this study, we aimed to develop a generally applicable new SVM model by combining all of the features of the molecular property-based descriptors and fingerprints to improve the accuracy for the BBB permeability prediction. The results indicate that our SVM model has improved accuracy compared to the currently available models of the BBB permeability prediction.

  4. Tuning support vector machines for minimax and Neyman-Pearson classification.

    PubMed

    Davenport, Mark A; Baraniuk, Richard G; Scott, Clayton D

    2010-10-01

    This paper studies the training of support vector machine (SVM) classifiers with respect to the minimax and Neyman-Pearson criteria. In principle, these criteria can be optimized in a straightforward way using a cost-sensitive SVM. In practice, however, because these criteria require especially accurate error estimation, standard techniques for tuning SVM parameters, such as cross-validation, can lead to poor classifier performance. To address this issue, we first prove that the usual cost-sensitive SVM, here called the 2C-SVM, is equivalent to another formulation called the 2nu-SVM. We then exploit a characterization of the 2nu-SVM parameter space to develop a simple yet powerful approach to error estimation based on smoothing. In an extensive experimental study, we demonstrate that smoothing significantly improves the accuracy of cross-validation error estimates, leading to dramatic performance gains. Furthermore, we propose coordinate descent strategies that offer significant gains in computational efficiency, with little to no loss in performance.

  5. Comparison of four machine learning methods for object-oriented change detection in high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Bai, Ting; Sun, Kaimin; Deng, Shiquan; Chen, Yan

    2018-03-01

    High resolution image change detection is one of the key technologies of remote sensing application, which is of great significance for resource survey, environmental monitoring, fine agriculture, military mapping and battlefield environment detection. In this paper, for high-resolution satellite imagery, Random Forest (RF), Support Vector Machine (SVM), Deep belief network (DBN), and Adaboost models were established to verify the possibility of different machine learning applications in change detection. In order to compare detection accuracy of four machine learning Method, we applied these four machine learning methods for two high-resolution images. The results shows that SVM has higher overall accuracy at small samples compared to RF, Adaboost, and DBN for binary and from-to change detection. With the increase in the number of samples, RF has higher overall accuracy compared to Adaboost, SVM and DBN.

  6. Integrating image quality in 2nu-SVM biometric match score fusion.

    PubMed

    Vatsa, Mayank; Singh, Richa; Noore, Afzel

    2007-10-01

    This paper proposes an intelligent 2nu-support vector machine based match score fusion algorithm to improve the performance of face and iris recognition by integrating the quality of images. The proposed algorithm applies redundant discrete wavelet transform to evaluate the underlying linear and non-linear features present in the image. A composite quality score is computed to determine the extent of smoothness, sharpness, noise, and other pertinent features present in each subband of the image. The match score and the corresponding quality score of an image are fused using 2nu-support vector machine to improve the verification performance. The proposed algorithm is experimentally validated using the FERET face database and the CASIA iris database. The verification performance and statistical evaluation show that the proposed algorithm outperforms existing fusion algorithms.

  7. Support vector machines-based fault diagnosis for turbo-pump rotor

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng-Fa; Chu, Fu-Lei

    2006-05-01

    Most artificial intelligence methods used in fault diagnosis are based on empirical risk minimisation principle and have poor generalisation when fault samples are few. Support vector machines (SVM) is a new general machine-learning tool based on structural risk minimisation principle that exhibits good generalisation even when fault samples are few. Fault diagnosis based on SVM is discussed. Since basic SVM is originally designed for two-class classification, while most of fault diagnosis problems are multi-class cases, a new multi-class classification of SVM named 'one to others' algorithm is presented to solve the multi-class recognition problems. It is a binary tree classifier composed of several two-class classifiers organised by fault priority, which is simple, and has little repeated training amount, and the rate of training and recognition is expedited. The effectiveness of the method is verified by the application to the fault diagnosis for turbo pump rotor.

  8. Comparing SVM and ANN based Machine Learning Methods for Species Identification of Food Contaminating Beetles.

    PubMed

    Bisgin, Halil; Bera, Tanmay; Ding, Hongjian; Semey, Howard G; Wu, Leihong; Liu, Zhichao; Barnes, Amy E; Langley, Darryl A; Pava-Ripoll, Monica; Vyas, Himansu J; Tong, Weida; Xu, Joshua

    2018-04-25

    Insect pests, such as pantry beetles, are often associated with food contaminations and public health risks. Machine learning has the potential to provide a more accurate and efficient solution in detecting their presence in food products, which is currently done manually. In our previous research, we demonstrated such feasibility where Artificial Neural Network (ANN) based pattern recognition techniques could be implemented for species identification in the context of food safety. In this study, we present a Support Vector Machine (SVM) model which improved the average accuracy up to 85%. Contrary to this, the ANN method yielded ~80% accuracy after extensive parameter optimization. Both methods showed excellent genus level identification, but SVM showed slightly better accuracy  for most species. Highly accurate species level identification remains a challenge, especially in distinguishing between species from the same genus which may require improvements in both imaging and machine learning techniques. In summary, our work does illustrate a new SVM based technique and provides a good comparison with the ANN model in our context. We believe such insights will pave better way forward for the application of machine learning towards species identification and food safety.

  9. Spatially Regularized Machine Learning for Task and Resting-state fMRI

    PubMed Central

    Song, Xiaomu; Panych, Lawrence P.; Chen, Nan-kuei

    2015-01-01

    Background Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades. New Method A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space. Results The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level. Comparison with Existing Methods A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level. Conclusions The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies. PMID:26470627

  10. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics

    PubMed Central

    HUANG, SHUJUN; CAI, NIANGUANG; PACHECO, PEDRO PENZUTI; NARANDES, SHAVIRA; WANG, YANG; XU, WAYNE

    2017-01-01

    Machine learning with maximization (support) of separating margin (vector), called support vector machine (SVM) learning, is a powerful classification tool that has been used for cancer genomic classification or subtyping. Today, as advancements in high-throughput technologies lead to production of large amounts of genomic and epigenomic data, the classification feature of SVMs is expanding its use in cancer genomics, leading to the discovery of new biomarkers, new drug targets, and a better understanding of cancer driver genes. Herein we reviewed the recent progress of SVMs in cancer genomic studies. We intend to comprehend the strength of the SVM learning and its future perspective in cancer genomic applications. PMID:29275361

  11. Support vector machine learning-based fMRI data group analysis.

    PubMed

    Wang, Ze; Childress, Anna R; Wang, Jiongjiong; Detre, John A

    2007-07-15

    To explore the multivariate nature of fMRI data and to consider the inter-subject brain response discrepancies, a multivariate and brain response model-free method is fundamentally required. Two such methods are presented in this paper by integrating a machine learning algorithm, the support vector machine (SVM), and the random effect model. Without any brain response modeling, SVM was used to extract a whole brain spatial discriminance map (SDM), representing the brain response difference between the contrasted experimental conditions. Population inference was then obtained through the random effect analysis (RFX) or permutation testing (PMU) on the individual subjects' SDMs. Applied to arterial spin labeling (ASL) perfusion fMRI data, SDM RFX yielded lower false-positive rates in the null hypothesis test and higher detection sensitivity for synthetic activations with varying cluster size and activation strengths, compared to the univariate general linear model (GLM)-based RFX. For a sensory-motor ASL fMRI study, both SDM RFX and SDM PMU yielded similar activation patterns to GLM RFX and GLM PMU, respectively, but with higher t values and cluster extensions at the same significance level. Capitalizing on the absence of temporal noise correlation in ASL data, this study also incorporated PMU in the individual-level GLM and SVM analyses accompanied by group-level analysis through RFX or group-level PMU. Providing inferences on the probability of being activated or deactivated at each voxel, these individual-level PMU-based group analysis methods can be used to threshold the analysis results of GLM RFX, SDM RFX or SDM PMU.

  12. Classification of different kinds of pesticide residues on lettuce based on fluorescence spectra and WT-BCC-SVM algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Jun, Sun; Zhang, Bing; Jun, Wu

    2017-07-01

    In order to improve the reliability of the spectrum feature extracted by wavelet transform, a method combining wavelet transform (WT) with bacterial colony chemotaxis algorithm and support vector machine (BCC-SVM) algorithm (WT-BCC-SVM) was proposed in this paper. Besides, we aimed to identify different kinds of pesticide residues on lettuce leaves in a novel and rapid non-destructive way by using fluorescence spectra technology. The fluorescence spectral data of 150 lettuce leaf samples of five different kinds of pesticide residues on the surface of lettuce were obtained using Cary Eclipse fluorescence spectrometer. Standard normalized variable detrending (SNV detrending), Savitzky-Golay coupled with Standard normalized variable detrending (SG-SNV detrending) were used to preprocess the raw spectra, respectively. Bacterial colony chemotaxis combined with support vector machine (BCC-SVM) and support vector machine (SVM) classification models were established based on full spectra (FS) and wavelet transform characteristics (WTC), respectively. Moreover, WTC were selected by WT. The results showed that the accuracy of training set, calibration set and the prediction set of the best optimal classification model (SG-SNV detrending-WT-BCC-SVM) were 100%, 98% and 93.33%, respectively. In addition, the results indicated that it was feasible to use WT-BCC-SVM to establish diagnostic model of different kinds of pesticide residues on lettuce leaves.

  13. Determination of Hemicellulose, Cellulose and Lignin in Moso Bamboo by Near Infrared Spectroscopy

    PubMed Central

    Li, Xiaoli; Sun, Chanjun; Zhou, Binxiong; He, Yong

    2015-01-01

    The contents of hemicellulose, cellulose and lignin are important for moso bamboo processing in biomass energy industry. The feasibility of using near infrared (NIR) spectroscopy for rapid determination of hemicellulose, cellulose and lignin was investigated in this study. Initially, the linear relationship between bamboo components and their NIR spectroscopy was established. Subsequently, successive projections algorithm (SPA) was used to detect characteristic wavelengths for establishing the convenient models. For hemicellulose, cellulose and lignin, 22, 22 and 20 characteristic wavelengths were obtained, respectively. Nonlinear determination models were subsequently built by an artificial neural network (ANN) and a least-squares support vector machine (LS-SVM) based on characteristic wavelengths. The LS-SVM models for predicting hemicellulose, cellulose and lignin all obtained excellent results with high determination coefficients of 0.921, 0.909 and 0.892 respectively. These results demonstrated that NIR spectroscopy combined with SPA-LS-SVM is a useful, nondestructive tool for the determinations of hemicellulose, cellulose and lignin in moso bamboo. PMID:26601657

  14. Smile detectors correlation

    NASA Astrophysics Data System (ADS)

    Yuksel, Kivanc; Chang, Xin; Skarbek, Władysław

    2017-08-01

    The novel smile recognition algorithm is presented based on extraction of 68 facial salient points (fp68) using the ensemble of regression trees. The smile detector exploits the Support Vector Machine linear model. It is trained with few hundreds exemplar images by SVM algorithm working in 136 dimensional space. It is shown by the strict statistical data analysis that such geometric detector strongly depends on the geometry of mouth opening area, measured by triangulation of outer lip contour. To this goal two Bayesian detectors were developed and compared with SVM detector. The first uses the mouth area in 2D image, while the second refers to the mouth area in 3D animated face model. The 3D modeling is based on Candide-3 model and it is performed in real time along with three smile detectors and statistics estimators. The mouth area/Bayesian detectors exhibit high correlation with fp68/SVM detector in a range [0:8; 1:0], depending mainly on light conditions and individual features with advantage of 3D technique, especially in hard light conditions.

  15. The identification of high potential archers based on fitness and motor ability variables: A Support Vector Machine approach.

    PubMed

    Taha, Zahari; Musa, Rabiu Muazu; P P Abdul Majeed, Anwar; Alim, Muhammad Muaz; Abdullah, Mohamad Razali

    2018-02-01

    Support Vector Machine (SVM) has been shown to be an effective learning algorithm for classification and prediction. However, the application of SVM for prediction and classification in specific sport has rarely been used to quantify/discriminate low and high-performance athletes. The present study classified and predicted high and low-potential archers from a set of fitness and motor ability variables trained on different SVMs kernel algorithms. 50 youth archers with the mean age and standard deviation of 17.0 ± 0.6 years drawn from various archery programmes completed a six arrows shooting score test. Standard fitness and ability measurements namely hand grip, vertical jump, standing broad jump, static balance, upper muscle strength and the core muscle strength were also recorded. Hierarchical agglomerative cluster analysis (HACA) was used to cluster the archers based on the performance variables tested. SVM models with linear, quadratic, cubic, fine RBF, medium RBF, as well as the coarse RBF kernel functions, were trained based on the measured performance variables. The HACA clustered the archers into high-potential archers (HPA) and low-potential archers (LPA), respectively. The linear, quadratic, cubic, as well as the medium RBF kernel functions models, demonstrated reasonably excellent classification accuracy of 97.5% and 2.5% error rate for the prediction of the HPA and the LPA. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from a combination of the selected few measured fitness and motor ability performance variables examined which would consequently save cost, time and effort during talent identification programme. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A method of neighbor classes based SVM classification for optical printed Chinese character recognition.

    PubMed

    Zhang, Jie; Wu, Xiaohong; Yu, Yanmei; Luo, Daisheng

    2013-01-01

    In optical printed Chinese character recognition (OPCCR), many classifiers have been proposed for the recognition. Among the classifiers, support vector machine (SVM) might be the best classifier. However, SVM is a classifier for two classes. When it is used for multi-classes in OPCCR, its computation is time-consuming. Thus, we propose a neighbor classes based SVM (NC-SVM) to reduce the computation consumption of SVM. Experiments of NC-SVM classification for OPCCR have been done. The results of the experiments have shown that the NC-SVM we proposed can effectively reduce the computation time in OPCCR.

  17. HYBRID NEURAL NETWORK AND SUPPORT VECTOR MACHINE METHOD FOR OPTIMIZATION

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor)

    2005-01-01

    System and method for optimization of a design associated with a response function, using a hybrid neural net and support vector machine (NN/SVM) analysis to minimize or maximize an objective function, optionally subject to one or more constraints. As a first example, the NN/SVM analysis is applied iteratively to design of an aerodynamic component, such as an airfoil shape, where the objective function measures deviation from a target pressure distribution on the perimeter of the aerodynamic component. As a second example, the NN/SVM analysis is applied to data classification of a sequence of data points in a multidimensional space. The NN/SVM analysis is also applied to data regression.

  18. Hybrid Neural Network and Support Vector Machine Method for Optimization

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor)

    2007-01-01

    System and method for optimization of a design associated with a response function, using a hybrid neural net and support vector machine (NN/SVM) analysis to minimize or maximize an objective function, optionally subject to one or more constraints. As a first example, the NN/SVM analysis is applied iteratively to design of an aerodynamic component, such as an airfoil shape, where the objective function measures deviation from a target pressure distribution on the perimeter of the aerodynamic component. As a second example, the NN/SVM analysis is applied to data classification of a sequence of data points in a multidimensional space. The NN/SVM analysis is also applied to data regression.

  19. Relevance Vector Machine and Support Vector Machine Classifier Analysis of Scanning Laser Polarimetry Retinal Nerve Fiber Layer Measurements

    PubMed Central

    Bowd, Christopher; Medeiros, Felipe A.; Zhang, Zuohua; Zangwill, Linda M.; Hao, Jiucang; Lee, Te-Won; Sejnowski, Terrence J.; Weinreb, Robert N.; Goldbaum, Michael H.

    2010-01-01

    Purpose To classify healthy and glaucomatous eyes using relevance vector machine (RVM) and support vector machine (SVM) learning classifiers trained on retinal nerve fiber layer (RNFL) thickness measurements obtained by scanning laser polarimetry (SLP). Methods Seventy-two eyes of 72 healthy control subjects (average age = 64.3 ± 8.8 years, visual field mean deviation =−0.71 ± 1.2 dB) and 92 eyes of 92 patients with glaucoma (average age = 66.9 ± 8.9 years, visual field mean deviation =−5.32 ± 4.0 dB) were imaged with SLP with variable corneal compensation (GDx VCC; Laser Diagnostic Technologies, San Diego, CA). RVM and SVM learning classifiers were trained and tested on SLP-determined RNFL thickness measurements from 14 standard parameters and 64 sectors (approximately 5.6° each) obtained in the circumpapillary area under the instrument-defined measurement ellipse (total 78 parameters). Tenfold cross-validation was used to train and test RVM and SVM classifiers on unique subsets of the full 164-eye data set and areas under the receiver operating characteristic (AUROC) curve for the classification of eyes in the test set were generated. AUROC curve results from RVM and SVM were compared to those for 14 SLP software-generated global and regional RNFL thickness parameters. Also reported was the AUROC curve for the GDx VCC software-generated nerve fiber indicator (NFI). Results The AUROC curves for RVM and SVM were 0.90 and 0.91, respectively, and increased to 0.93 and 0.94 when the training sets were optimized with sequential forward and backward selection (resulting in reduced dimensional data sets). AUROC curves for optimized RVM and SVM were significantly larger than those for all individual SLP parameters. The AUROC curve for the NFI was 0.87. Conclusions Results from RVM and SVM trained on SLP RNFL thickness measurements are similar and provide accurate classification of glaucomatous and healthy eyes. RVM may be preferable to SVM, because it provides a Bayesian-derived probability of glaucoma as an output. These results suggest that these machine learning classifiers show good potential for glaucoma diagnosis. PMID:15790898

  20. A real-time neutron-gamma discriminator based on the support vector machine method for the time-of-flight neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Wei, ZHANG; Tongyu, WU; Bowen, ZHENG; Shiping, LI; Yipo, ZHANG; Zejie, YIN

    2018-04-01

    A new neutron-gamma discriminator based on the support vector machine (SVM) method is proposed to improve the performance of the time-of-flight neutron spectrometer. The neutron detector is an EJ-299-33 plastic scintillator with pulse-shape discrimination (PSD) property. The SVM algorithm is implemented in field programmable gate array (FPGA) to carry out the real-time sifting of neutrons in neutron-gamma mixed radiation fields. This study compares the ability of the pulse gradient analysis method and the SVM method. The results show that this SVM discriminator can provide a better discrimination accuracy of 99.1%. The accuracy and performance of the SVM discriminator based on FPGA have been evaluated in the experiments. It can get a figure of merit of 1.30.

  1. Explaining Support Vector Machines: A Color Based Nomogram

    PubMed Central

    Van Belle, Vanya; Van Calster, Ben; Van Huffel, Sabine; Suykens, Johan A. K.; Lisboa, Paulo

    2016-01-01

    Problem setting Support vector machines (SVMs) are very popular tools for classification, regression and other problems. Due to the large choice of kernels they can be applied with, a large variety of data can be analysed using these tools. Machine learning thanks its popularity to the good performance of the resulting models. However, interpreting the models is far from obvious, especially when non-linear kernels are used. Hence, the methods are used as black boxes. As a consequence, the use of SVMs is less supported in areas where interpretability is important and where people are held responsible for the decisions made by models. Objective In this work, we investigate whether SVMs using linear, polynomial and RBF kernels can be explained such that interpretations for model-based decisions can be provided. We further indicate when SVMs can be explained and in which situations interpretation of SVMs is (hitherto) not possible. Here, explainability is defined as the ability to produce the final decision based on a sum of contributions which depend on one single or at most two input variables. Results Our experiments on simulated and real-life data show that explainability of an SVM depends on the chosen parameter values (degree of polynomial kernel, width of RBF kernel and regularization constant). When several combinations of parameter values yield the same cross-validation performance, combinations with a lower polynomial degree or a larger kernel width have a higher chance of being explainable. Conclusions This work summarizes SVM classifiers obtained with linear, polynomial and RBF kernels in a single plot. Linear and polynomial kernels up to the second degree are represented exactly. For other kernels an indication of the reliability of the approximation is presented. The complete methodology is available as an R package and two apps and a movie are provided to illustrate the possibilities offered by the method. PMID:27723811

  2. Age and gender estimation using Region-SIFT and multi-layered SVM

    NASA Astrophysics Data System (ADS)

    Kim, Hyunduk; Lee, Sang-Heon; Sohn, Myoung-Kyu; Hwang, Byunghun

    2018-04-01

    In this paper, we propose an age and gender estimation framework using the region-SIFT feature and multi-layered SVM classifier. The suggested framework entails three processes. The first step is landmark based face alignment. The second step is the feature extraction step. In this step, we introduce the region-SIFT feature extraction method based on facial landmarks. First, we define sub-regions of the face. We then extract SIFT features from each sub-region. In order to reduce the dimensions of features we employ a Principal Component Analysis (PCA) and a Linear Discriminant Analysis (LDA). Finally, we classify age and gender using a multi-layered Support Vector Machines (SVM) for efficient classification. Rather than performing gender estimation and age estimation independently, the use of the multi-layered SVM can improve the classification rate by constructing a classifier that estimate the age according to gender. Moreover, we collect a dataset of face images, called by DGIST_C, from the internet. A performance evaluation of proposed method was performed with the FERET database, CACD database, and DGIST_C database. The experimental results demonstrate that the proposed approach classifies age and performs gender estimation very efficiently and accurately.

  3. [A prediction model for the activity of insecticidal crystal proteins from Bacillus thuringiensis based on support vector machine].

    PubMed

    Lin, Yi; Cai, Fu-Ying; Zhang, Guang-Ya

    2007-01-01

    A quantitative structure-property relationship (QSPR) model in terms of amino acid composition and the activity of Bacillus thuringiensis insecticidal crystal proteins was established. Support vector machine (SVM) is a novel general machine-learning tool based on the structural risk minimization principle that exhibits good generalization when fault samples are few; it is especially suitable for classification, forecasting, and estimation in cases where small amounts of samples are involved such as fault diagnosis; however, some parameters of SVM are selected based on the experience of the operator, which has led to decreased efficiency of SVM in practical application. The uniform design (UD) method was applied to optimize the running parameters of SVM. It was found that the average accuracy rate approached 73% when the penalty factor was 0.01, the epsilon 0.2, the gamma 0.05, and the range 0.5. The results indicated that UD might be used an effective method to optimize the parameters of SVM and SVM and could be used as an alternative powerful modeling tool for QSPR studies of the activity of Bacillus thuringiensis (Bt) insecticidal crystal proteins. Therefore, a novel method for predicting the insecticidal activity of Bt insecticidal crystal proteins was proposed by the authors of this study.

  4. A Genetic Algorithm Based Support Vector Machine Model for Blood-Brain Barrier Penetration Prediction

    PubMed Central

    Zhang, Daqing; Xiao, Jianfeng; Zhou, Nannan; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian

    2015-01-01

    Blood-brain barrier (BBB) is a highly complex physical barrier determining what substances are allowed to enter the brain. Support vector machine (SVM) is a kernel-based machine learning method that is widely used in QSAR study. For a successful SVM model, the kernel parameters for SVM and feature subset selection are the most important factors affecting prediction accuracy. In most studies, they are treated as two independent problems, but it has been proven that they could affect each other. We designed and implemented genetic algorithm (GA) to optimize kernel parameters and feature subset selection for SVM regression and applied it to the BBB penetration prediction. The results show that our GA/SVM model is more accurate than other currently available log BB models. Therefore, to optimize both SVM parameters and feature subset simultaneously with genetic algorithm is a better approach than other methods that treat the two problems separately. Analysis of our log BB model suggests that carboxylic acid group, polar surface area (PSA)/hydrogen-bonding ability, lipophilicity, and molecular charge play important role in BBB penetration. Among those properties relevant to BBB penetration, lipophilicity could enhance the BBB penetration while all the others are negatively correlated with BBB penetration. PMID:26504797

  5. Firmness prediction in Prunus persica 'Calrico' peaches by visible/short-wave near infrared spectroscopy and acoustic measurements using optimised linear and non-linear chemometric models.

    PubMed

    Lafuente, Victoria; Herrera, Luis J; Pérez, María del Mar; Val, Jesús; Negueruela, Ignacio

    2015-08-15

    In this work, near infrared spectroscopy (NIR) and an acoustic measure (AWETA) (two non-destructive methods) were applied in Prunus persica fruit 'Calrico' (n = 260) to predict Magness-Taylor (MT) firmness. Separate and combined use of these measures was evaluated and compared using partial least squares (PLS) and least squares support vector machine (LS-SVM) regression methods. Also, a mutual-information-based variable selection method, seeking to find the most significant variables to produce optimal accuracy of the regression models, was applied to a joint set of variables (NIR wavelengths and AWETA measure). The newly proposed combined NIR-AWETA model gave good values of the determination coefficient (R(2)) for PLS and LS-SVM methods (0.77 and 0.78, respectively), improving the reliability of MT firmness prediction in comparison with separate NIR and AWETA predictions. The three variables selected by the variable selection method (AWETA measure plus NIR wavelengths 675 and 697 nm) achieved R(2) values 0.76 and 0.77, PLS and LS-SVM. These results indicated that the proposed mutual-information-based variable selection algorithm was a powerful tool for the selection of the most relevant variables. © 2014 Society of Chemical Industry.

  6. lncRScan-SVM: A Tool for Predicting Long Non-Coding RNAs Using Support Vector Machine.

    PubMed

    Sun, Lei; Liu, Hui; Zhang, Lin; Meng, Jia

    2015-01-01

    Functional long non-coding RNAs (lncRNAs) have been bringing novel insight into biological study, however it is still not trivial to accurately distinguish the lncRNA transcripts (LNCTs) from the protein coding ones (PCTs). As various information and data about lncRNAs are preserved by previous studies, it is appealing to develop novel methods to identify the lncRNAs more accurately. Our method lncRScan-SVM aims at classifying PCTs and LNCTs using support vector machine (SVM). The gold-standard datasets for lncRScan-SVM model training, lncRNA prediction and method comparison were constructed according to the GENCODE gene annotations of human and mouse respectively. By integrating features derived from gene structure, transcript sequence, potential codon sequence and conservation, lncRScan-SVM outperforms other approaches, which is evaluated by several criteria such as sensitivity, specificity, accuracy, Matthews correlation coefficient (MCC) and area under curve (AUC). In addition, several known human lncRNA datasets were assessed using lncRScan-SVM. LncRScan-SVM is an efficient tool for predicting the lncRNAs, and it is quite useful for current lncRNA study.

  7. Optimizing support vector machine learning for semi-arid vegetation mapping by using clustering analysis

    NASA Astrophysics Data System (ADS)

    Su, Lihong

    In remote sensing communities, support vector machine (SVM) learning has recently received increasing attention. SVM learning usually requires large memory and enormous amounts of computation time on large training sets. According to SVM algorithms, the SVM classification decision function is fully determined by support vectors, which compose a subset of the training sets. In this regard, a solution to optimize SVM learning is to efficiently reduce training sets. In this paper, a data reduction method based on agglomerative hierarchical clustering is proposed to obtain smaller training sets for SVM learning. Using a multiple angle remote sensing dataset of a semi-arid region, the effectiveness of the proposed method is evaluated by classification experiments with a series of reduced training sets. The experiments show that there is no loss of SVM accuracy when the original training set is reduced to 34% using the proposed approach. Maximum likelihood classification (MLC) also is applied on the reduced training sets. The results show that MLC can also maintain the classification accuracy. This implies that the most informative data instances can be retained by this approach.

  8. Support vector machine and fuzzy C-mean clustering-based comparative evaluation of changes in motor cortex electroencephalogram under chronic alcoholism.

    PubMed

    Kumar, Surendra; Ghosh, Subhojit; Tetarway, Suhash; Sinha, Rakesh Kumar

    2015-07-01

    In this study, the magnitude and spatial distribution of frequency spectrum in the resting electroencephalogram (EEG) were examined to address the problem of detecting alcoholism in the cerebral motor cortex. The EEG signals were recorded from chronic alcoholic conditions (n = 20) and the control group (n = 20). Data were taken from motor cortex region and divided into five sub-bands (delta, theta, alpha, beta-1 and beta-2). Three methodologies were adopted for feature extraction: (1) absolute power, (2) relative power and (3) peak power frequency. The dimension of the extracted features is reduced by linear discrimination analysis and classified by support vector machine (SVM) and fuzzy C-mean clustering. The maximum classification accuracy (88 %) with SVM clustering was achieved with the EEG spectral features with absolute power frequency on F4 channel. Among the bands, relatively higher classification accuracy was found over theta band and beta-2 band in most of the channels when computed with the EEG features of relative power. Electrodes wise CZ, C3 and P4 were having more alteration. Considering the good classification accuracy obtained by SVM with relative band power features in most of the EEG channels of motor cortex, it can be suggested that the noninvasive automated online diagnostic system for the chronic alcoholic condition can be developed with the help of EEG signals.

  9. Comparative evaluation of support vector machine classification for computer aided detection of breast masses in mammography

    NASA Astrophysics Data System (ADS)

    Lesniak, J. M.; Hupse, R.; Blanc, R.; Karssemeijer, N.; Székely, G.

    2012-08-01

    False positive (FP) marks represent an obstacle for effective use of computer-aided detection (CADe) of breast masses in mammography. Typically, the problem can be approached either by developing more discriminative features or by employing different classifier designs. In this paper, the usage of support vector machine (SVM) classification for FP reduction in CADe is investigated, presenting a systematic quantitative evaluation against neural networks, k-nearest neighbor classification, linear discriminant analysis and random forests. A large database of 2516 film mammography examinations and 73 input features was used to train the classifiers and evaluate for their performance on correctly diagnosed exams as well as false negatives. Further, classifier robustness was investigated using varying training data and feature sets as input. The evaluation was based on the mean exam sensitivity in 0.05-1 FPs on normals on the free-response receiver operating characteristic curve (FROC), incorporated into a tenfold cross validation framework. It was found that SVM classification using a Gaussian kernel offered significantly increased detection performance (P = 0.0002) compared to the reference methods. Varying training data and input features, SVMs showed improved exploitation of large feature sets. It is concluded that with the SVM-based CADe a significant reduction of FPs is possible outperforming other state-of-the-art approaches for breast mass CADe.

  10. [Identification of varieties of cashmere by Vis/NIR spectroscopy technology based on PCA-SVM].

    PubMed

    Wu, Gui-Fang; He, Yong

    2009-06-01

    One mixed algorithm was presented to discriminate cashmere varieties with principal component analysis (PCA) and support vector machine (SVM). Cashmere fiber has such characteristics as threadlike, softness, glossiness and high tensile strength. The quality characters and economic value of each breed of cashmere are very different. In order to safeguard the consumer's rights and guarantee the quality of cashmere product, quickly, efficiently and correctly identifying cashmere has significant meaning to the production and transaction of cashmere material. The present research adopts Vis/NIRS spectroscopy diffuse techniques to collect the spectral data of cashmere. The near infrared fingerprint of cashmere was acquired by principal component analysis (PCA), and support vector machine (SVM) methods were used to further identify the cashmere material. The result of PCA indicated that the score map made by the scores of PC1, PC2 and PC3 was used, and 10 principal components (PCs) were selected as the input of support vector machine (SVM) based on the reliabilities of PCs of 99.99%. One hundred cashmere samples were used for calibration and the remaining 75 cashmere samples were used for validation. A one-against-all multi-class SVM model was built, the capabilities of SVM with different kernel function were comparatively analyzed, and the result showed that SVM possessing with the Gaussian kernel function has the best identification capabilities with the accuracy of 100%. This research indicated that the data mining method of PCA-SVM has a good identification effect, and can work as a new method for rapid identification of cashmere material varieties.

  11. Fuzzy support vector machine for microarray imbalanced data classification

    NASA Astrophysics Data System (ADS)

    Ladayya, Faroh; Purnami, Santi Wulan; Irhamah

    2017-11-01

    DNA microarrays are data containing gene expression with small sample sizes and high number of features. Furthermore, imbalanced classes is a common problem in microarray data. This occurs when a dataset is dominated by a class which have significantly more instances than the other minority classes. Therefore, it is needed a classification method that solve the problem of high dimensional and imbalanced data. Support Vector Machine (SVM) is one of the classification methods that is capable of handling large or small samples, nonlinear, high dimensional, over learning and local minimum issues. SVM has been widely applied to DNA microarray data classification and it has been shown that SVM provides the best performance among other machine learning methods. However, imbalanced data will be a problem because SVM treats all samples in the same importance thus the results is bias for minority class. To overcome the imbalanced data, Fuzzy SVM (FSVM) is proposed. This method apply a fuzzy membership to each input point and reformulate the SVM such that different input points provide different contributions to the classifier. The minority classes have large fuzzy membership so FSVM can pay more attention to the samples with larger fuzzy membership. Given DNA microarray data is a high dimensional data with a very large number of features, it is necessary to do feature selection first using Fast Correlation based Filter (FCBF). In this study will be analyzed by SVM, FSVM and both methods by applying FCBF and get the classification performance of them. Based on the overall results, FSVM on selected features has the best classification performance compared to SVM.

  12. Noninvasive extraction of fetal electrocardiogram based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Fu, Yumei; Xiang, Shihan; Chen, Tianyi; Zhou, Ping; Huang, Weiyan

    2015-10-01

    The fetal electrocardiogram (FECG) signal has important clinical value for diagnosing the fetal heart diseases and choosing suitable therapeutics schemes to doctors. So, the noninvasive extraction of FECG from electrocardiogram (ECG) signals becomes a hot research point. A new method, the Support Vector Machine (SVM) is utilized for the extraction of FECG with limited size of data. Firstly, the theory of the SVM and the principle of the extraction based on the SVM are studied. Secondly, the transformation of maternal electrocardiogram (MECG) component in abdominal composite signal is verified to be nonlinear and fitted with the SVM. Then, the SVM is trained, and the training results are compared with the real data to ensure the effect of the training. Meanwhile, the parameters of the SVM are optimized to achieve the best performance so that the learning machine can be utilized to fit the unknown samples. Finally, the FECG is extracted by removing the optimal estimation of MECG component from the abdominal composite signal. In order to evaluate the performance of FECG extraction based on the SVM, the Signal-to-Noise Ratio (SNR) and the visual test are used. The experimental results show that the FECG with good quality can be extracted, its SNR ratio is significantly increased as high as 9.2349 dB and the time cost is significantly decreased as short as 0.802 seconds. Compared with the traditional method, the noninvasive extraction method based on the SVM has a simple realization, the shorter treatment time and the better extraction quality under the same conditions.

  13. Seasonal streamflow forecast with machine learning and teleconnection indices in the context non-stationary climate

    NASA Astrophysics Data System (ADS)

    Haguma, D.; Leconte, R.

    2017-12-01

    Spatial and temporal water resources variability are associated with large-scale pressure and circulation anomalies known as teleconnections that influence the pattern of the atmospheric circulation. Teleconnection indices have been used successfully to forecast streamflow in short term. However, in some watersheds, classical methods cannot establish relationships between seasonal streamflow and teleconnection indices because of weak correlation. In this study, machine learning algorithms have been applied for seasonal streamflow forecast using teleconnection indices. Machine learning offers an alternative to classical methods to address the non-linear relationship between streamflow and teleconnection indices the context non-stationary climate. Two machine learning algorithms, random forest (RF) and support vector machine (SVM), with teleconnection indices associated with North American climatology, have been used to forecast inflows for one and two leading seasons for the Romaine River and Manicouagan River watersheds, located in Quebec, Canada. The indices are Pacific-North America (PNA), North Atlantic Oscillation (NAO), El Niño-Southern Oscillation (ENSO), Arctic Oscillation (AO) and Pacific Decadal Oscillation (PDO). The results showed that the machine learning algorithms have an important predictive power for seasonal streamflow for one and two leading seasons. The RF performed better for training and SVM generally have better results with high predictive capability for testing. The RF which is an ensemble method, allowed to assess the uncertainty of the forecast. The integration of teleconnection indices responds to the seasonal forecast of streamflow in the conditions of the non-stationarity the climate, although the teleconnection indices have a weak correlation with streamflow.

  14. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics.

    PubMed

    Huang, Shujun; Cai, Nianguang; Pacheco, Pedro Penzuti; Narrandes, Shavira; Wang, Yang; Xu, Wayne

    2018-01-01

    Machine learning with maximization (support) of separating margin (vector), called support vector machine (SVM) learning, is a powerful classification tool that has been used for cancer genomic classification or subtyping. Today, as advancements in high-throughput technologies lead to production of large amounts of genomic and epigenomic data, the classification feature of SVMs is expanding its use in cancer genomics, leading to the discovery of new biomarkers, new drug targets, and a better understanding of cancer driver genes. Herein we reviewed the recent progress of SVMs in cancer genomic studies. We intend to comprehend the strength of the SVM learning and its future perspective in cancer genomic applications. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. Power line identification of millimeter wave radar based on PCA-GS-SVM

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Zhang, Guifeng; Cheng, Yansheng

    2017-12-01

    Aiming at the problem that the existing detection method can not effectively solve the security of UAV's ultra low altitude flight caused by power line, a power line recognition method based on grid search (GS) and the principal component analysis and support vector machine (PCA-SVM) is proposed. Firstly, the candidate line of Hough transform is reduced by PCA, and the main feature of candidate line is extracted. Then, upport vector machine (SVM is) optimized by grid search method (GS). Finally, using support vector machine classifier optimized parameters to classify the candidate line. MATLAB simulation results show that this method can effectively identify the power line and noise, and has high recognition accuracy and algorithm efficiency.

  16. A Method of Neighbor Classes Based SVM Classification for Optical Printed Chinese Character Recognition

    PubMed Central

    Zhang, Jie; Wu, Xiaohong; Yu, Yanmei; Luo, Daisheng

    2013-01-01

    In optical printed Chinese character recognition (OPCCR), many classifiers have been proposed for the recognition. Among the classifiers, support vector machine (SVM) might be the best classifier. However, SVM is a classifier for two classes. When it is used for multi-classes in OPCCR, its computation is time-consuming. Thus, we propose a neighbor classes based SVM (NC-SVM) to reduce the computation consumption of SVM. Experiments of NC-SVM classification for OPCCR have been done. The results of the experiments have shown that the NC-SVM we proposed can effectively reduce the computation time in OPCCR. PMID:23536777

  17. Pattern Recognition Approaches for Breast Cancer DCE-MRI Classification: A Systematic Review.

    PubMed

    Fusco, Roberta; Sansone, Mario; Filice, Salvatore; Carone, Guglielmo; Amato, Daniela Maria; Sansone, Carlo; Petrillo, Antonella

    2016-01-01

    We performed a systematic review of several pattern analysis approaches for classifying breast lesions using dynamic, morphological, and textural features in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Several machine learning approaches, namely artificial neural networks (ANN), support vector machines (SVM), linear discriminant analysis (LDA), tree-based classifiers (TC), and Bayesian classifiers (BC), and features used for classification are described. The findings of a systematic review of 26 studies are presented. The sensitivity and specificity are respectively 91 and 83 % for ANN, 85 and 82 % for SVM, 96 and 85 % for LDA, 92 and 87 % for TC, and 82 and 85 % for BC. The sensitivity and specificity are respectively 82 and 74 % for dynamic features, 93 and 60 % for morphological features, 88 and 81 % for textural features, 95 and 86 % for a combination of dynamic and morphological features, and 88 and 84 % for a combination of dynamic, morphological, and other features. LDA and TC have the best performance. A combination of dynamic and morphological features gives the best performance.

  18. Classification of hadith into positive suggestion, negative suggestion, and information

    NASA Astrophysics Data System (ADS)

    Faraby, Said Al; Riviera Rachmawati Jasin, Eliza; Kusumaningrum, Andina; Adiwijaya

    2018-03-01

    As one of the Muslim life guidelines, based on the meaning of its sentence(s), a hadith can be viewed as a suggestion for doing something, or a suggestion for not doing something, or just information without any suggestion. In this paper, we tried to classify the Bahasa translation of hadith into the three categories using machine learning approach. We tried stemming and stopword removal in preprocessing, and TF-IDF of unigram, bigram, and trigram as the extracted features. As the classifier, we compared between SVM and Neural Network. Since the categories are new, so in order to compare the results of the previous pipelines, we created a baseline classifier using simple rule-based string matching technique. The rule-based algorithm conditions on the occurrence of words such as “janganlah, sholatlah, and so on” to determine the category. The baseline method achieved F1-Score of 0.69, while the best F1-Score from the machine learning approach was 0.88, and it was produced by SVM model with the linear kernel.

  19. Support vector machine as a binary classifier for automated object detection in remotely sensed data

    NASA Astrophysics Data System (ADS)

    Wardaya, P. D.

    2014-02-01

    In the present paper, author proposes the application of Support Vector Machine (SVM) for the analysis of satellite imagery. One of the advantages of SVM is that, with limited training data, it may generate comparable or even better results than the other methods. The SVM algorithm is used for automated object detection and characterization. Specifically, the SVM is applied in its basic nature as a binary classifier where it classifies two classes namely, object and background. The algorithm aims at effectively detecting an object from its background with the minimum training data. The synthetic image containing noises is used for algorithm testing. Furthermore, it is implemented to perform remote sensing image analysis such as identification of Island vegetation, water body, and oil spill from the satellite imagery. It is indicated that SVM provides the fast and accurate analysis with the acceptable result.

  20. Rapid differentiation of Ghana cocoa beans by FT-NIR spectroscopy coupled with multivariate classification

    NASA Astrophysics Data System (ADS)

    Teye, Ernest; Huang, Xingyi; Dai, Huang; Chen, Quansheng

    2013-10-01

    Quick, accurate and reliable technique for discrimination of cocoa beans according to geographical origin is essential for quality control and traceability management. This current study presents the application of Near Infrared Spectroscopy technique and multivariate classification for the differentiation of Ghana cocoa beans. A total of 194 cocoa bean samples from seven cocoa growing regions were used. Principal component analysis (PCA) was used to extract relevant information from the spectral data and this gave visible cluster trends. The performance of four multivariate classification methods: Linear discriminant analysis (LDA), K-nearest neighbors (KNN), Back propagation artificial neural network (BPANN) and Support vector machine (SVM) were compared. The performances of the models were optimized by cross validation. The results revealed that; SVM model was superior to all the mathematical methods with a discrimination rate of 100% in both the training and prediction set after preprocessing with Mean centering (MC). BPANN had a discrimination rate of 99.23% for the training set and 96.88% for prediction set. While LDA model had 96.15% and 90.63% for the training and prediction sets respectively. KNN model had 75.01% for the training set and 72.31% for prediction set. The non-linear classification methods used were superior to the linear ones. Generally, the results revealed that NIR Spectroscopy coupled with SVM model could be used successfully to discriminate cocoa beans according to their geographical origins for effective quality assurance.

  1. a Gsa-Svm Hybrid System for Classification of Binary Problems

    NASA Astrophysics Data System (ADS)

    Sarafrazi, Soroor; Nezamabadi-pour, Hossein; Barahman, Mojgan

    2011-06-01

    This paperhybridizesgravitational search algorithm (GSA) with support vector machine (SVM) and made a novel GSA-SVM hybrid system to improve the classification accuracy in binary problems. GSA is an optimization heuristic toolused to optimize the value of SVM kernel parameter (in this paper, radial basis function (RBF) is chosen as the kernel function). The experimental results show that this newapproach can achieve high classification accuracy and is comparable to or better than the particle swarm optimization (PSO)-SVM and genetic algorithm (GA)-SVM, which are two hybrid systems for classification.

  2. Application of machine learning using support vector machines for crater detection from Martian digital topography data

    NASA Astrophysics Data System (ADS)

    Salamunićcar, Goran; Lončarić, Sven

    In our previous work, in order to extend the GT-57633 catalogue [PSS, 56 (15), 1992-2008] with still uncatalogued impact-craters, the following has been done [GRS, 48 (5), in press, doi:10.1109/TGRS.2009.2037750]: (1) the crater detection algorithm (CDA) based on digital elevation model (DEM) was developed; (2) using 1/128° MOLA data, this CDA proposed 414631 crater-candidates; (3) each crater-candidate was analyzed manually; and (4) 57592 were confirmed as correct detections. The resulting GT-115225 catalog is the significant result of this effort. However, to check such a large number of crater-candidates manually was a demanding task. This was the main motivation for work on improvement of the CDA in order to provide better classification of craters as true and false detections. To achieve this, we extended the CDA with the machine learning capability, using support vector machines (SVM). In the first step, the CDA (re)calculates numerous terrain morphometric attributes from DEM. For this purpose, already existing modules of the CDA from our previous work were reused in order to be capable to prepare these attributes. In addition, new attributes were introduced such as ellipse eccentricity and tilt. For machine learning purpose, the CDA is additionally extended to provide 2-D topography-profile and 3-D shape for each crater-candidate. The latter two are a performance problem because of the large number of crater-candidates in combination with the large number of attributes. As a solution, we developed a CDA architecture wherein it is possible to combine the SVM with a radial basis function (RBF) or any other kernel (for initial set of attributes), with the SVM with linear kernel (for the cases when 2-D and 3-D data are included as well). Another challenge is that, in addition to diversity of possible crater types, there are numerous morphological differences between the smallest (mostly very circular bowl-shaped craters) and the largest (multi-ring) impact craters. As a solution to this problem, the CDA classifies crater-candidates according to their diameter into 7 groups (D smaller/larger then 2km, 4km, 8km, 16km, 32km and 64km), and for each group uses separate SVMs for training and prediction. For implementation of the machine-learning part and integration with the rest of the CDA, we used C.-J. Lin's et al. [http://www.csie.ntu.edu.tw/˜cjlin/] LIBSVM (A Library for Support Vector Machines) and LIBLINEAR (A Library for Large Linear Classification) libraries. According to the initial evaluation, now the CDA provides much better classification of craters as true and false detections.

  3. Spectroscopic Diagnosis of Arsenic Contamination in Agricultural Soils

    PubMed Central

    Shi, Tiezhu; Liu, Huizeng; Chen, Yiyun; Fei, Teng; Wang, Junjie; Wu, Guofeng

    2017-01-01

    This study investigated the abilities of pre-processing, feature selection and machine-learning methods for the spectroscopic diagnosis of soil arsenic contamination. The spectral data were pre-processed by using Savitzky-Golay smoothing, first and second derivatives, multiplicative scatter correction, standard normal variate, and mean centering. Principle component analysis (PCA) and the RELIEF algorithm were used to extract spectral features. Machine-learning methods, including random forests (RF), artificial neural network (ANN), radial basis function- and linear function- based support vector machine (RBF- and LF-SVM) were employed for establishing diagnosis models. The model accuracies were evaluated and compared by using overall accuracies (OAs). The statistical significance of the difference between models was evaluated by using McNemar’s test (Z value). The results showed that the OAs varied with the different combinations of pre-processing, feature selection, and classification methods. Feature selection methods could improve the modeling efficiencies and diagnosis accuracies, and RELIEF often outperformed PCA. The optimal models established by RF (OA = 86%), ANN (OA = 89%), RBF- (OA = 89%) and LF-SVM (OA = 87%) had no statistical difference in diagnosis accuracies (Z < 1.96, p < 0.05). These results indicated that it was feasible to diagnose soil arsenic contamination using reflectance spectroscopy. The appropriate combination of multivariate methods was important to improve diagnosis accuracies. PMID:28471412

  4. Spectrophotometric determination of ternary mixtures of thiamin, riboflavin and pyridoxal in pharmaceutical and human plasma by least-squares support vector machines.

    PubMed

    Niazi, Ali; Zolgharnein, Javad; Afiuni-Zadeh, Somaie

    2007-11-01

    Ternary mixtures of thiamin, riboflavin and pyridoxal have been simultaneously determined in synthetic and real samples by applications of spectrophotometric and least-squares support vector machines. The calibration graphs were linear in the ranges of 1.0 - 20.0, 1.0 - 10.0 and 1.0 - 20.0 microg ml(-1) with detection limits of 0.6, 0.5 and 0.7 microg ml(-1) for thiamin, riboflavin and pyridoxal, respectively. The experimental calibration matrix was designed with 21 mixtures of these chemicals. The concentrations were varied between calibration graph concentrations of vitamins. The simultaneous determination of these vitamin mixtures by using spectrophotometric methods is a difficult problem, due to spectral interferences. The partial least squares (PLS) modeling and least-squares support vector machines were used for the multivariate calibration of the spectrophotometric data. An excellent model was built using LS-SVM, with low prediction errors and superior performance in relation to PLS. The root mean square errors of prediction (RMSEP) for thiamin, riboflavin and pyridoxal with PLS and LS-SVM were 0.6926, 0.3755, 0.4322 and 0.0421, 0.0318, 0.0457, respectively. The proposed method was satisfactorily applied to the rapid simultaneous determination of thiamin, riboflavin and pyridoxal in commercial pharmaceutical preparations and human plasma samples.

  5. Implementation of support vector machine for classification of speech marked hijaiyah letters based on Mel frequency cepstrum coefficient feature extraction

    NASA Astrophysics Data System (ADS)

    Adhi Pradana, Wisnu; Adiwijaya; Novia Wisesty, Untari

    2018-03-01

    Support Vector Machine or commonly called SVM is one method that can be used to process the classification of a data. SVM classifies data from 2 different classes with hyperplane. In this study, the system was built using SVM to develop Arabic Speech Recognition. In the development of the system, there are 2 kinds of speakers that have been tested that is dependent speakers and independent speakers. The results from this system is an accuracy of 85.32% for speaker dependent and 61.16% for independent speakers.

  6. CS-AMPPred: An Updated SVM Model for Antimicrobial Activity Prediction in Cysteine-Stabilized Peptides

    PubMed Central

    Porto, William F.; Pires, Állan S.; Franco, Octavio L.

    2012-01-01

    The antimicrobial peptides (AMP) have been proposed as an alternative to control resistant pathogens. However, due to multifunctional properties of several AMP classes, until now there has been no way to perform efficient AMP identification, except through in vitro and in vivo tests. Nevertheless, an indication of activity can be provided by prediction methods. In order to contribute to the AMP prediction field, the CS-AMPPred (Cysteine-Stabilized Antimicrobial Peptides Predictor) is presented here, consisting of an updated version of the Support Vector Machine (SVM) model for antimicrobial activity prediction in cysteine-stabilized peptides. The CS-AMPPred is based on five sequence descriptors: indexes of (i) α-helix and (ii) loop formation; and averages of (iii) net charge, (iv) hydrophobicity and (v) flexibility. CS-AMPPred was based on 310 cysteine-stabilized AMPs and 310 sequences extracted from PDB. The polynomial kernel achieves the best accuracy on 5-fold cross validation (85.81%), while the radial and linear kernels achieve 84.19%. Testing in a blind data set, the polynomial and radial kernels achieve an accuracy of 90.00%, while the linear model achieves 89.33%. The three models reach higher accuracies than previously described methods. A standalone version of CS-AMPPred is available for download at and runs on any Linux machine. PMID:23240023

  7. Automated Quality Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised Machine Learning Algorithm.

    PubMed

    Pizarro, Ricardo A; Cheng, Xi; Barnett, Alan; Lemaitre, Herve; Verchinski, Beth A; Goldman, Aaron L; Xiao, Ena; Luo, Qian; Berman, Karen F; Callicott, Joseph H; Weinberger, Daniel R; Mattay, Venkata S

    2016-01-01

    High-resolution three-dimensional magnetic resonance imaging (3D-MRI) is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use. Currently, quality assessment involves slice-wise visual inspection of 3D-MRI volumes, a procedure that is both subjective and time consuming. Automating the quality rating of 3D-MRI could improve the efficiency and reproducibility of the procedure. The present study is one of the first efforts to apply a support vector machine (SVM) algorithm in the quality assessment of structural brain images, using global and region of interest (ROI) automated image quality features developed in-house. SVM is a supervised machine-learning algorithm that can predict the category of test datasets based on the knowledge acquired from a learning dataset. The performance (accuracy) of the automated SVM approach was assessed, by comparing the SVM-predicted quality labels to investigator-determined quality labels. The accuracy for classifying 1457 3D-MRI volumes from our database using the SVM approach is around 80%. These results are promising and illustrate the possibility of using SVM as an automated quality assessment tool for 3D-MRI.

  8. Intelligent Gearbox Diagnosis Methods Based on SVM, Wavelet Lifting and RBR

    PubMed Central

    Gao, Lixin; Ren, Zhiqiang; Tang, Wenliang; Wang, Huaqing; Chen, Peng

    2010-01-01

    Given the problems in intelligent gearbox diagnosis methods, it is difficult to obtain the desired information and a large enough sample size to study; therefore, we propose the application of various methods for gearbox fault diagnosis, including wavelet lifting, a support vector machine (SVM) and rule-based reasoning (RBR). In a complex field environment, it is less likely for machines to have the same fault; moreover, the fault features can also vary. Therefore, a SVM could be used for the initial diagnosis. First, gearbox vibration signals were processed with wavelet packet decomposition, and the signal energy coefficients of each frequency band were extracted and used as input feature vectors in SVM for normal and faulty pattern recognition. Second, precision analysis using wavelet lifting could successfully filter out the noisy signals while maintaining the impulse characteristics of the fault; thus effectively extracting the fault frequency of the machine. Lastly, the knowledge base was built based on the field rules summarized by experts to identify the detailed fault type. Results have shown that SVM is a powerful tool to accomplish gearbox fault pattern recognition when the sample size is small, whereas the wavelet lifting scheme can effectively extract fault features, and rule-based reasoning can be used to identify the detailed fault type. Therefore, a method that combines SVM, wavelet lifting and rule-based reasoning ensures effective gearbox fault diagnosis. PMID:22399894

  9. Intelligent gearbox diagnosis methods based on SVM, wavelet lifting and RBR.

    PubMed

    Gao, Lixin; Ren, Zhiqiang; Tang, Wenliang; Wang, Huaqing; Chen, Peng

    2010-01-01

    Given the problems in intelligent gearbox diagnosis methods, it is difficult to obtain the desired information and a large enough sample size to study; therefore, we propose the application of various methods for gearbox fault diagnosis, including wavelet lifting, a support vector machine (SVM) and rule-based reasoning (RBR). In a complex field environment, it is less likely for machines to have the same fault; moreover, the fault features can also vary. Therefore, a SVM could be used for the initial diagnosis. First, gearbox vibration signals were processed with wavelet packet decomposition, and the signal energy coefficients of each frequency band were extracted and used as input feature vectors in SVM for normal and faulty pattern recognition. Second, precision analysis using wavelet lifting could successfully filter out the noisy signals while maintaining the impulse characteristics of the fault; thus effectively extracting the fault frequency of the machine. Lastly, the knowledge base was built based on the field rules summarized by experts to identify the detailed fault type. Results have shown that SVM is a powerful tool to accomplish gearbox fault pattern recognition when the sample size is small, whereas the wavelet lifting scheme can effectively extract fault features, and rule-based reasoning can be used to identify the detailed fault type. Therefore, a method that combines SVM, wavelet lifting and rule-based reasoning ensures effective gearbox fault diagnosis.

  10. Downscaling of Aircraft-, Landsat-, and MODIS-based Land Surface Temperature Images with Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Ha, W.; Gowda, P. H.; Oommen, T.; Howell, T. A.; Hernandez, J. E.

    2010-12-01

    High spatial resolution Land Surface Temperature (LST) images are required to estimate evapotranspiration (ET) at a field scale for irrigation scheduling purposes. Satellite sensors such as Landsat 5 Thematic Mapper (TM) and Moderate Resolution Imaging Spectroradiometer (MODIS) can offer images at several spectral bandwidths including visible, near-infrared (NIR), shortwave-infrared, and thermal-infrared (TIR). The TIR images usually have coarser spatial resolutions than those from non-thermal infrared bands. Due to this technical constraint of the satellite sensors on these platforms, image downscaling has been proposed in the field of ET remote sensing. This paper explores the potential of the Support Vector Machines (SVM) to perform downscaling of LST images derived from aircraft (4 m spatial resolution), TM (120 m), and MODIS (1000 m) using normalized difference vegetation index images derived from simultaneously acquired high resolution visible and NIR data (1 m for aircraft, 30 m for TM, and 250 m for MODIS). The SVM is a new generation machine learning algorithm that has found a wide application in the field of pattern recognition and time series analysis. The SVM would be ideally suited for downscaling problems due to its generalization ability in capturing non-linear regression relationship between the predictand and the multiple predictors. Remote sensing data acquired over the Texas High Plains during the 2008 summer growing season will be used in this study. Accuracy assessment of the downscaled 1, 30, and 250 m LST images will be made by comparing them with LST data measured with infrared thermometers at a small spatial scale, upscaled 30 m aircraft-based LST images, and upscaled 250 m TM-based LST images, respectively.

  11. Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines.

    PubMed

    Lajnef, Tarek; Chaibi, Sahbi; Ruby, Perrine; Aguera, Pierre-Emmanuel; Eichenlaub, Jean-Baptiste; Samet, Mounir; Kachouri, Abdennaceur; Jerbi, Karim

    2015-07-30

    Sleep staging is a critical step in a range of electrophysiological signal processing pipelines used in clinical routine as well as in sleep research. Although the results currently achievable with automatic sleep staging methods are promising, there is need for improvement, especially given the time-consuming and tedious nature of visual sleep scoring. Here we propose a sleep staging framework that consists of a multi-class support vector machine (SVM) classification based on a decision tree approach. The performance of the method was evaluated using polysomnographic data from 15 subjects (electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) recordings). The decision tree, or dendrogram, was obtained using a hierarchical clustering technique and a wide range of time and frequency-domain features were extracted. Feature selection was carried out using forward sequential selection and classification was evaluated using k-fold cross-validation. The dendrogram-based SVM (DSVM) achieved mean specificity, sensitivity and overall accuracy of 0.92, 0.74 and 0.88 respectively, compared to expert visual scoring. Restricting DSVM classification to data where both experts' scoring was consistent (76.73% of the data) led to a mean specificity, sensitivity and overall accuracy of 0.94, 0.82 and 0.92 respectively. The DSVM framework outperforms classification with more standard multi-class "one-against-all" SVM and linear-discriminant analysis. The promising results of the proposed methodology suggest that it may be a valuable alternative to existing automatic methods and that it could accelerate visual scoring by providing a robust starting hypnogram that can be further fine-tuned by expert inspection. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. In Situ Measurement of Some Soil Properties in Paddy Soil Using Visible and Near-Infrared Spectroscopy

    PubMed Central

    Wenjun, Ji; Zhou, Shi; Jingyi, Huang; Shuo, Li

    2014-01-01

    In situ measurements with visible and near-infrared spectroscopy (vis-NIR) provide an efficient way for acquiring soil information of paddy soils in the short time gap between the harvest and following rotation. The aim of this study was to evaluate its feasibility to predict a series of soil properties including organic matter (OM), organic carbon (OC), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), available potassium (AK) and pH of paddy soils in Zhejiang province, China. Firstly, the linear partial least squares regression (PLSR) was performed on the in situ spectra and the predictions were compared to those with laboratory-based recorded spectra. Then, the non-linear least-square support vector machine (LS-SVM) algorithm was carried out aiming to extract more useful information from the in situ spectra and improve predictions. Results show that in terms of OC, OM, TN, AN and pH, (i) the predictions were worse using in situ spectra compared to laboratory-based spectra with PLSR algorithm (ii) the prediction accuracy using LS-SVM (R2>0.75, RPD>1.90) was obviously improved with in situ vis-NIR spectra compared to PLSR algorithm, and comparable or even better than results generated using laboratory-based spectra with PLSR; (iii) in terms of AP and AK, poor predictions were obtained with in situ spectra (R2<0.5, RPD<1.50) either using PLSR or LS-SVM. The results highlight the use of LS-SVM for in situ vis-NIR spectroscopic estimation of soil properties of paddy soils. PMID:25153132

  13. Potential of cancer screening with serum surface-enhanced Raman spectroscopy and a support vector machine

    NASA Astrophysics Data System (ADS)

    Li, S. X.; Zhang, Y. J.; Zeng, Q. Y.; Li, L. F.; Guo, Z. Y.; Liu, Z. M.; Xiong, H. L.; Liu, S. H.

    2014-06-01

    Cancer is the most common disease to threaten human health. The ability to screen individuals with malignant tumours with only a blood sample would be greatly advantageous to early diagnosis and intervention. This study explores the possibility of discriminating between cancer patients and normal subjects with serum surface-enhanced Raman spectroscopy (SERS) and a support vector machine (SVM) through a peripheral blood sample. A total of 130 blood samples were obtained from patients with liver cancer, colonic cancer, esophageal cancer, nasopharyngeal cancer, gastric cancer, as well as 113 blood samples from normal volunteers. Several diagnostic models were built with the serum SERS spectra using SVM and principal component analysis (PCA) techniques. The results show that a diagnostic accuracy of 85.5% is acquired with a PCA algorithm, while a diagnostic accuracy of 95.8% is obtained using radial basis function (RBF), PCA-SVM methods. The results prove that a RBF kernel PCA-SVM technique is superior to PCA and conventional SVM (C-SVM) algorithms in classification serum SERS spectra. The study demonstrates that serum SERS, in combination with SVM techniques, has great potential for screening cancerous patients with any solid malignant tumour through a peripheral blood sample.

  14. MIC-SVM: Designing A Highly Efficient Support Vector Machine For Advanced Modern Multi-Core and Many-Core Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Song, Shuaiwen; Fu, Haohuan

    2014-08-16

    Support Vector Machine (SVM) has been widely used in data-mining and Big Data applications as modern commercial databases start to attach an increasing importance to the analytic capabilities. In recent years, SVM was adapted to the field of High Performance Computing for power/performance prediction, auto-tuning, and runtime scheduling. However, even at the risk of losing prediction accuracy due to insufficient runtime information, researchers can only afford to apply offline model training to avoid significant runtime training overhead. To address the challenges above, we designed and implemented MICSVM, a highly efficient parallel SVM for x86 based multi-core and many core architectures,more » such as the Intel Ivy Bridge CPUs and Intel Xeon Phi coprocessor (MIC).« less

  15. Classification of Phylogenetic Profiles for Protein Function Prediction: An SVM Approach

    NASA Astrophysics Data System (ADS)

    Kotaru, Appala Raju; Joshi, Ramesh C.

    Predicting the function of an uncharacterized protein is a major challenge in post-genomic era due to problems complexity and scale. Having knowledge of protein function is a crucial link in the development of new drugs, better crops, and even the development of biochemicals such as biofuels. Recently numerous high-throughput experimental procedures have been invented to investigate the mechanisms leading to the accomplishment of a protein’s function and Phylogenetic profile is one of them. Phylogenetic profile is a way of representing a protein which encodes evolutionary history of proteins. In this paper we proposed a method for classification of phylogenetic profiles using supervised machine learning method, support vector machine classification along with radial basis function as kernel for identifying functionally linked proteins. We experimentally evaluated the performance of the classifier with the linear kernel, polynomial kernel and compared the results with the existing tree kernel. In our study we have used proteins of the budding yeast saccharomyces cerevisiae genome. We generated the phylogenetic profiles of 2465 yeast genes and for our study we used the functional annotations that are available in the MIPS database. Our experiments show that the performance of the radial basis kernel is similar to polynomial kernel is some functional classes together are better than linear, tree kernel and over all radial basis kernel outperformed the polynomial kernel, linear kernel and tree kernel. In analyzing these results we show that it will be feasible to make use of SVM classifier with radial basis function as kernel to predict the gene functionality using phylogenetic profiles.

  16. Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction: a review

    NASA Astrophysics Data System (ADS)

    Quitadamo, L. R.; Cavrini, F.; Sbernini, L.; Riillo, F.; Bianchi, L.; Seri, S.; Saggio, G.

    2017-02-01

    Support vector machines (SVMs) are widely used classifiers for detecting physiological patterns in human-computer interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the applications of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported.

  17. Online Least Squares One-Class Support Vector Machines-Based Abnormal Visual Event Detection

    PubMed Central

    Wang, Tian; Chen, Jie; Zhou, Yi; Snoussi, Hichem

    2013-01-01

    The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM), combined with its sparsified version (sparse online LS-OC-SVM). LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method. PMID:24351629

  18. Online least squares one-class support vector machines-based abnormal visual event detection.

    PubMed

    Wang, Tian; Chen, Jie; Zhou, Yi; Snoussi, Hichem

    2013-12-12

    The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM), combined with its sparsified version (sparse online LS-OC-SVM). LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method.

  19. [Quantitative relationship between gas chromatographic retention time and structural parameters of alkylphenols].

    PubMed

    Ruan, Xiaofang; Zhang, Ruisheng; Yao, Xiaojun; Liu, Mancang; Fan, Botao

    2007-03-01

    Alkylphenols are a group of permanent pollutants in the environment and could adversely disturb the human endocrine system. It is therefore important to effectively separate and measure the alkylphenols. To guide the chromatographic analysis of these compounds in practice, the development of quantitative relationship between the molecular structure and the retention time of alkylphenols becomes necessary. In this study, topological, constitutional, geometrical, electrostatic and quantum-chemical descriptors of 44 alkylphenols were calculated using a software, CODESSA, and these descriptors were pre-selected using the heuristic method. As a result, three-descriptor linear model (LM) was developed to describe the relationship between the molecular structure and the retention time of alkylphenols. Meanwhile, the non-linear regression model was also developed based on support vector machine (SVM) using the same three descriptors. The correlation coefficient (R(2)) for the LM and SVM was 0.98 and 0. 92, and the corresponding root-mean-square error was 0. 99 and 2. 77, respectively. By comparing the stability and prediction ability of the two models, it was found that the linear model was a better method for describing the quantitative relationship between the retention time of alkylphenols and the molecular structure. The results obtained suggested that the linear model could be applied for the chromatographic analysis of alkylphenols with known molecular structural parameters.

  20. Nonlinear programming for classification problems in machine learning

    NASA Astrophysics Data System (ADS)

    Astorino, Annabella; Fuduli, Antonio; Gaudioso, Manlio

    2016-10-01

    We survey some nonlinear models for classification problems arising in machine learning. In the last years this field has become more and more relevant due to a lot of practical applications, such as text and web classification, object recognition in machine vision, gene expression profile analysis, DNA and protein analysis, medical diagnosis, customer profiling etc. Classification deals with separation of sets by means of appropriate separation surfaces, which is generally obtained by solving a numerical optimization model. While linear separability is the basis of the most popular approach to classification, the Support Vector Machine (SVM), in the recent years using nonlinear separating surfaces has received some attention. The objective of this work is to recall some of such proposals, mainly in terms of the numerical optimization models. In particular we tackle the polyhedral, ellipsoidal, spherical and conical separation approaches and, for some of them, we also consider the semisupervised versions.

  1. Scaling Support Vector Machines On Modern HPC Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Fu, Haohuan; Song, Shuaiwen

    2015-02-01

    We designed and implemented MIC-SVM, a highly efficient parallel SVM for x86 based multicore and many-core architectures, such as the Intel Ivy Bridge CPUs and Intel Xeon Phi co-processor (MIC). We propose various novel analysis methods and optimization techniques to fully utilize the multilevel parallelism provided by these architectures and serve as general optimization methods for other machine learning tools.

  2. Combining macula clinical signs and patient characteristics for age-related macular degeneration diagnosis: a machine learning approach.

    PubMed

    Fraccaro, Paolo; Nicolo, Massimo; Bonetto, Monica; Giacomini, Mauro; Weller, Peter; Traverso, Carlo Enrico; Prosperi, Mattia; OSullivan, Dympna

    2015-01-27

    To investigate machine learning methods, ranging from simpler interpretable techniques to complex (non-linear) "black-box" approaches, for automated diagnosis of Age-related Macular Degeneration (AMD). Data from healthy subjects and patients diagnosed with AMD or other retinal diseases were collected during routine visits via an Electronic Health Record (EHR) system. Patients' attributes included demographics and, for each eye, presence/absence of major AMD-related clinical signs (soft drusen, retinal pigment epitelium, defects/pigment mottling, depigmentation area, subretinal haemorrhage, subretinal fluid, macula thickness, macular scar, subretinal fibrosis). Interpretable techniques known as white box methods including logistic regression and decision trees as well as less interpreitable techniques known as black box methods, such as support vector machines (SVM), random forests and AdaBoost, were used to develop models (trained and validated on unseen data) to diagnose AMD. The gold standard was confirmed diagnosis of AMD by physicians. Sensitivity, specificity and area under the receiver operating characteristic (AUC) were used to assess performance. Study population included 487 patients (912 eyes). In terms of AUC, random forests, logistic regression and adaboost showed a mean performance of (0.92), followed by SVM and decision trees (0.90). All machine learning models identified soft drusen and age as the most discriminating variables in clinicians' decision pathways to diagnose AMD. Both black-box and white box methods performed well in identifying diagnoses of AMD and their decision pathways. Machine learning models developed through the proposed approach, relying on clinical signs identified by retinal specialists, could be embedded into EHR to provide physicians with real time (interpretable) support.

  3. Robust feature extraction for rapid classification of damage in composites

    NASA Astrophysics Data System (ADS)

    Coelho, Clyde K.; Reynolds, Whitney; Chattopadhyay, Aditi

    2009-03-01

    The ability to detect anomalies in signals from sensors is imperative for structural health monitoring (SHM) applications. Many of the candidate algorithms for these applications either require a lot of training examples or are very computationally inefficient for large sample sizes. The damage detection framework presented in this paper uses a combination of Linear Discriminant Analysis (LDA) along with Support Vector Machines (SVM) to obtain a computationally efficient classification scheme for rapid damage state determination. LDA was used for feature extraction of damage signals from piezoelectric sensors on a composite plate and these features were used to train the SVM algorithm in parts, reducing the computational intensity associated with the quadratic optimization problem that needs to be solved during training. SVM classifiers were organized into a binary tree structure to speed up classification, which also reduces the total training time required. This framework was validated on composite plates that were impacted at various locations. The results show that the algorithm was able to correctly predict the different impact damage cases in composite laminates using less than 21 percent of the total available training data after data reduction.

  4. Hyperspectral Image Enhancement and Mixture Deep-Learning Classification of Corneal Epithelium Injuries.

    PubMed

    Noor, Siti Salwa Md; Michael, Kaleena; Marshall, Stephen; Ren, Jinchang

    2017-11-16

    In our preliminary study, the reflectance signatures obtained from hyperspectral imaging (HSI) of normal and abnormal corneal epithelium tissues of porcine show similar morphology with subtle differences. Here we present image enhancement algorithms that can be used to improve the interpretability of data into clinically relevant information to facilitate diagnostics. A total of 25 corneal epithelium images without the application of eye staining were used. Three image feature extraction approaches were applied for image classification: (i) image feature classification from histogram using a support vector machine with a Gaussian radial basis function (SVM-GRBF); (ii) physical image feature classification using deep-learning Convolutional Neural Networks (CNNs) only; and (iii) the combined classification of CNNs and SVM-Linear. The performance results indicate that our chosen image features from the histogram and length-scale parameter were able to classify with up to 100% accuracy; particularly, at CNNs and CNNs-SVM, by employing 80% of the data sample for training and 20% for testing. Thus, in the assessment of corneal epithelium injuries, HSI has high potential as a method that could surpass current technologies regarding speed, objectivity, and reliability.

  5. Recognition algorithm for assisting ovarian cancer diagnosis from coregistered ultrasound and photoacoustic images: ex vivo study

    NASA Astrophysics Data System (ADS)

    Alqasemi, Umar; Kumavor, Patrick; Aguirre, Andres; Zhu, Quing

    2012-12-01

    Unique features and the underlining hypotheses of how these features may relate to the tumor physiology in coregistered ultrasound and photoacoustic images of ex vivo ovarian tissue are introduced. The images were first compressed with wavelet transform. The mean Radon transform of photoacoustic images was then computed and fitted with a Gaussian function to find the centroid of a suspicious area for shift-invariant recognition process. Twenty-four features were extracted from a training set by several methods, including Fourier transform, image statistics, and different composite filters. The features were chosen from more than 400 training images obtained from 33 ex vivo ovaries of 24 patients, and used to train three classifiers, including generalized linear model, neural network, and support vector machine (SVM). The SVM achieved the best training performance and was able to exclusively separate cancerous from non-cancerous cases with 100% sensitivity and specificity. At the end, the classifiers were used to test 95 new images obtained from 37 ovaries of 20 additional patients. The SVM classifier achieved 76.92% sensitivity and 95.12% specificity. Furthermore, if we assume that recognizing one image as a cancer is sufficient to consider an ovary as malignant, the SVM classifier achieves 100% sensitivity and 87.88% specificity.

  6. Toxicity of ionic liquids: database and prediction via quantitative structure-activity relationship method.

    PubMed

    Zhao, Yongsheng; Zhao, Jihong; Huang, Ying; Zhou, Qing; Zhang, Xiangping; Zhang, Suojiang

    2014-08-15

    A comprehensive database on toxicity of ionic liquids (ILs) is established. The database includes over 4000 pieces of data. Based on the database, the relationship between IL's structure and its toxicity has been analyzed qualitatively. Furthermore, Quantitative Structure-Activity relationships (QSAR) model is conducted to predict the toxicities (EC50 values) of various ILs toward the Leukemia rat cell line IPC-81. Four parameters selected by the heuristic method (HM) are used to perform the studies of multiple linear regression (MLR) and support vector machine (SVM). The squared correlation coefficient (R(2)) and the root mean square error (RMSE) of training sets by two QSAR models are 0.918 and 0.959, 0.258 and 0.179, respectively. The prediction R(2) and RMSE of QSAR test sets by MLR model are 0.892 and 0.329, by SVM model are 0.958 and 0.234, respectively. The nonlinear model developed by SVM algorithm is much outperformed MLR, which indicates that SVM model is more reliable in the prediction of toxicity of ILs. This study shows that increasing the relative number of O atoms of molecules leads to decrease in the toxicity of ILs. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Machine learning search for variable stars

    NASA Astrophysics Data System (ADS)

    Pashchenko, Ilya N.; Sokolovsky, Kirill V.; Gavras, Panagiotis

    2018-04-01

    Photometric variability detection is often considered as a hypothesis testing problem: an object is variable if the null hypothesis that its brightness is constant can be ruled out given the measurements and their uncertainties. The practical applicability of this approach is limited by uncorrected systematic errors. We propose a new variability detection technique sensitive to a wide range of variability types while being robust to outliers and underestimated measurement uncertainties. We consider variability detection as a classification problem that can be approached with machine learning. Logistic Regression (LR), Support Vector Machines (SVM), k Nearest Neighbours (kNN), Neural Nets (NN), Random Forests (RF), and Stochastic Gradient Boosting classifier (SGB) are applied to 18 features (variability indices) quantifying scatter and/or correlation between points in a light curve. We use a subset of Optical Gravitational Lensing Experiment phase two (OGLE-II) Large Magellanic Cloud (LMC) photometry (30 265 light curves) that was searched for variability using traditional methods (168 known variable objects) as the training set and then apply the NN to a new test set of 31 798 OGLE-II LMC light curves. Among 205 candidates selected in the test set, 178 are real variables, while 13 low-amplitude variables are new discoveries. The machine learning classifiers considered are found to be more efficient (select more variables and fewer false candidates) compared to traditional techniques using individual variability indices or their linear combination. The NN, SGB, SVM, and RF show a higher efficiency compared to LR and kNN.

  8. A mechatronics platform to study prosthetic hand control using EMG signals.

    PubMed

    Geethanjali, P

    2016-09-01

    In this paper, a low-cost mechatronics platform for the design and development of robotic hands as well as a surface electromyogram (EMG) pattern recognition system is proposed. This paper also explores various EMG classification techniques using a low-cost electronics system in prosthetic hand applications. The proposed platform involves the development of a four channel EMG signal acquisition system; pattern recognition of acquired EMG signals; and development of a digital controller for a robotic hand. Four-channel surface EMG signals, acquired from ten healthy subjects for six different movements of the hand, were used to analyse pattern recognition in prosthetic hand control. Various time domain features were extracted and grouped into five ensembles to compare the influence of features in feature-selective classifiers (SLR) with widely considered non-feature-selective classifiers, such as neural networks (NN), linear discriminant analysis (LDA) and support vector machines (SVM) applied with different kernels. The results divulged that the average classification accuracy of the SVM, with a linear kernel function, outperforms other classifiers with feature ensembles, Hudgin's feature set and auto regression (AR) coefficients. However, the slight improvement in classification accuracy of SVM incurs more processing time and memory space in the low-level controller. The Kruskal-Wallis (KW) test also shows that there is no significant difference in the classification performance of SLR with Hudgin's feature set to that of SVM with Hudgin's features along with AR coefficients. In addition, the KW test shows that SLR was found to be better in respect to computation time and memory space, which is vital in a low-level controller. Similar to SVM, with a linear kernel function, other non-feature selective LDA and NN classifiers also show a slight improvement in performance using twice the features but with the drawback of increased memory space requirement and time. This prototype facilitated the study of various issues of pattern recognition and identified an efficient classifier, along with a feature ensemble, in the implementation of EMG controlled prosthetic hands in a laboratory setting at low-cost. This platform may help to motivate and facilitate prosthetic hand research in developing countries.

  9. Identification of handwriting by using the genetic algorithm (GA) and support vector machine (SVM)

    NASA Astrophysics Data System (ADS)

    Zhang, Qigui; Deng, Kai

    2016-12-01

    As portable digital camera and a camera phone comes more and more popular, and equally pressing is meeting the requirements of people to shoot at any time, to identify and storage handwritten character. In this paper, genetic algorithm(GA) and support vector machine(SVM)are used for identification of handwriting. Compare with parameters-optimized method, this technique overcomes two defects: first, it's easy to trap in the local optimum; second, finding the best parameters in the larger range will affects the efficiency of classification and prediction. As the experimental results suggest, GA-SVM has a higher recognition rate.

  10. SVM-Prot 2016: A Web-Server for Machine Learning Prediction of Protein Functional Families from Sequence Irrespective of Similarity.

    PubMed

    Li, Ying Hong; Xu, Jing Yu; Tao, Lin; Li, Xiao Feng; Li, Shuang; Zeng, Xian; Chen, Shang Ying; Zhang, Peng; Qin, Chu; Zhang, Cheng; Chen, Zhe; Zhu, Feng; Chen, Yu Zong

    2016-01-01

    Knowledge of protein function is important for biological, medical and therapeutic studies, but many proteins are still unknown in function. There is a need for more improved functional prediction methods. Our SVM-Prot web-server employed a machine learning method for predicting protein functional families from protein sequences irrespective of similarity, which complemented those similarity-based and other methods in predicting diverse classes of proteins including the distantly-related proteins and homologous proteins of different functions. Since its publication in 2003, we made major improvements to SVM-Prot with (1) expanded coverage from 54 to 192 functional families, (2) more diverse protein descriptors protein representation, (3) improved predictive performances due to the use of more enriched training datasets and more variety of protein descriptors, (4) newly integrated BLAST analysis option for assessing proteins in the SVM-Prot predicted functional families that were similar in sequence to a query protein, and (5) newly added batch submission option for supporting the classification of multiple proteins. Moreover, 2 more machine learning approaches, K nearest neighbor and probabilistic neural networks, were added for facilitating collective assessment of protein functions by multiple methods. SVM-Prot can be accessed at http://bidd2.nus.edu.sg/cgi-bin/svmprot/svmprot.cgi.

  11. A Comparative Experimental Study on the Use of Machine Learning Approaches for Automated Valve Monitoring Based on Acoustic Emission Parameters

    NASA Astrophysics Data System (ADS)

    Ali, Salah M.; Hui, K. H.; Hee, L. M.; Salman Leong, M.; Al-Obaidi, M. A.; Ali, Y. H.; Abdelrhman, Ahmed M.

    2018-03-01

    Acoustic emission (AE) analysis has become a vital tool for initiating the maintenance tasks in many industries. However, the analysis process and interpretation has been found to be highly dependent on the experts. Therefore, an automated monitoring method would be required to reduce the cost and time consumed in the interpretation of AE signal. This paper investigates the application of two of the most common machine learning approaches namely artificial neural network (ANN) and support vector machine (SVM) to automate the diagnosis of valve faults in reciprocating compressor based on AE signal parameters. Since the accuracy is an essential factor in any automated diagnostic system, this paper also provides a comparative study based on predictive performance of ANN and SVM. AE parameters data was acquired from single stage reciprocating air compressor with different operational and valve conditions. ANN and SVM diagnosis models were subsequently devised by combining AE parameters of different conditions. Results demonstrate that ANN and SVM models have the same results in term of prediction accuracy. However, SVM model is recommended to automate diagnose the valve condition in due to the ability of handling a high number of input features with low sampling data sets.

  12. Density-Dependent Quantized Least Squares Support Vector Machine for Large Data Sets.

    PubMed

    Nan, Shengyu; Sun, Lei; Chen, Badong; Lin, Zhiping; Toh, Kar-Ann

    2017-01-01

    Based on the knowledge that input data distribution is important for learning, a data density-dependent quantization scheme (DQS) is proposed for sparse input data representation. The usefulness of the representation scheme is demonstrated by using it as a data preprocessing unit attached to the well-known least squares support vector machine (LS-SVM) for application on big data sets. Essentially, the proposed DQS adopts a single shrinkage threshold to obtain a simple quantization scheme, which adapts its outputs to input data density. With this quantization scheme, a large data set is quantized to a small subset where considerable sample size reduction is generally obtained. In particular, the sample size reduction can save significant computational cost when using the quantized subset for feature approximation via the Nyström method. Based on the quantized subset, the approximated features are incorporated into LS-SVM to develop a data density-dependent quantized LS-SVM (DQLS-SVM), where an analytic solution is obtained in the primal solution space. The developed DQLS-SVM is evaluated on synthetic and benchmark data with particular emphasis on large data sets. Extensive experimental results show that the learning machine incorporating DQS attains not only high computational efficiency but also good generalization performance.

  13. Common spatial pattern combined with kernel linear discriminate and generalized radial basis function for motor imagery-based brain computer interface applications

    NASA Astrophysics Data System (ADS)

    Hekmatmanesh, Amin; Jamaloo, Fatemeh; Wu, Huapeng; Handroos, Heikki; Kilpeläinen, Asko

    2018-04-01

    Brain Computer Interface (BCI) can be a challenge for developing of robotic, prosthesis and human-controlled systems. This work focuses on the implementation of a common spatial pattern (CSP) base algorithm to detect event related desynchronization patterns. Utilizing famous previous work in this area, features are extracted by filter bank with common spatial pattern (FBCSP) method, and then weighted by a sensitive learning vector quantization (SLVQ) algorithm. In the current work, application of the radial basis function (RBF) as a mapping kernel of linear discriminant analysis (KLDA) method on the weighted features, allows the transfer of data into a higher dimension for more discriminated data scattering by RBF kernel. Afterwards, support vector machine (SVM) with generalized radial basis function (GRBF) kernel is employed to improve the efficiency and robustness of the classification. Averagely, 89.60% accuracy and 74.19% robustness are achieved. BCI Competition III, Iva data set is used to evaluate the algorithm for detecting right hand and foot imagery movement patterns. Results show that combination of KLDA with SVM-GRBF classifier makes 8.9% and 14.19% improvements in accuracy and robustness, respectively. For all the subjects, it is concluded that mapping the CSP features into a higher dimension by RBF and utilization GRBF as a kernel of SVM, improve the accuracy and reliability of the proposed method.

  14. Recurrence quantification analysis and support vector machines for golf handicap and low back pain EMG classification.

    PubMed

    Silva, Luís; Vaz, João Rocha; Castro, Maria António; Serranho, Pedro; Cabri, Jan; Pezarat-Correia, Pedro

    2015-08-01

    The quantification of non-linear characteristics of electromyography (EMG) must contain information allowing to discriminate neuromuscular strategies during dynamic skills. There are a lack of studies about muscle coordination under motor constrains during dynamic contractions. In golf, both handicap (Hc) and low back pain (LBP) are the main factors associated with the occurrence of injuries. The aim of this study was to analyze the accuracy of support vector machines SVM on EMG-based classification to discriminate Hc (low and high handicap) and LBP (with and without LPB) in the main phases of golf swing. For this purpose recurrence quantification analysis (RQA) features of the trunk and the lower limb muscles were used to feed a SVM classifier. Recurrence rate (RR) and the ratio between determinism (DET) and RR showed a high discriminant power. The Hc accuracy for the swing, backswing, and downswing were 94.4±2.7%, 97.1±2.3%, and 95.3±2.6%, respectively. For LBP, the accuracy was 96.9±3.8% for the swing, and 99.7±0.4% in the backswing. External oblique (EO), biceps femoris (BF), semitendinosus (ST) and rectus femoris (RF) showed high accuracy depending on the laterality within the phase. RQA features and SVM showed a high muscle discriminant capacity within swing phases by Hc and by LBP. Low back pain golfers showed different neuromuscular coordination strategies when compared with asymptomatic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Classifier transfer with data selection strategies for online support vector machine classification with class imbalance

    NASA Astrophysics Data System (ADS)

    Krell, Mario Michael; Wilshusen, Nils; Seeland, Anett; Kim, Su Kyoung

    2017-04-01

    Objective. Classifier transfers usually come with dataset shifts. To overcome dataset shifts in practical applications, we consider the limitations in computational resources in this paper for the adaptation of batch learning algorithms, like the support vector machine (SVM). Approach. We focus on data selection strategies which limit the size of the stored training data by different inclusion, exclusion, and further dataset manipulation criteria like handling class imbalance with two new approaches. We provide a comparison of the strategies with linear SVMs on several synthetic datasets with different data shifts as well as on different transfer settings with electroencephalographic (EEG) data. Main results. For the synthetic data, adding only misclassified samples performed astoundingly well. Here, balancing criteria were very important when the other criteria were not well chosen. For the transfer setups, the results show that the best strategy depends on the intensity of the drift during the transfer. Adding all and removing the oldest samples results in the best performance, whereas for smaller drifts, it can be sufficient to only add samples near the decision boundary of the SVM which reduces processing resources. Significance. For brain-computer interfaces based on EEG data, models trained on data from a calibration session, a previous recording session, or even from a recording session with another subject are used. We show, that by using the right combination of data selection criteria, it is possible to adapt the SVM classifier to overcome the performance drop from the transfer.

  16. Fast mental states decoding in mixed reality.

    PubMed

    De Massari, Daniele; Pacheco, Daniel; Malekshahi, Rahim; Betella, Alberto; Verschure, Paul F M J; Birbaumer, Niels; Caria, Andrea

    2014-01-01

    The combination of Brain-Computer Interface (BCI) technology, allowing online monitoring and decoding of brain activity, with virtual and mixed reality (MR) systems may help to shape and guide implicit and explicit learning using ecological scenarios. Real-time information of ongoing brain states acquired through BCI might be exploited for controlling data presentation in virtual environments. Brain states discrimination during mixed reality experience is thus critical for adapting specific data features to contingent brain activity. In this study we recorded electroencephalographic (EEG) data while participants experienced MR scenarios implemented through the eXperience Induction Machine (XIM). The XIM is a novel framework modeling the integration of a sensing system that evaluates and measures physiological and psychological states with a number of actuators and effectors that coherently reacts to the user's actions. We then assessed continuous EEG-based discrimination of spatial navigation, reading and calculation performed in MR, using linear discriminant analysis (LDA) and support vector machine (SVM) classifiers. Dynamic single trial classification showed high accuracy of LDA and SVM classifiers in detecting multiple brain states as well as in differentiating between high and low mental workload, using a 5 s time-window shifting every 200 ms. Our results indicate overall better performance of LDA with respect to SVM and suggest applicability of our approach in a BCI-controlled MR scenario. Ultimately, successful prediction of brain states might be used to drive adaptation of data representation in order to boost information processing in MR.

  17. Fast mental states decoding in mixed reality

    PubMed Central

    De Massari, Daniele; Pacheco, Daniel; Malekshahi, Rahim; Betella, Alberto; Verschure, Paul F. M. J.; Birbaumer, Niels; Caria, Andrea

    2014-01-01

    The combination of Brain-Computer Interface (BCI) technology, allowing online monitoring and decoding of brain activity, with virtual and mixed reality (MR) systems may help to shape and guide implicit and explicit learning using ecological scenarios. Real-time information of ongoing brain states acquired through BCI might be exploited for controlling data presentation in virtual environments. Brain states discrimination during mixed reality experience is thus critical for adapting specific data features to contingent brain activity. In this study we recorded electroencephalographic (EEG) data while participants experienced MR scenarios implemented through the eXperience Induction Machine (XIM). The XIM is a novel framework modeling the integration of a sensing system that evaluates and measures physiological and psychological states with a number of actuators and effectors that coherently reacts to the user's actions. We then assessed continuous EEG-based discrimination of spatial navigation, reading and calculation performed in MR, using linear discriminant analysis (LDA) and support vector machine (SVM) classifiers. Dynamic single trial classification showed high accuracy of LDA and SVM classifiers in detecting multiple brain states as well as in differentiating between high and low mental workload, using a 5 s time-window shifting every 200 ms. Our results indicate overall better performance of LDA with respect to SVM and suggest applicability of our approach in a BCI-controlled MR scenario. Ultimately, successful prediction of brain states might be used to drive adaptation of data representation in order to boost information processing in MR. PMID:25505878

  18. Classification of burn wounds using support vector machines

    NASA Astrophysics Data System (ADS)

    Acha, Begona; Serrano, Carmen; Palencia, Sergio; Murillo, Juan Jose

    2004-05-01

    The purpose of this work is to improve a previous method developed by the authors for the classification of burn wounds into their depths. The inputs of the system are color and texture information, as these are the characteristics observed by physicians in order to give a diagnosis. Our previous work consisted in segmenting the burn wound from the rest of the image and classifying the burn into its depth. In this paper we focus on the classification problem only. We already proposed to use a Fuzzy-ARTMAP neural network (NN). However, we may take advantage of new powerful classification tools such as Support Vector Machines (SVM). We apply the five-folded cross validation scheme to divide the database into training and validating sets. Then, we apply a feature selection method for each classifier, which will give us the set of features that yields the smallest classification error for each classifier. Features used to classify are first-order statistical parameters extracted from the L*, u* and v* color components of the image. The feature selection algorithms used are the Sequential Forward Selection (SFS) and the Sequential Backward Selection (SBS) methods. As data of the problem faced here are not linearly separable, the SVM was trained using some different kernels. The validating process shows that the SVM method, when using a Gaussian kernel of variance 1, outperforms classification results obtained with the rest of the classifiers, yielding an error classification rate of 0.7% whereas the Fuzzy-ARTMAP NN attained 1.6 %.

  19. Evaluating uncertainties in multi-layer soil moisture estimation with support vector machines and ensemble Kalman filtering

    NASA Astrophysics Data System (ADS)

    Liu, Di; Mishra, Ashok K.; Yu, Zhongbo

    2016-07-01

    This paper examines the combination of support vector machines (SVM) and the dual ensemble Kalman filter (EnKF) technique to estimate root zone soil moisture at different soil layers up to 100 cm depth. Multiple experiments are conducted in a data rich environment to construct and validate the SVM model and to explore the effectiveness and robustness of the EnKF technique. It was observed that the performance of SVM relies more on the initial length of training set than other factors (e.g., cost function, regularization parameter, and kernel parameters). The dual EnKF technique proved to be efficient to improve SVM with observed data either at each time step or at a flexible time steps. The EnKF technique can reach its maximum efficiency when the updating ensemble size approaches a certain threshold. It was observed that the SVM model performance for the multi-layer soil moisture estimation can be influenced by the rainfall magnitude (e.g., dry and wet spells).

  20. Support Vector Machine algorithm for regression and classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Chenggang; Zavaljevski, Nela

    2001-08-01

    The software is an implementation of the Support Vector Machine (SVM) algorithm that was invented and developed by Vladimir Vapnik and his co-workers at AT&T Bell Laboratories. The specific implementation reported here is an Active Set method for solving a quadratic optimization problem that forms the major part of any SVM program. The implementation is tuned to specific constraints generated in the SVM learning. Thus, it is more efficient than general-purpose quadratic optimization programs. A decomposition method has been implemented in the software that enables processing large data sets. The size of the learning data is virtually unlimited by themore » capacity of the computer physical memory. The software is flexible and extensible. Two upper bounds are implemented to regulate the SVM learning for classification, which allow users to adjust the false positive and false negative rates. The software can be used either as a standalone, general-purpose SVM regression or classification program, or be embedded into a larger software system.« less

  1. A Support Vector Machine-Based Gender Identification Using Speech Signal

    NASA Astrophysics Data System (ADS)

    Lee, Kye-Hwan; Kang, Sang-Ick; Kim, Deok-Hwan; Chang, Joon-Hyuk

    We propose an effective voice-based gender identification method using a support vector machine (SVM). The SVM is a binary classification algorithm that classifies two groups by finding the voluntary nonlinear boundary in a feature space and is known to yield high classification performance. In the present work, we compare the identification performance of the SVM with that of a Gaussian mixture model (GMM)-based method using the mel frequency cepstral coefficients (MFCC). A novel approach of incorporating a features fusion scheme based on a combination of the MFCC and the fundamental frequency is proposed with the aim of improving the performance of gender identification. Experimental results demonstrate that the gender identification performance using the SVM is significantly better than that of the GMM-based scheme. Moreover, the performance is substantially improved when the proposed features fusion technique is applied.

  2. Using a Support Vector Machine and a Land Surface Model to Estimate Large-Scale Passive Microwave Temperatures over Snow-Covered Land in North America

    NASA Technical Reports Server (NTRS)

    Forman, Barton A.; Reichle, Rolf Helmut

    2014-01-01

    A support vector machine (SVM), a machine learning technique developed from statistical learning theory, is employed for the purpose of estimating passive microwave (PMW) brightness temperatures over snow-covered land in North America as observed by the Advanced Microwave Scanning Radiometer (AMSR-E) satellite sensor. The capability of the trained SVM is compared relative to the artificial neural network (ANN) estimates originally presented in [14]. The results suggest the SVM outperforms the ANN at 10.65 GHz, 18.7 GHz, and 36.5 GHz for both vertically and horizontally-polarized PMW radiation. When compared against daily AMSR-E measurements not used during the training procedure and subsequently averaged across the North American domain over the 9-year study period, the root mean squared error in the SVM output is 8 K or less while the anomaly correlation coefficient is 0.7 or greater. When compared relative to the results from the ANN at any of the six frequency and polarization combinations tested, the root mean squared error was reduced by more than 18 percent while the anomaly correlation coefficient was increased by more than 52 percent. Further, the temporal and spatial variability in the modeled brightness temperatures via the SVM more closely agrees with that found in the original AMSR-E measurements. These findings suggest the SVM is a superior alternative to the ANN for eventual use as a measurement operator within a data assimilation framework.

  3. Accuracy of automated classification of major depressive disorder as a function of symptom severity.

    PubMed

    Ramasubbu, Rajamannar; Brown, Matthew R G; Cortese, Filmeno; Gaxiola, Ismael; Goodyear, Bradley; Greenshaw, Andrew J; Dursun, Serdar M; Greiner, Russell

    2016-01-01

    Growing evidence documents the potential of machine learning for developing brain based diagnostic methods for major depressive disorder (MDD). As symptom severity may influence brain activity, we investigated whether the severity of MDD affected the accuracies of machine learned MDD-vs-Control diagnostic classifiers. Forty-five medication-free patients with DSM-IV defined MDD and 19 healthy controls participated in the study. Based on depression severity as determined by the Hamilton Rating Scale for Depression (HRSD), MDD patients were sorted into three groups: mild to moderate depression (HRSD 14-19), severe depression (HRSD 20-23), and very severe depression (HRSD ≥ 24). We collected functional magnetic resonance imaging (fMRI) data during both resting-state and an emotional-face matching task. Patients in each of the three severity groups were compared against controls in separate analyses, using either the resting-state or task-based fMRI data. We use each of these six datasets with linear support vector machine (SVM) binary classifiers for identifying individuals as patients or controls. The resting-state fMRI data showed statistically significant classification accuracy only for the very severe depression group (accuracy 66%, p = 0.012 corrected), while mild to moderate (accuracy 58%, p = 1.0 corrected) and severe depression (accuracy 52%, p = 1.0 corrected) were only at chance. With task-based fMRI data, the automated classifier performed at chance in all three severity groups. Binary linear SVM classifiers achieved significant classification of very severe depression with resting-state fMRI, but the contribution of brain measurements may have limited potential in differentiating patients with less severe depression from healthy controls.

  4. Multiclass Classification for the Differential Diagnosis on the ADHD Subtypes Using Recursive Feature Elimination and Hierarchical Extreme Learning Machine: Structural MRI Study

    PubMed Central

    Qureshi, Muhammad Naveed Iqbal; Min, Beomjun; Jo, Hang Joon; Lee, Boreom

    2016-01-01

    The classification of neuroimaging data for the diagnosis of certain brain diseases is one of the main research goals of the neuroscience and clinical communities. In this study, we performed multiclass classification using a hierarchical extreme learning machine (H-ELM) classifier. We compared the performance of this classifier with that of a support vector machine (SVM) and basic extreme learning machine (ELM) for cortical MRI data from attention deficit/hyperactivity disorder (ADHD) patients. We used 159 structural MRI images of children from the publicly available ADHD-200 MRI dataset. The data consisted of three types, namely, typically developing (TDC), ADHD-inattentive (ADHD-I), and ADHD-combined (ADHD-C). We carried out feature selection by using standard SVM-based recursive feature elimination (RFE-SVM) that enabled us to achieve good classification accuracy (60.78%). In this study, we found the RFE-SVM feature selection approach in combination with H-ELM to effectively enable the acquisition of high multiclass classification accuracy rates for structural neuroimaging data. In addition, we found that the most important features for classification were the surface area of the superior frontal lobe, and the cortical thickness, volume, and mean surface area of the whole cortex. PMID:27500640

  5. Multiclass Classification for the Differential Diagnosis on the ADHD Subtypes Using Recursive Feature Elimination and Hierarchical Extreme Learning Machine: Structural MRI Study.

    PubMed

    Qureshi, Muhammad Naveed Iqbal; Min, Beomjun; Jo, Hang Joon; Lee, Boreom

    2016-01-01

    The classification of neuroimaging data for the diagnosis of certain brain diseases is one of the main research goals of the neuroscience and clinical communities. In this study, we performed multiclass classification using a hierarchical extreme learning machine (H-ELM) classifier. We compared the performance of this classifier with that of a support vector machine (SVM) and basic extreme learning machine (ELM) for cortical MRI data from attention deficit/hyperactivity disorder (ADHD) patients. We used 159 structural MRI images of children from the publicly available ADHD-200 MRI dataset. The data consisted of three types, namely, typically developing (TDC), ADHD-inattentive (ADHD-I), and ADHD-combined (ADHD-C). We carried out feature selection by using standard SVM-based recursive feature elimination (RFE-SVM) that enabled us to achieve good classification accuracy (60.78%). In this study, we found the RFE-SVM feature selection approach in combination with H-ELM to effectively enable the acquisition of high multiclass classification accuracy rates for structural neuroimaging data. In addition, we found that the most important features for classification were the surface area of the superior frontal lobe, and the cortical thickness, volume, and mean surface area of the whole cortex.

  6. A screening system for smear-negative pulmonary tuberculosis using artificial neural networks.

    PubMed

    de O Souza Filho, João B; de Seixas, José Manoel; Galliez, Rafael; de Bragança Pereira, Basilio; de Q Mello, Fernanda C; Dos Santos, Alcione Miranda; Kritski, Afranio Lineu

    2016-08-01

    Molecular tests show low sensitivity for smear-negative pulmonary tuberculosis (PTB). A screening and risk assessment system for smear-negative PTB using artificial neural networks (ANNs) based on patient signs and symptoms is proposed. The prognostic and risk assessment models exploit a multilayer perceptron (MLP) and inspired adaptive resonance theory (iART) network. Model development considered data from 136 patients with suspected smear-negative PTB in a general hospital. MLP showed higher sensitivity (100%, 95% confidence interval (CI) 78-100%) than the other techniques, such as support vector machine (SVM) linear (86%; 95% CI 60-96%), multivariate logistic regression (MLR) (79%; 95% CI 53-93%), and classification and regression tree (CART) (71%; 95% CI 45-88%). MLR showed a slightly higher specificity (85%; 95% CI 59-96%) than MLP (80%; 95% CI 54-93%), SVM linear (75%, 95% CI 49-90%), and CART (65%; 95% CI 39-84%). In terms of the area under the receiver operating characteristic curve (AUC), the MLP model exhibited a higher value (0.918, 95% CI 0.824-1.000) than the SVM linear (0.796, 95% CI 0.651-0.970) and MLR (0.782, 95% CI 0.663-0.960) models. The significant signs and symptoms identified in risk groups are coherent with clinical practice. In settings with a high prevalence of smear-negative PTB, the system can be useful for screening and also to aid clinical practice in expediting complementary tests for higher risk patients. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. A comparison of non-parametric techniques to estimate incident photosynthetically active radiation from MODIS for monitoring primary production

    NASA Astrophysics Data System (ADS)

    Brown, M. G. L.; He, T.; Liang, S.

    2016-12-01

    Satellite-derived estimates of incident photosynthetically active radiation (PAR) can be used to monitor global change, are required by most terrestrial ecosystem models, and can be used to estimate primary production according to the theory of light use efficiency. Compared with parametric approaches, non-parametric techniques that include an artificial neural network (ANN), support vector machine regression (SVM), an artificial bee colony (ABC), and a look-up table (LUT) do not require many ancillary data as inputs for the estimation of PAR from satellite data. In this study, a selection of machine learning methods to estimate PAR from MODIS top of atmosphere (TOA) radiances are compared to a LUT approach to determine which techniques might best handle the nonlinear relationship between TOA radiance and incident PAR. Evaluation of these methods (ANN, SVM, and LUT) is performed with ground measurements at seven SURFRAD sites. Due to the design of the ANN, it can handle the nonlinear relationship between TOA radiance and PAR better than linearly interpolating between the values in the LUT; however, training the ANN has to be carried out on an angular-bin basis, which results in a LUT of ANNs. The SVM model may be better for incorporating multiple viewing angles than the ANN; however, both techniques require a large amount of training data, which may introduce a regional bias based on where the most training and validation data are available. Based on the literature, the ABC is a promising alternative to an ANN, SVM regression and a LUT, but further development for this application is required before concrete conclusions can be drawn. For now, the LUT method outperforms the machine-learning techniques, but future work should be directed at developing and testing the ABC method. A simple, robust method to estimate direct and diffuse incident PAR, with minimal inputs and a priori knowledge, would be very useful for monitoring global change of primary production, particularly of pastures and rangeland, which have implications for livestock and food security. Future work will delve deeper into the utility of satellite-derived PAR estimation for monitoring primary production in pasture and rangelands.

  8. Classification of Regional Ionospheric Disturbances Based on Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Begüm Terzi, Merve; Arikan, Feza; Arikan, Orhan; Karatay, Secil

    2016-07-01

    Ionosphere is an anisotropic, inhomogeneous, time varying and spatio-temporally dispersive medium whose parameters can be estimated almost always by using indirect measurements. Geomagnetic, gravitational, solar or seismic activities cause variations of ionosphere at various spatial and temporal scales. This complex spatio-temporal variability is challenging to be identified due to extensive scales in period, duration, amplitude and frequency of disturbances. Since geomagnetic and solar indices such as Disturbance storm time (Dst), F10.7 solar flux, Sun Spot Number (SSN), Auroral Electrojet (AE), Kp and W-index provide information about variability on a global scale, identification and classification of regional disturbances poses a challenge. The main aim of this study is to classify the regional effects of global geomagnetic storms and classify them according to their risk levels. For this purpose, Total Electron Content (TEC) estimated from GPS receivers, which is one of the major parameters of ionosphere, will be used to model the regional and local variability that differs from global activity along with solar and geomagnetic indices. In this work, for the automated classification of the regional disturbances, a classification technique based on a robust machine learning technique that have found wide spread use, Support Vector Machine (SVM) is proposed. SVM is a supervised learning model used for classification with associated learning algorithm that analyze the data and recognize patterns. In addition to performing linear classification, SVM can efficiently perform nonlinear classification by embedding data into higher dimensional feature spaces. Performance of the developed classification technique is demonstrated for midlatitude ionosphere over Anatolia using TEC estimates generated from the GPS data provided by Turkish National Permanent GPS Network (TNPGN-Active) for solar maximum year of 2011. As a result of implementing the developed classification technique to the Global Ionospheric Map (GIM) TEC data which is provided by the NASA Jet Propulsion Laboratory (JPL), it will be shown that SVM can be a suitable learning method to detect the anomalies in Total Electron Content (TEC) variations. This study is supported by TUBITAK 114E541 project as a part of the Scientific and Technological Research Projects Funding Program (1001).

  9. Integrating support vector machines and random forests to classify crops in time series of Worldview-2 images

    NASA Astrophysics Data System (ADS)

    Zafari, A.; Zurita-Milla, R.; Izquierdo-Verdiguier, E.

    2017-10-01

    Crop maps are essential inputs for the agricultural planning done at various governmental and agribusinesses agencies. Remote sensing offers timely and costs efficient technologies to identify and map crop types over large areas. Among the plethora of classification methods, Support Vector Machine (SVM) and Random Forest (RF) are widely used because of their proven performance. In this work, we study the synergic use of both methods by introducing a random forest kernel (RFK) in an SVM classifier. A time series of multispectral WorldView-2 images acquired over Mali (West Africa) in 2014 was used to develop our case study. Ground truth containing five common crop classes (cotton, maize, millet, peanut, and sorghum) were collected at 45 farms and used to train and test the classifiers. An SVM with the standard Radial Basis Function (RBF) kernel, a RF, and an SVM-RFK were trained and tested over 10 random training and test subsets generated from the ground data. Results show that the newly proposed SVM-RFK classifier can compete with both RF and SVM-RBF. The overall accuracies based on the spectral bands only are of 83, 82 and 83% respectively. Adding vegetation indices to the analysis result in the classification accuracy of 82, 81 and 84% for SVM-RFK, RF, and SVM-RBF respectively. Overall, it can be observed that the newly tested RFK can compete with SVM-RBF and RF classifiers in terms of classification accuracy.

  10. Osteoporosis risk prediction for bone mineral density assessment of postmenopausal women using machine learning.

    PubMed

    Yoo, Tae Keun; Kim, Sung Kean; Kim, Deok Won; Choi, Joon Yul; Lee, Wan Hyung; Oh, Ein; Park, Eun-Cheol

    2013-11-01

    A number of clinical decision tools for osteoporosis risk assessment have been developed to select postmenopausal women for the measurement of bone mineral density. We developed and validated machine learning models with the aim of more accurately identifying the risk of osteoporosis in postmenopausal women compared to the ability of conventional clinical decision tools. We collected medical records from Korean postmenopausal women based on the Korea National Health and Nutrition Examination Surveys. The training data set was used to construct models based on popular machine learning algorithms such as support vector machines (SVM), random forests, artificial neural networks (ANN), and logistic regression (LR) based on simple surveys. The machine learning models were compared to four conventional clinical decision tools: osteoporosis self-assessment tool (OST), osteoporosis risk assessment instrument (ORAI), simple calculated osteoporosis risk estimation (SCORE), and osteoporosis index of risk (OSIRIS). SVM had significantly better area under the curve (AUC) of the receiver operating characteristic than ANN, LR, OST, ORAI, SCORE, and OSIRIS for the training set. SVM predicted osteoporosis risk with an AUC of 0.827, accuracy of 76.7%, sensitivity of 77.8%, and specificity of 76.0% at total hip, femoral neck, or lumbar spine for the testing set. The significant factors selected by SVM were age, height, weight, body mass index, duration of menopause, duration of breast feeding, estrogen therapy, hyperlipidemia, hypertension, osteoarthritis, and diabetes mellitus. Considering various predictors associated with low bone density, the machine learning methods may be effective tools for identifying postmenopausal women at high risk for osteoporosis.

  11. Improving the performance of extreme learning machine for hyperspectral image classification

    NASA Astrophysics Data System (ADS)

    Li, Jiaojiao; Du, Qian; Li, Wei; Li, Yunsong

    2015-05-01

    Extreme learning machine (ELM) and kernel ELM (KELM) can offer comparable performance as the standard powerful classifier―support vector machine (SVM), but with much lower computational cost due to extremely simple training step. However, their performance may be sensitive to several parameters, such as the number of hidden neurons. An empirical linear relationship between the number of training samples and the number of hidden neurons is proposed. Such a relationship can be easily estimated with two small training sets and extended to large training sets so as to greatly reduce computational cost. Other parameters, such as the steepness parameter in the sigmodal activation function and regularization parameter in the KELM, are also investigated. The experimental results show that classification performance is sensitive to these parameters; fortunately, simple selections will result in suboptimal performance.

  12. Arbitrary norm support vector machines.

    PubMed

    Huang, Kaizhu; Zheng, Danian; King, Irwin; Lyu, Michael R

    2009-02-01

    Support vector machines (SVM) are state-of-the-art classifiers. Typically L2-norm or L1-norm is adopted as a regularization term in SVMs, while other norm-based SVMs, for example, the L0-norm SVM or even the L(infinity)-norm SVM, are rarely seen in the literature. The major reason is that L0-norm describes a discontinuous and nonconvex term, leading to a combinatorially NP-hard optimization problem. In this letter, motivated by Bayesian learning, we propose a novel framework that can implement arbitrary norm-based SVMs in polynomial time. One significant feature of this framework is that only a sequence of sequential minimal optimization problems needs to be solved, thus making it practical in many real applications. The proposed framework is important in the sense that Bayesian priors can be efficiently plugged into most learning methods without knowing the explicit form. Hence, this builds a connection between Bayesian learning and the kernel machines. We derive the theoretical framework, demonstrate how our approach works on the L0-norm SVM as a typical example, and perform a series of experiments to validate its advantages. Experimental results on nine benchmark data sets are very encouraging. The implemented L0-norm is competitive with or even better than the standard L2-norm SVM in terms of accuracy but with a reduced number of support vectors, -9.46% of the number on average. When compared with another sparse model, the relevance vector machine, our proposed algorithm also demonstrates better sparse properties with a training speed over seven times faster.

  13. A general prediction model for the detection of ADHD and Autism using structural and functional MRI.

    PubMed

    Sen, Bhaskar; Borle, Neil C; Greiner, Russell; Brown, Matthew R G

    2018-01-01

    This work presents a novel method for learning a model that can diagnose Attention Deficit Hyperactivity Disorder (ADHD), as well as Autism, using structural texture and functional connectivity features obtained from 3-dimensional structural magnetic resonance imaging (MRI) and 4-dimensional resting-state functional magnetic resonance imaging (fMRI) scans of subjects. We explore a series of three learners: (1) The LeFMS learner first extracts features from the structural MRI images using the texture-based filters produced by a sparse autoencoder. These filters are then convolved with the original MRI image using an unsupervised convolutional network. The resulting features are used as input to a linear support vector machine (SVM) classifier. (2) The LeFMF learner produces a diagnostic model by first computing spatial non-stationary independent components of the fMRI scans, which it uses to decompose each subject's fMRI scan into the time courses of these common spatial components. These features can then be used with a learner by themselves or in combination with other features to produce the model. Regardless of which approach is used, the final set of features are input to a linear support vector machine (SVM) classifier. (3) Finally, the overall LeFMSF learner uses the combined features obtained from the two feature extraction processes in (1) and (2) above as input to an SVM classifier, achieving an accuracy of 0.673 on the ADHD-200 holdout data and 0.643 on the ABIDE holdout data. Both of these results, obtained with the same LeFMSF framework, are the best known, over all hold-out accuracies on these datasets when only using imaging data-exceeding previously-published results by 0.012 for ADHD and 0.042 for Autism. Our results show that combining multi-modal features can yield good classification accuracy for diagnosis of ADHD and Autism, which is an important step towards computer-aided diagnosis of these psychiatric diseases and perhaps others as well.

  14. Carbon Nanotube Growth Rate Regression using Support Vector Machines and Artificial Neural Networks

    DTIC Science & Technology

    2014-03-27

    intensity D peak. Reprinted with permission from [38]. The SVM classifier is trained using custom written Java code leveraging the Sequential Minimal...Society Encog is a machine learning framework for Java , C++ and .Net applications that supports Bayesian Networks, Hidden Markov Models, SVMs and ANNs [13...SVM classifiers are trained using Weka libraries and leveraging custom written Java code. The data set is created as an Attribute Relationship File

  15. A prediction model of drug-induced ototoxicity developed by an optimal support vector machine (SVM) method.

    PubMed

    Zhou, Shu; Li, Guo-Bo; Huang, Lu-Yi; Xie, Huan-Zhang; Zhao, Ying-Lan; Chen, Yu-Zong; Li, Lin-Li; Yang, Sheng-Yong

    2014-08-01

    Drug-induced ototoxicity, as a toxic side effect, is an important issue needed to be considered in drug discovery. Nevertheless, current experimental methods used to evaluate drug-induced ototoxicity are often time-consuming and expensive, indicating that they are not suitable for a large-scale evaluation of drug-induced ototoxicity in the early stage of drug discovery. We thus, in this investigation, established an effective computational prediction model of drug-induced ototoxicity using an optimal support vector machine (SVM) method, GA-CG-SVM. Three GA-CG-SVM models were developed based on three training sets containing agents bearing different risk levels of drug-induced ototoxicity. For comparison, models based on naïve Bayesian (NB) and recursive partitioning (RP) methods were also used on the same training sets. Among all the prediction models, the GA-CG-SVM model II showed the best performance, which offered prediction accuracies of 85.33% and 83.05% for two independent test sets, respectively. Overall, the good performance of the GA-CG-SVM model II indicates that it could be used for the prediction of drug-induced ototoxicity in the early stage of drug discovery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Nonlinear detection for a high rate extended binary phase shift keying system.

    PubMed

    Chen, Xian-Qing; Wu, Le-Nan

    2013-03-28

    The algorithm and the results of a nonlinear detector using a machine learning technique called support vector machine (SVM) on an efficient modulation system with high data rate and low energy consumption is presented in this paper. Simulation results showed that the performance achieved by the SVM detector is comparable to that of a conventional threshold decision (TD) detector. The two detectors detect the received signals together with the special impacting filter (SIF) that can improve the energy utilization efficiency. However, unlike the TD detector, the SVM detector concentrates not only on reducing the BER of the detector, but also on providing accurate posterior probability estimates (PPEs), which can be used as soft-inputs of the LDPC decoder. The complexity of this detector is considered in this paper by using four features and simplifying the decision function. In addition, a bandwidth efficient transmission is analyzed with both SVM and TD detector. The SVM detector is more robust to sampling rate than TD detector. We find that the SVM is suitable for extended binary phase shift keying (EBPSK) signal detection and can provide accurate posterior probability for LDPC decoding.

  17. Nonlinear Detection for a High Rate Extended Binary Phase Shift Keying System

    PubMed Central

    Chen, Xian-Qing; Wu, Le-Nan

    2013-01-01

    The algorithm and the results of a nonlinear detector using a machine learning technique called support vector machine (SVM) on an efficient modulation system with high data rate and low energy consumption is presented in this paper. Simulation results showed that the performance achieved by the SVM detector is comparable to that of a conventional threshold decision (TD) detector. The two detectors detect the received signals together with the special impacting filter (SIF) that can improve the energy utilization efficiency. However, unlike the TD detector, the SVM detector concentrates not only on reducing the BER of the detector, but also on providing accurate posterior probability estimates (PPEs), which can be used as soft-inputs of the LDPC decoder. The complexity of this detector is considered in this paper by using four features and simplifying the decision function. In addition, a bandwidth efficient transmission is analyzed with both SVM and TD detector. The SVM detector is more robust to sampling rate than TD detector. We find that the SVM is suitable for extended binary phase shift keying (EBPSK) signal detection and can provide accurate posterior probability for LDPC decoding. PMID:23539034

  18. [Application of near infrared spectroscopy combined with particle swarm optimization based least square support vactor machine to rapid quantitative analysis of Corni Fructus].

    PubMed

    Liu, Xue-song; Sun, Fen-fang; Jin, Ye; Wu, Yong-jiang; Gu, Zhi-xin; Zhu, Li; Yan, Dong-lan

    2015-12-01

    A novel method was developed for the rapid determination of multi-indicators in corni fructus by means of near infrared (NIR) spectroscopy. Particle swarm optimization (PSO) based least squares support vector machine was investigated to increase the levels of quality control. The calibration models of moisture, extractum, morroniside and loganin were established using the PSO-LS-SVM algorithm. The performance of PSO-LS-SVM models was compared with partial least squares regression (PLSR) and back propagation artificial neural network (BP-ANN). The calibration and validation results of PSO-LS-SVM were superior to both PLS and BP-ANN. For PSO-LS-SVM models, the correlation coefficients (r) of calibrations were all above 0.942. The optimal prediction results were also achieved by PSO-LS-SVM models with the RMSEP (root mean square error of prediction) and RSEP (relative standard errors of prediction) less than 1.176 and 15.5% respectively. The results suggest that PSO-LS-SVM algorithm has a good model performance and high prediction accuracy. NIR has a potential value for rapid determination of multi-indicators in Corni Fructus.

  19. Hybrid wavelet-support vector machine approach for modelling rainfall-runoff process.

    PubMed

    Komasi, Mehdi; Sharghi, Soroush

    2016-01-01

    Because of the importance of water resources management, the need for accurate modeling of the rainfall-runoff process has rapidly grown in the past decades. Recently, the support vector machine (SVM) approach has been used by hydrologists for rainfall-runoff modeling and the other fields of hydrology. Similar to the other artificial intelligence models, such as artificial neural network (ANN) and adaptive neural fuzzy inference system, the SVM model is based on the autoregressive properties. In this paper, the wavelet analysis was linked to the SVM model concept for modeling the rainfall-runoff process of Aghchai and Eel River watersheds. In this way, the main time series of two variables, rainfall and runoff, were decomposed to multiple frequent time series by wavelet theory; then, these time series were imposed as input data on the SVM model in order to predict the runoff discharge one day ahead. The obtained results show that the wavelet SVM model can predict both short- and long-term runoff discharges by considering the seasonality effects. Also, the proposed hybrid model is relatively more appropriate than classical autoregressive ones such as ANN and SVM because it uses the multi-scale time series of rainfall and runoff data in the modeling process.

  20. Classification of Stellar Spectra with Fuzzy Minimum Within-Class Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Zhong-bao, Liu; Wen-ai, Song; Jing, Zhang; Wen-juan, Zhao

    2017-06-01

    Classification is one of the important tasks in astronomy, especially in spectra analysis. Support Vector Machine (SVM) is a typical classification method, which is widely used in spectra classification. Although it performs well in practice, its classification accuracies can not be greatly improved because of two limitations. One is it does not take the distribution of the classes into consideration. The other is it is sensitive to noise. In order to solve the above problems, inspired by the maximization of the Fisher's Discriminant Analysis (FDA) and the SVM separability constraints, fuzzy minimum within-class support vector machine (FMWSVM) is proposed in this paper. In FMWSVM, the distribution of the classes is reflected by the within-class scatter in FDA and the fuzzy membership function is introduced to decrease the influence of the noise. The comparative experiments with SVM on the SDSS datasets verify the effectiveness of the proposed classifier FMWSVM.

  1. Prediction of mutagenic toxicity by combination of Recursive Partitioning and Support Vector Machines.

    PubMed

    Liao, Quan; Yao, Jianhua; Yuan, Shengang

    2007-05-01

    The study of prediction of toxicity is very important and necessary because measurement of toxicity is typically time-consuming and expensive. In this paper, Recursive Partitioning (RP) method was used to select descriptors. RP and Support Vector Machines (SVM) were used to construct structure-toxicity relationship models, RP model and SVM model, respectively. The performances of the two models are different. The prediction accuracies of the RP model are 80.2% for mutagenic compounds in MDL's toxicity database, 83.4% for compounds in CMC and 84.9% for agrochemicals in in-house database respectively. Those of SVM model are 81.4%, 87.0% and 87.3% respectively.

  2. Prediction on sunspot activity based on fuzzy information granulation and support vector machine

    NASA Astrophysics Data System (ADS)

    Peng, Lingling; Yan, Haisheng; Yang, Zhigang

    2018-04-01

    In order to analyze the range of sunspots, a combined prediction method of forecasting the fluctuation range of sunspots based on fuzzy information granulation (FIG) and support vector machine (SVM) was put forward. Firstly, employing the FIG to granulate sample data and extract va)alid information of each window, namely the minimum value, the general average value and the maximum value of each window. Secondly, forecasting model is built respectively with SVM and then cross method is used to optimize these parameters. Finally, the fluctuation range of sunspots is forecasted with the optimized SVM model. Case study demonstrates that the model have high accuracy and can effectively predict the fluctuation of sunspots.

  3. A support vector machine based control application to the experimental three-tank system.

    PubMed

    Iplikci, Serdar

    2010-07-01

    This paper presents a support vector machine (SVM) approach to generalized predictive control (GPC) of multiple-input multiple-output (MIMO) nonlinear systems. The possession of higher generalization potential and at the same time avoidance of getting stuck into the local minima have motivated us to employ SVM algorithms for modeling MIMO systems. Based on the SVM model, detailed and compact formulations for calculating predictions and gradient information, which are used in the computation of the optimal control action, are given in the paper. The proposed MIMO SVM-based GPC method has been verified on an experimental three-tank liquid level control system. Experimental results have shown that the proposed method can handle the control task successfully for different reference trajectories. Moreover, a detailed discussion on data gathering, model selection and effects of the control parameters have been given in this paper. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Localization of the lumbar discs using machine learning and exact probabilistic inference.

    PubMed

    Oktay, Ayse Betul; Akgul, Yusuf Sinan

    2011-01-01

    We propose a novel fully automatic approach to localize the lumbar intervertebral discs in MR images with PHOG based SVM and a probabilistic graphical model. At the local level, our method assigns a score to each pixel in target image that indicates whether it is a disc center or not. At the global level, we define a chain-like graphical model that represents the lumbar intervertebral discs and we use an exact inference algorithm to localize the discs. Our main contributions are the employment of the SVM with the PHOG based descriptor which is robust against variations of the discs and a graphical model that reflects the linear nature of the vertebral column. Our inference algorithm runs in polynomial time and produces globally optimal results. The developed system is validated on a real spine MRI dataset and the final localization results are favorable compared to the results reported in the literature.

  5. Mapping membrane activity in undiscovered peptide sequence space using machine learning

    PubMed Central

    Fulan, Benjamin M.; Wong, Gerard C. L.

    2016-01-01

    There are some ∼1,100 known antimicrobial peptides (AMPs), which permeabilize microbial membranes but have diverse sequences. Here, we develop a support vector machine (SVM)-based classifier to investigate ⍺-helical AMPs and the interrelated nature of their functional commonality and sequence homology. SVM is used to search the undiscovered peptide sequence space and identify Pareto-optimal candidates that simultaneously maximize the distance σ from the SVM hyperplane (thus maximize its “antimicrobialness”) and its ⍺-helicity, but minimize mutational distance to known AMPs. By calibrating SVM machine learning results with killing assays and small-angle X-ray scattering (SAXS), we find that the SVM metric σ correlates not with a peptide’s minimum inhibitory concentration (MIC), but rather its ability to generate negative Gaussian membrane curvature. This surprising result provides a topological basis for membrane activity common to AMPs. Moreover, we highlight an important distinction between the maximal recognizability of a sequence to a trained AMP classifier (its ability to generate membrane curvature) and its maximal antimicrobial efficacy. As mutational distances are increased from known AMPs, we find AMP-like sequences that are increasingly difficult for nature to discover via simple mutation. Using the sequence map as a discovery tool, we find a unexpectedly diverse taxonomy of sequences that are just as membrane-active as known AMPs, but with a broad range of primary functions distinct from AMP functions, including endogenous neuropeptides, viral fusion proteins, topogenic peptides, and amyloids. The SVM classifier is useful as a general detector of membrane activity in peptide sequences. PMID:27849600

  6. Using machine learning algorithms to guide rehabilitation planning for home care clients.

    PubMed

    Zhu, Mu; Zhang, Zhanyang; Hirdes, John P; Stolee, Paul

    2007-12-20

    Targeting older clients for rehabilitation is a clinical challenge and a research priority. We investigate the potential of machine learning algorithms - Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) - to guide rehabilitation planning for home care clients. This study is a secondary analysis of data on 24,724 longer-term clients from eight home care programs in Ontario. Data were collected with the RAI-HC assessment system, in which the Activities of Daily Living Clinical Assessment Protocol (ADLCAP) is used to identify clients with rehabilitation potential. For study purposes, a client is defined as having rehabilitation potential if there was: i) improvement in ADL functioning, or ii) discharge home. SVM and KNN results are compared with those obtained using the ADLCAP. For comparison, the machine learning algorithms use the same functional and health status indicators as the ADLCAP. The KNN and SVM algorithms achieved similar substantially improved performance over the ADLCAP, although false positive and false negative rates were still fairly high (FP > .18, FN > .34 versus FP > .29, FN. > .58 for ADLCAP). Results are used to suggest potential revisions to the ADLCAP. Machine learning algorithms achieved superior predictions than the current protocol. Machine learning results are less readily interpretable, but can also be used to guide development of improved clinical protocols.

  7. Osteoporosis risk prediction using machine learning and conventional methods.

    PubMed

    Kim, Sung Kean; Yoo, Tae Keun; Oh, Ein; Kim, Deok Won

    2013-01-01

    A number of clinical decision tools for osteoporosis risk assessment have been developed to select postmenopausal women for the measurement of bone mineral density. We developed and validated machine learning models with the aim of more accurately identifying the risk of osteoporosis in postmenopausal women, and compared with the ability of a conventional clinical decision tool, osteoporosis self-assessment tool (OST). We collected medical records from Korean postmenopausal women based on the Korea National Health and Nutrition Surveys (KNHANES V-1). The training data set was used to construct models based on popular machine learning algorithms such as support vector machines (SVM), random forests (RF), artificial neural networks (ANN), and logistic regression (LR) based on various predictors associated with low bone density. The learning models were compared with OST. SVM had significantly better area under the curve (AUC) of the receiver operating characteristic (ROC) than ANN, LR, and OST. Validation on the test set showed that SVM predicted osteoporosis risk with an AUC of 0.827, accuracy of 76.7%, sensitivity of 77.8%, and specificity of 76.0%. We were the first to perform comparisons of the performance of osteoporosis prediction between the machine learning and conventional methods using population-based epidemiological data. The machine learning methods may be effective tools for identifying postmenopausal women at high risk for osteoporosis.

  8. New KF-PP-SVM classification method for EEG in brain-computer interfaces.

    PubMed

    Yang, Banghua; Han, Zhijun; Zan, Peng; Wang, Qian

    2014-01-01

    Classification methods are a crucial direction in the current study of brain-computer interfaces (BCIs). To improve the classification accuracy for electroencephalogram (EEG) signals, a novel KF-PP-SVM (kernel fisher, posterior probability, and support vector machine) classification method is developed. Its detailed process entails the use of common spatial patterns to obtain features, based on which the within-class scatter is calculated. Then the scatter is added into the kernel function of a radial basis function to construct a new kernel function. This new kernel is integrated into the SVM to obtain a new classification model. Finally, the output of SVM is calculated based on posterior probability and the final recognition result is obtained. To evaluate the effectiveness of the proposed KF-PP-SVM method, EEG data collected from laboratory are processed with four different classification schemes (KF-PP-SVM, KF-SVM, PP-SVM, and SVM). The results showed that the overall average improvements arising from the use of the KF-PP-SVM scheme as opposed to KF-SVM, PP-SVM and SVM schemes are 2.49%, 5.83 % and 6.49 % respectively.

  9. Wire connector classification with machine vision and a novel hybrid SVM

    NASA Astrophysics Data System (ADS)

    Chauhan, Vedang; Joshi, Keyur D.; Surgenor, Brian W.

    2018-04-01

    A machine vision-based system has been developed and tested that uses a novel hybrid Support Vector Machine (SVM) in a part inspection application with clear plastic wire connectors. The application required the system to differentiate between 4 different known styles of connectors plus one unknown style, for a total of 5 classes. The requirement to handle an unknown class is what necessitated the hybrid approach. The system was trained with the 4 known classes and tested with 5 classes (the 4 known plus the 1 unknown). The hybrid classification approach used two layers of SVMs: one layer was semi-supervised and the other layer was supervised. The semi-supervised SVM was a special case of unsupervised machine learning that classified test images as one of the 4 known classes (to accept) or as the unknown class (to reject). The supervised SVM classified test images as one of the 4 known classes and consequently would give false positives (FPs). Two methods were tested. The difference between the methods was that the order of the layers was switched. The method with the semi-supervised layer first gave an accuracy of 80% with 20% FPs. The method with the supervised layer first gave an accuracy of 98% with 0% FPs. Further work is being conducted to see if the hybrid approach works with other applications that have an unknown class requirement.

  10. Improving the accuracy in detection of clustered microcalcifications with a context-sensitive classification model.

    PubMed

    Wang, Juan; Nishikawa, Robert M; Yang, Yongyi

    2016-01-01

    In computer-aided detection of microcalcifications (MCs), the detection accuracy is often compromised by frequent occurrence of false positives (FPs), which can be attributed to a number of factors, including imaging noise, inhomogeneity in tissue background, linear structures, and artifacts in mammograms. In this study, the authors investigated a unified classification approach for combating the adverse effects of these heterogeneous factors for accurate MC detection. To accommodate FPs caused by different factors in a mammogram image, the authors developed a classification model to which the input features were adapted according to the image context at a detection location. For this purpose, the input features were defined in two groups, of which one group was derived from the image intensity pattern in a local neighborhood of a detection location, and the other group was used to characterize how a MC is different from its structural background. Owing to the distinctive effect of linear structures in the detector response, the authors introduced a dummy variable into the unified classifier model, which allowed the input features to be adapted according to the image context at a detection location (i.e., presence or absence of linear structures). To suppress the effect of inhomogeneity in tissue background, the input features were extracted from different domains aimed for enhancing MCs in a mammogram image. To demonstrate the flexibility of the proposed approach, the authors implemented the unified classifier model by two widely used machine learning algorithms, namely, a support vector machine (SVM) classifier and an Adaboost classifier. In the experiment, the proposed approach was tested for two representative MC detectors in the literature [difference-of-Gaussians (DoG) detector and SVM detector]. The detection performance was assessed using free-response receiver operating characteristic (FROC) analysis on a set of 141 screen-film mammogram (SFM) images (66 cases) and a set of 188 full-field digital mammogram (FFDM) images (95 cases). The FROC analysis results show that the proposed unified classification approach can significantly improve the detection accuracy of two MC detectors on both SFM and FFDM images. Despite the difference in performance between the two detectors, the unified classifiers can reduce their FP rate to a similar level in the output of the two detectors. In particular, with true-positive rate at 85%, the FP rate on SFM images for the DoG detector was reduced from 1.16 to 0.33 clusters/image (unified SVM) and 0.36 clusters/image (unified Adaboost), respectively; similarly, for the SVM detector, the FP rate was reduced from 0.45 clusters/image to 0.30 clusters/image (unified SVM) and 0.25 clusters/image (unified Adaboost), respectively. Similar FP reduction results were also achieved on FFDM images for the two MC detectors. The proposed unified classification approach can be effective for discriminating MCs from FPs caused by different factors (such as MC-like noise patterns and linear structures) in MC detection. The framework is general and can be applicable for further improving the detection accuracy of existing MC detectors.

  11. Multiclass Classification of Cardiac Arrhythmia Using Improved Feature Selection and SVM Invariants.

    PubMed

    Mustaqeem, Anam; Anwar, Syed Muhammad; Majid, Muahammad

    2018-01-01

    Arrhythmia is considered a life-threatening disease causing serious health issues in patients, when left untreated. An early diagnosis of arrhythmias would be helpful in saving lives. This study is conducted to classify patients into one of the sixteen subclasses, among which one class represents absence of disease and the other fifteen classes represent electrocardiogram records of various subtypes of arrhythmias. The research is carried out on the dataset taken from the University of California at Irvine Machine Learning Data Repository. The dataset contains a large volume of feature dimensions which are reduced using wrapper based feature selection technique. For multiclass classification, support vector machine (SVM) based approaches including one-against-one (OAO), one-against-all (OAA), and error-correction code (ECC) are employed to detect the presence and absence of arrhythmias. The SVM method results are compared with other standard machine learning classifiers using varying parameters and the performance of the classifiers is evaluated using accuracy, kappa statistics, and root mean square error. The results show that OAO method of SVM outperforms all other classifiers by achieving an accuracy rate of 81.11% when used with 80/20 data split and 92.07% using 90/10 data split option.

  12. Applying machine-learning techniques to Twitter data for automatic hazard-event classification.

    NASA Astrophysics Data System (ADS)

    Filgueira, R.; Bee, E. J.; Diaz-Doce, D.; Poole, J., Sr.; Singh, A.

    2017-12-01

    The constant flow of information offered by tweets provides valuable information about all sorts of events at a high temporal and spatial resolution. Over the past year we have been analyzing in real-time geological hazards/phenomenon, such as earthquakes, volcanic eruptions, landslides, floods or the aurora, as part of the GeoSocial project, by geo-locating tweets filtered by keywords in a web-map. However, not all the filtered tweets are related with hazard/phenomenon events. This work explores two classification techniques for automatic hazard-event categorization based on tweets about the "Aurora". First, tweets were filtered using aurora-related keywords, removing stop words and selecting the ones written in English. For classifying the remaining between "aurora-event" or "no-aurora-event" categories, we compared two state-of-art techniques: Support Vector Machine (SVM) and Deep Convolutional Neural Networks (CNN) algorithms. Both approaches belong to the family of supervised learning algorithms, which make predictions based on labelled training dataset. Therefore, we created a training dataset by tagging 1200 tweets between both categories. The general form of SVM is used to separate two classes by a function (kernel). We compared the performance of four different kernels (Linear Regression, Logistic Regression, Multinomial Naïve Bayesian and Stochastic Gradient Descent) provided by Scikit-Learn library using our training dataset to build the SVM classifier. The results shown that the Logistic Regression (LR) gets the best accuracy (87%). So, we selected the SVM-LR classifier to categorise a large collection of tweets using the "dispel4py" framework.Later, we developed a CNN classifier, where the first layer embeds words into low-dimensional vectors. The next layer performs convolutions over the embedded word vectors. Results from the convolutional layer are max-pooled into a long feature vector, which is classified using a softmax layer. The CNN's accuracy is lower (83%) than the SVM-LR, since the algorithm needs a bigger training dataset to increase its accuracy. We used TensorFlow framework for applying CNN classifier to the same collection of tweets.In future we will modify both classifiers to work with other geo-hazards, use larger training datasets and apply them in real-time.

  13. Identification of Alzheimer's disease and mild cognitive impairment using multimodal sparse hierarchical extreme learning machine.

    PubMed

    Kim, Jongin; Lee, Boreom

    2018-05-07

    Different modalities such as structural MRI, FDG-PET, and CSF have complementary information, which is likely to be very useful for diagnosis of AD and MCI. Therefore, it is possible to develop a more effective and accurate AD/MCI automatic diagnosis method by integrating complementary information of different modalities. In this paper, we propose multi-modal sparse hierarchical extreme leaning machine (MSH-ELM). We used volume and mean intensity extracted from 93 regions of interest (ROIs) as features of MRI and FDG-PET, respectively, and used p-tau, t-tau, and Aβ42 as CSF features. In detail, high-level representation was individually extracted from each of MRI, FDG-PET, and CSF using a stacked sparse extreme learning machine auto-encoder (sELM-AE). Then, another stacked sELM-AE was devised to acquire a joint hierarchical feature representation by fusing the high-level representations obtained from each modality. Finally, we classified joint hierarchical feature representation using a kernel-based extreme learning machine (KELM). The results of MSH-ELM were compared with those of conventional ELM, single kernel support vector machine (SK-SVM), multiple kernel support vector machine (MK-SVM) and stacked auto-encoder (SAE). Performance was evaluated through 10-fold cross-validation. In the classification of AD vs. HC and MCI vs. HC problem, the proposed MSH-ELM method showed mean balanced accuracies of 96.10% and 86.46%, respectively, which is much better than those of competing methods. In summary, the proposed algorithm exhibits consistently better performance than SK-SVM, ELM, MK-SVM and SAE in the two binary classification problems (AD vs. HC and MCI vs. HC). © 2018 Wiley Periodicals, Inc.

  14. Multi-temporal Land Use Mapping of Coastal Wetlands Area using Machine Learning in Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Farda, N. M.

    2017-12-01

    Coastal wetlands provide ecosystem services essential to people and the environment. Changes in coastal wetlands, especially on land use, are important to monitor by utilizing multi-temporal imagery. The Google Earth Engine (GEE) provides many machine learning algorithms (10 algorithms) that are very useful for extracting land use from imagery. The research objective is to explore machine learning in Google Earth Engine and its accuracy for multi-temporal land use mapping of coastal wetland area. Landsat 3 MSS (1978), Landsat 5 TM (1991), Landsat 7 ETM+ (2001), and Landsat 8 OLI (2014) images located in Segara Anakan lagoon are selected to represent multi temporal images. The input for machine learning are visible and near infrared bands, PCA band, invers PCA bands, bare soil index, vegetation index, wetness index, elevation from ASTER GDEM, and GLCM (Harralick) texture, and also polygon samples in 140 locations. There are 10 machine learning algorithms applied to extract coastal wetlands land use from Landsat imagery. The algorithms are Fast Naive Bayes, CART (Classification and Regression Tree), Random Forests, GMO Max Entropy, Perceptron (Multi Class Perceptron), Winnow, Voting SVM, Margin SVM, Pegasos (Primal Estimated sub-GrAdient SOlver for Svm), IKPamir (Intersection Kernel Passive Aggressive Method for Information Retrieval, SVM). Machine learning in Google Earth Engine are very helpful in multi-temporal land use mapping, the highest accuracy for land use mapping of coastal wetland is CART with 96.98 % Overall Accuracy using K-Fold Cross Validation (K = 10). GEE is particularly useful for multi-temporal land use mapping with ready used image and classification algorithms, and also very challenging for other applications.

  15. Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma.

    PubMed

    Feng, Zhichao; Rong, Pengfei; Cao, Peng; Zhou, Qingyu; Zhu, Wenwei; Yan, Zhimin; Liu, Qianyun; Wang, Wei

    2018-04-01

    To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.

  16. The generalization ability of online SVM classification based on Markov sampling.

    PubMed

    Xu, Jie; Yan Tang, Yuan; Zou, Bin; Xu, Zongben; Li, Luoqing; Lu, Yang

    2015-03-01

    In this paper, we consider online support vector machine (SVM) classification learning algorithms with uniformly ergodic Markov chain (u.e.M.c.) samples. We establish the bound on the misclassification error of an online SVM classification algorithm with u.e.M.c. samples based on reproducing kernel Hilbert spaces and obtain a satisfactory convergence rate. We also introduce a novel online SVM classification algorithm based on Markov sampling, and present the numerical studies on the learning ability of online SVM classification based on Markov sampling for benchmark repository. The numerical studies show that the learning performance of the online SVM classification algorithm based on Markov sampling is better than that of classical online SVM classification based on random sampling as the size of training samples is larger.

  17. Hyperspectral Imaging for Predicting the Internal Quality of Kiwifruits Based on Variable Selection Algorithms and Chemometric Models.

    PubMed

    Zhu, Hongyan; Chu, Bingquan; Fan, Yangyang; Tao, Xiaoya; Yin, Wenxin; He, Yong

    2017-08-10

    We investigated the feasibility and potentiality of determining firmness, soluble solids content (SSC), and pH in kiwifruits using hyperspectral imaging, combined with variable selection methods and calibration models. The images were acquired by a push-broom hyperspectral reflectance imaging system covering two spectral ranges. Weighted regression coefficients (BW), successive projections algorithm (SPA) and genetic algorithm-partial least square (GAPLS) were compared and evaluated for the selection of effective wavelengths. Moreover, multiple linear regression (MLR), partial least squares regression and least squares support vector machine (LS-SVM) were developed to predict quality attributes quantitatively using effective wavelengths. The established models, particularly SPA-MLR, SPA-LS-SVM and GAPLS-LS-SVM, performed well. The SPA-MLR models for firmness (R pre  = 0.9812, RPD = 5.17) and SSC (R pre  = 0.9523, RPD = 3.26) at 380-1023 nm showed excellent performance, whereas GAPLS-LS-SVM was the optimal model at 874-1734 nm for predicting pH (R pre  = 0.9070, RPD = 2.60). Image processing algorithms were developed to transfer the predictive model in every pixel to generate prediction maps that visualize the spatial distribution of firmness and SSC. Hence, the results clearly demonstrated that hyperspectral imaging has the potential as a fast and non-invasive method to predict the quality attributes of kiwifruits.

  18. Epithelial–mesenchymal transition biomarkers and support vector machine guided model in preoperatively predicting regional lymph node metastasis for rectal cancer

    PubMed Central

    Fan, X-J; Wan, X-B; Huang, Y; Cai, H-M; Fu, X-H; Yang, Z-L; Chen, D-K; Song, S-X; Wu, P-H; Liu, Q; Wang, L; Wang, J-P

    2012-01-01

    Background: Current imaging modalities are inadequate in preoperatively predicting regional lymph node metastasis (RLNM) status in rectal cancer (RC). Here, we designed support vector machine (SVM) model to address this issue by integrating epithelial–mesenchymal-transition (EMT)-related biomarkers along with clinicopathological variables. Methods: Using tissue microarrays and immunohistochemistry, the EMT-related biomarkers expression was measured in 193 RC patients. Of which, 74 patients were assigned to the training set to select the robust variables for designing SVM model. The SVM model predictive value was validated in the testing set (119 patients). Results: In training set, eight variables, including six EMT-related biomarkers and two clinicopathological variables, were selected to devise SVM model. In testing set, we identified 63 patients with high risk to RLNM and 56 patients with low risk. The sensitivity, specificity and overall accuracy of SVM in predicting RLNM were 68.3%, 81.1% and 72.3%, respectively. Importantly, multivariate logistic regression analysis showed that SVM model was indeed an independent predictor of RLNM status (odds ratio, 11.536; 95% confidence interval, 4.113–32.361; P<0.0001). Conclusion: Our SVM-based model displayed moderately strong predictive power in defining the RLNM status in RC patients, providing an important approach to select RLNM high-risk subgroup for neoadjuvant chemoradiotherapy. PMID:22538975

  19. Seminal quality prediction using data mining methods.

    PubMed

    Sahoo, Anoop J; Kumar, Yugal

    2014-01-01

    Now-a-days, some new classes of diseases have come into existences which are known as lifestyle diseases. The main reasons behind these diseases are changes in the lifestyle of people such as alcohol drinking, smoking, food habits etc. After going through the various lifestyle diseases, it has been found that the fertility rates (sperm quantity) in men has considerably been decreasing in last two decades. Lifestyle factors as well as environmental factors are mainly responsible for the change in the semen quality. The objective of this paper is to identify the lifestyle and environmental features that affects the seminal quality and also fertility rate in man using data mining methods. The five artificial intelligence techniques such as Multilayer perceptron (MLP), Decision Tree (DT), Navie Bayes (Kernel), Support vector machine+Particle swarm optimization (SVM+PSO) and Support vector machine (SVM) have been applied on fertility dataset to evaluate the seminal quality and also to predict the person is either normal or having altered fertility rate. While the eight feature selection techniques such as support vector machine (SVM), neural network (NN), evolutionary logistic regression (LR), support vector machine plus particle swarm optimization (SVM+PSO), principle component analysis (PCA), chi-square test, correlation and T-test methods have been used to identify more relevant features which affect the seminal quality. These techniques are applied on fertility dataset which contains 100 instances with nine attribute with two classes. The experimental result shows that SVM+PSO provides higher accuracy and area under curve (AUC) rate (94% & 0.932) among multi-layer perceptron (MLP) (92% & 0.728), Support Vector Machines (91% & 0.758), Navie Bayes (Kernel) (89% & 0.850) and Decision Tree (89% & 0.735) for some of the seminal parameters. This paper also focuses on the feature selection process i.e. how to select the features which are more important for prediction of fertility rate. In this paper, eight feature selection methods are applied on fertility dataset to find out a set of good features. The investigational results shows that childish diseases (0.079) and high fever features (0.057) has less impact on fertility rate while age (0.8685), season (0.843), surgical intervention (0.7683), alcohol consumption (0.5992), smoking habit (0.575), number of hours spent on setting (0.4366) and accident (0.5973) features have more impact. It is also observed that feature selection methods increase the accuracy of above mentioned techniques (multilayer perceptron 92%, support vector machine 91%, SVM+PSO 94%, Navie Bayes (Kernel) 89% and decision tree 89%) as compared to without feature selection methods (multilayer perceptron 86%, support vector machine 86%, SVM+PSO 85%, Navie Bayes (Kernel) 83% and decision tree 84%) which shows the applicability of feature selection methods in prediction. This paper lightens the application of artificial techniques in medical domain. From this paper, it can be concluded that data mining methods can be used to predict a person with or without disease based on environmental and lifestyle parameters/features rather than undergoing various medical test. In this paper, five data mining techniques are used to predict the fertility rate and among which SVM+PSO provide more accurate results than support vector machine and decision tree.

  20. Steganalysis using logistic regression

    NASA Astrophysics Data System (ADS)

    Lubenko, Ivans; Ker, Andrew D.

    2011-02-01

    We advocate Logistic Regression (LR) as an alternative to the Support Vector Machine (SVM) classifiers commonly used in steganalysis. LR offers more information than traditional SVM methods - it estimates class probabilities as well as providing a simple classification - and can be adapted more easily and efficiently for multiclass problems. Like SVM, LR can be kernelised for nonlinear classification, and it shows comparable classification accuracy to SVM methods. This work is a case study, comparing accuracy and speed of SVM and LR classifiers in detection of LSB Matching and other related spatial-domain image steganography, through the state-of-art 686-dimensional SPAM feature set, in three image sets.

  1. Classifying low-grade and high-grade bladder cancer using label-free serum surface-enhanced Raman spectroscopy and support vector machine

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjiao; Lai, Xiaoping; Zeng, Qiuyao; Li, Linfang; Lin, Lin; Li, Shaoxin; Liu, Zhiming; Su, Chengkang; Qi, Minni; Guo, Zhouyi

    2018-03-01

    This study aims to classify low-grade and high-grade bladder cancer (BC) patients using serum surface-enhanced Raman scattering (SERS) spectra and support vector machine (SVM) algorithms. Serum SERS spectra are acquired from 88 serum samples with silver nanoparticles as the SERS-active substrate. Diagnostic accuracies of 96.4% and 95.4% are obtained when differentiating the serum SERS spectra of all BC patients versus normal subjects and low-grade versus high-grade BC patients, respectively, with optimal SVM classifier models. This study demonstrates that the serum SERS technique combined with SVM has great potential to noninvasively detect and classify high-grade and low-grade BC patients.

  2. A comparative study of clonal selection algorithm for effluent removal forecasting in septic sludge treatment plant.

    PubMed

    Chun, Ting Sie; Malek, M A; Ismail, Amelia Ritahani

    2015-01-01

    The development of effluent removal prediction is crucial in providing a planning tool necessary for the future development and the construction of a septic sludge treatment plant (SSTP), especially in the developing countries. In order to investigate the expected functionality of the required standard, the prediction of the effluent quality, namely biological oxygen demand, chemical oxygen demand and total suspended solid of an SSTP was modelled using an artificial intelligence approach. In this paper, we adopt the clonal selection algorithm (CSA) to set up a prediction model, with a well-established method - namely the least-square support vector machine (LS-SVM) as a baseline model. The test results of the case study showed that the prediction of the CSA-based SSTP model worked well and provided model performance as satisfactory as the LS-SVM model. The CSA approach shows that fewer control and training parameters are required for model simulation as compared with the LS-SVM approach. The ability of a CSA approach in resolving limited data samples, non-linear sample function and multidimensional pattern recognition makes it a powerful tool in modelling the prediction of effluent removals in an SSTP.

  3. Hyperspectral Image Enhancement and Mixture Deep-Learning Classification of Corneal Epithelium Injuries

    PubMed Central

    Md Noor, Siti Salwa; Michael, Kaleena; Marshall, Stephen; Ren, Jinchang

    2017-01-01

    In our preliminary study, the reflectance signatures obtained from hyperspectral imaging (HSI) of normal and abnormal corneal epithelium tissues of porcine show similar morphology with subtle differences. Here we present image enhancement algorithms that can be used to improve the interpretability of data into clinically relevant information to facilitate diagnostics. A total of 25 corneal epithelium images without the application of eye staining were used. Three image feature extraction approaches were applied for image classification: (i) image feature classification from histogram using a support vector machine with a Gaussian radial basis function (SVM-GRBF); (ii) physical image feature classification using deep-learning Convolutional Neural Networks (CNNs) only; and (iii) the combined classification of CNNs and SVM-Linear. The performance results indicate that our chosen image features from the histogram and length-scale parameter were able to classify with up to 100% accuracy; particularly, at CNNs and CNNs-SVM, by employing 80% of the data sample for training and 20% for testing. Thus, in the assessment of corneal epithelium injuries, HSI has high potential as a method that could surpass current technologies regarding speed, objectivity, and reliability. PMID:29144388

  4. Development of a Support Vector Machine - Based Image Analysis System for Focal Liver Lesions Classification in Magnetic Resonance Images

    NASA Astrophysics Data System (ADS)

    Gatos, I.; Tsantis, S.; Karamesini, M.; Skouroliakou, A.; Kagadis, G.

    2015-09-01

    Purpose: The design and implementation of a computer-based image analysis system employing the support vector machine (SVM) classifier system for the classification of Focal Liver Lesions (FLLs) on routine non-enhanced, T2-weighted Magnetic Resonance (MR) images. Materials and Methods: The study comprised 92 patients; each one of them has undergone MRI performed on a Magnetom Concerto (Siemens). Typical signs on dynamic contrast-enhanced MRI and biopsies were employed towards a three class categorization of the 92 cases: 40-benign FLLs, 25-Hepatocellular Carcinomas (HCC) within Cirrhotic liver parenchyma and 27-liver metastases from Non-Cirrhotic liver. Prior to FLLs classification an automated lesion segmentation algorithm based on Marcov Random Fields was employed in order to acquire each FLL Region of Interest. 42 texture features derived from the gray-level histogram, co-occurrence and run-length matrices and 12 morphological features were obtained from each lesion. Stepwise multi-linear regression analysis was utilized to avoid feature redundancy leading to a feature subset that fed the multiclass SVM classifier designed for lesion classification. SVM System evaluation was performed by means of leave-one-out method and ROC analysis. Results: Maximum accuracy for all three classes (90.0%) was obtained by means of the Radial Basis Kernel Function and three textural features (Inverse- Different-Moment, Sum-Variance and Long-Run-Emphasis) that describe lesion's contrast, variability and shape complexity. Sensitivity values for the three classes were 92.5%, 81.5% and 96.2% respectively, whereas specificity values were 94.2%, 95.3% and 95.5%. The AUC value achieved for the selected subset was 0.89 with 0.81 - 0.94 confidence interval. Conclusion: The proposed SVM system exhibit promising results that could be utilized as a second opinion tool to the radiologist in order to decrease the time/cost of diagnosis and the need for patients to undergo invasive examination.

  5. Filtered selection coupled with support vector machines generate a functionally relevant prediction model for colorectal cancer

    PubMed Central

    Gabere, Musa Nur; Hussein, Mohamed Aly; Aziz, Mohammad Azhar

    2016-01-01

    Purpose There has been considerable interest in using whole-genome expression profiles for the classification of colorectal cancer (CRC). The selection of important features is a crucial step before training a classifier. Methods In this study, we built a model that uses support vector machine (SVM) to classify cancer and normal samples using Affymetrix exon microarray data obtained from 90 samples of 48 patients diagnosed with CRC. From the 22,011 genes, we selected the 20, 30, 50, 100, 200, 300, and 500 genes most relevant to CRC using the minimum-redundancy–maximum-relevance (mRMR) technique. With these gene sets, an SVM model was designed using four different kernel types (linear, polynomial, radial basis function [RBF], and sigmoid). Results The best model, which used 30 genes and RBF kernel, outperformed other combinations; it had an accuracy of 84% for both ten fold and leave-one-out cross validations in discriminating the cancer samples from the normal samples. With this 30 genes set from mRMR, six classifiers were trained using random forest (RF), Bayes net (BN), multilayer perceptron (MLP), naïve Bayes (NB), reduced error pruning tree (REPT), and SVM. Two hybrids, mRMR + SVM and mRMR + BN, were the best models when tested on other datasets, and they achieved a prediction accuracy of 95.27% and 91.99%, respectively, compared to other mRMR hybrid models (mRMR + RF, mRMR + NB, mRMR + REPT, and mRMR + MLP). Ingenuity pathway analysis was used to analyze the functions of the 30 genes selected for this model and their potential association with CRC: CDH3, CEACAM7, CLDN1, IL8, IL6R, MMP1, MMP7, and TGFB1 were predicted to be CRC biomarkers. Conclusion This model could be used to further develop a diagnostic tool for predicting CRC based on gene expression data from patient samples. PMID:27330311

  6. Spectral Estimation Model Construction of Heavy Metals in Mining Reclamation Areas

    PubMed Central

    Dong, Jihong; Dai, Wenting; Xu, Jiren; Li, Songnian

    2016-01-01

    The study reported here examined, as the research subject, surface soils in the Liuxin mining area of Xuzhou, and explored the heavy metal content and spectral data by establishing quantitative models with Multivariable Linear Regression (MLR), Generalized Regression Neural Network (GRNN) and Sequential Minimal Optimization for Support Vector Machine (SMO-SVM) methods. The study results are as follows: (1) the estimations of the spectral inversion models established based on MLR, GRNN and SMO-SVM are satisfactory, and the MLR model provides the worst estimation, with R2 of more than 0.46. This result suggests that the stress sensitive bands of heavy metal pollution contain enough effective spectral information; (2) the GRNN model can simulate the data from small samples more effectively than the MLR model, and the R2 between the contents of the five heavy metals estimated by the GRNN model and the measured values are approximately 0.7; (3) the stability and accuracy of the spectral estimation using the SMO-SVM model are obviously better than that of the GRNN and MLR models. Among all five types of heavy metals, the estimation for cadmium (Cd) is the best when using the SMO-SVM model, and its R2 value reaches 0.8628; (4) using the optimal model to invert the Cd content in wheat that are planted on mine reclamation soil, the R2 and RMSE between the measured and the estimated values are 0.6683 and 0.0489, respectively. This result suggests that the method using the SMO-SVM model to estimate the contents of heavy metals in wheat samples is feasible. PMID:27367708

  7. Spectral Estimation Model Construction of Heavy Metals in Mining Reclamation Areas.

    PubMed

    Dong, Jihong; Dai, Wenting; Xu, Jiren; Li, Songnian

    2016-06-28

    The study reported here examined, as the research subject, surface soils in the Liuxin mining area of Xuzhou, and explored the heavy metal content and spectral data by establishing quantitative models with Multivariable Linear Regression (MLR), Generalized Regression Neural Network (GRNN) and Sequential Minimal Optimization for Support Vector Machine (SMO-SVM) methods. The study results are as follows: (1) the estimations of the spectral inversion models established based on MLR, GRNN and SMO-SVM are satisfactory, and the MLR model provides the worst estimation, with R² of more than 0.46. This result suggests that the stress sensitive bands of heavy metal pollution contain enough effective spectral information; (2) the GRNN model can simulate the data from small samples more effectively than the MLR model, and the R² between the contents of the five heavy metals estimated by the GRNN model and the measured values are approximately 0.7; (3) the stability and accuracy of the spectral estimation using the SMO-SVM model are obviously better than that of the GRNN and MLR models. Among all five types of heavy metals, the estimation for cadmium (Cd) is the best when using the SMO-SVM model, and its R² value reaches 0.8628; (4) using the optimal model to invert the Cd content in wheat that are planted on mine reclamation soil, the R² and RMSE between the measured and the estimated values are 0.6683 and 0.0489, respectively. This result suggests that the method using the SMO-SVM model to estimate the contents of heavy metals in wheat samples is feasible.

  8. Vision based nutrient deficiency classification in maize plants using multi class support vector machines

    NASA Astrophysics Data System (ADS)

    Leena, N.; Saju, K. K.

    2018-04-01

    Nutritional deficiencies in plants are a major concern for farmers as it affects productivity and thus profit. The work aims to classify nutritional deficiencies in maize plant in a non-destructive mannerusing image processing and machine learning techniques. The colored images of the leaves are analyzed and classified with multi-class support vector machine (SVM) method. Several images of maize leaves with known deficiencies like nitrogen, phosphorous and potassium (NPK) are used to train the SVM classifier prior to the classification of test images. The results show that the method was able to classify and identify nutritional deficiencies.

  9. Efficient HIK SVM learning for image classification.

    PubMed

    Wu, Jianxin

    2012-10-01

    Histograms are used in almost every aspect of image processing and computer vision, from visual descriptors to image representations. Histogram intersection kernel (HIK) and support vector machine (SVM) classifiers are shown to be very effective in dealing with histograms. This paper presents contributions concerning HIK SVM for image classification. First, we propose intersection coordinate descent (ICD), a deterministic and scalable HIK SVM solver. ICD is much faster than, and has similar accuracies to, general purpose SVM solvers and other fast HIK SVM training methods. We also extend ICD to the efficient training of a broader family of kernels. Second, we show an important empirical observation that ICD is not sensitive to the C parameter in SVM, and we provide some theoretical analyses to explain this observation. ICD achieves high accuracies in many problems, using its default parameters. This is an attractive property for practitioners, because many image processing tasks are too large to choose SVM parameters using cross-validation.

  10. Density-based penalty parameter optimization on C-SVM.

    PubMed

    Liu, Yun; Lian, Jie; Bartolacci, Michael R; Zeng, Qing-An

    2014-01-01

    The support vector machine (SVM) is one of the most widely used approaches for data classification and regression. SVM achieves the largest distance between the positive and negative support vectors, which neglects the remote instances away from the SVM interface. In order to avoid a position change of the SVM interface as the result of an error system outlier, C-SVM was implemented to decrease the influences of the system's outliers. Traditional C-SVM holds a uniform parameter C for both positive and negative instances; however, according to the different number proportions and the data distribution, positive and negative instances should be set with different weights for the penalty parameter of the error terms. Therefore, in this paper, we propose density-based penalty parameter optimization of C-SVM. The experiential results indicated that our proposed algorithm has outstanding performance with respect to both precision and recall.

  11. Optimal Parameter Selection for Support Vector Machine Based on Artificial Bee Colony Algorithm: A Case Study of Grid-Connected PV System Power Prediction.

    PubMed

    Gao, Xiang-Ming; Yang, Shi-Feng; Pan, San-Bo

    2017-01-01

    Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization.

  12. Prediction of p38 map kinase inhibitory activity of 3, 4-dihydropyrido [3, 2-d] pyrimidone derivatives using an expert system based on principal component analysis and least square support vector machine

    PubMed Central

    Shahlaei, M.; Saghaie, L.

    2014-01-01

    A quantitative structure–activity relationship (QSAR) study is suggested for the prediction of biological activity (pIC50) of 3, 4-dihydropyrido [3,2-d] pyrimidone derivatives as p38 inhibitors. Modeling of the biological activities of compounds of interest as a function of molecular structures was established by means of principal component analysis (PCA) and least square support vector machine (LS-SVM) methods. The results showed that the pIC50 values calculated by LS-SVM are in good agreement with the experimental data, and the performance of the LS-SVM regression model is superior to the PCA-based model. The developed LS-SVM model was applied for the prediction of the biological activities of pyrimidone derivatives, which were not in the modeling procedure. The resulted model showed high prediction ability with root mean square error of prediction of 0.460 for LS-SVM. The study provided a novel and effective approach for predicting biological activities of 3, 4-dihydropyrido [3,2-d] pyrimidone derivatives as p38 inhibitors and disclosed that LS-SVM can be used as a powerful chemometrics tool for QSAR studies. PMID:26339262

  13. Optimal Parameter Selection for Support Vector Machine Based on Artificial Bee Colony Algorithm: A Case Study of Grid-Connected PV System Power Prediction

    PubMed Central

    2017-01-01

    Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization. PMID:28912803

  14. [Based on the LS-SVM modeling method determination of soil available N and available K by using near-infrared spectroscopy].

    PubMed

    Liu, Xue-Mei; Liu, Jian-She

    2012-11-01

    Visible infrared spectroscopy (Vis/SW-NIRS) was investigated in the present study for measurement accuracy of soil properties,namely, available nitrogen(N) and available potassium(K). Three types of pretreatments including standard normal variate (SNV), multiplicative scattering correction (MSC) and Savitzky-Golay smoothing+first derivative were adopted to eliminate the system noises and external disturbances. Then partial least squares (PLS) and least squares-support vector machine (LS-SVM) models analysis were implemented for calibration models. Simultaneously, the performance of least squares-support vector machine (LS-SVM) models was compared with three kinds of inputs, including PCA(PCs), latent variables (LVs), and effective wavelengths (EWs). The results indicated that all LS-SVM models outperformed PLS models. The performance of the model was evaluated by the correlation coefficient (r2) and RMSEP. The optimal EWs-LS-SVM models were achieved, and the correlation coefficient (r2) and RMSEP were 0.82 and 17.2 for N and 0.72 and 15.0 for K, respectively. The results indicated that visible and short wave-near infrared spectroscopy (Vis/SW-NIRS)(325-1 075 nm) combined with LS-SVM could be utilized as a precision method for the determination of soil properties.

  15. Machine Learning Approach for Classifying Multiple Sclerosis Courses by Combining Clinical Data with Lesion Loads and Magnetic Resonance Metabolic Features.

    PubMed

    Ion-Mărgineanu, Adrian; Kocevar, Gabriel; Stamile, Claudio; Sima, Diana M; Durand-Dubief, Françoise; Van Huffel, Sabine; Sappey-Marinier, Dominique

    2017-01-01

    Purpose: The purpose of this study is classifying multiple sclerosis (MS) patients in the four clinical forms as defined by the McDonald criteria using machine learning algorithms trained on clinical data combined with lesion loads and magnetic resonance metabolic features. Materials and Methods: Eighty-seven MS patients [12 Clinically Isolated Syndrome (CIS), 30 Relapse Remitting (RR), 17 Primary Progressive (PP), and 28 Secondary Progressive (SP)] and 18 healthy controls were included in this study. Longitudinal data available for each MS patient included clinical (e.g., age, disease duration, Expanded Disability Status Scale), conventional magnetic resonance imaging and spectroscopic imaging. We extract N -acetyl-aspartate (NAA), Choline (Cho), and Creatine (Cre) concentrations, and we compute three features for each spectroscopic grid by averaging metabolite ratios (NAA/Cho, NAA/Cre, Cho/Cre) over good quality voxels. We built linear mixed-effects models to test for statistically significant differences between MS forms. We test nine binary classification tasks on clinical data, lesion loads, and metabolic features, using a leave-one-patient-out cross-validation method based on 100 random patient-based bootstrap selections. We compute F1-scores and BAR values after tuning Linear Discriminant Analysis (LDA), Support Vector Machines with gaussian kernel (SVM-rbf), and Random Forests. Results: Statistically significant differences were found between the disease starting points of each MS form using four different response variables: Lesion Load, NAA/Cre, NAA/Cho, and Cho/Cre ratios. Training SVM-rbf on clinical and lesion loads yields F1-scores of 71-72% for CIS vs. RR and CIS vs. RR+SP, respectively. For RR vs. PP we obtained good classification results (maximum F1-score of 85%) after training LDA on clinical and metabolic features, while for RR vs. SP we obtained slightly higher classification results (maximum F1-score of 87%) after training LDA and SVM-rbf on clinical, lesion loads and metabolic features. Conclusions: Our results suggest that metabolic features are better at differentiating between relapsing-remitting and primary progressive forms, while lesion loads are better at differentiating between relapsing-remitting and secondary progressive forms. Therefore, combining clinical data with magnetic resonance lesion loads and metabolic features can improve the discrimination between relapsing-remitting and progressive forms.

  16. Prediction of lung cancer patient survival via supervised machine learning classification techniques.

    PubMed

    Lynch, Chip M; Abdollahi, Behnaz; Fuqua, Joshua D; de Carlo, Alexandra R; Bartholomai, James A; Balgemann, Rayeanne N; van Berkel, Victor H; Frieboes, Hermann B

    2017-12-01

    Outcomes for cancer patients have been previously estimated by applying various machine learning techniques to large datasets such as the Surveillance, Epidemiology, and End Results (SEER) program database. In particular for lung cancer, it is not well understood which types of techniques would yield more predictive information, and which data attributes should be used in order to determine this information. In this study, a number of supervised learning techniques is applied to the SEER database to classify lung cancer patients in terms of survival, including linear regression, Decision Trees, Gradient Boosting Machines (GBM), Support Vector Machines (SVM), and a custom ensemble. Key data attributes in applying these methods include tumor grade, tumor size, gender, age, stage, and number of primaries, with the goal to enable comparison of predictive power between the various methods The prediction is treated like a continuous target, rather than a classification into categories, as a first step towards improving survival prediction. The results show that the predicted values agree with actual values for low to moderate survival times, which constitute the majority of the data. The best performing technique was the custom ensemble with a Root Mean Square Error (RMSE) value of 15.05. The most influential model within the custom ensemble was GBM, while Decision Trees may be inapplicable as it had too few discrete outputs. The results further show that among the five individual models generated, the most accurate was GBM with an RMSE value of 15.32. Although SVM underperformed with an RMSE value of 15.82, statistical analysis singles the SVM as the only model that generated a distinctive output. The results of the models are consistent with a classical Cox proportional hazards model used as a reference technique. We conclude that application of these supervised learning techniques to lung cancer data in the SEER database may be of use to estimate patient survival time with the ultimate goal to inform patient care decisions, and that the performance of these techniques with this particular dataset may be on par with that of classical methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. An Automated and Intelligent Medical Decision Support System for Brain MRI Scans Classification.

    PubMed

    Siddiqui, Muhammad Faisal; Reza, Ahmed Wasif; Kanesan, Jeevan

    2015-01-01

    A wide interest has been observed in the medical health care applications that interpret neuroimaging scans by machine learning systems. This research proposes an intelligent, automatic, accurate, and robust classification technique to classify the human brain magnetic resonance image (MRI) as normal or abnormal, to cater down the human error during identifying the diseases in brain MRIs. In this study, fast discrete wavelet transform (DWT), principal component analysis (PCA), and least squares support vector machine (LS-SVM) are used as basic components. Firstly, fast DWT is employed to extract the salient features of brain MRI, followed by PCA, which reduces the dimensions of the features. These reduced feature vectors also shrink the memory storage consumption by 99.5%. At last, an advanced classification technique based on LS-SVM is applied to brain MR image classification using reduced features. For improving the efficiency, LS-SVM is used with non-linear radial basis function (RBF) kernel. The proposed algorithm intelligently determines the optimized values of the hyper-parameters of the RBF kernel and also applied k-fold stratified cross validation to enhance the generalization of the system. The method was tested by 340 patients' benchmark datasets of T1-weighted and T2-weighted scans. From the analysis of experimental results and performance comparisons, it is observed that the proposed medical decision support system outperformed all other modern classifiers and achieves 100% accuracy rate (specificity/sensitivity 100%/100%). Furthermore, in terms of computation time, the proposed technique is significantly faster than the recent well-known methods, and it improves the efficiency by 71%, 3%, and 4% on feature extraction stage, feature reduction stage, and classification stage, respectively. These results indicate that the proposed well-trained machine learning system has the potential to make accurate predictions about brain abnormalities from the individual subjects, therefore, it can be used as a significant tool in clinical practice.

  18. Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study.

    PubMed

    Lima, Clodoaldo A M; Coelho, André L V

    2011-10-01

    We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely, Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization.

    PubMed

    Nishio, Mizuho; Nishizawa, Mitsuo; Sugiyama, Osamu; Kojima, Ryosuke; Yakami, Masahiro; Kuroda, Tomohiro; Togashi, Kaori

    2018-01-01

    We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine learning algorithm), (ii) comparison between support vector machine (SVM) and gradient tree boosting (XGBoost) as machine learning algorithms, and (iii) effectiveness of parameter optimization using Bayesian optimization and random search. Data on 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of the local binary pattern was used for calculating a feature vector. SVM or XGBoost was trained using the feature vector and its corresponding label. Tree Parzen Estimator (TPE) was used as Bayesian optimization for parameters of SVM and XGBoost. Random search was done for comparison with TPE. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost was 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. Bayesian optimization of SVM and XGBoost parameters was more efficient than random search. Based on observer study, AUC values of two board-certified radiologists were 0.898 and 0.822. The results show that diagnostic accuracy of our CADx system was comparable to that of radiologists with respect to classifying lung nodules.

  20. A Support Vector Machine based method to distinguish proteobacterial proteins from eukaryotic plant proteins

    PubMed Central

    2012-01-01

    Background Members of the phylum Proteobacteria are most prominent among bacteria causing plant diseases that result in a diminution of the quantity and quality of food produced by agriculture. To ameliorate these losses, there is a need to identify infections in early stages. Recent developments in next generation nucleic acid sequencing and mass spectrometry open the door to screening plants by the sequences of their macromolecules. Such an approach requires the ability to recognize the organismal origin of unknown DNA or peptide fragments. There are many ways to approach this problem but none have emerged as the best protocol. Here we attempt a systematic way to determine organismal origins of peptides by using a machine learning algorithm. The algorithm that we implement is a Support Vector Machine (SVM). Result The amino acid compositions of proteobacterial proteins were found to be different from those of plant proteins. We developed an SVM model based on amino acid and dipeptide compositions to distinguish between a proteobacterial protein and a plant protein. The amino acid composition (AAC) based SVM model had an accuracy of 92.44% with 0.85 Matthews correlation coefficient (MCC) while the dipeptide composition (DC) based SVM model had a maximum accuracy of 94.67% and 0.89 MCC. We also developed SVM models based on a hybrid approach (AAC and DC), which gave a maximum accuracy 94.86% and a 0.90 MCC. The models were tested on unseen or untrained datasets to assess their validity. Conclusion The results indicate that the SVM based on the AAC and DC hybrid approach can be used to distinguish proteobacterial from plant protein sequences. PMID:23046503

  1. Prediction of CO concentrations based on a hybrid Partial Least Square and Support Vector Machine model

    NASA Astrophysics Data System (ADS)

    Yeganeh, B.; Motlagh, M. Shafie Pour; Rashidi, Y.; Kamalan, H.

    2012-08-01

    Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS-SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS-SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65-85% for hybrid PLS-SVM model respectively. Also it was found that the hybrid PLS-SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS-SVM model.

  2. Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends.

    PubMed

    Lu, Wei-Zhen; Wang, Wen-Jian

    2005-04-01

    Monitoring and forecasting of air quality parameters are popular and important topics of atmospheric and environmental research today due to the health impact caused by exposing to air pollutants existing in urban air. The accurate models for air pollutant prediction are needed because such models would allow forecasting and diagnosing potential compliance or non-compliance in both short- and long-term aspects. Artificial neural networks (ANN) are regarded as reliable and cost-effective method to achieve such tasks and have produced some promising results to date. Although ANN has addressed more attentions to environmental researchers, its inherent drawbacks, e.g., local minima, over-fitting training, poor generalization performance, determination of the appropriate network architecture, etc., impede the practical application of ANN. Support vector machine (SVM), a novel type of learning machine based on statistical learning theory, can be used for regression and time series prediction and have been reported to perform well by some promising results. The work presented in this paper aims to examine the feasibility of applying SVM to predict air pollutant levels in advancing time series based on the monitored air pollutant database in Hong Kong downtown area. At the same time, the functional characteristics of SVM are investigated in the study. The experimental comparisons between the SVM model and the classical radial basis function (RBF) network demonstrate that the SVM is superior to the conventional RBF network in predicting air quality parameters with different time series and of better generalization performance than the RBF model.

  3. Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm.

    PubMed

    Mao, Yong; Zhou, Xiao-Bo; Pi, Dao-Ying; Sun, You-Xian; Wong, Stephen T C

    2005-10-01

    In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear statistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two representative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method performs well in selecting genes and achieves high classification accuracies with these genes.

  4. SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier.

    PubMed

    Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W M; Li, R K; Jiang, Bo-Ru

    2014-01-01

    Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases.

  5. SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier

    PubMed Central

    Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W. M.; Li, R. K.; Jiang, Bo-Ru

    2014-01-01

    Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases. PMID:25295306

  6. Application of support vector machine for the separation of mineralised zones in the Takht-e-Gonbad porphyry deposit, SE Iran

    NASA Astrophysics Data System (ADS)

    Mahvash Mohammadi, Neda; Hezarkhani, Ardeshir

    2018-07-01

    Classification of mineralised zones is an important factor for the analysis of economic deposits. In this paper, the support vector machine (SVM), a supervised learning algorithm, based on subsurface data is proposed for classification of mineralised zones in the Takht-e-Gonbad porphyry Cu-deposit (SE Iran). The effects of the input features are evaluated via calculating the accuracy rates on the SVM performance. Ultimately, the SVM model, is developed based on input features namely lithology, alteration, mineralisation, the level and, radial basis function (RBF) as a kernel function. Moreover, the optimal amount of parameters λ and C, using n-fold cross-validation method, are calculated at level 0.001 and 0.01 respectively. The accuracy of this model is 0.931 for classification of mineralised zones in the Takht-e-Gonbad porphyry deposit. The results of the study confirm the efficiency of SVM method for classification the mineralised zones.

  7. Prediction of Backbreak in Open-Pit Blasting Operations Using the Machine Learning Method

    NASA Astrophysics Data System (ADS)

    Khandelwal, Manoj; Monjezi, M.

    2013-03-01

    Backbreak is an undesirable phenomenon in blasting operations. It can cause instability of mine walls, falling down of machinery, improper fragmentation, reduced efficiency of drilling, etc. The existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, the application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict backbreak in blasting operations of Soungun iron mine, Iran, incorporating rock properties and blast design parameters using the support vector machine (SVM) method. To investigate the suitability of this approach, the predictions by SVM have been compared with multivariate regression analysis (MVRA). The coefficient of determination (CoD) and the mean absolute error (MAE) were taken as performance measures. It was found that the CoD between measured and predicted backbreak was 0.987 and 0.89 by SVM and MVRA, respectively, whereas the MAE was 0.29 and 1.07 by SVM and MVRA, respectively.

  8. Inline Measurement of Particle Concentrations in Multicomponent Suspensions using Ultrasonic Sensor and Least Squares Support Vector Machines.

    PubMed

    Zhan, Xiaobin; Jiang, Shulan; Yang, Yili; Liang, Jian; Shi, Tielin; Li, Xiwen

    2015-09-18

    This paper proposes an ultrasonic measurement system based on least squares support vector machines (LS-SVM) for inline measurement of particle concentrations in multicomponent suspensions. Firstly, the ultrasonic signals are analyzed and processed, and the optimal feature subset that contributes to the best model performance is selected based on the importance of features. Secondly, the LS-SVM model is tuned, trained and tested with different feature subsets to obtain the optimal model. In addition, a comparison is made between the partial least square (PLS) model and the LS-SVM model. Finally, the optimal LS-SVM model with the optimal feature subset is applied to inline measurement of particle concentrations in the mixing process. The results show that the proposed method is reliable and accurate for inline measuring the particle concentrations in multicomponent suspensions and the measurement accuracy is sufficiently high for industrial application. Furthermore, the proposed method is applicable to the modeling of the nonlinear system dynamically and provides a feasible way to monitor industrial processes.

  9. Multiclass Reduced-Set Support Vector Machines

    NASA Technical Reports Server (NTRS)

    Tang, Benyang; Mazzoni, Dominic

    2006-01-01

    There are well-established methods for reducing the number of support vectors in a trained binary support vector machine, often with minimal impact on accuracy. We show how reduced-set methods can be applied to multiclass SVMs made up of several binary SVMs, with significantly better results than reducing each binary SVM independently. Our approach is based on Burges' approach that constructs each reduced-set vector as the pre-image of a vector in kernel space, but we extend this by recomputing the SVM weights and bias optimally using the original SVM objective function. This leads to greater accuracy for a binary reduced-set SVM, and also allows vectors to be 'shared' between multiple binary SVMs for greater multiclass accuracy with fewer reduced-set vectors. We also propose computing pre-images using differential evolution, which we have found to be more robust than gradient descent alone. We show experimental results on a variety of problems and find that this new approach is consistently better than previous multiclass reduced-set methods, sometimes with a dramatic difference.

  10. A low cost implementation of multi-parameter patient monitor using intersection kernel support vector machine classifier

    NASA Astrophysics Data System (ADS)

    Mohan, Dhanya; Kumar, C. Santhosh

    2016-03-01

    Predicting the physiological condition (normal/abnormal) of a patient is highly desirable to enhance the quality of health care. Multi-parameter patient monitors (MPMs) using heart rate, arterial blood pressure, respiration rate and oxygen saturation (S pO2) as input parameters were developed to monitor the condition of patients, with minimum human resource utilization. The Support vector machine (SVM), an advanced machine learning approach popularly used for classification and regression is used for the realization of MPMs. For making MPMs cost effective, we experiment on the hardware implementation of the MPM using support vector machine classifier. The training of the system is done using the matlab environment and the detection of the alarm/noalarm condition is implemented in hardware. We used different kernels for SVM classification and note that the best performance was obtained using intersection kernel SVM (IKSVM). The intersection kernel support vector machine classifier MPM has outperformed the best known MPM using radial basis function kernel by an absoute improvement of 2.74% in accuracy, 1.86% in sensitivity and 3.01% in specificity. The hardware model was developed based on the improved performance system using Verilog Hardware Description Language and was implemented on Altera cyclone-II development board.

  11. Lamb wave based damage detection using Matching Pursuit and Support Vector Machine classifier

    NASA Astrophysics Data System (ADS)

    Agarwal, Sushant; Mitra, Mira

    2014-03-01

    In this paper, the suitability of using Matching Pursuit (MP) and Support Vector Machine (SVM) for damage detection using Lamb wave response of thin aluminium plate is explored. Lamb wave response of thin aluminium plate with or without damage is simulated using finite element. Simulations are carried out at different frequencies for various kinds of damage. The procedure is divided into two parts - signal processing and machine learning. Firstly, MP is used for denoising and to maintain the sparsity of the dataset. In this study, MP is extended by using a combination of time-frequency functions as the dictionary and is deployed in two stages. Selection of a particular type of atoms lead to extraction of important features while maintaining the sparsity of the waveform. The resultant waveform is then passed as input data for SVM classifier. SVM is used to detect the location of the potential damage from the reduced data. The study demonstrates that SVM is a robust classifier in presence of noise and more efficient as compared to Artificial Neural Network (ANN). Out-of-sample data is used for the validation of the trained and tested classifier. Trained classifiers are found successful in detection of the damage with more than 95% detection rate.

  12. Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation

    PubMed Central

    2018-01-01

    Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site. PMID:29370230

  13. Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation.

    PubMed

    Illias, Hazlee Azil; Zhao Liang, Wee

    2018-01-01

    Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site.

  14. Performance improvement of 64-QAM coherent optical communication system by optimizing symbol decision boundary based on support vector machine

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Zhang, Junfeng; Gao, Mingyi; Shen, Gangxiang

    2018-03-01

    High-order modulation signals are suited for high-capacity communication systems because of their high spectral efficiency, but they are more vulnerable to various impairments. For the signals that experience degradation, when symbol points overlap on the constellation diagram, the original linear decision boundary cannot be used to distinguish the classification of symbol. Therefore, it is advantageous to create an optimum symbol decision boundary for the degraded signals. In this work, we experimentally demonstrated the 64-quadrature-amplitude modulation (64-QAM) coherent optical communication system using support-vector machine (SVM) decision boundary algorithm to create the optimum symbol decision boundary for improving the system performance. We investigated the influence of various impairments on the 64-QAM coherent optical communication systems, such as the impairments caused by modulator nonlinearity, phase skew between in-phase (I) arm and quadrature-phase (Q) arm of the modulator, fiber Kerr nonlinearity and amplified spontaneous emission (ASE) noise. We measured the bit-error-ratio (BER) performance of 75-Gb/s 64-QAM signals in the back-to-back and 50-km transmission. By using SVM to optimize symbol decision boundary, the impairments caused by I/Q phase skew of the modulator, fiber Kerr nonlinearity and ASE noise are greatly mitigated.

  15. Rare events modeling with support vector machine: Application to forecasting large-amplitude geomagnetic substorms and extreme events in financial markets.

    NASA Astrophysics Data System (ADS)

    Gavrishchaka, V. V.; Ganguli, S. B.

    2001-12-01

    Reliable forecasting of rare events in a complex dynamical system is a challenging problem that is important for many practical applications. Due to the nature of rare events, data set available for construction of the statistical and/or machine learning model is often very limited and incomplete. Therefore many widely used approaches including such robust algorithms as neural networks can easily become inadequate for rare events prediction. Moreover in many practical cases models with high-dimensional inputs are required. This limits applications of the existing rare event modeling techniques (e.g., extreme value theory) that focus on univariate cases. These approaches are not easily extended to multivariate cases. Support vector machine (SVM) is a machine learning system that can provide an optimal generalization using very limited and incomplete training data sets and can efficiently handle high-dimensional data. These features may allow to use SVM to model rare events in some applications. We have applied SVM-based system to the problem of large-amplitude substorm prediction and extreme event forecasting in stock and currency exchange markets. Encouraging preliminary results will be presented and other possible applications of the system will be discussed.

  16. Using statistical and machine learning to help institutions detect suspicious access to electronic health records.

    PubMed

    Boxwala, Aziz A; Kim, Jihoon; Grillo, Janice M; Ohno-Machado, Lucila

    2011-01-01

    To determine whether statistical and machine-learning methods, when applied to electronic health record (EHR) access data, could help identify suspicious (ie, potentially inappropriate) access to EHRs. From EHR access logs and other organizational data collected over a 2-month period, the authors extracted 26 features likely to be useful in detecting suspicious accesses. Selected events were marked as either suspicious or appropriate by privacy officers, and served as the gold standard set for model evaluation. The authors trained logistic regression (LR) and support vector machine (SVM) models on 10-fold cross-validation sets of 1291 labeled events. The authors evaluated the sensitivity of final models on an external set of 58 events that were identified as truly inappropriate and investigated independently from this study using standard operating procedures. The area under the receiver operating characteristic curve of the models on the whole data set of 1291 events was 0.91 for LR, and 0.95 for SVM. The sensitivity of the baseline model on this set was 0.8. When the final models were evaluated on the set of 58 investigated events, all of which were determined as truly inappropriate, the sensitivity was 0 for the baseline method, 0.76 for LR, and 0.79 for SVM. The LR and SVM models may not generalize because of interinstitutional differences in organizational structures, applications, and workflows. Nevertheless, our approach for constructing the models using statistical and machine-learning techniques can be generalized. An important limitation is the relatively small sample used for the training set due to the effort required for its construction. The results suggest that statistical and machine-learning methods can play an important role in helping privacy officers detect suspicious accesses to EHRs.

  17. Using statistical and machine learning to help institutions detect suspicious access to electronic health records

    PubMed Central

    Kim, Jihoon; Grillo, Janice M; Ohno-Machado, Lucila

    2011-01-01

    Objective To determine whether statistical and machine-learning methods, when applied to electronic health record (EHR) access data, could help identify suspicious (ie, potentially inappropriate) access to EHRs. Methods From EHR access logs and other organizational data collected over a 2-month period, the authors extracted 26 features likely to be useful in detecting suspicious accesses. Selected events were marked as either suspicious or appropriate by privacy officers, and served as the gold standard set for model evaluation. The authors trained logistic regression (LR) and support vector machine (SVM) models on 10-fold cross-validation sets of 1291 labeled events. The authors evaluated the sensitivity of final models on an external set of 58 events that were identified as truly inappropriate and investigated independently from this study using standard operating procedures. Results The area under the receiver operating characteristic curve of the models on the whole data set of 1291 events was 0.91 for LR, and 0.95 for SVM. The sensitivity of the baseline model on this set was 0.8. When the final models were evaluated on the set of 58 investigated events, all of which were determined as truly inappropriate, the sensitivity was 0 for the baseline method, 0.76 for LR, and 0.79 for SVM. Limitations The LR and SVM models may not generalize because of interinstitutional differences in organizational structures, applications, and workflows. Nevertheless, our approach for constructing the models using statistical and machine-learning techniques can be generalized. An important limitation is the relatively small sample used for the training set due to the effort required for its construction. Conclusion The results suggest that statistical and machine-learning methods can play an important role in helping privacy officers detect suspicious accesses to EHRs. PMID:21672912

  18. EEG feature selection method based on decision tree.

    PubMed

    Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun

    2015-01-01

    This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.

  19. Optimal Model-Based Fault Estimation and Correction for Particle Accelerators and Industrial Plants Using Combined Support Vector Machines and First Principles Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayyar-Rodsari, Bijan; Schweiger, Carl; /SLAC /Pavilion Technologies, Inc., Austin, TX

    2010-08-25

    Timely estimation of deviations from optimal performance in complex systems and the ability to identify corrective measures in response to the estimated parameter deviations has been the subject of extensive research over the past four decades. The implications in terms of lost revenue from costly industrial processes, operation of large-scale public works projects and the volume of the published literature on this topic clearly indicates the significance of the problem. Applications range from manufacturing industries (integrated circuits, automotive, etc.), to large-scale chemical plants, pharmaceutical production, power distribution grids, and avionics. In this project we investigated a new framework for buildingmore » parsimonious models that are suited for diagnosis and fault estimation of complex technical systems. We used Support Vector Machines (SVMs) to model potentially time-varying parameters of a First-Principles (FP) description of the process. The combined SVM & FP model was built (i.e. model parameters were trained) using constrained optimization techniques. We used the trained models to estimate faults affecting simulated beam lifetime. In the case where a large number of process inputs are required for model-based fault estimation, the proposed framework performs an optimal nonlinear principal component analysis of the large-scale input space, and creates a lower dimension feature space in which fault estimation results can be effectively presented to the operation personnel. To fulfill the main technical objectives of the Phase I research, our Phase I efforts have focused on: (1) SVM Training in a Combined Model Structure - We developed the software for the constrained training of the SVMs in a combined model structure, and successfully modeled the parameters of a first-principles model for beam lifetime with support vectors. (2) Higher-order Fidelity of the Combined Model - We used constrained training to ensure that the output of the SVM (i.e. the parameters of the beam lifetime model) are physically meaningful. (3) Numerical Efficiency of the Training - We investigated the numerical efficiency of the SVM training. More specifically, for the primal formulation of the training, we have developed a problem formulation that avoids the linear increase in the number of the constraints as a function of the number of data points. (4) Flexibility of Software Architecture - The software framework for the training of the support vector machines was designed to enable experimentation with different solvers. We experimented with two commonly used nonlinear solvers for our simulations. The primary application of interest for this project has been the sustained optimal operation of particle accelerators at the Stanford Linear Accelerator Center (SLAC). Particle storage rings are used for a variety of applications ranging from 'colliding beam' systems for high-energy physics research to highly collimated x-ray generators for synchrotron radiation science. Linear accelerators are also used for collider research such as International Linear Collider (ILC), as well as for free electron lasers, such as the Linear Coherent Light Source (LCLS) at SLAC. One common theme in the operation of storage rings and linear accelerators is the need to precisely control the particle beams over long periods of time with minimum beam loss and stable, yet challenging, beam parameters. We strongly believe that beyond applications in particle accelerators, the high fidelity and cost benefits of a combined model-based fault estimation/correction system will attract customers from a wide variety of commercial and scientific industries. Even though the acquisition of Pavilion Technologies, Inc. by Rockwell Automation Inc. in 2007 has altered the small business status of the Pavilion and it no longer qualifies for a Phase II funding, our findings in the course of the Phase I research have convinced us that further research will render a workable model-based fault estimation and correction for particle accelerators and industrial plants feasible.« less

  20. Using visible and near-infrared diffuse reflectance spectroscopy for predicting soil properties based on regression with peaks parameters as derived from continuum-removed spectra

    NASA Astrophysics Data System (ADS)

    Vasat, Radim; Klement, Ales; Jaksik, Ondrej; Kodesova, Radka; Drabek, Ondrej; Boruvka, Lubos

    2014-05-01

    Visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS) provides a rapid and inexpensive tool for simultaneous prediction of a variety of soil properties. Usually, some sophisticated multivariate mathematical or statistical methods are employed in order to extract the required information from the raw spectra measurement. For this purpose especially the Partial least squares regression (PLSR) and Support vector machines (SVM) are the most frequently used. These methods generally benefit from the complexity with which the soil spectra are treated. But it is interesting that also techniques that focus only on a single spectral feature, such as a simple linear regression with selected continuum-removed spectra (CRS) characteristic (e.g. peak depth), can often provide competitive results. Therefore, we decided to enhance the potential of CRS taking into account all possible CRS peak parameters (area, width and depth) and develop a comprehensive methodology based on multiple linear regression approach. The eight considered soil properties were oxidizable carbon content (Cox), exchangeable (pHex) and active soil pH (pHa), particle and bulk density, CaCO3 content, crystalline and amorphous (Fed) and amorphous Fe (Feox) forms. In four cases (pHa, bulk density, Fed and Feox), of which two (Fed and Feox) were predicted reliably accurately (0.50 < R2cv < 0.80) and the other two (pHa and bulk density) only poorly (R2cv < 0.50), we obtained slightly better results than with PLSR and SVM. In one case (pHex) we achieved a significantly higher, although just reliable, accuracy (R2cv = 0.601) than with PLSR and SVM (R2cv = 0.448 and 0.442, resp.). But most interestingly, in the case of particle density, the presented approach outperformed the PLSR and SVM dramatically offering a fairly accurate prediction (R2cv = 0.827) against two failures (R2cv = 0.034 and 0.121 for PLSR and SVM, resp.). In last two cases (Cox and CaCO3) a slightly worse results were achieved then with PLSR and SVM with overall fairly accurate prediction (R2cv > 0.80). Acknowledgment: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic (grant No. QJ1230319).

  1. Patient classification as an outlier detection problem: An application of the One-Class Support Vector Machine

    PubMed Central

    Mourão-Miranda, Janaina; Hardoon, David R.; Hahn, Tim; Marquand, Andre F.; Williams, Steve C.R.; Shawe-Taylor, John; Brammer, Michael

    2011-01-01

    Pattern recognition approaches, such as the Support Vector Machine (SVM), have been successfully used to classify groups of individuals based on their patterns of brain activity or structure. However these approaches focus on finding group differences and are not applicable to situations where one is interested in accessing deviations from a specific class or population. In the present work we propose an application of the one-class SVM (OC-SVM) to investigate if patterns of fMRI response to sad facial expressions in depressed patients would be classified as outliers in relation to patterns of healthy control subjects. We defined features based on whole brain voxels and anatomical regions. In both cases we found a significant correlation between the OC-SVM predictions and the patients' Hamilton Rating Scale for Depression (HRSD), i.e. the more depressed the patients were the more of an outlier they were. In addition the OC-SVM split the patient groups into two subgroups whose membership was associated with future response to treatment. When applied to region-based features the OC-SVM classified 52% of patients as outliers. However among the patients classified as outliers 70% did not respond to treatment and among those classified as non-outliers 89% responded to treatment. In addition 89% of the healthy controls were classified as non-outliers. PMID:21723950

  2. SVM-based feature extraction and classification of aflatoxin contaminated corn using fluorescence hyperspectral data

    USDA-ARS?s Scientific Manuscript database

    Support Vector Machine (SVM) was used in the Genetic Algorithms (GA) process to select and classify a subset of hyperspectral image bands. The method was applied to fluorescence hyperspectral data for the detection of aflatoxin contamination in Aspergillus flavus infected single corn kernels. In the...

  3. Comparison of water extraction methods in Tibet based on GF-1 data

    NASA Astrophysics Data System (ADS)

    Jia, Lingjun; Shang, Kun; Liu, Jing; Sun, Zhongqing

    2018-03-01

    In this study, we compared four different water extraction methods with GF-1 data according to different water types in Tibet, including Support Vector Machine (SVM), Principal Component Analysis (PCA), Decision Tree Classifier based on False Normalized Difference Water Index (FNDWI-DTC), and PCA-SVM. The results show that all of the four methods can extract large area water body, but only SVM and PCA-SVM can obtain satisfying extraction results for small size water body. The methods were evaluated by both overall accuracy (OAA) and Kappa coefficient (KC). The OAA of PCA-SVM, SVM, FNDWI-DTC, PCA are 96.68%, 94.23%, 93.99%, 93.01%, and the KCs are 0.9308, 0.8995, 0.8962, 0.8842, respectively, in consistent with visual inspection. In summary, SVM is better for narrow rivers extraction and PCA-SVM is suitable for water extraction of various types. As for dark blue lakes, the methods using PCA can extract more quickly and accurately.

  4. Predicting breast cancer using an expression values weighted clinical classifier.

    PubMed

    Thomas, Minta; De Brabanter, Kris; Suykens, Johan A K; De Moor, Bart

    2014-12-31

    Clinical data, such as patient history, laboratory analysis, ultrasound parameters-which are the basis of day-to-day clinical decision support-are often used to guide the clinical management of cancer in the presence of microarray data. Several data fusion techniques are available to integrate genomics or proteomics data, but only a few studies have created a single prediction model using both gene expression and clinical data. These studies often remain inconclusive regarding an obtained improvement in prediction performance. To improve clinical management, these data should be fully exploited. This requires efficient algorithms to integrate these data sets and design a final classifier. LS-SVM classifiers and generalized eigenvalue/singular value decompositions are successfully used in many bioinformatics applications for prediction tasks. While bringing up the benefits of these two techniques, we propose a machine learning approach, a weighted LS-SVM classifier to integrate two data sources: microarray and clinical parameters. We compared and evaluated the proposed methods on five breast cancer case studies. Compared to LS-SVM classifier on individual data sets, generalized eigenvalue decomposition (GEVD) and kernel GEVD, the proposed weighted LS-SVM classifier offers good prediction performance, in terms of test area under ROC Curve (AUC), on all breast cancer case studies. Thus a clinical classifier weighted with microarray data set results in significantly improved diagnosis, prognosis and prediction responses to therapy. The proposed model has been shown as a promising mathematical framework in both data fusion and non-linear classification problems.

  5. A 15-gene signature for prediction of colon cancer recurrence and prognosis based on SVM.

    PubMed

    Xu, Guangru; Zhang, Minghui; Zhu, Hongxing; Xu, Jinhua

    2017-03-10

    To screen the gene signature for distinguishing patients with high risks from those with low-risks for colon cancer recurrence and predicting their prognosis. Five microarray datasets of colon cancer samples were collected from Gene Expression Omnibus database and one was obtained from The Cancer Genome Atlas (TCGA). After preprocessing, data in GSE17537 were analyzed using the Linear Models for Microarray data (LIMMA) method to identify the differentially expressed genes (DEGs). The DEGs further underwent PPI network-based neighborhood scoring and support vector machine (SVM) analyses to screen the feature genes associated with recurrence and prognosis, which were then validated by four datasets GSE38832, GSE17538, GSE28814 and TCGA using SVM and Cox regression analyses. A total of 1207 genes were identified as DEGs between recurrence and no-recurrence samples, including 726 downregulated and 481 upregulated genes. Using SVM analysis and five gene expression profile data confirmation, a 15-gene signature (HES5, ZNF417, GLRA2, OR8D2, HOXA7, FABP6, MUSK, HTR6, GRIP2, KLRK1, VEGFA, AKAP12, RHEB, NCRNA00152 and PMEPA1) were identified as a predictor of recurrence risk and prognosis for colon cancer patients. Our identified 15-gene signature may be useful to classify colon cancer patients with different prognosis and some genes in this signature may represent new therapeutic targets. Copyright © 2016. Published by Elsevier B.V.

  6. A prior feature SVM – MRF based method for mouse brain segmentation

    PubMed Central

    Wu, Teresa; Bae, Min Hyeok; Zhang, Min; Pan, Rong; Badea, Alexandra

    2012-01-01

    We introduce an automated method, called prior feature Support Vector Machine- Markov Random Field (pSVMRF), to segment three-dimensional mouse brain Magnetic Resonance Microscopy (MRM) images. Our earlier work, extended MRF (eMRF) integrated Support Vector Machine (SVM) and Markov Random Field (MRF) approaches, leading to improved segmentation accuracy; however, the computation of eMRF is very expensive, which may limit its performance on segmentation and robustness. In this study pSVMRF reduces training and testing time for SVM, while boosting segmentation performance. Unlike the eMRF approach, where MR intensity information and location priors are linearly combined, pSVMRF combines this information in a nonlinear fashion, and enhances the discriminative ability of the algorithm. We validate the proposed method using MR imaging of unstained and actively stained mouse brain specimens, and compare segmentation accuracy with two existing methods: eMRF and MRF. C57BL/6 mice are used for training and testing, using cross validation. For formalin fixed C57BL/6 specimens, pSVMRF outperforms both eMRF and MRF. The segmentation accuracy for C57BL/6 brains, stained or not, was similar for larger structures like hippocampus and caudate putamen, (~87%), but increased substantially for smaller regions like susbtantia nigra (from 78.36% to 91.55%), and anterior commissure (from ~50% to ~80%). To test segmentation robustness against increased anatomical variability we add two strains, BXD29 and a transgenic mouse model of Alzheimer’s Disease. Segmentation accuracy for new strains is 80% for hippocampus, and caudate putamen, indicating that pSVMRF is a promising approach for phenotyping mouse models of human brain disorders. PMID:21988893

  7. A prior feature SVM-MRF based method for mouse brain segmentation.

    PubMed

    Wu, Teresa; Bae, Min Hyeok; Zhang, Min; Pan, Rong; Badea, Alexandra

    2012-02-01

    We introduce an automated method, called prior feature Support Vector Machine-Markov Random Field (pSVMRF), to segment three-dimensional mouse brain Magnetic Resonance Microscopy (MRM) images. Our earlier work, extended MRF (eMRF) integrated Support Vector Machine (SVM) and Markov Random Field (MRF) approaches, leading to improved segmentation accuracy; however, the computation of eMRF is very expensive, which may limit its performance on segmentation and robustness. In this study pSVMRF reduces training and testing time for SVM, while boosting segmentation performance. Unlike the eMRF approach, where MR intensity information and location priors are linearly combined, pSVMRF combines this information in a nonlinear fashion, and enhances the discriminative ability of the algorithm. We validate the proposed method using MR imaging of unstained and actively stained mouse brain specimens, and compare segmentation accuracy with two existing methods: eMRF and MRF. C57BL/6 mice are used for training and testing, using cross validation. For formalin fixed C57BL/6 specimens, pSVMRF outperforms both eMRF and MRF. The segmentation accuracy for C57BL/6 brains, stained or not, was similar for larger structures like hippocampus and caudate putamen, (~87%), but increased substantially for smaller regions like susbtantia nigra (from 78.36% to 91.55%), and anterior commissure (from ~50% to ~80%). To test segmentation robustness against increased anatomical variability we add two strains, BXD29 and a transgenic mouse model of Alzheimer's disease. Segmentation accuracy for new strains is 80% for hippocampus, and caudate putamen, indicating that pSVMRF is a promising approach for phenotyping mouse models of human brain disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. FPGA Coprocessor for Accelerated Classification of Images

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Scharenbroich, Lucas J.; Werne, Thomas A.

    2008-01-01

    An effort related to that described in the preceding article focuses on developing a spaceborne processing platform for fast and accurate onboard classification of image data, a critical part of modern satellite image processing. The approach again has been to exploit the versatility of recently developed hybrid Virtex-4FX field-programmable gate array (FPGA) to run diverse science applications on embedded processors while taking advantage of the reconfigurable hardware resources of the FPGAs. In this case, the FPGA serves as a coprocessor that implements legacy C-language support-vector-machine (SVM) image-classification algorithms to detect and identify natural phenomena such as flooding, volcanic eruptions, and sea-ice break-up. The FPGA provides hardware acceleration for increased onboard processing capability than previously demonstrated in software. The original C-language program demonstrated on an imaging instrument aboard the Earth Observing-1 (EO-1) satellite implements a linear-kernel SVM algorithm for classifying parts of the images as snow, water, ice, land, or cloud or unclassified. Current onboard processors, such as on EO-1, have limited computing power, extremely limited active storage capability and are no longer considered state-of-the-art. Using commercially available software that translates C-language programs into hardware description language (HDL) files, the legacy C-language program, and two newly formulated programs for a more capable expanded-linear-kernel and a more accurate polynomial-kernel SVM algorithm, have been implemented in the Virtex-4FX FPGA. In tests, the FPGA implementations have exhibited significant speedups over conventional software implementations running on general-purpose hardware.

  9. Detection of Genetically Modified Sugarcane by Using Terahertz Spectroscopy and Chemometrics

    NASA Astrophysics Data System (ADS)

    Liu, J.; Xie, H.; Zha, B.; Ding, W.; Luo, J.; Hu, C.

    2018-03-01

    A methodology is proposed to identify genetically modified sugarcane from non-genetically modified sugarcane by using terahertz spectroscopy and chemometrics techniques, including linear discriminant analysis (LDA), support vector machine-discriminant analysis (SVM-DA), and partial least squares-discriminant analysis (PLS-DA). The classification rate of the above mentioned methods is compared, and different types of preprocessing are considered. According to the experimental results, the best option is PLS-DA, with an identification rate of 98%. The results indicated that THz spectroscopy and chemometrics techniques are a powerful tool to identify genetically modified and non-genetically modified sugarcane.

  10. Sparse Bayesian Learning for Identifying Imaging Biomarkers in AD Prediction

    PubMed Central

    Shen, Li; Qi, Yuan; Kim, Sungeun; Nho, Kwangsik; Wan, Jing; Risacher, Shannon L.; Saykin, Andrew J.

    2010-01-01

    We apply sparse Bayesian learning methods, automatic relevance determination (ARD) and predictive ARD (PARD), to Alzheimer’s disease (AD) classification to make accurate prediction and identify critical imaging markers relevant to AD at the same time. ARD is one of the most successful Bayesian feature selection methods. PARD is a powerful Bayesian feature selection method, and provides sparse models that is easy to interpret. PARD selects the model with the best estimate of the predictive performance instead of choosing the one with the largest marginal model likelihood. Comparative study with support vector machine (SVM) shows that ARD/PARD in general outperform SVM in terms of prediction accuracy. Additional comparison with surface-based general linear model (GLM) analysis shows that regions with strongest signals are identified by both GLM and ARD/PARD. While GLM P-map returns significant regions all over the cortex, ARD/PARD provide a small number of relevant and meaningful imaging markers with predictive power, including both cortical and subcortical measures. PMID:20879451

  11. Intra-regional classification of grape seeds produced in Mendoza province (Argentina) by multi-elemental analysis and chemometrics tools.

    PubMed

    Canizo, Brenda V; Escudero, Leticia B; Pérez, María B; Pellerano, Roberto G; Wuilloud, Rodolfo G

    2018-03-01

    The feasibility of the application of chemometric techniques associated with multi-element analysis for the classification of grape seeds according to their provenance vineyard soil was investigated. Grape seed samples from different localities of Mendoza province (Argentina) were evaluated. Inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of twenty-nine elements (Ag, As, Ce, Co, Cs, Cu, Eu, Fe, Ga, Gd, La, Lu, Mn, Mo, Nb, Nd, Ni, Pr, Rb, Sm, Te, Ti, Tl, Tm, U, V, Y, Zn and Zr). Once the analytical data were collected, supervised pattern recognition techniques such as linear discriminant analysis (LDA), partial least square discriminant analysis (PLS-DA), k-nearest neighbors (k-NN), support vector machine (SVM) and Random Forest (RF) were applied to construct classification/discrimination rules. The results indicated that nonlinear methods, RF and SVM, perform best with up to 98% and 93% accuracy rate, respectively, and therefore are excellent tools for classification of grapes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Primary Stability Recognition of the Newly Designed Cementless Femoral Stem Using Digital Signal Processing

    PubMed Central

    Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A.; Abdul Majid, Norazman

    2014-01-01

    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing. PMID:24800230

  13. Primary stability recognition of the newly designed cementless femoral stem using digital signal processing.

    PubMed

    Baharuddin, Mohd Yusof; Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A; Abdul Majid, Norazman

    2014-01-01

    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing.

  14. Spatial-spectral blood cell classification with microscopic hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Ran, Qiong; Chang, Lan; Li, Wei; Xu, Xiaofeng

    2017-10-01

    Microscopic hyperspectral images provide a new way for blood cell examination. The hyperspectral imagery can greatly facilitate the classification of different blood cells. In this paper, the microscopic hyperspectral images are acquired by connecting the microscope and the hyperspectral imager, and then tested for blood cell classification. For combined use of the spectral and spatial information provided by hyperspectral images, a spatial-spectral classification method is improved from the classical extreme learning machine (ELM) by integrating spatial context into the image classification task with Markov random field (MRF) model. Comparisons are done among ELM, ELM-MRF, support vector machines(SVM) and SVMMRF methods. Results show the spatial-spectral classification methods(ELM-MRF, SVM-MRF) perform better than pixel-based methods(ELM, SVM), and the proposed ELM-MRF has higher precision and show more accurate location of cells.

  15. Quantum optimization for training support vector machines.

    PubMed

    Anguita, Davide; Ridella, Sandro; Rivieccio, Fabio; Zunino, Rodolfo

    2003-01-01

    Refined concepts, such as Rademacher estimates of model complexity and nonlinear criteria for weighting empirical classification errors, represent recent and promising approaches to characterize the generalization ability of Support Vector Machines (SVMs). The advantages of those techniques lie in both improving the SVM representation ability and yielding tighter generalization bounds. On the other hand, they often make Quadratic-Programming algorithms no longer applicable, and SVM training cannot benefit from efficient, specialized optimization techniques. The paper considers the application of Quantum Computing to solve the problem of effective SVM training, especially in the case of digital implementations. The presented research compares the behavioral aspects of conventional and enhanced SVMs; experiments in both a synthetic and real-world problems support the theoretical analysis. At the same time, the related differences between Quadratic-Programming and Quantum-based optimization techniques are considered.

  16. Identification of eggs from different production systems based on hyperspectra and CS-SVM.

    PubMed

    Sun, J; Cong, S L; Mao, H P; Zhou, X; Wu, X H; Zhang, X D

    2017-06-01

    1. To identify the origin of table eggs more accurately, a method based on hyperspectral imaging technology was studied. 2. The hyperspectral data of 200 samples of intensive and extensive eggs were collected. Standard normalised variables combined with a Savitzky-Golay were used to eliminate noise, then stepwise regression (SWR) was used for feature selection. Grid search algorithm (GS), genetic search algorithm (GA), particle swarm optimisation algorithm (PSO) and cuckoo search algorithm (CS) were applied by support vector machine (SVM) methods to establish an SVM identification model with the optimal parameters. The full spectrum data and the data after feature selection were the input of the model, while egg category was the output. 3. The SWR-CS-SVM model performed better than the other models, including SWR-GS-SVM, SWR-GA-SVM, SWR-PSO-SVM and others based on full spectral data. The training and test classification accuracy of the SWR-CS-SVM model were respectively 99.3% and 96%. 4. SWR-CS-SVM proved effective for identifying egg varieties and could also be useful for the non-destructive identification of other types of egg.

  17. LMethyR-SVM: Predict Human Enhancers Using Low Methylated Regions based on Weighted Support Vector Machines.

    PubMed

    Xu, Jingting; Hu, Hong; Dai, Yang

    The identification of enhancers is a challenging task. Various types of epigenetic information including histone modification have been utilized in the construction of enhancer prediction models based on a diverse panel of machine learning schemes. However, DNA methylation profiles generated from the whole genome bisulfite sequencing (WGBS) have not been fully explored for their potential in enhancer prediction despite the fact that low methylated regions (LMRs) have been implied to be distal active regulatory regions. In this work, we propose a prediction framework, LMethyR-SVM, using LMRs identified from cell-type-specific WGBS DNA methylation profiles and a weighted support vector machine learning framework. In LMethyR-SVM, the set of cell-type-specific LMRs is further divided into three sets: reliable positive, like positive and likely negative, according to their resemblance to a small set of experimentally validated enhancers in the VISTA database based on an estimated non-parametric density distribution. Then, the prediction model is obtained by solving a weighted support vector machine. We demonstrate the performance of LMethyR-SVM by using the WGBS DNA methylation profiles derived from the human embryonic stem cell type (H1) and the fetal lung fibroblast cell type (IMR90). The predicted enhancers are highly conserved with a reasonable validation rate based on a set of commonly used positive markers including transcription factors, p300 binding and DNase-I hypersensitive sites. In addition, we show evidence that the large fraction of the LMethyR-SVM predicted enhancers are not predicted by ChromHMM in H1 cell type and they are more enriched for the FANTOM5 enhancers. Our work suggests that low methylated regions detected from the WGBS data are useful as complementary resources to histone modification marks in developing models for the prediction of cell-type-specific enhancers.

  18. Robust Least-Squares Support Vector Machine With Minimization of Mean and Variance of Modeling Error.

    PubMed

    Lu, Xinjiang; Liu, Wenbo; Zhou, Chuang; Huang, Minghui

    2017-06-13

    The least-squares support vector machine (LS-SVM) is a popular data-driven modeling method and has been successfully applied to a wide range of applications. However, it has some disadvantages, including being ineffective at handling non-Gaussian noise as well as being sensitive to outliers. In this paper, a robust LS-SVM method is proposed and is shown to have more reliable performance when modeling a nonlinear system under conditions where Gaussian or non-Gaussian noise is present. The construction of a new objective function allows for a reduction of the mean of the modeling error as well as the minimization of its variance, and it does not constrain the mean of the modeling error to zero. This differs from the traditional LS-SVM, which uses a worst-case scenario approach in order to minimize the modeling error and constrains the mean of the modeling error to zero. In doing so, the proposed method takes the modeling error distribution information into consideration and is thus less conservative and more robust in regards to random noise. A solving method is then developed in order to determine the optimal parameters for the proposed robust LS-SVM. An additional analysis indicates that the proposed LS-SVM gives a smaller weight to a large-error training sample and a larger weight to a small-error training sample, and is thus more robust than the traditional LS-SVM. The effectiveness of the proposed robust LS-SVM is demonstrated using both artificial and real life cases.

  19. pDHS-SVM: A prediction method for plant DNase I hypersensitive sites based on support vector machine.

    PubMed

    Zhang, Shanxin; Zhou, Zhiping; Chen, Xinmeng; Hu, Yong; Yang, Lindong

    2017-08-07

    DNase I hypersensitive sites (DHSs) are accessible chromatin regions hypersensitive to cleavages by DNase I endonucleases. DHSs are indicative of cis-regulatory DNA elements (CREs), all of which play important roles in global gene expression regulation. It is helpful for discovering CREs by recognition of DHSs in genome. To accelerate the investigation, it is an important complement to develop cost-effective computational methods to identify DHSs. However, there is a lack of tools used for identifying DHSs in plant genome. Here we presented pDHS-SVM, a computational predictor to identify plant DHSs. To integrate the global sequence-order information and local DNA properties, reverse complement kmer and dinucleotide-based auto covariance of DNA sequences were applied to construct the feature space. In this work, fifteen physical-chemical properties of dinucleotides were used and Support Vector Machine (SVM) was employed. To further improve the performance of the predictor and extract an optimized subset of nucleotide physical-chemical properties positive for the DHSs, a heuristic nucleotide physical-chemical property selection algorithm was introduced. With the optimized subset of properties, experimental results of Arabidopsis thaliana and rice (Oryza sativa) showed that pDHS-SVM could achieve accuracies up to 87.00%, and 85.79%, respectively. The results indicated the effectiveness of proposed method for predicting DHSs. Furthermore, pDHS-SVM could provide a helpful complement for predicting CREs in plant genome. Our implementation of the novel proposed method pDHS-SVM is freely available as source code, at https://github.com/shanxinzhang/pDHS-SVM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Human Body 3D Posture Estimation Using Significant Points and Two Cameras

    PubMed Central

    Juang, Chia-Feng; Chen, Teng-Chang; Du, Wei-Chin

    2014-01-01

    This paper proposes a three-dimensional (3D) human posture estimation system that locates 3D significant body points based on 2D body contours extracted from two cameras without using any depth sensors. The 3D significant body points that are located by this system include the head, the center of the body, the tips of the feet, the tips of the hands, the elbows, and the knees. First, a linear support vector machine- (SVM-) based segmentation method is proposed to distinguish the human body from the background in red, green, and blue (RGB) color space. The SVM-based segmentation method uses not only normalized color differences but also included angle between pixels in the current frame and the background in order to reduce shadow influence. After segmentation, 2D significant points in each of the two extracted images are located. A significant point volume matching (SPVM) method is then proposed to reconstruct the 3D significant body point locations by using 2D posture estimation results. Experimental results show that the proposed SVM-based segmentation method shows better performance than other gray level- and RGB-based segmentation approaches. This paper also shows the effectiveness of the 3D posture estimation results in different postures. PMID:24883422

  1. Analysis of Flavonoid in Medicinal Plant Extract Using Infrared Spectroscopy and Chemometrics

    PubMed Central

    Retnaningtyas, Yuni; Nuri; Lukman, Hilmia

    2016-01-01

    Infrared (IR) spectroscopy combined with chemometrics has been developed for simple analysis of flavonoid in the medicinal plant extract. Flavonoid was extracted from medicinal plant leaves by ultrasonication and maceration. IR spectra of selected medicinal plant extract were correlated with flavonoid content using chemometrics. The chemometric method used for calibration analysis was Partial Last Square (PLS) and the methods used for classification analysis were Linear Discriminant Analysis (LDA), Soft Independent Modelling of Class Analogies (SIMCA), and Support Vector Machines (SVM). In this study, the calibration of NIR model that showed best calibration with R 2 and RMSEC value was 0.9916499 and 2.1521897, respectively, while the accuracy of all classification models (LDA, SIMCA, and SVM) was 100%. R 2 and RMSEC of calibration of FTIR model were 0.8653689 and 8.8958149, respectively, while the accuracy of LDA, SIMCA, and SVM was 86.0%, 91.2%, and 77.3%, respectively. PLS and LDA of NIR models were further used to predict unknown flavonoid content in commercial samples. Using these models, the significance of flavonoid content that has been measured by NIR and UV-Vis spectrophotometry was evaluated with paired samples t-test. The flavonoid content that has been measured with both methods gave no significant difference. PMID:27529051

  2. Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review.

    PubMed

    Orrù, Graziella; Pettersson-Yeo, William; Marquand, Andre F; Sartori, Giuseppe; Mechelli, Andrea

    2012-04-01

    Standard univariate analysis of neuroimaging data has revealed a host of neuroanatomical and functional differences between healthy individuals and patients suffering a wide range of neurological and psychiatric disorders. Significant only at group level however these findings have had limited clinical translation, and recent attention has turned toward alternative forms of analysis, including Support-Vector-Machine (SVM). A type of machine learning, SVM allows categorisation of an individual's previously unseen data into a predefined group using a classification algorithm, developed on a training data set. In recent years, SVM has been successfully applied in the context of disease diagnosis, transition prediction and treatment prognosis, using both structural and functional neuroimaging data. Here we provide a brief overview of the method and review those studies that applied it to the investigation of Alzheimer's disease, schizophrenia, major depression, bipolar disorder, presymptomatic Huntington's disease, Parkinson's disease and autistic spectrum disorder. We conclude by discussing the main theoretical and practical challenges associated with the implementation of this method into the clinic and possible future directions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Object recognition of ladar with support vector machine

    NASA Astrophysics Data System (ADS)

    Sun, Jian-Feng; Li, Qi; Wang, Qi

    2005-01-01

    Intensity, range and Doppler images can be obtained by using laser radar. Laser radar can detect much more object information than other detecting sensor, such as passive infrared imaging and synthetic aperture radar (SAR), so it is well suited as the sensor of object recognition. Traditional method of laser radar object recognition is extracting target features, which can be influenced by noise. In this paper, a laser radar recognition method-Support Vector Machine is introduced. Support Vector Machine (SVM) is a new hotspot of recognition research after neural network. It has well performance on digital written and face recognition. Two series experiments about SVM designed for preprocessing and non-preprocessing samples are performed by real laser radar images, and the experiments results are compared.

  4. Using support vector machines to identify literacy skills: Evidence from eye movements.

    PubMed

    Lou, Ya; Liu, Yanping; Kaakinen, Johanna K; Li, Xingshan

    2017-06-01

    Is inferring readers' literacy skills possible by analyzing their eye movements during text reading? This study used Support Vector Machines (SVM) to analyze eye movement data from 61 undergraduate students who read a multiple-paragraph, multiple-topic expository text. Forward fixation time, first-pass rereading time, second-pass fixation time, and regression path reading time on different regions of the text were provided as features. The SVM classification algorithm assisted in distinguishing high-literacy-skilled readers from low-literacy-skilled readers with 80.3 % accuracy. Results demonstrate the effectiveness of combining eye tracking and machine learning techniques to detect readers with low literacy skills, and suggest that such approaches can be potentially used in predicting other cognitive abilities.

  5. Modelling and Prediction of Spark-ignition Engine Power Performance Using Incremental Least Squares Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Wong, Pak-kin; Vong, Chi-man; Wong, Hang-cheong; Li, Ke

    2010-05-01

    Modern automotive spark-ignition (SI) power performance usually refers to output power and torque, and they are significantly affected by the setup of control parameters in the engine management system (EMS). EMS calibration is done empirically through tests on the dynamometer (dyno) because no exact mathematical engine model is yet available. With an emerging nonlinear function estimation technique of Least squares support vector machines (LS-SVM), the approximate power performance model of a SI engine can be determined by training the sample data acquired from the dyno. A novel incremental algorithm based on typical LS-SVM is also proposed in this paper, so the power performance models built from the incremental LS-SVM can be updated whenever new training data arrives. With updating the models, the model accuracies can be continuously increased. The predicted results using the estimated models from the incremental LS-SVM are good agreement with the actual test results and with the almost same average accuracy of retraining the models from scratch, but the incremental algorithm can significantly shorten the model construction time when new training data arrives.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb-Robertson, Bobbie-Jo M.

    Accurate identification of peptides is a current challenge in mass spectrometry (MS) based proteomics. The standard approach uses a search routine to compare tandem mass spectra to a database of peptides associated with the target organism. These database search routines yield multiple metrics associated with the quality of the mapping of the experimental spectrum to the theoretical spectrum of a peptide. The structure of these results make separating correct from false identifications difficult and has created a false identification problem. Statistical confidence scores are an approach to battle this false positive problem that has led to significant improvements in peptidemore » identification. We have shown that machine learning, specifically support vector machine (SVM), is an effective approach to separating true peptide identifications from false ones. The SVM-based peptide statistical scoring method transforms a peptide into a vector representation based on database search metrics to train and validate the SVM. In practice, following the database search routine, a peptides is denoted in its vector representation and the SVM generates a single statistical score that is then used to classify presence or absence in the sample« less

  7. Per-field crop classification in irrigated agricultural regions in middle Asia using random forest and support vector machine ensemble

    NASA Astrophysics Data System (ADS)

    Löw, Fabian; Schorcht, Gunther; Michel, Ulrich; Dech, Stefan; Conrad, Christopher

    2012-10-01

    Accurate crop identification and crop area estimation are important for studies on irrigated agricultural systems, yield and water demand modeling, and agrarian policy development. In this study a novel combination of Random Forest (RF) and Support Vector Machine (SVM) classifiers is presented that (i) enhances crop classification accuracy and (ii) provides spatial information on map uncertainty. The methodology was implemented over four distinct irrigated sites in Middle Asia using RapidEye time series data. The RF feature importance statistics was used as feature-selection strategy for the SVM to assess possible negative effects on classification accuracy caused by an oversized feature space. The results of the individual RF and SVM classifications were combined with rules based on posterior classification probability and estimates of classification probability entropy. SVM classification performance was increased by feature selection through RF. Further experimental results indicate that the hybrid classifier improves overall classification accuracy in comparison to the single classifiers as well as useŕs and produceŕs accuracy.

  8. Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor MRI measures in individuals with major depressive disorder.

    PubMed

    Schnyer, David M; Clasen, Peter C; Gonzalez, Christopher; Beevers, Christopher G

    2017-06-30

    Using MRI to diagnose mental disorders has been a long-term goal. Despite this, the vast majority of prior neuroimaging work has been descriptive rather than predictive. The current study applies support vector machine (SVM) learning to MRI measures of brain white matter to classify adults with Major Depressive Disorder (MDD) and healthy controls. In a precisely matched group of individuals with MDD (n =25) and healthy controls (n =25), SVM learning accurately (74%) classified patients and controls across a brain map of white matter fractional anisotropy values (FA). The study revealed three main findings: 1) SVM applied to DTI derived FA maps can accurately classify MDD vs. healthy controls; 2) prediction is strongest when only right hemisphere white matter is examined; and 3) removing FA values from a region identified by univariate contrast as significantly different between MDD and healthy controls does not change the SVM accuracy. These results indicate that SVM learning applied to neuroimaging data can classify the presence versus absence of MDD and that predictive information is distributed across brain networks rather than being highly localized. Finally, MDD group differences revealed through typical univariate contrasts do not necessarily reveal patterns that provide accurate predictive information. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  9. Voice based gender classification using machine learning

    NASA Astrophysics Data System (ADS)

    Raahul, A.; Sapthagiri, R.; Pankaj, K.; Vijayarajan, V.

    2017-11-01

    Gender identification is one of the major problem speech analysis today. Tracing the gender from acoustic data i.e., pitch, median, frequency etc. Machine learning gives promising results for classification problem in all the research domains. There are several performance metrics to evaluate algorithms of an area. Our Comparative model algorithm for evaluating 5 different machine learning algorithms based on eight different metrics in gender classification from acoustic data. Agenda is to identify gender, with five different algorithms: Linear Discriminant Analysis (LDA), K-Nearest Neighbour (KNN), Classification and Regression Trees (CART), Random Forest (RF), and Support Vector Machine (SVM) on basis of eight different metrics. The main parameter in evaluating any algorithms is its performance. Misclassification rate must be less in classification problems, which says that the accuracy rate must be high. Location and gender of the person have become very crucial in economic markets in the form of AdSense. Here with this comparative model algorithm, we are trying to assess the different ML algorithms and find the best fit for gender classification of acoustic data.

  10. Support vector machine for breast cancer classification using diffusion-weighted MRI histogram features: Preliminary study.

    PubMed

    Vidić, Igor; Egnell, Liv; Jerome, Neil P; Teruel, Jose R; Sjøbakk, Torill E; Østlie, Agnes; Fjøsne, Hans E; Bathen, Tone F; Goa, Pål Erik

    2018-05-01

    Diffusion-weighted MRI (DWI) is currently one of the fastest developing MRI-based techniques in oncology. Histogram properties from model fitting of DWI are useful features for differentiation of lesions, and classification can potentially be improved by machine learning. To evaluate classification of malignant and benign tumors and breast cancer subtypes using support vector machine (SVM). Prospective. Fifty-one patients with benign (n = 23) and malignant (n = 28) breast tumors (26 ER+, whereof six were HER2+). Patients were imaged with DW-MRI (3T) using twice refocused spin-echo echo-planar imaging with echo time / repetition time (TR/TE) = 9000/86 msec, 90 × 90 matrix size, 2 × 2 mm in-plane resolution, 2.5 mm slice thickness, and 13 b-values. Apparent diffusion coefficient (ADC), relative enhanced diffusivity (RED), and the intravoxel incoherent motion (IVIM) parameters diffusivity (D), pseudo-diffusivity (D*), and perfusion fraction (f) were calculated. The histogram properties (median, mean, standard deviation, skewness, kurtosis) were used as features in SVM (10-fold cross-validation) for differentiation of lesions and subtyping. Accuracies of the SVM classifications were calculated to find the combination of features with highest prediction accuracy. Mann-Whitney tests were performed for univariate comparisons. For benign versus malignant tumors, univariate analysis found 11 histogram properties to be significant differentiators. Using SVM, the highest accuracy (0.96) was achieved from a single feature (mean of RED), or from three feature combinations of IVIM or ADC. Combining features from all models gave perfect classification. No single feature predicted HER2 status of ER + tumors (univariate or SVM), although high accuracy (0.90) was achieved with SVM combining several features. Importantly, these features had to include higher-order statistics (kurtosis and skewness), indicating the importance to account for heterogeneity. Our findings suggest that SVM, using features from a combination of diffusion models, improves prediction accuracy for differentiation of benign versus malignant breast tumors, and may further assist in subtyping of breast cancer. 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1205-1216. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Predicting metabolic syndrome using decision tree and support vector machine methods.

    PubMed

    Karimi-Alavijeh, Farzaneh; Jalili, Saeed; Sadeghi, Masoumeh

    2016-05-01

    Metabolic syndrome which underlies the increased prevalence of cardiovascular disease and Type 2 diabetes is considered as a group of metabolic abnormalities including central obesity, hypertriglyceridemia, glucose intolerance, hypertension, and dyslipidemia. Recently, artificial intelligence based health-care systems are highly regarded because of its success in diagnosis, prediction, and choice of treatment. This study employs machine learning technics for predict the metabolic syndrome. This study aims to employ decision tree and support vector machine (SVM) to predict the 7-year incidence of metabolic syndrome. This research is a practical one in which data from 2107 participants of Isfahan Cohort Study has been utilized. The subjects without metabolic syndrome according to the ATPIII criteria were selected. The features that have been used in this data set include: gender, age, weight, body mass index, waist circumference, waist-to-hip ratio, hip circumference, physical activity, smoking, hypertension, antihypertensive medication use, systolic blood pressure (BP), diastolic BP, fasting blood sugar, 2-hour blood glucose, triglycerides (TGs), total cholesterol, low-density lipoprotein, high density lipoprotein-cholesterol, mean corpuscular volume, and mean corpuscular hemoglobin. Metabolic syndrome was diagnosed based on ATPIII criteria and two methods of decision tree and SVM were selected to predict the metabolic syndrome. The criteria of sensitivity, specificity and accuracy were used for validation. SVM and decision tree methods were examined according to the criteria of sensitivity, specificity and accuracy. Sensitivity, specificity and accuracy were 0.774 (0.758), 0.74 (0.72) and 0.757 (0.739) in SVM (decision tree) method. The results show that SVM method sensitivity, specificity and accuracy is more efficient than decision tree. The results of decision tree method show that the TG is the most important feature in predicting metabolic syndrome. According to this study, in cases where only the final result of the decision is regarded significant, SVM method can be used with acceptable accuracy in decision making medical issues. This method has not been implemented in the previous research.

  12. Development of a ten-signature classifier using a support vector machine integrated approach to subdivide the M1 stage into M1a and M1b stages of nasopharyngeal carcinoma with synchronous metastases to better predict patients' survival.

    PubMed

    Jiang, Rou; You, Rui; Pei, Xiao-Qing; Zou, Xiong; Zhang, Meng-Xia; Wang, Tong-Min; Sun, Rui; Luo, Dong-Hua; Huang, Pei-Yu; Chen, Qiu-Yan; Hua, Yi-Jun; Tang, Lin-Quan; Guo, Ling; Mo, Hao-Yuan; Qian, Chao-Nan; Mai, Hai-Qiang; Hong, Ming-Huang; Cai, Hong-Min; Chen, Ming-Yuan

    2016-01-19

    The aim of this study was to develop a prognostic classifier and subdivided the M1 stage for nasopharyngeal carcinoma patients with synchronous metastases (mNPC). A retrospective cohort of 347 mNPC patients was recruited between January 2000 and December 2010. Thirty hematological markers and 11 clinical characteristics were collected, and the association of these factors with overall survival (OS) was evaluated. Advanced machine learning schemes of a support vector machine (SVM) were used to select a subset of highly informative factors and to construct a prognostic model (mNPC-SVM). The mNPC-SVM classifier identified ten informative variables, including three clinical indexes and seven hematological markers. The median survival time for low-risk patients (M1a) as identified by the mNPC-SVM classifier was 38.0 months, and survival time was dramatically reduced to 13.8 months for high-risk patients (M1b) (P < 0.001). Multivariate adjustment using prognostic factors revealed that the mNPC-SVM classifier remained a powerful predictor of OS (M1a vs. M1b, hazard ratio, 3.45; 95% CI, 2.59 to 4.60, P < 0.001). Moreover, combination treatment of systemic chemotherapy and loco-regional radiotherapy was associated with significantly better survival outcomes than chemotherapy alone (the 5-year OS, 47.0% vs. 10.0%, P < 0.001) in the M1a subgroup but not in the M1b subgroup (12.0% vs. 3.0%, P = 0.101). These findings were validated by a separate cohort. In conclusion, the newly developed mNPC-SVM classifier led to more precise risk definitions that offer a promising subdivision of the M1 stage and individualized selection for future therapeutic regimens in mNPC patients.

  13. Discrimination of plant root zone water status in greenhouse production based on phenotyping and machine learning techniques.

    PubMed

    Guo, Doudou; Juan, Jiaxiang; Chang, Liying; Zhang, Jingjin; Huang, Danfeng

    2017-08-15

    Plant-based sensing on water stress can provide sensitive and direct reference for precision irrigation system in greenhouse. However, plant information acquisition, interpretation, and systematical application remain insufficient. This study developed a discrimination method for plant root zone water status in greenhouse by integrating phenotyping and machine learning techniques. Pakchoi plants were used and treated by three root zone moisture levels, 40%, 60%, and 80% relative water content. Three classification models, Random Forest (RF), Neural Network (NN), and Support Vector Machine (SVM) were developed and validated in different scenarios with overall accuracy over 90% for all. SVM model had the highest value, but it required the longest training time. All models had accuracy over 85% in all scenarios, and more stable performance was observed in RF model. Simplified SVM model developed by the top five most contributing traits had the largest accuracy reduction as 29.5%, while simplified RF and NN model still maintained approximately 80%. For real case application, factors such as operation cost, precision requirement, and system reaction time should be synthetically considered in model selection. Our work shows it is promising to discriminate plant root zone water status by implementing phenotyping and machine learning techniques for precision irrigation management.

  14. Support vector machine multiuser receiver for DS-CDMA signals in multipath channels.

    PubMed

    Chen, S; Samingan, A K; Hanzo, L

    2001-01-01

    The problem of constructing an adaptive multiuser detector (MUD) is considered for direct sequence code division multiple access (DS-CDMA) signals transmitted through multipath channels. The emerging learning technique, called support vector machines (SVM), is proposed as a method of obtaining a nonlinear MUD from a relatively small training data block. Computer simulation is used to study this SVM MUD, and the results show that it can closely match the performance of the optimal Bayesian one-shot detector. Comparisons with an adaptive radial basis function (RBF) MUD trained by an unsupervised clustering algorithm are discussed.

  15. Figure of merit for macrouniformity based on image quality ruler evaluation and machine learning framework

    NASA Astrophysics Data System (ADS)

    Wang, Weibao; Overall, Gary; Riggs, Travis; Silveston-Keith, Rebecca; Whitney, Julie; Chiu, George; Allebach, Jan P.

    2013-01-01

    Assessment of macro-uniformity is a capability that is important for the development and manufacture of printer products. Our goal is to develop a metric that will predict macro-uniformity, as judged by human subjects, by scanning and analyzing printed pages. We consider two different machine learning frameworks for the metric: linear regression and the support vector machine. We have implemented the image quality ruler, based on the recommendations of the INCITS W1.1 macro-uniformity team. Using 12 subjects at Purdue University and 20 subjects at Lexmark, evenly balanced with respect to gender, we conducted subjective evaluations with a set of 35 uniform b/w prints from seven different printers with five levels of tint coverage. Our results suggest that the image quality ruler method provides a reliable means to assess macro-uniformity. We then defined and implemented separate features to measure graininess, mottle, large area variation, jitter, and large-scale non-uniformity. The algorithms that we used are largely based on ISO image quality standards. Finally, we used these features computed for a set of test pages and the subjects' image quality ruler assessments of these pages to train the two different predictors - one based on linear regression and the other based on the support vector machine (SVM). Using five-fold cross-validation, we confirmed the efficacy of our predictor.

  16. An ensemble of dissimilarity based classifiers for Mackerel gender determination

    NASA Astrophysics Data System (ADS)

    Blanco, A.; Rodriguez, R.; Martinez-Maranon, I.

    2014-03-01

    Mackerel is an infravalored fish captured by European fishing vessels. A manner to add value to this specie can be achieved by trying to classify it attending to its sex. Colour measurements were performed on Mackerel females and males (fresh and defrozen) extracted gonads to obtain differences between sexes. Several linear and non linear classifiers such as Support Vector Machines (SVM), k Nearest Neighbors (k-NN) or Diagonal Linear Discriminant Analysis (DLDA) can been applied to this problem. However, theyare usually based on Euclidean distances that fail to reflect accurately the sample proximities. Classifiers based on non-Euclidean dissimilarities misclassify a different set of patterns. We combine different kind of dissimilarity based classifiers. The diversity is induced considering a set of complementary dissimilarities for each model. The experimental results suggest that our algorithm helps to improve classifiers based on a single dissimilarity.

  17. Machine Learning Toolkit for Extreme Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-03-31

    Support Vector Machines (SVM) is a popular machine learning technique, which has been applied to a wide range of domains such as science, finance, and social networks for supervised learning. MaTEx undertakes the challenge of designing a scalable parallel SVM training algorithm for large scale systems, which includes commodity multi-core machines, tightly connected supercomputers and cloud computing systems. Several techniques are proposed for improved speed and memory space usage including adaptive and aggressive elimination of samples for faster convergence , and sparse format representation of data samples. Several heuristics for earliest possible to lazy elimination of non-contributing samples are consideredmore » in MaTEx. In many cases, where an early sample elimination might result in a false positive, low overhead mechanisms for reconstruction of key data structures are proposed. The proposed algorithm and heuristics are implemented and evaluated on various publicly available datasets« less

  18. Process service quality evaluation based on Dempster-Shafer theory and support vector machine.

    PubMed

    Pei, Feng-Que; Li, Dong-Bo; Tong, Yi-Fei; He, Fei

    2017-01-01

    Human involvement influences traditional service quality evaluations, which triggers an evaluation's low accuracy, poor reliability and less impressive predictability. This paper proposes a method by employing a support vector machine (SVM) and Dempster-Shafer evidence theory to evaluate the service quality of a production process by handling a high number of input features with a low sampling data set, which is called SVMs-DS. Features that can affect production quality are extracted by a large number of sensors. Preprocessing steps such as feature simplification and normalization are reduced. Based on three individual SVM models, the basic probability assignments (BPAs) are constructed, which can help the evaluation in a qualitative and quantitative way. The process service quality evaluation results are validated by the Dempster rules; the decision threshold to resolve conflicting results is generated from three SVM models. A case study is presented to demonstrate the effectiveness of the SVMs-DS method.

  19. Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach.

    PubMed

    Cao, Hongliang; Xin, Ya; Yuan, Qiaoxia

    2016-02-01

    To predict conveniently the biochar yield from cattle manure pyrolysis, intelligent modeling approach was introduced in this research. A traditional artificial neural networks (ANN) model and a novel least squares support vector machine (LS-SVM) model were developed. For the identification and prediction evaluation of the models, a data set with 33 experimental data was used, which were obtained using a laboratory-scale fixed bed reaction system. The results demonstrated that the intelligent modeling approach is greatly convenient and effective for the prediction of the biochar yield. In particular, the novel LS-SVM model has a more satisfying predicting performance and its robustness is better than the traditional ANN model. The introduction and application of the LS-SVM modeling method gives a successful example, which is a good reference for the modeling study of cattle manure pyrolysis process, even other similar processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Markerless gating for lung cancer radiotherapy based on machine learning techniques

    NASA Astrophysics Data System (ADS)

    Lin, Tong; Li, Ruijiang; Tang, Xiaoli; Dy, Jennifer G.; Jiang, Steve B.

    2009-03-01

    In lung cancer radiotherapy, radiation to a mobile target can be delivered by respiratory gating, for which we need to know whether the target is inside or outside a predefined gating window at any time point during the treatment. This can be achieved by tracking one or more fiducial markers implanted inside or near the target, either fluoroscopically or electromagnetically. However, the clinical implementation of marker tracking is limited for lung cancer radiotherapy mainly due to the risk of pneumothorax. Therefore, gating without implanted fiducial markers is a promising clinical direction. We have developed several template-matching methods for fluoroscopic marker-less gating. Recently, we have modeled the gating problem as a binary pattern classification problem, in which principal component analysis (PCA) and support vector machine (SVM) are combined to perform the classification task. Following the same framework, we investigated different combinations of dimensionality reduction techniques (PCA and four nonlinear manifold learning methods) and two machine learning classification methods (artificial neural networks—ANN and SVM). Performance was evaluated on ten fluoroscopic image sequences of nine lung cancer patients. We found that among all combinations of dimensionality reduction techniques and classification methods, PCA combined with either ANN or SVM achieved a better performance than the other nonlinear manifold learning methods. ANN when combined with PCA achieves a better performance than SVM in terms of classification accuracy and recall rate, although the target coverage is similar for the two classification methods. Furthermore, the running time for both ANN and SVM with PCA is within tolerance for real-time applications. Overall, ANN combined with PCA is a better candidate than other combinations we investigated in this work for real-time gated radiotherapy.

  1. Support vector machine regression (SVR/LS-SVM)--an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data.

    PubMed

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-04-21

    In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.

  2. Development and experimental test of support vector machines virtual screening method for searching Src inhibitors from large compound libraries.

    PubMed

    Han, Bucong; Ma, Xiaohua; Zhao, Ruiying; Zhang, Jingxian; Wei, Xiaona; Liu, Xianghui; Liu, Xin; Zhang, Cunlong; Tan, Chunyan; Jiang, Yuyang; Chen, Yuzong

    2012-11-23

    Src plays various roles in tumour progression, invasion, metastasis, angiogenesis and survival. It is one of the multiple targets of multi-target kinase inhibitors in clinical uses and trials for the treatment of leukemia and other cancers. These successes and appearances of drug resistance in some patients have raised significant interest and efforts in discovering new Src inhibitors. Various in-silico methods have been used in some of these efforts. It is desirable to explore additional in-silico methods, particularly those capable of searching large compound libraries at high yields and reduced false-hit rates. We evaluated support vector machines (SVM) as virtual screening tools for searching Src inhibitors from large compound libraries. SVM trained and tested by 1,703 inhibitors and 63,318 putative non-inhibitors correctly identified 93.53%~ 95.01% inhibitors and 99.81%~ 99.90% non-inhibitors in 5-fold cross validation studies. SVM trained by 1,703 inhibitors reported before 2011 and 63,318 putative non-inhibitors correctly identified 70.45% of the 44 inhibitors reported since 2011, and predicted as inhibitors 44,843 (0.33%) of 13.56M PubChem, 1,496 (0.89%) of 168 K MDDR, and 719 (7.73%) of 9,305 MDDR compounds similar to the known inhibitors. SVM showed comparable yield and reduced false hit rates in searching large compound libraries compared to the similarity-based and other machine-learning VS methods developed from the same set of training compounds and molecular descriptors. We tested three virtual hits of the same novel scaffold from in-house chemical libraries not reported as Src inhibitor, one of which showed moderate activity. SVM may be potentially explored for searching Src inhibitors from large compound libraries at low false-hit rates.

  3. Predicting distant failure in early stage NSCLC treated with SBRT using clinical parameters.

    PubMed

    Zhou, Zhiguo; Folkert, Michael; Cannon, Nathan; Iyengar, Puneeth; Westover, Kenneth; Zhang, Yuanyuan; Choy, Hak; Timmerman, Robert; Yan, Jingsheng; Xie, Xian-J; Jiang, Steve; Wang, Jing

    2016-06-01

    The aim of this study is to predict early distant failure in early stage non-small cell lung cancer (NSCLC) treated with stereotactic body radiation therapy (SBRT) using clinical parameters by machine learning algorithms. The dataset used in this work includes 81 early stage NSCLC patients with at least 6months of follow-up who underwent SBRT between 2006 and 2012 at a single institution. The clinical parameters (n=18) for each patient include demographic parameters, tumor characteristics, treatment fraction schemes, and pretreatment medications. Three predictive models were constructed based on different machine learning algorithms: (1) artificial neural network (ANN), (2) logistic regression (LR) and (3) support vector machine (SVM). Furthermore, to select an optimal clinical parameter set for the model construction, three strategies were adopted: (1) clonal selection algorithm (CSA) based selection strategy; (2) sequential forward selection (SFS) method; and (3) statistical analysis (SA) based strategy. 5-cross-validation is used to validate the performance of each predictive model. The accuracy was assessed by area under the receiver operating characteristic (ROC) curve (AUC), sensitivity and specificity of the system was also evaluated. The AUCs for ANN, LR and SVM were 0.75, 0.73, and 0.80, respectively. The sensitivity values for ANN, LR and SVM were 71.2%, 72.9% and 83.1%, while the specificity values for ANN, LR and SVM were 59.1%, 63.6% and 63.6%, respectively. Meanwhile, the CSA based strategy outperformed SFS and SA in terms of AUC, sensitivity and specificity. Based on clinical parameters, the SVM with the CSA optimal parameter set selection strategy achieves better performance than other strategies for predicting distant failure in lung SBRT patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. GAPscreener: an automatic tool for screening human genetic association literature in PubMed using the support vector machine technique.

    PubMed

    Yu, Wei; Clyne, Melinda; Dolan, Siobhan M; Yesupriya, Ajay; Wulf, Anja; Liu, Tiebin; Khoury, Muin J; Gwinn, Marta

    2008-04-22

    Synthesis of data from published human genetic association studies is a critical step in the translation of human genome discoveries into health applications. Although genetic association studies account for a substantial proportion of the abstracts in PubMed, identifying them with standard queries is not always accurate or efficient. Further automating the literature-screening process can reduce the burden of a labor-intensive and time-consuming traditional literature search. The Support Vector Machine (SVM), a well-established machine learning technique, has been successful in classifying text, including biomedical literature. The GAPscreener, a free SVM-based software tool, can be used to assist in screening PubMed abstracts for human genetic association studies. The data source for this research was the HuGE Navigator, formerly known as the HuGE Pub Lit database. Weighted SVM feature selection based on a keyword list obtained by the two-way z score method demonstrated the best screening performance, achieving 97.5% recall, 98.3% specificity and 31.9% precision in performance testing. Compared with the traditional screening process based on a complex PubMed query, the SVM tool reduced by about 90% the number of abstracts requiring individual review by the database curator. The tool also ascertained 47 articles that were missed by the traditional literature screening process during the 4-week test period. We examined the literature on genetic associations with preterm birth as an example. Compared with the traditional, manual process, the GAPscreener both reduced effort and improved accuracy. GAPscreener is the first free SVM-based application available for screening the human genetic association literature in PubMed with high recall and specificity. The user-friendly graphical user interface makes this a practical, stand-alone application. The software can be downloaded at no charge.

  5. Analyzing the performance of fluorescence parameters in the monitoring of leaf nitrogen content of paddy rice

    PubMed Central

    Yang, Jian; Gong, Wei; Shi, Shuo; Du, Lin; Sun, Jia; Song, Shalei; Chen, Biwu; Zhang, Zhenbing

    2016-01-01

    Leaf nitrogen content (LNC) is a significant factor which can be utilized to monitor the status of paddy rice and it requires a reliable approach for fast and precise quantification. This investigation aims to quantitatively analyze the correlation between fluorescence parameters and LNC based on laser-induced fluorescence (LIF) technology. The fluorescence parameters exhibited a consistent positive linear correlation with LNC in different growing years (2014 and 2015) and different rice cultivars. The R2 of the models varied from 0.6978 to 0.9045. Support vector machine (SVM) was then utilized to verify the feasibility of the fluorescence parameters for monitoring LNC. Comparison of the fluorescence parameters indicated that F740 is the most sensitive (the R2 of linear regression analysis of the between predicted and measured values changed from 0.8475 to 0.9226, and REs ranged from 3.52% to 4.83%) to the changes in LNC among all fluorescence parameters. Experimental results demonstrated that fluorescence parameters based on LIF technology combined with SVM is a potential method for realizing real-time, non-destructive monitoring of paddy rice LNC, which can provide guidance for the decision-making of farmers in their N fertilization strategies. PMID:27350029

  6. Moving object localization using optical flow for pedestrian detection from a moving vehicle.

    PubMed

    Hariyono, Joko; Hoang, Van-Dung; Jo, Kang-Hyun

    2014-01-01

    This paper presents a pedestrian detection method from a moving vehicle using optical flows and histogram of oriented gradients (HOG). A moving object is extracted from the relative motion by segmenting the region representing the same optical flows after compensating the egomotion of the camera. To obtain the optical flow, two consecutive images are divided into grid cells 14 × 14 pixels; then each cell is tracked in the current frame to find corresponding cell in the next frame. Using at least three corresponding cells, affine transformation is performed according to each corresponding cell in the consecutive images, so that conformed optical flows are extracted. The regions of moving object are detected as transformed objects, which are different from the previously registered background. Morphological process is applied to get the candidate human regions. In order to recognize the object, the HOG features are extracted on the candidate region and classified using linear support vector machine (SVM). The HOG feature vectors are used as input of linear SVM to classify the given input into pedestrian/nonpedestrian. The proposed method was tested in a moving vehicle and also confirmed through experiments using pedestrian dataset. It shows a significant improvement compared with original HOG using ETHZ pedestrian dataset.

  7. Identification of the Rice Wines with Different Marked Ages by Electronic Nose Coupled with Smartphone and Cloud Storage Platform

    PubMed Central

    Wei, Zhebo; Xiao, Xize

    2017-01-01

    In this study, a portable electronic nose (E-nose) was self-developed to identify rice wines with different marked ages—all the operations of the E-nose were controlled by a special Smartphone Application. The sensor array of the E-nose was comprised of 12 MOS sensors and the obtained response values were transmitted to the Smartphone thorough a wireless communication module. Then, Aliyun worked as a cloud storage platform for the storage of responses and identification models. The measurement of the E-nose was composed of the taste information obtained phase (TIOP) and the aftertaste information obtained phase (AIOP). The area feature data obtained from the TIOP and the feature data obtained from the TIOP-AIOP were applied to identify rice wines by using pattern recognition methods. Principal component analysis (PCA), locally linear embedding (LLE) and linear discriminant analysis (LDA) were applied for the classification of those wine samples. LDA based on the area feature data obtained from the TIOP-AIOP proved a powerful tool and showed the best classification results. Partial least-squares regression (PLSR) and support vector machine (SVM) were applied for the predictions of marked ages and SVM (R2 = 0.9942) worked much better than PLSR. PMID:29088076

  8. Identification of the Rice Wines with Different Marked Ages by Electronic Nose Coupled with Smartphone and Cloud Storage Platform.

    PubMed

    Wei, Zhebo; Xiao, Xize; Wang, Jun; Wang, Hui

    2017-10-31

    In this study, a portable electronic nose (E-nose) was self-developed to identify rice wines with different marked ages-all the operations of the E-nose were controlled by a special Smartphone Application. The sensor array of the E-nose was comprised of 12 MOS sensors and the obtained response values were transmitted to the Smartphone thorough a wireless communication module. Then, Aliyun worked as a cloud storage platform for the storage of responses and identification models. The measurement of the E-nose was composed of the taste information obtained phase (TIOP) and the aftertaste information obtained phase (AIOP). The area feature data obtained from the TIOP and the feature data obtained from the TIOP-AIOP were applied to identify rice wines by using pattern recognition methods. Principal component analysis (PCA), locally linear embedding (LLE) and linear discriminant analysis (LDA) were applied for the classification of those wine samples. LDA based on the area feature data obtained from the TIOP-AIOP proved a powerful tool and showed the best classification results. Partial least-squares regression (PLSR) and support vector machine (SVM) were applied for the predictions of marked ages and SVM (R² = 0.9942) worked much better than PLSR.

  9. Margin-maximizing feature elimination methods for linear and nonlinear kernel-based discriminant functions.

    PubMed

    Aksu, Yaman; Miller, David J; Kesidis, George; Yang, Qing X

    2010-05-01

    Feature selection for classification in high-dimensional spaces can improve generalization, reduce classifier complexity, and identify important, discriminating feature "markers." For support vector machine (SVM) classification, a widely used technique is recursive feature elimination (RFE). We demonstrate that RFE is not consistent with margin maximization, central to the SVM learning approach. We thus propose explicit margin-based feature elimination (MFE) for SVMs and demonstrate both improved margin and improved generalization, compared with RFE. Moreover, for the case of a nonlinear kernel, we show that RFE assumes that the squared weight vector 2-norm is strictly decreasing as features are eliminated. We demonstrate this is not true for the Gaussian kernel and, consequently, RFE may give poor results in this case. MFE for nonlinear kernels gives better margin and generalization. We also present an extension which achieves further margin gains, by optimizing only two degrees of freedom--the hyperplane's intercept and its squared 2-norm--with the weight vector orientation fixed. We finally introduce an extension that allows margin slackness. We compare against several alternatives, including RFE and a linear programming method that embeds feature selection within the classifier design. On high-dimensional gene microarray data sets, University of California at Irvine (UCI) repository data sets, and Alzheimer's disease brain image data, MFE methods give promising results.

  10. Spectral-spatial classification of hyperspectral data with mutual information based segmented stacked autoencoder approach

    NASA Astrophysics Data System (ADS)

    Paul, Subir; Nagesh Kumar, D.

    2018-04-01

    Hyperspectral (HS) data comprises of continuous spectral responses of hundreds of narrow spectral bands with very fine spectral resolution or bandwidth, which offer feature identification and classification with high accuracy. In the present study, Mutual Information (MI) based Segmented Stacked Autoencoder (S-SAE) approach for spectral-spatial classification of the HS data is proposed to reduce the complexity and computational time compared to Stacked Autoencoder (SAE) based feature extraction. A non-parametric dependency measure (MI) based spectral segmentation is proposed instead of linear and parametric dependency measure to take care of both linear and nonlinear inter-band dependency for spectral segmentation of the HS bands. Then morphological profiles are created corresponding to segmented spectral features to assimilate the spatial information in the spectral-spatial classification approach. Two non-parametric classifiers, Support Vector Machine (SVM) with Gaussian kernel and Random Forest (RF) are used for classification of the three most popularly used HS datasets. Results of the numerical experiments carried out in this study have shown that SVM with a Gaussian kernel is providing better results for the Pavia University and Botswana datasets whereas RF is performing better for Indian Pines dataset. The experiments performed with the proposed methodology provide encouraging results compared to numerous existing approaches.

  11. Application of Machine Learning Approaches for Protein-protein Interactions Prediction.

    PubMed

    Zhang, Mengying; Su, Qiang; Lu, Yi; Zhao, Manman; Niu, Bing

    2017-01-01

    Proteomics endeavors to study the structures, functions and interactions of proteins. Information of the protein-protein interactions (PPIs) helps to improve our knowledge of the functions and the 3D structures of proteins. Thus determining the PPIs is essential for the study of the proteomics. In this review, in order to study the application of machine learning in predicting PPI, some machine learning approaches such as support vector machine (SVM), artificial neural networks (ANNs) and random forest (RF) were selected, and the examples of its applications in PPIs were listed. SVM and RF are two commonly used methods. Nowadays, more researchers predict PPIs by combining more than two methods. This review presents the application of machine learning approaches in predicting PPI. Many examples of success in identification and prediction in the area of PPI prediction have been discussed, and the PPIs research is still in progress. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Comparison of SVM RBF-NN and DT for crop and weed identification based on spectral measurement over corn fields

    USDA-ARS?s Scientific Manuscript database

    It is important to find an appropriate pattern-recognition method for in-field plant identification based on spectral measurement in order to classify the crop and weeds accurately. In this study, the method of Support Vector Machine (SVM) was evaluated and compared with two other methods, Decision ...

  13. Soil Cd, Cr, Cu, Ni, Pb and Zn sorption and retention models using SVM: Variable selection and competitive model.

    PubMed

    González Costa, J J; Reigosa, M J; Matías, J M; Covelo, E F

    2017-09-01

    The aim of this study was to model the sorption and retention of Cd, Cu, Ni, Pb and Zn in soils. To that extent, the sorption and retention of these metals were studied and the soil characterization was performed separately. Multiple stepwise regression was used to produce multivariate models with linear techniques and with support vector machines, all of which included 15 explanatory variables characterizing soils. When the R-squared values are represented, two different groups are noticed. Cr, Cu and Pb sorption and retention show a higher R-squared; the most explanatory variables being humified organic matter, Al oxides and, in some cases, cation-exchange capacity (CEC). The other group of metals (Cd, Ni and Zn) shows a lower R-squared, and clays are the most explanatory variables, including a percentage of vermiculite and slime. In some cases, quartz, plagioclase or hematite percentages also show some explanatory capacity. Support Vector Machine (SVM) regression shows that the different models are not as regular as in multiple regression in terms of number of variables, the regression for nickel adsorption being the one with the highest number of variables in its optimal model. On the other hand, there are cases where the most explanatory variables are the same for two metals, as it happens with Cd and Cr adsorption. A similar adsorption mechanism is thus postulated. These patterns of the introduction of variables in the model allow us to create explainability sequences. Those which are the most similar to the selectivity sequences obtained by Covelo (2005) are Mn oxides in multiple regression and change capacity in SVM. Among all the variables, the only one that is explanatory for all the metals after applying the maximum parsimony principle is the percentage of sand in the retention process. In the competitive model arising from the aforementioned sequences, the most intense competitiveness for the adsorption and retention of different metals appears between Cr and Cd, Cu and Zn in multiple regression; and between Cr and Cd in SVM regression. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Regolith-geology mapping with support vector machine: A case study over weathered Ni-bearing peridotites, New Caledonia

    NASA Astrophysics Data System (ADS)

    De Boissieu, Florian; Sevin, Brice; Cudahy, Thomas; Mangeas, Morgan; Chevrel, Stéphane; Ong, Cindy; Rodger, Andrew; Maurizot, Pierre; Laukamp, Carsten; Lau, Ian; Touraivane, Touraivane; Cluzel, Dominique; Despinoy, Marc

    2018-02-01

    Accurate maps of Earth's geology, especially its regolith, are required for managing the sustainable exploration and development of mineral resources. This paper shows how airborne imaging hyperspectral data collected over weathered peridotite rocks in vegetated, mountainous terrane in New Caledonia were processed using a combination of methods to generate a regolith-geology map that could be used for more efficiently targeting Ni exploration. The image processing combined two usual methods, which are spectral feature extraction and support vector machine (SVM). This rationale being the spectral features extraction can rapidly reduce data complexity by both targeting only the diagnostic mineral absorptions and masking those pixels complicated by vegetation, cloud and deep shade. SVM is a supervised classification method able to generate an optimal non-linear classifier with these features that generalises well even with limited training data. Key minerals targeted are serpentine, which is considered as an indicator for hydrolysed peridotitic rock, and iron oxy-hydroxides (hematite and goethite), which are considered as diagnostic of laterite development. The final classified regolith map was assessed against interpreted regolith field sites, which yielded approximately 70% similarity for all unit types, as well as against a regolith-geology map interpreted using traditional datasets (not hyperspectral imagery). Importantly, the hyperspectral derived mineral map provided much greater detail enabling a more precise understanding of the regolith-geological architecture where there are exposed soils and rocks.

  15. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features

    PubMed Central

    Hu, Yu-Chuan; Li, Gang; Yang, Yang; Han, Yu; Sun, Ying-Zhi; Liu, Zhi-Cheng; Tian, Qiang; Han, Zi-Yang; Liu, Le-De; Hu, Bin-Quan; Qiu, Zi-Yu; Wang, Wen; Cui, Guang-Bin

    2017-01-01

    Current machine learning techniques provide the opportunity to develop noninvasive and automated glioma grading tools, by utilizing quantitative parameters derived from multi-modal magnetic resonance imaging (MRI) data. However, the efficacies of different machine learning methods in glioma grading have not been investigated.A comprehensive comparison of varied machine learning methods in differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well as WHO grade II, III and IV gliomas based on multi-parametric MRI images was proposed in the current study. The parametric histogram and image texture attributes of 120 glioma patients were extracted from the perfusion, diffusion and permeability parametric maps of preoperative MRI. Then, 25 commonly used machine learning classifiers combined with 8 independent attribute selection methods were applied and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the influences of parameter selection on the classifying performances were investigated. We found that support vector machine (SVM) exhibited superior performance to other classifiers. By combining all tumor attributes with synthetic minority over-sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive Feature Elimination (RFE) attribute selection strategy further improved the classifying accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising tool in developing automated preoperative glioma grading system, especially when being combined with RFE strategy. Model parameters should be considered in glioma grading model optimization. PMID:28599282

  16. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features.

    PubMed

    Zhang, Xin; Yan, Lin-Feng; Hu, Yu-Chuan; Li, Gang; Yang, Yang; Han, Yu; Sun, Ying-Zhi; Liu, Zhi-Cheng; Tian, Qiang; Han, Zi-Yang; Liu, Le-De; Hu, Bin-Quan; Qiu, Zi-Yu; Wang, Wen; Cui, Guang-Bin

    2017-07-18

    Current machine learning techniques provide the opportunity to develop noninvasive and automated glioma grading tools, by utilizing quantitative parameters derived from multi-modal magnetic resonance imaging (MRI) data. However, the efficacies of different machine learning methods in glioma grading have not been investigated.A comprehensive comparison of varied machine learning methods in differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well as WHO grade II, III and IV gliomas based on multi-parametric MRI images was proposed in the current study. The parametric histogram and image texture attributes of 120 glioma patients were extracted from the perfusion, diffusion and permeability parametric maps of preoperative MRI. Then, 25 commonly used machine learning classifiers combined with 8 independent attribute selection methods were applied and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the influences of parameter selection on the classifying performances were investigated. We found that support vector machine (SVM) exhibited superior performance to other classifiers. By combining all tumor attributes with synthetic minority over-sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive Feature Elimination (RFE) attribute selection strategy further improved the classifying accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising tool in developing automated preoperative glioma grading system, especially when being combined with RFE strategy. Model parameters should be considered in glioma grading model optimization.

  17. Supervised learning methods for pathological arterial pulse wave differentiation: A SVM and neural networks approach.

    PubMed

    Paiva, Joana S; Cardoso, João; Pereira, Tânia

    2018-01-01

    The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system. The APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN). SVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917±0.0024 and a F-Measure of 0.9925±0.0019, in comparison with ANN, which reached the values of 0.9847±0.0032 and 0.9852±0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available. The comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The Bi-Directional Prediction of Carbon Fiber Production Using a Combination of Improved Particle Swarm Optimization and Support Vector Machine.

    PubMed

    Xiao, Chuncai; Hao, Kuangrong; Ding, Yongsheng

    2014-12-30

    This paper creates a bi-directional prediction model to predict the performance of carbon fiber and the productive parameters based on a support vector machine (SVM) and improved particle swarm optimization (IPSO) algorithm (SVM-IPSO). In the SVM, it is crucial to select the parameters that have an important impact on the performance of prediction. The IPSO is proposed to optimize them, and then the SVM-IPSO model is applied to the bi-directional prediction of carbon fiber production. The predictive accuracy of SVM is mainly dependent on its parameters, and IPSO is thus exploited to seek the optimal parameters for SVM in order to improve its prediction capability. Inspired by a cell communication mechanism, we propose IPSO by incorporating information of the global best solution into the search strategy to improve exploitation, and we employ IPSO to establish the bi-directional prediction model: in the direction of the forward prediction, we consider productive parameters as input and property indexes as output; in the direction of the backward prediction, we consider property indexes as input and productive parameters as output, and in this case, the model becomes a scheme design for novel style carbon fibers. The results from a set of the experimental data show that the proposed model can outperform the radial basis function neural network (RNN), the basic particle swarm optimization (PSO) method and the hybrid approach of genetic algorithm and improved particle swarm optimization (GA-IPSO) method in most of the experiments. In other words, simulation results demonstrate the effectiveness and advantages of the SVM-IPSO model in dealing with the problem of forecasting.

  19. Construction of Pancreatic Cancer Classifier Based on SVM Optimized by Improved FOA

    PubMed Central

    Ma, Xiaoqi

    2015-01-01

    A novel method is proposed to establish the pancreatic cancer classifier. Firstly, the concept of quantum and fruit fly optimal algorithm (FOA) are introduced, respectively. Then FOA is improved by quantum coding and quantum operation, and a new smell concentration determination function is defined. Finally, the improved FOA is used to optimize the parameters of support vector machine (SVM) and the classifier is established by optimized SVM. In order to verify the effectiveness of the proposed method, SVM and other classification methods have been chosen as the comparing methods. The experimental results show that the proposed method can improve the classifier performance and cost less time. PMID:26543867

  20. A study of the effectiveness of machine learning methods for classification of clinical interview fragments into a large number of categories.

    PubMed

    Hasan, Mehedi; Kotov, Alexander; Carcone, April; Dong, Ming; Naar, Sylvie; Hartlieb, Kathryn Brogan

    2016-08-01

    This study examines the effectiveness of state-of-the-art supervised machine learning methods in conjunction with different feature types for the task of automatic annotation of fragments of clinical text based on codebooks with a large number of categories. We used a collection of motivational interview transcripts consisting of 11,353 utterances, which were manually annotated by two human coders as the gold standard, and experimented with state-of-art classifiers, including Naïve Bayes, J48 Decision Tree, Support Vector Machine (SVM), Random Forest (RF), AdaBoost, DiscLDA, Conditional Random Fields (CRF) and Convolutional Neural Network (CNN) in conjunction with lexical, contextual (label of the previous utterance) and semantic (distribution of words in the utterance across the Linguistic Inquiry and Word Count dictionaries) features. We found out that, when the number of classes is large, the performance of CNN and CRF is inferior to SVM. When only lexical features were used, interview transcripts were automatically annotated by SVM with the highest classification accuracy among all classifiers of 70.8%, 61% and 53.7% based on the codebooks consisting of 17, 20 and 41 codes, respectively. Using contextual and semantic features, as well as their combination, in addition to lexical ones, improved the accuracy of SVM for annotation of utterances in motivational interview transcripts with a codebook consisting of 17 classes to 71.5%, 74.2%, and 75.1%, respectively. Our results demonstrate the potential of using machine learning methods in conjunction with lexical, semantic and contextual features for automatic annotation of clinical interview transcripts with near-human accuracy. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Support Vector Machine-Based Endmember Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippi, Anthony M; Archibald, Richard K

    Introduced in this paper is the utilization of Support Vector Machines (SVMs) to automatically perform endmember extraction from hyperspectral data. The strengths of SVM are exploited to provide a fast and accurate calculated representation of high-dimensional data sets that may consist of multiple distributions. Once this representation is computed, the number of distributions can be determined without prior knowledge. For each distribution, an optimal transform can be determined that preserves informational content while reducing the data dimensionality, and hence, the computational cost. Finally, endmember extraction for the whole data set is accomplished. Results indicate that this Support Vector Machine-Based Endmembermore » Extraction (SVM-BEE) algorithm has the capability of autonomously determining endmembers from multiple clusters with computational speed and accuracy, while maintaining a robust tolerance to noise.« less

  2. SU-C-BRA-05: Delineating High-Dose Clinical Target Volumes for Head and Neck Tumors Using Machine Learning Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, C; The University of Texas Graduate School of Biomedical Sciences, Houston, TX; Wong, A

    Purpose: To develop and test population-based machine learning algorithms for delineating high-dose clinical target volumes (CTVs) in H&N tumors. Automating and standardizing the contouring of CTVs can reduce both physician contouring time and inter-physician variability, which is one of the largest sources of uncertainty in H&N radiotherapy. Methods: Twenty-five node-negative patients treated with definitive radiotherapy were selected (6 right base of tongue, 11 left and 9 right tonsil). All patients had GTV and CTVs manually contoured by an experienced radiation oncologist prior to treatment. This contouring process, which is driven by anatomical, pathological, and patient specific information, typically results inmore » non-uniform margin expansions about the GTV. Therefore, we tested two methods to delineate high-dose CTV given a manually-contoured GTV: (1) regression-support vector machines(SVM) and (2) classification-SVM. These models were trained and tested on each patient group using leave-one-out cross-validation. The volume difference(VD) and Dice similarity coefficient(DSC) between the manual and auto-contoured CTV were calculated to evaluate the results. Distances from GTV-to-CTV were computed about each patient’s GTV and these distances, in addition to distances from GTV to surrounding anatomy in the expansion direction, were utilized in the regression-SVM method. The classification-SVM method used categorical voxel-information (GTV, selected anatomical structures, else) from a 3×3×3cm3 ROI centered about the voxel to classify voxels as CTV. Results: Volumes for the auto-contoured CTVs ranged from 17.1 to 149.1cc and 17.4 to 151.9cc; the average(range) VD between manual and auto-contoured CTV were 0.93 (0.48–1.59) and 1.16(0.48–1.97); while average(range) DSC values were 0.75(0.59–0.88) and 0.74(0.59–0.81) for the regression-SVM and classification-SVM methods, respectively. Conclusion: We developed two novel machine learning methods to delineate high-dose CTV for H&N patients. Both methods showed promising results that hint to a solution to the standardization of the contouring process of clinical target volumes. Varian Medical Systems grant.« less

  3. Machine learning algorithms to classify spinal muscular atrophy subtypes.

    PubMed

    Srivastava, Tuhin; Darras, Basil T; Wu, Jim S; Rutkove, Seward B

    2012-07-24

    The development of better biomarkers for disease assessment remains an ongoing effort across the spectrum of neurologic illnesses. One approach for refining biomarkers is based on the concept of machine learning, in which individual, unrelated biomarkers are simultaneously evaluated. In this cross-sectional study, we assess the possibility of using machine learning, incorporating both quantitative muscle ultrasound (QMU) and electrical impedance myography (EIM) data, for classification of muscles affected by spinal muscular atrophy (SMA). Twenty-one normal subjects, 15 subjects with SMA type 2, and 10 subjects with SMA type 3 underwent EIM and QMU measurements of unilateral biceps, wrist extensors, quadriceps, and tibialis anterior. EIM and QMU parameters were then applied in combination using a support vector machine (SVM), a type of machine learning, in an attempt to accurately categorize 165 individual muscles. For all 3 classification problems, normal vs SMA, normal vs SMA 3, and SMA 2 vs SMA 3, use of SVM provided the greatest accuracy in discrimination, surpassing both EIM and QMU individually. For example, the accuracy, as measured by the receiver operating characteristic area under the curve (ROC-AUC) for the SVM discriminating SMA 2 muscles from SMA 3 muscles was 0.928; in comparison, the ROC-AUCs for EIM and QMU parameters alone were only 0.877 (p < 0.05) and 0.627 (p < 0.05), respectively. Combining EIM and QMU data categorizes individual SMA-affected muscles with very high accuracy. Further investigation of this approach for classifying and for following the progression of neuromuscular illness is warranted.

  4. Application of GA-SVM method with parameter optimization for landslide development prediction

    NASA Astrophysics Data System (ADS)

    Li, X. Z.; Kong, J. M.

    2013-10-01

    Prediction of landslide development process is always a hot issue in landslide research. So far, many methods for landslide displacement series prediction have been proposed. Support vector machine (SVM) has been proved to be a novel algorithm with good performance. However, the performance strongly depends on the right selection of the parameters (C and γ) of SVM model. In this study, we presented an application of GA-SVM method with parameter optimization in landslide displacement rate prediction. We selected a typical large-scale landslide in some hydro - electrical engineering area of Southwest China as a case. On the basis of analyzing the basic characteristics and monitoring data of the landslide, a single-factor GA-SVM model and a multi-factor GA-SVM model of the landslide were built. Moreover, the models were compared with single-factor and multi-factor SVM models of the landslide. The results show that, the four models have high prediction accuracies, but the accuracies of GA-SVM models are slightly higher than those of SVM models and the accuracies of multi-factor models are slightly higher than those of single-factor models for the landslide prediction. The accuracy of the multi-factor GA-SVM models is the highest, with the smallest RSME of 0.0009 and the biggest RI of 0.9992.

  5. Fast and Accurate Support Vector Machines on Large Scale Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishnu, Abhinav; Narasimhan, Jayenthi; Holder, Larry

    Support Vector Machines (SVM) is a supervised Machine Learning and Data Mining (MLDM) algorithm, which has become ubiquitous largely due to its high accuracy and obliviousness to dimensionality. The objective of SVM is to find an optimal boundary --- also known as hyperplane --- which separates the samples (examples in a dataset) of different classes by a maximum margin. Usually, very few samples contribute to the definition of the boundary. However, existing parallel algorithms use the entire dataset for finding the boundary, which is sub-optimal for performance reasons. In this paper, we propose a novel distributed memory algorithm to eliminatemore » the samples which do not contribute to the boundary definition in SVM. We propose several heuristics, which range from early (aggressive) to late (conservative) elimination of the samples, such that the overall time for generating the boundary is reduced considerably. In a few cases, a sample may be eliminated (shrunk) pre-emptively --- potentially resulting in an incorrect boundary. We propose a scalable approach to synchronize the necessary data structures such that the proposed algorithm maintains its accuracy. We consider the necessary trade-offs of single/multiple synchronization using in-depth time-space complexity analysis. We implement the proposed algorithm using MPI and compare it with libsvm--- de facto sequential SVM software --- which we enhance with OpenMP for multi-core/many-core parallelism. Our proposed approach shows excellent efficiency using up to 4096 processes on several large datasets such as UCI HIGGS Boson dataset and Offending URL dataset.« less

  6. Assessing the druggability of protein-protein interactions by a supervised machine-learning method.

    PubMed

    Sugaya, Nobuyoshi; Ikeda, Kazuyoshi

    2009-08-25

    Protein-protein interactions (PPIs) are challenging but attractive targets of small molecule drugs for therapeutic interventions of human diseases. In this era of rapid accumulation of PPI data, there is great need for a methodology that can efficiently select drug target PPIs by holistically assessing the druggability of PPIs. To address this need, we propose here a novel approach based on a supervised machine-learning method, support vector machine (SVM). To assess the druggability of the PPIs, 69 attributes were selected to cover a wide range of structural, drug and chemical, and functional information on the PPIs. These attributes were used as feature vectors in the SVM-based method. Thirty PPIs known to be druggable were carefully selected from previous studies; these were used as positive instances. Our approach was applied to 1,295 human PPIs with tertiary structures of their protein complexes already solved. The best SVM model constructed discriminated the already-known target PPIs from others at an accuracy of 81% (sensitivity, 82%; specificity, 79%) in cross-validation. Among the attributes, the two with the greatest discriminative power in the best SVM model were the number of interacting proteins and the number of pathways. Using the model, we predicted several promising candidates for druggable PPIs, such as SMAD4/SKI. As more PPI data are accumulated in the near future, our method will have increased ability to accelerate the discovery of druggable PPIs.

  7. Non-metallic coating thickness prediction using artificial neural network and support vector machine with time resolved thermography

    NASA Astrophysics Data System (ADS)

    Wang, Hongjin; Hsieh, Sheng-Jen; Peng, Bo; Zhou, Xunfei

    2016-07-01

    A method without requirements on knowledge about thermal properties of coatings or those of substrates will be interested in the industrial application. Supervised machine learning regressions may provide possible solution to the problem. This paper compares the performances of two regression models (artificial neural networks (ANN) and support vector machines for regression (SVM)) with respect to coating thickness estimations made based on surface temperature increments collected via time resolved thermography. We describe SVM roles in coating thickness prediction. Non-dimensional analyses are conducted to illustrate the effects of coating thicknesses and various factors on surface temperature increments. It's theoretically possible to correlate coating thickness with surface increment. Based on the analyses, the laser power is selected in such a way: during the heating, the temperature increment is high enough to determine the coating thickness variance but low enough to avoid surface melting. Sixty-one pain-coated samples with coating thicknesses varying from 63.5 μm to 571 μm are used to train models. Hyper-parameters of the models are optimized by 10-folder cross validation. Another 28 sets of data are then collected to test the performance of the three methods. The study shows that SVM can provide reliable predictions of unknown data, due to its deterministic characteristics, and it works well when used for a small input data group. The SVM model generates more accurate coating thickness estimates than the ANN model.

  8. SVM2Motif—Reconstructing Overlapping DNA Sequence Motifs by Mimicking an SVM Predictor

    PubMed Central

    Vidovic, Marina M. -C.; Görnitz, Nico; Müller, Klaus-Robert; Rätsch, Gunnar; Kloft, Marius

    2015-01-01

    Identifying discriminative motifs underlying the functionality and evolution of organisms is a major challenge in computational biology. Machine learning approaches such as support vector machines (SVMs) achieve state-of-the-art performances in genomic discrimination tasks, but—due to its black-box character—motifs underlying its decision function are largely unknown. As a remedy, positional oligomer importance matrices (POIMs) allow us to visualize the significance of position-specific subsequences. Although being a major step towards the explanation of trained SVM models, they suffer from the fact that their size grows exponentially in the length of the motif, which renders their manual inspection feasible only for comparably small motif sizes, typically k ≤ 5. In this work, we extend the work on positional oligomer importance matrices, by presenting a new machine-learning methodology, entitled motifPOIM, to extract the truly relevant motifs—regardless of their length and complexity—underlying the predictions of a trained SVM model. Our framework thereby considers the motifs as free parameters in a probabilistic model, a task which can be phrased as a non-convex optimization problem. The exponential dependence of the POIM size on the oligomer length poses a major numerical challenge, which we address by an efficient optimization framework that allows us to find possibly overlapping motifs consisting of up to hundreds of nucleotides. We demonstrate the efficacy of our approach on a synthetic data set as well as a real-world human splice site data set. PMID:26690911

  9. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals.

    PubMed

    Acharya, U Rajendra; Sree, S Vinitha; Chattopadhyay, Subhagata; Yu, Wenwei; Ang, Peng Chuan Alvin

    2011-06-01

    Epilepsy is a common neurological disorder that is characterized by the recurrence of seizures. Electroencephalogram (EEG) signals are widely used to diagnose seizures. Because of the non-linear and dynamic nature of the EEG signals, it is difficult to effectively decipher the subtle changes in these signals by visual inspection and by using linear techniques. Therefore, non-linear methods are being researched to analyze the EEG signals. In this work, we use the recorded EEG signals in Recurrence Plots (RP), and extract Recurrence Quantification Analysis (RQA) parameters from the RP in order to classify the EEG signals into normal, ictal, and interictal classes. Recurrence Plot (RP) is a graph that shows all the times at which a state of the dynamical system recurs. Studies have reported significantly different RQA parameters for the three classes. However, more studies are needed to develop classifiers that use these promising features and present good classification accuracy in differentiating the three types of EEG segments. Therefore, in this work, we have used ten RQA parameters to quantify the important features in the EEG signals.These features were fed to seven different classifiers: Support vector machine (SVM), Gaussian Mixture Model (GMM), Fuzzy Sugeno Classifier, K-Nearest Neighbor (KNN), Naive Bayes Classifier (NBC), Decision Tree (DT), and Radial Basis Probabilistic Neural Network (RBPNN). Our results show that the SVM classifier was able to identify the EEG class with an average efficiency of 95.6%, sensitivity and specificity of 98.9% and 97.8%, respectively.

  10. Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset

    USGS Publications Warehouse

    Harris, Ted D.; Graham, Jennifer L.

    2017-01-01

    Cyanobacterial blooms degrade water quality in drinking water supply reservoirs by producing toxic and taste-and-odor causing secondary metabolites, which ultimately cause public health concerns and lead to increased treatment costs for water utilities. There have been numerous attempts to create models that predict cyanobacteria and their secondary metabolites, most using linear models; however, linear models are limited by assumptions about the data and have had limited success as predictive tools. Thus, lake and reservoir managers need improved modeling techniques that can accurately predict large bloom events that have the highest impact on recreational activities and drinking-water treatment processes. In this study, we compared 12 unique linear and nonlinear regression modeling techniques to predict cyanobacterial abundance and the cyanobacterial secondary metabolites microcystin and geosmin using 14 years of physiochemical water quality data collected from Cheney Reservoir, Kansas. Support vector machine (SVM), random forest (RF), boosted tree (BT), and Cubist modeling techniques were the most predictive of the compared modeling approaches. SVM, RF, and BT modeling techniques were able to successfully predict cyanobacterial abundance, microcystin, and geosmin concentrations <60,000 cells/mL, 2.5 µg/L, and 20 ng/L, respectively. Only Cubist modeling predicted maxima concentrations of cyanobacteria and geosmin; no modeling technique was able to predict maxima microcystin concentrations. Because maxima concentrations are a primary concern for lake and reservoir managers, Cubist modeling may help predict the largest and most noxious concentrations of cyanobacteria and their secondary metabolites.

  11. Objective research of auscultation signals in Traditional Chinese Medicine based on wavelet packet energy and support vector machine.

    PubMed

    Yan, Jianjun; Shen, Xiaojing; Wang, Yiqin; Li, Fufeng; Xia, Chunming; Guo, Rui; Chen, Chunfeng; Shen, Qingwei

    2010-01-01

    This study aims at utilising Wavelet Packet Transform (WPT) and Support Vector Machine (SVM) algorithm to make objective analysis and quantitative research for the auscultation in Traditional Chinese Medicine (TCM) diagnosis. First, Wavelet Packet Decomposition (WPD) at level 6 was employed to split more elaborate frequency bands of the auscultation signals. Then statistic analysis was made based on the extracted Wavelet Packet Energy (WPE) features from WPD coefficients. Furthermore, the pattern recognition was used to distinguish mixed subjects' statistical feature values of sample groups through SVM. Finally, the experimental results showed that the classification accuracies were at a high level.

  12. Electrocardiographic signals and swarm-based support vector machine for hypoglycemia detection.

    PubMed

    Nuryani, Nuryani; Ling, Steve S H; Nguyen, H T

    2012-04-01

    Cardiac arrhythmia relating to hypoglycemia is suggested as a cause of death in diabetic patients. This article introduces electrocardiographic (ECG) parameters for artificially induced hypoglycemia detection. In addition, a hybrid technique of swarm-based support vector machine (SVM) is introduced for hypoglycemia detection using the ECG parameters as inputs. In this technique, a particle swarm optimization (PSO) is proposed to optimize the SVM to detect hypoglycemia. In an experiment using medical data of patients with Type 1 diabetes, the introduced ECG parameters show significant contributions to the performance of the hypoglycemia detection and the proposed detection technique performs well in terms of sensitivity and specificity.

  13. In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods.

    PubMed

    Cheng, Feixiong; Shen, Jie; Yu, Yue; Li, Weihua; Liu, Guixia; Lee, Philip W; Tang, Yun

    2011-03-01

    There is an increasing need for the rapid safety assessment of chemicals by both industries and regulatory agencies throughout the world. In silico techniques are practical alternatives in the environmental hazard assessment. It is especially true to address the persistence, bioaccumulative and toxicity potentials of organic chemicals. Tetrahymena pyriformis toxicity is often used as a toxic endpoint. In this study, 1571 diverse unique chemicals were collected from the literature and composed of the largest diverse data set for T. pyriformis toxicity. Classification predictive models of T. pyriformis toxicity were developed by substructure pattern recognition and different machine learning methods, including support vector machine (SVM), C4.5 decision tree, k-nearest neighbors and random forest. The results of a 5-fold cross-validation showed that the SVM method performed better than other algorithms. The overall predictive accuracies of the SVM classification model with radial basis functions kernel was 92.2% for the 5-fold cross-validation and 92.6% for the external validation set, respectively. Furthermore, several representative substructure patterns for characterizing T. pyriformis toxicity were also identified via the information gain analysis methods. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Human action recognition with group lasso regularized-support vector machine

    NASA Astrophysics Data System (ADS)

    Luo, Huiwu; Lu, Huanzhang; Wu, Yabei; Zhao, Fei

    2016-05-01

    The bag-of-visual-words (BOVW) and Fisher kernel are two popular models in human action recognition, and support vector machine (SVM) is the most commonly used classifier for the two models. We show two kinds of group structures in the feature representation constructed by BOVW and Fisher kernel, respectively, since the structural information of feature representation can be seen as a prior for the classifier and can improve the performance of the classifier, which has been verified in several areas. However, the standard SVM employs L2-norm regularization in its learning procedure, which penalizes each variable individually and cannot express the structural information of feature representation. We replace the L2-norm regularization with group lasso regularization in standard SVM, and a group lasso regularized-support vector machine (GLRSVM) is proposed. Then, we embed the group structural information of feature representation into GLRSVM. Finally, we introduce an algorithm to solve the optimization problem of GLRSVM by alternating directions method of multipliers. The experiments evaluated on KTH, YouTube, and Hollywood2 datasets show that our method achieves promising results and improves the state-of-the-art methods on KTH and YouTube datasets.

  15. Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines

    NASA Astrophysics Data System (ADS)

    Jegadeeshwaran, R.; Sugumaran, V.

    2015-02-01

    Hydraulic brakes in automobiles are important components for the safety of passengers; therefore, the brakes are a good subject for condition monitoring. The condition of the brake components can be monitored by using the vibration characteristics. On-line condition monitoring by using machine learning approach is proposed in this paper as a possible solution to such problems. The vibration signals for both good as well as faulty conditions of brakes were acquired from a hydraulic brake test setup with the help of a piezoelectric transducer and a data acquisition system. Descriptive statistical features were extracted from the acquired vibration signals and the feature selection was carried out using the C4.5 decision tree algorithm. There is no specific method to find the right number of features required for classification for a given problem. Hence an extensive study is needed to find the optimum number of features. The effect of the number of features was also studied, by using the decision tree as well as Support Vector Machines (SVM). The selected features were classified using the C-SVM and Nu-SVM with different kernel functions. The results are discussed and the conclusion of the study is presented.

  16. A Semisupervised Support Vector Machines Algorithm for BCI Systems

    PubMed Central

    Qin, Jianzhao; Li, Yuanqing; Sun, Wei

    2007-01-01

    As an emerging technology, brain-computer interfaces (BCIs) bring us new communication interfaces which translate brain activities into control signals for devices like computers, robots, and so forth. In this study, we propose a semisupervised support vector machine (SVM) algorithm for brain-computer interface (BCI) systems, aiming at reducing the time-consuming training process. In this algorithm, we apply a semisupervised SVM for translating the features extracted from the electrical recordings of brain into control signals. This SVM classifier is built from a small labeled data set and a large unlabeled data set. Meanwhile, to reduce the time for training semisupervised SVM, we propose a batch-mode incremental learning method, which can also be easily applied to the online BCI systems. Additionally, it is suggested in many studies that common spatial pattern (CSP) is very effective in discriminating two different brain states. However, CSP needs a sufficient labeled data set. In order to overcome the drawback of CSP, we suggest a two-stage feature extraction method for the semisupervised learning algorithm. We apply our algorithm to two BCI experimental data sets. The offline data analysis results demonstrate the effectiveness of our algorithm. PMID:18368141

  17. [MicroRNA Target Prediction Based on Support Vector Machine Ensemble Classification Algorithm of Under-sampling Technique].

    PubMed

    Chen, Zhiru; Hong, Wenxue

    2016-02-01

    Considering the low accuracy of prediction in the positive samples and poor overall classification effects caused by unbalanced sample data of MicroRNA (miRNA) target, we proposes a support vector machine (SVM)-integration of under-sampling and weight (IUSM) algorithm in this paper, an under-sampling based on the ensemble learning algorithm. The algorithm adopts SVM as learning algorithm and AdaBoost as integration framework, and embeds clustering-based under-sampling into the iterative process, aiming at reducing the degree of unbalanced distribution of positive and negative samples. Meanwhile, in the process of adaptive weight adjustment of the samples, the SVM-IUSM algorithm eliminates the abnormal ones in negative samples with robust sample weights smoothing mechanism so as to avoid over-learning. Finally, the prediction of miRNA target integrated classifier is achieved with the combination of multiple weak classifiers through the voting mechanism. The experiment revealed that the SVM-IUSW, compared with other algorithms on unbalanced dataset collection, could not only improve the accuracy of positive targets and the overall effect of classification, but also enhance the generalization ability of miRNA target classifier.

  18. Extraction and classification of 3D objects from volumetric CT data

    NASA Astrophysics Data System (ADS)

    Song, Samuel M.; Kwon, Junghyun; Ely, Austin; Enyeart, John; Johnson, Chad; Lee, Jongkyu; Kim, Namho; Boyd, Douglas P.

    2016-05-01

    We propose an Automatic Threat Detection (ATD) algorithm for Explosive Detection System (EDS) using our multistage Segmentation Carving (SC) followed by Support Vector Machine (SVM) classifier. The multi-stage Segmentation and Carving (SC) step extracts all suspect 3-D objects. The feature vector is then constructed for all extracted objects and the feature vector is classified by the Support Vector Machine (SVM) previously learned using a set of ground truth threat and benign objects. The learned SVM classifier has shown to be effective in classification of different types of threat materials. The proposed ATD algorithm robustly deals with CT data that are prone to artifacts due to scatter, beam hardening as well as other systematic idiosyncrasies of the CT data. Furthermore, the proposed ATD algorithm is amenable for including newly emerging threat materials as well as for accommodating data from newly developing sensor technologies. Efficacy of the proposed ATD algorithm with the SVM classifier is demonstrated by the Receiver Operating Characteristics (ROC) curve that relates Probability of Detection (PD) as a function of Probability of False Alarm (PFA). The tests performed using CT data of passenger bags shows excellent performance characteristics.

  19. A hybrid PSO-SVM-based method for predicting the friction coefficient between aircraft tire and coating

    NASA Astrophysics Data System (ADS)

    Zhan, Liwei; Li, Chengwei

    2017-02-01

    A hybrid PSO-SVM-based model is proposed to predict the friction coefficient between aircraft tire and coating. The presented hybrid model combines a support vector machine (SVM) with particle swarm optimization (PSO) technique. SVM has been adopted to solve regression problems successfully. Its regression accuracy is greatly related to optimizing parameters such as the regularization constant C , the parameter gamma γ corresponding to RBF kernel and the epsilon parameter \\varepsilon in the SVM training procedure. However, the friction coefficient which is predicted based on SVM has yet to be explored between aircraft tire and coating. The experiment reveals that drop height and tire rotational speed are the factors affecting friction coefficient. Bearing in mind, the friction coefficient can been predicted using the hybrid PSO-SVM-based model by the measured friction coefficient between aircraft tire and coating. To compare regression accuracy, a grid search (GS) method and a genetic algorithm (GA) are used to optimize the relevant parameters (C , γ and \\varepsilon ), respectively. The regression accuracy could be reflected by the coefficient of determination ({{R}2} ). The result shows that the hybrid PSO-RBF-SVM-based model has better accuracy compared with the GS-RBF-SVM- and GA-RBF-SVM-based models. The agreement of this model (PSO-RBF-SVM) with experiment data confirms its good performance.

  20. Support vector machine in crash prediction at the level of traffic analysis zones: Assessing the spatial proximity effects.

    PubMed

    Dong, Ni; Huang, Helai; Zheng, Liang

    2015-09-01

    In zone-level crash prediction, accounting for spatial dependence has become an extensively studied topic. This study proposes Support Vector Machine (SVM) model to address complex, large and multi-dimensional spatial data in crash prediction. Correlation-based Feature Selector (CFS) was applied to evaluate candidate factors possibly related to zonal crash frequency in handling high-dimension spatial data. To demonstrate the proposed approaches and to compare them with the Bayesian spatial model with conditional autoregressive prior (i.e., CAR), a dataset in Hillsborough county of Florida was employed. The results showed that SVM models accounting for spatial proximity outperform the non-spatial model in terms of model fitting and predictive performance, which indicates the reasonableness of considering cross-zonal spatial correlations. The best model predictive capability, relatively, is associated with the model considering proximity of the centroid distance by choosing the RBF kernel and setting the 10% of the whole dataset as the testing data, which further exhibits SVM models' capacity for addressing comparatively complex spatial data in regional crash prediction modeling. Moreover, SVM models exhibit the better goodness-of-fit compared with CAR models when utilizing the whole dataset as the samples. A sensitivity analysis of the centroid-distance-based spatial SVM models was conducted to capture the impacts of explanatory variables on the mean predicted probabilities for crash occurrence. While the results conform to the coefficient estimation in the CAR models, which supports the employment of the SVM model as an alternative in regional safety modeling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Fall Detection Using Smartphone Audio Features.

    PubMed

    Cheffena, Michael

    2016-07-01

    An automated fall detection system based on smartphone audio features is developed. The spectrogram, mel frequency cepstral coefficents (MFCCs), linear predictive coding (LPC), and matching pursuit (MP) features of different fall and no-fall sound events are extracted from experimental data. Based on the extracted audio features, four different machine learning classifiers: k-nearest neighbor classifier (k-NN), support vector machine (SVM), least squares method (LSM), and artificial neural network (ANN) are investigated for distinguishing between fall and no-fall events. For each audio feature, the performance of each classifier in terms of sensitivity, specificity, accuracy, and computational complexity is evaluated. The best performance is achieved using spectrogram features with ANN classifier with sensitivity, specificity, and accuracy all above 98%. The classifier also has acceptable computational requirement for training and testing. The system is applicable in home environments where the phone is placed in the vicinity of the user.

  2. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines

    PubMed Central

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J.; Raboso, Mariano

    2015-01-01

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. PMID:26091392

  3. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.

    PubMed

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano

    2015-06-17

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.

  4. Epileptic seizure detection in EEG signal using machine learning techniques.

    PubMed

    Jaiswal, Abeg Kumar; Banka, Haider

    2018-03-01

    Epilepsy is a well-known nervous system disorder characterized by seizures. Electroencephalograms (EEGs), which capture brain neural activity, can detect epilepsy. Traditional methods for analyzing an EEG signal for epileptic seizure detection are time-consuming. Recently, several automated seizure detection frameworks using machine learning technique have been proposed to replace these traditional methods. The two basic steps involved in machine learning are feature extraction and classification. Feature extraction reduces the input pattern space by keeping informative features and the classifier assigns the appropriate class label. In this paper, we propose two effective approaches involving subpattern based PCA (SpPCA) and cross-subpattern correlation-based PCA (SubXPCA) with Support Vector Machine (SVM) for automated seizure detection in EEG signals. Feature extraction was performed using SpPCA and SubXPCA. Both techniques explore the subpattern correlation of EEG signals, which helps in decision-making process. SVM is used for classification of seizure and non-seizure EEG signals. The SVM was trained with radial basis kernel. All the experiments have been carried out on the benchmark epilepsy EEG dataset. The entire dataset consists of 500 EEG signals recorded under different scenarios. Seven different experimental cases for classification have been conducted. The classification accuracy was evaluated using tenfold cross validation. The classification results of the proposed approaches have been compared with the results of some of existing techniques proposed in the literature to establish the claim.

  5. Prostate cancer detection using machine learning techniques by employing combination of features extracting strategies.

    PubMed

    Hussain, Lal; Ahmed, Adeel; Saeed, Sharjil; Rathore, Saima; Awan, Imtiaz Ahmed; Shah, Saeed Arif; Majid, Abdul; Idris, Adnan; Awan, Anees Ahmed

    2018-02-06

    Prostate is a second leading causes of cancer deaths among men. Early detection of cancer can effectively reduce the rate of mortality caused by Prostate cancer. Due to high and multiresolution of MRIs from prostate cancer require a proper diagnostic systems and tools. In the past researchers developed Computer aided diagnosis (CAD) systems that help the radiologist to detect the abnormalities. In this research paper, we have employed novel Machine learning techniques such as Bayesian approach, Support vector machine (SVM) kernels: polynomial, radial base function (RBF) and Gaussian and Decision Tree for detecting prostate cancer. Moreover, different features extracting strategies are proposed to improve the detection performance. The features extracting strategies are based on texture, morphological, scale invariant feature transform (SIFT), and elliptic Fourier descriptors (EFDs) features. The performance was evaluated based on single as well as combination of features using Machine Learning Classification techniques. The Cross validation (Jack-knife k-fold) was performed and performance was evaluated in term of receiver operating curve (ROC) and specificity, sensitivity, Positive predictive value (PPV), negative predictive value (NPV), false positive rate (FPR). Based on single features extracting strategies, SVM Gaussian Kernel gives the highest accuracy of 98.34% with AUC of 0.999. While, using combination of features extracting strategies, SVM Gaussian kernel with texture + morphological, and EFDs + morphological features give the highest accuracy of 99.71% and AUC of 1.00.

  6. New Approach To Hour-By-Hour Weather Forecast

    NASA Astrophysics Data System (ADS)

    Liao, Q. Q.; Wang, B.

    2017-12-01

    Fine hourly forecast in single station weather forecast is required in many human production and life application situations. Most previous MOS (Model Output Statistics) which used a linear regression model are hard to solve nonlinear natures of the weather prediction and forecast accuracy has not been sufficient at high temporal resolution. This study is to predict the future meteorological elements including temperature, precipitation, relative humidity and wind speed in a local region over a relatively short period of time at hourly level. By means of hour-to-hour NWP (Numeral Weather Prediction)meteorological field from Forcastio (https://darksky.net/dev/docs/forecast) and real-time instrumental observation including 29 stations in Yunnan and 3 stations in Tianjin of China from June to October 2016, predictions are made of the 24-hour hour-by-hour ahead. This study presents an ensemble approach to combine the information of instrumental observation itself and NWP. Use autoregressive-moving-average (ARMA) model to predict future values of the observation time series. Put newest NWP products into the equations derived from the multiple linear regression MOS technique. Handle residual series of MOS outputs with autoregressive (AR) model for the linear property presented in time series. Due to the complexity of non-linear property of atmospheric flow, support vector machine (SVM) is also introduced . Therefore basic data quality control and cross validation makes it able to optimize the model function parameters , and do 24 hours ahead residual reduction with AR/SVM model. Results show that AR model technique is better than corresponding multi-variant MOS regression method especially at the early 4 hours when the predictor is temperature. MOS-AR combined model which is comparable to MOS-SVM model outperform than MOS. Both of their root mean square error and correlation coefficients for 2 m temperature are reduced to 1.6 degree Celsius and 0.91 respectively. The forecast accuracy of 24- hour forecast deviation no more than 2 degree Celsius is 78.75 % for MOS-AR model and 81.23 % for AR model.

  7. A structural SVM approach for reference parsing.

    PubMed

    Zhang, Xiaoli; Zou, Jie; Le, Daniel X; Thoma, George R

    2011-06-09

    Automated extraction of bibliographic data, such as article titles, author names, abstracts, and references is essential to the affordable creation of large citation databases. References, typically appearing at the end of journal articles, can also provide valuable information for extracting other bibliographic data. Therefore, parsing individual reference to extract author, title, journal, year, etc. is sometimes a necessary preprocessing step in building citation-indexing systems. The regular structure in references enables us to consider reference parsing a sequence learning problem and to study structural Support Vector Machine (structural SVM), a newly developed structured learning algorithm on parsing references. In this study, we implemented structural SVM and used two types of contextual features to compare structural SVM with conventional SVM. Both methods achieve above 98% token classification accuracy and above 95% overall chunk-level accuracy for reference parsing. We also compared SVM and structural SVM to Conditional Random Field (CRF). The experimental results show that structural SVM and CRF achieve similar accuracies at token- and chunk-levels. When only basic observation features are used for each token, structural SVM achieves higher performance compared to SVM since it utilizes the contextual label features. However, when the contextual observation features from neighboring tokens are combined, SVM performance improves greatly, and is close to that of structural SVM after adding the second order contextual observation features. The comparison of these two methods with CRF using the same set of binary features show that both structural SVM and CRF perform better than SVM, indicating their stronger sequence learning ability in reference parsing.

  8. Lex-SVM: exploring the potential of exon expression profiling for disease classification.

    PubMed

    Yuan, Xiongying; Zhao, Yi; Liu, Changning; Bu, Dongbo

    2011-04-01

    Exon expression profiling technologies, including exon arrays and RNA-Seq, measure the abundance of every exon in a gene. Compared with gene expression profiling technologies like 3' array, exon expression profiling technologies could detect alterations in both transcription and alternative splicing, therefore they are expected to be more sensitive in diagnosis. However, exon expression profiling also brings higher dimension, more redundancy, and significant correlation among features. Ignoring the correlation structure among exons of a gene, a popular classification method like L1-SVM selects exons individually from each gene and thus is vulnerable to noise. To overcome this limitation, we present in this paper a new variant of SVM named Lex-SVM to incorporate correlation structure among exons and known splicing patterns to promote classification performance. Specifically, we construct a new norm, ex-norm, including our prior knowledge on exon correlation structure to regularize the coefficients of a linear SVM. Lex-SVM can be solved efficiently using standard linear programming techniques. The advantage of Lex-SVM is that it can select features group-wisely, force features in a subgroup to take equal weihts and exclude the features that contradict the majority in the subgroup. Experimental results suggest that on exon expression profile, Lex-SVM is more accurate than existing methods. Lex-SVM also generates a more compact model and selects genes more consistently in cross-validation. Unlike L1-SVM selecting only one exon in a gene, Lex-SVM assigns equal weights to as many exons in a gene as possible, lending itself easier for further interpretation.

  9. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    PubMed Central

    Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584

  10. Shuffling cross-validation-bee algorithm as a new descriptor selection method for retention studies of pesticides in biopartitioning micellar chromatography.

    PubMed

    Zarei, Kobra; Atabati, Morteza; Ahmadi, Monire

    2017-05-04

    Bee algorithm (BA) is an optimization algorithm inspired by the natural foraging behaviour of honey bees to find the optimal solution which can be proposed to feature selection. In this paper, shuffling cross-validation-BA (CV-BA) was applied to select the best descriptors that could describe the retention factor (log k) in the biopartitioning micellar chromatography (BMC) of 79 heterogeneous pesticides. Six descriptors were obtained using BA and then the selected descriptors were applied for model development using multiple linear regression (MLR). The descriptor selection was also performed using stepwise, genetic algorithm and simulated annealing methods and MLR was applied to model development and then the results were compared with those obtained from shuffling CV-BA. The results showed that shuffling CV-BA can be applied as a powerful descriptor selection method. Support vector machine (SVM) was also applied for model development using six selected descriptors by BA. The obtained statistical results using SVM were better than those obtained using MLR, as the root mean square error (RMSE) and correlation coefficient (R) for whole data set (training and test), using shuffling CV-BA-MLR, were obtained as 0.1863 and 0.9426, respectively, while these amounts for the shuffling CV-BA-SVM method were obtained as 0.0704 and 0.9922, respectively.

  11. Support vector machine for the diagnosis of malignant mesothelioma

    NASA Astrophysics Data System (ADS)

    Ushasukhanya, S.; Nithyakalyani, A.; Sivakumar, V.

    2018-04-01

    Harmful mesothelioma is an illness in which threatening (malignancy) cells shape in the covering of the trunk or stomach area. Being presented to asbestos can influence the danger of threatening mesothelioma. Signs and side effects of threatening mesothelioma incorporate shortness of breath and agony under the rib confine. Tests that inspect within the trunk and belly are utilized to recognize (find) and analyse harmful mesothelioma. Certain elements influence forecast (shot of recuperation) and treatment choices. In this review, Support vector machine (SVM) classifiers were utilized for Mesothelioma sickness conclusion. SVM output is contrasted by concentrating on Mesothelioma’s sickness and findings by utilizing similar information set. The support vector machine algorithm gives 92.5% precision acquired by means of 3-overlap cross-approval. The Mesothelioma illness dataset were taken from an organization reports from Turkey.

  12. Failure prediction using machine learning and time series in optical network.

    PubMed

    Wang, Zhilong; Zhang, Min; Wang, Danshi; Song, Chuang; Liu, Min; Li, Jin; Lou, Liqi; Liu, Zhuo

    2017-08-07

    In this paper, we propose a performance monitoring and failure prediction method in optical networks based on machine learning. The primary algorithms of this method are the support vector machine (SVM) and double exponential smoothing (DES). With a focus on risk-aware models in optical networks, the proposed protection plan primarily investigates how to predict the risk of an equipment failure. To the best of our knowledge, this important problem has not yet been fully considered. Experimental results showed that the average prediction accuracy of our method was 95% when predicting the optical equipment failure state. This finding means that our method can forecast an equipment failure risk with high accuracy. Therefore, our proposed DES-SVM method can effectively improve traditional risk-aware models to protect services from possible failures and enhance the optical network stability.

  13. Classification of the Regional Ionospheric Disturbance Based on Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Terzi, Merve Begum; Arikan, Orhan; Karatay, Secil; Arikan, Feza; Gulyaeva, Tamara

    2016-08-01

    In this study, Total Electron Content (TEC) estimated from GPS receivers is used to model the regional and local variability that differs from global activity along with solar and geomagnetic indices. For the automated classification of regional disturbances, a classification technique based on a robust machine learning technique that have found wide spread use, Support Vector Machine (SVM) is proposed. Performance of developed classification technique is demonstrated for midlatitude ionosphere over Anatolia using TEC estimates generated from GPS data provided by Turkish National Permanent GPS Network (TNPGN-Active) for solar maximum year of 2011. As a result of implementing developed classification technique to Global Ionospheric Map (GIM) TEC data, which is provided by the NASA Jet Propulsion Laboratory (JPL), it is shown that SVM can be a suitable learning method to detect anomalies in TEC variations.

  14. Combined empirical mode decomposition and texture features for skin lesion classification using quadratic support vector machine.

    PubMed

    Wahba, Maram A; Ashour, Amira S; Napoleon, Sameh A; Abd Elnaby, Mustafa M; Guo, Yanhui

    2017-12-01

    Basal cell carcinoma is one of the most common malignant skin lesions. Automated lesion identification and classification using image processing techniques is highly required to reduce the diagnosis errors. In this study, a novel technique is applied to classify skin lesion images into two classes, namely the malignant Basal cell carcinoma and the benign nevus. A hybrid combination of bi-dimensional empirical mode decomposition and gray-level difference method features is proposed after hair removal. The combined features are further classified using quadratic support vector machine (Q-SVM). The proposed system has achieved outstanding performance of 100% accuracy, sensitivity and specificity compared to other support vector machine procedures as well as with different extracted features. Basal Cell Carcinoma is effectively classified using Q-SVM with the proposed combined features.

  15. Use of Machine Learning Classifiers and Sensor Data to Detect Neurological Deficit in Stroke Patients.

    PubMed

    Park, Eunjeong; Chang, Hyuk-Jae; Nam, Hyo Suk

    2017-04-18

    The pronator drift test (PDT), a neurological examination, is widely used in clinics to measure motor weakness of stroke patients. The aim of this study was to develop a PDT tool with machine learning classifiers to detect stroke symptoms based on quantification of proximal arm weakness using inertial sensors and signal processing. We extracted features of drift and pronation from accelerometer signals of wearable devices on the inner wrists of 16 stroke patients and 10 healthy controls. Signal processing and feature selection approach were applied to discriminate PDT features used to classify stroke patients. A series of machine learning techniques, namely support vector machine (SVM), radial basis function network (RBFN), and random forest (RF), were implemented to discriminate stroke patients from controls with leave-one-out cross-validation. Signal processing by the PDT tool extracted a total of 12 PDT features from sensors. Feature selection abstracted the major attributes from the 12 PDT features to elucidate the dominant characteristics of proximal weakness of stroke patients using machine learning classification. Our proposed PDT classifiers had an area under the receiver operating characteristic curve (AUC) of .806 (SVM), .769 (RBFN), and .900 (RF) without feature selection, and feature selection improves the AUCs to .913 (SVM), .956 (RBFN), and .975 (RF), representing an average performance enhancement of 15.3%. Sensors and machine learning methods can reliably detect stroke signs and quantify proximal arm weakness. Our proposed solution will facilitate pervasive monitoring of stroke patients. ©Eunjeong Park, Hyuk-Jae Chang, Hyo Suk Nam. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 18.04.2017.

  16. Tuning to optimize SVM approach for assisting ovarian cancer diagnosis with photoacoustic imaging.

    PubMed

    Wang, Rui; Li, Rui; Lei, Yanyan; Zhu, Quing

    2015-01-01

    Support vector machine (SVM) is one of the most effective classification methods for cancer detection. The efficiency and quality of a SVM classifier depends strongly on several important features and a set of proper parameters. Here, a series of classification analyses, with one set of photoacoustic data from ovarian tissues ex vivo and a widely used breast cancer dataset- the Wisconsin Diagnostic Breast Cancer (WDBC), revealed the different accuracy of a SVM classification in terms of the number of features used and the parameters selected. A pattern recognition system is proposed by means of SVM-Recursive Feature Elimination (RFE) with the Radial Basis Function (RBF) kernel. To improve the effectiveness and robustness of the system, an optimized tuning ensemble algorithm called as SVM-RFE(C) with correlation filter was implemented to quantify feature and parameter information based on cross validation. The proposed algorithm is first demonstrated outperforming SVM-RFE on WDBC. Then the best accuracy of 94.643% and sensitivity of 94.595% were achieved when using SVM-RFE(C) to test 57 new PAT data from 19 patients. The experiment results show that the classifier constructed with SVM-RFE(C) algorithm is able to learn additional information from new data and has significant potential in ovarian cancer diagnosis.

  17. Protein-protein interaction site prediction in Homo sapiens and E. coli using an interaction-affinity based membership function in fuzzy SVM.

    PubMed

    Sriwastava, Brijesh Kumar; Basu, Subhadip; Maulik, Ujjwal

    2015-10-01

    Protein-protein interaction (PPI) site prediction aids to ascertain the interface residues that participate in interaction processes. Fuzzy support vector machine (F-SVM) is proposed as an effective method to solve this problem, and we have shown that the performance of the classical SVM can be enhanced with the help of an interaction-affinity based fuzzy membership function. The performances of both SVM and F-SVM on the PPI databases of the Homo sapiens and E. coli organisms are evaluated and estimated the statistical significance of the developed method over classical SVM and other fuzzy membership-based SVM methods available in the literature. Our membership function uses the residue-level interaction affinity scores for each pair of positive and negative sequence fragments. The average AUC scores in the 10-fold cross-validation experiments are measured as 79.94% and 80.48% for the Homo sapiens and E. coli organisms respectively. On the independent test datasets, AUC scores are obtained as 76.59% and 80.17% respectively for the two organisms. In almost all cases, the developed F-SVM method improves the performances obtained by the corresponding classical SVM and the other classifiers, available in the literature.

  18. Machine learning algorithm for automatic detection of CT-identifiable hyperdense lesions associated with traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Keshavamurthy, Krishna N.; Leary, Owen P.; Merck, Lisa H.; Kimia, Benjamin; Collins, Scott; Wright, David W.; Allen, Jason W.; Brock, Jeffrey F.; Merck, Derek

    2017-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability in the United States. Time to treatment is often related to patient outcome. Access to cerebral imaging data in a timely manner is a vital component of patient care. Current methods of detecting and quantifying intracranial pathology can be time-consuming and require careful review of 2D/3D patient images by a radiologist. Additional time is needed for image protocoling, acquisition, and processing. These steps often occur in series, adding more time to the process and potentially delaying time-dependent management decisions for patients with traumatic brain injury. Our team adapted machine learning and computer vision methods to develop a technique that rapidly and automatically detects CT-identifiable lesions. Specifically, we use scale invariant feature transform (SIFT)1 and deep convolutional neural networks (CNN)2 to identify important image features that can distinguish TBI lesions from background data. Our learning algorithm is a linear support vector machine (SVM)3. Further, we also employ tools from topological data analysis (TDA) for gleaning insights into the correlation patterns between healthy and pathological data. The technique was validated using 409 CT scans of the brain, acquired via the Progesterone for the Treatment of Traumatic Brain Injury phase III clinical trial (ProTECT_III) which studied patients with moderate to severe TBI4. CT data were annotated by a central radiologist and included patients with positive and negative scans. Additionally, the largest lesion on each positive scan was manually segmented. We reserved 80% of the data for training the SVM and used the remaining 20% for testing. Preliminary results are promising with 92.55% prediction accuracy (sensitivity = 91.15%, specificity = 93.45%), indicating the potential usefulness of this technique in clinical scenarios.

  19. Feature Selection and Parameters Optimization of SVM Using Particle Swarm Optimization for Fault Classification in Power Distribution Systems.

    PubMed

    Cho, Ming-Yuan; Hoang, Thi Thom

    2017-01-01

    Fast and accurate fault classification is essential to power system operations. In this paper, in order to classify electrical faults in radial distribution systems, a particle swarm optimization (PSO) based support vector machine (SVM) classifier has been proposed. The proposed PSO based SVM classifier is able to select appropriate input features and optimize SVM parameters to increase classification accuracy. Further, a time-domain reflectometry (TDR) method with a pseudorandom binary sequence (PRBS) stimulus has been used to generate a dataset for purposes of classification. The proposed technique has been tested on a typical radial distribution network to identify ten different types of faults considering 12 given input features generated by using Simulink software and MATLAB Toolbox. The success rate of the SVM classifier is over 97%, which demonstrates the effectiveness and high efficiency of the developed method.

  20. Discriminant analysis for fast multiclass data classification through regularized kernel function approximation.

    PubMed

    Ghorai, Santanu; Mukherjee, Anirban; Dutta, Pranab K

    2010-06-01

    In this brief we have proposed the multiclass data classification by computationally inexpensive discriminant analysis through vector-valued regularized kernel function approximation (VVRKFA). VVRKFA being an extension of fast regularized kernel function approximation (FRKFA), provides the vector-valued response at single step. The VVRKFA finds a linear operator and a bias vector by using a reduced kernel that maps a pattern from feature space into the low dimensional label space. The classification of patterns is carried out in this low dimensional label subspace. A test pattern is classified depending on its proximity to class centroids. The effectiveness of the proposed method is experimentally verified and compared with multiclass support vector machine (SVM) on several benchmark data sets as well as on gene microarray data for multi-category cancer classification. The results indicate the significant improvement in both training and testing time compared to that of multiclass SVM with comparable testing accuracy principally in large data sets. Experiments in this brief also serve as comparison of performance of VVRKFA with stratified random sampling and sub-sampling.

  1. Automatic Cataract Hardness Classification Ex Vivo by Ultrasound Techniques.

    PubMed

    Caixinha, Miguel; Santos, Mário; Santos, Jaime

    2016-04-01

    To demonstrate the feasibility of a new methodology for cataract hardness characterization and automatic classification using ultrasound techniques, different cataract degrees were induced in 210 porcine lenses. A 25-MHz ultrasound transducer was used to obtain acoustical parameters (velocity and attenuation) and backscattering signals. B-Scan and parametric Nakagami images were constructed. Ninety-seven parameters were extracted and subjected to a Principal Component Analysis. Bayes, K-Nearest-Neighbours, Fisher Linear Discriminant and Support Vector Machine (SVM) classifiers were used to automatically classify the different cataract severities. Statistically significant increases with cataract formation were found for velocity, attenuation, mean brightness intensity of the B-Scan images and mean Nakagami m parameter (p < 0.01). The four classifiers showed a good performance for healthy versus cataractous lenses (F-measure ≥ 92.68%), while for initial versus severe cataracts the SVM classifier showed the higher performance (90.62%). The results showed that ultrasound techniques can be used for non-invasive cataract hardness characterization and automatic classification. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Support Vector Machine-Based Prediction of Local Tumor Control After Stereotactic Body Radiation Therapy for Early-Stage Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klement, Rainer J., E-mail: rainer_klement@gmx.de; Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital, Schweinfurt; Allgäuer, Michael

    2014-03-01

    Background: Several prognostic factors for local tumor control probability (TCP) after stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) have been described, but no attempts have been undertaken to explore whether a nonlinear combination of potential factors might synergistically improve the prediction of local control. Methods and Materials: We investigated a support vector machine (SVM) for predicting TCP in a cohort of 399 patients treated at 13 German and Austrian institutions. Among 7 potential input features for the SVM we selected those most important on the basis of forward feature selection, thereby evaluating classifier performancemore » by using 10-fold cross-validation and computing the area under the ROC curve (AUC). The final SVM classifier was built by repeating the feature selection 10 times with different splitting of the data for cross-validation and finally choosing only those features that were selected at least 5 out of 10 times. It was compared with a multivariate logistic model that was built by forward feature selection. Results: Local failure occurred in 12% of patients. Biologically effective dose (BED) at the isocenter (BED{sub ISO}) was the strongest predictor of TCP in the logistic model and also the most frequently selected input feature for the SVM. A bivariate logistic function of BED{sub ISO} and the pulmonary function indicator forced expiratory volume in 1 second (FEV1) yielded the best description of the data but resulted in a significantly smaller AUC than the final SVM classifier with the input features BED{sub ISO}, age, baseline Karnofsky index, and FEV1 (0.696 ± 0.040 vs 0.789 ± 0.001, P<.03). The final SVM resulted in sensitivity and specificity of 67.0% ± 0.5% and 78.7% ± 0.3%, respectively. Conclusions: These results confirm that machine learning techniques like SVMs can be successfully applied to predict treatment outcome after SBRT. Improvements over traditional TCP modeling are expected through a nonlinear combination of multiple features, eventually helping in the task of personalized treatment planning.« less

  3. [Discrimination of varieties of borneol using terahertz spectra based on principal component analysis and support vector machine].

    PubMed

    Li, Wu; Hu, Bing; Wang, Ming-wei

    2014-12-01

    In the present paper, the terahertz time-domain spectroscopy (THz-TDS) identification model of borneol based on principal component analysis (PCA) and support vector machine (SVM) was established. As one Chinese common agent, borneol needs a rapid, simple and accurate detection and identification method for its different source and being easily confused in the pharmaceutical and trade links. In order to assure the quality of borneol product and guard the consumer's right, quickly, efficiently and correctly identifying borneol has significant meaning to the production and transaction of borneol. Terahertz time-domain spectroscopy is a new spectroscopy approach to characterize material using terahertz pulse. The absorption terahertz spectra of blumea camphor, borneol camphor and synthetic borneol were measured in the range of 0.2 to 2 THz with the transmission THz-TDS. The PCA scores of 2D plots (PC1 X PC2) and 3D plots (PC1 X PC2 X PC3) of three kinds of borneol samples were obtained through PCA analysis, and both of them have good clustering effect on the 3 different kinds of borneol. The value matrix of the first 10 principal components (PCs) was used to replace the original spectrum data, and the 60 samples of the three kinds of borneol were trained and then the unknown 60 samples were identified. Four kinds of support vector machine model of different kernel functions were set up in this way. Results show that the accuracy of identification and classification of SVM RBF kernel function for three kinds of borneol is 100%, and we selected the SVM with the radial basis kernel function to establish the borneol identification model, in addition, in the noisy case, the classification accuracy rates of four SVM kernel function are above 85%, and this indicates that SVM has strong generalization ability. This study shows that PCA with SVM method of borneol terahertz spectroscopy has good classification and identification effects, and provides a new method for species identification of borneol in Chinese medicine.

  4. Support vector machine-based prediction of local tumor control after stereotactic body radiation therapy for early-stage non-small cell lung cancer.

    PubMed

    Klement, Rainer J; Allgäuer, Michael; Appold, Steffen; Dieckmann, Karin; Ernst, Iris; Ganswindt, Ute; Holy, Richard; Nestle, Ursula; Nevinny-Stickel, Meinhard; Semrau, Sabine; Sterzing, Florian; Wittig, Andrea; Andratschke, Nicolaus; Guckenberger, Matthias

    2014-03-01

    Several prognostic factors for local tumor control probability (TCP) after stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) have been described, but no attempts have been undertaken to explore whether a nonlinear combination of potential factors might synergistically improve the prediction of local control. We investigated a support vector machine (SVM) for predicting TCP in a cohort of 399 patients treated at 13 German and Austrian institutions. Among 7 potential input features for the SVM we selected those most important on the basis of forward feature selection, thereby evaluating classifier performance by using 10-fold cross-validation and computing the area under the ROC curve (AUC). The final SVM classifier was built by repeating the feature selection 10 times with different splitting of the data for cross-validation and finally choosing only those features that were selected at least 5 out of 10 times. It was compared with a multivariate logistic model that was built by forward feature selection. Local failure occurred in 12% of patients. Biologically effective dose (BED) at the isocenter (BED(ISO)) was the strongest predictor of TCP in the logistic model and also the most frequently selected input feature for the SVM. A bivariate logistic function of BED(ISO) and the pulmonary function indicator forced expiratory volume in 1 second (FEV1) yielded the best description of the data but resulted in a significantly smaller AUC than the final SVM classifier with the input features BED(ISO), age, baseline Karnofsky index, and FEV1 (0.696 ± 0.040 vs 0.789 ± 0.001, P<.03). The final SVM resulted in sensitivity and specificity of 67.0% ± 0.5% and 78.7% ± 0.3%, respectively. These results confirm that machine learning techniques like SVMs can be successfully applied to predict treatment outcome after SBRT. Improvements over traditional TCP modeling are expected through a nonlinear combination of multiple features, eventually helping in the task of personalized treatment planning. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Progressive Classification Using Support Vector Machines

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri; Kocurek, Michael

    2009-01-01

    An algorithm for progressive classification of data, analogous to progressive rendering of images, makes it possible to compromise between speed and accuracy. This algorithm uses support vector machines (SVMs) to classify data. An SVM is a machine learning algorithm that builds a mathematical model of the desired classification concept by identifying the critical data points, called support vectors. Coarse approximations to the concept require only a few support vectors, while precise, highly accurate models require far more support vectors. Once the model has been constructed, the SVM can be applied to new observations. The cost of classifying a new observation is proportional to the number of support vectors in the model. When computational resources are limited, an SVM of the appropriate complexity can be produced. However, if the constraints are not known when the model is constructed, or if they can change over time, a method for adaptively responding to the current resource constraints is required. This capability is particularly relevant for spacecraft (or any other real-time systems) that perform onboard data analysis. The new algorithm enables the fast, interactive application of an SVM classifier to a new set of data. The classification process achieved by this algorithm is characterized as progressive because a coarse approximation to the true classification is generated rapidly and thereafter iteratively refined. The algorithm uses two SVMs: (1) a fast, approximate one and (2) slow, highly accurate one. New data are initially classified by the fast SVM, producing a baseline approximate classification. For each classified data point, the algorithm calculates a confidence index that indicates the likelihood that it was classified correctly in the first pass. Next, the data points are sorted by their confidence indices and progressively reclassified by the slower, more accurate SVM, starting with the items most likely to be incorrectly classified. The user can halt this reclassification process at any point, thereby obtaining the best possible result for a given amount of computation time. Alternatively, the results can be displayed as they are generated, providing the user with real-time feedback about the current accuracy of classification.

  6. A hybrid approach to select features and classify diseases based on medical data

    NASA Astrophysics Data System (ADS)

    AbdelLatif, Hisham; Luo, Jiawei

    2018-03-01

    Feature selection is popular problem in the classification of diseases in clinical medicine. Here, we developing a hybrid methodology to classify diseases, based on three medical datasets, Arrhythmia, Breast cancer, and Hepatitis datasets. This methodology called k-means ANOVA Support Vector Machine (K-ANOVA-SVM) uses K-means cluster with ANOVA statistical to preprocessing data and selection the significant features, and Support Vector Machines in the classification process. To compare and evaluate the performance, we choice three classification algorithms, decision tree Naïve Bayes, Support Vector Machines and applied the medical datasets direct to these algorithms. Our methodology was a much better classification accuracy is given of 98% in Arrhythmia datasets, 92% in Breast cancer datasets and 88% in Hepatitis datasets, Compare to use the medical data directly with decision tree Naïve Bayes, and Support Vector Machines. Also, the ROC curve and precision with (K-ANOVA-SVM) Achieved best results than other algorithms

  7. Classification of Breast Cancer Resistant Protein (BCRP) Inhibitors and Non-Inhibitors Using Machine Learning Approaches.

    PubMed

    Belekar, Vilas; Lingineni, Karthik; Garg, Prabha

    2015-01-01

    The breast cancer resistant protein (BCRP) is an important transporter and its inhibitors play an important role in cancer treatment by improving the oral bioavailability as well as blood brain barrier (BBB) permeability of anticancer drugs. In this work, a computational model was developed to predict the compounds as BCRP inhibitors or non-inhibitors. Various machine learning approaches like, support vector machine (SVM), k-nearest neighbor (k-NN) and artificial neural network (ANN) were used to develop the models. The Matthews correlation coefficients (MCC) of developed models using ANN, k-NN and SVM are 0.67, 0.71 and 0.77, and prediction accuracies are 85.2%, 88.3% and 90.8% respectively. The developed models were tested with a test set of 99 compounds and further validated with external set of 98 compounds. Distribution plot analysis and various machine learning models were also developed based on druglikeness descriptors. Applicability domain is used to check the prediction reliability of the new molecules.

  8. Stable Isotope Ratio and Elemental Profile Combined with Support Vector Machine for Provenance Discrimination of Oolong Tea (Wuyi-Rock Tea)

    PubMed Central

    Lou, Yun-xiao; Fu, Xian-shu; Yu, Xiao-ping; Zhang, Ya-fen

    2017-01-01

    This paper focused on an effective method to discriminate the geographical origin of Wuyi-Rock tea by the stable isotope ratio (SIR) and metallic element profiling (MEP) combined with support vector machine (SVM) analysis. Wuyi-Rock tea (n = 99) collected from nine producing areas and non-Wuyi-Rock tea (n = 33) from eleven nonproducing areas were analysed for SIR and MEP by established methods. The SVM model based on coupled data produced the best prediction accuracy (0.9773). This prediction shows that instrumental methods combined with a classification model can provide an effective and stable tool for provenance discrimination. Moreover, every feature variable in stable isotope and metallic element data was ranked by its contribution to the model. The results show that δ2H, δ18O, Cs, Cu, Ca, and Rb contents are significant indications for provenance discrimination and not all of the metallic elements improve the prediction accuracy of the SVM model. PMID:28473941

  9. Support vector machine firefly algorithm based optimization of lens system.

    PubMed

    Shamshirband, Shahaboddin; Petković, Dalibor; Pavlović, Nenad T; Ch, Sudheer; Altameem, Torki A; Gani, Abdullah

    2015-01-01

    Lens system design is an important factor in image quality. The main aspect of the lens system design methodology is the optimization procedure. Since optimization is a complex, nonlinear task, soft computing optimization algorithms can be used. There are many tools that can be employed to measure optical performance, but the spot diagram is the most useful. The spot diagram gives an indication of the image of a point object. In this paper, the spot size radius is considered an optimization criterion. Intelligent soft computing scheme support vector machines (SVMs) coupled with the firefly algorithm (FFA) are implemented. The performance of the proposed estimators is confirmed with the simulation results. The result of the proposed SVM-FFA model has been compared with support vector regression (SVR), artificial neural networks, and generic programming methods. The results show that the SVM-FFA model performs more accurately than the other methodologies. Therefore, SVM-FFA can be used as an efficient soft computing technique in the optimization of lens system designs.

  10. Analysis of an Environmental Exposure Health Questionnaire in a Metropolitan Minority Population Utilizing Logistic Regression and Support Vector Machines

    PubMed Central

    Chen, Chau-Kuang; Bruce, Michelle; Tyler, Lauren; Brown, Claudine; Garrett, Angelica; Goggins, Susan; Lewis-Polite, Brandy; Weriwoh, Mirabel L; Juarez, Paul D.; Hood, Darryl B.; Skelton, Tyler

    2014-01-01

    The goal of this study was to analyze a 54-item instrument for assessment of perception of exposure to environmental contaminants within the context of the built environment, or exposome. This exposome was defined in five domains to include 1) home and hobby, 2) school, 3) community, 4) occupation, and 5) exposure history. Interviews were conducted with child-bearing-age minority women at Metro Nashville General Hospital at Meharry Medical College. Data were analyzed utilizing DTReg software for Support Vector Machine (SVM) modeling followed by an SPSS package for a logistic regression model. The target (outcome) variable of interest was respondent's residence by ZIP code. The results demonstrate that the rank order of important variables with respect to SVM modeling versus traditional logistic regression models is almost identical. This is the first study documenting that SVM analysis has discriminate power for determination of higher-ordered spatial relationships on an environmental exposure history questionnaire. PMID:23395953

  11. Age group classification and gender detection based on forced expiratory spirometry.

    PubMed

    Cosgun, Sema; Ozbek, I Yucel

    2015-08-01

    This paper investigates the utility of forced expiratory spirometry (FES) test with efficient machine learning algorithms for the purpose of gender detection and age group classification. The proposed method has three main stages: feature extraction, training of the models and detection. In the first stage, some features are extracted from volume-time curve and expiratory flow-volume loop obtained from FES test. In the second stage, the probabilistic models for each gender and age group are constructed by training Gaussian mixture models (GMMs) and Support vector machine (SVM) algorithm. In the final stage, the gender (or age group) of test subject is estimated by using the trained GMM (or SVM) model. Experiments have been evaluated on a large database from 4571 subjects. The experimental results show that average correct classification rate performance of both GMM and SVM methods based on the FES test is more than 99.3 % and 96.8 % for gender and age group classification, respectively.

  12. The formation method of the feature space for the identification of fatigued bills

    NASA Astrophysics Data System (ADS)

    Kang, Dongshik; Oshiro, Ayumu; Ozawa, Kenji; Mitsui, Ikugo

    2014-10-01

    Fatigued bills make a trouble such as the paper jam in a bill handling machine. In the discrimination of fatigued bills using an acoustic signal, the variation of an observed bill sound is considered to be one of causes in misclassification. Therefore a technique has demanded in order to make the classification of fatigued bills more efficient. In this paper, we proposed the algorithm that extracted feature quantity of bill sound from acoustic signal using the frequency difference, and carried out discrimination experiment of fatigued bill money by Support Vector Machine(SVM). The feature quantity of frequency difference can represent the frequency components of an acoustic signal is varied by the fatigued degree of bill money. The generalization performance of SVM does not depend on the size of dimensions of the feature space, even in a high dimensional feature space such as bill-acoustic signals. Furthermore, SVM can induce an optimal classifier which considers the combination of features by the virtue of polynomial kernel functions.

  13. Analysis of an environmental exposure health questionnaire in a metropolitan minority population utilizing logistic regression and Support Vector Machines.

    PubMed

    Chen, Chau-Kuang; Bruce, Michelle; Tyler, Lauren; Brown, Claudine; Garrett, Angelica; Goggins, Susan; Lewis-Polite, Brandy; Weriwoh, Mirabel L; Juarez, Paul D; Hood, Darryl B; Skelton, Tyler

    2013-02-01

    The goal of this study was to analyze a 54-item instrument for assessment of perception of exposure to environmental contaminants within the context of the built environment, or exposome. This exposome was defined in five domains to include 1) home and hobby, 2) school, 3) community, 4) occupation, and 5) exposure history. Interviews were conducted with child-bearing-age minority women at Metro Nashville General Hospital at Meharry Medical College. Data were analyzed utilizing DTReg software for Support Vector Machine (SVM) modeling followed by an SPSS package for a logistic regression model. The target (outcome) variable of interest was respondent's residence by ZIP code. The results demonstrate that the rank order of important variables with respect to SVM modeling versus traditional logistic regression models is almost identical. This is the first study documenting that SVM analysis has discriminate power for determination of higher-ordered spatial relationships on an environmental exposure history questionnaire.

  14. Performance evaluation for epileptic electroencephalogram (EEG) detection by using Neyman-Pearson criteria and a support vector machine

    NASA Astrophysics Data System (ADS)

    Wang, Chun-mei; Zhang, Chong-ming; Zou, Jun-zhong; Zhang, Jian

    2012-02-01

    The diagnosis of several neurological disorders is based on the detection of typical pathological patterns in electroencephalograms (EEGs). This is a time-consuming task requiring significant training and experience. A lot of effort has been devoted to developing automatic detection techniques which might help not only in accelerating this process but also in avoiding the disagreement among readers of the same record. In this work, Neyman-Pearson criteria and a support vector machine (SVM) are applied for detecting an epileptic EEG. Decision making is performed in two stages: feature extraction by computing the wavelet coefficients and the approximate entropy (ApEn) and detection by using Neyman-Pearson criteria and an SVM. Then the detection performance of the proposed method is evaluated. Simulation results demonstrate that the wavelet coefficients and the ApEn are features that represent the EEG signals well. By comparison with Neyman-Pearson criteria, an SVM applied on these features achieved higher detection accuracies.

  15. The Automation System Censor Speech for the Indonesian Rude Swear Words Based on Support Vector Machine and Pitch Analysis

    NASA Astrophysics Data System (ADS)

    Endah, S. N.; Nugraheni, D. M. K.; Adhy, S.; Sutikno

    2017-04-01

    According to Law No. 32 of 2002 and the Indonesian Broadcasting Commission Regulation No. 02/P/KPI/12/2009 & No. 03/P/KPI/12/2009, stated that broadcast programs should not scold with harsh words, not harass, insult or demean minorities and marginalized groups. However, there are no suitable tools to censor those words automatically. Therefore, researches to develop a system of intelligent software to censor the words automatically are needed. To conduct censor, the system must be able to recognize the words in question. This research proposes the classification of speech divide into two classes using Support Vector Machine (SVM), first class is set of rude words and the second class is set of properly words. The speech pitch values as an input in SVM, it used for the development of the system for the Indonesian rude swear word. The results of the experiment show that SVM is good for this system.

  16. Activity Recognition in Egocentric video using SVM, kNN and Combined SVMkNN Classifiers

    NASA Astrophysics Data System (ADS)

    Sanal Kumar, K. P.; Bhavani, R., Dr.

    2017-08-01

    Egocentric vision is a unique perspective in computer vision which is human centric. The recognition of egocentric actions is a challenging task which helps in assisting elderly people, disabled patients and so on. In this work, life logging activity videos are taken as input. There are 2 categories, first one is the top level and second one is second level. Here, the recognition is done using the features like Histogram of Oriented Gradients (HOG), Motion Boundary Histogram (MBH) and Trajectory. The features are fused together and it acts as a single feature. The extracted features are reduced using Principal Component Analysis (PCA). The features that are reduced are provided as input to the classifiers like Support Vector Machine (SVM), k nearest neighbor (kNN) and combined Support Vector Machine (SVM) and k Nearest Neighbor (kNN) (combined SVMkNN). These classifiers are evaluated and the combined SVMkNN provided better results than other classifiers in the literature.

  17. Estimation of in-situ bioremediation system cost using a hybrid Extreme Learning Machine (ELM)-particle swarm optimization approach

    NASA Astrophysics Data System (ADS)

    Yadav, Basant; Ch, Sudheer; Mathur, Shashi; Adamowski, Jan

    2016-12-01

    In-situ bioremediation is the most common groundwater remediation procedure used for treating organically contaminated sites. A simulation-optimization approach, which incorporates a simulation model for groundwaterflow and transport processes within an optimization program, could help engineers in designing a remediation system that best satisfies management objectives as well as regulatory constraints. In-situ bioremediation is a highly complex, non-linear process and the modelling of such a complex system requires significant computational exertion. Soft computing techniques have a flexible mathematical structure which can generalize complex nonlinear processes. In in-situ bioremediation management, a physically-based model is used for the simulation and the simulated data is utilized by the optimization model to optimize the remediation cost. The recalling of simulator to satisfy the constraints is an extremely tedious and time consuming process and thus there is need for a simulator which can reduce the computational burden. This study presents a simulation-optimization approach to achieve an accurate and cost effective in-situ bioremediation system design for groundwater contaminated with BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes) compounds. In this study, the Extreme Learning Machine (ELM) is used as a proxy simulator to replace BIOPLUME III for the simulation. The selection of ELM is done by a comparative analysis with Artificial Neural Network (ANN) and Support Vector Machine (SVM) as they were successfully used in previous studies of in-situ bioremediation system design. Further, a single-objective optimization problem is solved by a coupled Extreme Learning Machine (ELM)-Particle Swarm Optimization (PSO) technique to achieve the minimum cost for the in-situ bioremediation system design. The results indicate that ELM is a faster and more accurate proxy simulator than ANN and SVM. The total cost obtained by the ELM-PSO approach is held to a minimum while successfully satisfying all the regulatory constraints of the contaminated site.

  18. Support vector machine based classification of fast Fourier transform spectroscopy of proteins

    NASA Astrophysics Data System (ADS)

    Lazarevic, Aleksandar; Pokrajac, Dragoljub; Marcano, Aristides; Melikechi, Noureddine

    2009-02-01

    Fast Fourier transform spectroscopy has proved to be a powerful method for study of the secondary structure of proteins since peak positions and their relative amplitude are affected by the number of hydrogen bridges that sustain this secondary structure. However, to our best knowledge, the method has not been used yet for identification of proteins within a complex matrix like a blood sample. The principal reason is the apparent similarity of protein infrared spectra with actual differences usually masked by the solvent contribution and other interactions. In this paper, we propose a novel machine learning based method that uses protein spectra for classification and identification of such proteins within a given sample. The proposed method uses principal component analysis (PCA) to identify most important linear combinations of original spectral components and then employs support vector machine (SVM) classification model applied on such identified combinations to categorize proteins into one of given groups. Our experiments have been performed on the set of four different proteins, namely: Bovine Serum Albumin, Leptin, Insulin-like Growth Factor 2 and Osteopontin. Our proposed method of applying principal component analysis along with support vector machines exhibits excellent classification accuracy when identifying proteins using their infrared spectra.

  19. Support vector machine for day ahead electricity price forecasting

    NASA Astrophysics Data System (ADS)

    Razak, Intan Azmira binti Wan Abdul; Abidin, Izham bin Zainal; Siah, Yap Keem; Rahman, Titik Khawa binti Abdul; Lada, M. Y.; Ramani, Anis Niza binti; Nasir, M. N. M.; Ahmad, Arfah binti

    2015-05-01

    Electricity price forecasting has become an important part of power system operation and planning. In a pool- based electric energy market, producers submit selling bids consisting in energy blocks and their corresponding minimum selling prices to the market operator. Meanwhile, consumers submit buying bids consisting in energy blocks and their corresponding maximum buying prices to the market operator. Hence, both producers and consumers use day ahead price forecasts to derive their respective bidding strategies to the electricity market yet reduce the cost of electricity. However, forecasting electricity prices is a complex task because price series is a non-stationary and highly volatile series. Many factors cause for price spikes such as volatility in load and fuel price as well as power import to and export from outside the market through long term contract. This paper introduces an approach of machine learning algorithm for day ahead electricity price forecasting with Least Square Support Vector Machine (LS-SVM). Previous day data of Hourly Ontario Electricity Price (HOEP), generation's price and demand from Ontario power market are used as the inputs for training data. The simulation is held using LSSVMlab in Matlab with the training and testing data of 2004. SVM that widely used for classification and regression has great generalization ability with structured risk minimization principle rather than empirical risk minimization. Moreover, same parameter settings in trained SVM give same results that absolutely reduce simulation process compared to other techniques such as neural network and time series. The mean absolute percentage error (MAPE) for the proposed model shows that SVM performs well compared to neural network.

  20. Support vector machine-based facial-expression recognition method combining shape and appearance

    NASA Astrophysics Data System (ADS)

    Han, Eun Jung; Kang, Byung Jun; Park, Kang Ryoung; Lee, Sangyoun

    2010-11-01

    Facial expression recognition can be widely used for various applications, such as emotion-based human-machine interaction, intelligent robot interfaces, face recognition robust to expression variation, etc. Previous studies have been classified as either shape- or appearance-based recognition. The shape-based method has the disadvantage that the individual variance of facial feature points exists irrespective of similar expressions, which can cause a reduction of the recognition accuracy. The appearance-based method has a limitation in that the textural information of the face is very sensitive to variations in illumination. To overcome these problems, a new facial-expression recognition method is proposed, which combines both shape and appearance information, based on the support vector machine (SVM). This research is novel in the following three ways as compared to previous works. First, the facial feature points are automatically detected by using an active appearance model. From these, the shape-based recognition is performed by using the ratios between the facial feature points based on the facial-action coding system. Second, the SVM, which is trained to recognize the same and different expression classes, is proposed to combine two matching scores obtained from the shape- and appearance-based recognitions. Finally, a single SVM is trained to discriminate four different expressions, such as neutral, a smile, anger, and a scream. By determining the expression of the input facial image whose SVM output is at a minimum, the accuracy of the expression recognition is much enhanced. The experimental results showed that the recognition accuracy of the proposed method was better than previous researches and other fusion methods.

  1. An evaluation of open set recognition for FLIR images

    NASA Astrophysics Data System (ADS)

    Scherreik, Matthew; Rigling, Brian

    2015-05-01

    Typical supervised classification algorithms label inputs according to what was learned in a training phase. Thus, test inputs that were not seen in training are always given incorrect labels. Open set recognition algorithms address this issue by accounting for inputs that are not present in training and providing the classifier with an option to reject" unknown samples. A number of such techniques have been developed in the literature, many of which are based on support vector machines (SVMs). One approach, the 1-vs-set machine, constructs a slab" in feature space using the SVM hyperplane. Inputs falling on one side of the slab or within the slab belong to a training class, while inputs falling on the far side of the slab are rejected. We note that rejection of unknown inputs can be achieved by thresholding class posterior probabilities. Another recently developed approach, the Probabilistic Open Set SVM (POS-SVM), empirically determines good probability thresholds. We apply the 1-vs-set machine, POS-SVM, and closed set SVMs to FLIR images taken from the Comanche SIG dataset. Vehicles in the dataset are divided into three general classes: wheeled, armored personnel carrier (APC), and tank. For each class, a coarse pose estimate (front, rear, left, right) is taken. In a closed set sense, we analyze these algorithms for prediction of vehicle class and pose. To test open set performance, one or more vehicle classes are held out from training. By considering closed and open set performance separately, we may closely analyze both inter-class discrimination and threshold effectiveness.

  2. Prediction of human breast and colon cancers from imbalanced data using nearest neighbor and support vector machines.

    PubMed

    Majid, Abdul; Ali, Safdar; Iqbal, Mubashar; Kausar, Nabeela

    2014-03-01

    This study proposes a novel prediction approach for human breast and colon cancers using different feature spaces. The proposed scheme consists of two stages: the preprocessor and the predictor. In the preprocessor stage, the mega-trend diffusion (MTD) technique is employed to increase the samples of the minority class, thereby balancing the dataset. In the predictor stage, machine-learning approaches of K-nearest neighbor (KNN) and support vector machines (SVM) are used to develop hybrid MTD-SVM and MTD-KNN prediction models. MTD-SVM model has provided the best values of accuracy, G-mean and Matthew's correlation coefficient of 96.71%, 96.70% and 71.98% for cancer/non-cancer dataset, breast/non-breast cancer dataset and colon/non-colon cancer dataset, respectively. We found that hybrid MTD-SVM is the best with respect to prediction performance and computational cost. MTD-KNN model has achieved moderately better prediction as compared to hybrid MTD-NB (Naïve Bayes) but at the expense of higher computing cost. MTD-KNN model is faster than MTD-RF (random forest) but its prediction is not better than MTD-RF. To the best of our knowledge, the reported results are the best results, so far, for these datasets. The proposed scheme indicates that the developed models can be used as a tool for the prediction of cancer. This scheme may be useful for study of any sequential information such as protein sequence or any nucleic acid sequence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. An Auto-flag Method of Radio Visibility Data Based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Dai, Hui-mei; Mei, Ying; Wang, Wei; Deng, Hui; Wang, Feng

    2017-01-01

    The Mingantu Ultrawide Spectral Radioheliograph (MUSER) has entered a test observation stage. After the construction of the data acquisition and storage system, it is urgent to automatically flag and eliminate the abnormal visibility data so as to improve the imaging quality. In this paper, according to the observational records, we create a credible visibility set, and further obtain the corresponding flag model of visibility data by using the support vector machine (SVM) technique. The results show that the SVM is a robust approach to flag the MUSER visibility data, and can attain an accuracy of about 86%. Meanwhile, this method will not be affected by solar activities, such as flare eruptions.

  4. Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure☆

    PubMed Central

    Frick, Andreas; Gingnell, Malin; Marquand, Andre F.; Howner, Katarina; Fischer, Håkan; Kristiansson, Marianne; Williams, Steven C.R.; Fredrikson, Mats; Furmark, Tomas

    2014-01-01

    Functional neuroimaging of social anxiety disorder (SAD) support altered neural activation to threat-provoking stimuli focally in the fear network, while structural differences are distributed over the temporal and frontal cortices as well as limbic structures. Previous neuroimaging studies have investigated the brain at the voxel level using mass-univariate methods which do not enable detection of more complex patterns of activity and structural alterations that may separate SAD from healthy individuals. Support vector machine (SVM) is a supervised machine learning method that capitalizes on brain activation and structural patterns to classify individuals. The aim of this study was to investigate if it is possible to discriminate SAD patients (n = 14) from healthy controls (n = 12) using SVM based on (1) functional magnetic resonance imaging during fearful face processing and (2) regional gray matter volume. Whole brain and region of interest (fear network) SVM analyses were performed for both modalities. For functional scans, significant classifications were obtained both at whole brain level and when restricting the analysis to the fear network while gray matter SVM analyses correctly classified participants only when using the whole brain search volume. These results support that SAD is characterized by aberrant neural activation to affective stimuli in the fear network, while disorder-related alterations in regional gray matter volume are more diffusely distributed over the whole brain. SVM may thus be useful for identifying imaging biomarkers of SAD. PMID:24239689

  5. The efficacy of support vector machines (SVM) in robust determination of earthquake early warning magnitudes in central Japan

    NASA Astrophysics Data System (ADS)

    Reddy, Ramakrushna; Nair, Rajesh R.

    2013-10-01

    This work deals with a methodology applied to seismic early warning systems which are designed to provide real-time estimation of the magnitude of an event. We will reappraise the work of Simons et al. (2006), who on the basis of wavelet approach predicted a magnitude error of ±1. We will verify and improve upon the methodology of Simons et al. (2006) by applying an SVM statistical learning machine on the time-scale wavelet decomposition methods. We used the data of 108 events in central Japan with magnitude ranging from 3 to 7.4 recorded at KiK-net network stations, for a source-receiver distance of up to 150 km during the period 1998-2011. We applied a wavelet transform on the seismogram data and calculating scale-dependent threshold wavelet coefficients. These coefficients were then classified into low magnitude and high magnitude events by constructing a maximum margin hyperplane between the two classes, which forms the essence of SVMs. Further, the classified events from both the classes were picked up and linear regressions were plotted to determine the relationship between wavelet coefficient magnitude and earthquake magnitude, which in turn helped us to estimate the earthquake magnitude of an event given its threshold wavelet coefficient. At wavelet scale number 7, we predicted the earthquake magnitude of an event within 2.7 seconds. This means that a magnitude determination is available within 2.7 s after the initial onset of the P-wave. These results shed light on the application of SVM as a way to choose the optimal regression function to estimate the magnitude from a few seconds of an incoming seismogram. This would improve the approaches from Simons et al. (2006) which use an average of the two regression functions to estimate the magnitude.

  6. Discrimination of stroke-related mild cognitive impairment and vascular dementia using EEG signal analysis.

    PubMed

    Al-Qazzaz, Noor Kamal; Ali, Sawal Hamid Bin Mohd; Ahmad, Siti Anom; Islam, Mohd Shabiul; Escudero, Javier

    2018-01-01

    Stroke survivors are more prone to developing cognitive impairment and dementia. Dementia detection is a challenge for supporting personalized healthcare. This study analyzes the electroencephalogram (EEG) background activity of 5 vascular dementia (VaD) patients, 15 stroke-related patients with mild cognitive impairment (MCI), and 15 control healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the discrimination of VaD, stroke-related MCI patients, and control subjects using fuzzy neighborhood preserving analysis with QR-decomposition (FNPAQR); second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. Nineteen channels were recorded and analyzed using the independent component analysis and wavelet analysis (ICA-WT) denoising technique. Using ANOVA, linear spectral power including relative powers (RP) and power ratio were calculated to test whether the EEG dominant frequencies were slowed down in VaD and stroke-related MCI patients. Non-linear features including permutation entropy (PerEn) and fractal dimension (FD) were used to test the degree of irregularity and complexity, which was significantly lower in patients with VaD and stroke-related MCI than that in control subjects (ANOVA; p ˂ 0.05). This study is the first to use fuzzy neighborhood preserving analysis with QR-decomposition (FNPAQR) dimensionality reduction technique with EEG background activity of dementia patients. The impairment of post-stroke patients was detected using support vector machine (SVM) and k-nearest neighbors (kNN) classifiers. A comparative study has been performed to check the effectiveness of using FNPAQR dimensionality reduction technique with the SVM and kNN classifiers. FNPAQR with SVM and kNN obtained 91.48 and 89.63% accuracy, respectively, whereas without using the FNPAQR exhibited 70 and 67.78% accuracy for SVM and kNN, respectively, in classifying VaD, stroke-related MCI, and control patients, respectively. Therefore, EEG could be a reliable index for inspecting concise markers that are sensitive to VaD and stroke-related MCI patients compared to control healthy subjects.

  7. Analysing the accuracy of machine learning techniques to develop an integrated influent time series model: case study of a sewage treatment plant, Malaysia.

    PubMed

    Ansari, Mozafar; Othman, Faridah; Abunama, Taher; El-Shafie, Ahmed

    2018-04-01

    The function of a sewage treatment plant is to treat the sewage to acceptable standards before being discharged into the receiving waters. To design and operate such plants, it is necessary to measure and predict the influent flow rate. In this research, the influent flow rate of a sewage treatment plant (STP) was modelled and predicted by autoregressive integrated moving average (ARIMA), nonlinear autoregressive network (NAR) and support vector machine (SVM) regression time series algorithms. To evaluate the models' accuracy, the root mean square error (RMSE) and coefficient of determination (R 2 ) were calculated as initial assessment measures, while relative error (RE), peak flow criterion (PFC) and low flow criterion (LFC) were calculated as final evaluation measures to demonstrate the detailed accuracy of the selected models. An integrated model was developed based on the individual models' prediction ability for low, average and peak flow. An initial assessment of the results showed that the ARIMA model was the least accurate and the NAR model was the most accurate. The RE results also prove that the SVM model's frequency of errors above 10% or below - 10% was greater than the NAR model's. The influent was also forecasted up to 44 weeks ahead by both models. The graphical results indicate that the NAR model made better predictions than the SVM model. The final evaluation of NAR and SVM demonstrated that SVM made better predictions at peak flow and NAR fit well for low and average inflow ranges. The integrated model developed includes the NAR model for low and average influent and the SVM model for peak inflow.

  8. Optimal classification for the diagnosis of duchenne muscular dystrophy images using support vector machines.

    PubMed

    Zhang, Ming-Huan; Ma, Jun-Shan; Shen, Ying; Chen, Ying

    2016-09-01

    This study aimed to investigate the optimal support vector machines (SVM)-based classifier of duchenne muscular dystrophy (DMD) magnetic resonance imaging (MRI) images. T1-weighted (T1W) and T2-weighted (T2W) images of the 15 boys with DMD and 15 normal controls were obtained. Textural features of the images were extracted and wavelet decomposed, and then, principal features were selected. Scale transform was then performed for MRI images. Afterward, SVM-based classifiers of MRI images were analyzed based on the radical basis function and decomposition levels. The cost (C) parameter and kernel parameter [Formula: see text] were used for classification. Then, the optimal SVM-based classifier, expressed as [Formula: see text]), was identified by performance evaluation (sensitivity, specificity and accuracy). Eight of 12 textural features were selected as principal features (eigenvalues [Formula: see text]). The 16 SVM-based classifiers were obtained using combination of (C, [Formula: see text]), and those with lower C and [Formula: see text] values showed higher performances, especially classifier of [Formula: see text]). The SVM-based classifiers of T1W images showed higher performance than T1W images at the same decomposition level. The T1W images in classifier of [Formula: see text]) at level 2 decomposition showed the highest performance of all, and its overall correct sensitivity, specificity, and accuracy reached 96.9, 97.3, and 97.1 %, respectively. The T1W images in SVM-based classifier [Formula: see text] at level 2 decomposition showed the highest performance of all, demonstrating that it was the optimal classification for the diagnosis of DMD.

  9. Automatic Detection of Lung and Liver Lesions in 3-D Positron Emission Tomography Images: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Lartizien, Carole; Marache-Francisco, Simon; Prost, Rémy

    2012-02-01

    Positron emission tomography (PET) using fluorine-18 deoxyglucose (18F-FDG) has become an increasingly recommended tool in clinical whole-body oncology imaging for the detection, diagnosis, and follow-up of many cancers. One way to improve the diagnostic utility of PET oncology imaging is to assist physicians facing difficult cases of residual or low-contrast lesions. This study aimed at evaluating different schemes of computer-aided detection (CADe) systems for the guided detection and localization of small and low-contrast lesions in PET. These systems are based on two supervised classifiers, linear discriminant analysis (LDA) and the nonlinear support vector machine (SVM). The image feature sets that serve as input data consisted of the coefficients of an undecimated wavelet transform. An optimization study was conducted to select the best combination of parameters for both the SVM and the LDA. Different false-positive reduction (FPR) methods were evaluated to reduce the number of false-positive detections per image (FPI). This includes the removal of small detected clusters and the combination of the LDA and SVM detection maps. The different CAD schemes were trained and evaluated based on a simulated whole-body PET image database containing 250 abnormal cases with 1230 lesions and 250 normal cases with no lesion. The detection performance was measured on a separate series of 25 testing images with 131 lesions. The combination of the LDA and SVM score maps was shown to produce very encouraging detection performance for both the lung lesions, with 91% sensitivity and 18 FPIs, and the liver lesions, with 94% sensitivity and 10 FPIs. Comparison with human performance indicated that the different CAD schemes significantly outperformed human detection sensitivities, especially regarding the low-contrast lesions.

  10. Prediction of size-fractionated airborne particle-bound metals using MLR, BP-ANN and SVM analyses.

    PubMed

    Leng, Xiang'zi; Wang, Jinhua; Ji, Haibo; Wang, Qin'geng; Li, Huiming; Qian, Xin; Li, Fengying; Yang, Meng

    2017-08-01

    Size-fractionated heavy metal concentrations were observed in airborne particulate matter (PM) samples collected from 2014 to 2015 (spanning all four seasons) from suburban (Xianlin) and industrial (Pukou) areas in Nanjing, a megacity of southeast China. Rapid prediction models of size-fractionated metals were established based on multiple linear regression (MLR), back propagation artificial neural network (BP-ANN) and support vector machine (SVM) by using meteorological factors and PM concentrations as input parameters. About 38% and 77% of PM 2.5 concentrations in Xianlin and Pukou, respectively, were beyond the Chinese National Ambient Air Quality Standard limit of 75 μg/m 3 . Nearly all elements had higher concentrations in industrial areas, and in winter among the four seasons. Anthropogenic elements such as Pb, Zn, Cd and Cu showed larger percentages in the fine fraction (ø≤2.5 μm), whereas the crustal elements including Al, Ba, Fe, Ni, Sr and Ti showed larger percentages in the coarse fraction (ø > 2.5 μm). SVM showed a higher training correlation coefficient (R), and lower mean absolute error (MAE) as well as lower root mean square error (RMSE), than MLR and BP-ANN for most metals. All the three methods showed better prediction results for Ni, Al, V, Cd and As, whereas relatively poor for Cr and Fe. The daily airborne metal concentrations in 2015 were then predicted by the fully trained SVM models and the results showed the heaviest pollution of airborne heavy metals occurred in December and January, whereas the lightest pollution occurred in June and July. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Lidar detection of underwater objects using a neuro-SVM-based architecture.

    PubMed

    Mitra, Vikramjit; Wang, Chia-Jiu; Banerjee, Satarupa

    2006-05-01

    This paper presents a neural network architecture using a support vector machine (SVM) as an inference engine (IE) for classification of light detection and ranging (Lidar) data. Lidar data gives a sequence of laser backscatter intensities obtained from laser shots generated from an airborne object at various altitudes above the earth surface. Lidar data is pre-filtered to remove high frequency noise. As the Lidar shots are taken from above the earth surface, it has some air backscatter information, which is of no importance for detecting underwater objects. Because of these, the air backscatter information is eliminated from the data and a segment of this data is subsequently selected to extract features for classification. This is then encoded using linear predictive coding (LPC) and polynomial approximation. The coefficients thus generated are used as inputs to the two branches of a parallel neural architecture. The decisions obtained from the two branches are vector multiplied and the result is fed to an SVM-based IE that presents the final inference. Two parallel neural architectures using multilayer perception (MLP) and hybrid radial basis function (HRBF) are considered in this paper. The proposed structure fits the Lidar data classification task well due to the inherent classification efficiency of neural networks and accurate decision-making capability of SVM. A Bayesian classifier and a quadratic classifier were considered for the Lidar data classification task but they failed to offer high prediction accuracy. Furthermore, a single-layered artificial neural network (ANN) classifier was also considered and it failed to offer good accuracy. The parallel ANN architecture proposed in this paper offers high prediction accuracy (98.9%) and is found to be the most suitable architecture for the proposed task of Lidar data classification.

  12. Identifying saltcedar with hyperspectral data and support vector machines

    USDA-ARS?s Scientific Manuscript database

    Saltcedar (Tamarix spp.) are a group of dense phreatophytic shrubs and trees that are invasive to riparian areas throughout the United States. This study determined the feasibility of using hyperspectral data and a support vector machine (SVM) classifier to discriminate saltcedar from other cover t...

  13. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes.

    PubMed

    Srinivasulu, Yerukala Sathipati; Wang, Jyun-Rong; Hsu, Kai-Ti; Tsai, Ming-Ju; Charoenkwan, Phasit; Huang, Wen-Lin; Huang, Hui-Ling; Ho, Shinn-Ying

    2015-01-01

    Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein complexes. The characterization analysis revealed that the average numbers of beta turns and hydrogen bonds at protein-protein interfaces in high binding affinity complexes are more than those in low binding affinity complexes.

  14. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes

    PubMed Central

    2015-01-01

    Background Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. Results This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. Conclusions The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein complexes. The characterization analysis revealed that the average numbers of beta turns and hydrogen bonds at protein-protein interfaces in high binding affinity complexes are more than those in low binding affinity complexes. PMID:26681483

  15. Derivation and validation of different machine-learning models in mortality prediction of trauma in motorcycle riders: a cross-sectional retrospective study in southern Taiwan

    PubMed Central

    Kuo, Pao-Jen; Wu, Shao-Chun; Chien, Peng-Chen; Rau, Cheng-Shyuan; Chen, Yi-Chun; Hsieh, Hsiao-Yun; Hsieh, Ching-Hua

    2018-01-01

    Objectives This study aimed to build and test the models of machine learning (ML) to predict the mortality of hospitalised motorcycle riders. Setting The study was conducted in a level-1 trauma centre in southern Taiwan. Participants Motorcycle riders who were hospitalised between January 2009 and December 2015 were classified into a training set (n=6306) and test set (n=946). Using the demographic information, injury characteristics and laboratory data of patients, logistic regression (LR), support vector machine (SVM) and decision tree (DT) analyses were performed to determine the mortality of individual motorcycle riders, under different conditions, using all samples or reduced samples, as well as all variables or selected features in the algorithm. Primary and secondary outcome measures The predictive performance of the model was evaluated based on accuracy, sensitivity, specificity and geometric mean, and an analysis of the area under the receiver operating characteristic curves of the two different models was carried out. Results In the training set, both LR and SVM had a significantly higher area under the receiver operating characteristic curve (AUC) than DT. No significant difference was observed in the AUC of LR and SVM, regardless of whether all samples or reduced samples and whether all variables or selected features were used. In the test set, the performance of the SVM model for all samples with selected features was better than that of all other models, with an accuracy of 98.73%, sensitivity of 86.96%, specificity of 99.02%, geometric mean of 92.79% and AUC of 0.9517, in mortality prediction. Conclusion ML can provide a feasible level of accuracy in predicting the mortality of motorcycle riders. Integration of the ML model, particularly the SVM algorithm in the trauma system, may help identify high-risk patients and, therefore, guide appropriate interventions by the clinical staff. PMID:29306885

  16. GAPscreener: An automatic tool for screening human genetic association literature in PubMed using the support vector machine technique

    PubMed Central

    Yu, Wei; Clyne, Melinda; Dolan, Siobhan M; Yesupriya, Ajay; Wulf, Anja; Liu, Tiebin; Khoury, Muin J; Gwinn, Marta

    2008-01-01

    Background Synthesis of data from published human genetic association studies is a critical step in the translation of human genome discoveries into health applications. Although genetic association studies account for a substantial proportion of the abstracts in PubMed, identifying them with standard queries is not always accurate or efficient. Further automating the literature-screening process can reduce the burden of a labor-intensive and time-consuming traditional literature search. The Support Vector Machine (SVM), a well-established machine learning technique, has been successful in classifying text, including biomedical literature. The GAPscreener, a free SVM-based software tool, can be used to assist in screening PubMed abstracts for human genetic association studies. Results The data source for this research was the HuGE Navigator, formerly known as the HuGE Pub Lit database. Weighted SVM feature selection based on a keyword list obtained by the two-way z score method demonstrated the best screening performance, achieving 97.5% recall, 98.3% specificity and 31.9% precision in performance testing. Compared with the traditional screening process based on a complex PubMed query, the SVM tool reduced by about 90% the number of abstracts requiring individual review by the database curator. The tool also ascertained 47 articles that were missed by the traditional literature screening process during the 4-week test period. We examined the literature on genetic associations with preterm birth as an example. Compared with the traditional, manual process, the GAPscreener both reduced effort and improved accuracy. Conclusion GAPscreener is the first free SVM-based application available for screening the human genetic association literature in PubMed with high recall and specificity. The user-friendly graphical user interface makes this a practical, stand-alone application. The software can be downloaded at no charge. PMID:18430222

  17. Modeling the milling tool wear by using an evolutionary SVM-based model from milling runs experimental data

    NASA Astrophysics Data System (ADS)

    Nieto, Paulino José García; García-Gonzalo, Esperanza; Vilán, José Antonio Vilán; Robleda, Abraham Segade

    2015-12-01

    The main aim of this research work is to build a new practical hybrid regression model to predict the milling tool wear in a regular cut as well as entry cut and exit cut of a milling tool. The model was based on Particle Swarm Optimization (PSO) in combination with support vector machines (SVMs). This optimization mechanism involved kernel parameter setting in the SVM training procedure, which significantly influences the regression accuracy. Bearing this in mind, a PSO-SVM-based model, which is based on the statistical learning theory, was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc. To accomplish the objective of this study, the experimental dataset represents experiments from runs on a milling machine under various operating conditions. In this way, data sampled by three different types of sensors (acoustic emission sensor, vibration sensor and current sensor) were acquired at several positions. A second aim is to determine the factors with the greatest bearing on the milling tool flank wear with a view to proposing milling machine's improvements. Firstly, this hybrid PSO-SVM-based regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the flank wear (output variable) and input variables (time, depth of cut, feed, etc.). Indeed, regression with optimal hyperparameters was performed and a determination coefficient of 0.95 was obtained. The agreement of this model with experimental data confirmed its good performance. Secondly, the main advantages of this PSO-SVM-based model are its capacity to produce a simple, easy-to-interpret model, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, the main conclusions of this study are exposed.

  18. Development and experimental test of support vector machines virtual screening method for searching Src inhibitors from large compound libraries

    PubMed Central

    2012-01-01

    Background Src plays various roles in tumour progression, invasion, metastasis, angiogenesis and survival. It is one of the multiple targets of multi-target kinase inhibitors in clinical uses and trials for the treatment of leukemia and other cancers. These successes and appearances of drug resistance in some patients have raised significant interest and efforts in discovering new Src inhibitors. Various in-silico methods have been used in some of these efforts. It is desirable to explore additional in-silico methods, particularly those capable of searching large compound libraries at high yields and reduced false-hit rates. Results We evaluated support vector machines (SVM) as virtual screening tools for searching Src inhibitors from large compound libraries. SVM trained and tested by 1,703 inhibitors and 63,318 putative non-inhibitors correctly identified 93.53%~ 95.01% inhibitors and 99.81%~ 99.90% non-inhibitors in 5-fold cross validation studies. SVM trained by 1,703 inhibitors reported before 2011 and 63,318 putative non-inhibitors correctly identified 70.45% of the 44 inhibitors reported since 2011, and predicted as inhibitors 44,843 (0.33%) of 13.56M PubChem, 1,496 (0.89%) of 168 K MDDR, and 719 (7.73%) of 9,305 MDDR compounds similar to the known inhibitors. Conclusions SVM showed comparable yield and reduced false hit rates in searching large compound libraries compared to the similarity-based and other machine-learning VS methods developed from the same set of training compounds and molecular descriptors. We tested three virtual hits of the same novel scaffold from in-house chemical libraries not reported as Src inhibitor, one of which showed moderate activity. SVM may be potentially explored for searching Src inhibitors from large compound libraries at low false-hit rates. PMID:23173901

  19. A Comparison of Artificial Intelligence Methods on Determining Coronary Artery Disease

    NASA Astrophysics Data System (ADS)

    Babaoğlu, Ismail; Baykan, Ömer Kaan; Aygül, Nazif; Özdemir, Kurtuluş; Bayrak, Mehmet

    The aim of this study is to show a comparison of multi-layered perceptron neural network (MLPNN) and support vector machine (SVM) on determination of coronary artery disease existence upon exercise stress testing (EST) data. EST and coronary angiography were performed on 480 patients with acquiring 23 verifying features from each. The robustness of the proposed methods is examined using classification accuracy, k-fold cross-validation method and Cohen's kappa coefficient. The obtained classification accuracies are approximately 78% and 79% for MLPNN and SVM respectively. Both MLPNN and SVM methods are rather satisfactory than human-based method looking to Cohen's kappa coefficients. Besides, SVM is slightly better than MLPNN when looking to the diagnostic accuracy, average of sensitivity and specificity, and also Cohen's kappa coefficient.

  20. Machine learning in infrared object classification - an all-sky selection of YSO candidates

    NASA Astrophysics Data System (ADS)

    Marton, Gabor; Zahorecz, Sarolta; Toth, L. Viktor; Magnus McGehee, Peregrine; Kun, Maria

    2015-08-01

    Object classification is a fundamental and challenging problem in the era of big data. I will discuss up-to-date methods and their application to classify infrared point sources.We analysed the ALLWISE catalogue, the most recent public source catalogue of the Wide-field Infrared Survey Explorer (WISE) to compile a reliable list of Young Stellar Object (YSO) candidates. We tested and compared classical and up-to-date statistical methods as well, to discriminate source types like extragalactic objects, evolved stars, main sequence stars, objects related to the interstellar medium and YSO candidates by using their mid-IR WISE properties and associated near-IR 2MASS data.In the particular classification problem the Support Vector Machines (SVM), a class of supervised learning algorithm turned out to be the best tool. As a result we classify Class I and II YSOs with >90% accuracy while the fraction of contaminating extragalactic objects remains well below 1%, based on the number of known objects listed in the SIMBAD and VizieR databases. We compare our results to other classification schemes from the literature and show that the SVM outperforms methods that apply linear cuts on the colour-colour and colour-magnitude space. Our homogenous YSO candidate catalog can serve as an excellent pathfinder for future detailed observations of individual objects and a starting point of statistical studies that aim to add pieces to the big picture of star formation theory.

  1. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region

    NASA Astrophysics Data System (ADS)

    He, Zhibin; Wen, Xiaohu; Liu, Hu; Du, Jun

    2014-02-01

    Data driven models are very useful for river flow forecasting when the underlying physical relationships are not fully understand, but it is not clear whether these data driven models still have a good performance in the small river basin of semiarid mountain regions where have complicated topography. In this study, the potential of three different data driven methods, artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for forecasting river flow in the semiarid mountain region, northwestern China. The models analyzed different combinations of antecedent river flow values and the appropriate input vector has been selected based on the analysis of residuals. The performance of the ANN, ANFIS and SVM models in training and validation sets are compared with the observed data. The model which consists of three antecedent values of flow has been selected as the best fit model for river flow forecasting. To get more accurate evaluation of the results of ANN, ANFIS and SVM models, the four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), root mean squared error (RMSE), Nash-Sutcliffe efficiency coefficient (NS) and mean absolute relative error (MARE), were employed to evaluate the performances of various models developed. The results indicate that the performance obtained by ANN, ANFIS and SVM in terms of different evaluation criteria during the training and validation period does not vary substantially; the performance of the ANN, ANFIS and SVM models in river flow forecasting was satisfactory. A detailed comparison of the overall performance indicated that the SVM model performed better than ANN and ANFIS in river flow forecasting for the validation data sets. The results also suggest that ANN, ANFIS and SVM method can be successfully applied to establish river flow with complicated topography forecasting models in the semiarid mountain regions.

  2. Novel Hybrid of LS-SVM and Kalman Filter for GPS/INS Integration

    NASA Astrophysics Data System (ADS)

    Xu, Zhenkai; Li, Yong; Rizos, Chris; Xu, Xiaosu

    Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) technologies can overcome the drawbacks of the individual systems. One of the advantages is that the integrated solution can provide continuous navigation capability even during GPS outages. However, bridging the GPS outages is still a challenge when Micro-Electro-Mechanical System (MEMS) inertial sensors are used. Methods being currently explored by the research community include applying vehicle motion constraints, optimal smoother, and artificial intelligence (AI) techniques. In the research area of AI, the neural network (NN) approach has been extensively utilised up to the present. In an NN-based integrated system, a Kalman filter (KF) estimates position, velocity and attitude errors, as well as the inertial sensor errors, to output navigation solutions while GPS signals are available. At the same time, an NN is trained to map the vehicle dynamics with corresponding KF states, and to correct INS measurements when GPS measurements are unavailable. To achieve good performance it is critical to select suitable quality and an optimal number of samples for the NN. This is sometimes too rigorous a requirement which limits real world application of NN-based methods.The support vector machine (SVM) approach is based on the structural risk minimisation principle, instead of the minimised empirical error principle that is commonly implemented in an NN. The SVM can avoid local minimisation and over-fitting problems in an NN, and therefore potentially can achieve a higher level of global performance. This paper focuses on the least squares support vector machine (LS-SVM), which can solve highly nonlinear and noisy black-box modelling problems. This paper explores the application of the LS-SVM to aid the GPS/INS integrated system, especially during GPS outages. The paper describes the principles of the LS-SVM and of the KF hybrid method, and introduces the LS-SVM regression algorithm. Field test data is processed to evaluate the performance of the proposed approach.

  3. Virtual screening of selective multitarget kinase inhibitors by combinatorial support vector machines.

    PubMed

    Ma, X H; Wang, R; Tan, C Y; Jiang, Y Y; Lu, T; Rao, H B; Li, X Y; Go, M L; Low, B C; Chen, Y Z

    2010-10-04

    Multitarget agents have been increasingly explored for enhancing efficacy and reducing countertarget activities and toxicities. Efficient virtual screening (VS) tools for searching selective multitarget agents are desired. Combinatorial support vector machines (C-SVM) were tested as VS tools for searching dual-inhibitors of 11 combinations of 9 anticancer kinase targets (EGFR, VEGFR, PDGFR, Src, FGFR, Lck, CDK1, CDK2, GSK3). C-SVM trained on 233-1,316 non-dual-inhibitors correctly identified 26.8%-57.3% (majority >36%) of the 56-230 intra-kinase-group dual-inhibitors (equivalent to the 50-70% yields of two independent individual target VS tools), and 12.2% of the 41 inter-kinase-group dual-inhibitors. C-SVM were fairly selective in misidentifying as dual-inhibitors 3.7%-48.1% (majority <20%) of the 233-1,316 non-dual-inhibitors of the same kinase pairs and 0.98%-4.77% of the 3,971-5,180 inhibitors of other kinases. C-SVM produced low false-hit rates in misidentifying as dual-inhibitors 1,746-4,817 (0.013%-0.036%) of the 13.56 M PubChem compounds, 12-175 (0.007%-0.104%) of the 168 K MDDR compounds, and 0-84 (0.0%-2.9%) of the 19,495-38,483 MDDR compounds similar to the known dual-inhibitors. C-SVM was compared to other VS methods Surflex-Dock, DOCK Blaster, kNN and PNN against the same sets of kinase inhibitors and the full set or subset of the 1.02 M Zinc clean-leads data set. C-SVM produced comparable dual-inhibitor yields, slightly better false-hit rates for kinase inhibitors, and significantly lower false-hit rates for the Zinc clean-leads data set. Combinatorial SVM showed promising potential for searching selective multitarget agents against intra-kinase-group kinases without explicit knowledge of multitarget agents.

  4. Effect of training data size and noise level on support vector machines virtual screening of genotoxic compounds from large compound libraries.

    PubMed

    Kumar, Pankaj; Ma, Xiaohua; Liu, Xianghui; Jia, Jia; Bucong, Han; Xue, Ying; Li, Ze Rong; Yang, Sheng Yong; Wei, Yu Quan; Chen, Yu Zong

    2011-05-01

    Various in vitro and in-silico methods have been used for drug genotoxicity tests, which show limited genotoxicity (GT+) and non-genotoxicity (GT-) identification rates. New methods and combinatorial approaches have been explored for enhanced collective identification capability. The rates of in-silco methods may be further improved by significantly diversified training data enriched by the large number of recently reported GT+ and GT- compounds, but a major concern is the increased noise levels arising from high false-positive rates of in vitro data. In this work, we evaluated the effect of training data size and noise level on the performance of support vector machines (SVM) method known to tolerate high noise levels in training data. Two SVMs of different diversity/noise levels were developed and tested. H-SVM trained by higher diversity higher noise data (GT+ in any in vivo or in vitro test) outperforms L-SVM trained by lower noise lower diversity data (GT+ in in vivo or Ames test only). H-SVM trained by 4,763 GT+ compounds reported before 2008 and 8,232 GT- compounds excluding clinical trial drugs correctly identified 81.6% of the 38 GT+ compounds reported since 2008, predicted 83.1% of the 2,008 clinical trial drugs as GT-, and 23.96% of 168 K MDDR and 27.23% of 17.86M PubChem compounds as GT+. These are comparable to the 43.1-51.9% GT+ and 75-93% GT- rates of existing in-silico methods, 58.8% GT+ and 79% GT- rates of Ames method, and the estimated percentages of 23% in vivo and 31-33% in vitro GT+ compounds in the "universe of chemicals". There is a substantial level of agreement between H-SVM and L-SVM predicted GT+ and GT- MDDR compounds and the prediction from TOPKAT. SVM showed good potential in identifying GT+ compounds from large compound libraries based on higher diversity and higher noise training data.

  5. Machine Learning Classification of Cirrhotic Patients with and without Minimal Hepatic Encephalopathy Based on Regional Homogeneity of Intrinsic Brain Activity.

    PubMed

    Chen, Qiu-Feng; Chen, Hua-Jun; Liu, Jun; Sun, Tao; Shen, Qun-Tai

    2016-01-01

    Machine learning-based approaches play an important role in examining functional magnetic resonance imaging (fMRI) data in a multivariate manner and extracting features predictive of group membership. This study was performed to assess the potential for measuring brain intrinsic activity to identify minimal hepatic encephalopathy (MHE) in cirrhotic patients, using the support vector machine (SVM) method. Resting-state fMRI data were acquired in 16 cirrhotic patients with MHE and 19 cirrhotic patients without MHE. The regional homogeneity (ReHo) method was used to investigate the local synchrony of intrinsic brain activity. Psychometric Hepatic Encephalopathy Score (PHES) was used to define MHE condition. SVM-classifier was then applied using leave-one-out cross-validation, to determine the discriminative ReHo-map for MHE. The discrimination map highlights a set of regions, including the prefrontal cortex, anterior cingulate cortex, anterior insular cortex, inferior parietal lobule, precentral and postcentral gyri, superior and medial temporal cortices, and middle and inferior occipital gyri. The optimized discriminative model showed total accuracy of 82.9% and sensitivity of 81.3%. Our results suggested that a combination of the SVM approach and brain intrinsic activity measurement could be helpful for detection of MHE in cirrhotic patients.

  6. Exploiting machine learning algorithms for tree species classification in a semiarid woodland using RapidEye image

    NASA Astrophysics Data System (ADS)

    Adelabu, Samuel; Mutanga, Onisimo; Adam, Elhadi; Cho, Moses Azong

    2013-01-01

    Classification of different tree species in semiarid areas can be challenging as a result of the change in leaf structure and orientation due to soil moisture constraints. Tree species mapping is, however, a key parameter for forest management in semiarid environments. In this study, we examined the suitability of 5-band RapidEye satellite data for the classification of five tree species in mopane woodland of Botswana using machine leaning algorithms with limited training samples.We performed classification using random forest (RF) and support vector machines (SVM) based on EnMap box. The overall accuracies for classifying the five tree species was 88.75 and 85% for both SVM and RF, respectively. We also demonstrated that the new red-edge band in the RapidEye sensor has the potential for classifying tree species in semiarid environments when integrated with other standard bands. Similarly, we observed that where there are limited training samples, SVM is preferred over RF. Finally, we demonstrated that the two accuracy measures of quantity and allocation disagreement are simpler and more helpful for the vast majority of remote sensing classification process than the kappa coefficient. Overall, high species classification can be achieved using strategically located RapidEye bands integrated with advanced processing algorithms.

  7. Advanced Methods for Passive Acoustic Detection, Classification, and Localization of Marine Mammals

    DTIC Science & Technology

    2012-09-30

    floor 1176 Howell St Newport RI 02842 phone: (401) 832-5749 fax: (401) 832-4441 email: David.Moretti@navy.mil Steve W. Martin SPAWAR...multiclass support vector machine (SVM) classifier was previously developed ( Jarvis et al. 2008). This classifier both detects and classifies echolocation...whales. Here Moretti’s group, especially S. Jarvis , will improve the SVM classifier by resolving confusion between species whose clicks overlap in

  8. Advanced Methods for Passive Acoustic Detection, Classification, and Localization of Marine Mammals

    DTIC Science & Technology

    2014-09-30

    floor 1176 Howell St Newport RI 02842 phone: (401) 832-5749 fax: (401) 832-4441 email: David.Moretti@navy.mil Steve W. Martin SPAWAR...APPROACH Odontocete click detection and classification. A multi-class support vector machine (SVM) classifier was previously developed ( Jarvis ...beaked whales, Risso’s dolphins, short-finned pilot whales, and sperm whales. Here Moretti’s group, particularly S. Jarvis , is improving the SVM

  9. Advanced Methods for Passive Acoustic Detection, Classification, and Localization of Marine Mammals

    DTIC Science & Technology

    2011-09-30

    Newport RI 02842 phone: (401) 832-5749 fax: (401) 832-4441 email: David.Moretti@navy.mil Steve W. Martin SPAWAR Systems Center Pacific...APPROACH Odontocete click detection and classification. A multiclass support vector machine (SVM) classifier was previously developed ( Jarvis et...beaked whales, Risso’s dolphins, short-finned pilot whales, and sperm whales. Here Moretti’s group, especially S. Jarvis , will improve the SVM classifier

  10. Generative Models for Similarity-based Classification

    DTIC Science & Technology

    2007-01-01

    NC), local nearest centroid (local NC), k-nearest neighbors ( kNN ), and condensed nearest neighbors (CNN) are all similarity-based classifiers which...vector machine to the k nearest neighbors of the test sample [80]. The SVM- KNN method was developed to address the robustness and dimensionality...concerns that afflict nearest neighbors and SVMs. Similarly to the nearest-means classifier, the SVM- KNN is a hybrid local and global classifier developed

  11. Comparison of SVM, RF and ELM on an Electronic Nose for the Intelligent Evaluation of Paraffin Samples.

    PubMed

    Men, Hong; Fu, Songlin; Yang, Jialin; Cheng, Meiqi; Shi, Yan; Liu, Jingjing

    2018-01-18

    Paraffin odor intensity is an important quality indicator when a paraffin inspection is performed. Currently, paraffin odor level assessment is mainly dependent on an artificial sensory evaluation. In this paper, we developed a paraffin odor analysis system to classify and grade four kinds of paraffin samples. The original feature set was optimized using Principal Component Analysis (PCA) and Partial Least Squares (PLS). Support Vector Machine (SVM), Random Forest (RF), and Extreme Learning Machine (ELM) were applied to three different feature data sets for classification and level assessment of paraffin. For classification, the model based on SVM, with an accuracy rate of 100%, was superior to that based on RF, with an accuracy rate of 98.33-100%, and ELM, with an accuracy rate of 98.01-100%. For level assessment, the R² related to the training set was above 0.97 and the R² related to the test set was above 0.87. Through comprehensive comparison, the generalization of the model based on ELM was superior to those based on SVM and RF. The scoring errors for the three models were 0.0016-0.3494, lower than the error of 0.5-1.0 measured by industry standard experts, meaning these methods have a higher prediction accuracy for scoring paraffin level.

  12. Intelligent Fault Diagnosis of Delta 3D Printers Using Attitude Sensors Based on Support Vector Machines

    PubMed Central

    He, Kun; Yang, Zhijun; Bai, Yun; Long, Jianyu; Li, Chuan

    2018-01-01

    Health condition is a vital factor affecting printing quality for a 3D printer. In this work, an attitude monitoring approach is proposed to diagnose the fault of the delta 3D printer using support vector machines (SVM). An attitude sensor was mounted on the moving platform of the printer to monitor its 3-axial attitude angle, angular velocity, vibratory acceleration and magnetic field intensity. The attitude data of the working printer were collected under different conditions involving 12 fault types and a normal condition. The collected data were analyzed for diagnosing the health condition. To this end, the combination of binary classification, one-against-one with least-square SVM, was adopted for fault diagnosis modelling by using all channels of attitude monitoring data in the experiment. For comparison, each one channel of the attitude monitoring data was employed for model training and testing. On the other hand, a back propagation neural network (BPNN) was also applied to diagnose fault using the same data. The best fault diagnosis accuracy (94.44%) was obtained when all channels of the attitude monitoring data were used with SVM modelling. The results indicate that the attitude monitoring with SVM is an effective method for the fault diagnosis of delta 3D printers. PMID:29690641

  13. Prediction of Flood Warning in Taiwan Using Nonlinear SVM with Simulated Annealing Algorithm

    NASA Astrophysics Data System (ADS)

    Lee, C.

    2013-12-01

    The issue of the floods is important in Taiwan. It is because the narrow and high topography of the island make lots of rivers steep in Taiwan. The tropical depression likes typhoon always causes rivers to flood. Prediction of river flow under the extreme rainfall circumstances is important for government to announce the warning of flood. Every time typhoon passed through Taiwan, there were always floods along some rivers. The warning is classified to three levels according to the warning water levels in Taiwan. The propose of this study is to predict the level of floods warning from the information of precipitation, rainfall duration and slope of riverbed. To classify the level of floods warning by the above-mentioned information and modeling the problems, a machine learning model, nonlinear Support vector machine (SVM), is formulated to classify the level of floods warning. In addition, simulated annealing (SA), a probabilistic heuristic algorithm, is used to determine the optimal parameter of the SVM model. A case study of flooding-trend rivers of different gradients in Taiwan is conducted. The contribution of this SVM model with simulated annealing is capable of making efficient announcement for flood warning and keeping the danger of flood from residents along the rivers.

  14. New support vector machine-based method for microRNA target prediction.

    PubMed

    Li, L; Gao, Q; Mao, X; Cao, Y

    2014-06-09

    MicroRNA (miRNA) plays important roles in cell differentiation, proliferation, growth, mobility, and apoptosis. An accurate list of precise target genes is necessary in order to fully understand the importance of miRNAs in animal development and disease. Several computational methods have been proposed for miRNA target-gene identification. However, these methods still have limitations with respect to their sensitivity and accuracy. Thus, we developed a new miRNA target-prediction method based on the support vector machine (SVM) model. The model supplies information of two binding sites (primary and secondary) for a radial basis function kernel as a similarity measure for SVM features. The information is categorized based on structural, thermodynamic, and sequence conservation. Using high-confidence datasets selected from public miRNA target databases, we obtained a human miRNA target SVM classifier model with high performance and provided an efficient tool for human miRNA target gene identification. Experiments have shown that our method is a reliable tool for miRNA target-gene prediction, and a successful application of an SVM classifier. Compared with other methods, the method proposed here improves the sensitivity and accuracy of miRNA prediction. Its performance can be further improved by providing more training examples.

  15. Nested Machine Learning Facilitates Increased Sequence Content for Large-Scale Automated High Resolution Melt Genotyping

    PubMed Central

    Fraley, Stephanie I.; Athamanolap, Pornpat; Masek, Billie J.; Hardick, Justin; Carroll, Karen C.; Hsieh, Yu-Hsiang; Rothman, Richard E.; Gaydos, Charlotte A.; Wang, Tza-Huei; Yang, Samuel

    2016-01-01

    High Resolution Melt (HRM) is a versatile and rapid post-PCR DNA analysis technique primarily used to differentiate sequence variants among only a few short amplicons. We recently developed a one-vs-one support vector machine algorithm (OVO SVM) that enables the use of HRM for identifying numerous short amplicon sequences automatically and reliably. Herein, we set out to maximize the discriminating power of HRM + SVM for a single genetic locus by testing longer amplicons harboring significantly more sequence information. Using universal primers that amplify the hypervariable bacterial 16 S rRNA gene as a model system, we found that long amplicons yield more complex HRM curve shapes. We developed a novel nested OVO SVM approach to take advantage of this feature and achieved 100% accuracy in the identification of 37 clinically relevant bacteria in Leave-One-Out-Cross-Validation. A subset of organisms were independently tested. Those from pure culture were identified with high accuracy, while those tested directly from clinical blood bottles displayed more technical variability and reduced accuracy. Our findings demonstrate that long sequences can be accurately and automatically profiled by HRM with a novel nested SVM approach and suggest that clinical sample testing is feasible with further optimization. PMID:26778280

  16. Intelligent Fault Diagnosis of Delta 3D Printers Using Attitude Sensors Based on Support Vector Machines.

    PubMed

    He, Kun; Yang, Zhijun; Bai, Yun; Long, Jianyu; Li, Chuan

    2018-04-23

    Health condition is a vital factor affecting printing quality for a 3D printer. In this work, an attitude monitoring approach is proposed to diagnose the fault of the delta 3D printer using support vector machines (SVM). An attitude sensor was mounted on the moving platform of the printer to monitor its 3-axial attitude angle, angular velocity, vibratory acceleration and magnetic field intensity. The attitude data of the working printer were collected under different conditions involving 12 fault types and a normal condition. The collected data were analyzed for diagnosing the health condition. To this end, the combination of binary classification, one-against-one with least-square SVM, was adopted for fault diagnosis modelling by using all channels of attitude monitoring data in the experiment. For comparison, each one channel of the attitude monitoring data was employed for model training and testing. On the other hand, a back propagation neural network (BPNN) was also applied to diagnose fault using the same data. The best fault diagnosis accuracy (94.44%) was obtained when all channels of the attitude monitoring data were used with SVM modelling. The results indicate that the attitude monitoring with SVM is an effective method for the fault diagnosis of delta 3D printers.

  17. Prediction of human disease-associated phosphorylation sites with combined feature selection approach and support vector machine.

    PubMed

    Xu, Xiaoyi; Li, Ao; Wang, Minghui

    2015-08-01

    Phosphorylation is a crucial post-translational modification, which regulates almost all cellular processes in life. It has long been recognised that protein phosphorylation has close relationship with diseases, and therefore many researches are undertaken to predict phosphorylation sites for disease treatment and drug design. However, despite the success achieved by these approaches, no method focuses on disease-associated phosphorylation sites prediction. Herein, for the first time the authors propose a novel approach that is specially designed to identify associations between phosphorylation sites and human diseases. To take full advantage of local sequence information, a combined feature selection method-based support vector machine (CFS-SVM) that incorporates minimum-redundancy-maximum-relevance filtering process and forward feature selection process is developed. Performance evaluation shows that CFS-SVM is significantly better than the widely used classifiers including Bayesian decision theory, k nearest neighbour and random forest. With the extremely high specificity of 99%, CFS-SVM can still achieve a high sensitivity. Besides, tests on extra data confirm the effectiveness and general applicability of CFS-SVM approach on a variety of diseases. Finally, the analysis of selected features and corresponding kinases also help the understanding of the potential mechanism of disease-phosphorylation relationships and guide further experimental validations.

  18. Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images.

    PubMed

    Lu, Xiaobing; Yang, Yongzhe; Wu, Fengchun; Gao, Minjian; Xu, Yong; Zhang, Yue; Yao, Yongcheng; Du, Xin; Li, Chengwei; Wu, Lei; Zhong, Xiaomei; Zhou, Yanling; Fan, Ni; Zheng, Yingjun; Xiong, Dongsheng; Peng, Hongjun; Escudero, Javier; Huang, Biao; Li, Xiaobo; Ning, Yuping; Wu, Kai

    2016-07-01

    Structural abnormalities in schizophrenia (SZ) patients have been well documented with structural magnetic resonance imaging (MRI) data using voxel-based morphometry (VBM) and region of interest (ROI) analyses. However, these analyses can only detect group-wise differences and thus, have a poor predictive value for individuals. In the present study, we applied a machine learning method that combined support vector machine (SVM) with recursive feature elimination (RFE) to discriminate SZ patients from normal controls (NCs) using their structural MRI data. We first employed both VBM and ROI analyses to compare gray matter volume (GMV) and white matter volume (WMV) between 41 SZ patients and 42 age- and sex-matched NCs. The method of SVM combined with RFE was used to discriminate SZ patients from NCs using significant between-group differences in both GMV and WMV as input features. We found that SZ patients showed GM and WM abnormalities in several brain structures primarily involved in the emotion, memory, and visual systems. An SVM with a RFE classifier using the significant structural abnormalities identified by the VBM analysis as input features achieved the best performance (an accuracy of 88.4%, a sensitivity of 91.9%, and a specificity of 84.4%) in the discriminative analyses of SZ patients. These results suggested that distinct neuroanatomical profiles associated with SZ patients might provide a potential biomarker for disease diagnosis, and machine-learning methods can reveal neurobiological mechanisms in psychiatric diseases.

  19. A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM.

    PubMed

    Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei; Song, Houbing

    2018-01-15

    Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model's performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM's parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models' performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors.

  20. A Matter of Time: Faster Percolator Analysis via Efficient SVM Learning for Large-Scale Proteomics.

    PubMed

    Halloran, John T; Rocke, David M

    2018-05-04

    Percolator is an important tool for greatly improving the results of a database search and subsequent downstream analysis. Using support vector machines (SVMs), Percolator recalibrates peptide-spectrum matches based on the learned decision boundary between targets and decoys. To improve analysis time for large-scale data sets, we update Percolator's SVM learning engine through software and algorithmic optimizations rather than heuristic approaches that necessitate the careful study of their impact on learned parameters across different search settings and data sets. We show that by optimizing Percolator's original learning algorithm, l 2 -SVM-MFN, large-scale SVM learning requires nearly only a third of the original runtime. Furthermore, we show that by employing the widely used Trust Region Newton (TRON) algorithm instead of l 2 -SVM-MFN, large-scale Percolator SVM learning is reduced to nearly only a fifth of the original runtime. Importantly, these speedups only affect the speed at which Percolator converges to a global solution and do not alter recalibration performance. The upgraded versions of both l 2 -SVM-MFN and TRON are optimized within the Percolator codebase for multithreaded and single-thread use and are available under Apache license at bitbucket.org/jthalloran/percolator_upgrade .

  1. Support vector machines classifiers of physical activities in preschoolers

    USDA-ARS?s Scientific Manuscript database

    The goal of this study is to develop, test, and compare multinomial logistic regression (MLR) and support vector machines (SVM) in classifying preschool-aged children physical activity data acquired from an accelerometer. In this study, 69 children aged 3-5 years old were asked to participate in a s...

  2. Fabric wrinkle characterization and classification using modified wavelet coefficients and optimized support-vector-machine classifier

    USDA-ARS?s Scientific Manuscript database

    This paper presents a novel wrinkle evaluation method that uses modified wavelet coefficients and an optimized support-vector-machine (SVM) classification scheme to characterize and classify wrinkle appearance of fabric. Fabric images were decomposed with the wavelet transform (WT), and five parame...

  3. Comparison of Support Vector Machine, Neural Network, and CART Algorithms for the Land-Cover Classification Using Limited Training Data Points

    EPA Science Inventory

    Support vector machine (SVM) was applied for land-cover characterization using MODIS time-series data. Classification performance was examined with respect to training sample size, sample variability, and landscape homogeneity (purity). The results were compared to two convention...

  4. Predicting Protein-Protein Interaction Sites with a Novel Membership Based Fuzzy SVM Classifier.

    PubMed

    Sriwastava, Brijesh K; Basu, Subhadip; Maulik, Ujjwal

    2015-01-01

    Predicting residues that participate in protein-protein interactions (PPI) helps to identify, which amino acids are located at the interface. In this paper, we show that the performance of the classical support vector machine (SVM) algorithm can further be improved with the use of a custom-designed fuzzy membership function, for the partner-specific PPI interface prediction problem. We evaluated the performances of both classical SVM and fuzzy SVM (F-SVM) on the PPI databases of three different model proteomes of Homo sapiens, Escherichia coli and Saccharomyces Cerevisiae and calculated the statistical significance of the developed F-SVM over classical SVM algorithm. We also compared our performance with the available state-of-the-art fuzzy methods in this domain and observed significant performance improvements. To predict interaction sites in protein complexes, local composition of amino acids together with their physico-chemical characteristics are used, where the F-SVM based prediction method exploits the membership function for each pair of sequence fragments. The average F-SVM performance (area under ROC curve) on the test samples in 10-fold cross validation experiment are measured as 77.07, 78.39, and 74.91 percent for the aforementioned organisms respectively. Performances on independent test sets are obtained as 72.09, 73.24 and 82.74 percent respectively. The software is available for free download from http://code.google.com/p/cmater-bioinfo.

  5. A real-time visual inspection method of fastening bolts in freight car operation

    NASA Astrophysics Data System (ADS)

    Nan, Guo; Yao, JunEn

    2015-10-01

    A real-time inspection of the key components is necessary for ensuring safe operation of freight car. While traditional inspection depends on the trained human inspectors, which is time-consuming and lower efficient. With the development of machine vision, vision-based inspection methods get more railway on-spot applications. The cross rod end fastening bolts are important components on both sides of the train body that fixing locking plates together with the freight car main structure. In our experiment, we get the images containing fastening bolt components, and accurately locate the locking plate position using a linear Support Vector Machine (SVM) locating model trained with Histograms of Oriented Gradients (HOG) features. Then we extract the straight line segment using the Line Segment Detector (LSD) and encoding them in a range, which constitute a straight line segment dataset. Lastly we determine the locking plate's working state by the linear pattern. The experiment result shows that the localization accurate rate is over 99%, the fault detection rate is over 95%, and the module implementation time is 2f/s. The overall performance can completely meet the practical railway safety assurance application.

  6. Comparing Models of Spontaneous Variations, Maneuvers and Indexes to Assess Dynamic Cerebral Autoregulation.

    PubMed

    Chacón, Max; Noh, Sun-Ho; Landerretche, Jean; Jara, José L

    2018-01-01

    We analyzed the performance of linear and nonlinear models to assess dynamic cerebral autoregulation (dCA) from spontaneous variations in healthy subjects and compared it with the use of two known maneuvers to abruptly change arterial blood pressure (BP): thigh cuffs and sit-to-stand. Cerebral blood flow velocity and BP were measured simultaneously at rest and while the maneuvers were performed in 20 healthy subjects. To analyze the spontaneous variations, we implemented two types of models using support vector machine (SVM): linear and nonlinear finite impulse response models. The classic autoregulation index (ARI) and the more recently proposed model-free ARI (mfARI) were used as measures of dCA. An ANOVA analysis was applied to compare the different methods and the coefficient of variation was calculated to evaluate their variability. There are differences between indexes, but not between models and maneuvers. The mfARI index with the sit-to-stand maneuver shows the least variability. Support vector machine modeling of spontaneous variation with the mfARI index could be used for the assessment of dCA as an alternative to maneuvers to introduce large BP fluctuations.

  7. The effects of pre-processing strategies in sentiment analysis of online movie reviews

    NASA Astrophysics Data System (ADS)

    Zin, Harnani Mat; Mustapha, Norwati; Murad, Masrah Azrifah Azmi; Sharef, Nurfadhlina Mohd

    2017-10-01

    With the ever increasing of internet applications and social networking sites, people nowadays can easily express their feelings towards any products and services. These online reviews act as an important source for further analysis and improved decision making. These reviews are mostly unstructured by nature and thus, need processing like sentiment analysis and classification to provide a meaningful information for future uses. In text analysis tasks, the appropriate selection of words/features will have a huge impact on the effectiveness of the classifier. Thus, this paper explores the effect of the pre-processing strategies in the sentiment analysis of online movie reviews. In this paper, supervised machine learning method was used to classify the reviews. The support vector machine (SVM) with linear and non-linear kernel has been considered as classifier for the classification of the reviews. The performance of the classifier is critically examined based on the results of precision, recall, f-measure, and accuracy. Two different features representations were used which are term frequency and term frequency-inverse document frequency. Results show that the pre-processing strategies give a significant impact on the classification process.

  8. TU-C-12A-12: Differentiating Bone Lesions and Degenerative Joint Disease in NaF PET/CT Scans Using Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perk, T; Bradshaw, T; Muzahir, S

    2014-06-15

    Purpose: [F-18]NaF PET can be used to image bone metastases; however, tracer uptake in degenerative joint disease (DJD) often appears similar to metastases. This study aims to develop and compare different machine learning algorithms to automatically identify regions of [F-18]NaF scans that correspond to DJD. Methods: 10 metastatic prostate cancer patients received whole body [F-18]NaF PET/CT scans prior to treatment. Image segmentation resulted in 852 ROIs, 69 of which were identified by a nuclear medicine physician as DJD. For all ROIs, various PET and CT textural features were computed. ROIs were divided into training and testing sets used to trainmore » eight different machine learning classifiers. Classifiers were evaluated based on receiver operating characteristics area under the curve (AUC), sensitivity, specificity, and positive predictive value (PPV). We also assessed the added value of including CT features in addition to PET features for training classifiers. Results: The training set consisted of 37 DJD ROIs with 475 non-DJD ROIs, and the testing set consisted of 32 DJD ROIs with 308 non-DJD ROIs. Of all classifiers, generalized linear models (GLM), decision forests (DF), and support vector machines (SVM) had the best performance. AUCs of GLM (0.929), DF (0.921), and SVM (0.889) were significantly higher than the other models (p<0.001). GLM and DF, overall, had the best sensitivity, specificity, and PPV, and gave a significantly better performance (p<0.01) than all other models. PET/CT GLM classifiers had higher AUC than just PET or just CT. GLMs built using PET/CT information had superior or comparable sensitivities, specificities and PPVs to just PET or just CT. Conclusion: Machine learning algorithms trained with PET/CT features were able to identify some cases of DJD. GLM outperformed the other classification algorithms. Using PET and CT information together was shown to be superior to using PET or CT features alone. Research supported by the Prostate Cancer Foundation.« less

  9. A comparison of machine learning methods for classification using simulation with multiple real data examples from mental health studies.

    PubMed

    Khondoker, Mizanur; Dobson, Richard; Skirrow, Caroline; Simmons, Andrew; Stahl, Daniel

    2016-10-01

    Recent literature on the comparison of machine learning methods has raised questions about the neutrality, unbiasedness and utility of many comparative studies. Reporting of results on favourable datasets and sampling error in the estimated performance measures based on single samples are thought to be the major sources of bias in such comparisons. Better performance in one or a few instances does not necessarily imply so on an average or on a population level and simulation studies may be a better alternative for objectively comparing the performances of machine learning algorithms. We compare the classification performance of a number of important and widely used machine learning algorithms, namely the Random Forests (RF), Support Vector Machines (SVM), Linear Discriminant Analysis (LDA) and k-Nearest Neighbour (kNN). Using massively parallel processing on high-performance supercomputers, we compare the generalisation errors at various combinations of levels of several factors: number of features, training sample size, biological variation, experimental variation, effect size, replication and correlation between features. For smaller number of correlated features, number of features not exceeding approximately half the sample size, LDA was found to be the method of choice in terms of average generalisation errors as well as stability (precision) of error estimates. SVM (with RBF kernel) outperforms LDA as well as RF and kNN by a clear margin as the feature set gets larger provided the sample size is not too small (at least 20). The performance of kNN also improves as the number of features grows and outplays that of LDA and RF unless the data variability is too high and/or effect sizes are too small. RF was found to outperform only kNN in some instances where the data are more variable and have smaller effect sizes, in which cases it also provide more stable error estimates than kNN and LDA. Applications to a number of real datasets supported the findings from the simulation study. © The Author(s) 2013.

  10. Wavelet SVM in Reproducing Kernel Hilbert Space for hyperspectral remote sensing image classification

    NASA Astrophysics Data System (ADS)

    Du, Peijun; Tan, Kun; Xing, Xiaoshi

    2010-12-01

    Combining Support Vector Machine (SVM) with wavelet analysis, we constructed wavelet SVM (WSVM) classifier based on wavelet kernel functions in Reproducing Kernel Hilbert Space (RKHS). In conventional kernel theory, SVM is faced with the bottleneck of kernel parameter selection which further results in time-consuming and low classification accuracy. The wavelet kernel in RKHS is a kind of multidimensional wavelet function that can approximate arbitrary nonlinear functions. Implications on semiparametric estimation are proposed in this paper. Airborne Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing image with 64 bands and Reflective Optics System Imaging Spectrometer (ROSIS) data with 115 bands were used to experiment the performance and accuracy of the proposed WSVM classifier. The experimental results indicate that the WSVM classifier can obtain the highest accuracy when using the Coiflet Kernel function in wavelet transform. In contrast with some traditional classifiers, including Spectral Angle Mapping (SAM) and Minimum Distance Classification (MDC), and SVM classifier using Radial Basis Function kernel, the proposed wavelet SVM classifier using the wavelet kernel function in Reproducing Kernel Hilbert Space is capable of improving classification accuracy obviously.

  11. Combining SVM and flame radiation to forecast BOF end-point

    NASA Astrophysics Data System (ADS)

    Wen, Hongyuan; Zhao, Qi; Xu, Lingfei; Zhou, Munchun; Chen, Yanru

    2009-05-01

    Because of complex reactions in Basic Oxygen Furnace (BOF) for steelmaking, the main end-point control methods of steelmaking have insurmountable difficulties. Aiming at these problems, a support vector machine (SVM) method for forecasting the BOF steelmaking end-point is presented based on flame radiation information. The basis is that the furnace flame is the performance of the carbon oxygen reaction, because the carbon oxygen reaction is the major reaction in the steelmaking furnace. The system can acquire spectrum and image data quickly in the steelmaking adverse environment. The structure of SVM and the multilayer feed-ward neural network are similar, but SVM model could overcome the inherent defects of the latter. The model is trained and forecasted by using SVM and some appropriate variables of light and image characteristic information. The model training process follows the structure risk minimum (SRM) criterion and the design parameter can be adjusted automatically according to the sampled data in the training process. Experimental results indicate that the prediction precision of the SVM model and the executive time both meet the requirements of end-point judgment online.

  12. SVM-PB-Pred: SVM based protein block prediction method using sequence profiles and secondary structures.

    PubMed

    Suresh, V; Parthasarathy, S

    2014-01-01

    We developed a support vector machine based web server called SVM-PB-Pred, to predict the Protein Block for any given amino acid sequence. The input features of SVM-PB-Pred include i) sequence profiles (PSSM) and ii) actual secondary structures (SS) from DSSP method or predicted secondary structures from NPS@ and GOR4 methods. There were three combined input features PSSM+SS(DSSP), PSSM+SS(NPS@) and PSSM+SS(GOR4) used to test and train the SVM models. Similarly, four datasets RS90, DB433, LI1264 and SP1577 were used to develop the SVM models. These four SVM models developed were tested using three different benchmarking tests namely; (i) self consistency, (ii) seven fold cross validation test and (iii) independent case test. The maximum possible prediction accuracy of ~70% was observed in self consistency test for the SVM models of both LI1264 and SP1577 datasets, where PSSM+SS(DSSP) input features was used to test. The prediction accuracies were reduced to ~53% for PSSM+SS(NPS@) and ~43% for PSSM+SS(GOR4) in independent case test, for the SVM models of above two same datasets. Using our method, it is possible to predict the protein block letters for any query protein sequence with ~53% accuracy, when the SP1577 dataset and predicted secondary structure from NPS@ server were used. The SVM-PB-Pred server can be freely accessed through http://bioinfo.bdu.ac.in/~svmpbpred.

  13. PMICALC: an R code-based software for estimating post-mortem interval (PMI) compatible with Windows, Mac and Linux operating systems.

    PubMed

    Muñoz-Barús, José I; Rodríguez-Calvo, María Sol; Suárez-Peñaranda, José M; Vieira, Duarte N; Cadarso-Suárez, Carmen; Febrero-Bande, Manuel

    2010-01-30

    In legal medicine the correct determination of the time of death is of utmost importance. Recent advances in estimating post-mortem interval (PMI) have made use of vitreous humour chemistry in conjunction with Linear Regression, but the results are questionable. In this paper we present PMICALC, an R code-based freeware package which estimates PMI in cadavers of recent death by measuring the concentrations of potassium ([K+]), hypoxanthine ([Hx]) and urea ([U]) in the vitreous humor using two different regression models: Additive Models (AM) and Support Vector Machine (SVM), which offer more flexibility than the previously used Linear Regression. The results from both models are better than those published to date and can give numerical expression of PMI with confidence intervals and graphic support within 20 min. The program also takes into account the cause of death. 2009 Elsevier Ireland Ltd. All rights reserved.

  14. Exploring the CAESAR database using dimensionality reduction techniques

    NASA Astrophysics Data System (ADS)

    Mendoza-Schrock, Olga; Raymer, Michael L.

    2012-06-01

    The Civilian American and European Surface Anthropometry Resource (CAESAR) database containing over 40 anthropometric measurements on over 4000 humans has been extensively explored for pattern recognition and classification purposes using the raw, original data [1-4]. However, some of the anthropometric variables would be impossible to collect in an uncontrolled environment. Here, we explore the use of dimensionality reduction methods in concert with a variety of classification algorithms for gender classification using only those variables that are readily observable in an uncontrolled environment. Several dimensionality reduction techniques are employed to learn the underlining structure of the data. These techniques include linear projections such as the classical Principal Components Analysis (PCA) and non-linear (manifold learning) techniques, such as Diffusion Maps and the Isomap technique. This paper briefly describes all three techniques, and compares three different classifiers, Naïve Bayes, Adaboost, and Support Vector Machines (SVM), for gender classification in conjunction with each of these three dimensionality reduction approaches.

  15. Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis.

    PubMed

    You, Zhu-Hong; Lei, Ying-Ke; Zhu, Lin; Xia, Junfeng; Wang, Bing

    2013-01-01

    Protein-protein interactions (PPIs) play crucial roles in the execution of various cellular processes and form the basis of biological mechanisms. Although large amount of PPIs data for different species has been generated by high-throughput experimental techniques, current PPI pairs obtained with experimental methods cover only a fraction of the complete PPI networks, and further, the experimental methods for identifying PPIs are both time-consuming and expensive. Hence, it is urgent and challenging to develop automated computational methods to efficiently and accurately predict PPIs. We present here a novel hierarchical PCA-EELM (principal component analysis-ensemble extreme learning machine) model to predict protein-protein interactions only using the information of protein sequences. In the proposed method, 11188 protein pairs retrieved from the DIP database were encoded into feature vectors by using four kinds of protein sequences information. Focusing on dimension reduction, an effective feature extraction method PCA was then employed to construct the most discriminative new feature set. Finally, multiple extreme learning machines were trained and then aggregated into a consensus classifier by majority voting. The ensembling of extreme learning machine removes the dependence of results on initial random weights and improves the prediction performance. When performed on the PPI data of Saccharomyces cerevisiae, the proposed method achieved 87.00% prediction accuracy with 86.15% sensitivity at the precision of 87.59%. Extensive experiments are performed to compare our method with state-of-the-art techniques Support Vector Machine (SVM). Experimental results demonstrate that proposed PCA-EELM outperforms the SVM method by 5-fold cross-validation. Besides, PCA-EELM performs faster than PCA-SVM based method. Consequently, the proposed approach can be considered as a new promising and powerful tools for predicting PPI with excellent performance and less time.

  16. Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT.

    PubMed

    Bizios, Dimitrios; Heijl, Anders; Hougaard, Jesper Leth; Bengtsson, Boel

    2010-02-01

    To compare the performance of two machine learning classifiers (MLCs), artificial neural networks (ANNs) and support vector machines (SVMs), with input based on retinal nerve fibre layer thickness (RNFLT) measurements by optical coherence tomography (OCT), on the diagnosis of glaucoma, and to assess the effects of different input parameters. We analysed Stratus OCT data from 90 healthy persons and 62 glaucoma patients. Performance of MLCs was compared using conventional OCT RNFLT parameters plus novel parameters such as minimum RNFLT values, 10th and 90th percentiles of measured RNFLT, and transformations of A-scan measurements. For each input parameter and MLC, the area under the receiver operating characteristic curve (AROC) was calculated. There were no statistically significant differences between ANNs and SVMs. The best AROCs for both ANN (0.982, 95%CI: 0.966-0.999) and SVM (0.989, 95% CI: 0.979-1.0) were based on input of transformed A-scan measurements. Our SVM trained on this input performed better than ANNs or SVMs trained on any of the single RNFLT parameters (p < or = 0.038). The performance of ANNs and SVMs trained on minimum thickness values and the 10th and 90th percentiles were at least as good as ANNs and SVMs with input based on the conventional RNFLT parameters. No differences between ANN and SVM were observed in this study. Both MLCs performed very well, with similar diagnostic performance. Input parameters have a larger impact on diagnostic performance than the type of machine classifier. Our results suggest that parameters based on transformed A-scan thickness measurements of the RNFL processed by machine classifiers can improve OCT-based glaucoma diagnosis.

  17. A New Method of Facial Expression Recognition Based on SPE Plus SVM

    NASA Astrophysics Data System (ADS)

    Ying, Zilu; Huang, Mingwei; Wang, Zhen; Wang, Zhewei

    A novel method of facial expression recognition (FER) is presented, which uses stochastic proximity embedding (SPE) for data dimension reduction, and support vector machine (SVM) for expression classification. The proposed algorithm is applied to Japanese Female Facial Expression (JAFFE) database for FER, better performance is obtained compared with some traditional algorithms, such as PCA and LDA etc.. The result have further proved the effectiveness of the proposed algorithm.

  18. Advanced Methods for Passive Acoustic Detection, Classification, and Localization of Marine Mammals

    DTIC Science & Technology

    2013-09-30

    N0001411WX21394 Steve W. Martin SPAWAR Systems Center Pacific 53366 Front St. San Diego, CA 92152-6551 phone: (619) 553-9882 email: Steve.W.Martin...multiclass support vector machine (SVM) classifier was previously developed ( Jarvis et al. 2008). This classifier both detects and classifies echolocation...whales. Here Moretti’s group, particularly S. Jarvis , will improve the SVM classifier by resolving confusion between species whose clicks overlap in

  19. Facial Expression Recognition using Multiclass Ensemble Least-Square Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Lawi, Armin; Sya'Rani Machrizzandi, M.

    2018-03-01

    Facial expression is one of behavior characteristics of human-being. The use of biometrics technology system with facial expression characteristics makes it possible to recognize a person’s mood or emotion. The basic components of facial expression analysis system are face detection, face image extraction, facial classification and facial expressions recognition. This paper uses Principal Component Analysis (PCA) algorithm to extract facial features with expression parameters, i.e., happy, sad, neutral, angry, fear, and disgusted. Then Multiclass Ensemble Least-Squares Support Vector Machine (MELS-SVM) is used for the classification process of facial expression. The result of MELS-SVM model obtained from our 185 different expression images of 10 persons showed high accuracy level of 99.998% using RBF kernel.

  20. Data on Support Vector Machines (SVM) model to forecast photovoltaic power.

    PubMed

    Malvoni, M; De Giorgi, M G; Congedo, P M

    2016-12-01

    The data concern the photovoltaic (PV) power, forecasted by a hybrid model that considers weather variations and applies a technique to reduce the input data size, as presented in the paper entitled "Photovoltaic forecast based on hybrid pca-lssvm using dimensionality reducted data" (M. Malvoni, M.G. De Giorgi, P.M. Congedo, 2015) [1]. The quadratic Renyi entropy criteria together with the principal component analysis (PCA) are applied to the Least Squares Support Vector Machines (LS-SVM) to predict the PV power in the day-ahead time frame. The data here shared represent the proposed approach results. Hourly PV power predictions for 1,3,6,12, 24 ahead hours and for different data reduction sizes are provided in Supplementary material.

  1. SVM classifier on chip for melanoma detection.

    PubMed

    Afifi, Shereen; GholamHosseini, Hamid; Sinha, Roopak

    2017-07-01

    Support Vector Machine (SVM) is a common classifier used for efficient classification with high accuracy. SVM shows high accuracy for classifying melanoma (skin cancer) clinical images within computer-aided diagnosis systems used by skin cancer specialists to detect melanoma early and save lives. We aim to develop a medical low-cost handheld device that runs a real-time embedded SVM-based diagnosis system for use in primary care for early detection of melanoma. In this paper, an optimized SVM classifier is implemented onto a recent FPGA platform using the latest design methodology to be embedded into the proposed device for realizing online efficient melanoma detection on a single system on chip/device. The hardware implementation results demonstrate a high classification accuracy of 97.9% and a significant acceleration factor of 26 from equivalent software implementation on an embedded processor, with 34% of resources utilization and 2 watts for power consumption. Consequently, the implemented system meets crucial embedded systems constraints of high performance and low cost, resources utilization and power consumption, while achieving high classification accuracy.

  2. Prediction of toxic metals concentration using artificial intelligence techniques

    NASA Astrophysics Data System (ADS)

    Gholami, R.; Kamkar-Rouhani, A.; Doulati Ardejani, F.; Maleki, Sh.

    2011-12-01

    Groundwater and soil pollution are noted to be the worst environmental problem related to the mining industry because of the pyrite oxidation, and hence acid mine drainage generation, release and transport of the toxic metals. The aim of this paper is to predict the concentration of Ni and Fe using a robust algorithm named support vector machine (SVM). Comparison of the obtained results of SVM with those of the back-propagation neural network (BPNN) indicates that the SVM can be regarded as a proper algorithm for the prediction of toxic metals concentration due to its relative high correlation coefficient and the associated running time. As a matter of fact, the SVM method has provided a better prediction of the toxic metals Fe and Ni and resulted the running time faster compared with that of the BPNN.

  3. A RLS-SVM Aided Fusion Methodology for INS during GPS Outages

    PubMed Central

    Yao, Yiqing; Xu, Xiaosu

    2017-01-01

    In order to maintain a relatively high accuracy of navigation performance during global positioning system (GPS) outages, a novel robust least squares support vector machine (LS-SVM)-aided fusion methodology is explored to provide the pseudo-GPS position information for the inertial navigation system (INS). The relationship between the yaw, specific force, velocity, and the position increment is modeled. Rather than share the same weight in the traditional LS-SVM, the proposed algorithm allocates various weights for different data, which makes the system immune to the outliers. Field test data was collected to evaluate the proposed algorithm. The comparison results indicate that the proposed algorithm can effectively provide position corrections for standalone INS during the 300 s GPS outage, which outperforms the traditional LS-SVM method. Historical information is also involved to better represent the vehicle dynamics. PMID:28245549

  4. A RLS-SVM Aided Fusion Methodology for INS during GPS Outages.

    PubMed

    Yao, Yiqing; Xu, Xiaosu

    2017-02-24

    In order to maintain a relatively high accuracy of navigation performance during global positioning system (GPS) outages, a novel robust least squares support vector machine (LS-SVM)-aided fusion methodology is explored to provide the pseudo-GPS position information for the inertial navigation system (INS). The relationship between the yaw, specific force, velocity, and the position increment is modeled. Rather than share the same weight in the traditional LS-SVM, the proposed algorithm allocates various weights for different data, which makes the system immune to the outliers. Field test data was collected to evaluate the proposed algorithm. The comparison results indicate that the proposed algorithm can effectively provide position corrections for standalone INS during the 300 s GPS outage, which outperforms the traditional LS-SVM method. Historical information is also involved to better represent the vehicle dynamics.

  5. SVM feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of Parkinson disease.

    PubMed

    Ozcift, Akin

    2012-08-01

    Parkinson disease (PD) is an age-related deterioration of certain nerve systems, which affects movement, balance, and muscle control of clients. PD is one of the common diseases which affect 1% of people older than 60 years. A new classification scheme based on support vector machine (SVM) selected features to train rotation forest (RF) ensemble classifiers is presented for improving diagnosis of PD. The dataset contains records of voice measurements from 31 people, 23 with PD and each record in the dataset is defined with 22 features. The diagnosis model first makes use of a linear SVM to select ten most relevant features from 22. As a second step of the classification model, six different classifiers are trained with the subset of features. Subsequently, at the third step, the accuracies of classifiers are improved by the utilization of RF ensemble classification strategy. The results of the experiments are evaluated using three metrics; classification accuracy (ACC), Kappa Error (KE) and Area under the Receiver Operating Characteristic (ROC) Curve (AUC). Performance measures of two base classifiers, i.e. KStar and IBk, demonstrated an apparent increase in PD diagnosis accuracy compared to similar studies in literature. After all, application of RF ensemble classification scheme improved PD diagnosis in 5 of 6 classifiers significantly. We, numerically, obtained about 97% accuracy in RF ensemble of IBk (a K-Nearest Neighbor variant) algorithm, which is a quite high performance for Parkinson disease diagnosis.

  6. A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data.

    PubMed

    Hu, Yongli; Hase, Takeshi; Li, Hui Peng; Prabhakar, Shyam; Kitano, Hiroaki; Ng, See Kiong; Ghosh, Samik; Wee, Lawrence Jin Kiat

    2016-12-22

    The ability to sequence the transcriptomes of single cells using single-cell RNA-seq sequencing technologies presents a shift in the scientific paradigm where scientists, now, are able to concurrently investigate the complex biology of a heterogeneous population of cells, one at a time. However, till date, there has not been a suitable computational methodology for the analysis of such intricate deluge of data, in particular techniques which will aid the identification of the unique transcriptomic profiles difference between the different cellular subtypes. In this paper, we describe the novel methodology for the analysis of single-cell RNA-seq data, obtained from neocortical cells and neural progenitor cells, using machine learning algorithms (Support Vector machine (SVM) and Random Forest (RF)). Thirty-eight key transcripts were identified, using the SVM-based recursive feature elimination (SVM-RFE) method of feature selection, to best differentiate developing neocortical cells from neural progenitor cells in the SVM and RF classifiers built. Also, these genes possessed a higher discriminative power (enhanced prediction accuracy) as compared commonly used statistical techniques or geneset-based approaches. Further downstream network reconstruction analysis was carried out to unravel hidden general regulatory networks where novel interactions could be further validated in web-lab experimentation and be useful candidates to be targeted for the treatment of neuronal developmental diseases. This novel approach reported for is able to identify transcripts, with reported neuronal involvement, which optimally differentiate neocortical cells and neural progenitor cells. It is believed to be extensible and applicable to other single-cell RNA-seq expression profiles like that of the study of the cancer progression and treatment within a highly heterogeneous tumour.

  7. Combining deep residual neural network features with supervised machine learning algorithms to classify diverse food image datasets.

    PubMed

    McAllister, Patrick; Zheng, Huiru; Bond, Raymond; Moorhead, Anne

    2018-04-01

    Obesity is increasing worldwide and can cause many chronic conditions such as type-2 diabetes, heart disease, sleep apnea, and some cancers. Monitoring dietary intake through food logging is a key method to maintain a healthy lifestyle to prevent and manage obesity. Computer vision methods have been applied to food logging to automate image classification for monitoring dietary intake. In this work we applied pretrained ResNet-152 and GoogleNet convolutional neural networks (CNNs), initially trained using ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset with MatConvNet package, to extract features from food image datasets; Food 5K, Food-11, RawFooT-DB, and Food-101. Deep features were extracted from CNNs and used to train machine learning classifiers including artificial neural network (ANN), support vector machine (SVM), Random Forest, and Naive Bayes. Results show that using ResNet-152 deep features with SVM with RBF kernel can accurately detect food items with 99.4% accuracy using Food-5K validation food image dataset and 98.8% with Food-5K evaluation dataset using ANN, SVM-RBF, and Random Forest classifiers. Trained with ResNet-152 features, ANN can achieve 91.34%, 99.28% when applied to Food-11 and RawFooT-DB food image datasets respectively and SVM with RBF kernel can achieve 64.98% with Food-101 image dataset. From this research it is clear that using deep CNN features can be used efficiently for diverse food item image classification. The work presented in this research shows that pretrained ResNet-152 features provide sufficient generalisation power when applied to a range of food image classification tasks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A Hybrid Hierarchical Approach for Brain Tissue Segmentation by Combining Brain Atlas and Least Square Support Vector Machine

    PubMed Central

    Kasiri, Keyvan; Kazemi, Kamran; Dehghani, Mohammad Javad; Helfroush, Mohammad Sadegh

    2013-01-01

    In this paper, we present a new semi-automatic brain tissue segmentation method based on a hybrid hierarchical approach that combines a brain atlas as a priori information and a least-square support vector machine (LS-SVM). The method consists of three steps. In the first two steps, the skull is removed and the cerebrospinal fluid (CSF) is extracted. These two steps are performed using the toolbox FMRIB's automated segmentation tool integrated in the FSL software (FSL-FAST) developed in Oxford Centre for functional MRI of the brain (FMRIB). Then, in the third step, the LS-SVM is used to segment grey matter (GM) and white matter (WM). The training samples for LS-SVM are selected from the registered brain atlas. The voxel intensities and spatial positions are selected as the two feature groups for training and test. SVM as a powerful discriminator is able to handle nonlinear classification problems; however, it cannot provide posterior probability. Thus, we use a sigmoid function to map the SVM output into probabilities. The proposed method is used to segment CSF, GM and WM from the simulated magnetic resonance imaging (MRI) using Brainweb MRI simulator and real data provided by Internet Brain Segmentation Repository. The semi-automatically segmented brain tissues were evaluated by comparing to the corresponding ground truth. The Dice and Jaccard similarity coefficients, sensitivity and specificity were calculated for the quantitative validation of the results. The quantitative results show that the proposed method segments brain tissues accurately with respect to corresponding ground truth. PMID:24696800

  9. Support vector machine learning model for the prediction of sentinel node status in patients with cutaneous melanoma.

    PubMed

    Mocellin, Simone; Ambrosi, Alessandro; Montesco, Maria Cristina; Foletto, Mirto; Zavagno, Giorgio; Nitti, Donato; Lise, Mario; Rossi, Carlo Riccardo

    2006-08-01

    Currently, approximately 80% of melanoma patients undergoing sentinel node biopsy (SNB) have negative sentinel lymph nodes (SLNs), and no prediction system is reliable enough to be implemented in the clinical setting to reduce the number of SNB procedures. In this study, the predictive power of support vector machine (SVM)-based statistical analysis was tested. The clinical records of 246 patients who underwent SNB at our institution were used for this analysis. The following clinicopathologic variables were considered: the patient's age and sex and the tumor's histological subtype, Breslow thickness, Clark level, ulceration, mitotic index, lymphocyte infiltration, regression, angiolymphatic invasion, microsatellitosis, and growth phase. The results of SVM-based prediction of SLN status were compared with those achieved with logistic regression. The SLN positivity rate was 22% (52 of 234). When the accuracy was > or = 80%, the negative predictive value, positive predictive value, specificity, and sensitivity were 98%, 54%, 94%, and 77% and 82%, 41%, 69%, and 93% by using SVM and logistic regression, respectively. Moreover, SVM and logistic regression were associated with a diagnostic error and an SNB percentage reduction of (1) 1% and 60% and (2) 15% and 73%, respectively. The results from this pilot study suggest that SVM-based prediction of SLN status might be evaluated as a prognostic method to avoid the SNB procedure in 60% of patients currently eligible, with a very low error rate. If validated in larger series, this strategy would lead to obvious advantages in terms of both patient quality of life and costs for the health care system.

  10. Evaluating the High Risk Groups for Suicide: A Comparison of Logistic Regression, Support Vector Machine, Decision Tree and Artificial Neural Network

    PubMed Central

    AMINI, Payam; AHMADINIA, Hasan; POOROLAJAL, Jalal; MOQADDASI AMIRI, Mohammad

    2016-01-01

    Background: We aimed to assess the high-risk group for suicide using different classification methods includinglogistic regression (LR), decision tree (DT), artificial neural network (ANN), and support vector machine (SVM). Methods: We used the dataset of a study conducted to predict risk factors of completed suicide in Hamadan Province, the west of Iran, in 2010. To evaluate the high-risk groups for suicide, LR, SVM, DT and ANN were performed. The applied methods were compared using sensitivity, specificity, positive predicted value, negative predicted value, accuracy and the area under curve. Cochran-Q test was implied to check differences in proportion among methods. To assess the association between the observed and predicted values, Ø coefficient, contingency coefficient, and Kendall tau-b were calculated. Results: Gender, age, and job were the most important risk factors for fatal suicide attempts in common for four methods. SVM method showed the highest accuracy 0.68 and 0.67 for training and testing sample, respectively. However, this method resulted in the highest specificity (0.67 for training and 0.68 for testing sample) and the highest sensitivity for training sample (0.85), but the lowest sensitivity for the testing sample (0.53). Cochran-Q test resulted in differences between proportions in different methods (P<0.001). The association of SVM predictions and observed values, Ø coefficient, contingency coefficient, and Kendall tau-b were 0.239, 0.232 and 0.239, respectively. Conclusion: SVM had the best performance to classify fatal suicide attempts comparing to DT, LR and ANN. PMID:27957463

  11. The combination of a histogram-based clustering algorithm and support vector machine for the diagnosis of osteoporosis.

    PubMed

    Kavitha, Muthu Subash; Asano, Akira; Taguchi, Akira; Heo, Min-Suk

    2013-09-01

    To prevent low bone mineral density (BMD), that is, osteoporosis, in postmenopausal women, it is essential to diagnose osteoporosis more precisely. This study presented an automatic approach utilizing a histogram-based automatic clustering (HAC) algorithm with a support vector machine (SVM) to analyse dental panoramic radiographs (DPRs) and thus improve diagnostic accuracy by identifying postmenopausal women with low BMD or osteoporosis. We integrated our newly-proposed histogram-based automatic clustering (HAC) algorithm with our previously-designed computer-aided diagnosis system. The extracted moment-based features (mean, variance, skewness, and kurtosis) of the mandibular cortical width for the radial basis function (RBF) SVM classifier were employed. We also compared the diagnostic efficacy of the SVM model with the back propagation (BP) neural network model. In this study, DPRs and BMD measurements of 100 postmenopausal women patients (aged >50 years), with no previous record of osteoporosis, were randomly selected for inclusion. The accuracy, sensitivity, and specificity of the BMD measurements using our HAC-SVM model to identify women with low BMD were 93.0% (88.0%-98.0%), 95.8% (91.9%-99.7%) and 86.6% (79.9%-93.3%), respectively, at the lumbar spine; and 89.0% (82.9%-95.1%), 96.0% (92.2%-99.8%) and 84.0% (76.8%-91.2%), respectively, at the femoral neck. Our experimental results predict that the proposed HAC-SVM model combination applied on DPRs could be useful to assist dentists in early diagnosis and help to reduce the morbidity and mortality associated with low BMD and osteoporosis.

  12. Software architecture standard for simulation virtual machine, version 2.0

    NASA Technical Reports Server (NTRS)

    Sturtevant, Robert; Wessale, William

    1994-01-01

    The Simulation Virtual Machine (SBM) is an Ada architecture which eases the effort involved in the real-time software maintenance and sustaining engineering. The Software Architecture Standard defines the infrastructure which all the simulation models are built from. SVM was developed for and used in the Space Station Verification and Training Facility.

  13. Application of Response Surface Methods To Determine Conditions for Optimal Genomic Prediction

    PubMed Central

    Howard, Réka; Carriquiry, Alicia L.; Beavis, William D.

    2017-01-01

    An epistatic genetic architecture can have a significant impact on prediction accuracies of genomic prediction (GP) methods. Machine learning methods predict traits comprised of epistatic genetic architectures more accurately than statistical methods based on additive mixed linear models. The differences between these types of GP methods suggest a diagnostic for revealing genetic architectures underlying traits of interest. In addition to genetic architecture, the performance of GP methods may be influenced by the sample size of the training population, the number of QTL, and the proportion of phenotypic variability due to genotypic variability (heritability). Possible values for these factors and the number of combinations of the factor levels that influence the performance of GP methods can be large. Thus, efficient methods for identifying combinations of factor levels that produce most accurate GPs is needed. Herein, we employ response surface methods (RSMs) to find the experimental conditions that produce the most accurate GPs. We illustrate RSM with an example of simulated doubled haploid populations and identify the combination of factors that maximize the difference between prediction accuracies of best linear unbiased prediction (BLUP) and support vector machine (SVM) GP methods. The greatest impact on the response is due to the genetic architecture of the population, heritability of the trait, and the sample size. When epistasis is responsible for all of the genotypic variance and heritability is equal to one and the sample size of the training population is large, the advantage of using the SVM method vs. the BLUP method is greatest. However, except for values close to the maximum, most of the response surface shows little difference between the methods. We also determined that the conditions resulting in the greatest prediction accuracy for BLUP occurred when genetic architecture consists solely of additive effects, and heritability is equal to one. PMID:28720710

  14. Using the Relevance Vector Machine Model Combined with Local Phase Quantization to Predict Protein-Protein Interactions from Protein Sequences.

    PubMed

    An, Ji-Yong; Meng, Fan-Rong; You, Zhu-Hong; Fang, Yu-Hong; Zhao, Yu-Jun; Zhang, Ming

    2016-01-01

    We propose a novel computational method known as RVM-LPQ that combines the Relevance Vector Machine (RVM) model and Local Phase Quantization (LPQ) to predict PPIs from protein sequences. The main improvements are the results of representing protein sequences using the LPQ feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classifier. We perform 5-fold cross-validation experiments on Yeast and Human datasets, and we achieve very high accuracies of 92.65% and 97.62%, respectively, which is significantly better than previous works. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the Yeast dataset. The experimental results demonstrate that our RVM-LPQ method is obviously better than the SVM-based method. The promising experimental results show the efficiency and simplicity of the proposed method, which can be an automatic decision support tool for future proteomics research.

  15. Progress in computational toxicology.

    PubMed

    Ekins, Sean

    2014-01-01

    Computational methods have been widely applied to toxicology across pharmaceutical, consumer product and environmental fields over the past decade. Progress in computational toxicology is now reviewed. A literature review was performed on computational models for hepatotoxicity (e.g. for drug-induced liver injury (DILI)), cardiotoxicity, renal toxicity and genotoxicity. In addition various publications have been highlighted that use machine learning methods. Several computational toxicology model datasets from past publications were used to compare Bayesian and Support Vector Machine (SVM) learning methods. The increasing amounts of data for defined toxicology endpoints have enabled machine learning models that have been increasingly used for predictions. It is shown that across many different models Bayesian and SVM perform similarly based on cross validation data. Considerable progress has been made in computational toxicology in a decade in both model development and availability of larger scale or 'big data' models. The future efforts in toxicology data generation will likely provide us with hundreds of thousands of compounds that are readily accessible for machine learning models. These models will cover relevant chemistry space for pharmaceutical, consumer product and environmental applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Automated detection of heart ailments from 12-lead ECG using complex wavelet sub-band bi-spectrum features.

    PubMed

    Tripathy, Rajesh Kumar; Dandapat, Samarendra

    2017-04-01

    The complex wavelet sub-band bi-spectrum (CWSB) features are proposed for detection and classification of myocardial infarction (MI), heart muscle disease (HMD) and bundle branch block (BBB) from 12-lead ECG. The dual tree CW transform of 12-lead ECG produces CW coefficients at different sub-bands. The higher-order CW analysis is used for evaluation of CWSB. The mean of the absolute value of CWSB, and the number of negative phase angle and the number of positive phase angle features from the phase of CWSB of 12-lead ECG are evaluated. Extreme learning machine and support vector machine (SVM) classifiers are used to evaluate the performance of CWSB features. Experimental results show that the proposed CWSB features of 12-lead ECG and the SVM classifier are successful for classification of various heart pathologies. The individual accuracy values for MI, HMD and BBB classes are obtained as 98.37, 97.39 and 96.40%, respectively, using SVM classifier and radial basis function kernel function. A comparison has also been made with existing 12-lead ECG-based cardiac disease detection techniques.

  17. Intrusion detection using rough set classification.

    PubMed

    Zhang, Lian-hua; Zhang, Guan-hua; Zhang, Jie; Bai, Ying-cai

    2004-09-01

    Recently machine learning-based intrusion detection approaches have been subjected to extensive researches because they can detect both misuse and anomaly. In this paper, rough set classification (RSC), a modern learning algorithm, is used to rank the features extracted for detecting intrusions and generate intrusion detection models. Feature ranking is a very critical step when building the model. RSC performs feature ranking before generating rules, and converts the feature ranking to minimal hitting set problem addressed by using genetic algorithm (GA). This is done in classical approaches using Support Vector Machine (SVM) by executing many iterations, each of which removes one useless feature. Compared with those methods, our method can avoid many iterations. In addition, a hybrid genetic algorithm is proposed to increase the convergence speed and decrease the training time of RSC. The models generated by RSC take the form of "IF-THEN" rules, which have the advantage of explication. Tests and comparison of RSC with SVM on DARPA benchmark data showed that for Probe and DoS attacks both RSC and SVM yielded highly accurate results (greater than 99% accuracy on testing set).

  18. Classifying machinery condition using oil samples and binary logistic regression

    NASA Astrophysics Data System (ADS)

    Phillips, J.; Cripps, E.; Lau, John W.; Hodkiewicz, M. R.

    2015-08-01

    The era of big data has resulted in an explosion of condition monitoring information. The result is an increasing motivation to automate the costly and time consuming human elements involved in the classification of machine health. When working with industry it is important to build an understanding and hence some trust in the classification scheme for those who use the analysis to initiate maintenance tasks. Typically "black box" approaches such as artificial neural networks (ANN) and support vector machines (SVM) can be difficult to provide ease of interpretability. In contrast, this paper argues that logistic regression offers easy interpretability to industry experts, providing insight to the drivers of the human classification process and to the ramifications of potential misclassification. Of course, accuracy is of foremost importance in any automated classification scheme, so we also provide a comparative study based on predictive performance of logistic regression, ANN and SVM. A real world oil analysis data set from engines on mining trucks is presented and using cross-validation we demonstrate that logistic regression out-performs the ANN and SVM approaches in terms of prediction for healthy/not healthy engines.

  19. High-performance Chinese multiclass traffic sign detection via coarse-to-fine cascade and parallel support vector machine detectors

    NASA Astrophysics Data System (ADS)

    Chang, Faliang; Liu, Chunsheng

    2017-09-01

    The high variability of sign colors and shapes in uncontrolled environments has made the detection of traffic signs a challenging problem in computer vision. We propose a traffic sign detection (TSD) method based on coarse-to-fine cascade and parallel support vector machine (SVM) detectors to detect Chinese warning and danger traffic signs. First, a region of interest (ROI) extraction method is proposed to extract ROIs using color contrast features in local regions. The ROI extraction can reduce scanning regions and save detection time. For multiclass TSD, we propose a structure that combines a coarse-to-fine cascaded tree with a parallel structure of histogram of oriented gradients (HOG) + SVM detectors. The cascaded tree is designed to detect different types of traffic signs in a coarse-to-fine process. The parallel HOG + SVM detectors are designed to do fine detection of different types of traffic signs. The experiments demonstrate the proposed TSD method can rapidly detect multiclass traffic signs with different colors and shapes in high accuracy.

  20. Terminator Detection by Support Vector Machine Utilizing aStochastic Context-Free Grammar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis-Lyon, Patricia; Cristianini, Nello; Holbrook, Stephen

    2006-12-30

    A 2-stage detector was designed to find rho-independent transcription terminators in the Escherichia coli genome. The detector includes a Stochastic Context Free Grammar (SCFG) component and a Support Vector Machine (SVM) component. To find terminators, the SCFG searches the intergenic regions of nucleotide sequence for local matches to a terminator grammar that was designed and trained utilizing examples of known terminators. The grammar selects sequences that are the best candidates for terminators and assigns them a prefix, stem-loop, suffix structure using the Cocke-Younger-Kasaami (CYK) algorithm, modified to incorporate energy affects of base pairing. The parameters from this inferred structure aremore » passed to the SVM classifier, which distinguishes terminators from non-terminators that score high according to the terminator grammar. The SVM was trained with negative examples drawn from intergenic sequences that include both featureless and RNA gene regions (which were assigned prefix, stem-loop, suffix structure by the SCFG), so that it successfully distinguishes terminators from either of these. The classifier was found to be 96.4% successful during testing.« less

Top