Science.gov

Sample records for machine tool design

  1. Circular machine design techniques and tools

    SciTech Connect

    Servranckx, R.V.; Brown, K.L.

    1986-04-01

    Some of the basic optics principles involved in the design of circular accelerators such as Alternating Gradient Synchrotrons, Storage and Collision Rings, and Pulse Stretcher Rings are outlined. Typical problems facing a designer are defined, and the main references and computational tools are reviewed that are presently available. Two particular classes of problems that occur typically in accelerator design are listed - global value problems, which affect the control of parameters which are characteristic of the complete closed circular machine, and local value problems. Basic mathematical formulae are given that are considered useful for a first draft of a design. The basic optics building blocks that can be used to formulate an initial machine design are introduced, giving only the elementary properties and transfer matrices only in one transverse plane. Solutions are presented for some first-order and second-order design problems. (LEW)

  2. Machine Learning: A Crucial Tool for Sensor Design.

    PubMed

    Zhao, Weixiang; Bhushan, Abhinav; Santamaria, Anthony D; Simon, Melinda G; Davis, Cristina E

    2008-12-01

    Sensors have been widely used for disease diagnosis, environmental quality monitoring, food quality control, industrial process analysis and control, and other related fields. As a key tool for sensor data analysis, machine learning is becoming a core part of novel sensor design. Dividing a complete machine learning process into three steps: data pre-treatment, feature extraction and dimension reduction, and system modeling, this paper provides a review of the methods that are widely used for each step. For each method, the principles and the key issues that affect modeling results are discussed. After reviewing the potential problems in machine learning processes, this paper gives a summary of current algorithms in this field and provides some feasible directions for future studies.

  3. Machine Learning: A Crucial Tool for Sensor Design

    PubMed Central

    Zhao, Weixiang; Bhushan, Abhinav; Santamaria, Anthony D.; Simon, Melinda G.; Davis, Cristina E.

    2009-01-01

    Sensors have been widely used for disease diagnosis, environmental quality monitoring, food quality control, industrial process analysis and control, and other related fields. As a key tool for sensor data analysis, machine learning is becoming a core part of novel sensor design. Dividing a complete machine learning process into three steps: data pre-treatment, feature extraction and dimension reduction, and system modeling, this paper provides a review of the methods that are widely used for each step. For each method, the principles and the key issues that affect modeling results are discussed. After reviewing the potential problems in machine learning processes, this paper gives a summary of current algorithms in this field and provides some feasible directions for future studies. PMID:20191110

  4. Machine Tool Software

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.

  5. Technology and Jobs: Computer-Aided Design. Numerical-Control Machine-Tool Operators. Office Automation.

    ERIC Educational Resources Information Center

    Stanton, Michael; And Others

    1985-01-01

    Three reports on the effects of high technology on the nature of work include (1) Stanton on applications and implications of computer-aided design for engineers, drafters, and architects; (2) Nardone on the outlook and training of numerical-control machine tool operators; and (3) Austin and Drake on the future of clerical occupations in automated…

  6. Machine tool locator

    DOEpatents

    Hanlon, John A.; Gill, Timothy J.

    2001-01-01

    Machine tools can be accurately measured and positioned on manufacturing machines within very small tolerances by use of an autocollimator on a 3-axis mount on a manufacturing machine and positioned so as to focus on a reference tooling ball or a machine tool, a digital camera connected to the viewing end of the autocollimator, and a marker and measure generator for receiving digital images from the camera, then displaying or measuring distances between the projection reticle and the reference reticle on the monitoring screen, and relating the distances to the actual position of the autocollimator relative to the reference tooling ball. The images and measurements are used to set the position of the machine tool and to measure the size and shape of the machine tool tip, and examine cutting edge wear. patent

  7. IB: a Monte Carlo Simulation Tool for Neutron Scattering Instrument Design under Parallel Virtual Machine

    SciTech Connect

    Zhao, Jinkui

    2011-01-01

    IB is a Monte Carlo simulation tool for aiding neutron scattering instrument designs. It is written in C++ and implemented under Parallel Virtual Machine. The program has a few basic components, or modules, that can be used to build a virtual neutron scattering instrument. More complex components, such as neutron guides and multichannel beam benders, can be constructed using the grouping technique unique to IB. Users can specify a collection of modules as a group. For example, a neutron guide can be constructed by grouping four neutron mirrors together that make up the four sides of the guide. IB s simulation engine ensures that neutrons entering a group will be properly operated upon by all members of the group. For simulations that require higher computer speed, the program can be run in parallel mode under the PVM architecture. Initially, the program was written for designing instruments on pulsed neutron sources, it has since been used to simulate reactor based instruments as well.

  8. Machine Tool Operation, Course Description.

    ERIC Educational Resources Information Center

    Denny, Walter E.; Anderson, Floyd L.

    Prepared by an instructor and curriculum specialists, this course of study was designed to meet the individual needs of the dropout and/or hard-core unemployed youth by providing them skill training, related information, and supportive services knowledge in machine tool operation. The achievement level of each student is determined at entry, and…

  9. Applying CBR to machine tool product configuration design oriented to customer requirements

    NASA Astrophysics Data System (ADS)

    Wang, Pengjia; Gong, Yadong; Xie, Hualong; Liu, Yongxian; Nee, Andrew Yehching

    2017-01-01

    Product customization is a trend in the current market-oriented manufacturing environment. However, deduction from customer requirements to design results and evaluation of design alternatives are still heavily reliant on the designer's experience and knowledge. To solve the problem of fuzziness and uncertainty of customer requirements in product configuration, an analysis method based on the grey rough model is presented. The customer requirements can be converted into technical characteristics effectively. In addition, an optimization decision model for product planning is established to help the enterprises select the key technical characteristics under the constraints of cost and time to serve the customer to maximal satisfaction. A new case retrieval approach that combines the self-organizing map and fuzzy similarity priority ratio method is proposed in case-based design. The self-organizing map can reduce the retrieval range and increase the retrieval efficiency, and the fuzzy similarity priority ratio method can evaluate the similarity of cases comprehensively. To ensure that the final case has the best overall performance, an evaluation method of similar cases based on grey correlation analysis is proposed to evaluate similar cases to select the most suitable case. Furthermore, a computer-aided system is developed using MATLAB GUI to assist the product configuration design. The actual example and result on an ETC series machine tool product show that the proposed method is effective, rapid and accurate in the process of product configuration. The proposed methodology provides a detailed instruction for the product configuration design oriented to customer requirements.

  10. Automatically-Programed Machine Tools

    NASA Technical Reports Server (NTRS)

    Purves, L.; Clerman, N.

    1985-01-01

    Software produces cutter location files for numerically-controlled machine tools. APT, acronym for Automatically Programed Tools, is among most widely used software systems for computerized machine tools. APT developed for explicit purpose of providing effective software system for programing NC machine tools. APT system includes specification of APT programing language and language processor, which executes APT statements and generates NC machine-tool motions specified by APT statements.

  11. Axiomatic Design and Fabrication of Composite Structures - Applications in Robots, Machine Tools, and Automobiles

    NASA Astrophysics Data System (ADS)

    Lee, Dai Gil; Suh, Nam Pyo

    2005-11-01

    The idea that materials can be designed to satisfy specific performance requirements is relatively new. With high-performance composites, however, the entire process of designing and fabricating a part can be worked out before manufacturing. The purpose of this book is to present an integrated approach to the design and manufacturing of products from advanced composites. It shows how the basic behavior of composites and their constitutive relationships can be used during the design stage, which minimizes the complexity of manufacturing composite parts and reduces the repetitive "design-build-test" cycle. Designing it right the first time is going to determine the competitiveness of a company, the reliability of the part, the robustness of fabrication processes, and ultimately, the cost and development time of composite parts. Most of all, it should expand the use of advanced composite parts in fields that use composites only to a limited extent at this time. To achieve these goals, this book presents the design and fabrication of novel composite parts made for machine tools and other applications like robots and automobiles. This book is suitable as a textbook for graduate courses in the design and fabrication of composites. It will also be of interest to practicing engineers learning about composites and axiomatic design. A CD-ROM is included in every copy of the book, containing Axiomatic CLPT software. This program, developed by the authors, will assist readers in calculating material properties from the microstructure of the composite. This book is part of the Oxford Series on Advanced Manufacturing.

  12. Hinged Shields for Machine Tools

    NASA Technical Reports Server (NTRS)

    Lallande, J. B.; Poland, W. W.; Tull, S.

    1985-01-01

    Flaps guard against flying chips, but fold away for tool setup. Clear plastic shield in position to intercept flying chips from machine tool and retracted to give operator access to workpiece. Machine shops readily make such shields for own use.

  13. Intelligent Adaptive Interface: A Design Tool for Enhancing Human-Machine System Performances

    DTIC Science & Technology

    2009-10-01

    environment) Monitoring • OMI Design Guidelines • Automation-design Principles • OMI Design Guidelines • HCI Principles Adapt OMI Automate / Aid...technical systems, there is still a lack of well-established design guidelines for these human-machine systems, especially for advanced operator...Additionally, a lack of integration between the Human Factors (HF) and Human Computer Interaction ( HCI ) domains has increased the tendency for terminology

  14. Automatic tool changer for laser machining centers

    NASA Astrophysics Data System (ADS)

    Borgstrom, Robert

    1993-08-01

    In order to improve flexibility when changing between different laser processing workheads we have developed an automatic tool changer for laser machining centers. This tool system was designed for large multi axis machines such as gantries suitable for three-dimensional processing, but can also be used for other types of laser operations like robots for example. The system also offers the possibility to combine laser processing with deburring and milling on the same machine.

  15. Diamond machine tool face lapping machine

    DOEpatents

    Yetter, H.H.

    1985-05-06

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  16. National Machine Tool Partnership (NMTP) FY 1998

    SciTech Connect

    1997-12-01

    The Department of Energy (DOE) Defense Programs (DP) National Machine Tool Partnership (NMTP) program has been active since February 1993. The NMTP program is an element of the DP Technology Partnership Program. The NMTP has assisted the Association of Manufacturing Technology (AMT) in the formulation of a technology roadmap for the machine tool industry. This roadmap has been developed to provide a clearer step-by-step plan for technology development and implementation to help close the gap between user requirements and industry implementation. The document outlines a suggested path for the development of technologies for the machine tool industry. The plan details the technology issues or needs analysis facing the machine tool industry. In a parallel effort, the NMTP has prepared a needs analysis of machine tool related technologies needed in various DP laboratory weapons core programs, including the Advanced Design and Production Technologies (ADaPT) initiative.

  17. Slide system for machine tools

    DOEpatents

    Douglass, Spivey S.; Green, Walter L.

    1982-01-01

    The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.

  18. Slide system for machine tools

    DOEpatents

    Douglass, S.S.; Green, W.L.

    1980-06-12

    The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.

  19. Interferometric study of a machine tool

    NASA Astrophysics Data System (ADS)

    Hoefling, Roland; Vaclavik, Jaroslav; Neigebauer, Reimund

    1996-09-01

    This paper describes the use of a non-destructive optical technique, digital speckle pattern interferometry, for the deformation analysis of a machine tool. An interferometric set-up has been designed and measurements of the milling head deformation have been made on the horizontal single spindle milling machine center.

  20. Vibration absorber modeling for handheld machine tool

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohd Azman; Mustafa, Mohd Muhyiddin; Jamil, Jazli Firdaus; Salim, Mohd Azli; Ramli, Faiz Redza

    2015-05-01

    Handheld machine tools produce continuous vibration to the users during operation. This vibration causes harmful effects to the health of users for repeated operations in a long period of time. In this paper, a dynamic vibration absorber (DVA) is designed and modeled to reduce the vibration generated by the handheld machine tool. Several designs and models of vibration absorbers with various stiffness properties are simulated, tested and optimized in order to diminish the vibration. Ordinary differential equation is used to derive and formulate the vibration phenomena in the machine tool with and without the DVA. The final transfer function of the DVA is later analyzed using commercial available mathematical software. The DVA with optimum properties of mass and stiffness is developed and applied on the actual handheld machine tool. The performance of the DVA is experimentally tested and validated by the final result of vibration reduction.

  1. Improved tool grinding machine

    DOEpatents

    Dial, C.E. Sr.

    The present invention relates to an improved tool grinding mechanism for grinding single point diamond cutting tools to precise roundness and radius specifications. The present invention utilizes a tool holder which is longitudinally displaced with respect to the remainder of the grinding system due to contact of the tool with the grinding surface with this displacement being monitored so that any variation in the grinding of the cutting surface such as caused by crystal orientation or tool thicknesses may be compensated for during the grinding operation to assure the attainment of the desired cutting tool face specifications.

  2. Tool grinding machine

    DOEpatents

    Dial, Sr., Charles E.

    1980-01-01

    The present invention relates to an improved tool grinding mechanism for grinding single point diamond cutting tools to precise roundness and radius specifications. The present invention utilizes a tool holder which is longitudinally displaced with respect to the remainder of the grinding system due to contact of the tool with the grinding surface with this displacement being monitored so that any variation in the grinding of the cutting surface such as caused by crystal orientation or tool thickness may be compensated for during the grinding operation to assure the attainment of the desired cutting tool face specifications.

  3. The design and control of linear bidirectional stepping motors - Application to machine tools

    NASA Astrophysics Data System (ADS)

    Petrizza, N.

    Theoretical modeling and the results of operation of a model linear stepping motor for producing rapid in-plane translation in machining operations are presented. The theory of linear induction motors and their current implementation in the stepping mode are reviewed. A finite element method is developed for optimizing the contact stud shape through calculation of the magnetic fields and forces the motor experiences in static condition. An investigation into the characteristics of the air cushion which inhibits the motor from contacting the base is reported. Direct control with a microprocessor is described, including programming with an acceleration period at the beginning and deceleration at the end of each motion using circular and linear interpolations to obtain linear and circular motor displacements in the plane. Comparisons between linear step motors with variable reluctance and hybrid motors are made.

  4. The U.S. Machine Tool Industry

    DTIC Science & Technology

    1993-04-01

    tool industry production cycles. The industry can improve its competitive posture by expanding from regional markets into the global market , increasing...indus- try by modifying or abolishing laws which disincentivize investment and pose barriers to entry into foreign markets . 1993 Executive Research...built on a machine tool or on a machine made by a machine tool.’ Losman & Liang, 1990 The machine tool industry has seen a decline in the U.S. market

  5. Standardized Curriculum for Machine Tool Operation/Machine Shop.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized vocational education course titles and core contents for two courses in Mississippi are provided: machine tool operation/machine shop I and II. The first course contains the following units: (1) orientation; (2) shop safety; (3) shop math; (4) measuring tools and instruments; (5) hand and bench tools; (6) blueprint reading; (7)…

  6. Computer-Aided Drafting and Design Series. Educational Resources for the Machine Tool Industry, Course Syllabi, [and] Instructor's Handbook. Student Laboratory Manual.

    ERIC Educational Resources Information Center

    Texas State Technical Coll. System, Waco.

    This package consists of course syllabi, an instructor's handbook, and a student laboratory manual for a 2-year vocational training program to prepare students for entry-level employment in computer-aided drafting and design in the machine tool industry. The program was developed through a modification of the DACUM (Developing a Curriculum)…

  7. Computer Aided Drafting and Design, Industrial Manufacturing Technician, and Mechanical Engineering Technician and Machine Tool, Die and Moldmaking Technology. Tech Prep Competency Profile.

    ERIC Educational Resources Information Center

    Mid-East Ohio Tech Prep Consortium, Zanesville.

    This document contains competency profiles in four areas: computer-aided drafting and design; industrial manufacturing technician; mechanical engineering technician; and machine tool, die, and moldmaking technology occupations. The profiles are intended for use in articulating tech prep programs from high school through associate degrees in Ohio.…

  8. ATST telescope mount: telescope of machine tool

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  9. Machine tools and fixtures: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    As part of NASA's Technology Utilizations Program, a compilation was made of technological developments regarding machine tools, jigs, and fixtures that have been produced, modified, or adapted to meet requirements of the aerospace program. The compilation is divided into three sections that include: (1) a variety of machine tool applications that offer easier and more efficient production techniques; (2) methods, techniques, and hardware that aid in the setup, alignment, and control of machines and machine tools to further quality assurance in finished products: and (3) jigs, fixtures, and adapters that are ancillary to basic machine tools and aid in realizing their greatest potential.

  10. Attaching Chuck Keys to Machine Tools

    NASA Technical Reports Server (NTRS)

    Richardson, V.

    1984-01-01

    Chuck keys attached to portable machine tools by retracting lanyards. Lanyard held taut by recoil caddy attached to tool base. Chuck key available for use when needed and safely secured during operation of tool.

  11. How To Teach Common Characteristics of Machine Tools

    ERIC Educational Resources Information Center

    Kazanas, H. C.

    1970-01-01

    Organizes machine tools and machine operations into commonalities in order to help the student visualize and distinguish the common characteristics which exist between machine tools and operations. (GR)

  12. Chip breaking system for automated machine tool

    DOEpatents

    Arehart, Theodore A.; Carey, Donald O.

    1987-01-01

    The invention is a rotary selectively directional valve assembly for use in an automated turret lathe for directing a stream of high pressure liquid machining coolant to the interface of a machine tool and workpiece for breaking up ribbon-shaped chips during the formation thereof so as to inhibit scratching or other marring of the machined surfaces by these ribbon-shaped chips. The valve assembly is provided by a manifold arrangement having a plurality of circumferentially spaced apart ports each coupled to a machine tool. The manifold is rotatable with the turret when the turret is positioned for alignment of a machine tool in a machining relationship with the workpiece. The manifold is connected to a non-rotational header having a single passageway therethrough which conveys the high pressure coolant to only the port in the manifold which is in registry with the tool disposed in a working relationship with the workpiece. To position the machine tools the turret is rotated and one of the tools is placed in a material-removing relationship of the workpiece. The passageway in the header and one of the ports in the manifold arrangement are then automatically aligned to supply the machining coolant to the machine tool workpiece interface for breaking up of the chips as well as cooling the tool and workpiece during the machining operation.

  13. USSR Report Machine Tools and Metalworking Equipment.

    DTIC Science & Technology

    2007-11-02

    CONTROLLED SYSTEMS, COMPUTERS AND GEARS . SOLVING THESE AND OTHER TECHNICAL QUESTIONS IS MOST DIRECTLY RELATED TO THE TECHNOLOGICAL LEVEL AND...SOVET- SKAYA LITVA readers that these enterprises produce high-precision machine tools: gear hobbing machines, cylindrical grinding machines...Tashkent. Taking part in this meeting are representa- tives of Bulgaria, Hungary, Cuba, Poland , Romania, Czechoslovakia, the USSR and Yugoslavia. The

  14. [Research on infrared safety protection system for machine tool].

    PubMed

    Zhang, Shuan-Ji; Zhang, Zhi-Ling; Yan, Hui-Ying; Wang, Song-De

    2008-04-01

    In order to ensure personal safety and prevent injury accident in machine tool operation, an infrared machine tool safety system was designed with infrared transmitting-receiving module, memory self-locked relay and voice recording-playing module. When the operator does not enter the danger area, the system has no response. Once the operator's whole or part of body enters the danger area and shades the infrared beam, the system will alarm and output an control signal to the machine tool executive element, and at the same time, the system makes the machine tool emergency stop to prevent equipment damaged and person injured. The system has a module framework, and has many advantages including safety, reliability, common use, circuit simplicity, maintenance convenience, low power consumption, low costs, working stability, easy debugging, vibration resistance and interference resistance. It is suitable for being installed and used in different machine tools such as punch machine, pour plastic machine, digital control machine, armor plate cutting machine, pipe bending machine, oil pressure machine etc.

  15. USSR Report: Machine Tools and Metalworking Equipment.

    DTIC Science & Technology

    2007-11-02

    Semiautomatic Machines"^] fText"] The automatic nonsynchronous LA-1 line is designed to assemble four modifications of brake valves. The products are...size linear angular measuring tool. A sliding caliper up to two meters long, a micrometer of one-half meter and more. How many of them are piled up...required a large-size vernier caliper , literally for only a few days. It used to take a month to find out who had one when we needed to borrow one

  16. Method for machining steel with diamond tools

    DOEpatents

    Casstevens, J.M.

    1984-01-01

    The present invention is directed to a method for machine optical quality finishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  17. Method for machining steel with diamond tools

    DOEpatents

    Casstevens, John M.

    1986-01-01

    The present invention is directed to a method for machining optical quality inishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  18. Speed-Selector Guard For Machine Tool

    NASA Technical Reports Server (NTRS)

    Shakhshir, Roda J.; Valentine, Richard L.

    1992-01-01

    Simple guardplate prevents accidental reversal of direction of rotation or sudden change of speed of lathe, milling machine, or other machine tool. Custom-made for specific machine and control settings. Allows control lever to be placed at only one setting. Operator uses handle to slide guard to engage or disengage control lever. Protects personnel from injury and equipment from damage occurring if speed- or direction-control lever inadvertently placed in wrong position.

  19. Machine Tool Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course to prepare machine tool, drill press, grinding machine, lathe, mill, and/or power saw operators. The listing is divided into six sections, with each one outlining the tasks required to perform the duties that have been identified for the given occupation.…

  20. Numerically Controlled Machine Tools and Worker Skills.

    ERIC Educational Resources Information Center

    Keefe, Jeffrey H.

    1991-01-01

    Analysis of data from "Industry Wage Surveys of Machinery Manufacturers" on the skill levels of 57 machining jobs found that introduction of numerically controlled machine tools has resulted in a very small reduction in skill levels or no significant change, supporting neither the deskilling argument nor argument that skill levels…

  1. Machine learning: an indispensable tool in bioinformatics.

    PubMed

    Inza, Iñaki; Calvo, Borja; Armañanzas, Rubén; Bengoetxea, Endika; Larrañaga, Pedro; Lozano, José A

    2010-01-01

    The increase in the number and complexity of biological databases has raised the need for modern and powerful data analysis tools and techniques. In order to fulfill these requirements, the machine learning discipline has become an everyday tool in bio-laboratories. The use of machine learning techniques has been extended to a wide spectrum of bioinformatics applications. It is broadly used to investigate the underlying mechanisms and interactions between biological molecules in many diseases, and it is an essential tool in any biomarker discovery process. In this chapter, we provide a basic taxonomy of machine learning algorithms, and the characteristics of main data preprocessing, supervised classification, and clustering techniques are shown. Feature selection, classifier evaluation, and two supervised classification topics that have a deep impact on current bioinformatics are presented. We make the interested reader aware of a set of popular web resources, open source software tools, and benchmarking data repositories that are frequently used by the machine learning community.

  2. Refrigerated cutting tools improve machining of superalloys

    NASA Technical Reports Server (NTRS)

    Dudley, G. M.

    1971-01-01

    Freon-12 applied to tool cutting edge evaporates quickly, leaves no residue, and permits higher cutting rate than with conventional coolants. This technique increases cutting rate on Rene-41 threefold and improves finish of machined surface.

  3. Laboratory directed research and development final report: Intelligent tools for on-machine acceptance of precision machined components

    SciTech Connect

    Christensen, N.G.; Harwell, L.D.; Hazelton, A.

    1997-02-01

    On-Machine Acceptance (OMA) is an agile manufacturing concept being developed for machine tools at SNL. The concept behind OMA is the integration of product design, fabrication, and qualification processes by using the machining center as a fabrication and inspection tool. This report documents the final results of a Laboratory Directed Research and Development effort to qualify OMA.

  4. Lathe tool bit and holder for machining fiberglass materials

    NASA Technical Reports Server (NTRS)

    Winn, L. E. (Inventor)

    1972-01-01

    A lathe tool and holder combination for machining resin impregnated fiberglass cloth laminates is described. The tool holder and tool bit combination is designed to accommodate a conventional carbide-tipped, round shank router bit as the cutting medium, and provides an infinite number of cutting angles in order to produce a true and smooth surface in the fiberglass material workpiece with every pass of the tool bit. The technique utilizes damaged router bits which ordinarily would be discarded.

  5. Principles and techniques for designing precision machines

    SciTech Connect

    Hale, Layton Carter

    1999-02-01

    This thesis is written to advance the reader's knowledge of precision-engineering principles and their application to designing machines that achieve both sufficient precision and minimum cost. It provides the concepts and tools necessary for the engineer to create new precision machine designs. Four case studies demonstrate the principles and showcase approaches and solutions to specific problems that generally have wider applications. These come from projects at the Lawrence Livermore National Laboratory in which the author participated: the Large Optics Diamond Turning Machine, Accuracy Enhancement of High- Productivity Machine Tools, the National Ignition Facility, and Extreme Ultraviolet Lithography. Although broad in scope, the topics go into sufficient depth to be useful to practicing precision engineers and often fulfill more academic ambitions. The thesis begins with a chapter that presents significant principles and fundamental knowledge from the Precision Engineering literature. Following this is a chapter that presents engineering design techniques that are general and not specific to precision machines. All subsequent chapters cover specific aspects of precision machine design. The first of these is Structural Design, guidelines and analysis techniques for achieving independently stiff machine structures. The next chapter addresses dynamic stiffness by presenting several techniques for Deterministic Damping, damping designs that can be analyzed and optimized with predictive results. Several chapters present a main thrust of the thesis, Exact-Constraint Design. A main contribution is a generalized modeling approach developed through the course of creating several unique designs. The final chapter is the primary case study of the thesis, the Conceptual Design of a Horizontal Machining Center.

  6. Parallel machine architecture and compiler design facilities

    NASA Technical Reports Server (NTRS)

    Kuck, David J.; Yew, Pen-Chung; Padua, David; Sameh, Ahmed; Veidenbaum, Alex

    1990-01-01

    The objective is to provide an integrated simulation environment for studying and evaluating various issues in designing parallel systems, including machine architectures, parallelizing compiler techniques, and parallel algorithms. The status of Delta project (which objective is to provide a facility to allow rapid prototyping of parallelized compilers that can target toward different machine architectures) is summarized. Included are the surveys of the program manipulation tools developed, the environmental software supporting Delta, and the compiler research projects in which Delta has played a role.

  7. Automatic Calibration Of Manual Machine Tools

    NASA Technical Reports Server (NTRS)

    Gurney, Rex D.

    1990-01-01

    Modified scheme uses data from multiple positions and eliminates tedious positioning. Modification of computer program adapts calibration system for convenient use with manually-controlled machine tools. Developed for use on computer-controlled tools. Option added to calibration program allows data on random tool-axis positions to be entered manually into computer for reduction. Instead of setting axis to predetermined positions, operator merely sets it at variety of arbitrary positions.

  8. Laser measuring system for large machine tools

    NASA Astrophysics Data System (ADS)

    Wessel, L. E.; Brazys, D.

    1982-08-01

    With development of the Laser Interferometer, it was envisioned that older existing machine tools could be up-graded by retrofitting them with laser Interferometer Measuring Systems. The Laser Interferometer provides the machine tool industry with a high accuracy length standard. The accuracy of the Interferometer is determined by the laser wave length which is known within 0.5 parts per million. This degree of accuracy is more than adequate for most machine tool measuring, calibration and inspection requirements. In conclusion, the Laser Measuring System presently available is not recommended for general implementation at this time. Results of this work indicate that the equipment and installation cost are very high and pay back would be very slow. Also, the reliability of the electronic components is in need of improvement. The system requires frequent realignment and maintenance due to it's lack of toleration to "Shop Floor' conditions.

  9. Sine-Bar Attachment For Machine Tools

    NASA Technical Reports Server (NTRS)

    Mann, Franklin D.

    1988-01-01

    Sine-bar attachment for collets, spindles, and chucks helps machinists set up quickly for precise angular cuts that require greater precision than provided by graduations of machine tools. Machinist uses attachment to index head, carriage of milling machine or lathe relative to table or turning axis of tool. Attachment accurate to 1 minute or arc depending on length of sine bar and precision of gauge blocks in setup. Attachment installs quickly and easily on almost any type of lathe or mill. Requires no special clamps or fixtures, and eliminates many trial-and-error measurements. More stable than improvised setups and not jarred out of position readily.

  10. Heavy Machine-Tool Construction for 50 Years,

    DTIC Science & Technology

    1984-01-17

    centers 2700 mm. The plant im. Sedin (Krasnodar) in 1940 manufactured two-strut turning-and- boring machine tool with a diameter of processing 2000 mm...beginning of the war horizontal- boring machine tool with a diameter of spindle 110 mm for the boring of holes with a diameter of up to 500 mm. The...second machine tool. Then the production of heavy turning-and- boring machine tools was transmitted to the Kolomna plant of heavy machine-tool

  11. Machine-Tool Technology Instructor's Sourcebook.

    ERIC Educational Resources Information Center

    Tammer, Anthony M.

    This document lists and annotates commercial and noncommercial resources pertaining to machine-tool technology. Following an introduction that explains how the document came to be written, the subjects of succeeding chapters are (1) periodicals; (2) associations; (3) audiovisual resources, including a subject index; (4) publishers, including a…

  12. Development of Machine Learning Tools in ROOT

    NASA Astrophysics Data System (ADS)

    Gleyzer, S. V.; Moneta, L.; Zapata, Omar A.

    2016-10-01

    ROOT is a framework for large-scale data analysis that provides basic and advanced statistical methods used by the LHC experiments. These include machine learning algorithms from the ROOT-integrated Toolkit for Multivariate Analysis (TMVA). We present several recent developments in TMVA, including a new modular design, new algorithms for variable importance and cross-validation, interfaces to other machine-learning software packages and integration of TMVA with Jupyter, making it accessible with a browser.

  13. The role of sensors in the accuracy of machine tools

    SciTech Connect

    McClure, E.R.

    1988-07-26

    Accuracy of machine tools is impossible without the assistance of sensors. The original manufacturers employed human senses, especially touch and sight, to enable the human brain to control manufacturing processes. Gradually, manufacturers found artificial means to overcome the limitations of human senses. More recently, manufacturers began to employ artificial means to overcome the limitations of the human brain to effect control of manufacturing processes. The resultant array of sensors and computers, coupled with artificial means to overcome the limitations of human skeletons and muscles is embodied in modern machine tools. The evolution continues, resulting in increasing human capacity to create and replicate products. Machine tools are used to make products, are assembled with products and are products themselves. Consequently, sensors play a role in both the manufacture and the use of machine tools. In order to fully manage the design, manufacture and operation of precise and accurate machine tools, engineers must examine and understand the nature of sources of errors and imperfections. Many errors are not directly measurable, e.g., thermal effects. Consequently, control of such errors requires that engineers base the selection and use of sensors on an understanding of the underlying cause and effect relationship. 15 refs., 4 figs.

  14. A Real-Time Tool Positioning Sensor for Machine-Tools

    PubMed Central

    Ruiz, Antonio Ramon Jimenez; Rosas, Jorge Guevara; Granja, Fernando Seco; Honorato, Jose Carlos Prieto; Taboada, Jose Juan Esteve; Serrano, Vicente Mico; Jimenez, Teresa Molina

    2009-01-01

    In machining, natural oscillations, and elastic, gravitational or temperature deformations, are still a problem to guarantee the quality of fabricated parts. In this paper we present an optical measurement system designed to track and localize in 3D a reference retro-reflector close to the machine-tool's drill. The complete system and its components are described in detail. Several tests, some static (including impacts and rotations) and others dynamic (by executing linear and circular trajectories), were performed on two different machine tools. It has been integrated, for the first time, a laser tracking system into the position control loop of a machine-tool. Results indicate that oscillations and deformations close to the tool can be estimated with micrometric resolution and a bandwidth from 0 to more than 100 Hz. Therefore this sensor opens the possibility for on-line compensation of oscillations and deformations. PMID:22408472

  15. A real-time tool positioning sensor for machine-tools.

    PubMed

    Ruiz, Antonio Ramon Jimenez; Rosas, Jorge Guevara; Granja, Fernando Seco; Honorato, Jose Carlos Prieto; Taboada, Jose Juan Esteve; Serrano, Vicente Mico; Jimenez, Teresa Molina

    2009-01-01

    In machining, natural oscillations, and elastic, gravitational or temperature deformations, are still a problem to guarantee the quality of fabricated parts. In this paper we present an optical measurement system designed to track and localize in 3D a reference retro-reflector close to the machine-tool's drill. The complete system and its components are described in detail. Several tests, some static (including impacts and rotations) and others dynamic (by executing linear and circular trajectories), were performed on two different machine tools. It has been integrated, for the first time, a laser tracking system into the position control loop of a machine-tool. Results indicate that oscillations and deformations close to the tool can be estimated with micrometric resolution and a bandwidth from 0 to more than 100 Hz. Therefore this sensor opens the possibility for on-line compensation of oscillations and deformations.

  16. Machine tool accuracy characterization workshops. Final report, May 5, 1992--November 5 1993

    SciTech Connect

    1995-01-06

    The ability to assess the accuracy of machine tools is required by both tool builders and users. Builders must have this ability in order to predict the accuracy capability of a machine tool for different part geometry`s, to provide verifiable accuracy information for sales purposes, and to locate error sources for maintenance, troubleshooting, and design enhancement. Users require the same ability in order to make intelligent choices in selecting or procuring machine tools, to predict component manufacturing accuracy, and to perform maintenance and troubleshooting. In both instances, the ability to fully evaluate the accuracy capabilities of a machine tool and the source of its limitations is essential for using the tool to its maximum accuracy and productivity potential. This project was designed to transfer expertise in modern machine tool accuracy testing methods from LLNL to US industry, and to educate users on the use and application of emerging standards for machine tool performance testing.

  17. MOD Tool (Microwave Optics Design Tool)

    NASA Technical Reports Server (NTRS)

    Katz, Daniel S.; Borgioli, Andrea; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.

    1999-01-01

    The Jet Propulsion Laboratory (JPL) is currently designing and building a number of instruments that operate in the microwave and millimeter-wave bands. These include MIRO (Microwave Instrument for the Rosetta Orbiter), MLS (Microwave Limb Sounder), and IMAS (Integrated Multispectral Atmospheric Sounder). These instruments must be designed and built to meet key design criteria (e.g., beamwidth, gain, pointing) obtained from the scientific goals for the instrument. These criteria are frequently functions of the operating environment (both thermal and mechanical). To design and build instruments which meet these criteria, it is essential to be able to model the instrument in its environments. Currently, a number of modeling tools exist. Commonly used tools at JPL include: FEMAP (meshing), NASTRAN (structural modeling), TRASYS and SINDA (thermal modeling), MACOS/IMOS (optical modeling), and POPO (physical optics modeling). Each of these tools is used by an analyst, who models the instrument in one discipline. The analyst then provides the results of this modeling to another analyst, who continues the overall modeling in another discipline. There is a large reengineering task in place at JPL to automate and speed-up the structural and thermal modeling disciplines, which does not include MOD Tool. The focus of MOD Tool (and of this paper) is in the fields unique to microwave and millimeter-wave instrument design. These include initial design and analysis of the instrument without thermal or structural loads, the automation of the transfer of this design to a high-end CAD tool, and the analysis of the structurally deformed instrument (due to structural and/or thermal loads). MOD Tool is a distributed tool, with a database of design information residing on a server, physical optics analysis being performed on a variety of supercomputer platforms, and a graphical user interface (GUI) residing on the user's desktop computer. The MOD Tool client is being developed using Tcl

  18. USSR Report, Machine Tools and Metalworking Equipment

    DTIC Science & Technology

    2007-11-02

    engineers-technologists. Nevertheless, they must be trained to prepare control programs and handle new generations of NC machine tools and RTK. The... microcomputer -based control system planned for introduc- tion in late 1985. New administrative approaches have also been developed to allow rapid and...PVI-125B starter on single -crankshaft and hydraulic presses. The line is a complex of mechanisms with a controlled linkage. It contains the following

  19. Mechanical design of walking machines.

    PubMed

    Arikawa, Keisuke; Hirose, Shigeo

    2007-01-15

    The performance of existing actuators, such as electric motors, is very limited, be it power-weight ratio or energy efficiency. In this paper, we discuss the method to design a practical walking machine under this severe constraint with focus on two concepts, the gravitationally decoupled actuation (GDA) and the coupled drive. The GDA decouples the driving system against the gravitational field to suppress generation of negative power and improve energy efficiency. On the other hand, the coupled drive couples the driving system to distribute the output power equally among actuators and maximize the utilization of installed actuator power. First, we depict the GDA and coupled drive in detail. Then, we present actual machines, TITAN-III and VIII, quadruped walking machines designed on the basis of the GDA, and NINJA-I and II, quadruped wall walking machines designed on the basis of the coupled drive. Finally, we discuss walking machines that travel on three-dimensional terrain (3D terrain), which includes the ground, walls and ceiling. Then, we demonstrate with computer simulation that we can selectively leverage GDA and coupled drive by walking posture control.

  20. An investigation of chatter and tool wear when machining titanium

    NASA Technical Reports Server (NTRS)

    Sutherland, I. A.

    1974-01-01

    The low thermal conductivity of titanium, together with the low contact area between chip and tool and the unusually high chip velocities, gives rise to high tool tip temperatures and accelerated tool wear. Machining speeds have to be considerably reduced to avoid these high temperatures with a consequential loss of productivity. Restoring this lost productivity involves increasing other machining variables, such as feed and depth-of-cut, and can lead to another machining problem commonly known as chatter. This work is to acquaint users with these problems, to examine the variables that may be encountered when machining a material like titanium, and to advise the machine tool user on how to maximize the output from the machines and tooling available to him. Recommendations are made on ways of improving tolerances, reducing machine tool instability or chatter, and improving productivity. New tool materials, tool coatings, and coolants are reviewed and their relevance examined when machining titanium.

  1. Laser Alignment Techniques For Simultaneous Machine Tool Geometric Error Detection

    NASA Astrophysics Data System (ADS)

    Ni, J.; Wu, S. M.

    1989-01-01

    An optical measurement system has been developed for the simultaneous detection of multiple geometric error components of machine tools. The system is designed based upon laser alignment techniques where laser beams are used as measurement reference datum. The system can measure simultaneously 5 error components for each moving axis of a machine tool or coordinate measuring machine. They are: two straightness error components, pitch, yaw, and roll errors. Through actual calibration and measurement, the accuracy of the current system is estimated to be 2 µm for straightness measurements and better than 0.05 arcsec for angular error measurements with a 0.5 m offset between a reflecting mirror and a receiving photo sensor.

  2. Machine learning techniques and drug design.

    PubMed

    Gertrudes, J C; Maltarollo, V G; Silva, R A; Oliveira, P R; Honório, K M; da Silva, A B F

    2012-01-01

    The interest in the application of machine learning techniques (MLT) as drug design tools is growing in the last decades. The reason for this is related to the fact that the drug design is very complex and requires the use of hybrid techniques. A brief review of some MLT such as self-organizing maps, multilayer perceptron, bayesian neural networks, counter-propagation neural network and support vector machines is described in this paper. A comparison between the performance of the described methods and some classical statistical methods (such as partial least squares and multiple linear regression) shows that MLT have significant advantages. Nowadays, the number of studies in medicinal chemistry that employ these techniques has considerably increased, in particular the use of support vector machines. The state of the art and the future trends of MLT applications encompass the use of these techniques to construct more reliable QSAR models. The models obtained from MLT can be used in virtual screening studies as well as filters to develop/discovery new chemicals. An important challenge in the drug design field is the prediction of pharmacokinetic and toxicity properties, which can avoid failures in the clinical phases. Therefore, this review provides a critical point of view on the main MLT and shows their potential ability as a valuable tool in drug design.

  3. Real-time machine tool chatter identification and control system

    NASA Astrophysics Data System (ADS)

    Zhang, Shilong

    1997-05-01

    Chatter in machining processes is one of the most important factors limiting production rates. In order to suppress machine tool chatter during orthogonal cutting processes, a real time active chatter controller is designed and implemented that is able to adopt to the continuously changing machining parameters. An electro-hydraulic servo system is used to control the movement of the cutting tool. The cutting force, workpiece acceleration, and tool displacement are measured in real time. The transfer function of the workpiece is estimated by using the cutting force and the acceleration of the workpiece. All the digital signal acquisition and processing tasks are performed by a digital signal processor (MicroStar DAP3200a/415). The digital controller is designed such that the servo/actuator dynamics is adjusted to match the workpiece dynamics to suppress chatter. To make the controller adaptive to the changing dynamics of the workpiece, a recursive least square technique is used to identify the workpiece dynamics in real time. The estimated workpiece dynamics parameters are then used in the digital controller to calculate a new servo output, thus controlling the tool movement. Simulations show that chatter can be suppressed successfully by using this method. Experiments agree well with simulations.

  4. Analytical design of intelligent machines

    NASA Technical Reports Server (NTRS)

    Saridis, George N.; Valavanis, Kimon P.

    1987-01-01

    The problem of designing 'intelligent machines' to operate in uncertain environments with minimum supervision or interaction with a human operator is examined. The structure of an 'intelligent machine' is defined to be the structure of a Hierarchically Intelligent Control System, composed of three levels hierarchically ordered according to the principle of 'increasing precision with decreasing intelligence', namely: the organizational level, performing general information processing tasks in association with a long-term memory; the coordination level, dealing with specific information processing tasks with a short-term memory; and the control level, which performs the execution of various tasks through hardware using feedback control methods. The behavior of such a machine may be managed by controls with special considerations and its 'intelligence' is directly related to the derivation of a compatible measure that associates the intelligence of the higher levels with the concept of entropy, which is a sufficient analytic measure that unifies the treatment of all the levels of an 'intelligent machine' as the mathematical problem of finding the right sequence of internal decisions and controls for a system structured in the order of intelligence and inverse order of precision such that it minimizes its total entropy. A case study on the automatic maintenance of a nuclear plant illustrates the proposed approach.

  5. Universal Tool Grinder Operator Instructor's Guide. Part of Single-Tool Skills Program Machine Industries Occupations.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Div. of Curriculum Development.

    The document is an instructor's guide for a course on universal tool grinder operation. The course is designed to train people in making complicated machine setups and precision in the grinding operations and, although intended primarily for adult learners, it can be adapted for high school use. The guide is divided into three parts: (1) the…

  6. 13. TOOL ROOM SHOWING W. ROBERTSON MACHINE & FOUNDRY CO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. TOOL ROOM SHOWING W. ROBERTSON MACHINE & FOUNDRY CO. NO. 5 POWER HACKSAW (FOREGROUND) AND WELLS METAL BAND SAW (BACKGROUND). VIEW SOUTHEAST - Oldman Boiler Works, Office/Machine Shop, 32 Illinois Street, Buffalo, Erie County, NY

  7. Development of CAM System for Multi-Tasking Machine Tools

    NASA Astrophysics Data System (ADS)

    Kubota, Koji; Kotani, Takashi; Nakamoto, Keiichi; Ishida, Tohru; Takeuchi, Yoshimi

    Multi-tasking machine tools are very useful to manufacture complicated workpiece efficiently. However, it is very difficult to generate NC data when an operator uses multi-tasking machine tools. Currently, there are some CAM systems for multi-tasking machine tools. However, there are such problems as the manual allocation of parts to generate tool paths, the difficulty of self-interference recognition without a simulator, and so on. Therefore, this study deals with the development of CAM system which can recognize part configurations, calculate tool paths automatically for turning and milling operations, and sort them in machining order, based on 3-D CAD data of workpieces.

  8. Interpolator for numerically controlled machine tools

    DOEpatents

    Bowers, Gary L.; Davenport, Clyde M.; Stephens, Albert E.

    1976-01-01

    A digital differential analyzer circuit is provided that depending on the embodiment chosen can carry out linear, parabolic, circular or cubic interpolation. In the embodiment for parabolic interpolations, the circuit provides pulse trains for the X and Y slide motors of a two-axis machine to effect tool motion along a parabolic path. The pulse trains are generated by the circuit in such a way that parabolic tool motion is obtained from information contained in only one block of binary input data. A part contour may be approximated by one or more parabolic arcs. Acceleration and initial velocity values from a data block are set in fixed bit size registers for each axis separately but simultaneously and the values are integrated to obtain the movement along the respective axis as a function of time. Integration is performed by continual addition at a specified rate of an integrand value stored in one register to the remainder temporarily stored in another identical size register. Overflows from the addition process are indicative of the integral. The overflow output pulses from the second integration may be applied to motors which position the respective machine slides according to a parabolic motion in time to produce a parabolic machine tool motion in space. An additional register for each axis is provided in the circuit to allow "floating" of the radix points of the integrand registers and the velocity increment to improve position accuracy and to reduce errors encountered when the acceleration integrand magnitudes are small when compared to the velocity integrands. A divider circuit is provided in the output of the circuit to smooth the output pulse spacing and prevent motor stall, because the overflow pulses produced in the binary addition process are spaced unevenly in time. The divider has the effect of passing only every nth motor drive pulse, with n being specifiable. The circuit inputs (integrands, rates, etc.) are scaled to give exactly n times the

  9. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 10: Computer-Aided Drafting & Design, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  10. OOTW Force Design Tools

    SciTech Connect

    Bell, R.E.; Hartley, D.S.III; Packard, S.L.

    1999-05-01

    This report documents refined requirements for tools to aid the process of force design in Operations Other Than War (OOTWs). It recommends actions for the creation of one tool and work on other tools relating to mission planning. It also identifies the governmental agencies and commands with interests in each tool, from whom should come the user advisory groups overseeing the respective tool development activities. The understanding of OOTWs and their analytical support requirements has matured to the point where action can be taken in three areas: force design, collaborative analysis, and impact analysis. While the nature of the action and the length of time before complete results can be expected depends on the area, in each case the action should begin immediately. Force design for OOTWs is not a technically difficult process. Like force design for combat operations, it is a process of matching the capabilities of forces against the specified and implied tasks of the operation, considering the constraints of logistics, transport and force availabilities. However, there is a critical difference that restricts the usefulness of combat force design tools for OOTWs: the combat tools are built to infer non-combat capability requirements from combat capability requirements and cannot reverse the direction of the inference, as is required for OOTWs. Recently, OOTWs have played a larger role in force assessment, system effectiveness and tradeoff analysis, and concept and doctrine development and analysis. In the first Quadrennial Defense Review (QDR), each of the Services created its own OOTW force design tool. Unfortunately, the tools address different parts of the problem and do not coordinate the use of competing capabilities. These tools satisfied the immediate requirements of the QDR, but do not provide a long-term cost-effective solution.

  11. Emulation of multi-axis numerically controlled machine tools

    SciTech Connect

    Burd, W.C.

    1983-04-01

    The MULTAX-PLOT program provides a method for verification of numerical control part programs. Combined with other tools, such as postprocessor listings and center line (CL) pen plots generated from the CL data files, the interactive MULTAX-PLOT program provides the machinist, the parts programmer and the postprocessor implementor a tool to visualize and troubleshoot machining commands. The MULTAX-PLOT program fills a significant void in the numerically controlled (NC) machining process. The center line pen plots are made from the CL data by one postprocessor, whereas the machine command file is generated by a different postprocessor. These two postprocessors may not produce identical results. However, the MULTAX-PLOT program displays the data from the machine tool's command file that will actually drive the machine tool. The principle benefits of the MULTAX-PLOT program are: A reduction in verification times by the system programmers, the NC parts programmers and the machnists; An early error detection method that reduces possible machine tool damage and scrapped parts; and Improved machine tool utilization. MULTAX-PLOT has been implemented and has aided in the development of two multi-axis postprocessors. It has proved to be a powerful diagnostic tool for the postprocessor implementor. The parts programmers and machinists have had favorable results with their initial use of MULTAX-PLOT for verification. However, the full potential of MULTAX-PLOT will be realized as terminals are installed at the NC machine tools.

  12. Market for multiaxis laser machine tools

    NASA Astrophysics Data System (ADS)

    Ream, Stanley L.

    1991-03-01

    While it's true that this is an exciting topic, it niay be more exciting than profitable, but it certainly has captured the attention of a lot of us laser folks, and it keeps growing almost because it wants to. First of all let me comment briefly with a word from our sponsor that GE Fanuc is one of the several ways the Fanuc laser product gets into the United States. We market it, GM Fanuc also markets it, and of course it shows up on Japanese machine tool built products. The information in this little presentation came from discussions with you folks wherever possible. In some cases I was unable to make contact with the horse's mouth as it were, but we got roundabout information so it's not gospel, but it's close. We've also had some updated information at the show here updated rumors maybe that suggest that some of the numbers may be high or low. I think in the aggregate it's not too far off.

  13. Linear positioning laser calibration setup of CNC machine tools

    NASA Astrophysics Data System (ADS)

    Sui, Xiulin; Yang, Congjing

    2002-10-01

    The linear positioning laser calibration setup of CNC machine tools is capable of executing machine tool laser calibraiotn and backlash compensation. Using this setup, hole locations on CNC machien tools will be correct and machien tool geometry will be evaluated and adjusted. Machien tool laser calibration and backlash compensation is a simple and straightforward process. First the setup is to 'find' the stroke limits of the axis. Then the laser head is then brought into correct alignment. Second is to move the machine axis to the other extreme, the laser head is now aligned, using rotation and elevation adjustments. Finally the machine is moved to the start position and final alignment is verified. The stroke of the machine, and the machine compensation interval dictate the amount of data required for each axis. These factors determine the amount of time required for a through compensation of the linear positioning accuracy. The Laser Calibrator System monitors the material temperature and the air density; this takes into consideration machine thermal growth and laser beam frequency. This linear positioning laser calibration setup can be used on CNC machine tools, CNC lathes, horizontal centers and vertical machining centers.

  14. Graphite fiber reinforced structure for supporting machine tools

    DOEpatents

    Knight, Jr., Charles E.; Kovach, Louis; Hurst, John S.

    1978-01-01

    Machine tools utilized in precision machine operations require tool support structures which exhibit minimal deflection, thermal expansion and vibration characteristics. The tool support structure of the present invention is a graphite fiber reinforced composite in which layers of the graphite fibers or yarn are disposed in a 0/90.degree. pattern and bonded together with an epoxy resin. The finished composite possesses a low coefficient of thermal expansion and a substantially greater elastic modulus, stiffness-to-weight ratio, and damping factor than a conventional steel tool support utilized in similar machining operations.

  15. Modeling of cumulative tool wear in machining metal matrix composites

    SciTech Connect

    Hung, N.P.; Tan, V.K.; Oon, B.E.

    1995-12-31

    Metal matrix composites (MMCs) are notoriously known for their low machinability because of the abrasive and brittle reinforcement. Although a near-net-shape product could be produced, finish machining is still required for the final shape and dimension. The classical Taylor`s tool life equation that relates tool life and cutting conditions has been traditionally used to study machinability. The turning operation is commonly used to investigate the machinability of a material; tedious and costly milling experiments have to be performed separately; while a facing test is not applicable for the Taylor`s model since the facing speed varies as the tool moves radially. Collecting intensive machining data for MMCs is often difficult because of the constraints on size, cost of the material, and the availability of sophisticated machine tools. A more flexible model and machinability testing technique are, therefore, sought. This study presents and verifies new models for turning, facing, and milling operations. Different cutting conditions were utilized to assess the machinability of MMCs reinforced with silicon carbide or alumina particles. Experimental data show that tool wear does not depend on the order of different cutting speeds since abrasion is the main wear mechanism. Correlation between data for turning, milling, and facing is presented. It is more economical to rank machinability using data for facing and then to convert the data for turning and milling, if required. Subsurface damages such as work-hardened and cracked matrix alloy, and fractured and delaminated particles are discussed.

  16. New Tools for Design

    ERIC Educational Resources Information Center

    Halliburton, Cal; Roza, Victoria

    2006-01-01

    Technology educators are constantly in search of new tools and methods to enhance the education of their students. This article is an excerpt from a longer article published in "The Technology Teacher" that introduced the technology education community to a research- and knowledge-based methodology for design--invention and innovation. This…

  17. Effects of machining parameters on tool life and its optimization in turning mild steel with brazed carbide cutting tool

    NASA Astrophysics Data System (ADS)

    Dasgupta, S.; Mukherjee, S.

    2016-09-01

    One of the most significant factors in metal cutting is tool life. In this research work, the effects of machining parameters on tool under wet machining environment were studied. Tool life characteristics of brazed carbide cutting tool machined against mild steel and optimization of machining parameters based on Taguchi design of experiments were examined. The experiments were conducted using three factors, spindle speed, feed rate and depth of cut each having three levels. Nine experiments were performed on a high speed semi-automatic precision central lathe. ANOVA was used to determine the level of importance of the machining parameters on tool life. The optimum machining parameter combination was obtained by the analysis of S/N ratio. A mathematical model based on multiple regression analysis was developed to predict the tool life. Taguchi's orthogonal array analysis revealed the optimal combination of parameters at lower levels of spindle speed, feed rate and depth of cut which are 550 rpm, 0.2 mm/rev and 0.5mm respectively. The Main Effects plot reiterated the same. The variation of tool life with different process parameters has been plotted. Feed rate has the most significant effect on tool life followed by spindle speed and depth of cut.

  18. Study of on-machine error identification and compensation methods for micro machine tools

    NASA Astrophysics Data System (ADS)

    Wang, Shih-Ming; Yu, Han-Jen; Lee, Chun-Yi; Chiu, Hung-Sheng

    2016-08-01

    Micro machining plays an important role in the manufacturing of miniature products which are made of various materials with complex 3D shapes and tight machining tolerance. To further improve the accuracy of a micro machining process without increasing the manufacturing cost of a micro machine tool, an effective machining error measurement method and a software-based compensation method are essential. To avoid introducing additional errors caused by the re-installment of the workpiece, the measurement and compensation method should be on-machine conducted. In addition, because the contour of a miniature workpiece machined with a micro machining process is very tiny, the measurement method should be non-contact. By integrating the image re-constructive method, camera pixel correction, coordinate transformation, the error identification algorithm, and trajectory auto-correction method, a vision-based error measurement and compensation method that can on-machine inspect the micro machining errors and automatically generate an error-corrected numerical control (NC) program for error compensation was developed in this study. With the use of the Canny edge detection algorithm and camera pixel calibration, the edges of the contour of a machined workpiece were identified and used to re-construct the actual contour of the work piece. The actual contour was then mapped to the theoretical contour to identify the actual cutting points and compute the machining errors. With the use of a moving matching window and calculation of the similarity between the actual and theoretical contour, the errors between the actual cutting points and theoretical cutting points were calculated and used to correct the NC program. With the use of the error-corrected NC program, the accuracy of a micro machining process can be effectively improved. To prove the feasibility and effectiveness of the proposed methods, micro-milling experiments on a micro machine tool were conducted, and the results

  19. Volumetric verification of multiaxis machine tool using laser tracker.

    PubMed

    Aguado, Sergio; Samper, David; Santolaria, Jorge; Aguilar, Juan José

    2014-01-01

    This paper aims to present a method of volumetric verification in machine tools with linear and rotary axes using a laser tracker. Beyond a method for a particular machine, it presents a methodology that can be used in any machine type. Along this paper, the schema and kinematic model of a machine with three axes of movement, two linear and one rotational axes, including the measurement system and the nominal rotation matrix of the rotational axis are presented. Using this, the machine tool volumetric error is obtained and nonlinear optimization techniques are employed to improve the accuracy of the machine tool. The verification provides a mathematical, not physical, compensation, in less time than other methods of verification by means of the indirect measurement of geometric errors of the machine from the linear and rotary axes. This paper presents an extensive study about the appropriateness and drawbacks of the regression function employed depending on the types of movement of the axes of any machine. In the same way, strengths and weaknesses of measurement methods and optimization techniques depending on the space available to place the measurement system are presented. These studies provide the most appropriate strategies to verify each machine tool taking into consideration its configuration and its available work space.

  20. Designing a leaner, cleaner machine

    SciTech Connect

    Valenti, M.

    1997-05-01

    With factories cutting back on emissions and municipalities stepping up recycling efforts, environmentalists have cast automobiles as the primary pollution culprit. A concept car called the XCAR, which incorporates a fuel-efficient, low-pollution engine from Australia, may one day rehabilitate automobiles` bad environmental reputation. The XCAR is being designed by XCORP in Malibu, Calif. The company was founded in 1991 to transfer cutting-edge aerospace and defense technologies to business and manufacturing applications. Their goals are to design a next-generation automobile that will use less energy; provide a higher degree of safety by being more impact-resistant; reduce stress on roads, highways, and bridges by its lighter weight, thus extending the life of infrastructure; and be easily recycled and repaired. The company is developing a roadster, a subcompact coupe, and a sports/utility version of the XCAR for American civilian use, as well as a general-purpose version for the US military and a multipurpose car for developing nations. The design of the XCAR includes molded thermoplastic panels, which reduces the vehicle`s overall weight. Thermoplastic also lowers the energy needed to stamp steel parts by eliminating the by-products generated from spot-welding, drilling, and riveting, such as welding fumes and spent machining oils. Using large, molded thermoplastic/aluminum sections for much of the chassis and body assemblies will also reduce the number of parts required by a third compared to conventional autos. In addition, paint application and its attendant solvents are eliminated because the color is molded into the plastic body.

  1. Implementing Machine Learning in the PCWG Tool

    SciTech Connect

    Clifton, Andrew; Ding, Yu; Stuart, Peter

    2016-12-13

    The Power Curve Working Group (www.pcwg.org) is an ad-hoc industry-led group to investigate the performance of wind turbines in real-world conditions. As part of ongoing experience-sharing exercises, machine learning has been proposed as a possible way to predict turbine performance. This presentation provides some background information about machine learning and how it might be implemented in the PCWG exercises.

  2. On Electro Discharge Machining of Inconel 718 with Hollow Tool

    NASA Astrophysics Data System (ADS)

    Rajesha, S.; Sharma, A. K.; Kumar, Pradeep

    2012-06-01

    Inconel 718 is a nickel-based alloy designed for high yield, tensile, and creep-rupture properties. This alloy has been widely used in jet engines and high-speed airframe parts in aeronautic application. In this study, electric discharge machining (EDM) process was used for machining commercially available Inconel 718. A copper electrode with 99.9% purity having tubular cross section was employed to machine holes of 20 mm height and 12 mm diameter on Inconel 718 workpieces. Experiments were planned using response surface methodology (RSM). Effects of five major process parameters—pulse current, duty factor, sensitivity control, gap control, and flushing pressure on the process responses—material removal rate (MRR) and surface roughness (SR) have been discussed. Mathematical models for MRR and SR have been developed using analysis of variance. Influences of process parameters on tool wear and tool geometry have been presented with the help of scanning electron microscope (SEM) micrographs. Analysis shows significant interaction effect of pulse current and duty factor on MRR yielding a wide range from 14.4 to 22.6 mm3/min, while pulse current remains the most contributing factor with approximate changes in the MRR and SR of 48 and 37%, respectively, corresponding to the extreme values considered. Interactions of duty factor and flushing pressure yield a minimum surface roughness of 6.2 μm. The thickness of the sputtered layer and the crack length were found to be functions of pulse current. The hollow tool gets worn out on both the outer and the inner edges owing to spark erosion as well as abrasion due to flow of debris.

  3. Forbidden Zones for Numerically-Controlled Machine Tools

    NASA Technical Reports Server (NTRS)

    Philpot, D.

    1986-01-01

    Computer-controlled machine tool prevented from striking and damaging protruding members on workpiece by creating forbidden zone in control program. With aid of computer graphics, tool profile and coordinates of forbidden zone digitized and stored in computer memory as part of tool path.

  4. Tool simplifies machining of pipe ends for precision welding

    NASA Technical Reports Server (NTRS)

    Matus, S. T.

    1969-01-01

    Single tool prepares a pipe end for precision welding by simultaneously performing internal machining, end facing, and bevel cutting to specification standards. The machining operation requires only one milling adjustment, can be performed quickly, and produces the high quality pipe-end configurations required to ensure precision-welded joints.

  5. Job Grading Standard for Machine Tool Operator, WG-3431.

    ERIC Educational Resources Information Center

    Civil Service Commission, Washington, DC. Bureau of Policies and Standards.

    The standard covers nonsupervisory work involved in the set up, adjustment, and operation of conventional machine tools to perform machining operations in the manufacture and repair of castings, forgings, or parts from raw stock made of various metals, metal alloys, and other materials. A general description of the job at both the WG-8 and WG-9…

  6. Drill press in foreground is one of few machine tools ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Drill press in foreground is one of few machine tools in operating condition which is still operated occasionally for public demonstrations. - Thomas A. Edison Laboratories, Building No. 5, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  7. Setting of angles on machine tools speeded by magnetic protractor

    NASA Technical Reports Server (NTRS)

    Vale, L. B.

    1964-01-01

    An adjustable protractor facilitates transference of angles to remote machine tools. It has a magnetic base incorporating a beam which can be adjusted until its shadow coincides with an image on the screen of a projector.

  8. Mississippi Curriculum Framework for Machine Tool Operation/Machine Shop (Program CIP: 48.0503--Machine Shop Assistant). Secondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for machine tool operation/machine shop I and II. Presented first are a…

  9. A Machine Tool Controller using Cascaded Servo Loops and Multiple Feedback Sensors per Axis

    SciTech Connect

    Weinert, G F; Hopkins, D J; Wulff, T A

    2004-03-19

    In the past, several of LLNL precision machine tools have been built with custom in-house designed machine tool controllers (CNC). In addition, many of these controllers have reached the end of their maintainable lifetime, limit future machine application enhancements, have poor operator interfaces and are a potential single point of failure for the machine tool. There have been attempts to replace some of these custom controllers with commercial controller products, unfortunately, this has occurred with only limited success. Many commercial machine tool controllers have the following undesirable characteristics, a closed architecture (use as the manufacturer intended and not as LLNL would desire), allow only a single feedback device per machine axis and have limited servo axis compensation calculations. Technological improvements in recent years have allowed for the development of some commercial machine tool controllers that are more open in their architecture and have the power to solve some of these limitations. In this paper, we exploit the capabilities of one of these controllers to allow it to process multiple feedback sensors for tool tip calculations in real time and to extend the servo compensation capabilities by cascading several standard motor compensation loops.

  10. Diamond tool machining of materials which react with diamond

    DOEpatents

    Lundin, Ralph L.; Stewart, Delbert D.; Evans, Christopher J.

    1992-01-01

    Apparatus for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond.

  11. Diamond tool machining of materials which react with diamond

    DOEpatents

    Lundin, R.L.; Stewart, D.D.; Evans, C.J.

    1992-04-14

    An apparatus is described for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond. 1 figs.

  12. Assisting the Tooling and Machining Industry to Become Energy Efficient

    SciTech Connect

    Curry, Bennett

    2016-12-30

    The Arizona Commerce Authority (ACA) conducted an Innovation in Advanced Manufacturing Grant Competition to support and grow southern and central Arizona’s Aerospace and Defense (A&D) industry and its supply chain. The problem statement for this grant challenge was that many A&D machining processes utilize older generation CNC machine tool technologies that can result an inefficient use of resources – energy, time and materials – compared to the latest state-of-the-art CNC machines. Competitive awards funded projects to develop innovative new tools and technologies that reduce energy consumption for older generation machine tools and foster working relationships between industry small to medium-sized manufacturing enterprises and third-party solution providers. During the 42-month term of this grant, 12 competitive awards were made. Final reports have been included with this submission.

  13. USSR Report: Machine Tools and Metalworking Equipment

    DTIC Science & Technology

    1986-01-16

    quality tools and readjustable fixtures f 21 . In the last 10-year period, it was possible to raise essentially the quality, reliability and operating...involves large material expenditures. Another technical innovation is the special ion-nitriding unit with the lovely name " Bulat ". It was installed in...the plant’s tool shop last summer. The Bulat allows the production of wear-resistant, strong and reliable cutting tool components. The capability

  14. Tool and Fixture Design

    SciTech Connect

    Graham, Mark W.

    2015-07-28

    In a manufacturing process, a need is identified and a product is created to fill this need. While design and engineering of the final product is important, the tools and fixtures that aid in the creation of the final product are just as important, if not more so. Power supplies assembled at the TA-55 PF-5 have been designed by an excellent engineering team. The task in PF-5 now is to ensure that all steps of the assembly and manufacturing process can be completed safely, reliably, and in a quality repeatable manner. One of these process steps involves soldering fine wires to an electrical connector. During the process development phase, the method of soldering included placing the power supply in a vice in order to manipulate it into a position conducive to soldering. This method is unacceptable from a reliability, repeatability, and ergonomic standpoint. To combat these issues, a fixture was designed to replace the current method. To do so, a twelve step engineering design process was used to create the fixture that would provide a solution to a multitude of problems, and increase the safety and efficiency of production.

  15. NUMERICAL CONTROL OF MACHINE TOOLS, AN INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Industrial Education.

    IN A SUMMER WORKSHOP, JUNIOR COLLEGE INSTRUCTORS AND INDUSTRIAL SUPERVISORS DEVELOPED THIS GUIDE FOR TEACHER USE IN A 3-SEMESTER-HOUR COURSE AT THE JUNIOR COLLEGE LEVEL. THE COURSE OBJECTIVES ARE TO (1) UPGRADE JOURNEYMEN IN MACHINE TOOL OPERATION, MAINTENANCE, AND TOOLING, AND (2) ACQUAINT MANUFACTURING, SUPERVISORY, PLANNING, AND MAINTENANCE…

  16. Hard turning micro-machine tool

    SciTech Connect

    DeVor, Richard E; Adair, Kurt; Kapoor, Shiv G

    2013-10-22

    A micro-scale apparatus for supporting a tool for hard turning comprises a base, a pivot coupled to the base, an actuator coupled to the base, and at least one member coupled to the actuator at one end and rotatably coupled to the pivot at another end. A tool mount is disposed on the at least one member. The at least one member defines a first lever arm between the pivot and the tool mount, and a second lever arm between the pivot and the actuator. The first lever arm has a length that is less than a length of the second lever arm. The actuator moves the tool mount along an arc.

  17. Multi-sensor Doppler radar for machine tool collision detection

    NASA Astrophysics Data System (ADS)

    Wächter, T. J.; Siart, U.; Eibert, T. F.; Bonerz, S.

    2014-11-01

    Machine damage due to tool collisions is a widespread issue in milling production. These collisions are typically caused by human errors. A solution for this problem is proposed based on a low-complexity 24 GHz continuous wave (CW) radar system. The developed monitoring system is able to detect moving objects by evaluating the Doppler shift. It combines incoherent information from several spatially distributed Doppler sensors and estimates the distance between an object and the sensors. The specially designed compact prototype contains up to five radar sensor modules and amplifiers yet fits into the limited available space. In this first approach we concentrate on the Doppler-based positioning of a single moving target. The recorded signals are preprocessed in order to remove noise and interference from the machinery hall. We conducted and processed system measurements with this prototype. The Doppler frequency estimation and the object position obtained after signal conditioning and processing with the developed algorithm were in good agreement with the reference coordinates provided by the machine's control unit.

  18. 25. VIEW OF THE MACHINE TOOL LAYOUT IN ROOMS 244 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW OF THE MACHINE TOOL LAYOUT IN ROOMS 244 AND 296. MACHINES WERE USED FOR STAINLESS STEEL FABRICATION (THE J-LINE). THE ORIGINAL DRAWING HAS BEEN ARCHIVED ON MICROFILM. THE DRAWING WAS REPRODUCED AT THE BEST QUALITY POSSIBLE. LETTERS AND NUMBERS IN THE CIRCLES INDICATE FOOTER AND/OR COLUMN LOCATIONS. - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  19. Critical Technology Assessment of Five Axis Simultaneous Control Machine Tools

    DTIC Science & Technology

    2009-07-01

    assessment, BIS specifically examined: • The application of Export Control Classification Numbers ( ECCN ) 2B001.b.2 and 2B001.c.2 controls and related...availability of certain five axis simultaneous control mills, mill/turns, and machining centers controlled by ECCN 2B001.b.2 (but not grinders controlled by... ECCN 2B001.c.2) exists to China and Taiwan, which both have an indigenous capability to produce five axis simultaneous control machine tools with

  20. Method for producing hard-surfaced tools and machine components

    DOEpatents

    McHargue, C.J.

    1981-10-21

    In one aspect, the invention comprises a method for producing tools and machine components having superhard crystalline-ceramic work surfaces. Broadly, the method comprises two steps: a tool or machine component having a ceramic near-surface region is mounted in ion-implantation apparatus. The region then is implanted with metal ions to form, in the region, a metastable alloy of the ions and said ceramic. The region containing the alloy is characterized by a significant increase in hardness properties, such as microhardness, fracture-toughness, and/or scratch-resistance. The resulting improved article has good thermal stability at temperatures characteristic of typical tool and machine-component uses. The method is relatively simple and reproducible.

  1. Method for producing hard-surfaced tools and machine components

    DOEpatents

    McHargue, Carl J.

    1985-01-01

    In one aspect, the invention comprises a method for producing tools and machine components having superhard crystalline-ceramic work surfaces. Broadly, the method comprises two steps: A tool or machine component having a ceramic near-surface region is mounted in ion-implantation apparatus. The region then is implanted with metal ions to form, in the region, a metastable alloy of the ions and said ceramic. The region containing the alloy is characterized by a significant increase in hardness properties, such as microhardness, fracture-toughness, and/or scratch-resistance. The resulting improved article has good thermal stability at temperatures characteristic of typical tool and machine-component uses. The method is relatively simple and reproducible.

  2. A defect-driven diagnostic method for machine tool spindles.

    PubMed

    Vogl, Gregory W; Donmez, M Alkan

    2015-01-01

    Simple vibration-based metrics are, in many cases, insufficient to diagnose machine tool spindle condition. These metrics couple defect-based motion with spindle dynamics; diagnostics should be defect-driven. A new method and spindle condition estimation device (SCED) were developed to acquire data and to separate system dynamics from defect geometry. Based on this method, a spindle condition metric relying only on defect geometry is proposed. Application of the SCED on various milling and turning spindles shows that the new approach is robust for diagnosing the machine tool spindle condition.

  3. A defect-driven diagnostic method for machine tool spindles

    PubMed Central

    Vogl, Gregory W.; Donmez, M. Alkan

    2016-01-01

    Simple vibration-based metrics are, in many cases, insufficient to diagnose machine tool spindle condition. These metrics couple defect-based motion with spindle dynamics; diagnostics should be defect-driven. A new method and spindle condition estimation device (SCED) were developed to acquire data and to separate system dynamics from defect geometry. Based on this method, a spindle condition metric relying only on defect geometry is proposed. Application of the SCED on various milling and turning spindles shows that the new approach is robust for diagnosing the machine tool spindle condition. PMID:28065985

  4. A Tool for Assessing the Text Legibility of Digital Human Machine Interfaces

    SciTech Connect

    Roger Lew; Ronald L. Boring; Thomas A. Ulrich

    2015-08-01

    A tool intended to aid qualified professionals in the assessment of the legibility of text presented on a digital display is described. The assessment of legibility is primarily for the purposes of designing and analyzing human machine interfaces in accordance with NUREG-0700 and MIL-STD 1472G. The tool addresses shortcomings of existing guidelines by providing more accurate metrics of text legibility with greater sensitivity to design alternatives.

  5. Educational Resources for the Machine Tool Industry. Executive Summary.

    ERIC Educational Resources Information Center

    Texas State Technical Coll. System, Waco.

    This document describes the MASTER (Machine Tool Advanced Skills Educational Resources) program, a geographic partnership of seven of the nation's best 2-year technical and community colleges located in seven states. The project developed and disseminated a national training model for manufacturing processes and new technologies within the…

  6. Portable power tool machines weld joints in field

    NASA Technical Reports Server (NTRS)

    Spier, R. A.

    1966-01-01

    Portable routing machine for cutting precise weld joints required by nonstandard pipe sections used in the field for transfer of cryogenic fluids. This tool is adaptable for various sizes of pipes and has a selection of router bits for different joint configurations.

  7. 100. ARAIII. Operations with drilling tool used in machining of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    100. ARA-III. Operations with drilling tool used in machining of ML-1 pressure vessel. Receptacle contains filings. July 12, 1963. Ineel photo no. 63-4456. Photographer: Benson. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  8. Machine Tool Advanced Skills Technology Program (MAST). Overview and Methodology.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    The Machine Tool Advanced Skills Technology Program (MAST) is a geographical partnership of six of the nation's best two-year colleges located in the six states that have about one-third of the density of metals-related industries in the United States. The purpose of the MAST grant is to develop and implement a national training model to overcome…

  9. Vision-based on-machine measurement for CNC machine tool

    NASA Astrophysics Data System (ADS)

    Xia, Ruixue; Han, Jiang; Lu, Rongsheng; Xia, Lian

    2015-02-01

    A vision-based on-machine measurement system (OMM) was developed to improve manufacturing effectiveness. It was based on a visual probe to enable the CNC machine tool itself to act as a coordinate measuring machine (CMM) to inspect a workpiece. The proposed OMM system was composed of a visual probe and two software modules: computer-aided inspection planning (CAIP) module and measurement data processing (MDP) module. The auto-focus function of the visual probe was realized by using astigmatic method. The CAIP module was developed based on a CAD development platform with Open CASCADE as its kernel. The MDP module includes some algorithms for determination of inspection parameters, for example, the chamfered hole was measured through focus variation. The entire system was consequently verified on a CNC milling machine.

  10. LDX Machine Design and Diagnostics

    NASA Astrophysics Data System (ADS)

    Garnier, D.; Mauel, M.; Kesner, J.; Kochan, S.; Michael, P.; Myatt, R. L.; Pourrahimi, S.; Radovinsky, A.; Schultz, J.; Smith, B.; Thomas, P.; Wang, P.-W.; Zhukovsky, A.

    1998-11-01

    The LDX Experiment, presently being designed and built at MIT, requires a superconducting coil that can be floated within a large vacuum chamber. The 90 cm diameter, 1.2 MA, Nb_3Sn floating coil utilizes a novel cryostat design. The >400 kg coil will float for up to 8 hours, centered within a 5 m diameter, 3 m tall vacuum chamber. When levitated from above, the coil is unstable only to vertical motion. A digital control system will be used for feedback control of the vertical position and damping of horizontal, tilt and rotational motions. A simple diagnostic set is being developed to measure plasma equilibria, profiles, and instabilities. Equilibrium reconstruction from flux loops and hall probes will yield information on hot electron β and stored energy. A x-ray energy analyzer, xuv array, and reflectometer will measure hot electron profile parameters. Edge probes, magnetics and the xuv array will diagnose hot electron interchange instabilities driven by supercritical gradients. During thermal plasma operation, ion profiles will be measured using a charge exchange analyzer and secondary electron detector array.

  11. Machine Tool Layout: Outlining a Basic Shape on Flat Steel. Fordson Bilingual Demonstration Project.

    ERIC Educational Resources Information Center

    Ochsner, Alan

    This vocational instructional module on outlining a basic shape on flat steel is one of eight such modules designed to assist recently arrived Arab students, limited in English proficiency (LEP), in critical instructional areas in a comprehensive high school. Goal stated for this module is for the student enrolled in a machine tool course to…

  12. Influence of machining parameters on cutting tool life while machining aluminum alloy fly ash composite

    NASA Astrophysics Data System (ADS)

    Rao, C. R. Prakash; chandra, Poorna; Kiran, R.; Asha, P. B.

    2016-09-01

    Metal matrix composites containing fly ash as reinforcement are primarily preferred because these materials possess lower density and higher strength to weight ratio. The metal matrix composites possess hetrogeneous microstructure which is due to the presence of hard ceramic particles. While turning composites, the catastrophic failure of cutting tools is attributed to the presence of hard particles. Selection of optimal cutting conditions for a given machining process and grade of cutting tools are of utmost importance to enhance the tool life during turning operation. Thus the research work was aimed at the experimental investigation of the cutting tool life while machining aluminum alloy composite containing 0-15% fly-ash. The experiments carried out following ISO3685 standards. The carbide inserts of grade K10 and style CGGN120304 were the turning tools. The cutting speed selected was between 200m/min to 500m/min in step of 100m/min, feed of 0.08 & 0.16 mm/revolution and constant depth of cut of 1.0 mm. The experimental results revealed that the performance of K10 grade carbide insert found better while machining composite containing 5% filler, at all cutting speeds and 0.08mm/revolution feed. The failures of carbide tools are mainly due to notch wear followed by built up edge and edge chipping.

  13. Mississippi Curriculum Framework for Machine Tool Operation/Machine Shop and Tool and Die Making Technology Cluster (Program CIP: 48.0507--Tool and Die Maker/Technologist) (Program CIP: 48.0503--Machine Shop Assistant). Postsecondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the course sequences in the machine tool operation/machine tool and tool and die making technology programs cluster. Presented in the introductory section are a framework of courses and programs, description of the…

  14. Analysis/Design Tool

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Excelerator II, developed by INTERSOLV, Inc., provides a complete environment for rules-based expert systems. The software incorporates NASA's C Language Integrated Production System (CLIPS), a shell for constructing expert systems. Excelerator II provides complex verification and transformation routines based on matching that is simple and inexpensive. *Excelerator II was sold to SELECT Software Tools in June 1997 and is now called SELECT Excelerator. SELECT has assumed full support and maintenance for the product line.

  15. Editing of EIA coded, numerically controlled, machine tool tapes

    NASA Technical Reports Server (NTRS)

    Weiner, J. M.

    1975-01-01

    Editing of numerically controlled (N/C) machine tool tapes (8-level paper tape) using an interactive graphic display processor is described. A rapid technique required for correcting production errors in N/C tapes was developed using the interactive text editor on the IMLAC PDS-ID graphic display system and two special programs resident on disk. The correction technique and special programs for processing N/C tapes coded to EIA specifications are discussed.

  16. Multimode vibration reduction concept for machine tools and automotive applications

    NASA Astrophysics Data System (ADS)

    Neugebauer, Reimund; Drossel, Welf-Guntram; Kranz, Burkhard; Kunze, Holger

    2005-05-01

    This paper reports a numerical and experimental study on a new multi mode vibration reduction concept for struts of machine tools or shafts of automotives. The example described in detail validates this new concept for high dynamic parallel kinematic struts. The structural advantages of parallel kinematic mechanisms are undisputed. However statical and dynamical bending and torsional loads must be considered during the design process of the structure and thus effect the shape of the strut geometry. The here described new actuator concept for multi mode vibration reduction is to influence these bending and torsional loads. It uses piezopatches based on the MFC technology licensed by NASA. Initial simulation and experimental tests were done at an one side clamped aluminium beam with applicated 45°-MFC's on both sides. Simulation results show, that driving the piezos in opposite direction leads to a bending deflection of the beam, driving them in the same phase leads to a torsional deflection of the aluminium beam. Experimental measurements confirm the simulation results. The benefit we get is a decreased number of actuators for multimode vibration reduction. Likewise these actuators allow the separation or selective combination of bending and torsion. This new actuation concept is not limited on beams. Further simulations for cylindrical struts result in a design of a MFC-ring with eight segments with changing fiber orientation for separation of bending and torsion on struts and shafts. The selective controlled activation of each of the segments leads to bending in x-direction, bending in y-direction or torsion.

  17. Method and apparatus for characterizing and enhancing the dynamic performance of machine tools

    SciTech Connect

    Barkman, William E; Babelay, Jr., Edwin F

    2013-12-17

    Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include dynamic one axis positional accuracy of the machine tool, dynamic cross-axis stability of the machine tool, and dynamic multi-axis positional accuracy of the machine tool.

  18. A novel vending machine for supplying root canal tools during surgery.

    PubMed

    Nelson, Carl A; Hossain, S G M; Al-Okaily, Ala'a; Ong, Jason

    2012-02-01

    A root canal surgery involves the successive use of several tools one after another. Typically dozens of tools are laid out for possible use, and the process of tool selection is done manually. This is a rather inefficient process and uses up a large area on the mobile cart or cabinet of the dental chair due to the large number of tools. In this article, a novel 'tool vending machine' is introduced which will be capable of solving those problems and at the same time move a step closer to robot-assisted dental surgery. The tool vending machine was designed considering the needs of the dentists and also from the perspective of the entire product life cycle. For these reasons the design process was implemented using a rigorous analysis of effective manufacturing processes and product quality. To show the feasibility of using such a machine in improving work efficiency during operations, a study of the associated motion patterns and the required time increments were demonstrated.

  19. Integrated simulation method for interaction between manufacturing process and machine tool

    NASA Astrophysics Data System (ADS)

    Chen, Wanqun; Huo, Dehong; Xie, Wenkun; Teng, Xiangyu; Zhang, Jiayi

    2016-10-01

    The interaction between the machining process and the machine tool (IMPMT) plays an important role on high precision components manufacturing. However, most researches are focused on the machining process or the machine tool separately, and the interaction between them has been always overlooked. In this paper, a novel simplified method is proposed to realize the simulation of IMPMT by combining use the finite element method and state space method. In this method, the transfer function of the machine tool is built as a small state space. The small state space is obtained from the complicated finite element model of the whole machine tool. Furthermore, the control system of the machine tool is integrated with the transfer function of the machine tool to generate the cutting trajectory. Then, the tool tip response under the cutting force is used to predict the machined surface. Finally, a case study is carried out for a fly-cutting machining process, the dynamic response analysis of an ultra-precision fly-cutting machine tool and the machined surface verifies the effectiveness of this method. This research proposes a simplified method to study the IMPMT, the relationships between the machining process and the machine tool are established and the surface generation is obtained.

  20. 76 FR 27668 - ASC Machine Tools, Inc., Spokane Valley, WA; Notice of Negative Determination on Reconsideration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... Employment and Training Administration ASC Machine Tools, Inc., Spokane Valley, WA; Notice of Negative... Regarding Application for Reconsideration for the workers and former workers of ASC Machine Tools, Inc... adjustment assistance for workers and former workers of ASC Machine Tools, Inc., Spokane Valley,...

  1. Five-Axis Machine Tool Condition Monitoring Using dSPACE Real-Time System

    NASA Astrophysics Data System (ADS)

    Sztendel, S.; Pislaru, C.; Longstaff, A. P.; Fletcher, S.; Myers, A.

    2012-05-01

    This paper presents the design, development and SIMULINK implementation of the lumped parameter model of C-axis drive from GEISS five-axis CNC machine tool. The simulated results compare well with the experimental data measured from the actual machine. Also the paper describes the steps for data acquisition using ControlDesk and hardware-in-the-loop implementation of the drive models in dSPACE real-time system. The main components of the HIL system are: the drive model simulation and input - output (I/O) modules for receiving the real controller outputs. The paper explains how the experimental data obtained from the data acquisition process using dSPACE real-time system can be used for the development of machine tool diagnosis and prognosis systems that facilitate the improvement of maintenance activities.

  2. Machine learning in the rational design of antimicrobial peptides.

    PubMed

    Rondón-Villarreal, Paola; Sierra, Daniel A; Torres, Rodrigo

    2014-01-01

    One of the most important public health issues is the microbial and bacterial resistance to conventional antibiotics by pathogen microorganisms. In recent years, many researches have been focused on the development of new antibiotics. Among these, antimicrobial peptides (AMPs) have raised as a promising alternative to combat antibioticresistant microorganisms. For this reason, many theoretical efforts have been done in the development of new computational tools for the rational design of both better and effective AMPs. In this review, we present an overview of the rational design of AMPs using machine learning techniques and new research fields.

  3. Thermal Error Modeling of a Machine Tool Using Data Mining Scheme

    NASA Astrophysics Data System (ADS)

    Wang, Kun-Chieh; Tseng, Pai-Chang

    In this paper the knowledge discovery technique is used to build an effective and transparent mathematic thermal error model for machine tools. Our proposed thermal error modeling methodology (called KRL) integrates the schemes of K-means theory (KM), rough-set theory (RS), and linear regression model (LR). First, to explore the machine tool's thermal behavior, an integrated system is designed to simultaneously measure the temperature ascents at selected characteristic points and the thermal deformations at spindle nose under suitable real machining conditions. Second, the obtained data are classified by the KM method, further reduced by the RS scheme, and a linear thermal error model is established by the LR technique. To evaluate the performance of our proposed model, an adaptive neural fuzzy inference system (ANFIS) thermal error model is introduced for comparison. Finally, a verification experiment is carried out and results reveal that the proposed KRL model is effective in predicting thermal behavior in machine tools. Our proposed KRL model is transparent, easily understood by users, and can be easily programmed or modified for different machining conditions.

  4. Indirect measurement of machine tool motion axis error with single laser tracker

    NASA Astrophysics Data System (ADS)

    Wu, Zhaoyong; Li, Liangliang; Du, Zhengchun

    2015-02-01

    For high-precision machining, a convenient and accurate detection of motion error for machine tools is significant. Among common detection methods such as the ball-bar method, the laser tracker approach has received much more attention. As a high-accuracy measurement device, laser tracker is capable of long-distance and dynamic measurement, which increases much flexibility during the measurement process. However, existing methods are not so satisfactory in measurement cost, operability or applicability. Currently, a plausible method is called the single-station and time-sharing method, but it needs a large working area all around the machine tool, thus leaving itself not suitable for the machine tools surrounded by a protective cover. In this paper, a novel and convenient positioning error measurement approach by utilizing a single laser tracker is proposed, followed by two corresponding mathematical models including a laser-tracker base-point-coordinate model and a target-mirror-coordinates model. Also, an auxiliary apparatus for target mirrors to be placed on is designed, for which sensitivity analysis and Monte-Carlo simulation are conducted to optimize the dimension. Based on the method proposed, a real experiment using single API TRACKER 3 assisted by the auxiliary apparatus is carried out and a verification experiment using a traditional RENISHAW XL-80 interferometer is conducted under the same condition for comparison. Both results demonstrate a great increase in the Y-axis positioning error of machine tool. Theoretical and experimental studies together verify the feasibility of this method which has a more convenient operation and wider application in various kinds of machine tools.

  5. Dataflow Design Tool: User's Manual

    NASA Technical Reports Server (NTRS)

    Jones, Robert L., III

    1996-01-01

    The Dataflow Design Tool is a software tool for selecting a multiprocessor scheduling solution for a class of computational problems. The problems of interest are those that can be described with a dataflow graph and are intended to be executed repetitively on a set of identical processors. Typical applications include signal processing and control law problems. The software tool implements graph-search algorithms and analysis techniques based on the dataflow paradigm. Dataflow analyses provided by the software are introduced and shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The software tool provides performance optimization through the inclusion of artificial precedence constraints among the schedulable tasks. The user interface and tool capabilities are described. Examples are provided to demonstrate the analysis, scheduling, and optimization functions facilitated by the tool.

  6. Experimental Choice of Suitable Cutting Tool for Machining of Plastic

    NASA Astrophysics Data System (ADS)

    Sokova, Dagmar; Cep, Robert; Cepova, Lenka; Kocifajova, Simona

    2014-12-01

    In today's competitive times overall development of the technology is moving somewhere further, including automotive industry, which went toward relieving material. One of the many materials which are applied in the automotive industry, are polymers. The aim of the article was to test three different types of cutters for machining material group N - nonferrous metals. The article was tested three different types of cutters from different vendors on electro material SKLOTEXTIT G 11 and samples size 12x100x500mm. The entire experiment was conducted in a company Slavík- Technické plasty on the machine tool SCM RECORD 220. In the conclusion are technical-evaluation, experimental results and conclusions for company.

  7. Method and apparatus for characterizing and enhancing the functional performance of machine tools

    SciTech Connect

    Barkman, William E; Babelay, Jr., Edwin F; Smith, Kevin Scott; Assaid, Thomas S; McFarland, Justin T; Tursky, David A; Woody, Bethany; Adams, David

    2013-04-30

    Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include workpiece surface finish, and the ability to generate chips of the desired length.

  8. Reducing maintenance costs in agreement with CNC machine tools reliability

    NASA Astrophysics Data System (ADS)

    Ungureanu, A. L.; Stan, G.; Butunoi, P. A.

    2016-08-01

    Aligning maintenance strategy with reliability is a challenge due to the need to find an optimal balance between them. Because the various methods described in the relevant literature involve laborious calculations or use of software that can be costly, this paper proposes a method that is easier to implement on CNC machine tools. The new method, called the Consequence of Failure Analysis (CFA) is based on technical and economic optimization, aimed at obtaining a level of required performance with minimum investment and maintenance costs.

  9. Analysis and design of asymmetrical reluctance machine

    NASA Astrophysics Data System (ADS)

    Harianto, Cahya A.

    Over the past few decades the induction machine has been chosen for many applications due to its structural simplicity and low manufacturing cost. However, modest torque density and control challenges have motivated researchers to find alternative machines. The permanent magnet synchronous machine has been viewed as one of the alternatives because it features higher torque density for a given loss than the induction machine. However, the assembly and permanent magnet material cost, along with safety under fault conditions, have been concerns for this class of machine. An alternative machine type, namely the asymmetrical reluctance machine, is proposed in this work. Since the proposed machine is of the reluctance machine type, it possesses desirable feature, such as near absence of rotor losses, low assembly cost, low no-load rotational losses, modest torque ripple, and rather benign fault conditions. Through theoretical analysis performed herein, it is shown that this machine has a higher torque density for a given loss than typical reluctance machines, although not as high as the permanent magnet machines. Thus, the asymmetrical reluctance machine is a viable and advantageous machine alternative where the use of permanent magnet machines are undesirable.

  10. Tool wear of a single-crystal diamond tool in nano-groove machining of a quartz glass plate

    NASA Astrophysics Data System (ADS)

    Yoshino, Masahiko; Nakajima, Satoshi; Terano, Motoki

    2015-12-01

    Tool wear characteristics of a diamond tool in ductile mode machining are presented in this paper. Nano-groove machining of a quartz glass plate was conducted to examine the tool wear rate of a single-crystal diamond tool. Effects of lubrication on the tool wear rate were also evaluated. A numerical simulation technique was developed to evaluate the tool temperature and normal stress acting on the wear surface. From the simulation results it was found that the tool temperature does not increase during the machining experiment. It is also demonstrated that tool wear is attributed to the abrasive wear mechanism, but the effect of the adhesion wear mechanism is minor in nano-groove machining. It is found that the tool wear rate is reduced by using water or kerosene as a lubricant.

  11. Rotary ultrasonic elliptical machining for side milling of CFRP: tool performance and surface integrity.

    PubMed

    Geng, Daxi; Zhang, Deyuan; Xu, Yonggang; He, Fengtao; Liu, Dapeng; Duan, Zuoheng

    2015-05-01

    The rotary ultrasonic elliptical machining (RUEM) has been recognized as a new effective process to machining circular holes on CFRP materials. In CFRP face machining, the application of grinding tools is restricted for the tool clogging and the machined surface integrity. In this paper, we proposed a novel approach to extend the RUEM process to side milling of CFRP for the first time, which kept the effect of elliptical vibration in RUEM. The experiment apparatus was developed, and the preliminary experiments were designed and conducted, with comparison to conventional grinding (CG). The experimental results showed that when the elliptical vibration was applied in RUEM, a superior cutting process can be obtained compared with that in CG, including providing reduced cutting forces (2-43% decrement), an extended tool life (1.98 times), and improved surface integrity due to the intermittent material removal mechanism and the excellent chip removal conditions achieved in RUEM. It was concluded that the RUEM process is suitable to mill flat surface on CFRP composites.

  12. A vibrating razor blade machining tool for material removal on low- density foams

    SciTech Connect

    Hillyer, D.F. Jr.

    1990-10-01

    The Lawrence Livermore National Laboratory (LLNL) has developed an accurate method of machining low-density foams into rectangular blank shapes by using a commercial oscillating razor blade machining tool concept marketed as a Vibratome. Since 1970, Vibratome has been used by medical laboratories to section fresh or fixed animal and plant tissues without freezing or embedding. By employing a vibrating razor blade principle, Vibratome sectioning avoids the alteration of morphology and the destruction of enzyme activities. The patented vibrating blade principle moves the sectioning razor blade in a reciprocating arcuate path as it penetrates the specimen. Sectioning takes place in a liquid bath using an ordinary injector-type razor blade. Although other commercial products may accomplish the same task, the Vibratome concept is currently being used at LLNL to obtain improved foam surface qualities from razor machining by combining state-of-the-art air bearing hardware with precise linear motion and an electrodynamic exciter that generates sinusoidal excitation. Razor cut foam surfaces of less than 25 {mu}m (0.001 in.) flatness are achieved over areas of 8.75 in.{sup 2} (2.5 {times} 3.5 in.). Razor machining of wide or narrow foam surfaces is generally characterized by a continuous curl chip for the full length of the material removed. This continuous chip facilitates flatness and prevents increased surface densities caused by material chip collection often left in the surface cells by conventional machine tools. This report covers the design evolution of razor machining of non-metallic soft materials. Hardware that maintains close dimensional tolerances and concurrently leaves the machined surface free of physical property changes is described. 20 figs.

  13. Machinability of Green Powder Metallurgy Components: Part I. Characterization of the Influence of Tool Wear

    NASA Astrophysics Data System (ADS)

    Robert-Perron, Etienne; Blais, Carl; Pelletier, Sylvain; Thomas, Yannig

    2007-06-01

    The green machining process is an interesting approach for solving the mediocre machining behavior of high-performance powder metallurgy (PM) steels. This process appears as a promising method for extending tool life and reducing machining costs. Recent improvements in binder/lubricant technologies have led to high green strength systems that enable green machining. So far, tool wear has been considered negligible when characterizing the machinability of green PM specimens. This inaccurate assumption may lead to the selection of suboptimum cutting conditions. The first part of this study involves the optimization of the machining parameters to minimize the effects of tool wear on the machinability in turning of green PM components. The second part of our work compares the sintered mechanical properties of components machined in green state with other machined after sintering.

  14. Development of atmospheric pressure plasma processing machine tool for large aperture optics

    NASA Astrophysics Data System (ADS)

    Su, Xing; Wu, Yangong; Zhang, Peng; Xin, Qiang; Wang, Bo

    2016-10-01

    In recent years, major projects, such as National Ignition Facility and Laser Mégajoule, have generated great demands for large aperture optics with high surface accuracy and low Subsurface Damage (SSD) at the mean time. In order to remove SSD and improve surface quality, optics is fabricated by sub-aperture polishing. However, the efficiency of the sub-aperture polishing has been a bottleneck step for the optics manufacturing. Atmospheric Pressure Plasma Processing (APPP) as an alternate method offers high potential for speeding up the polishing process. This technique is based on chemical etching, hence there is no physical contact and no damage is induced. In this paper, a fast polishing machine tool is presented which is designed for fast polishing of the large aperture optics using APPP. This machine tool employs 3PRS-XY hybrid structure as its framework. There is a platform in the 3PRS parallel module to support the plasma generating system. And the large work piece is placed on the XY stage. In order to realize the complex motion trajectory for polishing the freeform optics, five axis of the tool operate simultaneously. To overcome the complexity of inverse kinematics calculation, a dedicated motion control system is also designed for speeding up the motion response. For high removal rate, the individual influence of several key processing parameters is investigated. And under specific production condition, this machine tool offers a high material over 30mm3/min for fused silica substrates. This results shows that APPP machine tool has a strong potential for fast polishing large optics without introducing SSD.

  15. 76 FR 5832 - International Business Machines (IBM), Software Group Business Unit, Optim Data Studio Tools QA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration International Business Machines (IBM), Software Group Business Unit... at International Business Machines (IBM), Software Group Business Unit, Optim Data Studio Tools...

  16. Prospects for chaos control of machine tool chatter

    SciTech Connect

    Hively, L.M.; Protopopescu, V.A.; Clapp, N.E.; Daw, C.S.

    1998-06-01

    The authors analyze the nonlinear tool-part dynamics during turning of stainless steel in the nonchatter and chatter regimes, toward the ultimate objective of chatter control. Their previous work analyzed tool acceleration in three dimensions at four spindle speeds. In the present work, the authors analyze the machining power and obtain nonlinear measures of this power. They also calculate the cycle-to-cycle energy for the turning process. Return maps for power cycle times do not reveal fixed points or (un)stable manifolds. Energy return maps do display stable and unstable directions (manifolds) to and from an unstable period-1 orbit, which is the dominant periodicity. Both nonchatter and chatter dynamics have the unusual feature of arriving at the unstable period-1 fixed point and departing from that fixed point of the energy return map in a single step. This unusual feature makes chaos maintenance, based on the well-known Ott-Grebogi-Yorke scheme, a very difficult option for chatter suppression. Alternative control schemes, such as synchronization of the tool-part motion to prerecorded nonchatter dynamics or dynamically damping the period-1 motion, are briefly discussed.

  17. Identification of kinematic errors of five-axis machine tool trunnion axis from finished test piece

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Fu, Jianzhong; Chen, Zichen

    2014-09-01

    Compared with the traditional non-cutting measurement, machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users. However, measurement and calculation of the machining tests in the literature are quite difficult and time-consuming. A new method of the machining tests for the trunnion axis of five-axis machine tool is proposed. Firstly, a simple mathematical model of the cradle-type five-axis machine tool was established by optimizing the coordinate system settings based on robot kinematics. Then, the machining tests based on error-sensitive directions were proposed to identify the kinematic errors of the trunnion axis of cradle-type five-axis machine tool. By adopting the error-sensitive vectors in the matrix calculation, the functional relationship equations between the machining errors of the test piece in the error-sensitive directions and the kinematic errors of C-axis and A-axis of five-axis machine tool rotary table was established based on the model of the kinematic errors. According to our previous work, the kinematic errors of C-axis can be treated as the known quantities, and the kinematic errors of A-axis can be obtained from the equations. This method was tested in Mikron UCP600 vertical machining center. The machining errors in the error-sensitive directions can be obtained by CMM inspection from the finished test piece to identify the kinematic errors of five-axis machine tool trunnion axis. Experimental results demonstrated that the proposed method can reduce the complexity, cost, and the time consumed substantially, and has a wider applicability. This paper proposes a new method of the machining tests for the trunnion axis of five-axis machine tool.

  18. Incremental motion encoder: a sensor for the integrated condition monitoring of rolling element bearings in machine tools

    NASA Astrophysics Data System (ADS)

    Ayandokun, Kayode A.; Orton, P. A.; Sherkat, Nasser; Thomas, Peter D.; Poliakoff, Janet F.

    1995-12-01

    Modern industry increasingly demands that machine tools operate continuously as elements within computer integrated manufacturing cells. Accurate monitoring of machine condition is the key to predicting failures that would result in quality defects or costly unplanned production stoppages. This paper presents research into the use of a novel rotary motion sensor for the condition monitoring of rolling element bearings. This sensor, the incremental motion encoder (IME), is based upon a patented development of the optical encoder commonly used in machine tools for sensing angular position and rotational speed. The IME combines these measurements with that of shaft center position in two dimensions. This motion of the shaft center is directly related to the condition of the bearings supporting the shaft. To illustrate the IME principle experimental results showing the ability of the sensor to distinguish between bearing defects and external sources of vibration are presented. Measurement of shaft loading with the sensor is also described. Currently machine tool condition is most often measured by external sensors, such as accelerometers or acoustic emission transducers, which are not parts of the machine itself. The IME is ideally suited to being designed into a machine tool so as to integrate a condition monitoring facility into the computer control of the machine. The paper concludes by describing the current technology which allows sensors based on the IME principle to be integrated directly into rolling element bearings for this purpose.

  19. 38. METAL WORKING TOOLS AND MACHINES ADJACENT TO THE CIRCA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. METAL WORKING TOOLS AND MACHINES ADJACENT TO THE CIRCA 1900 MICHIGAN MACHINERY MFG. CO. PUNCH PRESS NEAR THE CENTER OF THE FACTORY BUILDING. AT THE LEFT FOREGROUND IS A MOVABLE TIRE BENDER FOR SHAPING ELI WINDMILL WHEEL RIMS. AT THE CENTER IS A FLOOR-MOUNTED CIRCA 1900 SNAG GRINDER OF THE TYPE USED FOR SMOOTHING ROUGH CASTINGS. ON THE WHEELED WORK STATION IS A SUNNEN BUSHING GRINDER, BEHIND WHICH IS A TRIPOD CHAIN VICE. IN THE CENTER BACKGROUND IS A WOODEN CHEST OF DRAWERS WHICH CONTAINS A 'RAG DRAWER' STILL FILLED WITH CLOTH RAGS PLACED IN THE FACTORY BUILDING AT THE INSISTENCE OF LOUISE (MRS. ARTHUR) KREGEL FOR THE CONVENIENCE AND CLEANLINESS OF WORKERS. IN THE LEFT BACKGROUND IS A CIRCA 1900 CROSS-CUTOFF CIRCULAR SAW. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  20. Involving users in the design cycle for parallel tools

    SciTech Connect

    Pancake, C.M.

    1995-01-31

    Parallel programmers do not use software tools, in spite of the fact that parallel application development is a difficult and time- consuming task that could benefit from tool support. It has become increasingly clear that the simple availability of elegant, powerful software tools employing the latest technology is not enough. Usability is the real key to success; users simply do not adopt tools that fail to respond to their needs. Research in the area of usability engineering indicates that five design principles can have significant impact on parallel tool usability. {sm_bullet} tools must be based on demonstrable user requirements {sm_bullet} actively involve users throughout tool design {sm_bullet} minimize tool complexity to reduce the learning curve {sm_bullet} support the tool across multiple machine platforms to amortize the user`s investment {sm_bullet} employ iterative refinement techniques to improve tool usability. Those principles served as the starting point for a Parallel Tools Consortium project to develop a tool that will help users determine the final state of a program that crashes or is terminated forcibly. Carried out over a period of ten months, the project involved the collaboration of tool researchers, and implementors, and users. This report describes how user-centered design techniques were applied to ensure that the tool would provide simple, intuitive support for the programmer`s task.

  1. Design tools for passive solar applications

    SciTech Connect

    Balcomb, J D

    1986-04-01

    Examples of passive solar design tools are given, categorized as either evaluation tools or guidance tools. A trend toward microcomputer-based tools is noted; however, these are usually developed for use by engineers rather than architects. The need for more instructive tools targeted specifically to designers is emphasized.

  2. A 3-d modular gripper design tool

    SciTech Connect

    Brown, R.G.; Brost, R.C.

    1997-01-01

    Modular fixturing kits are precisely machined sets of components used for flexible, short-turnaround construction of fixtures for a variety of manufacturing purposes. A modular vise is a parallel-jaw vise, where each jaw is a modular fixture plate with a regular grid of precisely positioned holes. A modular vise can be used to locate and hold parts for machining, assembly, and inspection tasks. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid plate to each jaw of a parallel-jaw gripper, the authors gain the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed a previous algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses added to the planar algorithm to improve its utility, including a three-dimensional grasp quality metric based on geometric and force information, three-dimensional geometric loading analysis, and inter-gripper interference analysis to determine the compatibility of multiple grasps for handing the part from one gripper to another. Finally, the authors describe two applications which combine the utility of modular vise-style grasping with inter-gripper interference: The first is the design of a flexible part-handling subsystem for a part cleaning workcell under development at Sandia National Laboratories; the second is the automatic design of grippers that support the assembly of multiple products on a single assembly line.

  3. Control System Design for Automatic Cavity Tuning Machines

    SciTech Connect

    Carcagno, R.; Khabiboulline, T.; Kotelnikov, S.; Makulski, A.; Nehring, R.; Nogiec, J.; Ross, M.; Schappert, W.; Goessel, A.; Iversen, J.; Klinke, D.; /DESY

    2009-05-01

    A series of four automatic tuning machines for 9-cell TESLA-type cavities are being developed and fabricated in a collaborative effort among DESY, FNAL, and KEK. These machines are intended to support high-throughput cavity fabrication for construction of large SRF-based accelerator projects. Two of these machines will be delivered to cavity vendors for the tuning of XFEL cavities. The control system for these machines must support a high level of automation adequate for industrial use by non-experts operators. This paper describes the control system hardware and software design for these machines.

  4. Reverse engineering of machine-tool settings with modified roll for spiral bevel pinions

    NASA Astrophysics Data System (ADS)

    Liu, Guanglei; Chang, Kai; Liu, Zeliang

    2013-05-01

    Although a great deal of research has been dedicated to the synthesis of spiral bevel gears, little related to reverse engineering can be found. An approach is proposed to reverse the machine-tool settings of the pinion of a spiral bevel gear drive on the basis of the blank and tooth surface data obtained by a coordinate measuring machine(CMM). Real tooth contact analysis(RTCA) is performed to preliminary ascertain the contact pattern, the motion curve, as well as the position of the mean contact point. And then the tangent to the contact path and the motion curve are interpolated in the sense of the least square method to extract the initial values of the bias angle and the higher order coefficients(HOC) in modified roll motion. A trial tooth surface is generated by machine-tool settings derived from the local synthesis relating to the initial meshing performances and modified roll motion. An optimization objective is formed which equals the tooth surface deviation between the real tooth surface and the trial tooth surface. The design variables are the parameters describing the meshing performances at the mean contact point in addition to the HOC. When the objective is optimized within an arbitrarily given convergence tolerance, the machine-tool settings together with the HOC are obtained. The proposed approach is verified by a spiral bevel pinion used in the accessory gear box of an aviation engine. The trial tooth surfaces approach to the real tooth surface on the whole in the example. The results show that the convergent tooth surface deviation for the concave side on the average is less than 0.5 μm, and is less than 1.3 μm for the convex side. The biggest tooth surface deviation is 6.7 μm which is located at the corner of the grid on the convex side. Those nodes with relative bigger tooth surface deviations are all located at the boundary of the grid. An approach is proposed to figure out the machine-tool settings of a spiral bevel pinion by way of reverse

  5. Machinability of an experimental Ti-Ag alloy in terms of tool life in a dental CAD/CAM system.

    PubMed

    Inagaki, Ryoichi; Kikuchi, Masafumi; Takahashi, Masatoshi; Takada, Yukyo; Sasaki, Keiichi

    2015-01-01

    Titanium is difficult to machine because of its intrinsic properties. In a previous study, the machinability of titanium was improved by alloying with silver. This study aimed to evaluate the durability of tungsten carbide burs after the fabrication of frameworks using a Ti-20%Ag alloy and titanium with a computer-aided design and computer-aided manufacturing system. There was a significant difference in attrition area ratio between the two metals. Compared with titanium, the ratio of the area of attrition of machining burs was significantly lower for the experimental Ti-20%Ag alloy. The difference in the area of attrition for titanium and Ti-20%Ag became remarkable with increasing number of machining operations. The results show that the same burs can be used for a longer time with Ti-20%Ag than with pure titanium. Therefore, in terms of tool life, the machinability of the Ti-20%Ag alloy is superior to that of titanium.

  6. Design and accuracy analysis of a metamorphic CNC flame cutting machine for ship manufacturing

    NASA Astrophysics Data System (ADS)

    Hu, Shenghai; Zhang, Manhui; Zhang, Baoping; Chen, Xi; Yu, Wei

    2016-09-01

    The current research of processing large size fabrication holes on complex spatial curved surface mainly focuses on the CNC flame cutting machines design for ship hull of ship manufacturing. However, the existing machines cannot meet the continuous cutting requirements with variable pass conditions through their fixed configuration, and cannot realize high-precision processing as the accuracy theory is not studied adequately. This paper deals with structure design and accuracy prediction technology of novel machine tools for solving the problem of continuous and high-precision cutting. The needed variable trajectory and variable pose kinematic characteristics of non-contact cutting tool are figured out and a metamorphic CNC flame cutting machine designed through metamorphic principle is presented. To analyze kinematic accuracy of the machine, models of joint clearances, manufacturing tolerances and errors in the input variables and error models considering the combined effects are derived based on screw theory after establishing ideal kinematic models. Numerical simulations, processing experiment and trajectory tracking experiment are conducted relative to an eccentric hole with bevels on cylindrical surface respectively. The results of cutting pass contour and kinematic error interval which the position error is from-0.975 mm to +0.628 mm and orientation error is from-0.01 rad to +0.01 rad indicate that the developed machine can complete cutting process continuously and effectively, and the established kinematic error models are effective although the interval is within a `large' range. It also shows the matching property between metamorphic principle and variable working tasks, and the mapping correlation between original designing parameters and kinematic errors of machines. This research develops a metamorphic CNC flame cutting machine and establishes kinematic error models for accuracy analysis of machine tools.

  7. A new deformation measurement method for heavy-duty machine tool base by multipoint distributed FBG sensors

    NASA Astrophysics Data System (ADS)

    Li, Ruiya; Tan, Yuegang; Liu, Yi; Zhou, Zude; Liu, Mingyao

    2015-10-01

    The deformation of machine tool base is one of main error elements of heavy-duty CNC machine tool. A new deformation measurement method for heavy-duty machine tool base by multipoint distributed FBG sensors is developed in this study. Experiment is implemented on a real moving beam gantry machine tool. 16 FBG strain sensors are installed on the side-surface of the machine tool base. Moving the machine tool column to different positions, varying strain signals are collected. The testing results show that this distributed measurement method based on FBG sensors can effectively detect the deformation of the machine tool base. The largest deflection in vertical direction (axis Z) can be 75μm. This work is of great significance to the structure optimizing of machine tool base and real-time error compensation of heavy-duty CNC machine tool.

  8. Coupling for joining a ball nut to a machine tool carriage

    DOEpatents

    Gerth, Howard L.

    1979-01-01

    The present invention relates to an improved coupling for joining a lead screw ball nut to a machine tool carriage. The ball nut is coupled to the machine tool carriage by a plurality of laterally flexible bolts which function as hinges during the rotation of the lead screw for substantially reducing lateral carriage movement due to wobble in the lead screw.

  9. Advancing Research in Second Language Writing through Computational Tools and Machine Learning Techniques: A Research Agenda

    ERIC Educational Resources Information Center

    Crossley, Scott A.

    2013-01-01

    This paper provides an agenda for replication studies focusing on second language (L2) writing and the use of natural language processing (NLP) tools and machine learning algorithms. Specifically, it introduces a range of the available NLP tools and machine learning algorithms and demonstrates how these could be used to replicate seminal studies…

  10. Machine and Woodworking Tool Safety. Module SH-24. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on machine and woodworking tool safety is one of 50 modules concerned with job safety and health. This module discusses specific practices and precautions concerned with the efficient operation and use of most machine and woodworking tools in use today. Following the introduction, 13 objectives (each keyed to a page in the…

  11. Tool wear mechanisms in the machining of Nickel based super-alloys: A review

    NASA Astrophysics Data System (ADS)

    Akhtar, Waseem; Sun, Jianfei; Sun, Pengfei; Chen, Wuyi; Saleem, Zawar

    2014-06-01

    Nickel based super-alloys are widely employed in aircraft engines and gas turbines due to their high temperature strength, corrosion resistance and, excellent thermal fatigue properties. Conversely, these alloys are very difficult to machine and cause rapid wear of the cutting tool, frequent tool changes are thus required resulting in low economy of the machining process. This study provides a detailed review of the tool wear mechanism in the machining of nickel based super-alloys. Typical tool wear mechanisms found by different researchers are analyzed in order to find out the most prevalent wear mechanism affecting the tool life. The review of existing works has revealed interesting findings about the tool wear mechanisms in the machining of these alloys. Adhesion wear is found to be the main phenomenon leading to the cutting tool wear in this study.

  12. The dimensional design of machining technologies

    NASA Astrophysics Data System (ADS)

    Toca, A.; Stingaci, I.; Rusica, I.

    2016-11-01

    In the paper we analyze the mutual influence of constructive and technological dimensional links on conditions of formation of the machining accuracy sizes. It is shown, that the formation the sizes from technological locating datum surface demands higher accuracy of the technological sizes, but in this case, the machining allowances are more stable. At the formation the sizes by the means of transitions from technological locating datum surface to adjustment surface, the accuracy sizes is achieved without necessity of increase of an accuracy of the technological sizes, but thus, it is observed a growth of tolerances of the machining allowances and decreasing of the accuracy if some surface will not be machined. The dimensional optimality is not characterized only by the number of technological sizes, but it is necessary to take into account the growth (sometimes complicated) of the technological sizes accuracy (a case of formation of the sizes as closing link of dimensional chains).

  13. Performance of Uncoated Carbide Cutting Tool when Machining Cast Iron in Dry Cutting Condition

    NASA Astrophysics Data System (ADS)

    Jaharah, A. G.; Che Hassan, C. H.; Ghazali, M. J.; Sulong, A. B.; Omar, M. Z.; Nuawi, M. Z.; Ismail, A. R.

    This paper presents the performance of uncoated carbide cutting tool when machining cast iron in dry cutting conditions. Experiments were conducted at various cutting speeds, feed rates, and depths of cut according to Taguchi method design of experiment using a standard orthogonal array L9(34). The effects of cutting speeds (100-146 m/min), feed rates (0.20-0.35 mm/tooth) and depths of cut (1.0-2.0 mm) on the tool life, surface roughness and cutting forces were evaluated using ANOVA. Results showed that the effects of cutting speed, depth of cut and the feed rate were similar affecting the failure of the carbide cutting tools within the range of tested machining parameters. The contribution of cutting speed, feed rate, and depth of cut in controlling the tool life were 32.12%, 38.56% and 29.32% respectively. Whereas, the cutting speed was the main factor influencing the average surface roughness (Ra) value followed by feed rate. These factors contribute 60.53% and 35.59% respectively to the Ra value. On the other hand, cutting forces generated were greatly influenced by the depth of cut (66.52%) and the feed rate (32.6%). Cutting speed was found insignificant in controlling the generated cutting forces.

  14. Analysis and control on changeable wheel tool system of hybrid grinding and polishing machine tool for blade finishing

    NASA Astrophysics Data System (ADS)

    He, Qiuwei; Lv, Xingming; Wang, Xin; Qu, Xingtian; Zhao, Ji

    2017-01-01

    Blade is the key component in the energy power equipment of turbine, aircraft engines and so on. Researches on the process and equipment for blade finishing become one of important and difficult point. To control precisely tool system of developed hybrid grinding and polishing machine tool for blade finishing, the tool system with changeable wheel for belt polishing is analyzed in this paper. Firstly, the belt length and wrap angle of each wheel in different position of tension wheel swing angle in the process of changing wheel is analyzed. The reasonable belt length is calculated by using MATLAB, and relationships between wrap angle of each wheel and cylinder expansion amount of contact wheel are obtained. Then, the control system for changeable wheel tool structure is developed. Lastly, the surface roughness of blade finishing is verified by experiments. Theoretical analysis and experimental results show that reasonable belt length and wheel wrap angle can be obtained by proposed analysis method, the changeable wheel tool system can be controlled precisely, and the surface roughness of blade after grinding meets the design requirements.

  15. A tool for urban soundscape evaluation applying Support Vector Machines for developing a soundscape classification model.

    PubMed

    Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, Angel F

    2014-06-01

    To ensure appropriate soundscape management in urban environments, the urban-planning authorities need a range of tools that enable such a task to be performed. An essential step during the management of urban areas from a sound standpoint should be the evaluation of the soundscape in such an area. In this sense, it has been widely acknowledged that a subjective and acoustical categorization of a soundscape is the first step to evaluate it, providing a basis for designing or adapting it to match people's expectations as well. In this sense, this work proposes a model for automatic classification of urban soundscapes. This model is intended for the automatic classification of urban soundscapes based on underlying acoustical and perceptual criteria. Thus, this classification model is proposed to be used as a tool for a comprehensive urban soundscape evaluation. Because of the great complexity associated with the problem, two machine learning techniques, Support Vector Machines (SVM) and Support Vector Machines trained with Sequential Minimal Optimization (SMO), are implemented in developing model classification. The results indicate that the SMO model outperforms the SVM model in the specific task of soundscape classification. With the implementation of the SMO algorithm, the classification model achieves an outstanding performance (91.3% of instances correctly classified).

  16. Reliability-Based Electronics Shielding Design Tools

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; O'Neill, P. J.; Zang, T. A.; Pandolf, J. E.; Tripathi, R. K.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2007-01-01

    Shielding design on large human-rated systems allows minimization of radiation impact on electronic systems. Shielding design tools require adequate methods for evaluation of design layouts, guiding qualification testing, and adequate follow-up on final design evaluation.

  17. The development of a two-component force dynamometer and tool control system for dynamic machine tool research

    NASA Technical Reports Server (NTRS)

    Sutherland, I. A.

    1973-01-01

    The development is presented of a tooling system that makes a controlled sinusoidal oscillation simulating a dynamic chip removal condition. It also measures the machining forces in two mutually perpendicular directions without any cross sensitivity.

  18. An autonomous multisensor in situ metrology system for enabling high dynamic range measurement of 3D surfaces on precision machine tools

    NASA Astrophysics Data System (ADS)

    Liu, Samuel M. Y.; Cheung, Benny C. F.; Whitehouse, David; Cheng, Ching-Hsiang

    2016-11-01

    An in situ measurement is of prime importance when trying to maintain the position of the workpiece for further compensation processes in order to improve the accuracy and efficiency of the precision machining of three dimensional (3D) surfaces. However, the coordinates of most of the machine tools with closed machine interfaces and control system are not accessible for users, which make it difficult to use the motion axes of the machine tool for in situ measurements. This paper presents an autonomous multisensor in situ metrology system for enabling high dynamic range measurement of 3D surfaces on precision machine tools. It makes use of a designed tool path and an additional motion sensor to assist the registration of time-space data for the position estimation of a 2D laser scanner which measures the surface with a high lateral resolution and large area without the need to interface with the machine tool system. A prototype system was built and integrated into an ultra-precision polishing machine. Experimental results show that it measures the 3D surfaces with high resolution, high repeatability, and large measurement range. The system not only improves the efficiency and accuracy of the precision machining process but also extends the capability of machine tools.

  19. An iterative learning control method with application for CNC machine tools

    SciTech Connect

    Kim, D.I.; Kim, S.

    1996-01-01

    A proportional, integral, and derivative (PID) type iterative learning controller is proposed for precise tracking control of industrial robots and computer numerical controller (CNC) machine tools performing repetitive tasks. The convergence of the output error by the proposed learning controller is guaranteed under a certain condition even when the system parameters are not known exactly and unknown external disturbances exist. As the proposed learning controller is repeatedly applied to the industrial robot or the CNC machine tool with the path-dependent repetitive task, the distance difference between the desired path and the actual tracked or machined path, which is one of the most significant factors in the evaluation of control performance, is progressively reduced. The experimental results demonstrate that the proposed learning controller can improve machining accuracy when the CNC machine tool performs repetitive machining tasks.

  20. Design Your Own Rube Goldberg Machine. Grades 6-8.

    ERIC Educational Resources Information Center

    Rushton, Erik; Ryan, Emily; Swift, Charles

    Rube Goldberg is famous for his very complex machines that accomplish everyday tasks. In this activity, students design and build a Rube Goldberg machine that will accomplish a simple task in no less than 10 steps. This activity requires a 120-360 minute time period for completion. (Author/SOE)

  1. Haptics-Augmented Simple-Machine Educational Tools.

    ERIC Educational Resources Information Center

    Williams, Robert L., II; Chen, Meng-Yun; Seaton, Jeffrey M.

    2003-01-01

    Describes a unique project using commercial haptic interfaces to augment the teaching of simple machines in elementary school. Suggests that the use of haptics in virtual simple-machine simulations has the potential for deeper, more engaging learning. (Contains 13 references.) (Author/YDS)

  2. A field study investigating the effects of a rebar-tying machine on trunk flexion, tool usability and productivity.

    PubMed

    Vi, Peter

    2006-11-15

    A field study with a before-and-after experimental design was conducted to evaluate the potential reduction in the risk of musculoskeletal injuries to rodworkers when using an automatic rebar-tying machine. Eleven rodworkers participated in this experiment. All dependent variables (trunk posture, rebar-tying time and responses to a usability questionnaire) were first measured before introducing the rebar-tying machine and then after 3 months of usage all dependent variables were measured again. The results of the study indicated that working with a rebar-tying machine significantly reduced the magnitude, frequency and duration of exposure to awkward trunk posture. Tying time was reduced when participants used the machine. The usability questionnaire indicated that most participants preferred to use the rebar-tying machine for ground-level rebar construction. The field study also revealed that the rebar-tying machine is not limited to the reinforcing trade. The machine can be used for other purposes, such as tying electrical conduit and attaching radiant heat tube to steel mesh. Based on trunk posture exposure, rebar-tying time, usability and transferability, it is concluded that the rebar-tying machine can be an effective tool to reduce the frequency and duration of severe trunk flexion, improve usability and increase productivity among concrete reinforcement workers.

  3. Design and Construction Multi Output Power Transmition with Single Prime Mover on Agricultural Products Machine

    NASA Astrophysics Data System (ADS)

    Koten, V. K.; Tanamal, C. E.

    2017-03-01

    Manufacturing agricultural products by the farmers, people or person who involve in medium industry, small industry, and households industry still be done in separately. Although the power on primemover is enough, in operations, primemover was only to move one of several agricultural products machine. This study attempts to design and construct power transmition multi output with single primemover; a single construction that allows primemover move some agricultur products machine in the same or not. This study begins with the determination of production capacity and the power to destroy products, the determination of resources and rotation, normalization of resources and rotation, the determination of the type material used, the size determination of each machine elements, construction machine elements, and assemble machine elements into a construction multi output power transmition with single primemover on agricultural products machine. The results show that with a input normalization 4 PK (2984 Watt), rotation 2000 rpm, the strength of material 60 kg/mm2, and several operating consideration, thus obtained size of machine elements through calculation. Based on the size, the machine elements is made through the use of some machine tools and assembled to form a multi output power transmition with single primemover.

  4. Anisotropic force ellipsoid based multi-axis motion optimization of machine tools

    NASA Astrophysics Data System (ADS)

    Peng, Fangyu; Yan, Rong; Chen, Wei; Yang, Jianzhong; Li, Bin

    2012-09-01

    The existing research of the motion optimization of multi-axis machine tools is mainly based on geometric and kinematic constraints, which aim at obtaining minimum-time trajectories and finding obstacle-free paths. In motion optimization, the stiffness characteristics of the whole machining system, including machine tool and cutter, are not considered. The paper presents a new method to establish a general stiffness model of multi-axis machining system. An analytical stiffness model is established by Jacobi and point transformation matrix method. Based on the stiffness model, feed-direction stiffness index is calculated by the intersection of force ellipsoid and the cutting feed direction at the cutter tip. The stiffness index can help analyze the stiffness performance of the whole machining system in the available workspace. Based on the analysis of the stiffness performance, multi-axis motion optimization along tool paths is accomplished by mixed programming using Matlab and Visual C++. The effectiveness of the motion optimization method is verified by the experimental research about the machining performance of a 7-axis 5-linkage machine tool. The proposed research showed that machining stability and production efficiency can be improved by multi-axis motion optimization based on the anisotropic force ellipsoid of the whole machining system.

  5. Designing Educational Social Machines for Effective Feedback

    ERIC Educational Resources Information Center

    Yee-King, Matthew; Krivenski, Maria; Brenton, Harry; Grimalt-Reynes, Andreu; d'Inverno, Mark

    2014-01-01

    We report on our development of an educational social machine based on the concept that feedback in communities is an effective means to support the development of communities of learning and practice. Key challenges faced by this work are how best to support educational and social interactions, how to deliver personalised tuition, and how to…

  6. Finite Element Modelling of the effect of tool rake angle on tool temperature and cutting force during high speed machining of AISI 4340 steel

    NASA Astrophysics Data System (ADS)

    Sulaiman, S.; Roshan, A.; Ariffin, M. K. A.

    2013-12-01

    In this paper, a Finite Element Method (FEM) based on the ABAQUS explicit software which involves Johnson-Cook material model was used to simulate cutting force and tool temperature during high speed machining (HSM) of AISI 4340 steel. In this simulation work, a tool rake angle ranging from 0° to 20° and a range of cutting speeds between 300 to 550 m/min was investigated. The purpose of this simulation analysis was to find optimum tool rake angle where cutting force is smallest as well as tool temperature is lowest during high speed machining. It was found that cutting forces to have a decreasing trend as rake angle increased to positive direction. The optimum rake angle observed between 10° and 18° due to decrease of cutting force as 20% for all simulated cutting speeds. In addition, increasing cutting tool rake angle over its optimum value had negative influence on tool's performance and led to an increase in cutting temperature. The results give a better understanding and recognition of the cutting tool design for high speed machining processes.

  7. Metal Cutting Theory and Friction Stir Welding Tool Design

    NASA Technical Reports Server (NTRS)

    Payton, Lewis N.

    2003-01-01

    Friction Stir Welding (FSW) is a relatively new industrial process that was invented at The Weld Institute (TWI, United Kingdom) and patented in 1992 under research funded by in part by the National Aeronautics and Space Administration (NASA). Often quoted advantages of the process include good strength and ductility along with minimization of residual stress and distortion. Less well advertised are the beneficial effects of this solid state welding process in the field of occupational and environmental safety. It produces superior weld products in difficult to weld materials without producing any toxic fumes or solid waste that must be controlled as hazardous waste. In fact, it reduces noise pollution in the workspace as well. In the early days of FSW, most welding was performed on modified machine tools, in particular on milling machines with modified milling cutters. In spite of the obvious milling heritage of the process, the techniques and lessons learned from almost 250 years of successful metalworking with milling machines have not been applied in the field of modern Friction Stir Welding. The goal of the current research was to study currently successful FSW tools and parameterize the process in such a way that the design of new tools for new materials could be accelerated. Along the way, several successful new tooling designs were developed for current issues at the Marshall Space Flight Center with accompanying patent disclosures

  8. Modeling Tool Advances Rotorcraft Design

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Continuum Dynamics Inc. (CDI), founded in 1979, specializes in advanced engineering services, including fluid dynamic modeling and analysis for aeronautics research. The company has completed a number of SBIR research projects with NASA, including early rotorcraft work done through Langley Research Center, but more recently, out of Ames Research Center. NASA Small Business Innovation Research (SBIR) grants on helicopter wake modeling resulted in the Comprehensive Hierarchical Aeromechanics Rotorcraft Model (CHARM), a tool for studying helicopter and tiltrotor unsteady free wake modeling, including distributed and integrated loads, and performance prediction. Application of the software code in a blade redesign program for Carson Helicopters, of Perkasie, Pennsylvania, increased the payload and cruise speeds of its S-61 helicopter. Follow-on development resulted in a $24 million revenue increase for Sikorsky Aircraft Corporation, of Stratford, Connecticut, as part of the company's rotor design efforts. Now under continuous development for more than 25 years, CHARM models the complete aerodynamics and dynamics of rotorcraft in general flight conditions. CHARM has been used to model a broad spectrum of rotorcraft attributes, including performance, blade loading, blade-vortex interaction noise, air flow fields, and hub loads. The highly accurate software is currently in use by all major rotorcraft manufacturers, NASA, the U.S. Army, and the U.S. Navy.

  9. Foam-machining tool with eddy-current transducer

    NASA Technical Reports Server (NTRS)

    Copper, W. P.

    1975-01-01

    Three-cutter machining system for foam-covered tanks incorporates eddy-current sensor. Sensor feeds signal to numerical controller which programs rotational and vertical axes of sensor travel, enabling cutterhead to profile around tank protrusions.

  10. Boronizing of Machine and Tool Parts in Powdered Mixtures,

    DTIC Science & Technology

    A technological scheme is presented for boronizing in saturating powder mixtures. Some data are given on the use of this method of boration for increasing the service life of machine parts and instruments . (Author)

  11. Designing dynamic distributed cooperative Human-Machine Systems.

    PubMed

    Lüdtke, A; Javaux, D; Tango, F; Heers, R; Bengler, K; Ronfle-Nadaud, C

    2012-01-01

    The paper presents a new approach to the development of cooperative human-machine systems in the Transportation domain which is currently researched in the European project D3CoS. A necessary precondition for the acceptance of cooperative human-machine systems with shared control is the confidence and trust of the user into the system. D3CoS tackles this important issue by addressing the cooperative system as the object and the target of the system development process. This new perspective, along with corresponding innovative methods, techniques and tools, shall allow the identification of optimal task and authority sharing approaches supported by intuitive human-machine interaction and user interfaces at an early stage of system development. This will support powerful teamwork between humans and machines or between machines and machines that is transparent, intuitive and easy to understand. The paper describes the research dimensions for the development of the methods, techniques and tools as well as first results.

  12. Acquiring Software Design Schemas: A Machine Learning Perspective

    NASA Technical Reports Server (NTRS)

    Harandi, Mehdi T.; Lee, Hing-Yan

    1991-01-01

    In this paper, we describe an approach based on machine learning that acquires software design schemas from design cases of existing applications. An overview of the technique, design representation, and acquisition system are presented. the paper also addresses issues associated with generalizing common features such as biases. The generalization process is illustrated using an example.

  13. Engineering Materials and Machine Design Courses in ET Programs.

    ERIC Educational Resources Information Center

    Brodsky, Stanley M.

    1987-01-01

    Reports on a study designed to determine the current status of courses in engineering materials and their relationship to machine design and design project courses in mechanical engineering technology programs. Includes discussions of two recommendations of the study that were endorsed by a national conference. (TW)

  14. 12. TOOL ROOM SHOWING LANDIS MACHINE CO. BOL/T THREADER (L), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. TOOL ROOM SHOWING LANDIS MACHINE CO. BOL/T THREADER (L), OSTER MANUFACTURING CO. PIPE MASTER (R), AND OLDMAN KINK, A SHOP-MADE WELDING STRENGTH TESTER (L, BACKGROUND). VIEW NORTHEAST - Oldman Boiler Works, Office/Machine Shop, 32 Illinois Street, Buffalo, Erie County, NY

  15. Remediation, General Education, and Technical Mathematics. Educational Resources for the Machine Tool Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll. System, Waco.

    This document contains descriptions of adult education courses in remediation, general education, and technical mathematics. They are part of a program developed by the Machine Tool Advanced Skills Technology Educational Resources (MASTER) program to help workers become competent in the skills needed to be productive workers in the machine tools…

  16. Powerful tool for design analysis of linear control systems

    SciTech Connect

    Maddux, Jr, A S

    1982-05-10

    The methods for designing linear controls for electronic or mechanical systems have been understood and put to practice. What has not been readily available to engineers, however, is a practical, quick and inexpensive method for analyzing these linear control (feedback) systems once they have been designed into the electronic or mechanical hardware. Now, the PET, manufactured by Commodore Business Machines (CBM), operating with several peripherals via the IEEE 488 Bus, brings to the engineer for about $4000 a complete set of office tools for analyzing these system designs.

  17. Precision holding prediction model for moving joint surfaces of large machine tool

    NASA Astrophysics Data System (ADS)

    Wang, Mulan; Chen, Xuanyu; Ding, Wenzheng; Xu, Kaiyun

    2017-01-01

    In large machine tool, the plastic guide rail is more and more widely used because of its good mechanical properties. Based on the actual operating conditions of the machine tool, this paper analyzes the precision holding performance of the main bearing surface of the large machine tool with plastic guide rail moving. The precision holding performance of the plastic sliding guide rail is studied in detail from several aspects, such as the lubrication condition, the operating parameters of the machine tool and the material properties. The precision holding model of the moving binding surface of the plastic coated guide rail is established. At the same time, the experimental research on the accuracy of the guide rail is carried out, which verifies the validity of the theoretical model.

  18. New Accessory for Cleaning the Inside of the Machine Tool Cavity

    SciTech Connect

    Lazarus, Lloyd

    2009-04-21

    The best way to extend the life of a metalworking fluid (MWF) is to make sure the machine tool and MWF delivery system are properly cleaned at least once per year. The dilemma the MWF manager is faced with is: How does one clean the machine tool and the MWF system on a large machine tool with an enclosure in a timely manner without impacting production schedules? Remember the walls and roof of the machine enclosure are coated with a film of dried contaminated MWF that must also be removed. If not removed, the deposits on these surfaces can recontaminate the fresh charge of MWF. I have found a product that with this revised procedure helps to shorten the machine tool down time involved with machine cleaning. (1) Discuss with your MWF supplier if they have a machine cleaning product that can be used with your current water based MWF during normal machining operations. Most MWF manufacturers have a machine cleaner that can be used at a lower concentration (1-2% vs. 5%) and can be used while still making production parts for a short period of time (usually 24-48 hours). (2) Make sure this machine cleaner is compatible with the work-piece material you are machining into product. Most cleaners are compatible with ferrous alloys. Because of the increased alkalinity of the fluid you might experience staining if you are machining copper or aluminum alloys. (3) Remove the chips from the chips pans and fluid channels. (4) During off shift hours circulate the MWF using a new product marketed by Rego-Fix called a 'Hydroball'. This device has a 5/8 inch diameter straight shank which allows it to be installed in any collet or solid quick change tool holder. It has multiple nozzles so that the user can control the spray pattern generated when the MWF is circulated. It allows the user to utilize the high pressure, through spindle MWF delivery capability of your machine tool for cleaning purposes. The high pressure MWF system can now be effectively used for cleaning purposes. This

  19. Programmable phase plate for tool modification in laser machining applications

    DOEpatents

    Thompson Jr., Charles A.; Kartz, Michael W.; Brase, James M.; Pennington, Deanna; Perry, Michael D.

    2004-04-06

    A system for laser machining includes a laser source for propagating a laser beam toward a target location, and a spatial light modulator having individual controllable elements capable of modifying a phase profile of the laser beam to produce a corresponding irradiance pattern on the target location. The system also includes a controller operably connected to the spatial light modulator for controlling the individual controllable elements. By controlling the individual controllable elements, the phase profile of the laser beam may be modified into a desired phase profile so as to produce a corresponding desired irradiance pattern on the target location capable of performing a machining operation on the target location.

  20. High accurate interpolation of NURBS tool path for CNC machine tools

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Liu, Huan; Yuan, Songmei

    2016-09-01

    Feedrate fluctuation caused by approximation errors of interpolation methods has great effects on machining quality in NURBS interpolation, but few methods can efficiently eliminate or reduce it to a satisfying level without sacrificing the computing efficiency at present. In order to solve this problem, a high accurate interpolation method for NURBS tool path is proposed. The proposed method can efficiently reduce the feedrate fluctuation by forming a quartic equation with respect to the curve parameter increment, which can be efficiently solved by analytic methods in real-time. Theoretically, the proposed method can totally eliminate the feedrate fluctuation for any 2nd degree NURBS curves and can interpolate 3rd degree NURBS curves with minimal feedrate fluctuation. Moreover, a smooth feedrate planning algorithm is also proposed to generate smooth tool motion with considering multiple constraints and scheduling errors by an efficient planning strategy. Experiments are conducted to verify the feasibility and applicability of the proposed method. This research presents a novel NURBS interpolation method with not only high accuracy but also satisfying computing efficiency.

  1. Parametric Optimization of Wire Electrical Discharge Machining of Powder Metallurgical Cold Worked Tool Steel using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Sudhakara, Dara; Prasanthi, Guvvala

    2016-08-01

    Wire Cut EDM is an unconventional machining process used to build components of complex shape. The current work mainly deals with optimization of surface roughness while machining P/M CW TOOL STEEL by Wire cut EDM using Taguchi method. The process parameters of the Wire Cut EDM is ON, OFF, IP, SV, WT, and WP. L27 OA is used for to design of the experiments for conducting experimentation. In order to find out the effecting parameters on the surface roughness, ANOVA analysis is engaged. The optimum levels for getting minimum surface roughness is ON = 108 µs, OFF = 63 µs, IP = 11 A, SV = 68 V and WT = 8 g.

  2. Atwood's Machine as a Tool to Introduce Variable Mass Systems

    ERIC Educational Resources Information Center

    de Sousa, Celia A.

    2012-01-01

    This article discusses an instructional strategy which explores eventual similarities and/or analogies between familiar problems and more sophisticated systems. In this context, the Atwood's machine problem is used to introduce students to more complex problems involving ropes and chains. The methodology proposed helps students to develop the…

  3. Study on electroplating technology of diamond tools for machining hard and brittle materials

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Chen, Jian Hua; Sun, Li Peng; Wang, Yue

    2016-10-01

    With the development of the high speed cutting, the ultra-precision machining and ultrasonic vibration technique in processing hard and brittle material , the requirement of cutting tools is becoming higher and higher. As electroplated diamond tools have distinct advantages, such as high adaptability, high durability, long service life and good dimensional stability, the cutting tools are effective and extensive used in grinding hard and brittle materials. In this paper, the coating structure of electroplating diamond tool is described. The electroplating process flow is presented, and the influence of pretreatment on the machining quality is analyzed. Through the experimental research and summary, the reasonable formula of the electrolyte, the electroplating technologic parameters and the suitable sanding method were determined. Meanwhile, the drilling experiment on glass-ceramic shows that the electroplating process can effectively improve the cutting performance of diamond tools. It has laid a good foundation for further improving the quality and efficiency of the machining of hard and brittle materials.

  4. Investigation on the Surface Integrity and Tool Wear in Cryogenic Machining

    SciTech Connect

    Dutra Xavier, Sandro E.; Delijaicov, Sergio; Farias, Adalto de; Stipkovic Filho, Marco; Ferreira Batalha, Gilmar

    2011-01-17

    This work aimed to study the influences of cryogenic cooling on tool wear, comparing it to dry machining during on the surface integrity of test circular steel SAE 52100 hardened to 62 HRC, during the turning of the face, with the use of special PcBN, using liquid nitrogen with cooler. The surface integrity parameters analyzed were: surface roughness and white layer and tool wear. The results of the present work indicated reduction in tool wear, which enhance the tool life.

  5. Advances in precision machining and moulding technology bring design opportunities.

    PubMed

    Glendening, Paul

    2008-09-01

    Machining of materials for medical applications has moved to a new level of precision. In parallel with this, moulding technology has improved through the increased use of sensors in moulds, enhanced design simulation and processes such as micromoulding. This article examines the opportunities offered by these developments and includes examples of mass produced parts that demonstrate the new capabilities useful to product designers.

  6. Design variants of modular permanent magnet brushless machine

    NASA Astrophysics Data System (ADS)

    Ede, Jason D.; Atallah, Kais; Howe, David

    2002-05-01

    The article describes an analytical technique for determining all possible slot-number and pole-number combinations, of modular permanent magnet brushless machines. It is shown that a large number of design variants exist. Furthermore, typical performance parameters, such as back-emf and cogging torque wave forms, for selected fault-tolerant designs are presented.

  7. Development of Prediction System for Environmental Burden for Machine Tool Operation

    NASA Astrophysics Data System (ADS)

    Narita, Hirohisa; Kawamura, Hiroshi; Norihisa, Takashi; Chen, Lian-Yi; Fujimoto, Hideo; Hasebe, Takao

    Recently, some activities for environmental protection have been attempted to reduce environmental burdens in many fields. The manufacturing field also requires such reduction. Hence, a prediction system for environmental burden for machining operation is proposed based on the Life Cycle Assessment (LCA) policy for the future manufacturing system in this research. This system enables the calculation of environmental burden (equivalent CO2 emission) due to the electric consumption of machine tool components, cutting tool status, coolant quantity, lubricant oil quantity and metal chip quantity, and provides accurate information of environmental burden of the machining process by considering some activities related to machine tool operation. In this paper, the development of the prediction system is described. As a case study, two Numerical Control (NC) programs that manufacture a simple shape are evaluated to show the feasibility of the proposed system.

  8. Numerical Manufacturing And Design tool

    SciTech Connect

    Berg, Jonathan; Resor, Brian; Owens, Brian; Laird, Daniel

    2013-03-25

    NuMAD helps to enable efficient creation and use of high fidelity wind turbine blade models for structural and aerodynamic analysis. NuMAD is a GUI-based tool used to manage the specific geometry and materials inputs required to fully describe a wind turbine blade.

  9. Man and machine design for space flight

    NASA Technical Reports Server (NTRS)

    Louviere, A. J.

    1979-01-01

    The factors involved in creating effective designs for living and working in a weightless environment are discussed. Among the areas covered are special provisions for eating and drinking, a special shower nozzle to remove soap, electric shavers designed for vacuum containment of the clippings, and the need for restraint systems at the crew's workstations. Attention is given to the fact that the crewmen assume a neutral body posture in weightlessness which is an important consideration in designing displays, controls, and windows. It is concluded that the incorporation of the change in body posture and the requirement for restraint into future designs will greatly facilitate the crewman's task in the weightless environment.

  10. Online machining error estimation method of numerical control gear grinding machine tool based on data analysis of internal sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Fei; Zhang, Chi; Yang, Guilin; Chen, Chinyin

    2016-12-01

    This paper presents an online estimation method of cutting error by analyzing of internal sensor readings. The internal sensors of numerical control (NC) machine tool are selected to avoid installation problem. The estimation mathematic model of cutting error was proposed to compute the relative position of cutting point and tool center point (TCP) from internal sensor readings based on cutting theory of gear. In order to verify the effectiveness of the proposed model, it was simulated and experimented in gear generating grinding process. The cutting error of gear was estimated and the factors which induce cutting error were analyzed. The simulation and experiments verify that the proposed approach is an efficient way to estimate the cutting error of work-piece during machining process.

  11. Accelerating Dielectrics Design Using Thinking Machines

    NASA Astrophysics Data System (ADS)

    Ramprasad, R.

    2013-03-01

    High energy density capacitors are required for several pulsed power and energy storage applications, including food preservation, nuclear test simulations, electric propulsion of ships and hybrid electric vehicles. The maximum electrostatic energy that can be stored in a capacitor dielectric is proportional to its dielectric constant and the square of its breakdown field. The current standard material for capacitive energy storage is polypropylene which has a large breakdown field but low dielectric constant. We are involved in a search for new classes of polymers superior to polypropylene using first principles computations combined with statistical and machine learning methods. Essential to this search are schemes to efficiently compute the dielectric constant of polymers and the intrinsic dielectric breakdown field, as well as methods to determine the stable structures of new classes of polymers and strategies to efficiently navigate through the polymer chemical space offered by the periodic table. These methodologies have been combined with statistical learning paradigms in order to make property predictions rapidly, and promising classes of polymeric systems for energy storage applications have been identified. This work is being supported by the Office of Naval Research.

  12. Precision Measurement of Cylinder Surface Profile on an Ultra-Precision Machine Tool

    NASA Astrophysics Data System (ADS)

    Lee, J. C.; Noh, Y. J.; Arai, Y.; Gao, W.; Park, C. H.

    2009-01-01

    This paper describes the measurement of the surface straightness profile of a cylinder workpiece on an ultra-precision machine tool which has a T-base design with a spindle, an X-slide and a Z-slide. The movement range of the X-slide is 220 mm and that of the Z-slide is 150 mm, which have roller bearings in common. Two capacitive sensors are employed to scan a cylinder workpiece mounted on the spindle along the Z-axis. The straightness error motion of the Z-slide is measured to be approximately 100 nm by the reversal method. The straightness profile of the cylinder workpiece is evaluated to be approximately 400 nm by separation of the motion error, simultaneously.

  13. A Catalog of Performance Objectives, Performance Conditions, and Performance Guides for Machine Tool Operations.

    ERIC Educational Resources Information Center

    Stadt, Ronald; And Others

    This catalog provides performance objectives, tasks, standards, and performance guides associated with current occupational information relating to the job content of machinists, specifically tool grinder operators, production lathe operators, and production screw machine operators. The catalog is comprised of 262 performance objectives, tool and…

  14. Web-Based Machine Translation as a Tool for Promoting Electronic Literacy and Language Awareness

    ERIC Educational Resources Information Center

    Williams, Lawrence

    2006-01-01

    This article addresses a pervasive problem of concern to teachers of many foreign languages: the use of Web-Based Machine Translation (WBMT) by students who do not understand the complexities of this relatively new tool. Although networked technologies have greatly increased access to many language and communication tools, WBMT is still…

  15. A CAD tool that automatically designs fixtures and pallets

    SciTech Connect

    Brost, R.C.; Peters, R.R.

    1995-12-01

    Costs associated with designing and fabricating fixtures may be a significant portion of the total costs associated with a manufacturing task. The software tool, HoldFast, designs optimal fixtures that hold a single workpiece, are easily fabricated, provide rigid constraint and deterministic location of the workpiece, are robust to workpiece shape variations, obey all associated task constraints, and are easy to load and unload. We illustrate the capabilities of HoldFast by designing fixtures for several examples. Fixtures are designed and built for finish-machining and drilling of a cast part for prototype fabrication and mass-production fabrication. A pallet fixture is designed for vertical assembly of a personal cassette player. Another pallet fixture is designed and built that will hold either the personal cassette player or a glue gun during assembly.

  16. The effect of machining parameters on force signal and tool wear in stone cutting

    NASA Astrophysics Data System (ADS)

    yousefi, Reza; Gorjizadeh, Ashkan; Mikaeil, Reza

    2011-01-01

    The application of sensor system is becoming more commonplace in improving productivity and reliability. Although measuring force signal have been widely used for monitoring of metal machining process that their application to stone cutting has not been well investigated. In this paper, the effect of machining parameter on force signal and tool wear was investigated. The result indicate that increasing of the depth of cut and spindle speed will increase the force and tool wear while increasing feed rate will increase force and decrease tool wear.

  17. A method of numerically controlled machine part programming

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Computer program is designed for automatically programmed tools. Preprocessor computes desired tool path and postprocessor computes actual commands causing machine tool to follow specific path. It is used on a Cincinnati ATC-430 numerically controlled machine tool.

  18. Design features and results from fatigue reliability research machines.

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Kececioglu, D.; Mcconnell, J. B.

    1971-01-01

    The design, fabrication, development, operation, calibration and results from reversed bending combined with steady torque fatigue research machines are presented. Fifteen-centimeter long, notched, SAE 4340 steel specimens are subjected to various combinations of these stresses and cycled to failure. Failure occurs when the crack in the notch passes through the specimen automatically shutting down the test machine. These cycles-to-failure data are statistically analyzed to develop a probabilistic S-N diagram. These diagrams have many uses; a rotating component design example given in the literature shows that minimum size and weight for a specified number of cycles and reliability can be calculated using these diagrams.

  19. Factors influencing design and selection of GTAW robotic welding machines for the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Flanigan, L.

    1986-01-01

    Proposed hardware and software for microprocessor-controlled power supplies and welding machines are described. The application of the automatic seven-axis welding machine, which is to be preprogrammed to allow minimum intervention by the welding operator during the actual process, to the welding of the Space Shuttle main engine is discussed. The production requirements for the gas tungsten arc welds for the Space Shuttle main engine are examined. Consideration is given to positioner design, welding variables, inert shielding gas management, filler metal wire control, the up loading and down loading of data from off-line computers, process improvements, tooling, the welding variable library, and adaptive sensor control.

  20. Performance Evaluation of Multi-Axis CNC Machine Tools by Interferometry Principle using Laser Calibration System

    NASA Astrophysics Data System (ADS)

    Barman, S.; Sen, R.

    2012-06-01

    Advancement in digital electronics and microprocessors has made the manufacturing sector capable to generate complex components within small tolerance zone in nanometre range at one machining center. All motion control systems have some form of position feed back system fitted with the machine. But the systems are not perfectly accurate due to the errors in the positioning performance of the machine tools which will change over time to time due to wear, damage and environmental effect. The complex structure of multi-axis CNC machine tools produces an inaccuracy at the tool tip caused by kinematic parameter deviations resulting in manufacturing errors, assembly error and quasi-static errors. Analysis of these errors using a laser measurement system provides the user with a way to achieve better accuracy, and hence higher quality output from these processes. In this paper, characteristic of the positioning errors of the axes of multi-axis CNC machine tools and the technique to measure the errors by a laser interferometer calibration system have been discussed and the positioning accuracy of the machine each axis has been verified.

  1. Design and Fabrication of Automatic Glass Cutting Machine

    NASA Astrophysics Data System (ADS)

    Veena, T. R.; Kadadevaramath, R. S.; Nagaraj, P. M.; Madhusudhan, S. V.

    2016-09-01

    This paper deals with the design and fabrication of the automatic glass or mirror cutting machine. In order to increase the accuracy of cut and production rate; and decrease the production time and accidents caused due to manual cutting of mirror or glass, this project aims at development of an automatic machine which uses a programmable logic controller (PLC) for controlling the movement of the conveyer and also to control the pneumatic circuit. In this machine, the work of the operator is to load and unload the mirror. The cutter used in this machine is carbide wheel with its cutting edge ground to a V-shaped profile. The PLC controls the pneumatic cylinder and intern actuates the cutter along the glass, a fracture layer is formed causing a mark to be formed below the fracture layer and a crack to be formed below the rib mark. The machine elements are designed using CATIA V5R20 and pneumatic circuit are designed using FESTO FLUID SIM software.

  2. Characterizing EMG data using machine-learning tools.

    PubMed

    Yousefi, Jamileh; Hamilton-Wright, Andrew

    2014-08-01

    Effective electromyographic (EMG) signal characterization is critical in the diagnosis of neuromuscular disorders. Machine-learning based pattern classification algorithms are commonly used to produce such characterizations. Several classifiers have been investigated to develop accurate and computationally efficient strategies for EMG signal characterization. This paper provides a critical review of some of the classification methodologies used in EMG characterization, and presents the state-of-the-art accomplishments in this field, emphasizing neuromuscular pathology. The techniques studied are grouped by their methodology, and a summary of the salient findings associated with each method is presented.

  3. Atwood's machine as a tool to introduce variable mass systems

    NASA Astrophysics Data System (ADS)

    de Sousa, Célia A.

    2012-03-01

    This article discusses an instructional strategy which explores eventual similarities and/or analogies between familiar problems and more sophisticated systems. In this context, the Atwood's machine problem is used to introduce students to more complex problems involving ropes and chains. The methodology proposed helps students to develop the ability needed to apply relevant concepts in situations not previously encountered. The pedagogical advantages are relevant for both secondary and high school students, showing that, through adequate examples, the question of the validity of Newton's second law may even be introduced to introductory level students.

  4. Circuit design tool. User's manual, revision 2

    NASA Technical Reports Server (NTRS)

    Miyake, Keith M.; Smith, Donald E.

    1992-01-01

    The CAM chip design was produced in a UNIX software environment using a design tool that supports definition of digital electronic modules, composition of these modules into higher level circuits, and event-driven simulation of these circuits. Our design tool provides an interface whose goals include straightforward but flexible primitive module definition and circuit composition, efficient simulation, and a debugging environment that facilitates design verification and alteration. The tool provides a set of primitive modules which can be composed into higher level circuits. Each module is a C-language subroutine that uses a set of interface protocols understood by the design tool. Primitives can be altered simply by recoding their C-code image; in addition new primitives can be added allowing higher level circuits to be described in C-code rather than as a composition of primitive modules--this feature can greatly enhance the speed of simulation.

  5. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools.

    PubMed

    Jia, Lei; Yarlagadda, Ramya; Reed, Charles C

    2015-01-01

    Thermostability issue of protein point mutations is a common occurrence in protein engineering. An application which predicts the thermostability of mutants can be helpful for guiding decision making process in protein design via mutagenesis. An in silico point mutation scanning method is frequently used to find "hot spots" in proteins for focused mutagenesis. ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html) is a public database that consists of thousands of protein mutants' experimentally measured thermostability. Two data sets based on two differently measured thermostability properties of protein single point mutations, namely the unfolding free energy change (ddG) and melting temperature change (dTm) were obtained from this database. Folding free energy change calculation from Rosetta, structural information of the point mutations as well as amino acid physical properties were obtained for building thermostability prediction models with informatics modeling tools. Five supervised machine learning methods (support vector machine, random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor) and partial least squares regression are used for building the prediction models. Binary and ternary classifications as well as regression models were built and evaluated. Data set redundancy and balancing, the reverse mutations technique, feature selection, and comparison to other published methods were discussed. Rosetta calculated folding free energy change ranked as the most influential features in all prediction models. Other descriptors also made significant contributions to increasing the accuracy of the prediction models.

  6. Machine Shop Fundamentals: Part I.

    ERIC Educational Resources Information Center

    Kelly, Michael G.; And Others

    These instructional materials were developed and designed for secondary and adult limited English proficient students enrolled in machine tool technology courses. Part 1 includes 24 lessons covering introduction, safety and shop rules, basic machine tools, basic machine operations, measurement, basic blueprint reading, layout, and bench tools.…

  7. Design, development and use of the finite element machine

    NASA Technical Reports Server (NTRS)

    Adams, L. M.; Voigt, R. C.

    1983-01-01

    Some of the considerations that went into the design of the Finite Element Machine, a research asynchronous parallel computer are described. The present status of the system is also discussed along with some indication of the type of results that were obtained.

  8. The use of machine learning and nonlinear statistical tools for ADME prediction.

    PubMed

    Sakiyama, Yojiro

    2009-02-01

    Absorption, distribution, metabolism and excretion (ADME)-related failure of drug candidates is a major issue for the pharmaceutical industry today. Prediction of ADME by in silico tools has now become an inevitable paradigm to reduce cost and enhance efficiency in pharmaceutical research. Recently, machine learning as well as nonlinear statistical tools has been widely applied to predict routine ADME end points. To achieve accurate and reliable predictions, it would be a prerequisite to understand the concepts, mechanisms and limitations of these tools. Here, we have devised a small synthetic nonlinear data set to help understand the mechanism of machine learning by 2D-visualisation. We applied six new machine learning methods to four different data sets. The methods include Naive Bayes classifier, classification and regression tree, random forest, Gaussian process, support vector machine and k nearest neighbour. The results demonstrated that ensemble learning and kernel machine displayed greater accuracy of prediction than classical methods irrespective of the data set size. The importance of interaction with the engineering field is also addressed. The results described here provide insights into the mechanism of machine learning, which will enable appropriate usage in the future.

  9. Automated radiation hard ASIC design tool

    NASA Technical Reports Server (NTRS)

    White, Mike; Bartholet, Bill; Baze, Mark

    1993-01-01

    A commercial based, foundry independent, compiler design tool (ChipCrafter) with custom radiation hardened library cells is described. A unique analysis approach allows low hardness risk for Application Specific IC's (ASIC's). Accomplishments, radiation test results, and applications are described.

  10. Indoor Air Quality Design Tools for Schools

    EPA Pesticide Factsheets

    The information available here is presented as a tool to help school districts and facility planners design the next generation of learning environments so that the school facility will help, rather than hinder, schools in achieving their core mission

  11. Method and apparatus for suppressing regenerative instability and related chatter in machine tools

    DOEpatents

    Segalman, Daniel J.; Redmond, James M.

    1999-01-01

    Methods of and apparatuses for mitigating chatter vibrations in machine tools or components thereof. Chatter therein is suppressed by periodically or continuously varying the stiffness of the cutting tool (or some component of the cutting tool), and hence the resonant frequency of the cutting tool (or some component thereof). The varying of resonant frequency of the cutting tool can be accomplished by modulating the stiffness of the cutting tool, the cutting tool holder, or any other component of the support for the cutting tool. By periodically altering the impedance of the cutting tool assembly, chatter is mitigated. In one embodiment, a cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface.

  12. Method and apparatus for suppressing regenerative instability and related chatter in machine tools

    DOEpatents

    Segalman, Daniel J.; Redmond, James M.

    2001-01-01

    Methods of and apparatuses for mitigating chatter vibrations in machine tools or components thereof. Chatter therein is suppressed by periodically or continuously varying the stiffness of the cutting tool (or some component of the cutting tool), and hence the resonant frequency of the cutting tool (or some component thereof). The varying of resonant frequency of the cutting tool can be accomplished by modulating the stiffness of the cutting tool, the cutting tool holder, or any other component of the support for the cutting tool. By periodically altering the impedance of the cutting tool assembly, chatter is mitigated. In one embodiment, a cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface.

  13. Method and apparatus for suppressing regenerative instability and related chatter in machine tools

    SciTech Connect

    Segalman, D.J.; Redmond, J.M.

    1999-09-28

    Methods of and apparatuses for mitigating chatter vibrations in machine tools or components thereof are disclosed. Chatter therein is suppressed by periodically or continuously varying the stiffness of the cutting tool (or some component of the cutting tool), and hence the resonant frequency of the cutting tool (or some component thereof). The varying of resonant frequency of the cutting tool can be accomplished by modulating the stiffness of the cutting tool, the cutting tool holder, or any other component of the support for the cutting tool. By periodically altering the impedance of the cutting tool assembly, chatter is mitigated. In one embodiment, a cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface.

  14. INL Review of Fueling Machine Inspection Tool Development Proposal

    SciTech Connect

    Griffith, George

    2015-03-01

    A review of a technical proposal for James Fischer Nuclear. The document describes an inspection tool to examine the graphite moderator in an AGR reactor. The system is an optical system to look at the graphite blocks for cracks. INL reviews the document for technical value.

  15. Optimization of Operation Sequence in CNC Machine Tools Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Abu Qudeiri, Jaber; Yamamoto, Hidehiko; Ramli, Rizauddin

    The productivity of machine tools is significantly improved by using microcomputer based CAD/CAM systems for NC program generation. Currently, many commercial CAD/CAM packages that provide automatic NC programming have been developed and applied to various cutting processes. Many cutting processes machined by CNC machine tools. In this paper, we attempt to find an efficient solution approach to determine the best sequence of operations for a set of operations that located in asymmetrical locations and different levels. In order to find the best sequence of operations that achieves the shortest cutting tool travel path (CTTP), genetic algorithm is introduced. After the sequence is optimized, the G-codes that use to code for the travel time is created. CTTP can be formulated as a special case of the traveling salesman problem (TSP). The incorporation of genetic algorithm and TSP can be included in the commercial CAD/CAM packages to optimize the CTTP during automatic generation of NC programs.

  16. Improving air traffic control: Proving new tools or approving the joint human-machine system?

    NASA Technical Reports Server (NTRS)

    Gaillard, Irene; Leroux, Marcel

    1994-01-01

    From the description of a field problem (i.e., designing decision aids for air traffic controllers), this paper points out how a cognitive engineering approach provides the milestones for the evaluation of future joint human-machine systems.

  17. ASTROS: A multidisciplinary automated structural design tool

    NASA Technical Reports Server (NTRS)

    Neill, D. J.

    1989-01-01

    ASTROS (Automated Structural Optimization System) is a finite-element-based multidisciplinary structural optimization procedure developed under Air Force sponsorship to perform automated preliminary structural design. The design task is the determination of the structural sizes that provide an optimal structure while satisfying numerous constraints from many disciplines. In addition to its automated design features, ASTROS provides a general transient and frequency response capability, as well as a special feature to perform a transient analysis of a vehicle subjected to a nuclear blast. The motivation for the development of a single multidisciplinary design tool is that such a tool can provide improved structural designs in less time than is currently needed. The role of such a tool is even more apparent as modern materials come into widespread use. Balancing conflicting requirements for the structure's strength and stiffness while exploiting the benefits of material anisotropy is perhaps an impossible task without assistance from an automated design tool. Finally, the use of a single tool can bring the design task into better focus among design team members, thereby improving their insight into the overall task.

  18. Machine Learning Techniques in Optimal Design

    NASA Technical Reports Server (NTRS)

    Cerbone, Giuseppe

    1992-01-01

    Many important applications can be formalized as constrained optimization tasks. For example, we are studying the engineering domain of two-dimensional (2-D) structural design. In this task, the goal is to design a structure of minimum weight that bears a set of loads. A solution to a design problem in which there is a single load (L) and two stationary support points (S1 and S2) consists of four members, E1, E2, E3, and E4 that connect the load to the support points is discussed. In principle, optimal solutions to problems of this kind can be found by numerical optimization techniques. However, in practice [Vanderplaats, 1984] these methods are slow and they can produce different local solutions whose quality (ratio to the global optimum) varies with the choice of starting points. Hence, their applicability to real-world problems is severely restricted. To overcome these limitations, we propose to augment numerical optimization by first performing a symbolic compilation stage to produce: (a) objective functions that are faster to evaluate and that depend less on the choice of the starting point and (b) selection rules that associate problem instances to a set of recommended solutions. These goals are accomplished by successive specializations of the problem class and of the associated objective functions. In the end, this process reduces the problem to a collection of independent functions that are fast to evaluate, that can be differentiated symbolically, and that represent smaller regions of the overall search space. However, the specialization process can produce a large number of sub-problems. This is overcome by deriving inductively selection rules which associate problems to small sets of specialized independent sub-problems. Each set of candidate solutions is chosen to minimize a cost function which expresses the tradeoff between the quality of the solution that can be obtained from the sub-problem and the time it takes to produce it. The overall solution

  19. Design methods for fault-tolerant finite state machines

    NASA Technical Reports Server (NTRS)

    Niranjan, Shailesh; Frenzel, James F.

    1993-01-01

    VLSI electronic circuits are increasingly being used in space-borne applications where high levels of radiation may induce faults, known as single event upsets. In this paper we review the classical methods of designing fault tolerant digital systems, with an emphasis on those methods which are particularly suitable for VLSI-implementation of finite state machines. Four methods are presented and will be compared in terms of design complexity, circuit size, and estimated circuit delay.

  20. Tools for Material Design and Selection

    NASA Astrophysics Data System (ADS)

    Wehage, Kristopher

    The present thesis focuses on applications of numerical methods to create tools for material characterization, design and selection. The tools generated in this work incorporate a variety of programming concepts, from digital image analysis, geometry, optimization, and parallel programming to data-mining, databases and web design. The first portion of the thesis focuses on methods for characterizing clustering in bimodal 5083 Aluminum alloys created by cryomilling and powder metallurgy. The bimodal samples analyzed in the present work contain a mixture of a coarse grain phase, with a grain size on the order of several microns, and an ultra-fine grain phase, with a grain size on the order of 200 nm. The mixing of the two phases is not homogeneous and clustering is observed. To investigate clustering in these bimodal materials, various microstructures were created experimentally by conventional cryomilling, Hot Isostatic Pressing (HIP), Extrusion, Dual-Mode Dynamic Forging (DMDF) and a new 'Gradient' cryomilling process. Two techniques for quantitative clustering analysis are presented, formulated and implemented. The first technique, the Area Disorder function, provides a metric of the quality of coarse grain dispersion in an ultra-fine grain matrix and the second technique, the Two-Point Correlation function, provides a metric of long and short range spatial arrangements of the two phases, as well as an indication of the mean feature size in any direction. The two techniques are implemented on digital images created by Scanning Electron Microscopy (SEM) and Electron Backscatter Detection (EBSD) of the microstructures. To investigate structure--property relationships through modeling and simulation, strategies for generating synthetic microstructures are discussed and a computer program that generates randomized microstructures with desired configurations of clustering described by the Area Disorder Function is formulated and presented. In the computer program, two

  1. Design of testbed and emulation tools

    NASA Technical Reports Server (NTRS)

    Lundstrom, S. F.; Flynn, M. J.

    1986-01-01

    The research summarized was concerned with the design of testbed and emulation tools suitable to assist in projecting, with reasonable accuracy, the expected performance of highly concurrent computing systems on large, complete applications. Such testbed and emulation tools are intended for the eventual use of those exploring new concurrent system architectures and organizations, either as users or as designers of such systems. While a range of alternatives was considered, a software based set of hierarchical tools was chosen to provide maximum flexibility, to ease in moving to new computers as technology improves and to take advantage of the inherent reliability and availability of commercially available computing systems.

  2. Analysis and classification of the tools for assessing the risks associated with industrial machines.

    PubMed

    Paques, Joseph-Jean; Gauthier, François; Perez, Alejandro

    2007-01-01

    To assess and plan future risk-analysis research projects, 275 documents describing methods and tools for assessing the risks associated with industrial machines or with other sectors such as the military, and the nuclear and aeronautics industries, etc., were collected. These documents were in the format of published books or papers, standards, technical guides and company procedures collected throughout industry. From the collected documents, 112 documents were selected for analysis; 108 methods applied or potentially applicable for assessing the risks associated with industrial machines were analyzed and classified. This paper presents the main quantitative results of the analysis of the methods and tools.

  3. Of Genes and Machines: Application of a Combination of Machine Learning Tools to Astronomy Data Sets

    NASA Astrophysics Data System (ADS)

    Heinis, S.; Kumar, S.; Gezari, S.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Kaiser, N.; Magnier, E. A.; Metcalfe, N.; Waters, C.

    2016-04-01

    We apply a combination of genetic algorithm (GA) and support vector machine (SVM) machine learning algorithms to solve two important problems faced by the astronomical community: star-galaxy separation and photometric redshift estimation of galaxies in survey catalogs. We use the GA to select the relevant features in the first step, followed by optimization of SVM parameters in the second step to obtain an optimal set of parameters to classify or regress, in the process of which we avoid overfitting. We apply our method to star-galaxy separation in Pan-STARRS1 data. We show that our method correctly classifies 98% of objects down to {i}{{P1}}=24.5, with a completeness (or true positive rate) of 99% for galaxies and 88% for stars. By combining colors with morphology, our star-galaxy separation method yields better results than the new SExtractor classifier spread_model, in particular at the faint end ({i}{{P1}}\\gt 22). We also use our method to derive photometric redshifts for galaxies in the COSMOS bright multiwavelength data set down to an error in (1+z) of σ =0.013, which compares well with estimates from spectral energy distribution fitting on the same data (σ =0.007) while making a significantly smaller number of assumptions.

  4. An open CAM system for dentistry on the basis of China-made 5-axis simultaneous contouring CNC machine tool and industrial CAM software.

    PubMed

    Lu, Li; Liu, Shusheng; Shi, Shenggen; Yang, Jianzhong

    2011-10-01

    China-made 5-axis simultaneous contouring CNC machine tool and domestically developed industrial computer-aided manufacture (CAM) technology were used for full crown fabrication and measurement of crown accuracy, with an attempt to establish an open CAM system for dental processing and to promote the introduction of domestic dental computer-aided design (CAD)/CAM system. Commercially available scanning equipment was used to make a basic digital tooth model after preparation of crown, and CAD software that comes with the scanning device was employed to design the crown by using domestic industrial CAM software to process the crown data in order to generate a solid model for machining purpose, and then China-made 5-axis simultaneous contouring CNC machine tool was used to complete machining of the whole crown and the internal accuracy of the crown internal was measured by using 3D-MicroCT. The results showed that China-made 5-axis simultaneous contouring CNC machine tool in combination with domestic industrial CAM technology can be used for crown making and the crown was well positioned in die. The internal accuracy was successfully measured by using 3D-MicroCT. It is concluded that an open CAM system for dentistry on the basis of China-made 5-axis simultaneous contouring CNC machine tool and domestic industrial CAM software has been established, and development of the system will promote the introduction of domestically-produced dental CAD/CAM system.

  5. Machinability of Intermetallic Compound Fe3Al from the Viewpoint of Tool Wear

    NASA Astrophysics Data System (ADS)

    Sasaki, Tomohiro; Yakou, Takao

    The intermetallic compound Fe3Al was processed by a reactive sintering process, and its machinability from the viewpoint of tool wear was investigated using dry turning. In cutting Fe3Al with a cemented carbide tool, the tool life was approximately one tenth that of cutting carbon tool steel SK3 because of intense flank wear. The tool life for cutting Fe3Al using the cemented carbide P20(WC-TiC-TaC-Co) tool was longer than for cemented carbide K10(WC-Co). In addition, a cermet tool reached its tool life limit by chipping for the whole cutting speed range measured. The roughness of the machined surface of Fe3Al cut using a cemented carbide tool was much smaller than for SK3. However, for cutting using the cermet tool, the roughness showed a sharp rise due to chipping. It was found that the wear rate of the WC particles in the tool material is larger than TiC particles. The results of the study suggest that the cemented carbide P20 is suitable for cutting Fe3Al.

  6. Control/structure interaction conceptual design tool

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    1990-01-01

    The JPL Control/Structure Interaction Program is developing new analytical methods for designing micro-precision spacecraft with controlled structures. One of these, the Conceptual Design Tool, will illustrate innovative new approaches to the integration of multi-disciplinary analysis and design methods. The tool will be used to demonstrate homogeneity of presentation, uniform data representation across analytical methods, and integrated systems modeling. The tool differs from current 'integrated systems' that support design teams most notably in its support for the new CSI multi-disciplinary engineer. The design tool will utilize a three dimensional solid model of the spacecraft under design as the central data organization metaphor. Various analytical methods, such as finite element structural analysis, control system analysis, and mechanical configuration layout, will store and retrieve data from a hierarchical, object oriented data structure that supports assemblies of components with associated data and algorithms. In addition to managing numerical model data, the tool will assist the designer in organizing, stating, and tracking system requirements.

  7. Promoting Learning of Instructional Design via Overlay Design Tools

    ERIC Educational Resources Information Center

    Carle, Andrew Jacob

    2012-01-01

    I begin by introducing Virtual Design Apprenticeship (VDA), a learning model--built on a solid foundation of education principles and theories--that promotes learning of design skills via overlay design tools. In VDA, when an individual needs to learn a new design skill or paradigm she is provided accessible, concrete examples that have been…

  8. An Integrated Approach of Fuzzy Linguistic Preference Based AHP and Fuzzy COPRAS for Machine Tool Evaluation

    PubMed Central

    Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; Aoyama, Hideki; Case, Keith

    2015-01-01

    Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process) and a fuzzy COmplex PRoportional ASsessment (COPRAS) for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment. PMID:26368541

  9. An Integrated Approach of Fuzzy Linguistic Preference Based AHP and Fuzzy COPRAS for Machine Tool Evaluation.

    PubMed

    Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; Aoyama, Hideki; Case, Keith

    2015-01-01

    Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process) and a fuzzy COmplex PRoportional ASsessment (COPRAS) for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment.

  10. Tools for active control system design

    NASA Technical Reports Server (NTRS)

    Adams, W. M., Jr.; Tiffany, S. H.; Newsom, J. R.

    1984-01-01

    Efficient control law analysis and design tools which properly account for the interaction of flexible structures, unsteady aerodynamics and active controls are developed. Development, application, validation and documentation of efficient multidisciplinary computer programs for analysis and design of active control laws are also discussed.

  11. Designing Online Assessment Tools for Disengaged Youth

    ERIC Educational Resources Information Center

    Brader, Andy; Luke, Allan; Klenowski, Val; Connolly, Stephen; Behzadpour, Adib

    2014-01-01

    This article reports on the development of online assessment tools for disengaged youth in flexible learning environments. Sociocultural theories of learning and assessment and Bourdieu's sociological concepts of capital and exchange were used to design a purpose-built content management system. This design experiment engaged participants in…

  12. Integrated Design Tools Reduce Risk, Cost

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Thanks in part to a SBIR award with Langley Research Center, Phoenix Integration Inc., based in Wayne, Pennsylvania, modified and advanced software for process integration and design automation. For NASA, the tool has resulted in lower project costs and reductions in design time; clients of Phoenix Integration are experiencing the same rewards.

  13. Web-Based Learning Design Tool

    ERIC Educational Resources Information Center

    Bruno, F. B.; Silva, T. L. K.; Silva, R. P.; Teixeira, F. G.

    2012-01-01

    Purpose: The purpose of this paper is to propose a web-based tool that enables the development and provision of learning designs and its reuse and re-contextualization as generative learning objects, aimed at developing educational materials. Design/methodology/approach: The use of learning objects can facilitate the process of production and…

  14. Some aspects of machining cast Al-SiCp composites with conventional high speed steel and tungsten carbide tools

    NASA Astrophysics Data System (ADS)

    Narahari, P.; Pai, B. C.; Pillai, R. M.

    1999-10-01

    An attempt was made to evaluate machining of eutectic Al-Si (LM6) and hypoeutectic Al-Si (LM25) alloys reinforced with 10, 15, and 20% SiCp of two particle sizes using conventional high-speed steel (HSS) and tungsten carbide (WC) tools by varying cutting speed, feed, depth of cut, and environment. Machining of metal matrix composites (MMCs) is a difficult task using HSS and WC tools. The tool life of both these conventional tools was observed to decrease with increasing percentage and coarseness of SiCp in the composites. Tungsten carbide tools had a longer tool life than HSS under all the different conditions studied. Contrary to the known phenomenon of enhanced tool life in machining monolithic alloys with the use of cutting fluid, the tool life of WC/HSS tool in machining composites with cutting fluid was only 10 to 20% of that without cutting fluid.

  15. Optical design of color light-emitting diode ring light for machine vision inspection

    NASA Astrophysics Data System (ADS)

    Dong, Jing-Tao; Lu, Rong-Sheng; Shi, Yan-Qiong; Xia, Rui-Xue; Li, Qi; Xu, Yan

    2011-04-01

    Uniform irradiance and color adjustability are the key features in the design of lighting for machine vision inspection systems. A simple and practical design tool of angled light-emitting-diode (LED) ring arrays for uniform near-field irradiance has been developed by introducing a simple model to simplify the complexity of nonrotational symmetric irradiance distribution of angled LEDs. The color distribution and color uniformity of the ring array assembled with RGB LEDs are analyzed based on the analytical model of color mixing. According to the theoretical analysis, the simulated results, and the design exemplifications, the practical design tool offers an easy way to estimate the performance of an RGB LED ring array and can be considered as a starting point to reduce the computation time for exact designs that must use a realistic LED model.

  16. Cognitive tools shape thought: diagrams in design.

    PubMed

    Nickerson, Jeffrey V; Corter, James E; Tversky, Barbara; Rho, Yun-Jin; Zahner, Doris; Yu, Lixiu

    2013-08-01

    Thinking often entails interacting with cognitive tools. In many cases, notably design, the predominant tool is the page. The page allows externalizing, organizing, and reorganizing thought. Yet, the page has its own properties that by expressing thought affect it: path, proximity, place, and permanence. The effects of these properties were evident in designs of information systems created by students Paths were interpreted as routes through components. Proximity was used to group subsystems. Horizontal position on the page was used to express temporal sequence and vertical position to reflect real-world spatial position. The permanence of designs on the page guided but also constrained generation of alternative designs. Cognitive tools both reflect and affect thought.

  17. Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool

    NASA Astrophysics Data System (ADS)

    Guo, Qianjian; Fan, Shuo; Xu, Rufeng; Cheng, Xiang; Zhao, Guoyong; Yang, Jianguo

    2017-03-01

    Aiming at the problem of low machining accuracy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of temperature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC-NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 μm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.

  18. A numerical study of ultraprecision machining of monocrystalline silicon with laser nano-structured diamond tools by atomistic simulation

    NASA Astrophysics Data System (ADS)

    Dai, Houfu; Chen, Genyu; Zhou, Cong; Fang, Qihong; Fei, Xinjiang

    2017-01-01

    Three-dimension molecular dynamics (MD) simulations is employed to investigate the ultraprecision machining of single crystal silicon with structured nanoscale diamond tool fabricated by laser. The advantages and disadvantages of diamond machining using structured tools are discussed in comparison with those of using non-structured tools. The von Mises stress distribution, hydrostatic stress distribution, atomic displacement, stress, the radial distribution function, cutting forces, frictional coefficient, subsurface temperature and potential energy during the nanometric machining process are studied. A theoretical analysis model is also established to investigate the subsurface damage mechanism by analyzing the distribution of residual stress during the nanoscale machining process. The results show that a structured nanoscale tool in machining brittle material silicon causes a smaller hydrostatic stress, a less compressive normal stress σxx and σyy , a lower temperature and a smaller cutting force. However, the structured nanoscale tool machining results in smaller chip volume and more beta-silicon phase. Besides, the friction coefficient for tool with V-shape groove is smaller than those for non-structured tools and other structured nanoscale tools. This means that the tool with V-shape groove can reduce the resistance to cutting during the nanoscale machining process. In addition, the results also point out that the potential energy of subsurface atoms and the number of other atoms for pyramid-structured tool are much smaller than those of using non-structured tools and other structured nanoscale tools.

  19. Analytical Tools for Space Suit Design

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay

    2011-01-01

    As indicated by the implementation of multiple small project teams within the agency, NASA is adopting a lean approach to hardware development that emphasizes quick product realization and rapid response to shifting program and agency goals. Over the past two decades, space suit design has been evolutionary in approach with emphasis on building prototypes then testing with the largest practical range of subjects possible. The results of these efforts show continuous improvement but make scaled design and performance predictions almost impossible with limited budgets and little time. Thus, in an effort to start changing the way NASA approaches space suit design and analysis, the Advanced Space Suit group has initiated the development of an integrated design and analysis tool. It is a multi-year-if not decadal-development effort that, when fully implemented, is envisioned to generate analysis of any given space suit architecture or, conversely, predictions of ideal space suit architectures given specific mission parameters. The master tool will exchange information to and from a set of five sub-tool groups in order to generate the desired output. The basic functions of each sub-tool group, the initial relationships between the sub-tools, and a comparison to state of the art software and tools are discussed.

  20. Design and Analysis Tools for Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Folk, Thomas C.

    2009-01-01

    Computational tools are being developed for the design and analysis of supersonic inlets. The objective is to update existing tools and provide design and low-order aerodynamic analysis capability for advanced inlet concepts. The Inlet Tools effort includes aspects of creating an electronic database of inlet design information, a document describing inlet design and analysis methods, a geometry model for describing the shape of inlets, and computer tools that implement the geometry model and methods. The geometry model has a set of basic inlet shapes that include pitot, two-dimensional, axisymmetric, and stream-traced inlet shapes. The inlet model divides the inlet flow field into parts that facilitate the design and analysis methods. The inlet geometry model constructs the inlet surfaces through the generation and transformation of planar entities based on key inlet design factors. Future efforts will focus on developing the inlet geometry model, the inlet design and analysis methods, a Fortran 95 code to implement the model and methods. Other computational platforms, such as Java, will also be explored.

  1. Recent progresses in the exploration of machine learning methods as in-silico ADME prediction tools.

    PubMed

    Tao, L; Zhang, P; Qin, C; Chen, S Y; Zhang, C; Chen, Z; Zhu, F; Yang, S Y; Wei, Y Q; Chen, Y Z

    2015-06-23

    In-silico methods have been explored as potential tools for assessing ADME and ADME regulatory properties particularly in early drug discovery stages. Machine learning methods, with their ability in classifying diverse structures and complex mechanisms, are well suited for predicting ADME and ADME regulatory properties. Recent efforts have been directed at the broadening of application scopes and the improvement of predictive performance with particular focuses on the coverage of ADME properties, and exploration of more diversified training data, appropriate molecular features, and consensus modeling. Moreover, several online machine learning ADME prediction servers have emerged. Here we review these progresses and discuss the performances, application prospects and challenges of exploring machine learning methods as useful tools in predicting ADME and ADME regulatory properties.

  2. Structural and Machine Design Using Piezoceramic Materials: A Guide for Structural Design Engineers

    NASA Technical Reports Server (NTRS)

    Inman, Daniel J.; Cudney, Harley H.

    2000-01-01

    Using piezoceramic materials is one way the design engineer can create structures which have an ability to both sense and respond to their environment. Piezoceramic materials can be used to create structural sensors and structural actuators. Because piezoceramic materials have transduction as a material property, their sensing or actuation functions are a result of what happens to the material. This is different than discrete devices we might attach to the structure. For example, attaching an accelerometer to a structure will yield an electrical signal proportional to the acceleration at the attachment point on the structure. Using a electromagnetic shaker as an actuator will create an applied force at the attachment point. Active material elements in a structural design are not easily modeled as providing transduction at a point, but rather they change the physics of the structure in the areas where they are used. Hence, a designer must not think of adding discrete devices to a structure to obtain an effect, but rather must design a structural system which accounts for the physical principles of all the elements in the structure. The purpose of this manual is to provide practicing engineers the information necessary to incorporate piezoelectric materials in structural design and machine design. First, we will review the solid-state physics of piezoelectric materials. Then we will discuss the physical characteristics of the electrical-active material-structural system. We will present the elements of this system which must be considered as part of the design task for a structural engineer. We will cover simple modeling techniques and review the features and capabilities of commercial design tools that are available. We will then cover practical how-to elements of working with piezoceramic materials. We will review sources of piezoceramic materials and built-up devices, and their characteristics. Finally, we will provide two design examples using piezoceramic

  3. Computer Aided Design Of Electrical Machines For Variable Speed Applications.

    NASA Astrophysics Data System (ADS)

    Krishnan, R.; Aravind, S.; Materu, P.

    1987-10-01

    In recent years, the product life cycle has decreased and demands for new products have emerged due to competition, modern industrial needs and rapidly changing technology. This has necessitated changes in design, development and manufacturing processes so as to improve quality and efficiency as well as reducing costs. Computer Aided Design (CAD) helps to meet this challenge in the design evaluation and final product design stages. This paper presents the development of an interactive software for the optimal design of a motor intended for variable speed applications. The use of finite element analysis methods is proposed as an indispensable part of the CAD system for electrical machine design. An illustration of the method is given for the design of a switched reluctance motor.

  4. Determination of real machine-tool settings and minimization of real surface deviation by computerized inspection

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Kuan, Chihping; Zhang, YI

    1991-01-01

    A numerical method is developed for the minimization of deviations of real tooth surfaces from the theoretical ones. The deviations are caused by errors of manufacturing, errors of installment of machine-tool settings and distortion of surfaces by heat-treatment. The deviations are determined by coordinate measurements of gear tooth surfaces. The minimization of deviations is based on the proper correction of initially applied machine-tool settings. The contents of accomplished research project cover the following topics: (1) Descriptions of the principle of coordinate measurements of gear tooth surfaces; (2) Deviation of theoretical tooth surfaces (with examples of surfaces of hypoid gears and references for spiral bevel gears); (3) Determination of the reference point and the grid; (4) Determination of the deviations of real tooth surfaces at the points of the grid; and (5) Determination of required corrections of machine-tool settings for minimization of deviations. The procedure for minimization of deviations is based on numerical solution of an overdetermined system of n linear equations in m unknowns (m much less than n ), where n is the number of points of measurements and m is the number of parameters of applied machine-tool settings to be corrected. The developed approach is illustrated with numerical examples.

  5. MACHINE TOOL OPERATOR--GENERAL, ENTRY, SUGGESTED GUIDE FOR A TRAINING COURSE.

    ERIC Educational Resources Information Center

    RONEY, MAURICE W.; AND OTHERS

    THE PURPOSE OF THIS CURRICULUM GUIDE IS TO ASSIST THE ADMINISTRATOR AND INSTRUCTOR IN PLANNING AND DEVELOPING MANPOWER DEVELOPMENT AND TRAINING PROGRAMS TO PREPARE MACHINE TOOL OPERATORS FOR ENTRY-LEVEL POSITIONS. THE COURSE OUTLINE PROVIDES UNITS IN -- (1) ORIENTATION, (2) BENCH WORK, (3) SHOP MATHEMATICS, (4) BLUEPRINT READING AND SKETCHING, (5)…

  6. Mathematics for the Workplace. Applications from Machine Tool Technology (Michelin Tire Corporation). A Teacher's Guide.

    ERIC Educational Resources Information Center

    Wallace, Johnny M.; Stewart, Grover

    This module presents a real-world context in which mathematics skills (geometry and trigonometry) are used as part of a daily routine. The context is the machine tool technology field, and the module aims to help students develop the ability to analyze diagrams in order to make mathematical computations. The modules, which features applications…

  7. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  8. Design, development and demonstration of an improved bird washing machine.

    PubMed

    Rajabi, H; Monsef, H; Moghadami, M; Zare, M; Armandei, A

    2014-07-01

    Since oil was first extracted, pollution of the seas and oceans or adjacent coasts has been an obstacle for the oil industry and environmental activists. The major concern is oil discharge into the water which may lead to birds' affliction or death, besides putting marine life in jeopardy. This paper presents the first description of the design and implementation of a new bird washing machine that can be utilized for cleaning of oil-coated birds with the minimum of stress. The machine is equipped with a pneumatic system comprised of 19 moving nozzles which evenly cover the bird's body and is designed to be used in contaminated environments where a vast number of birds are affected. Experimental trials show an improvement in operation efficiency compared to other methods in a reduction in washing time, energy consumption and a decrease in fatality rate of washed birds.

  9. A strategy for quantum algorithm design assisted by machine learning

    NASA Astrophysics Data System (ADS)

    Bang, Jeongho; Ryu, Junghee; Yoo, Seokwon; Pawłowski, Marcin; Lee, Jinhyoung

    2014-07-01

    We propose a method for quantum algorithm design assisted by machine learning. The method uses a quantum-classical hybrid simulator, where a ‘quantum student’ is being taught by a ‘classical teacher’. In other words, in our method, the learning system is supposed to evolve into a quantum algorithm for a given problem, assisted by a classical main-feedback system. Our method is applicable for designing quantum oracle-based algorithms. We chose, as a case study, an oracle decision problem, called a Deutsch-Jozsa problem. We showed by using Monte Carlo simulations that our simulator can faithfully learn a quantum algorithm for solving the problem for a given oracle. Remarkably, the learning time is proportional to the square root of the total number of parameters, rather than showing the exponential dependence found in the classical machine learning-based method.

  10. Using machine learning tools to model complex toxic interactions with limited sampling regimes.

    PubMed

    Bertin, Matthew J; Moeller, Peter; Guillette, Louis J; Chapman, Robert W

    2013-03-19

    A major impediment to understanding the impact of environmental stress, including toxins and other pollutants, on organisms, is that organisms are rarely challenged by one or a few stressors in natural systems. Thus, linking laboratory experiments that are limited by practical considerations to a few stressors and a few levels of these stressors to real world conditions is constrained. In addition, while the existence of complex interactions among stressors can be identified by current statistical methods, these methods do not provide a means to construct mathematical models of these interactions. In this paper, we offer a two-step process by which complex interactions of stressors on biological systems can be modeled in an experimental design that is within the limits of practicality. We begin with the notion that environment conditions circumscribe an n-dimensional hyperspace within which biological processes or end points are embedded. We then randomly sample this hyperspace to establish experimental conditions that span the range of the relevant parameters and conduct the experiment(s) based upon these selected conditions. Models of the complex interactions of the parameters are then extracted using machine learning tools, specifically artificial neural networks. This approach can rapidly generate highly accurate models of biological responses to complex interactions among environmentally relevant toxins, identify critical subspaces where nonlinear responses exist, and provide an expedient means of designing traditional experiments to test the impact of complex mixtures on biological responses. Further, this can be accomplished with an astonishingly small sample size.

  11. Cooperative optimization of reconfigurable machine tool configurations and production process plan

    NASA Astrophysics Data System (ADS)

    Xie, Nan; Li, Aiping; Xue, Wei

    2012-09-01

    The production process plan design and configurations of reconfigurable machine tool (RMT) interact with each other. Reasonable process plans with suitable configurations of RMT help to improve product quality and reduce production cost. Therefore, a cooperative strategy is needed to concurrently solve the above issue. In this paper, the cooperative optimization model for RMT configurations and production process plan is presented. Its objectives take into account both impacts of process and configuration. Moreover, a novel genetic algorithm is also developed to provide optimal or near-optimal solutions: firstly, its chromosome is redesigned which is composed of three parts, operations, process plan and configurations of RMTs, respectively; secondly, its new selection, crossover and mutation operators are also developed to deal with the process constraints from operation processes (OP) graph, otherwise these operators could generate illegal solutions violating the limits; eventually the optimal configurations for RMT under optimal process plan design can be obtained. At last, a manufacturing line case is applied which is composed of three RMTs. It is shown from the case that the optimal process plan and configurations of RMT are concurrently obtained, and the production cost decreases 6.28% and nonmonetary performance increases 22%. The proposed method can figure out both RMT configurations and production process, improve production capacity, functions and equipment utilization for RMT.

  12. Design Tools for Assessing Manufacturing Environmental Impact.

    DTIC Science & Technology

    1997-11-26

    Batch Size?(1)__ Quality % Scrap? (0)-100% % Recycle? (0)-[100- % Scrapi % % Good Parts equals [100-[% Scrap + % Recyclel Appendix A 7 3.0 Filament...Quality % Scrap? (0-100% % Good Parts equals [100-% Scrapi Appendix A 24 6.0 Finishing SubModel Design Any No M Go to Machining? Finishing? Menu s Yes...part?_ Quality % Scrap? (0)-100% % Good Parts equals f 100- % Scrapi Waste % of original material discarded as waste?(0)__ Appendix A 32 7.0 Quality Insp

  13. Design Criteria and Machine Integration of the Ignitor Experiment

    NASA Astrophysics Data System (ADS)

    Bianchi, A.; Coppi, B.

    2010-11-01

    High field, high density compact experiments are the only ones capable of producing, on the basis of available technology and knowledge of plasma physics, plasmas that can reach ignition conditions. The Ignitor machine (R01.32 m, a xb0.47x0.83 m^2, BT<=13 T, Ip<=11 MA) is characterized by a complete structural integration of its major components. A sophisticated Poloidal Field system provides the flexibility to produce the expected sequence of plasma equilibrium configurations during the plasma current and pressure rise. The structural concept of the machine is based on an optimized combination of ``bucking'' and ``wedging''. All components, with the exception of the vacuum vessel, are cooled before each plasma pulse by means of He gas, to an optimal temperature of 30 K, at which the ratio of the electrical resistivity to the specific heat of copper is minimum. The 3D and 2D design and integration of all the core machine components, including electro-fluidic and fluidic lines, has been produced using the Dassault CATIA-V software. A complete structural analysis has verified that the machine can withstand the forces produced for all the main operational scenarios.

  14. The Design with Intent Method: a design tool for influencing user behaviour.

    PubMed

    Lockton, Dan; Harrison, David; Stanton, Neville A

    2010-05-01

    Using product and system design to influence user behaviour offers potential for improving performance and reducing user error, yet little guidance is available at the concept generation stage for design teams briefed with influencing user behaviour. This article presents the Design with Intent Method, an innovation tool for designers working in this area, illustrated via application to an everyday human-technology interaction problem: reducing the likelihood of a customer leaving his or her card in an automatic teller machine. The example application results in a range of feasible design concepts which are comparable to existing developments in ATM design, demonstrating that the method has potential for development and application as part of a user-centred design process.

  15. Apprentice Machine Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This volume contains outlines for 16 courses in machine theory that are designed for machine tool apprentices. Addressed in the individual course outlines are the following topics: basic concepts; lathes; milling machines; drills, saws, and shapers; heat treatment and metallurgy; grinders; quality control; hydraulics and pneumatics;…

  16. Graphical Acoustic Liner Design and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    An interactive liner design and impedance modeling tool comprises software utilized to design acoustic liners for use in constrained spaces, both regularly and irregularly shaped. A graphical user interface allows the acoustic channel geometry to be drawn in a liner volume while the surface impedance calculations are updated and displayed in real-time. A one-dimensional transmission line model may be used as the basis for the impedance calculations.

  17. Development of a state machine sequencer for the Keck Interferometer: evolution, development, and lessons learned using a CASE tool approach

    NASA Astrophysics Data System (ADS)

    Reder, Leonard J.; Booth, Andrew; Hsieh, Jonathan; Summers, Kellee R.

    2004-09-01

    This paper presents a discussion of the evolution of a sequencer from a simple Experimental Physics and Industrial Control System (EPICS) based sequencer into a complex implementation designed utilizing UML (Unified Modeling Language) methodologies and a Computer Aided Software Engineering (CASE) tool approach. The main purpose of the Interferometer Sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable science operations to be carried out by a single operator (and/or observer). The interferometer links the two 10m telescopes of the W. M. Keck Observatory at Mauna Kea, Hawaii. The IF Sequencer is a high-level, multi-threaded, Harel finite state machine software program designed to orchestrate several lower-level hardware and software hard real-time subsystems that must perform their work in a specific and sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a high-speed real-time multiple mode embedded controller via CORBA, or slower controllers via EPICS Channel Access interfaces. The overall operation of the system is simplified by the automation. The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of multiple infrastructures is presented.

  18. Development of a State Machine Sequencer for the Keck Interferometer: Evolution, Development and Lessons Learned using a CASE Tool Approach

    NASA Technical Reports Server (NTRS)

    Rede, Leonard J.; Booth, Andrew; Hsieh, Jonathon; Summer, Kellee

    2004-01-01

    This paper presents a discussion of the evolution of a sequencer from a simple EPICS (Experimental Physics and Industrial Control System) based sequencer into a complex implementation designed utilizing UML (Unified Modeling Language) methodologies and a CASE (Computer Aided Software Engineering) tool approach. The main purpose of the sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable science operations be carried out by a single operator (and/or observer). The interferometer links the two 10m telescopes of the W. M. Keck Observatory at Mauna Kea, Hawaii. The IF Sequencer is a high-level, multi-threaded, Hare1 finite state machine, software program designed to orchestrate several lower-level hardware and software hard real time subsystems that must perform their work in a specific and sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a high-speed real-time multiple mode embedded controller via CORB A, or slower controllers via EPICS Channel Access interfaces. The overall operation of the system is simplified by the automation. The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of multiple infrastructures is presented.

  19. Electronics Shielding and Reliability Design Tools

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; ONeill, P. M.; Zang, Thomas A., Jr.; Pandolf, John E.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2006-01-01

    It is well known that electronics placement in large-scale human-rated systems provides opportunity to optimize electronics shielding through materials choice and geometric arrangement. For example, several hundred single event upsets (SEUs) occur within the Shuttle avionic computers during a typical mission. An order of magnitude larger SEU rate would occur without careful placement in the Shuttle design. These results used basic physics models (linear energy transfer (LET), track structure, Auger recombination) combined with limited SEU cross section measurements allowing accurate evaluation of target fragment contributions to Shuttle avionics memory upsets. Electronics shielding design on human-rated systems provides opportunity to minimize radiation impact on critical and non-critical electronic systems. Implementation of shielding design tools requires adequate methods for evaluation of design layouts, guiding qualification testing, and an adequate follow-up on final design evaluation including results from a systems/device testing program tailored to meet design requirements.

  20. Participatory design and an eligibility screening tool.

    PubMed Central

    Gennari, J. H.; Reddy, M.

    2000-01-01

    For most medical informatics software products, insufficient effort is spent on the design phase of production. However, poor design often leads to systems that are either not well accepted, or far less effective than they could be. In this paper, we describe the ideas of participatory design and discuss why these ideas are especially applicable to medical informatics systems. In particular, we present a case study in the area of clinical trial protocol management. We designed and developed a tool aimed at increasing accrual to clinical trial protocols at an oncology center. However, the design evolved over time, and features of this design were only discovered through iterative development and interaction with the users within the context of the workplace. PMID:11079891

  1. Designing a Moodle Course with the CADMOS Learning Design Tool

    ERIC Educational Resources Information Center

    Katsamani, Maria; Retalis, Symeon; Boloudakis, Michail

    2012-01-01

    CADMOS is a graphical learning design (LD) authoring tool that helps a teacher design a unit of learning in two layers: (i) the conceptual layer, which seems like a concept map and contains the learning activities with their associated learning resources and (ii) the flow layer, which contains the orchestration of these activities. One of CADMOS'…

  2. Effects of the roughness characteristics on the wire tool surface for the electrical discharge machining properties

    SciTech Connect

    Fukuzawa, Yasushi; Yamashita, Masahide; Mamuro, Hiroaki; Yamashita, Ken; Ogata, Masayoshi

    2011-01-17

    Wire electrical discharge machining (WEDM) has been investigated to obtain the better discharge machining properties of the removal rate and the surface roughness in a few decades. Recently, it revealed that the rough tool electrodes can improve the WEDM properties for some sort of materials. In this study, the rough wire electrodes using a wet blasting method was developed and evaluated the machining performance for the insulated Si{sub 3}N{sub 4} in the WEDM processes. As the results, it could not recognize the advantage of roughness wire electrode under the high-energy condition, but it found that the electro-conductive layer thickness became thinner in comparison with those of normal wires. On the contrary, it could be obtained the better surface roughness in the low energy condition. It was supposed that the roughed wire surface generates the homogeneous dispersion discharges on the workpiece.

  3. Successful fabrication of a convex platform PMMA cell-counting slide using a high-precision perpendicular dual-spindle CNC machine tool

    NASA Astrophysics Data System (ADS)

    Chen, Shun-Tong; Chang, Chih-Hsien

    2013-12-01

    This study presents a novel approach to the fabrication of a biomedical-mold for producing convex platform PMMA (poly-methyl-meth-acrylate) slides for counting cells. These slides allow for the microscopic examination of urine sediment cells. Manufacturing of such slides incorporates three important procedures: (1) the development of a tabletop high-precision dual-spindle CNC (computerized numerical control) machine tool; (2) the formation of a boron-doped polycrystalline composite diamond (BD-PCD) wheel-tool on the machine tool developed in procedure (1); and (3) the cutting of a multi-groove-biomedical-mold array using the formed diamond wheel-tool in situ on the developed machine. The machine incorporates a hybrid working platform providing wheel-tool thinning using spark erosion to cut, polish, and deburr microgrooves on NAK80 steel directly. With consideration given for the electrical conductive properties of BD-PCD, the diamond wheel-tool is thinned to a thickness of 5 µm by rotary wire electrical discharge machining. The thinned wheel-tool can grind microgrooves 10 µm wide. An embedded design, which inserts a close fitting precision core into the biomedical-mold to create step-difference (concave inward) of 50 µm in height between the core and the mold, is also proposed and realized. The perpendicular dual-spindles and precision rotary stage are features that allow for biomedical-mold machining without the necessity of uploading and repositioning materials until all tasks are completed. A PMMA biomedical-slide with a plurality of juxtaposed counting chambers is formed and its usefulness verified.

  4. Repurposing mainstream CNC machine tools for laser-based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Jones, Jason B.

    2016-04-01

    The advent of laser technology has been a key enabler for industrial 3D printing, known as Additive Manufacturing (AM). Despite its commercial success and unique technical capabilities, laser-based AM systems are not yet able to produce parts with the same accuracy and surface finish as CNC machining. To enable the geometry and material freedoms afforded by AM, yet achieve the precision and productivity of CNC machining, hybrid combinations of these two processes have started to gain traction. To achieve the benefits of combined processing, laser technology has been integrated into mainstream CNC machines - effectively repurposing them as hybrid manufacturing platforms. This paper reviews how this engineering challenge has prompted beam delivery innovations to allow automated changeover between laser processing and machining, using standard CNC tool changers. Handling laser-processing heads using the tool changer also enables automated change over between different types of laser processing heads, further expanding the breadth of laser processing flexibility in a hybrid CNC. This paper highlights the development, challenges and future impact of hybrid CNCs on laser processing.

  5. Challenges Facing Design and Analysis Tools

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Broduer, Steve (Technical Monitor)

    2001-01-01

    The design and analysis of future aerospace systems will strongly rely on advanced engineering analysis tools used in combination with risk mitigation procedures. The implications of such a trend place increased demands on these tools to assess off-nominal conditions, residual strength, damage propagation, and extreme loading conditions in order to understand and quantify these effects as they affect mission success. Advances in computer hardware such as CPU processing speed, memory, secondary storage, and visualization provide significant resources for the engineer to exploit in engineering design. The challenges facing design and analysis tools fall into three primary areas. The first area involves mechanics needs such as constitutive modeling, contact and penetration simulation, crack growth prediction, damage initiation and progression prediction, transient dynamics and deployment simulations, and solution algorithms. The second area involves computational needs such as fast, robust solvers, adaptivity for model and solution strategies, control processes for concurrent, distributed computing for uncertainty assessments, and immersive technology. Traditional finite element codes still require fast direct solvers which when coupled to current CPU power enables new insight as a result of high-fidelity modeling. The third area involves decision making by the analyst. This area involves the integration and interrogation of vast amounts of information - some global in character while local details are critical and often drive the design. The proposed presentation will describe and illustrate these areas using composite structures, energy-absorbing structures, and inflatable space structures. While certain engineering approximations within the finite element model may be adequate for global response prediction, they generally are inadequate in a design setting or when local response prediction is critical. Pitfalls to be avoided and trends for emerging analysis tools

  6. Mounting arrangement for the drive system of an air-bearing spindle on a machine tool

    DOEpatents

    Lunsford, J.S.; Crisp, D.W.; Petrowski, P.L.

    1987-12-07

    The present invention is directed to a mounting arrangement for the drive system of an air-bearing spindle utilized on a machine tool such as a lathe. The mounting arrangement of the present invention comprises a housing which is secured to the casing of the air bearing in such a manner that the housing position can be selectively adjusted to provide alignment of the air-bearing drive shaft supported by the housing and the air-bearing spindle. Once this alignment is achieved the air between spindle and the drive arrangement is maintained in permanent alignment so as to overcome misalignment problems encountered in the operation of the machine tool between the air-bearing spindle and the shaft utilized for driving the air-bearing spindle.

  7. Automated cell analysis tool for a genome-wide RNAi screen with support vector machine based supervised learning

    NASA Astrophysics Data System (ADS)

    Remmele, Steffen; Ritzerfeld, Julia; Nickel, Walter; Hesser, Jürgen

    2011-03-01

    RNAi-based high-throughput microscopy screens have become an important tool in biological sciences in order to decrypt mostly unknown biological functions of human genes. However, manual analysis is impossible for such screens since the amount of image data sets can often be in the hundred thousands. Reliable automated tools are thus required to analyse the fluorescence microscopy image data sets usually containing two or more reaction channels. The herein presented image analysis tool is designed to analyse an RNAi screen investigating the intracellular trafficking and targeting of acylated Src kinases. In this specific screen, a data set consists of three reaction channels and the investigated cells can appear in different phenotypes. The main issue of the image processing task is an automatic cell segmentation which has to be robust and accurate for all different phenotypes and a successive phenotype classification. The cell segmentation is done in two steps by segmenting the cell nuclei first and then using a classifier-enhanced region growing on basis of the cell nuclei to segment the cells. The classification of the cells is realized by a support vector machine which has to be trained manually using supervised learning. Furthermore, the tool is brightness invariant allowing different staining quality and it provides a quality control that copes with typical defects during preparation and acquisition. A first version of the tool has already been successfully applied for an RNAi-screen containing three hundred thousand image data sets and the SVM extended version is designed for additional screens.

  8. Design principles for noninvasive brain-machine interfaces.

    PubMed

    Contreras-Vidal, José L; Bradberry, Trent J

    2011-01-01

    With the advent of sophisticated prosthetic limbs, the challenge is now to develop and demonstrate optimal closed-loop control of the these limbs using neural measurements from single/multiple unit activity (SUA/MUA), electrocorticography (ECoG), local field potentials (LFP), scalp electroencephalography (EEG) or even electromyography (EMG) after targeted muscle reinnervation (TMR) in subjects with upper limb disarticulation. In this paper we propose design principles for developing a noninvasive EEG-based brain-machine interface (BMI) for dexterous control of a high degree-of-freedom, biologically realistic limb.

  9. Nonlinear machine learning and design of reconfigurable digital colloids.

    PubMed

    Long, Andrew W; Phillips, Carolyn L; Jankowksi, Eric; Ferguson, Andrew L

    2016-09-14

    Digital colloids, a cluster of freely rotating "halo" particles tethered to the surface of a central particle, were recently proposed as ultra-high density memory elements for information storage. Rational design of these digital colloids for memory storage applications requires a quantitative understanding of the thermodynamic and kinetic stability of the configurational states within which information is stored. We apply nonlinear machine learning to Brownian dynamics simulations of these digital colloids to extract the low-dimensional intrinsic manifold governing digital colloid morphology, thermodynamics, and kinetics. By modulating the relative size ratio between halo particles and central particles, we investigate the size-dependent configurational stability and transition kinetics for the 2-state tetrahedral (N = 4) and 30-state octahedral (N = 6) digital colloids. We demonstrate the use of this framework to guide the rational design of a memory storage element to hold a block of text that trades off the competing design criteria of memory addressability and volatility.

  10. Position-independent geometric error identification and global sensitivity analysis for the rotary axes of five-axis machine tools

    NASA Astrophysics Data System (ADS)

    Guo, Shijie; Jiang, Gedong; Zhang, Dongsheng; Mei, Xuesong

    2017-04-01

    Position-independent geometric errors (PIGEs) are the fundamental errors of a five-axis machine tool. In this paper, to identify ten PIGEs peculiar to the rotary axes of five-axis machine tools with a tilting head, the mathematic model of the ten PIGEs is deduced and four measuring patterns are proposed. The measuring patterns and identifying method are validated on a five-axis machine tool with a tilting head, and the ten PIGEs of the machine tool are obtained. The sensitivities of the four adjustable PIGEs of the machine tool in different measuring patterns are analyzed by the Morris global sensitivity analysis method and the modifying method, and the procedure of the four adjustable PIGEs of the machine tool is given accordingly. Experimental results show that after and before modifying the four adjustable PIGEs, the average compensate rate reached 52.7%. It is proved that the proposed measuring, identifying, analyzing and modifying method are effective for error measurement and precision improvement of the five-axis machine tool.

  11. Bayesian reliability modeling and assessment solution for NC machine tools under small-sample data

    NASA Astrophysics Data System (ADS)

    Yang, Zhaojun; Kan, Yingnan; Chen, Fei; Xu, Binbin; Chen, Chuanhai; Yang, Chuangui

    2015-11-01

    Although Markov chain Monte Carlo(MCMC) algorithms are accurate, many factors may cause instability when they are utilized in reliability analysis; such instability makes these algorithms unsuitable for widespread engineering applications. Thus, a reliability modeling and assessment solution aimed at small-sample data of numerical control(NC) machine tools is proposed on the basis of Bayes theories. An expert-judgment process of fusing multi-source prior information is developed to obtain the Weibull parameters' prior distributions and reduce the subjective bias of usual expert-judgment methods. The grid approximation method is applied to two-parameter Weibull distribution to derive the formulas for the parameters' posterior distributions and solve the calculation difficulty of high-dimensional integration. The method is then applied to the real data of a type of NC machine tool to implement a reliability assessment and obtain the mean time between failures(MTBF). The relative error of the proposed method is 5.8020×10-4 compared with the MTBF obtained by the MCMC algorithm. This result indicates that the proposed method is as accurate as MCMC. The newly developed solution for reliability modeling and assessment of NC machine tools under small-sample data is easy, practical, and highly suitable for widespread application in the engineering field; in addition, the solution does not reduce accuracy.

  12. Influence of export control policy on the competitiveness of machine tool producing organizations

    NASA Astrophysics Data System (ADS)

    Ahrstrom, Jeffrey D.

    The possible influence of export control policies on producers of export controlled machine tools is examined in this quantitative study. International market competitiveness theories hold that market controlling policies such as export control regulations may influence an organization's ability to compete (Burris, 2010). Differences in domestic application of export control policy on machine tool exports may impose throttling effects on the competitiveness of participating firms (Freedenberg, 2010). Commodity shipments from Japan, Germany, and the United States to the Russian market will be examined using descriptive statistics; gravity modeling of these specific markets provides a foundation for comparison to actual shipment data; and industry participant responses to a user developed survey will provide additional data for analysis using a Kruskal-Wallis one-way analysis of variance. There is scarce academic research data on the topic of export control effects within the machine tool industry. Research results may be of interest to industry leadership in market participation decisions, advocacy arguments, and strategic planning. Industry advocates and export policy decision makers could find data of interest in supporting positions for or against modifications of export control policies.

  13. High productivity machining of holes in Inconel 718 with SiAlON tools

    NASA Astrophysics Data System (ADS)

    Agirreurreta, Aitor Arruti; Pelegay, Jose Angel; Arrazola, Pedro Jose; Ørskov, Klaus Bonde

    2016-10-01

    Inconel 718 is often employed in aerospace engines and power generation turbines. Numerous researches have proven the enhanced productivity when turning with ceramic tools compared to carbide ones, however there is considerably less information with regard to milling. Moreover, no knowledge has been published about machining holes with this type of tools. Additional research on different machining techniques, like for instance circular ramping, is critical to expand the productivity improvements that ceramics can offer. In this a 3D model of the machining and a number of experiments with SiAlON round inserts have been carried out in order to evaluate the effect of the cutting speed and pitch on the tool wear and chip generation. The results of this analysis show that three different types of chips are generated and also that there are three potential wear zones. Top slice wear is identified as the most critical wear type followed by the notch wear as a secondary wear mechanism. Flank wear and adhesion are also found in most of the tests.

  14. Matlab as a robust control design tool

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.

    1994-01-01

    This presentation introduces Matlab as a tool used in flight control research. The example used to illustrate some of the capabilities of this software is a robust controller designed for a single stage to orbit air breathing vehicles's ascent to orbit. The global requirements of the controller are to stabilize the vehicle and follow a trajectory in the presence of atmospheric disturbances and strong dynamic coupling between airframe and propulsion.

  15. Mathematical support for automated geometry analysis of lathe machining of oblique peakless round–nose tools

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Tarasov, S. Yu; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.

    2017-01-01

    Automatization of engineering processes requires developing relevant mathematical support and a computer software. Analysis of metal cutting kinematics and tool geometry is a necessary key task at the preproduction stage. This paper is focused on developing a procedure for determining the geometry of oblique peakless round-nose tool lathe machining with the use of vector/matrix transformations. Such an approach allows integration into modern mathematical software packages in distinction to the traditional analytic description. Such an advantage is very promising for developing automated control of the preproduction process. A kinematic criterion for the applicable tool geometry has been developed from the results of this study. The effect of tool blade inclination and curvature on the geometry-dependent process parameters was evaluated.

  16. Design of Scalable and Effective Earth Science Collaboration Tool

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Ramachandran, R.; Kuo, K. S.; Lynnes, C.; Niamsuwan, N.; Chidambaram, C.

    2014-12-01

    Collaborative research is growing rapidly. Many tools including IDEs are now beginning to incorporate new collaborative features. Software engineering research has shown the effectiveness of collaborative programming and analysis. In particular, drastic reduction in software development time resulting in reduced cost has been highlighted. Recently, we have witnessed the rise of applications that allow users to share their content. Most of these applications scale such collaboration using cloud technologies. Earth science research needs to adopt collaboration technologies to reduce redundancy, cut cost, expand knowledgebase, and scale research experiments. To address these needs, we developed the Earth science collaboration workbench (CWB). CWB provides researchers with various collaboration features by augmenting their existing analysis tools to minimize learning curve. During the development of the CWB, we understood that Earth science collaboration tasks are varied and we concluded that it is not possible to design a tool that serves all collaboration purposes. We adopted a mix of synchronous and asynchronous sharing methods that can be used to perform collaboration across time and location dimensions. We have used cloud technology for scaling the collaboration. Cloud has been highly utilized and valuable tool for Earth science researchers. Among other usages, cloud is used for sharing research results, Earth science data, and virtual machine images; allowing CWB to create and maintain research environments and networks to enhance collaboration between researchers. Furthermore, collaborative versioning tool, Git, is integrated into CWB for versioning of science artifacts. In this paper, we present our experience in designing and implementing the CWB. We will also discuss the integration of collaborative code development use cases for data search and discovery using NASA DAAC and simulation of satellite observations using NASA Earth Observing System Simulation

  17. Modeling workflow to design machine translation applications for public health practice

    PubMed Central

    Turner, Anne M.; Brownstein, Megumu K.; Cole, Kate; Karasz, Hilary; Kirchhoff, Katrin

    2014-01-01

    Objective Provide a detailed understanding of the information workflow processes related to translating health promotion materials for limited English proficiency individuals in order to inform the design of context-driven machine translation (MT) tools for public health (PH). Materials and Methods We applied a cognitive work analysis framework to investigate the translation information workflow processes of two large health departments in Washington State. Researchers conducted interviews, performed a task analysis, and validated results with PH professionals to model translation workflow and identify functional requirements for a translation system for PH. Results The study resulted in a detailed description of work related to translation of PH materials, an information workflow diagram, and a description of attitudes towards MT technology. We identified a number of themes that hold design implications for incorporating MT in PH translation practice. A PH translation tool prototype was designed based on these findings. Discussion This study underscores the importance of understanding the work context and information workflow for which systems will be designed. Based on themes and translation information workflow processes, we identified key design guidelines for incorporating MT into PH translation work. Primary amongst these is that MT should be followed by human review for translations to be of high quality and for the technology to be adopted into practice. Counclusion The time and costs of creating multilingual health promotion materials are barriers to translation. PH personnel were interested in MT's potential to improve access to low-cost translated PH materials, but expressed concerns about ensuring quality. We outline design considerations and a potential machine translation tool to best fit MT systems into PH practice. PMID:25445922

  18. The design of relatively machine-independent code generators

    NASA Technical Reports Server (NTRS)

    Noonan, R. E.

    1979-01-01

    Two complementary approaches were investigated. In the first approach software design techniques were used to design the structure of a code generator for Halmat. The major result was the development of an intermediate code form known as 7UP. The second approach viewed the problem as one in providing a tool to the code generator programmer. The major result was the development of a non-procedural, problem oriented language known as CGGL (Code Generator Generator Language).

  19. Accurate identification and compensation of geometric errors of 5-axis CNC machine tools using double ball bar

    NASA Astrophysics Data System (ADS)

    Lasemi, Ali; Xue, Deyi; Gu, Peihua

    2016-05-01

    Five-axis CNC machine tools are widely used in manufacturing of parts with free-form surfaces. Geometric errors of machine tools have significant effects on the quality of manufactured parts. This research focuses on development of a new method to accurately identify geometric errors of 5-axis CNC machines, especially the errors due to rotary axes, using the magnetic double ball bar. A theoretical model for identification of geometric errors is provided. In this model, both position-independent errors and position-dependent errors are considered as the error sources. This model is simplified by identification and removal of the correlated and insignificant error sources of the machine. Insignificant error sources are identified using the sensitivity analysis technique. Simulation results reveal that the simplified error identification model can result in more accurate estimations of the error parameters. Experiments on a 5-axis CNC machine tool also demonstrate significant reduction in the volumetric error after error compensation.

  20. Neural architecture design based on extreme learning machine.

    PubMed

    Bueno-Crespo, Andrés; García-Laencina, Pedro J; Sancho-Gómez, José-Luis

    2013-12-01

    Selection of the optimal neural architecture to solve a pattern classification problem entails to choose the relevant input units, the number of hidden neurons and its corresponding interconnection weights. This problem has been widely studied in many research works but their solutions usually involve excessive computational cost in most of the problems and they do not provide a unique solution. This paper proposes a new technique to efficiently design the MultiLayer Perceptron (MLP) architecture for classification using the Extreme Learning Machine (ELM) algorithm. The proposed method provides a high generalization capability and a unique solution for the architecture design. Moreover, the selected final network only retains those input connections that are relevant for the classification task. Experimental results show these advantages.

  1. The Engineering Design of Man-Machine Interface for RTS

    SciTech Connect

    Yenn, T.-C.

    2002-02-26

    The purpose of this paper is to present the engineering design of the advanced Man-Machine Interface (MMI) of the Integrated system for Radwaste Treatment and Storage (RTS) facility in Institute of Nuclear Energy Research (INER) Taiwan, ROC. To build the RTS, a multi-function radwaste facility with a total storage of about 10,000 drums, is a five-year project starting in 2000 including intermediate activity waste treatment and combustible waste storage. The completed engineering design of the MMI is based on proven technologies and digital control systems, enhancing the radwaste management efficiency and reliability of operator's performance as well as assuring the dose exposure of personnel meeting the regulation standard. Over past few years, INER has accumulated extensive experience in the area of radwaste treatment and storage. Therefore, we are confident that we will complete this project with fulfillment of the requirements of RTS.

  2. Design of a smart ultrasonic transducer for interconnecting machine applications.

    PubMed

    Yan, Tian-Hong; Wang, Wei; Chen, Xue-Dong; Li, Qing; Xu, Chang

    2009-01-01

    A high-frequency ultrasonic transducer for copper or gold wire bonding has been designed, analyzed, prototyped and tested. Modeling techniques were used in the design phase and a practical design procedure was established and used. The transducer was decomposed into its elementary components. For each component, an initial design was obtained with simulations using a finite elements model (FEM). Simulated ultrasonic modules were built and characterized experimentally through the Laser Doppler Vibrometer (LDV) and electrical resonance spectra. Compared with experimental data, the FEM could be iteratively adjusted and updated. Having achieved a remarkably highly-predictive FEM of the whole transducer, the design parameters could be tuned for the desired applications, then the transducer is fixed on the wire bonder with a complete holder clamping was calculated by the FEM. The approach to mount ultrasonic transducers on wire bonding machines also is of major importance for wire bonding in modern electronic packaging. The presented method can lead to obtaining a nearly complete decoupling clamper design of the transducer to the wire bonder.

  3. Information and diagnostic tools of objective control as means to improve performance of mining machines

    NASA Astrophysics Data System (ADS)

    Zvonarev, I. E.; Shishlyannikov, D. I.

    2017-02-01

    The paper justifies the relevance of developing and implementing automated onboard systems for operation data and maintenance recording in heading-and-winning machines. The analysis of advantages and disadvantages of existing automated onboard systems for operation data and maintenance recording in heading-and-winning machines for potassium mines are presented. The basic technical requirements for the design, operating algorithms and functions of recording systems of mining machines for potassium mines are formulated. A method of controlling operating parameters is presented; the concept of the onboard automated recording system for the Ural heading-and-winning machine is outlined. The results of experimental studies of variations in loading of the Ural-20R miner’s operating member drives, using the VATUR portable measuring complex, are given. It is proved that existing means of objective control of operating parameters of the URAL-20R heading-and-winning machine do not assure its optimal operation. The authors present a technique of analyzing the data provided by parameter recorders that allow increasing efficiency of mechanical complexes by determining numerical values characterizing the technical and technological level of potassium ore production organization. The efficiency assessment criteria for engineering and maintenance departments of mining enterprises are advanced. A technology of continuous automated monitoring of potassium mine’s outburst hazard is described.

  4. Cutting performance of alumina-based ceramic tools when machining high tensile steel

    SciTech Connect

    Li, X.S.; Low, I.M.; O`Conner, B.H.; Wager, J.G.; Perera, D.S.

    1993-12-31

    Three types of alumina-based ceramic tools SN60, AZ5000 (zirconia toughened), A65, HC2 (titanium carbide reinforced) and CC670 (silicon carbide whisker reinforced) were used for the evaluation of cutting performance when machining a high tensile steel (AISI 4340). Experimental studies were carried out at various cutting speeds (200--600 m/min), feeds (0.1--0.4 mm/rev) and depths of cut (0.5--2.0 mm), in dry conditions. The cutting performance of alumina-based ceramic tools was judged according to the cutting force produced during the process of machining, surface roughness of the workpiece and wear rate of the cutting inserts. A piezoelectric dynamometer was employed to measure the cutting forces. The flank wear was used to determine the tool-life of these inserts. The cutting performance of these alumina-based ceramic tools was analyzed and compared. The influence of cutting parameters (i. e. cutting speed, feed rate and depth of cut) on cutting performance is discussed.

  5. Design and market considerations for axial flux superconducting electric machine design

    NASA Astrophysics Data System (ADS)

    Ainslie, M. D.; George, A.; Shaw, R.; Dawson, L.; Winfield, A.; Steketee, M.; Stockley, S.

    2014-05-01

    In this paper, the authors investigate a number of design and market considerations for an axial flux superconducting electric machine design that uses high temperature superconductors. The axial flux machine design is assumed to utilise high temperature superconductors in both wire (stator winding) and bulk (rotor field) forms, to operate over a temperature range of 65-77 K, and to have a power output in the range from 10s of kW up to 1 MW (typical for axial flux machines), with approximately 2-3 T as the peak trapped field in the bulk superconductors. The authors firstly investigate the applicability of this type of machine as a generator in small- and medium-sized wind turbines, including the current and forecasted market and pricing for conventional turbines. Next, a study is also carried out on the machine's applicability as an in-wheel hub motor for electric vehicles. Some recommendations for future applications are made based on the outcome of these two studies. Finally, the cost of YBCO-based superconducting (2G HTS) wire is analysed with respect to competing wire technologies and compared with current conventional material costs and current wire costs for both 1G and 2G HTS are still too great to be economically feasible for such superconducting devices.

  6. Modal identification of spindle-tool unit in high-speed machining

    NASA Astrophysics Data System (ADS)

    Gagnol, Vincent; Le, Thien-Phu; Ray, Pascal

    2011-10-01

    The accurate knowledge of high-speed motorised spindle dynamic behaviour during machining is important in order to ensure the reliability of machine tools in service and the quality of machined parts. More specifically, the prediction of stable cutting regions, which is a critical requirement for high-speed milling operations, requires the accurate estimation of tool/holder/spindle set dynamic modal parameters. These estimations are generally obtained through Frequency Response Function (FRF) measurements of the non-rotating spindle. However, significant changes in modal parameters are expected to occur during operation, due to high-speed spindle rotation. The spindle's modal variations are highlighted through an integrated finite element model of the dynamic high-speed spindle-bearing system, taking into account rotor dynamics effects. The dependency of dynamic behaviour on speed range is then investigated and determined with accuracy. The objective of the proposed paper is to validate these numerical results through an experiment-based approach. Hence, an experimental setup is elaborated to measure rotating tool vibration during the machining operation in order to determine the spindle's modal frequency variation with respect to spindle speed in an industrial environment. The identification of natural frequencies of the spindle under rotating conditions is challenging, due to the low number of sensors and the presence of many harmonics in the measured signals. In order to overcome these issues and to extract the characteristics of the system, the spindle modes are determined through a 3-step procedure. First, spindle modes are highlighted using the Frequency Domain Decomposition (FDD) technique, with a new formulation at the considered rotating speed. These extracted modes are then analysed through the value of their respective damping ratios in order to separate the harmonics component from structural spindle natural frequencies. Finally, the stochastic

  7. Estimates of software size from state machine designs

    NASA Technical Reports Server (NTRS)

    Britcher, R. N.; Gaffney, J. E.

    1982-01-01

    The length, or size (in number of Source Lines of Code) of programs represented as state machines, it is demonstrated, can be reliably estimated in terms of the number of internal state machine variables.

  8. Precise Countersinking Tool

    NASA Technical Reports Server (NTRS)

    Jenkins, Eric S.; Smith, William N.

    1992-01-01

    Tool countersinks holes precisely with only portable drill; does not require costly machine tool. Replaceable pilot stub aligns axis of tool with centerline of hole. Ensures precise cut even with imprecise drill. Designed for relatively low cutting speeds.

  9. NETS - A NEURAL NETWORK DEVELOPMENT TOOL, VERSION 3.0 (MACHINE INDEPENDENT VERSION)

    NASA Technical Reports Server (NTRS)

    Baffes, P. T.

    1994-01-01

    NETS, A Tool for the Development and Evaluation of Neural Networks, provides a simulation of Neural Network algorithms plus an environment for developing such algorithms. Neural Networks are a class of systems modeled after the human brain. Artificial Neural Networks are formed from hundreds or thousands of simulated neurons, connected to each other in a manner similar to brain neurons. Problems which involve pattern matching readily fit the class of problems which NETS is designed to solve. NETS uses the back propagation learning method for all of the networks which it creates. The nodes of a network are usually grouped together into clumps called layers. Generally, a network will have an input layer through which the various environment stimuli are presented to the network, and an output layer for determining the network's response. The number of nodes in these two layers is usually tied to some features of the problem being solved. Other layers, which form intermediate stops between the input and output layers, are called hidden layers. NETS allows the user to customize the patterns of connections between layers of a network. NETS also provides features for saving the weight values of a network during the learning process, which allows for more precise control over the learning process. NETS is an interpreter. Its method of execution is the familiar "read-evaluate-print" loop found in interpreted languages such as BASIC and LISP. The user is presented with a prompt which is the simulator's way of asking for input. After a command is issued, NETS will attempt to evaluate the command, which may produce more prompts requesting specific information or an error if the command is not understood. The typical process involved when using NETS consists of translating the problem into a format which uses input/output pairs, designing a network configuration for the problem, and finally training the network with input/output pairs until an acceptable error is reached. NETS

  10. Parachute system design, analysis, and simulation tool

    SciTech Connect

    Sundberg, W.D.; McBride, D.D.; Gwinn, K.W.; Waye, D.E.; Hailey, C.E.

    1992-01-01

    For over twenty years designers at Sandia National Laboratories have developed various parachute simulation codes to model deployment, inflation, loading, trajectories, aircraft downwash and line sail. In addition to these codes, material property data bases have been acquired. Recently we have initiated project to integrate these codes and data bases into a single software tool entitled SPARSYS (Sandia PARachute SYstem Simulation). We have constructed a graphical user interface as the driver and framework for SPARSYS. In this paper we present a status report on SPARSYS describing progress in developing and incorporating independent modules, in developing an integrated trajectory package, and in developing a materials data base including high-rate-of-strain data.

  11. Knowledge-based machine indexing from natural language text: Knowledge base design, development, and maintenance

    NASA Technical Reports Server (NTRS)

    Genuardi, Michael T.

    1993-01-01

    One strategy for machine-aided indexing (MAI) is to provide a concept-level analysis of the textual elements of documents or document abstracts. In such systems, natural-language phrases are analyzed in order to identify and classify concepts related to a particular subject domain. The overall performance of these MAI systems is largely dependent on the quality and comprehensiveness of their knowledge bases. These knowledge bases function to (1) define the relations between a controlled indexing vocabulary and natural language expressions; (2) provide a simple mechanism for disambiguation and the determination of relevancy; and (3) allow the extension of concept-hierarchical structure to all elements of the knowledge file. After a brief description of the NASA Machine-Aided Indexing system, concerns related to the development and maintenance of MAI knowledge bases are discussed. Particular emphasis is given to statistically-based text analysis tools designed to aid the knowledge base developer. One such tool, the Knowledge Base Building (KBB) program, presents the domain expert with a well-filtered list of synonyms and conceptually-related phrases for each thesaurus concept. Another tool, the Knowledge Base Maintenance (KBM) program, functions to identify areas of the knowledge base affected by changes in the conceptual domain (for example, the addition of a new thesaurus term). An alternate use of the KBM as an aid in thesaurus construction is also discussed.

  12. Machine Learning Strategy for Accelerated Design of Polymer Dielectrics

    PubMed Central

    Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan; Lookman, Turab; Ramprasad, Rampi

    2016-01-01

    The ability to efficiently design new and advanced dielectric polymers is hampered by the lack of sufficient, reliable data on wide polymer chemical spaces, and the difficulty of generating such data given time and computational/experimental constraints. Here, we address the issue of accelerating polymer dielectrics design by extracting learning models from data generated by accurate state-of-the-art first principles computations for polymers occupying an important part of the chemical subspace. The polymers are ‘fingerprinted’ as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand property prediction model. Further, a genetic algorithm is utilised to optimise polymer constituent blocks in an evolutionary manner, thus directly leading to the design of polymers with given target properties. While this philosophy of learning to make instant predictions and design is demonstrated here for the example of polymer dielectrics, it is equally applicable to other classes of materials as well. PMID:26876223

  13. Machine Learning Strategy for Accelerated Design of Polymer Dielectrics.

    PubMed

    Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan; Lookman, Turab; Ramprasad, Rampi

    2016-02-15

    The ability to efficiently design new and advanced dielectric polymers is hampered by the lack of sufficient, reliable data on wide polymer chemical spaces, and the difficulty of generating such data given time and computational/experimental constraints. Here, we address the issue of accelerating polymer dielectrics design by extracting learning models from data generated by accurate state-of-the-art first principles computations for polymers occupying an important part of the chemical subspace. The polymers are 'fingerprinted' as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand property prediction model. Further, a genetic algorithm is utilised to optimise polymer constituent blocks in an evolutionary manner, thus directly leading to the design of polymers with given target properties. While this philosophy of learning to make instant predictions and design is demonstrated here for the example of polymer dielectrics, it is equally applicable to other classes of materials as well.

  14. Machine learning strategy for accelerated design of polymer dielectrics

    DOE PAGES

    Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan; ...

    2016-02-15

    The ability to efficiently design new and advanced dielectric polymers is hampered by the lack of sufficient, reliable data on wide polymer chemical spaces, and the difficulty of generating such data given time and computational/experimental constraints. Here, we address the issue of accelerating polymer dielectrics design by extracting learning models from data generated by accurate state-of-the-art first principles computations for polymers occupying an important part of the chemical subspace. The polymers are ‘fingerprinted’ as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand property prediction model. Further,more » a genetic algorithm is utilised to optimise polymer constituent blocks in an evolutionary manner, thus directly leading to the design of polymers with given target properties. Furthermore, while this philosophy of learning to make instant predictions and design is demonstrated here for the example of polymer dielectrics, it is equally applicable to other classes of materials as well.« less

  15. Machine learning strategy for accelerated design of polymer dielectrics

    SciTech Connect

    Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan; Lookman, Turab; Ramprasad, Rampi

    2016-02-15

    The ability to efficiently design new and advanced dielectric polymers is hampered by the lack of sufficient, reliable data on wide polymer chemical spaces, and the difficulty of generating such data given time and computational/experimental constraints. Here, we address the issue of accelerating polymer dielectrics design by extracting learning models from data generated by accurate state-of-the-art first principles computations for polymers occupying an important part of the chemical subspace. The polymers are ‘fingerprinted’ as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand property prediction model. Further, a genetic algorithm is utilised to optimise polymer constituent blocks in an evolutionary manner, thus directly leading to the design of polymers with given target properties. Furthermore, while this philosophy of learning to make instant predictions and design is demonstrated here for the example of polymer dielectrics, it is equally applicable to other classes of materials as well.

  16. Kinematic design to improve ergonomics in human machine interaction.

    PubMed

    Schiele, André; van der Helm, Frans C T

    2006-12-01

    This paper introduces a novel kinematic design paradigm for ergonomic human machine interaction. Goals for optimal design are formulated generically and applied to the mechanical design of an upper-arm exoskeleton. A nine degree-of-freedom (DOF) model of the human arm kinematics is presented and used to develop, test, and optimize the kinematic structure of an human arm interfacing exoskeleton. The resulting device can interact with an unprecedented portion of the natural limb workspace, including motions in the shoulder-girdle, shoulder, elbow, and the wrist. The exoskeleton does not require alignment to the human joint axes, yet is able to actuate each DOF of our redundant limb unambiguously and without reaching into singularities. The device is comfortable to wear and does not create residual forces if misalignments exist. Implemented in a rehabilitation robot, the design features of the exoskeleton could enable longer lasting training sessions, training of fully natural tasks such as activities of daily living and shorter dress-on and dress-off times. Results from inter-subject experiments with a prototype are presented, that verify usability over the entire workspace of the human arm, including shoulder and shoulder girdle.

  17. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning

    SciTech Connect

    Zhu Xiaofeng; Ge Yaorong; Li Taoran; Thongphiew, Danthai; Yin Fangfang; Wu, Q Jackie

    2011-02-15

    Purpose: To ensure plan quality for adaptive IMRT of the prostate, we developed a quantitative evaluation tool using a machine learning approach. This tool generates dose volume histograms (DVHs) of organs-at-risk (OARs) based on prior plans as a reference, to be compared with the adaptive plan derived from fluence map deformation. Methods: Under the same configuration using seven-field 15 MV photon beams, DVHs of OARs (bladder and rectum) were estimated based on anatomical information of the patient and a model learned from a database of high quality prior plans. In this study, the anatomical information was characterized by the organ volumes and distance-to-target histogram (DTH). The database consists of 198 high quality prostate plans and was validated with 14 cases outside the training pool. Principal component analysis (PCA) was applied to DVHs and DTHs to quantify their salient features. Then, support vector regression (SVR) was implemented to establish the correlation between the features of the DVH and the anatomical information. Results: DVH/DTH curves could be characterized sufficiently just using only two or three truncated principal components, thus, patient anatomical information was quantified with reduced numbers of variables. The evaluation of the model using the test data set demonstrated its accuracy {approx}80% in prediction and effectiveness in improving ART planning quality. Conclusions: An adaptive IMRT plan quality evaluation tool based on machine learning has been developed, which estimates OAR sparing and provides reference in evaluating ART.

  18. Excel2SVM: a stand-alone Python tool for data analysis via support vector machines.

    PubMed

    Hellman, Matthew; Jett, Marti; Hammamieh, Rasha

    2008-03-01

    The creation of classification kernel models to categorize unknown data samples of massive magnitude is an extremely advantageous tool for the scientific community. Excel2SVM, a stand-alone Python mathematical analysis tool, bridges the gap between researchers and computer science to create a simple graphical user interface that allows users to examine data and perform maximal margin classification. This valuable ability to train support vector machines and classify unknown data files is harnessed in this fast and efficient software, granting researchers full access to this complicated, high-level algorithm. Excel2SVM offers the ability to convert data to the proper sparse format while performing a variety of kernel functions along with cost factors/modes, grids, crossvalidation, and several other functions. This program functions with any type of quantitative data making Excel2SVM the ideal tool for analyzing a wide variety of input. The software is free and available at www.bioinformatics.org/excel2svm. A link to the software may also be found at www.kernel-machines.org. This software provides a useful graphical user interface that has proven to provide kernel models with accurate results and data classification through a decision boundary.

  19. 49 CFR Appendix E to Part 236 - Human-Machine Interface (HMI) Design

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Human-Machine Interface (HMI) Design E Appendix E.... E Appendix E to Part 236—Human-Machine Interface (HMI) Design (a) This appendix provides human... minimize negative safety effects by causing designers to consider human factors in the development of...

  20. Knowledge-based program to assist in the design of machine vision systems

    NASA Astrophysics Data System (ADS)

    Batchelor, Bruce G.

    1998-10-01

    There exists a serious bottle-neck in the process of designing Machine Vision Systems. This is so severe that the long-claimed flexibility of this technology will never be realized, unless there is a significant increase in the capacity of present-day vision system design teams. One possible way to improve matters is to provide appropriate design tools that will amplify the efforts of engineers who lack the necessary educational back-ground. This article describes a major extension to an existing program, called the Lighting Advisor, which is able to search a pictorial database, looking for key-words chosen by the user. The revised program bases its advice on a description of the object to be inspected and the working environment. The objective of this research is to reduce the skill level needed to operate the program, so that an industrial engineer, with little or no special training in Machine Vision, can receive appropriate and relevant advice, relating to a range of tasks in the design of industrial vision systems.

  1. Ontological modelling of knowledge management for human-machine integrated design of ultra-precision grinding machine

    NASA Astrophysics Data System (ADS)

    Hong, Haibo; Yin, Yuehong; Chen, Xing

    2016-11-01

    Despite the rapid development of computer science and information technology, an efficient human-machine integrated enterprise information system for designing complex mechatronic products is still not fully accomplished, partly because of the inharmonious communication among collaborators. Therefore, one challenge in human-machine integration is how to establish an appropriate knowledge management (KM) model to support integration and sharing of heterogeneous product knowledge. Aiming at the diversity of design knowledge, this article proposes an ontology-based model to reach an unambiguous and normative representation of knowledge. First, an ontology-based human-machine integrated design framework is described, then corresponding ontologies and sub-ontologies are established according to different purposes and scopes. Second, a similarity calculation-based ontology integration method composed of ontology mapping and ontology merging is introduced. The ontology searching-based knowledge sharing method is then developed. Finally, a case of human-machine integrated design of a large ultra-precision grinding machine is used to demonstrate the effectiveness of the method.

  2. Simulation and experimental research on modal analysis for a new 5-axis superalloy blade machine tool

    NASA Astrophysics Data System (ADS)

    Zhao, H. P.; Tang, X. Q.; Chen, X.; Wang, L. P.

    2011-05-01

    This paper considers a new type of 5-axis machine tool which is used to cut superalloy blades specially. Referring to this new structure system, this study presents modal simulation in detail to calculate the structure vibration resistance. The modal simulation include building suitable finite element models, considering boundary constraints and interpreting results. The physical impact test of prototype is conducted to validate the simulation results. The modal simulation also reveals that some important partial characteristics that affects the structure performance are ignored in the physical test data. The validated model can be used to complement the experimental test.

  3. Apparatus for correcting precision errors in slide straigntness in machine tools

    DOEpatents

    Robinson, S.C.; Gerth, H.L.

    The present invention is directed to a mechanism by which small deviations in slideway straightness and roll of a precision machining apparatus may be compensated for. The mechanism of the present invention comprises a fixture support disposed between the slideway carriage and the tool or workpiece fixture and provided with a hinge-like coupling between the carriage and the fixture support so as to allow for the minute and precise displacement of the fixture support in a direction normal to the direction of the slide path soa as to readily compensate for slight deviations in the straightness and roll of the slide path.

  4. Apparatus for correcting precision errors in slide straightness in machine tools

    DOEpatents

    Robinson, Samuel C.; Gerth, Howard L.

    1981-01-01

    The present invention is directed to a mechanism by which small deviations in slideway straightness and roll of a precision machining apparatus may be compensated for. The mechanism of the present invention comprises a fixture support disposed between the slideway carriage and the tool or workpiece fixture and provided with a hinge-like coupling between the carriage and the fixture support so as to allow for the minute and precise displacement of the fixture support in a direction normal to the direction of the slide path so as to readily compensate for slight deviations in the straightness and roll of the slide path.

  5. Heuristic algorithms for solving of the tool routing problem for CNC cutting machines

    NASA Astrophysics Data System (ADS)

    Chentsov, P. A.; Petunin, A. A.; Sesekin, A. N.; Shipacheva, E. N.; Sholohov, A. E.

    2015-11-01

    The article is devoted to the problem of minimizing the path of the cutting tool to shape cutting machines began. This problem can be interpreted as a generalized traveling salesman problem. Earlier version of the dynamic programming method to solve this problem was developed. Unfortunately, this method allows to process an amount not exceeding thirty circuits. In this regard, the task of constructing quasi-optimal route becomes relevant. In this paper we propose options for quasi-optimal greedy algorithms. Comparison of the results of exact and approximate algorithms is given.

  6. Man-machine Integration Design and Analysis System (MIDAS) Task Loading Model (TLM) experimental and software detailed design report

    NASA Technical Reports Server (NTRS)

    Staveland, Lowell

    1994-01-01

    This is the experimental and software detailed design report for the prototype task loading model (TLM) developed as part of the man-machine integration design and analysis system (MIDAS), as implemented and tested in phase 6 of the Army-NASA Aircrew/Aircraft Integration (A3I) Program. The A3I program is an exploratory development effort to advance the capabilities and use of computational representations of human performance and behavior in the design, synthesis, and analysis of manned systems. The MIDAS TLM computationally models the demands designs impose on operators to aide engineers in the conceptual design of aircraft crewstations. This report describes TLM and the results of a series of experiments which were run this phase to test its capabilities as a predictive task demand modeling tool. Specifically, it includes discussions of: the inputs and outputs of TLM, the theories underlying it, the results of the test experiments, the use of the TLM as both stand alone tool and part of a complete human operator simulation, and a brief introduction to the TLM software design.

  7. NETS - A NEURAL NETWORK DEVELOPMENT TOOL, VERSION 3.0 (MACHINE INDEPENDENT VERSION)

    NASA Technical Reports Server (NTRS)

    Baffes, P. T.

    1994-01-01

    NETS, A Tool for the Development and Evaluation of Neural Networks, provides a simulation of Neural Network algorithms plus an environment for developing such algorithms. Neural Networks are a class of systems modeled after the human brain. Artificial Neural Networks are formed from hundreds or thousands of simulated neurons, connected to each other in a manner similar to brain neurons. Problems which involve pattern matching readily fit the class of problems which NETS is designed to solve. NETS uses the back propagation learning method for all of the networks which it creates. The nodes of a network are usually grouped together into clumps called layers. Generally, a network will have an input layer through which the various environment stimuli are presented to the network, and an output layer for determining the network's response. The number of nodes in these two layers is usually tied to some features of the problem being solved. Other layers, which form intermediate stops between the input and output layers, are called hidden layers. NETS allows the user to customize the patterns of connections between layers of a network. NETS also provides features for saving the weight values of a network during the learning process, which allows for more precise control over the learning process. NETS is an interpreter. Its method of execution is the familiar "read-evaluate-print" loop found in interpreted languages such as BASIC and LISP. The user is presented with a prompt which is the simulator's way of asking for input. After a command is issued, NETS will attempt to evaluate the command, which may produce more prompts requesting specific information or an error if the command is not understood. The typical process involved when using NETS consists of translating the problem into a format which uses input/output pairs, designing a network configuration for the problem, and finally training the network with input/output pairs until an acceptable error is reached. NETS

  8. A 3-d modular gripper design tool

    SciTech Connect

    Brown, R.G.; Brost, R.C.

    1997-02-01

    Modular fixturing kits are sets of components used for flexible, rapid construction of fixtures. A modular vise is a parallel-jaw vise, each jaw of which is a modular fixture plate with a regular grid of precisely positioned holes. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid-plate to each jaw of a parallel-jaw gripper, one gains the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed an algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses they have added to the planar algorithm, including a 3-d grasp quality metric based on force information, 3-d geometric loading analysis, and inter-gripper interference analysis. Finally, the authors describe two applications of their code. One of these is an internal application at Sandia, while the other shows a potential use of the code for designing part of an agile assembly line.

  9. Applying Machine Learning Tools to the Identification of Foreshock Transient Events

    NASA Astrophysics Data System (ADS)

    Beyene, F.; Murr, D.

    2015-12-01

    Our previous research attempted to establish the relationship between foreshock transient events and transients in the ionosphere observed with ground magnetometers. This earlier work relied on foreshock transient event lists that were generated by a visual survey of the THEMIS data near the bowshock/foreshock. Our aim is to extend our earlier work, and the overall understanding of foreshock transients, by employing machine learning tools to identify foreshock transient events. Successful application of these tools would allow use to survey much more data. We first present results of automated classification of THEMIS data into the three primary regions of solar wind, magnetosheath, and magnetosphere. We then present our initial results of training an SVM classifier using the human generated event list and applying it to a more extensive data set.

  10. Temperature variable optimization for precision machine tool thermal error compensation on optimal threshold

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Ye, Wenhua; Liang, Ruijun; Lou, Peihuang; Yang, Xiaolan

    2013-01-01

    Machine tool thermal error is an important reason for poor machining accuracy. Thermal error compensation is a primary technology in accuracy control. To build thermal error model, temperature variables are needed to be divided into several groups on an appropriate threshold. Currently, group threshold value is mainly determined by researchers experience. Few studies focus on group threshold in temperature variable grouping. Since the threshold is important in error compensation, this paper arms to find out an optimal threshold to realize temperature variable optimization in thermal error modeling. Firstly, correlation coefficient is used to express membership grade of temperature variables, and the theory of fuzzy transitive closure is applied to obtain relational matrix of temperature variables. Concepts as compact degree and separable degree are introduced. Then evaluation model of temperature variable clustering is built. The optimal threshold and the best temperature variable clustering can be obtained by setting the maximum value of evaluation model as the objective. Finally, correlation coefficients between temperature variables and thermal error are calculated in order to find out optimum temperature variables for thermal error modeling. An experiment is conducted on a precise horizontal machining center. In experiment, three displacement sensors are used to measure spindle thermal error and twenty-nine temperature sensors are utilized to detect the machining center temperature. Experimental result shows that the new method of temperature variable optimization on optimal threshold successfully worked out a best threshold value interval and chose seven temperature variables from twenty-nine temperature measuring points. The model residual of z direction is within 3 μm. Obviously, the proposed new variable optimization method has simple computing process and good modeling accuracy, which is quite fit for thermal error compensation.

  11. A debugging system for azimuthally acoustic logging tools based on modular and hierarchical design ideas

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Ju, X. D.; Lu, J. Q.; Men, B. Y.

    2016-08-01

    On the basis of modular and hierarchical design ideas, this study presents a debugging system for an azimuthally sensitive acoustic bond tool (AABT). The debugging system includes three parts: a personal computer (PC), embedded front-end machine and function expansion boards. Modular and hierarchical design ideas are conducted in all design and debug processes. The PC communicates with the front-end machine via the Internet, and the front-end machine and function expansion boards connect each other by the extended parallel bus. In this method, the three parts of the debugging system form stable and high-speed data communication. This study not only introduces the system-level debugging and sub-system level debugging of the tool but also the debugging of the analogue signal processing board, which is important and greatly used in logging tools. Experiments illustrate that the debugging system can greatly improve AABT verification and calibration efficiency and that, board-level debugging can examine and improve analogue signal processing boards. The design thinking is clear and the design structure is reasonable, thus making it easy to extend and upgrade the debugging system.

  12. A Design Rationale Capture Tool to Support Design Verification and Re-use

    NASA Technical Reports Server (NTRS)

    Hooey, Becky Lee; Da Silva, Jonny C.; Foyle, David C.

    2012-01-01

    A design rationale tool (DR tool) was developed to capture design knowledge to support design verification and design knowledge re-use. The design rationale tool captures design drivers and requirements, and documents the design solution including: intent (why it is included in the overall design); features (why it is designed the way it is); information about how the design components support design drivers and requirements; and, design alternatives considered but rejected. For design verification purposes, the tool identifies how specific design requirements were met and instantiated within the final design, and which requirements have not been met. To support design re-use, the tool identifies which design decisions are affected when design drivers and requirements are modified. To validate the design tool, the design knowledge from the Taxiway Navigation and Situation Awareness (T-NASA; Foyle et al., 1996) system was captured and the DR tool was exercised to demonstrate its utility for validation and re-use.

  13. Statistical and Machine-Learning Classifier Framework to Improve Pulse Shape Discrimination System Design

    SciTech Connect

    Wurtz, R.; Kaplan, A.

    2015-10-28

    Pulse shape discrimination (PSD) is a variety of statistical classifier. Fully-­realized statistical classifiers rely on a comprehensive set of tools for designing, building, and implementing. PSD advances rely on improvements to the implemented algorithm. PSD advances can be improved by using conventional statistical classifier or machine learning methods. This paper provides the reader with a glossary of classifier-­building elements and their functions in a fully-­designed and operational classifier framework that can be used to discover opportunities for improving PSD classifier projects. This paper recommends reporting the PSD classifier’s receiver operating characteristic (ROC) curve and its behavior at a gamma rejection rate (GRR) relevant for realistic applications.

  14. DRPPP: A machine learning based tool for prediction of disease resistance proteins in plants.

    PubMed

    Pal, Tarun; Jaiswal, Varun; Chauhan, Rajinder S

    2016-11-01

    Plant disease outbreak is increasing rapidly around the globe and is a major cause for crop loss worldwide. Plants, in turn, have developed diverse defense mechanisms to identify and evade different pathogenic microorganisms. Early identification of plant disease resistance genes (R genes) can be exploited for crop improvement programs. The present prediction methods are either based on sequence similarity/domain-based methods or electronically annotated sequences, which might miss existing unrecognized proteins or low similarity proteins. Therefore, there is an urgent need to devise a novel machine learning technique to address this problem. In the current study, a SVM-based tool was developed for prediction of disease resistance proteins in plants. All known disease resistance (R) proteins (112) were taken as a positive set, whereas manually curated negative dataset consisted of 119 non-R proteins. Feature extraction generated 10,270 features using 16 different methods. The ten-fold cross validation was performed to optimize SVM parameters using radial basis function. The model was derived using libSVM and achieved an overall accuracy of 91.11% on the test dataset. The tool was found to be robust and can be used for high-throughput datasets. The current study provides instant identification of R proteins using machine learning approach, in addition to the similarity or domain prediction methods.

  15. Development of AN Optical Measuring System for Geometric Errors of a Miniaturized Machine Tool

    NASA Astrophysics Data System (ADS)

    Kweon, Sung-Hwan; Liu, Yu; Lee, Jae-Ha; Kim, Young-Suk; Yang, Seung-Han

    Recently, miniaturized machine tools (mMT) have become a promising micro/meso-mechanical manufacturing technique to overcome the material limitation and produce complex 3D meso-scale components with higher accuracy. To achieve sub-micron accuracy, geometric errors of a miniaturized machine tool should be identified and compensated. An optic multi-degree-of-freedom (DOF) measuring system, composed of one laser diode, two beam splitters and three position sensing detectors (PSDs), is proposed for simultaneous measurement of horizontal straightness, vertical straightness, pitch, yaw and roll errors along a moving axis of mMT. Homogeneous transformation matrix (HTM) is used to derive the relationship between the readings of PSDs and geometric errors, and an error estimation algorithm is presented to calculate the geometric errors. Simulation is carried out to prove the estimation accuracy of this algorithm. In theory, the measurement resolution of this proposed system can reach up to 0.03 μm and 0.06 arcsec for translational and rotational errors, respectively.

  16. Application of autoregressive distributed lag model to thermal error compensation of machine tools

    NASA Astrophysics Data System (ADS)

    Miao, Enming; Niu, Pengcheng; Fei, Yetai; Yan, Yan

    2011-12-01

    Since Thermal error in precision CNC machine tools cannot be ignored, it is essential to construct a simple and effective thermal error compensation mathematical model. In this paper, three modeling methods are introduced in detail. The first is multiple linear regression model; the second is congruence model, which combines multiple linear regression model with AR model of its residual error; and the third is autoregressive distributed lag model(ADL), which is compared and analyzed. Multiple linear regression analysis is used most commonly in thermal error compensation, since it is a simple and quick modeling method. But thermal error is nonlinear and interactive, so it is difficult to model a precise least squares model of thermal error. The congruence model and autoregressive distributed lag model belong to time series analysis method which has the advantage of establishing a precise mathematical model. The distinctions between the two models are that: the congruence model divides the parameter into two parts to estimate them respectively, but autoregressive distributed lag model estimates parameter uniformly, so congruence model is less accurate than autoregressive distributed lag model in modeling. This paper, based upon an actual example, concludes that autoregressive distributed lag model for thermal error of precision CNC machine tools is a good way to improve modeling accuracy.

  17. Investigation of Machine Design for Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.

    1996-01-01

    The process of joining two pieces of metal together has not significantly changed over the last few decades. The basic idea used is to bring the pieces together and apply enough heat to melt the metal at the interface. The molten metal mixes and after cooling forms a strong joint. This process is called the fusion process. The most significant difference between the many fusion processes is how the heat is generated and applied. The Welding Institute (TWI), in Great Britain, has recently patented an innovative application of mechanical friction. TWI designed a tool and process called Friction Stir Welding (FSW) that uses friction to heat the metal to within a few hundred degrees Fahrenheit of melting, just to the point of being plastic-like. The tool then stirs the plasticized metal together forming a joint that has been shown to be as good or better than an equivalent fusion joint. The FSW process is well suited for the joining of the aluminum alloys used in the aerospace industry. The relatively low melting point of aluminum eliminates the requirements for exotic materials for pin tool design. The FSW process has been successfully used to join alloys such as 7075 which were before considered "unweldable", and aluminum-lithium 2195 which exhibits many problems when fusion welded. The objective this summer was to investigate the design of a FSW system that could take this process from the laboratory to the manufacturing floor. In particular, it was the goal of my NASA colleague to develop a concept for applying the FSW process to the manufacturing of aluminum cryogenic oxygen and hydrogen tanks, of the sort used to make the Shuttle External Tank.

  18. Building an asynchronous web-based tool for machine learning classification.

    PubMed

    Weber, Griffin; Vinterbo, Staal; Ohno-Machado, Lucila

    2002-01-01

    Various unsupervised and supervised learning methods including support vector machines, classification trees, linear discriminant analysis and nearest neighbor classifiers have been used to classify high-throughput gene expression data. Simpler and more widely accepted statistical tools have not yet been used for this purpose, hence proper comparisons between classification methods have not been conducted. We developed free software that implements logistic regression with stepwise variable selection as a quick and simple method for initial exploration of important genetic markers in disease classification. To implement the algorithm and allow our collaborators in remote locations to evaluate and compare its results against those of other methods, we developed a user-friendly asynchronous web-based application with a minimal amount of programming using free, downloadable software tools. With this program, we show that classification using logistic regression can perform as well as other more sophisticated algorithms, and it has the advantages of being easy to interpret and reproduce. By making the tool freely and easily available, we hope to promote the comparison of classification methods. In addition, we believe our web application can be used as a model for other bioinformatics laboratories that need to develop web-based analysis tools in a short amount of time and on a limited budget.

  19. CNC machine tool's wear diagnostic and prognostic by using dynamic Bayesian networks

    NASA Astrophysics Data System (ADS)

    Tobon-Mejia, D. A.; Medjaher, K.; Zerhouni, N.

    2012-04-01

    The failure of critical components in industrial systems may have negative consequences on the availability, the productivity, the security and the environment. To avoid such situations, the health condition of the physical system, and particularly of its critical components, can be constantly assessed by using the monitoring data to perform on-line system diagnostics and prognostics. The present paper is a contribution on the assessment of the health condition of a computer numerical control (CNC) tool machine and the estimation of its remaining useful life (RUL). The proposed method relies on two main phases: an off-line phase and an on-line phase. During the first phase, the raw data provided by the sensors are processed to extract reliable features. These latter are used as inputs of learning algorithms in order to generate the models that represent the wear's behavior of the cutting tool. Then, in the second phase, which is an assessment one, the constructed models are exploited to identify the tool's current health state, predict its RUL and the associated confidence bounds. The proposed method is applied on a benchmark of condition monitoring data gathered during several cuts of a CNC tool. Simulation results are obtained and discussed at the end of the paper.

  20. Preliminary design of atlas pulsed power machine. Final report

    SciTech Connect

    Gribble, R.F.

    1996-04-03

    During the contract period from March 95 to March 96 I participated in the preliminary design of the Atlas pulsed power machine. As part of this task I performed of the order of 1000 circuit simulations for many different bank configurations, opening switches, and loads, and about 100 electrostatic field calculations. Results of the calculations were provided at regular Atlas design meetings or in the form of memorandums. I have almost completed the development of a 2D disk transmission line code to more accurately calculate asymmetric transient current and voltage caused by azimuthal variations, including switch timing jitter and local arc faults. This code is attached as a subroutine to the circuit simulation program. The purpose for most of the simulations was to provide information on bank damping requirements and load energy ranges for the different circuit configurations. A minimum transmission line insulation depth was determined from calculating the maximum expected dynamic load back voltage (I{times}{sup dL}/{sub dt}). Other simulations included fault effects, transmission line heating effects (including diffusion, melting, vaporization, ionization), and transmission line transients under various conditions. The line fault simulations using a lumped constant approximation to the 2D disk line provided useful information but even with about 600 elements, it has an upper limit on mode frequencies and tends to exaggerate some modes. Electrostatic (2D) field calculations were used to estimate fields of the transmission lines, insulators, and rail gap switches. Design of conductor surface contours to minimize the field near an insulator stack was one result of these calculations. Effects of biasing and insulator modifications of the rail gap switch was determined.

  1. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 13: Laser Machining, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  2. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 3: Machining, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  3. Mars vertical axis wind machines: The design of a tornado vortex machine for use on Mars

    NASA Astrophysics Data System (ADS)

    Carlin, Daun; Dyhr, Amy; Kelly, Jon; Schmirler, J. Eric; Carlin, Mike; Hong, Won E.; Mahoney, Kamin; Ralston, Michael

    1994-06-01

    Ever since Viking 1 and 2 landed on the surface of Mars in the summer of 1976, man has yearned to go back. But before man steps foot upon the surface of Mars, unmanned missions such as the Martian Soft Lander and Martian Subsurface Penetrator will precede him. Alternative renewable power sources must be developed to supply the next generation of surface exploratory spacecraft, since RTG's, solar cells, and long-life batteries all have their significant drawbacks. One such alternative is to take advantage of the unique Martian atmospheric conditions by designing a small scale, Martian wind power generator, capable of surviving impact and fulfilling the long term (2-5 years), low-level power requirements (1-2 Watts) of an unmanned surface probe. After investigation of several wind machines, a tornado vortex generator was chosen based upon its capability of theoretically augmenting and increasing the available power that may be extracted from average Martian wind speeds of approximately 7.5 m/s. The Martian Tornado Vortex Wind Generator stands 1 meter high and has a diameter of 0.5 m. Martian winds enter the base and shroud of the Tornado Vortex Generator at 7.5 m/s and are increased to an exit velocity of 13.657 m/s due to the vortex that is created. This results in a rapid pressure drop of 4.56 kg/s(exp 2) m across the vortex core which aids in producing a net power output of 1.1765 Watts. The report contains the necessary analysis and requirements needed to feasibly operate a low-level powered, unmanned, Martian surface probe.

  4. Mars vertical axis wind machines: The design of a tornado vortex machine for use on Mars

    NASA Technical Reports Server (NTRS)

    Carlin, Daun; Dyhr, Amy; Kelly, Jon; Schmirler, J. Eric; Carlin, Mike; Hong, Won E.; Mahoney, Kamin

    1994-01-01

    Ever since Viking 1 and 2 landed on the surface of Mars in the summer of 1976, man has yearned to go back. But before man steps foot upon the surface of Mars, unmanned missions such as the Martian Soft Lander and Martian Subsurface Penetrator will precede him. Alternative renewable power sources must be developed to supply the next generation of surface exploratory spacecraft, since RTG's, solar cells, and long-life batteries all have their significant drawbacks. One such alternative is to take advantage of the unique Martian atmospheric conditions by designing a small scale, Martian wind power generator, capable of surviving impact and fulfilling the long term (2-5 years), low-level power requirements (1-2 Watts) of an unmanned surface probe. After investigation of several wind machines, a tornado vortex generator was chosen based upon its capability of theoretically augmenting and increasing the available power that may be extracted from average Martian wind speeds of approximately 7.5 m/s. The Martian Tornado Vortex Wind Generator stands 1 meter high and has a diameter of 0.5 m. Martian winds enter the base and shroud of the Tornado Vortex Generator at 7.5 m/s and are increased to an exit velocity of 13.657 m/s due to the vortex that is created. This results in a rapid pressure drop of 4.56 kg/s(exp 2) m across the vortex core which aids in producing a net power output of 1.1765 Watts. The report contains the necessary analysis and requirements needed to feasibly operate a low-level powered, unmanned, Martian surface probe.

  5. A 3D Human-Machine Integrated Design and Analysis Framework for Squat Exercises with a Smith Machine.

    PubMed

    Lee, Haerin; Jung, Moonki; Lee, Ki-Kwang; Lee, Sang Hun

    2017-02-06

    In this paper, we propose a three-dimensional design and evaluation framework and process based on a probabilistic-based motion synthesis algorithm and biomechanical analysis system for the design of the Smith machine and squat training programs. Moreover, we implemented a prototype system to validate the proposed framework. The framework consists of an integrated human-machine-environment model as well as a squat motion synthesis system and biomechanical analysis system. In the design and evaluation process, we created an integrated model in which interactions between a human body and machine or the ground are modeled as joints with constraints at contact points. Next, we generated Smith squat motion using the motion synthesis program based on a Gaussian process regression algorithm with a set of given values for independent variables. Then, using the biomechanical analysis system, we simulated joint moments and muscle activities from the input of the integrated model and squat motion. We validated the model and algorithm through physical experiments measuring the electromyography (EMG) signals, ground forces, and squat motions as well as through a biomechanical simulation of muscle forces. The proposed approach enables the incorporation of biomechanics in the design process and reduces the need for physical experiments and prototypes in the development of training programs and new Smith machines.

  6. Evaluation of Design Tools for Rapid Prototyping of Parallel Signal Processing Algorithms

    DTIC Science & Technology

    1996-12-01

    components. ----- Filter Design SI!s~ wI ___ System ~Designer/BDE 2 --- 1 FSM Editor jSBlock Diagram EditorS ir tli t tNf Nl Tool Interface Hardware...blocks from the SPW libraries or blocks created using the Filter Design System (FDS) or Finite State Machine (FSM) Editor. System block diagrams are...the system ? While evaluating software, these factors and the techniques to optimize them must be kept in mind. In his book on computer interface design

  7. Effect of High-speed Milling tool path strategies on the surface roughness of Stavax ESR mold insert machining

    NASA Astrophysics Data System (ADS)

    Mebrahitom, A.; Rizuan, D.; Azmir, M.; Nassif, M.

    2016-02-01

    High speed milling is one of the recent technologies used to produce mould inserts due to the need for high surface finish. It is a faster machining process where it uses a small side step and a small down step combined with very high spindle speed and feed rate. In order to effectively use the HSM capabilities, optimizing the tool path strategies and machining parameters is an important issue. In this paper, six different tool path strategies have been investigated on the surface finish and machining time of a rectangular cavities of ESR Stavax material. CAD/CAM application of CATIA V5 machining module for pocket milling of the cavities was used for process planning.

  8. Optimization of process parameters on EN24 Tool steel using Taguchi technique in Electro-Discharge Machining (EDM)

    NASA Astrophysics Data System (ADS)

    Jeykrishnan, J.; Vijaya Ramnath, B.; Akilesh, S.; Pradeep Kumar, R. P.

    2016-09-01

    In the field of manufacturing sectors, electric discharge machining (EDM) is widely used because of its unique machining characteristics and high meticulousness which can't be done by other traditional machines. The purpose of this paper is to analyse the optimum machining parameter, to curtail the machining time with respect to high material removal rate (MRR) and low tool wear rate (TWR) by varying the parameters like current, pulse on time (Ton) and pulse off time (Toff). By conducting several dry runs using Taguchi technique of L9 orthogonal array (OA), optimized parameters were found using analysis of variance (ANOVA) and the error percentage can be validated and parameter contribution for MRR and TWR were found.

  9. An empirical survey on the influence of machining parameters on tool wear in diamond turning of large single crystal silicon optics

    SciTech Connect

    Blaedel, K L; Carr, J W; Davis, P J; Goodman, W; Haack, J K; Krulewich, D; McClellan, M; Syn, C K; Zimmermann, M.

    1999-07-01

    The research described in this paper is a continuation of the collaborative efforts by Lawrence Livermore National Laboratory (LLNL), Schafer Corporation and TRW to develop a process for single point diamond turning (SPDT) of large single crystal silicon (SCSi) optical substrates on the Large Optic Diamond Turning Machine (LODTM). The principal challenge to obtaining long track lengths in SCSi has been to identify a set of machining parameters which yield a process that provides both low and predictable tool wear. Identifying such a process for SCSi has proven to be a formidable task because multiple crystallographic orientations with a range of hardness values are encountered when machining conical and annular optical substrates. The LODTM cutting program can compensate for tool wear if it is predictable. However, if the tool wear is not predictable then the figured area of the optical substrate may have unacceptably high error that can not be removed by post-polishing. The emphasis of this survey was limited to elucidating the influence of cutting parameters on the tool wear. We present two preliminary models that can be used to predict tool wear over the parameter space investigated. During the past two and one-half years a series of three evolutionary investigations were performed. The first investigation, the Parameter Assessment Study (PAS), was designed to survey fundamental machining parameters and assess their influence on tool wear [1]. The results of the PAS were used as a point-of-departure for designing the second investigation, the Parameter Selection Study (PSS). The goal of the PSS was to explore the trends identified in the PAS in more detail, to determine if the experimental results obtained in the PAS could be repeated on a different diamond turning machine (DTM), and to select a more optimal set of machining parameters that could be used in subsequent investigations such as the Fluid Down-Select Study (FDS). The goal of the FDS was to compare

  10. Design package for fuel retrieval system fuel handling tool modification

    SciTech Connect

    TEDESCHI, D.J.

    1998-11-09

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports.

  11. Design package for fuel retrieval system fuel handling tool modification

    SciTech Connect

    TEDESCHI, D.J.

    1999-03-17

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports.

  12. Simulation Tools Model Icing for Aircraft Design

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Here s a simple science experiment to try: Place an unopened bottle of distilled water in your freezer. After 2-3 hours, if the water is pure enough, you will notice that it has not frozen. Carefully pour the water into a bowl with a piece of ice in it. When it strikes the ice, the water will instantly freeze. One of the most basic and commonly known scientific facts is that water freezes at around 32 F. But this is not always the case. Water lacking any impurities for ice crystals to form around can be supercooled to even lower temperatures without freezing. High in the atmosphere, water droplets can achieve this delicate, supercooled state. When a plane flies through clouds containing these droplets, the water can strike the airframe and, like the supercooled water hitting the ice in the experiment above, freeze instantly. The ice buildup alters the aerodynamics of the plane - reducing lift and increasing drag - affecting its performance and presenting a safety issue if the plane can no longer fly effectively. In certain circumstances, ice can form inside aircraft engines, another potential hazard. NASA has long studied ways of detecting and countering atmospheric icing conditions as part of the Agency s efforts to enhance aviation safety. To do this, the Icing Branch at Glenn Research Center utilizes a number of world-class tools, including the Center s Icing Research Tunnel and the NASA 607 icing research aircraft, a "flying laboratory" for studying icing conditions. The branch has also developed a suite of software programs to help aircraft and icing protection system designers understand the behavior of ice accumulation on various surfaces and in various conditions. One of these innovations is the LEWICE ice accretion simulation software. Initially developed in the 1980s (when Glenn was known as Lewis Research Center), LEWICE has become one of the most widely used tools in icing research and aircraft design and certification. LEWICE has been transformed over

  13. Tools for Nonlinear Control Systems Design

    NASA Technical Reports Server (NTRS)

    Sastry, S. S.

    1997-01-01

    This is a brief statement of the research progress made on Grant NAG2-243 titled "Tools for Nonlinear Control Systems Design", which ran from 1983 till December 1996. The initial set of PIs on the grant were C. A. Desoer, E. L. Polak and myself (for 1983). From 1984 till 1991 Desoer and I were the Pls and finally I was the sole PI from 1991 till the end of 1996. The project has been an unusually longstanding and extremely fruitful partnership, with many technical exchanges, visits, workshops and new avenues of investigation begun on this grant. There were student visits, long term.visitors on the grant and many interesting joint projects. In this final report I will only give a cursory description of the technical work done on the grant, since there was a tradition of annual progress reports and a proposal for the succeeding year. These progress reports cum proposals are attached as Appendix A to this report. Appendix B consists of papers by me and my students as co-authors sorted chronologically. When there are multiple related versions of a paper, such as a conference version and journal version they are listed together. Appendix C consists of papers by Desoer and his students as well as 'solo' publications by other researchers supported on this grant similarly chronologically sorted.

  14. Evaluation of machine learning tools for inspection of steam generator tube structures using pulsed eddy current

    NASA Astrophysics Data System (ADS)

    Buck, J. A.; Underhill, P. R.; Morelli, J.; Krause, T. W.

    2017-02-01

    Degradation of nuclear steam generator (SG) tubes and support structures can result in a loss of reactor efficiency. Regular in-service inspection, by conventional eddy current testing (ECT), permits detection of cracks, measurement of wall loss, and identification of other SG tube degradation modes. However, ECT is challenged by overlapping degradation modes such as might occur for SG tube fretting accompanied by tube off-set within a corroding ferromagnetic support structure. Pulsed eddy current (PEC) is an emerging technology examined here for inspection of Alloy-800 SG tubes and associated carbon steel drilled support structures. Support structure hole size was varied to simulate uniform corrosion, while SG tube was off-set relative to hole axis. PEC measurements were performed using a single driver with an 8 pick-up coil configuration in the presence of flat-bottom rectangular frets as an overlapping degradation mode. A modified principal component analysis (MPCA) was performed on the time-voltage data in order to reduce data dimensionality. The MPCA scores were then used to train a support vector machine (SVM) that simultaneously targeted four independent parameters associated with; support structure hole size, tube off-centering in two dimensions and fret depth. The support vector machine was trained, tested, and validated on experimental data. Results were compared with a previously developed artificial neural network (ANN) trained on the same data. Estimates of tube position showed comparable results between the two machine learning tools. However, the ANN produced better estimates of hole inner diameter and fret depth. The better results from ANN analysis was attributed to challenges associated with the SVM when non-constant variance is present in the data.

  15. Design and analysis of closed-loop decoder adaptation algorithms for brain-machine interfaces.

    PubMed

    Dangi, Siddharth; Orsborn, Amy L; Moorman, Helene G; Carmena, Jose M

    2013-07-01

    Closed-loop decoder adaptation (CLDA) is an emerging paradigm for achieving rapid performance improvements in online brain-machine interface (BMI) operation. Designing an effective CLDA algorithm requires making multiple important decisions, including choosing the timescale of adaptation, selecting which decoder parameters to adapt, crafting the corresponding update rules, and designing CLDA parameters. These design choices, combined with the specific settings of CLDA parameters, will directly affect the algorithm's ability to make decoder parameters converge to values that optimize performance. In this article, we present a general framework for the design and analysis of CLDA algorithms and support our results with experimental data of two monkeys performing a BMI task. First, we analyze and compare existing CLDA algorithms to highlight the importance of four critical design elements: the adaptation timescale, selective parameter adaptation, smooth decoder updates, and intuitive CLDA parameters. Second, we introduce mathematical convergence analysis using measures such as mean-squared error and KL divergence as a useful paradigm for evaluating the convergence properties of a prototype CLDA algorithm before experimental testing. By applying these measures to an existing CLDA algorithm, we demonstrate that our convergence analysis is an effective analytical tool that can ultimately inform and improve the design of CLDA algorithms.

  16. Surface Preparation of Powder Metallurgical Tool Steels by Means of Wire Electrical Discharge Machining

    NASA Astrophysics Data System (ADS)

    Hatami, Sepehr; Shahabi-Navid, Mehrdad; Nyborg, Lars

    2012-09-01

    The surface of two types of powder metallurgical (PM) tool steels ( i.e., with and without nitrogen) was prepared using wire electrical discharge machining (WEDM). From each grade of tool steel, seven surfaces corresponding to one to seven passes of WEDM were prepared. The WEDM process was carried out using a brass wire as electrode and deionized water as dielectric. After each WEDM pass the surface of the tool steels was thoroughly examined. Surface residual stresses were measured by the X-ray diffraction (XRD) technique. The measured stresses were found to be of tensile nature. The surface roughness of the WEDM specimens was measured using interference microscopy. The surface roughness as well as the residual stress measurements indicated an insignificant improvement of these parameters after four passes of WEDM. In addition, the formed recast layer was characterized by means of scanning electron microscopy (SEM), XRD, and X-ray photoelectron spectroscopy (XPS). The characterization investigation clearly shows diffusion of copper and zinc from the wire electrode into the work material, even after the final WEDM step. Finally, the importance of eliminating excessive WEDM steps is thoroughly discussed.

  17. Effect of tool material on machinability of TiCp reinforced Al-1100 composite

    NASA Astrophysics Data System (ADS)

    Harishchandra; Kadadevaramath, R. S.; Anil, K. C.

    2016-09-01

    In present days MMC's are widely used in most of the industries, like automobiles, aerospace, minerals and marine industries, because of its high specific strength to weight ratio. There are many types of reinforcements are available, selection of reinforcement is depends on availability, cost and desired reinforcement properties. In our study Al-1100 is selected as a primary material and Titanium carbide particle (TiCp) of 44 pm size as reinforcement and synthesized by manual stir casting method, by varying the reinforcement percentage. K2DF6 salt was used as wetting agent in order to improve the wetting behaviour of the reinforcement and same was observed in optical micrographs. Further, prepared composite materials are subjected to machinability studies by using lathe tool dynamometer in order to evaluate the cutting force, surface roughness with respect to reinforcement percentage and tool material. From the results, it is observed that the hardness and surface roughness of a specimen increases with the increasing of reinforcement percentage and Hardness of the tool material respectively.

  18. Machine learning techniques as a helpful tool toward determination of plaque vulnerability.

    PubMed

    Cilla, Myriam; Martínez, Javier; Peña, Estefanía; Martínez, Miguel Ángel

    2012-04-01

    Atherosclerotic cardiovascular disease results in millions of sudden deaths annually, and coronary artery disease accounts for the majority of this toll. Plaque rupture plays main role in the majority of acute coronary syndromes. Rupture has been usually associated with stress concentrations, which are determined mainly by tissue properties and plaque geometry. The aim of this study is develop a tool, using machine learning techniques to assist the clinical professionals on decisions of the vulnerability of the atheroma plaque. In practice, the main drawbacks of 3-D finite element analysis to predict the vulnerability risk are the huge main memories required and the long computation times. Therefore, it is essential to use these methods which are faster and more efficient. This paper discusses two potential applications of computational technologies, artificial neural networks and support vector machines, used to assess the role of maximum principal stress in a coronary vessel with atheroma plaque as a function of the main geometrical features in order to quantify the vulnerability risk.

  19. Modulated Tool-Path Chip Breaking For Depleted Uranium Machining Operations

    SciTech Connect

    Barkman, W. E.; Babelay Jr., E. F.; Smith, K. S.; Assaid T. S.; McFarland, J. T.; Tursky, D. A.

    2010-04-15

    Turning operations involving depleted uranium frequently generate long, stringy chips that present a hazard to both the machinist and the machine tool. While a variety of chip-breaking techniques are available, they generally depend on a mechanism that increases the bending of the chip or the introduction of a one dimensional vibration that produces an interrupted cutting pattern. Unfortunately, neither of these approaches is particularly effective when making a 'light depth-of-cut' on a contoured workpiece. The historical solution to this problem has been for the machinist to use long-handled tweezers to 'pull the chip' and try to keep it submerged in the chip pan; however, this approach is not practical for all machining operations. This paper discusses a research project involving the Y-12 National Security Complex and the University of North Carolina at Charlotte in which unique, oscillatory part programs are used to continuously create an interrupted cut that generates pre-defined, user-selectable chip lengths.

  20. Upgrading the steam and cooling systems at a machine tool manufacturing complex

    SciTech Connect

    Davies, G.R.; Drye, J.W.

    1997-03-01

    Cincinnati Milacron, Inc., one of the world`s largest machine tool manufacturers, decided to upgrade the steam and cooling systems that serve Milacron`s multibuilding 1.5 million square foot (139,350 m{sup 2}) headquarters complex in Cincinnati, Ohio. The upgrades were begun in 1993 and were operational by March 1995. Program objectives were to: (1) Provide mechanical cooling of manufacturing areas for better temperature control to gain closer tolerances on machined parts. This was to support a corporate objective to obtain ISO 9000 Certification which has been achieved. (2) Phase-out use of ozone-depleting chlorofluorocarbon (CFC) refrigerants in existing electric chillers and packaged air-conditioning (DX) units. (3) Minimize waste oil and wood leaving the complex to reduce disposal costs and environmental liabilities. (4) Reduce operating and maintenance costs to enhance industrial competitiveness. With co-funding help from the local utility company, Cinergy Corporation, the authors assisted Milacron in analyzing the feasibility of various mechanical cooling concepts such as single vs. two-stage steam absorption vs. electric chillers. This analysis provided the data needed to select the concepts which best met the program objectives.

  1. Effects of cutting parameters and machining environments on surface roughness in hard turning using design of experiment

    NASA Astrophysics Data System (ADS)

    Mia, Mozammel; Bashir, Mahmood Al; Dhar, Nikhil Ranjan

    2016-07-01

    Hard turning is gradually replacing the time consuming conventional turning process, which is typically followed by grinding, by producing surface quality compatible to grinding. The hard turned surface roughness depends on the cutting parameters, machining environments and tool insert configurations. In this article the variation of the surface roughness of the produced surfaces with the changes in tool insert configuration, use of coolant and different cutting parameters (cutting speed, feed rate) has been investigated. This investigation was performed in machining AISI 1060 steel, hardened to 56 HRC by heat treatment, using coated carbide inserts under two different machining environments. The depth of cut, fluid pressure and material hardness were kept constant. The Design of Experiment (DOE) was performed to determine the number and combination sets of different cutting parameters. A full factorial analysis has been performed to examine the effect of main factors as well as interaction effect of factors on surface roughness. A statistical analysis of variance (ANOVA) was employed to determine the combined effect of cutting parameters, environment and tool configuration. The result of this analysis reveals that environment has the most significant impact on surface roughness followed by feed rate and tool configuration respectively.

  2. Development of a Finite State Machine for a Small Unmanned Aircraft System Using Experimental Design

    DTIC Science & Technology

    2015-03-26

    Figure 2: Simple Finite State Machine Example 2.4 APM:Plane Firmware Parameters The APM:Plane firmware has more than 300 configurable parameters...DEVELOPMENT OF A FINITE STATE MACHINE FOR A SMALL UNMANNED AIRCRAFT SYSTEM USING EXPERIMENTAL DESIGN...protection in the United States. AFIT-ENS-MS-15-M-146 DEVELOPMENT OF A FINITE STATE MACHINE FOR A SMALL UNMANNED AIRCRAFT SYSTEM USING

  3. Sensorless compensation system for thermal deformations of ball screws in machine tools drives

    NASA Astrophysics Data System (ADS)

    Kowal, Michał

    2016-12-01

    The article presents constructional, technological and operational issues associated with the compensation of thermal deformations of ball screw drives. Further, it demonstrates the analysis of a new sensorless compensation method relying on coordinated computation of data fed directly from the drive and the control system in combination with the information pertaining to the operational history of the servo drive, retrieved with the use of an artificial neural networks (ANN)-based learning system. Preliminary ANN-based models, developed to simulate energy dissipation resulting from the friction in the screw-cap assembly and convection of heat are expounded upon, as are the processes of data selection and ANN learning. In conclusion, the article presents the results of simulation studies and preliminary experimental evidence confirming the applicability of the proposed method, efficiently compensating for the thermal elongation of the ball screw in machine tool drives.

  4. Simulation of man-machine system for mechanical design

    SciTech Connect

    Matheou, N.P.; Drakatos, P.A.; Drakatos, S.P.; Badekas, V.

    1997-07-01

    The authors tried to determine the factors effecting on the man-machine system. The human being has been analyzed on the basis of its physiologic qualities and limits that interfere with his performance, as well as the way it coordinates them using a three stage-two level pattern of processing. The pathological factors have been quoted along with their consequences. Finally the main occupational health problems of various professionals using different types of machines have been examined.

  5. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 9: Tool and Die, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  6. Support vector machines (SVMs) for monitoring network design.

    PubMed

    Asefa, Tirusew; Kemblowski, Mariush; Urroz, Gilberto; McKee, Mac

    2005-01-01

    In this paper we present a hydrologic application of a new statistical learning methodology called support vector machines (SVMs). SVMs are based on minimization of a bound on the generalized error (risk) model, rather than just the mean square error over a training set. Due to Mercer's conditions on the kernels, the corresponding optimization problems are convex and hence have no local minima. In this paper, SVMs are illustratively used to reproduce the behavior of Monte Carlo-based flow and transport models that are in turn used in the design of a ground water contamination detection monitoring system. The traditional approach, which is based on solving transient transport equations for each new configuration of a conductivity field, is too time consuming in practical applications. Thus, there is a need to capture the behavior of the transport phenomenon in random media in a relatively simple manner. The objective of the exercise is to maximize the probability of detecting contaminants that exceed some regulatory standard before they reach a compliance boundary, while minimizing cost (i.e., number of monitoring wells). Application of the method at a generic site showed a rather promising performance, which leads us to believe that SVMs could be successfully employed in other areas of hydrology. The SVM was trained using 510 monitoring configuration samples generated from 200 Monte Carlo flow and transport realizations. The best configurations of well networks selected by the SVM were identical with the ones obtained from the physical model, but the reliabilities provided by the respective networks differ slightly.

  7. PHAST: A Collaborative Machine Translation and Post-Editing Tool for Public Health.

    PubMed

    Dew, Kristin; Turner, Anne M; Desai, Loma; Martin, Nathalie; Laurenzi, Adrian; Kirchhoff, Katrin

    2015-01-01

    This paper describes a novel collaborative machine translation (MT) plus post-editing system called PHAST (Public Health Automatic System for Translation, phastsystem.org), tailored for use in producing multilingual education materials for public health. Its collaborative features highlight a new approach in public health informatics: sharing limited bilingual translation resources via a groupware system. We report here on the design methods and requirements used to develop PHAST and on its evaluation with potential public health users. Our results indicate such a system could be a feasible means of increasing the production of multilingual public health materials by reducing the barriers of time and cost. PHAST's design can serve as a model for other communities interested in assuring the accuracy of MT through shared language expertise.

  8. PHAST: A Collaborative Machine Translation and Post-Editing Tool for Public Health

    PubMed Central

    Dew, Kristin; Turner, Anne M.; Desai, Loma; Martin, Nathalie; Laurenzi, Adrian; Kirchhoff, Katrin

    2015-01-01

    This paper describes a novel collaborative machine translation (MT) plus post-editing system called PHAST (Public Health Automatic System for Translation, phastsystem.org), tailored for use in producing multilingual education materials for public health. Its collaborative features highlight a new approach in public health informatics: sharing limited bilingual translation resources via a groupware system. We report here on the design methods and requirements used to develop PHAST and on its evaluation with potential public health users. Our results indicate such a system could be a feasible means of increasing the production of multilingual public health materials by reducing the barriers of time and cost. PHAST’s design can serve as a model for other communities interested in assuring the accuracy of MT through shared language expertise. PMID:26958182

  9. Laser Machining Series. Educational Resources for the Machine Tool Industry. Course Syllabi, Instructor's Handbook, [and] Student Laboratory Manual.

    ERIC Educational Resources Information Center

    Texas State Technical Coll. System, Waco.

    This package consists of course syllabi, an instructor's handbook, and a student laboratory manual for a 1-year vocational training program to prepare students for entry-level employment as laser machining technicians. The program was developed through a modification of the DACUM (Developing a Curriculum) technique. The course syllabi volume…

  10. Surface Grinder Operator. Instructor's Guide. Part of Single-Tool Skills Program. Machine Industries Occupations.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    This course, the second one to be published in what is expected to be a series of instructor's guides in the Single-Tool Skills Program, is expected to help meet the need for trained operators in metalworking and is designed for use in the adult education programs of school districts, in Manpower Development and Training Programs, and in secondary…

  11. Gaussian Process Regression as a machine learning tool for predicting organic carbon from soil spectra - a machine learning comparison study

    NASA Astrophysics Data System (ADS)

    Schmidt, Andreas; Lausch, Angela; Vogel, Hans-Jörg

    2016-04-01

    Diffuse reflectance spectroscopy as a soil analytical tool is spreading more and more. There is a wide range of possible applications ranging from the point scale (e.g. simple soil samples, drill cores, vertical profile scans) through the field scale to the regional and even global scale (UAV, airborne and space borne instruments, soil reflectance databases). The basic idea is that the soil's reflectance spectrum holds information about its properties (like organic matter content or mineral composition). The relation between soil properties and the observable spectrum is usually not exactly know and is typically derived from statistical methods. Nowadays these methods are classified in the term machine learning, which comprises a vast pool of algorithms and methods for learning the relationship between pairs if input - output data (training data set). Within this pool of methods a Gaussian Process Regression (GPR) is newly emerging method (originating from Bayesian statistics) which is increasingly applied to applications in different fields. For example, it was successfully used to predict vegetation parameters from hyperspectral remote sensing data. In this study we apply GPR to predict soil organic carbon from soil spectroscopy data (400 - 2500 nm). We compare it to more traditional and widely used methods such as Partitial Least Squares Regression (PLSR), Random Forest (RF) and Gradient Boosted Regression Trees (GBRT). All these methods have the common ability to calculate a measure for the variable importance (wavelengths importance). The main advantage of GPR is its ability to also predict the variance of the target parameter. This makes it easy to see whether a prediction is reliable or not. The ability to choose from various covariance functions makes GPR a flexible method. This allows for including different assumptions or a priori knowledge about the data. For this study we use samples from three different locations to test the prediction accuracies. One

  12. A 3D Human-Machine Integrated Design and Analysis Framework for Squat Exercises with a Smith Machine

    PubMed Central

    Lee, Haerin; Jung, Moonki; Lee, Ki-Kwang; Lee, Sang Hun

    2017-01-01

    In this paper, we propose a three-dimensional design and evaluation framework and process based on a probabilistic-based motion synthesis algorithm and biomechanical analysis system for the design of the Smith machine and squat training programs. Moreover, we implemented a prototype system to validate the proposed framework. The framework consists of an integrated human–machine–environment model as well as a squat motion synthesis system and biomechanical analysis system. In the design and evaluation process, we created an integrated model in which interactions between a human body and machine or the ground are modeled as joints with constraints at contact points. Next, we generated Smith squat motion using the motion synthesis program based on a Gaussian process regression algorithm with a set of given values for independent variables. Then, using the biomechanical analysis system, we simulated joint moments and muscle activities from the input of the integrated model and squat motion. We validated the model and algorithm through physical experiments measuring the electromyography (EMG) signals, ground forces, and squat motions as well as through a biomechanical simulation of muscle forces. The proposed approach enables the incorporation of biomechanics in the design process and reduces the need for physical experiments and prototypes in the development of training programs and new Smith machines. PMID:28178184

  13. Development of a high-capacity extractor cleaner for cotton stripper harvesters - Machine design and optimization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton strippers have used extractor type cleaners for many years to remove large foreign material from harvested seed cotton. These machines are commonly referred to as "field cleaners" and are similar in design and operation to stick machines used in gins. The field cleaners used on modern cotton ...

  14. Design and chemical evaluation of reduced machine-yield cigarettes.

    PubMed

    McAdam, K G; Gregg, E O; Bevan, M; Dittrich, D J; Hemsley, S; Liu, C; Proctor, C J

    2012-02-01

    Experimental cigarettes (ECs) were made by combining technological applications that individually reduce the machine measured yields of specific toxicants or groups of toxicants in mainstream smoke (MS). Two tobacco blends, featuring a tobacco substitute sheet or a tobacco blend treatment, were combined with filters containing an amine functionalised resin (CR20L) and/or a polymer-derived, high activity carbon adsorbent to generate three ECs with the potential for generating lower smoke toxicant yields than conventional cigarettes. MS yields of smoke constituents were determined under 4 different smoking machine conditions. Health Canada Intense (HCI) machine smoking conditions gave the highest MS yields for nicotine-free dry particulate matter and for most smoke constituents measured. Toxicant yields from the ECs were compared with those from two commercial comparator cigarettes, three scientific control cigarettes measured contemporaneously and with published data on 120 commercial cigarettes. The ECs were found to generate some of the lowest machine yields of toxicants from cigarettes for which published HCI smoke chemistry data are available; these comparisons therefore confirm that ECs with reduced MS machine toxicant yields compared to commercial cigarettes can be produced. The results encourage further work examining human exposure to toxicants from these cigarettes, including human biomarker studies.

  15. High precision batch mode micro-electro-discharge machining of metal alloys using DRIE silicon as a cutting tool

    NASA Astrophysics Data System (ADS)

    Li, Tao; Bai, Qing; Gianchandani, Yogesh B.

    2013-09-01

    This paper reports recent advances in batch mode micro-electro-discharge machining (µEDM) for high precision micromachining of metal alloys such as stainless steel. High-aspect-ratio silicon microstructures with fine feature sizes formed by deep reactive ion etching are used as cutting tools. To machine workpiece features with widths ≤10 µm, a silicon dioxide coating is necessary to passivate the sidewalls of the silicon tools from spurious discharges. In the machined workpieces, a minimum feature size of ≈7 µm and an aspect ratio up to 3.2 are demonstrated by the batch mode µEDM of stainless steel 304 and titanium (Grade 1) substrates. Machining rates up to ≈5 µm min-1 in feature depth are achieved in batch mode micromachining of typical microfluidic structures, including arrays of channels and cavities of different sizes. The machined features are uniform across a die-scale area of 5 × 5 mm2. Other machining characteristics are also discussed.

  16. Trajectory Design Tools for Libration and Cis-Lunar Environments

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Webster, Cassandra M.; Bosanac, Natasha; Cox, Andrew; Guzzetti, Davide; Howell, Kathleen C.

    2016-01-01

    Innovative trajectory design tools are required to support challenging multi-body regimes with complex dynamics, uncertain perturbations, and the integration of propulsion influences. Two distinctive tools, Adaptive Trajectory Design and the General Mission Analysis Tool have been developed and certified to provide the astrodynamics community with the ability to design multi-body trajectories. In this paper we discuss the multi-body design process and the capabilities of both tools. Demonstrable applications to confirmed missions, the Lunar IceCube Cubesat lunar mission and the Wide-Field Infrared Survey Telescope (WFIRST) Sun-Earth L2 mission, are presented.

  17. Study on computer controlled polishing machine with small air bag tool

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Ni, Ying; Yu, Jing-chi

    2007-12-01

    Laser and infrared optical technologies are developed quickly recently. Small aspheric lens of φ30 to 100mm which are normally used in such optical systems are largely demanded. But computer controlled polishing technology for small batch-quantity aspheric lens is a bottle-neck technology to prevent the development of laser and infrared optical technologies. In this article, the technology of computer controlled optical surfacing (CCOS) was used to solve the problems of batch-quantity aspheric lens' polishing. First, material's removing action by computer controlled small polishing tool is detailed simulated by computer. Then, According to the simulation result, polishing correction is completed after adjusting the function of tool's resident time. Finally the accuracy of 70 mm aspheric lens (Surface shape measurement value is 0.45μm, roughness measurement value is 2.687nm) is achieved under efficient polishing with our home made model computer controlled polishing machine which has three universal driving shafts. Efficiency of small aspheric lens' batch-quantity manufacturing is remarkably improved.

  18. Applying macro design tools to the design of MEMS accelerometers

    SciTech Connect

    Davies, B.R.; Rodgers, M.S.; Montague, S.

    1998-02-01

    This paper describes the design of two different surface micromachined (MEMS) accelerometers and the use of design and analysis tools intended for macro sized devices. This work leverages a process for integrating both the micromechanical structures and microelectronics circuitry of a MEMS accelerometer on the same chip. In this process, the mechanical components of the sensor are first fabricated at the bottom of a trench etched into the wafer substrate. The trench is then filled with oxide and sealed to protect the mechanical components during subsequent microelectronics processing. The wafer surface is then planarized in preparation for CMOS processing. Next, the CMOS electronics are fabricated and the mechanical structures are released. The mechanical structure of each sensor consists of two polysilicon plate masses suspended by multiple springs (cantilevered beam structures) over corresponding polysilicon plates fixed to the substrate to form two parallel plate capacitors. One polysilicon plate mass is suspended using compliant springs forming a variable capacitor. The other polysilicon plate mass is suspended using very stiff springs acting as a fixed capacitor. Acceleration is measured by comparing the variable capacitance with the fixed capacitance during acceleration.

  19. High angular accuracy manufacture method of micro v-grooves based on tool alignment by on-machine measurement.

    PubMed

    Zhang, Xiaodong; Jiang, Lili; Zeng, Zhen; Fang, Fengzhou; Liu, Xianlei

    2015-10-19

    Micro v-groove has found wide applications in optical areas as one of the most important structures. However, its performance is significantly affected by its angular geometry accuracy. The diamond cutting has been commonly used as the fabrication method of micro v-groove, but it is still difficult to guarantee the cutting tool angle, which is limited by the measurement accuracy in the manufacture and mounting of the diamond tool. A cutting tool alignment method based on the on-machine measurement is proposed to improve the fabricated quality of the v-groove angle. An on-machine probe is employed to scan the v-groove geometrical deviation precisely. The system errors model, data processing algorithm and tool alignment methods are analyzed in details. Experimental results show that the measurement standard deviation within 0.01° can be achieved. Retro-reflection mirrors are fabricated and measured finally by the proposed method for verification.

  20. Machinability of hastelloy C-276 using Hot-pressed sintered Ti(C7N3)-based cermet cutting tools

    NASA Astrophysics Data System (ADS)

    Xu, Kaitao; Zou, Bin; Huang, Chuanzhen; Yao, Yang; Zhou, Huijun; Liu, Zhanqiang

    2015-05-01

    C-276 nickel-based alloy is a difficult-to-cut material. In high-speed machining of Hastelloy C-276, notching is a prominent failure mode due to high mechanical properties of work piece, which results in the short tool life and low productivity. In this paper, a newly developed Ti(C7N3)-based cermet insert manufactured by a hot-pressing method is used to machine the C-276 nickel-based alloy, and its cutting performances are studied. Based on orthogonal experiment method, the influence of cutting parameters on tool life, material removal rates and surface roughness are investigated. Experimental research results indicate that the optimal cutting condition is a cutting speed of 50 m/min, depth of cut of 0.4 mm and feed rate of 0.15 mm/r if the tool life and material removal rates are considered comprehensively. In this case, the tool life is 32 min and material removal rates are 3000 mm3/min, which is appropriate to the rough machining. If the tool life and surface roughness are considered, the better cutting condition is a cutting speed of 75 m/min, depth of cut of 0.6 mm and feed rate of 0.1 mm/r. In this case, the surface roughness is 0.59μm. Notch wear, flank wear, chipping at the tool nose, built-up edge(BUE) and micro-cracks are found when Ti(C7N3)-based cermet insert turned Hastelloy C-276. Oxidation, adhesive, abrasive and diffusion are the wear mechanisms, which can be investigated by the observations of scanning electron microscope and energy-dispersive spectroscopy. This research will help to guide studies on the evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy C-276 machining.

  1. A diagnostic tool for basic daily quality assurance of a Tomotherapy Hi*Art machine.

    PubMed

    Van de Vondel, Iwein; Tournel, Koen; Verellen, Dirk; Duchateau, Michael; Lelie, Steven; Storme, Guy

    2009-10-15

    To investigate and evaluate the use of an in-house developed diagnostic software tool using the imaging detector data for a quick daily quality assurance check of the output (dose) and lateral profile (cone) of a tomotherapy Hi*Art system. The Hi*Art treatment system is a radiation therapy machine for delivering intensity modulated radiation therapy (IMRT) in a helical fashion with an integrated CT scanner used for improved patient positioning before treatment. Since the system was developed specifically for IMRT, flat fields can be obtained by modulating the beam and therefore the flattening filter could be omitted. Because of this, the field has a cone-like profile in both lateral and transversal directions. Patients are treated in a helical fashion with a tight pitch and a constant gantry rotation speed, while modulation is performed by a binary MLC. Consequently dose output per time-unit (dose rate) as well as the shape of the cone-profile are very important for correct patient treatment and should be closely monitored. However, using the company-provided initial tools and conventional dosimetry, this can be a time consuming daily procedure. The aim of this work is to develop a fast, automated method of quality assurance based on the detector signal. A software tool called "tomocheck" running on the operation station has been developed to evaluate the output (dose rate) and the lateral cone profile (energy) of the Hi*Art system, comparing actual output and cone profile with a reference (previously approved against ionization chamber measurements). This is done by using the data of the 640 on-board detector array that are directly retrieved and processed after a specific QA procedure. The detector file consists of the CT detector data and the three monitoring dose chamber readings over a time period of 200 sec. To evaluate the method, the system was benchmarked against ionization chamber measurements and classical IMRT QA methods. Action levels (final status

  2. Evolutionary algorithm based optimization of hydraulic machines utilizing a state-of-the-art block coupled CFD solver and parametric geometry and mesh generation tools

    NASA Astrophysics Data System (ADS)

    S, Kyriacou; E, Kontoleontos; S, Weissenberger; L, Mangani; E, Casartelli; I, Skouteropoulou; M, Gattringer; A, Gehrer; M, Buchmayr

    2014-03-01

    An efficient hydraulic optimization procedure, suitable for industrial use, requires an advanced optimization tool (EASY software), a fast solver (block coupled CFD) and a flexible geometry generation tool. EASY optimization software is a PCA-driven metamodel-assisted Evolutionary Algorithm (MAEA (PCA)) that can be used in both single- (SOO) and multiobjective optimization (MOO) problems. In MAEAs, low cost surrogate evaluation models are used to screen out non-promising individuals during the evolution and exclude them from the expensive, problem specific evaluation, here the solution of Navier-Stokes equations. For additional reduction of the optimization CPU cost, the PCA technique is used to identify dependences among the design variables and to exploit them in order to efficiently drive the application of the evolution operators. To further enhance the hydraulic optimization procedure, a very robust and fast Navier-Stokes solver has been developed. This incompressible CFD solver employs a pressure-based block-coupled approach, solving the governing equations simultaneously. This method, apart from being robust and fast, also provides a big gain in terms of computational cost. In order to optimize the geometry of hydraulic machines, an automatic geometry and mesh generation tool is necessary. The geometry generation tool used in this work is entirely based on b-spline curves and surfaces. In what follows, the components of the tool chain are outlined in some detail and the optimization results of hydraulic machine components are shown in order to demonstrate the performance of the presented optimization procedure.

  3. Conceptual design of clean processes: Tools and methods

    SciTech Connect

    Hurme, M.

    1996-12-31

    Design tools available for implementing clean design into practice are discussed. The application areas together with the methods of comparison of clean process alternatives are presented. Environmental principles are becoming increasingly important in the whole life cycle of products from design, manufacturing and marketing to disposal. The hinder of implementing clean technology in design has been the necessity to apply it in all phases of design starting from the beginning, since it deals with the major selections made in the conceptual process design. Therefore both a modified design approach and new tools are needed for process design to make the application of clean technology practical. The first item; extended process design methodologies has been presented by Hurme, Douglas, Rossiter and Klee, Hilaly and Sikdar. The aim of this paper is to discuss the latter topic; the process design tools which assist in implementing clean principles into process design. 22 refs., 2 tabs.

  4. A Web Tool for Generating High Quality Machine-readable Biological Pathways.

    PubMed

    Ramirez-Gaona, Miguel; Marcu, Ana; Pon, Allison; Grant, Jason; Wu, Anthony; Wishart, David S

    2017-02-08

    PathWhiz is a web server built to facilitate the creation of colorful, interactive, visually pleasing pathway diagrams that are rich in biological information. The pathways generated by this online application are machine-readable and fully compatible with essentially all web-browsers and computer operating systems. It uses a specially developed, web-enabled pathway drawing interface that permits the selection and placement of different combinations of pre-drawn biological or biochemical entities to depict reactions, interactions, transport processes and binding events. This palette of entities consists of chemical compounds, proteins, nucleic acids, cellular membranes, subcellular structures, tissues, and organs. All of the visual elements in it can be interactively adjusted and customized. Furthermore, because this tool is a web server, all pathways and pathway elements are publicly accessible. This kind of pathway "crowd sourcing" means that PathWhiz already contains a large and rapidly growing collection of previously drawn pathways and pathway elements. Here we describe a protocol for the quick and easy creation of new pathways and the alteration of existing pathways. To further facilitate pathway editing and creation, the tool contains replication and propagation functions. The replication function allows existing pathways to be used as templates to create or edit new pathways. The propagation function allows one to take an existing pathway and automatically propagate it across different species. Pathways created with this tool can be "re-styled" into different formats (KEGG-like or text-book like), colored with different backgrounds, exported to BioPAX, SBGN-ML, SBML, or PWML data exchange formats, and downloaded as PNG or SVG images. The pathways can easily be incorporated into online databases, integrated into presentations, posters or publications, or used exclusively for online visualization and exploration. This protocol has been successfully applied to

  5. Design Tools for Reconfigurable Hardware in Orbit (RHinO)

    NASA Technical Reports Server (NTRS)

    French, Mathew; Graham, Paul; Wirthlin, Michael; Larchev, Gregory; Bellows, Peter; Schott, Brian

    2004-01-01

    The Reconfigurable Hardware in Orbit (RHinO) project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. These tools leverage an established FPGA design environment and focus primarily on space effects mitigation and power optimization. The project is creating software to automatically test and evaluate the single-event-upsets (SEUs) sensitivities of an FPGA design and insert mitigation techniques. Extensions into the tool suite will also allow evolvable algorithm techniques to reconfigure around single-event-latchup (SEL) events. In the power domain, tools are being created for dynamic power visualiization and optimization. Thus, this technology seeks to enable the use of Reconfigurable Hardware in Orbit, via an integrated design tool-suite aiming to reduce risk, cost, and design time of multimission reconfigurable space processors using SRAM-based FPGAs.

  6. Engineering Artificial Machines from Designable DNA Materials for Biomedical Applications

    PubMed Central

    Huang, Guoyou; Han, Yulong; Zhang, Xiaohui; Li, Yuhui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng

    2015-01-01

    Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications. PMID:25547514

  7. Engineering artificial machines from designable DNA materials for biomedical applications.

    PubMed

    Qi, Hao; Huang, Guoyou; Han, Yulong; Zhang, Xiaohui; Li, Yuhui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng; Wang, Lin

    2015-06-01

    Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications.

  8. State transition storyboards: A tool for designing the Goldstone solar system radar data acquisition system user interface software

    NASA Technical Reports Server (NTRS)

    Howard, S. D.

    1987-01-01

    Effective user interface design in software systems is a complex task that takes place without adequate modeling tools. By combining state transition diagrams and the storyboard technique of filmmakers, State Transition Storyboards were developed to provide a detailed modeling technique for the Goldstone Solar System Radar Data Acquisition System human-machine interface. Illustrations are included with a description of the modeling technique.

  9. Design review - A tool for all seasons.

    NASA Technical Reports Server (NTRS)

    Liberman, D. S.

    1972-01-01

    The origins of design review are considered together with questions of definitions. The main characteristics which distinguish the concept of design review discussed from the basic master-apprentice relationship include competence, objectivity, formality, and a systematic approach. Preliminary, major, and final reviews are the steps used in the management of the design and development process in each company. It is shown that the design review is generically a systems engineering milestone review with certain unique characteristics.

  10. Application of Process Modeling Tools to Ship Design

    DTIC Science & Technology

    2011-05-01

    NAVSEA Frank Waldman; LATTIX May 2011 APPLICATION OF PROCESS MODELING TOOLS TO SHIP DESIGN Report Documentation Page Form ApprovedOMB No. 0704-0188...00-00-2011 4. TITLE AND SUBTITLE Application of Process Modeling Tools to Ship Design 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...design teams – Long design schedules – Complicated acquisition procedures • We are applying commercial process modeling techniques for: – Better

  11. Compositing Visualization Tools for Improving Design Decisions

    ERIC Educational Resources Information Center

    Chung, Wayne C.

    2005-01-01

    Today's designers deal with a range of communication modes. These modes vary from hand gestures to sketches, physical models, and computer-generated images. It has been the norm to use these mediums throughout the process to visualize the intended design so that the potential users, designers, team members, and clients can understand the end…

  12. The Design Log: A New Informational Tool

    ERIC Educational Resources Information Center

    Spivak, Mayer

    1978-01-01

    The design log is a record of observations, diagnoses, prescriptions, and performance specifications for each space in a structure. It is a systematic approach to design that integrates information about user needs with traditional architectural programming and design. (Author/MLF)

  13. Design and control of a fast tool servo used in noncircular piston turning process

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng; Yang, Shuyan

    2013-03-01

    Noncircular pistons are becoming more and more popular in the automotive industry. The challenge of machining this kind of pistons (e.g., middle-convex and varying ellipse piston (MCVEP)), lies in the rigorous demand of the cutting feed mechanism for large force generation, high stiffness, fast response, long stroke and high accuracy. The conventional processing methods cannot meet the challenge so a new piezoelectric actuator (PEA) based fast tool servo (FTS) mechanism was developed to incorporate additional functions to a general CNC system that will facilitate the execution of MCVEP turning. Since the desired tool trajectories are approximately periodic signals in MCVEP turning, and the repetitive control can achieve asymptotic tracking and disturbance rejection of periodic signals, a plug-in repetitive control is designed to be added on the conventional PID controller. In the experiments, the designed prototype was used to machine a MCVEP for the gasoline engine, which was equipped with the PEA-based FTS system, as well as the plug-in repetitive controller. The machining test validated the effective of the designed noncircular turning system.

  14. Role of Graphics Tools in the Learning Design Process

    ERIC Educational Resources Information Center

    Laisney, Patrice; Brandt-Pomares, Pascale

    2015-01-01

    This paper discusses the design activities of students in secondary school in France. Graphics tools are now part of the capacity of design professionals. It is therefore apt to reflect on their integration into the technological education. Has the use of intermediate graphical tools changed students' performance, and if so in what direction, in…

  15. Student Evaluation of CALL Tools during the Design Process

    ERIC Educational Resources Information Center

    Nesbitt, Dallas

    2013-01-01

    This article discusses the comparative effectiveness of student input at different times during the design of CALL tools for learning kanji, the Japanese characters of Chinese origin. The CALL software "package" consisted of tools to facilitate the writing, reading and practising of kanji characters in context. A pre-design questionnaire…

  16. Man-Machine Integration Design and Analysis System (MIDAS) v5: Augmentations, Motivations, and Directions for Aeronautics Applications

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2011-01-01

    As automation and advanced technologies are introduced into transport systems ranging from the Next Generation Air Transportation System termed NextGen, to the advanced surface transportation systems as exemplified by the Intelligent Transportations Systems, to future systems designed for space exploration, there is an increased need to validly predict how the future systems will be vulnerable to error given the demands imposed by the assistive technologies. One formalized approach to study the impact of assistive technologies on the human operator in a safe and non-obtrusive manner is through the use of human performance models (HPMs). HPMs play an integral role when complex human-system designs are proposed, developed, and tested. One HPM tool termed the Man-machine Integration Design and Analysis System (MIDAS) is a NASA Ames Research Center HPM software tool that has been applied to predict human-system performance in various domains since 1986. MIDAS is a dynamic, integrated HPM and simulation environment that facilitates the design, visualization, and computational evaluation of complex man-machine system concepts in simulated operational environments. The paper will discuss a range of aviation specific applications including an approach used to model human error for NASA s Aviation Safety Program, and what-if analyses to evaluate flight deck technologies for NextGen operations. This chapter will culminate by raising two challenges for the field of predictive HPMs for complex human-system designs that evaluate assistive technologies: that of (1) model transparency and (2) model validation.

  17. Process Modeling In Cold Forging Considering The Process-Tool-Machine Interactions

    NASA Astrophysics Data System (ADS)

    Kroiss, Thomas; Engel, Ulf; Merklein, Marion

    2010-06-01

    In this paper, a methodic approach is presented for the determination and modeling of the axial deflection characteristic for the whole system of stroke-controlled press and tooling system. This is realized by a combination of experiment and FE simulation. The press characteristic is uniquely measured in experiment. The tooling system characteristic is determined in FE simulation to avoid experimental investigations on various tooling systems. The stiffnesses of press and tooling system are combined to a substitute stiffness that is integrated into the FE process simulation as a spring element. Non-linear initial effects of the press are modeled with a constant shift factor. The approach was applied to a full forward extrusion process on a press with C-frame. A comparison between experiments and results of the integrated FE simulation model showed a high accuracy of the FE model. The simulation model with integrated deflection characteristic represents the entire process behavior and can be used for the calculation of a mathematical process model based on variant simulations and response surfaces. In a subsequent optimization step, an adjusted process and tool design can be determined, that compensates the influence of the deflections on the workpiece dimensions leading to high workpiece accuracy. Using knowledge on the process behavior, the required number of variant simulations was reduced.

  18. An evaluation of software tools for the design and development of cockpit displays

    NASA Technical Reports Server (NTRS)

    Ellis, Thomas D., Jr.

    1993-01-01

    The use of all-glass cockpits at the NASA Langley Research Center (LaRC) simulation facility has changed the means of design, development, and maintenance of instrument displays. The human-machine interface has evolved from a physical hardware device to a software-generated electronic display system. This has subsequently caused an increased workload at the facility. As computer processing power increases and the glass cockpit becomes predominant in facilities, software tools used in the design and development of cockpit displays are becoming both feasible and necessary for a more productive simulation environment. This paper defines LaRC requirements of a display software development tool and compares two available applications against these requirements. As a part of the software engineering process, these tools reduce development time, provide a common platform for display development, and produce exceptional real-time results.

  19. Technological and economical analysis of salient pole and permanent magnet synchronous machines designed for wind turbines

    NASA Astrophysics Data System (ADS)

    Gündoğdu, Tayfun; Kömürgöz, Güven

    2012-08-01

    Chinese export restrictions already reduced the planning reliability for investments in permanent magnet wind turbines. Today the production of permanent magnets consumes the largest proportion of rare earth elements, with 40% of the rare earth-based magnets used for generators and other electrical machines. The cost and availability of NdFeB magnets will likely determine the production rate of permanent magnet generators. The high volatility of rare earth metals makes it very difficult to quote a price. Prices may also vary from supplier to supplier to an extent of up to 50% for the same size, shape and quantity with a minor difference in quality. The paper presents the analysis and the comparison of salient pole with field winding and of peripheral winding synchronous electrical machines, presenting important advantages. A neodymium alloy magnet rotor structure has been considered and compared to the salient rotor case. The Salient Pole Synchronous Machine and the Permanent Magnet Synchronous Machine were designed so that the plate values remain constant. The Eddy current effect on the windings is taken into account during the design, and the efficiency, output power and the air-gap flux density obtained after the simulation were compared. The analysis results clearly indicate that Salient Pole Synchronous Machine designs would be attractive to wind power companies. Furthermore, the importance of the design of electrical machines and the determination of criteria are emphasized. This paper will be a helpful resource in terms of examination and comparison of the basic structure and magnetic features of the Salient Pole Synchronous Machine and Permanent Magnet Synchronous Machine. Furthermore, an economic analysis of the designed machines was conducted.

  20. Regression analysis as a design optimization tool

    NASA Technical Reports Server (NTRS)

    Perley, R.

    1984-01-01

    The optimization concepts are described in relation to an overall design process as opposed to a detailed, part-design process where the requirements are firmly stated, the optimization criteria are well established, and a design is known to be feasible. The overall design process starts with the stated requirements. Some of the design criteria are derived directly from the requirements, but others are affected by the design concept. It is these design criteria that define the performance index, or objective function, that is to be minimized within some constraints. In general, there will be multiple objectives, some mutually exclusive, with no clear statement of their relative importance. The optimization loop that is given adjusts the design variables and analyzes the resulting design, in an iterative fashion, until the objective function is minimized within the constraints. This provides a solution, but it is only the beginning. In effect, the problem definition evolves as information is derived from the results. It becomes a learning process as we determine what the physics of the system can deliver in relation to the desirable system characteristics. As with any learning process, an interactive capability is a real attriubute for investigating the many alternatives that will be suggested as learning progresses.

  1. Game Methodology for Design Methods and Tools Selection

    ERIC Educational Resources Information Center

    Ahmad, Rafiq; Lahonde, Nathalie; Omhover, Jean-françois

    2014-01-01

    Design process optimisation and intelligence are the key words of today's scientific community. A proliferation of methods has made design a convoluted area. Designers are usually afraid of selecting one method/tool over another and even expert designers may not necessarily know which method is the best to use in which circumstances. This…

  2. Mars vertical axis wind machines. The design of a Darreus and a Giromill for use on Mars

    NASA Technical Reports Server (NTRS)

    Brach, David; Dube, John; Kelly, Jon; Peterson, Joanna; Bollig, John; Gohr, Lisa; Mahoney, Kamin; Polidori, Dave

    1992-01-01

    This report contains the design of both a Darrieus and a Giromill for use on Mars. The report has been organized so that the interested reader may read only about one machine without having to read the entire report. Where components for the two machines differ greatly, separate sections have been allotted for each machine. Each section is complete; therefore, no relevant information is missed by reading only the section for the machine of interest. Also, when components for both machines are similar, both machines have been combined into one section. This is done so that the reader interested in both machines need not read the same information twice.

  3. Atomistic Design and Simulations of Nanoscale Machines and Assembly

    NASA Technical Reports Server (NTRS)

    Goddard, William A., III; Cagin, Tahir; Walch, Stephen P.

    2000-01-01

    Over the three years of this project, we made significant progress on critical theoretical and computational issues in nanoscale science and technology, particularly in:(1) Fullerenes and nanotubes, (2) Characterization of surfaces of diamond and silicon for NEMS applications, (3) Nanoscale machine and assemblies, (4) Organic nanostructures and dendrimers, (5) Nanoscale confinement and nanotribology, (6) Dynamic response of nanoscale structures nanowires (metals, tubes, fullerenes), (7) Thermal transport in nanostructures.

  4. Design tools for complex dynamic security systems.

    SciTech Connect

    Byrne, Raymond Harry; Rigdon, James Brian; Rohrer, Brandon Robinson; Laguna, Glenn A.; Robinett, Rush D. III; Groom, Kenneth Neal; Wilson, David Gerald; Bickerstaff, Robert J.; Harrington, John J.

    2007-01-01

    The development of tools for complex dynamic security systems is not a straight forward engineering task but, rather, a scientific task where discovery of new scientific principles and math is necessary. For years, scientists have observed complex behavior but have had difficulty understanding it. Prominent examples include: insect colony organization, the stock market, molecular interactions, fractals, and emergent behavior. Engineering such systems will be an even greater challenge. This report explores four tools for engineered complex dynamic security systems: Partially Observable Markov Decision Process, Percolation Theory, Graph Theory, and Exergy/Entropy Theory. Additionally, enabling hardware technology for next generation security systems are described: a 100 node wireless sensor network, unmanned ground vehicle and unmanned aerial vehicle.

  5. Next-Generation Ion Thruster Design Tool

    NASA Technical Reports Server (NTRS)

    Stolz, Peter

    2015-01-01

    Computational tools that accurately predict the performance of electric propulsion devices are highly desirable and beneficial to NASA and the broader electric propulsion community. The current state of the art in electric propulsion modeling relies heavily on empirical data and numerous computational "knobs." In Phase I of this project, Tech-X Corporation developed the most detailed ion engine discharge chamber model that currently exists. This kinetic model simulates all particles in the discharge chamber along with a physically correct simulation of the electric fields. In addition, kinetic erosion models are included for modeling the ion-impingement effects on thruster component erosion. In Phase II, Tech-X developed a user-friendly computer program for NASA and other governmental and industry customers. Tech-X has implemented a number of advanced numerical routines to bring the computational time down to a commercially acceptable level. NASA now has a highly sophisticated, user-friendly ion engine discharge chamber modeling tool.

  6. Designer nanoparticle: nanobiotechnology tool for cell biology

    NASA Astrophysics Data System (ADS)

    Thimiri Govinda Raj, Deepak B.; Khan, Niamat Ali

    2016-09-01

    This article discusses the use of nanotechnology for subcellular compartment isolation and its application towards subcellular omics. This technology review significantly contributes to our understanding on use of nanotechnology for subcellular systems biology. Here we elaborate nanobiotechnology approach of using superparamagnetic nanoparticles (SPMNPs) optimized with different surface coatings for subcellular organelle isolation. Using pulse-chase approach, we review that SPMNPs interacted differently with the cell depending on its surface functionalization. The article focuses on the use of functionalized-SPMNPs as a nanobiotechnology tool to isolate high quality (both purity and yield) plasma membranes and endosomes or lysosomes. Such nanobiotechnology tool can be applied in generating subcellular compartment inventories. As a future perspective, this strategy could be applied in areas such as immunology, cancer and stem cell research.

  7. Engineer's Notebook--A Design Assessment Tool

    ERIC Educational Resources Information Center

    Kelley, Todd R.

    2011-01-01

    As technology education continues to consider a move toward an engineering design focus as proposed by various leaders in technology education, it will be necessary to employ new pedagogical approaches. Hill (2006) provided some new perspectives regarding pedagogical approaches for technology education with an engineering design focus. One…

  8. Relevance vector machines as a tool for forecasting geomagnetic storms during years 1996-2007

    NASA Astrophysics Data System (ADS)

    Andriyas, T.; Andriyas, S.

    2015-04-01

    In this paper, we investigate the use of relevance vector machine (RVM) as a learning tool in order to generate 1-h (one hour) ahead forecasts for geomagnetic storms driven by the interaction of the solar wind with the Earth's magnetosphere during the years 1996-2007. This epoch included solar cycle 23 with storms that were both ICME (interplanetary coronal mass ejection) and CIR (corotating interaction region) driven. Merged plasma and magnetic field measurements of the solar wind from the Advanced Composition Explorer (ACE) and WIND satellites located upstream of the Earth's magnetosphere at 1-h cadence were used as inputs to the model. The magnetospheric response to the solar wind driving measured by the disturbance storm time or the Dst index (measured in nT) was used as the output to be forecasted. The model was first tested on previously reported storms in Wu and Lundstedt (1997) and it gave a linear correlation coefficient, ρ, of above 90% and prediction efficiency (PE) above 80%. During 1996-2007, several storms (within each year) were chosen as test cases to analyze the forecasting robustness of the model. The top three forecasts per year were analyzed to assess the generalization ability of the model. These included storms with varying intensities ranging from weak (-53.01 nT) to strong (-422.02 nT) and durations (119-445 h). The top RVM forecast in a given year had ρ above 85% (87.00-96.85%), PE > 73 % (73.59-93.59%), and a root mean square error (RMSE) ranging from 9.31 to 33.45 nT. A qualitative comparison is made with model forecasts previously reported by Ji et al. (2012). We found that the robustness of the model with regards to fast learning and generating forecasts within acceptable error bounds makes it a very good proposition as a prediction tool (given the solar wind parameters) for space weather monitoring.

  9. Hull Form Design and Optimization Tool Development

    DTIC Science & Technology

    2012-07-01

    Combatants • Unconventional Surface Combatants • Twin - Screw , Open-Stern, UNREP and Auxiliary • Single- Screw , Closed-Stern, UNREP and Auxiliary • Single...Waterplane Area Twin Hull TriSWACH – Trimaran Small Waterplane Area Center Hull UI – User Interface UNREP – Underway Replenishment Naval Surface...resistance prediction tool for SWATH (Small Waterplane Area Twin Hull) ships. An example of a SWATH ship is shown in Figure 11. The input files

  10. Design of drying chamber and biomass furnace for sun-biomass hybrid rice-drying machine

    NASA Astrophysics Data System (ADS)

    Satria, Dhimas; Haryadi, Austin, Ruben; Kurniawan, Bobby

    2016-03-01

    In most Asian countries, rice drying is carried out manually by exposing rice to sunlight. However, problem occurs when rain season comes. Lack of sunlight deters the drying process. This paper proposes a design of mechanical rice drying machine with hybrid sun-biomass energy source. Pahl & Beitz method, which consists of four steps process: function planning and clarification, design concept, design prototype, and design details; are used as design methodology. Based on design result and calculation, in this paper propose specifications for drying machine and biomass furnace. Drying chamber is a continuous flow system with pneumatic-conveyor as blower. This hybrid utilizes two types of energy sources, sun and biomass. The proposed machine has capacity of 500 kilograms per cycle using 455 Watt of energy, which is more efficient than ordinary heater. Biomass furnace utilizes heat transfer by means of arranging 64 pieces of stainless steel pipes of 0.65 diameters in parallel.

  11. Support Vector Machine (SVM) as Alternative Tool to Assign Acute Aquatic Toxicity Warning Labels to Chemicals.

    PubMed

    Michielan, Lisa; Pireddu, Luca; Floris, Matteo; Moro, Stefano

    2010-01-12

    Quantitative structure-activity relationship (QSAR) analysis has been frequently utilized as a computational tool for the prediction of several eco-toxicological parameters including the acute aquatic toxicity. In the present study, we describe a novel integrated strategy to describe the acute aquatic toxicity through the combination of both toxicokinetic and toxicodynamic behaviors of chemicals. In particular, a robust classification model (TOXclass) has been derived by combining Support Vector Machine (SVM) analysis with three classes of toxicokinetic-like molecular descriptors: the autocorrelation molecular electrostatic potential (autoMEP) vectors, Sterimol topological descriptors and logP(o/w) property values. TOXclass model is able to assign chemicals to different levels of acute aquatic toxicity, providing an appropriate answer to the new regulatory requirements. Moreover, we have extended the above mentioned toxicokinetic-like descriptor set with a more toxicodynamic-like descriptors, as for example HOMO and LUMO energies, to generate a valuable SVM classifier (MOAclass) for the prediction of the mode of action (MOA) of toxic chemicals. As preliminary validation of our approach, the toxicokinetic (TOXclass) and the toxicodynamic (MOAclass) models have been applied in series to inspect both aquatic toxicity hazard and mode of action of 296 chemical substances with unknown or uncertain toxicodynamic information to assess the potential ecological risk and the toxic mechanism.

  12. A study on fluid flow simulation in the cooling systems of machine tools

    NASA Astrophysics Data System (ADS)

    Olaru, I.

    2016-08-01

    This paper aims analysing the type of coolants and the correct choice of that as well as the dispensation in the processing area to control the temperature resulted from the cutting operation and the choose of the cutting operating modes. A high temperature in the working area over a certain amount can be harmful in terms of the quality of resulting surface and that could have some influences on the life of the cutting tool. The coolant chosen can be a combination of different cooling fluids in order to achieve a better cooling of the cutting area at the same time for carrying out the proper lubrication of that area. The fluid flow parameters of coolant can be influenced by the nature of the fluid or fluids used, the geometry of the nozzle used which generally has a convergent-divergent geometry in order to achieve a better dispersion of the coolant / lubricant on the area to be processed. A smaller amount of fluid is important in terms of the economy lubricant, because they are quite expensive. A minimal amount of lubricant may have a better impact on the environment and the health of the operator because the coolants in contact with overheated machined surface may develop a substantial amount of these gases that are not always beneficial to health.

  13. SAMSVM: A tool for misalignment filtration of SAM-format sequences with support vector machine.

    PubMed

    Yang, Jianfeng; Ding, Xiaofan; Sun, Xing; Tsang, Shui-Ying; Xue, Hong

    2015-12-01

    Sequence alignment/map (SAM) formatted sequences [Li H, Handsaker B, Wysoker A et al., Bioinformatics 25(16):2078-2079, 2009.] have taken on a main role in bioinformatics since the development of massive parallel sequencing. However, because misalignment of sequences poses a significant problem in analysis of sequencing data that could lead to false positives in variant calling, the exclusion of misaligned reads is a necessity in analysis. In this regard, the multiple features of SAM-formatted sequences can be treated as vectors in a multi-dimension space to allow the application of a support vector machine (SVM). Applying the LIBSVM tools developed by Chang and Lin [Chang C-C, Lin C-J, ACM Trans Intell Syst Technol 2:1-27, 2011.] as a simple interface for support vector classification, the SAMSVM package has been developed in this study to enable misalignment filtration of SAM-formatted sequences. Cross-validation between two simulated datasets processed with SAMSVM yielded accuracies that ranged from 0.89 to 0.97 with F-scores ranging from 0.77 to 0.94 in 14 groups characterized by different mutation rates from 0.001 to 0.1, indicating that the model built using SAMSVM was accurate in misalignment detection. Application of SAMSVM to actual sequencing data resulted in filtration of misaligned reads and correction of variant calling.

  14. Adaptive vibration control using synchronous demodulation with machine tool controller motor commutation

    DOEpatents

    Hopkins, David James

    2008-05-13

    A control system and method for actively reducing vibration in a spindle housing caused by unbalance forces on a rotating spindle, by measuring the force-induced spindle-housing motion, determining control signals based on synchronous demodulation, and provide compensation for the measured displacement to cancel or otherwise reduce or attenuate the vibration. In particular, the synchronous demodulation technique is performed to recover a measured spindle housing displacement signal related only to the rotation of a machine tool spindle, and consequently rejects measured displacement not related to spindle motion or synchronous to a cycle of revolution. Furthermore, the controller actuates at least one voice-coil (VC) motor, to cancel the original force-induced motion, and adapts the magnitude of voice coil signal until this measured displacement signal is brought to a null. In order to adjust the signal to a null, it must have the correct phase relative to the spindle angle. The feedback phase signal is used to adjust a common (to both outputs) commutation offset register (offset relative to spindle encoder angle) to force the feedback phase signal output to a null. Once both of these feedback signals are null, the system is compensating properly for the spindle-induced motion.

  15. SKYNET: an efficient and robust neural network training tool for machine learning in astronomy

    NASA Astrophysics Data System (ADS)

    Graff, Philip; Feroz, Farhan; Hobson, Michael P.; Lasenby, Anthony

    2014-06-01

    We present the first public release of our generic neural network training algorithm, called SKYNET. This efficient and robust machine learning tool is able to train large and deep feed-forward neural networks, including autoencoders, for use in a wide range of supervised and unsupervised learning applications, such as regression, classification, density estimation, clustering and dimensionality reduction. SKYNET uses a `pre-training' method to obtain a set of network parameters that has empirically been shown to be close to a good solution, followed by further optimization using a regularized variant of Newton's method, where the level of regularization is determined and adjusted automatically; the latter uses second-order derivative information to improve convergence, but without the need to evaluate or store the full Hessian matrix, by using a fast approximate method to calculate Hessian-vector products. This combination of methods allows for the training of complicated networks that are difficult to optimize using standard backpropagation techniques. SKYNET employs convergence criteria that naturally prevent overfitting, and also includes a fast algorithm for estimating the accuracy of network outputs. The utility and flexibility of SKYNET are demonstrated by application to a number of toy problems, and to astronomical problems focusing on the recovery of structure from blurred and noisy images, the identification of gamma-ray bursters, and the compression and denoising of galaxy images. The SKYNET software, which is implemented in standard ANSI C and fully parallelized using MPI, is available at http://www.mrao.cam.ac.uk/software/skynet/.

  16. JBK-75 stainless steel machinability study

    SciTech Connect

    McManigle, A.P.; Simonis, A.W.

    1993-09-02

    The study on forgings characterized machinability of the material by varying cutting speeds and feedrates utilizing four tools for the roughing operation and four tools for the semi-finish operation. Tools tested were obtained from four manufacturers. Twelve parts were machined utilizing an experimental design to determine all possible interactions between cutting speeds and feedrates. To evaluate the machinability of the material, quantitative measures in tool life, tool wear, surface finish, chip control, and material removal rates were analyzed. Benefits gained from this study are: higher material removal rates, longer tool life, minimal tool wear, improved chip control and reliability, increased productivity, and cost minimization.

  17. Tools Lighten Designs, Maintain Structural Integrity

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Collier Research Corporation of Hampton, Virginia, licensed software developed at Langley Research Center to reduce design weight through the use of composite materials. The first license of NASA-developed software, it has now been used in everything from designing next-generation cargo containers, to airframes, rocket engines, ship hulls, and train bodies. The company now has sales of the NASA-derived software topping $4 million a year and has recently received several Small Business Innovation Research (SBIR) contracts to apply its software to nearly all aspects of the new Orion crew capsule design.

  18. Active wear and failure mechanisms of TiN-coated high speed steel and TiN-coated cemented carbide tools when machining powder metallurgically made stainless steels

    SciTech Connect

    Jiang, L.; Haenninen, H.; Paro, J.; Kauppinen, V.

    1996-09-01

    In this study, active wear and failure mechanisms of both TiN-coated high speed steel and TiN-coated cemented carbide tools when machining stainless steels made by powder metallurgy in low and high cutting speed ranges, respectively, have been investigated. Abrasive wear mechanisms, fatigue-induced failure, and adhesive and diffusion wear mechanisms mainly affected the tool life of TiN-coated high speed steel tools at cutting speeds below 35 m/min, between 35 and 45 m/min, and over 45 m/min, respectively. Additionally, fatigue-induced failure was active at cutting speeds over 45 m/min in the low cutting speed range when machining powder metallurgically made duplex stainless steel 2205 and austenitic stainless steel 316L. In the high cutting speed range, from 100 to 250 m/min, fatigue-induced failure together with diffusion wear mechanism, affected the tool life of TiN-coated cemented carbide tools when machining both 316L and 2205 stainless steels. It was noticed that the tool life of TiN-coated high speed steel tools used in the low cutting speed range when machining 2205 steel was longer than that when machining 316L steel, whereas the tool life of TiN-coated cemented carbide tools used in the high cutting speed range when machining 316L steel was longer than that when machining 2205 steel.

  19. Active wear and failure mechanisms of TiN-Coated high speed steel and tin-coated cemented carbide tools when machining powder metallurgically made stainless steels

    NASA Astrophysics Data System (ADS)

    Jiang, Laizhu; Hänninen, Hannu; Paro, Jukka; Kauppinen, Veijo

    1996-09-01

    In this study, active wear and failure mechanisms of both TiN-coated high speed steel and TiN-coated cemented carbide tools when machining stainless steels made by powder metallurgy in low and high cutting speed ranges, respectively, have been investigated. Abrasive wear mechanisms, fatigue-induced failure, and adhesive and diffusion wear mechanisms mainly affected the tool life of TiN-coated high speed steel tools at cutting speeds below 35 m/min, between 35 and 45 m/min, and over 45 m/min, respectively. Additionally, fatigue-induced failure was active at cutting speeds over 45 m/min in the low cutting speed range when machining powder metallurgically made duplex stainless steel 2205 and austenitic stainless steel 316L. In the high cutting speed range, from 100 to 250 m/min, fatigue-induced failure together with diffusion wear mechanism, affected the tool life of TiN-coated cemented carbide tools when machining both 316L and 2205 stainless steels. It was noticed that the tool life of TiN-coated high speed steel tools used in the low cutting speed range when machining 2205 steel was longer than that when machining 316L steel, whereas the tool life of TiN-coated cemented carbide tools used in the high cutting speed range when machining 316L steel was longer than that when machining 2205 steel.

  20. Inspiration from Victorian times in Ultrasonic Surgical Tool Design

    NASA Astrophysics Data System (ADS)

    Ganilova, O. A.; Lucas, M.; Pan, Z.; Y Muir, A.; Simpson, H.

    2012-08-01

    This work is devoted to the investigation of performance of surgical tools used in orthopaedics in terms of the occurrence of signs of necrosis, the accuracy of the cut and cutting tool design. For the comparison of the surgical tool performance different types of cutting devices were studied in a series of experiments. A Victorian surgical saw, its copy, a contemporary surgical saw, a surgical scalpel and an ultrasonic blade designed for a surgical application were chosen for the performance assessment. Such geometrical parameters as cutting edge shape, angle of teeth inclination, and sharpness of the cutting tools were analysed in terms of the quality of the cut and signs of necrosis. As a result of the analysis of experimental data obtained and theoretical insight the authors have come up with a creative solution for a novel design for a surgical ultrasonic blade which benefits from the design advantages of each of the analysed surgical tools and eliminates their drawbacks.

  1. A comparison of the dynamic stiffness of the Goldcrown GC-500 grinding machine for three slide designs

    SciTech Connect

    Bennett, J.G.; Goldman, P.; Williams, D.C.; Farrar, C.R.

    1994-01-01

    This report provides a summary of the results obtained from the calculations that compare the dynamic stiffness of three slide design systems for the Goldcrown GC-500 centerless grinder; it also describes the models and procedures used to develop the calculations, the assumptions made, and the details that went into performing this work. The authors developed analytical models of the three Goldcrown slide designs and performed several computational studies to determine the dynamic stiffness of the designs. The three slide systems are hereafter referred to as the plane slide, the INA slide, and the polymer-coated slide. The plane slide is the dovetail slide and way traditionally used in machine tool designs. The INA slide is a design created by Goldcrown using INA Bearing Company recirculating roller bearings, and dampers on a rail guideway. The polymer-coated slide is a design using a low friction polymer coating for a modified plane slide system. A study of the drawings indicated that a comparison could be made, within a reasonable amount of time and effort, that would be indicative of the dynamic stiffness of the three designs if the machine was modeled as being composed of the following seven structural components: (1) the base, (2) the swivel plate, (3) the lower slide, (4) the upper housing, (5) the regulating wheel housing, (6) the ball screw, and (7) the in-feed body.

  2. Status of the VOTech Design Study about User Tools

    NASA Astrophysics Data System (ADS)

    Dolensky, M.; Pierfederici, F.; Allen, M.; Boch, T.; Bonnarel, F.; Derrière, S.; Fernique, P.; Noddle, K.; Smareglia, R.

    2006-07-01

    The VOTech design study on future tools started in spring 2005. This project, co-funded by the EC, produces design documents and software prototypes for new VO-compliant end-user tools. It is based on the experience and feedback of precursor projects and on input from the scientific user community. This status report details a number of early deliverables available from the project pages wiki.eurovotech.org, section DS4. This includes a summary of existing tools, desired future tools as derived from the AVO SRM, requirements for a cross matcher, a simple method for transferring instrumental footprints, use cases for simulations and the evaluation of various technologies.

  3. Design enhancement tools in MSC/NASTRAN

    NASA Technical Reports Server (NTRS)

    Wallerstein, D. V.

    1984-01-01

    Design sensitivity is the calculation of derivatives of constraint functions with respect to design variables. While a knowledge of these derivatives is useful in its own right, the derivatives are required in many efficient optimization methods. Constraint derivatives are also required in some reanalysis methods. It is shown where the sensitivity coefficients fit into the scheme of a basic organization of an optimization procedure. The analyzer is to be taken as MSC/NASTRAN. The terminator program monitors the termination criteria and ends the optimization procedure when the criteria are satisfied. This program can reside in several plances: in the optimizer itself, in a user written code, or as part of the MSC/EOS (Engineering Operating System) MSC/EOS currently under development. Since several excellent optimization codes exist and since they require such very specialized technical knowledge, the optimizer under the new MSC/EOS is considered to be selected and supplied by the user to meet his specific needs and preferences. The one exception to this is a fully stressed design (FSD) based on simple scaling. The gradients are currently supplied by various design sensitivity options now existing in MSC/NASTRAN's design sensitivity analysis (DSA).

  4. Base motif recognition and design of DNA templates for fluorescent silver clusters by machine learning.

    PubMed

    Copp, Stacy M; Bogdanov, Petko; Debord, Mark; Singh, Ambuj; Gwinn, Elisabeth

    2014-09-03

    Discriminative base motifs within DNA templates for fluorescent silver clusters are identified using methods that combine large experimental data sets with machine learning tools for pattern recognition. Combining the discovery of certain multibase motifs important for determining fluorescence brightness with a generative algorithm, the probability of selecting DNA templates that stabilize fluorescent silver clusters is increased by a factor of >3.

  5. Nature versus design: synthetic biology or how to build a biological non-machine.

    PubMed

    Porcar, M; Peretó, J

    2016-04-18

    The engineering ideal of synthetic biology presupposes that organisms are composed of standard, interchangeable parts with a predictive behaviour. In one word, organisms are literally recognized as machines. Yet living objects are the result of evolutionary processes without any purposiveness, not of a design by external agents. Biological components show massive overlapping and functional degeneracy, standard-free complexity, intrinsic variation and context dependent performances. However, although organisms are not full-fledged machines, synthetic biologists may still be eager for machine-like behaviours from artificially modified biosystems.

  6. System of designing, multi-criteria assessment and selection of tools from the warehouse in processing of metals, for example drawing bronze tubes with floating plug

    NASA Astrophysics Data System (ADS)

    Nowosielski, Maciej; Swiatek, Boguslaw; Zaba, Krzysztof; Nowak, Stanislaw

    2014-10-01

    The paper presents a solution to the problem of multi-process designing forming processes technology, particularly in the selection of tools in situations where some of these tools are available, but should be verified their usefulness, and missing should be designed. An example would be drawing processes of small wires on the multi-drawing machines. One set of tools (dies) for one, the simplest machine can count up about twenty pieces. Number of dies in the average steeldrawing can range from a few to several thousand units.

  7. Designing Effective Tools for Climate Change Education

    NASA Astrophysics Data System (ADS)

    Cordero, E.; Todd, A.

    2005-12-01

    The current debate about climate change reveals gaps in public knowledge about causes and effects of global warming. This points to a need for updated educational models for increasing public understanding of climate change. The results from a series of surveys given to primarily non-science undergraduates from diverse backgrounds indicate that a majority of these students harbor significant misconceptions about the basic science related to global warming, and the relationship between global warming and ozone depletion. This interdisciplinary project seeks to frame new directions for environmental education, in particular developing pedagogical tools for increasing environmental awareness both in the classroom and also as part of public outreach programs. Initial directions include inquiry based learning and personal environmental impact as a motivator for learning.

  8. Computing tools for accelerator design calculations

    SciTech Connect

    Fischler, M.; Nash, T.

    1984-01-01

    This note is intended as a brief, summary guide for accelerator designers to the new generation of commercial and special processors that allow great increases in computing cost effectiveness. New thinking is required to take best advantage of these computing opportunities, in particular, when moving from analytical approaches to tracking simulations. In this paper, we outline the relevant considerations.

  9. Engineering Design Modules as Physics Teaching Tools

    ERIC Educational Resources Information Center

    Oliver, Douglas L.; Kane, Jackie

    2011-01-01

    Pre-engineering is increasingly being taught as a high school subject. This development presents challenges as well as opportunities for the physics education community. If pre-engineering is taught as a separate class, it may divert resources and students from traditional physics classes. However, design modules can be used as physics teaching…

  10. Collaborative Translations: Designing Bilingual Instructional Tools

    ERIC Educational Resources Information Center

    Keyes, Christopher S.; Puzio, Kelly; Jiménez, Robert T.

    2014-01-01

    Recognizing the role of collaboration and multilingual literacy as 21st-century skills, the authors used design research methods to present, analyze, and refine a strategic reading approach for bilingual students. The collaborative translation strategy involves reading an academic text, translating key passages, and evaluating these translations.…

  11. Design principles of a universal protein degradation machine.

    PubMed

    Matyskiela, Mary E; Martin, Andreas

    2013-01-23

    The 26S proteasome is a 2.5-MDa, 32-subunit ATP-dependent protease that is responsible for the degradation of ubiquitinated protein targets in all eukaryotic cells. This proteolytic machine consists of a barrel-shaped peptidase capped by a large regulatory particle, which contains a heterohexameric AAA+ unfoldase as well as several structural modules of previously unknown function. Recent electron microscopy (EM) studies have allowed major breakthroughs in understanding the architecture of the regulatory particle, revealing that the additional modules provide a structural framework to position critical, ubiquitin-interacting subunits and thus allow the 26S proteasome to function as a universal degradation machine for a wide variety of protein substrates. The EM studies have also uncovered surprising asymmetries in the spatial arrangement of proteasome subunits, yet the functional significance of these architectural features remains unclear. This review will summarize the recent findings on 26S proteasome structure and discuss the mechanistic implications for substrate binding, deubiquitination, unfolding, and degradation.

  12. Some Considerations on Simple Non-Linear Magnetic Analysis-Based Optimum Design of Multi-Pole Permanent Magnet Machines

    NASA Astrophysics Data System (ADS)

    Kano, Yoshiaki; Kosaka, Takashi; Matsui, Nobuyuki

    This paper presents a simple non-linear magnetic analysis-based optimum design of a multi-pole permanent magnet machine as an assistant design tool of 3D-FEM. The proposed analysis is based on the equivalent magnetic circuit and the air gap permeance model between the stator and rotor teeth of the motor, taking into account the local magnetic saturation in the pointed end of teeth. The availability of the proposed analysis is verified by comparing with 3D-FEM analysis from the standpoints of the torque calculation accuracy for the variations of design free parameter and the computation time. After verification, the proposed analysis-based optimum design of the dimensions of permanent magnet is examined, by which the minimization of magnet volume is realized while keeping torque/current ratio at the specified value.

  13. Overall design concepts for the APS storage ring machine protection system

    SciTech Connect

    Lumpkin, A.; Fuja, R.; Votaw, A.; Wang, X.; Shu, D.; Stepp, J.; Arnold, N.; Nawrocki, G.; Decker, G.; Chung, Y.

    1995-07-01

    The basic design and status of the machine protection system for the Advanced Photon Source (APS) storage ring are discussed. The machine is passively safe to the bending magnet sources, but the high power of the insertion devices requires missteering conditions to be identified and the beam aborted in less than one millisecond. The basic aspects of waterflow, temperature, beam position, etc. monitoring are addressed. Initial commissioning of subsystems and sensors is statused.

  14. DPPrimer – A Degenerate PCR Primer Design Tool

    PubMed Central

    Gahoi, Shachi; Arya, L; Anil, Rai; Marla, ss

    2013-01-01

    Designed degenerate primers unlike conventional primers are superior in matching and amplification of large number of genes, from related gene families. DPPrimer tool was designed to predict primers for PCR amplification of homologous gene from related or diverse plant species. The key features of this tool include platform independence and user friendliness in primer design. Embedded features such as search for functional domains, similarity score selection and phylogebetic tree further enhance the user friendliness of DPPrimer tool. Performance of DPPrimer tool was evaluated by successful PCR amplification of ADP-glucose phosphorylase genes from wheat, barley and rice. Availability DPPrimer is freely accessible at http://202.141.12.147/DGEN_tool/index.html PMID:24307773

  15. Thermal Error Modeling Method with the Jamming of Temperature-Sensitive Points' Volatility on CNC Machine Tools

    NASA Astrophysics Data System (ADS)

    MIAO, Enming; LIU, Yi; XU, Jianguo; LIU, Hui

    2017-03-01

    Aiming at the deficiency of the robustness of thermal error compensation models of CNC machine tools, the mechanism of improving the models' robustness is studied by regarding the Leaderway-V450 machining center as the object. Through the analysis of actual spindle air cutting experimental data on Leaderway-V450 machine, it is found that the temperature-sensitive points used for modeling is volatility, and this volatility directly leads to large changes on the collinear degree among modeling independent variables. Thus, the forecasting accuracy of multivariate regression model is severely affected, and the forecasting robustness becomes poor too. To overcome this effect, a modeling method of establishing thermal error models by using single temperature variable under the jamming of temperature-sensitive points' volatility is put forward. According to the actual data of thermal error measured in different seasons, it is proved that the single temperature variable model can reduce the loss of forecasting accuracy resulted from the volatility of temperature-sensitive points, especially for the prediction of cross quarter data, the improvement of forecasting accuracy is about 5 μm or more. The purpose that improving the robustness of the thermal error models is realized, which can provide a reference for selecting the modeling independent variable in the application of thermal error compensation of CNC machine tools.

  16. Improving Tools and Processes in Mechanical Design Collaboration

    NASA Technical Reports Server (NTRS)

    Briggs, Clark

    2009-01-01

    Cooperative product development projects in the aerospace and defense industry are held hostage to high cost and risk due to poor alignment of collaborative design tools and processes. This impasse can be broken if companies will jointly develop implementation approaches and practices in support of high value working arrangements. The current tools can be used to better advantage in many situations and there is reason for optimism that tool vendors will provide significant support.

  17. Design and experimental validation for direct-drive fault-tolerant permanent-magnet vernier machines.

    PubMed

    Liu, Guohai; Yang, Junqin; Chen, Ming; Chen, Qian

    2014-01-01

    A fault-tolerant permanent-magnet vernier (FT-PMV) machine is designed for direct-drive applications, incorporating the merits of high torque density and high reliability. Based on the so-called magnetic gearing effect, PMV machines have the ability of high torque density by introducing the flux-modulation poles (FMPs). This paper investigates the fault-tolerant characteristic of PMV machines and provides a design method, which is able to not only meet the fault-tolerant requirements but also keep the ability of high torque density. The operation principle of the proposed machine has been analyzed. The design process and optimization are presented specifically, such as the combination of slots and poles, the winding distribution, and the dimensions of PMs and teeth. By using the time-stepping finite element method (TS-FEM), the machine performances are evaluated. Finally, the FT-PMV machine is manufactured, and the experimental results are presented to validate the theoretical analysis.

  18. Design and Experimental Validation for Direct-Drive Fault-Tolerant Permanent-Magnet Vernier Machines

    PubMed Central

    Liu, Guohai; Yang, Junqin; Chen, Ming; Chen, Qian

    2014-01-01

    A fault-tolerant permanent-magnet vernier (FT-PMV) machine is designed for direct-drive applications, incorporating the merits of high torque density and high reliability. Based on the so-called magnetic gearing effect, PMV machines have the ability of high torque density by introducing the flux-modulation poles (FMPs). This paper investigates the fault-tolerant characteristic of PMV machines and provides a design method, which is able to not only meet the fault-tolerant requirements but also keep the ability of high torque density. The operation principle of the proposed machine has been analyzed. The design process and optimization are presented specifically, such as the combination of slots and poles, the winding distribution, and the dimensions of PMs and teeth. By using the time-stepping finite element method (TS-FEM), the machine performances are evaluated. Finally, the FT-PMV machine is manufactured, and the experimental results are presented to validate the theoretical analysis. PMID:25045729

  19. Developing Prognosis Tools to Identify Learning Difficulties in Children Using Machine Learning Technologies.

    PubMed

    Loizou, Antonis; Laouris, Yiannis

    2011-09-01

    The Mental Attributes Profiling System was developed in 2002 (Laouris and Makris, Proceedings of multilingual & cross-cultural perspectives on Dyslexia, Omni Shoreham Hotel, Washington, D.C, 2002), to provide a multimodal evaluation of the learning potential and abilities of young children's brains. The method is based on the assessment of non-verbal abilities using video-like interfaces and was compared to more established methodologies in (Papadopoulos, Laouris, Makris, Proceedings of IDA 54th annual conference, San Diego, 2003), such as the Wechsler Intelligence Scale for Children (Watkins et al., Psychol Sch 34(4):309-319, 1997). To do so, various tests have been applied to a population of 134 children aged 7-12 years old. This paper addresses the issue of identifying a minimal set of variables that are able to accurately predict the learning abilities of a given child. The use of Machine Learning technologies to do this provides the advantage of making no prior assumptions about the nature of the data and eliminating natural bias associated with data processing carried out by humans. Kohonen's Self Organising Maps (Kohonen, Biol Cybern 43:59-69, 1982) algorithm is able to split a population into groups based on large and complex sets of observations. Once the population is split, the individual groups can then be probed for their defining characteristics providing insight into the rationale of the split. The characteristics identified form the basis of classification systems that are able to accurately predict which group an individual will belong to, using only a small subset of the tests available. The specifics of this methodology are detailed herein, and the resulting classification systems provide an effective tool to prognose the learning abilities of new subjects.

  20. Computer program for machine design of Cassegrain feed systems

    NASA Technical Reports Server (NTRS)

    Potter, P. D.

    1968-01-01

    Program designs the feed system geometry and the subreflector surface, with the main reflector configuration and frequency of operation as input data. Although the feedhorn is not designed, its required gain, beamwidth, and approximate radiation pattern are specified.

  1. Design and Performance Improvement of AC Machines Sharing a Common Stator

    NASA Astrophysics Data System (ADS)

    Guo, Lusu

    With the increasing demand on electric motors in various industrial applications, especially electric powered vehicles (electric cars, more electric aircrafts and future electric ships and submarines), both synchronous reluctance machines (SynRMs) and interior permanent magnet (IPM) machines are recognized as good candidates for high performance variable speed applications. Developing a single stator design which can be used for both SynRM and IPM motors is a good way to reduce manufacturing and maintenance cost. SynRM can be used as a low cost solution for many electric driving applications and IPM machines can be used in power density crucial circumstances or work as generators to meet the increasing demand for electrical power on board. In this research, SynRM and IPM machines are designed sharing a common stator structure. The prototype motors are designed with the aid of finite element analysis (FEA). Machine performances with different stator slot and rotor pole numbers are compared by FEA. An 18-slot, 4-pole structure is selected based on the comparison for this prototype design. Sometimes, torque pulsation is the major drawback of permanent magnet synchronous machines. There are several sources of torque pulsations, such as back-EMF distortion, inductance variation and cogging torque due to presence of permanent magnets. To reduce torque pulsations in permanent magnet machines, all the efforts can be classified into two categories: one is from the design stage, the structure of permanent magnet machines can be optimized with the aid of finite element analysis. The other category of reducing torque pulsation is after the permanent magnet machine has been manufactured or the machine structure cannot be changed because of other reasons. The currents fed into the permanent magnet machine can be controlled to follow a certain profile which will make the machine generate a smoother torque waveform. Torque pulsation reduction methods in both categories will be

  2. Design of a cam-form tool in precision reuse of a digital paper display

    NASA Astrophysics Data System (ADS)

    Pa, Pai-Shan

    2010-05-01

    A reuse fabrication module that uses micro electroremoving as a precision machining process with a new design of the cam-form tool to remove defective indium-tin-oxide (ITO) thin film from the optical PET surfaces of a digital paper display is presented. A small diameter of the cathode of the cam-form tool corresponds to a higher removal rate for the ITO nanostructure. A small edge radius of the anode and a small gap width between the cathode and the ITO surface takes less time for the same amount of ITO removal. A higher feed rate of the optical PET diaphragm combines with enough electric power to drive fast micro-electroremoving. The high rotational speed of the cam-form tool can improve the effect of dreg discharge and is advantageous to associate with the fast feed rate of the optical PET diaphragm.

  3. Resources for Indoor Air Quality Design Tools for Schools

    EPA Pesticide Factsheets

    The information available here is presented as a tool to help school districts and facility planners design the next generation of learning environments so that the school facility will help schools in achieving their core mission of educating children.

  4. WASTE REDUCTION USING COMPUTER-AIDED DESIGN TOOLS

    EPA Science Inventory

    Growing environmental concerns have spurred considerable interest in pollution prevention. In most instances, pollution prevention involves introducing radical changes to the design of processes so that waste generation is minimized.
    Process simulators can be effective tools i...

  5. A quick guide to CRISPR sgRNA design tools

    PubMed Central

    Brazelton, Vincent A; Zarecor, Scott; Wright, David A; Wang, Yuan; Liu, Jie; Chen, Keting; Yang, Bing; Lawrence-Dill, Carolyn J

    2015-01-01

    ABSTRACT Targeted genome editing is now possible in nearly any organism and is widely acknowledged as a biotech game-changer. Among available gene editing techniques, the CRISPR-Cas9 system is the current favorite because it has been shown to work in many species, does not necessarily result in the addition of foreign DNA at the target site, and follows a set of simple design rules for target selection. Use of the CRISPR-Cas9 system is facilitated by the availability of an array of CRISPR design tools that vary in design specifications and parameter choices, available genomes, graphical visualization, and downstream analysis functionality. To help researchers choose a tool that best suits their specific research needs, we review the functionality of various CRISPR design tools including our own, the CRISPR Genome Analysis Tool (CGAT; http://cropbioengineering.iastate.edu/cgat). PMID:26745836

  6. A quick guide to CRISPR sgRNA design tools.

    PubMed

    Brazelton, Vincent A; Zarecor, Scott; Wright, David A; Wang, Yuan; Liu, Jie; Chen, Keting; Yang, Bing; Lawrence-Dill, Carolyn J

    2015-01-01

    Targeted genome editing is now possible in nearly any organism and is widely acknowledged as a biotech game-changer. Among available gene editing techniques, the CRISPR-Cas9 system is the current favorite because it has been shown to work in many species, does not necessarily result in the addition of foreign DNA at the target site, and follows a set of simple design rules for target selection. Use of the CRISPR-Cas9 system is facilitated by the availability of an array of CRISPR design tools that vary in design specifications and parameter choices, available genomes, graphical visualization, and downstream analysis functionality. To help researchers choose a tool that best suits their specific research needs, we review the functionality of various CRISPR design tools including our own, the CRISPR Genome Analysis Tool (CGAT; http://cropbioengineering.iastate.edu/cgat ).

  7. Practicing universal design to actual hand tool design process.

    PubMed

    Lin, Kai-Chieh; Wu, Chih-Fu

    2015-09-01

    UD evaluation principles are difficult to implement in product design. This study proposes a methodology for implementing UD in the design process through user participation. The original UD principles and user experience are used to develop the evaluation items. Difference of product types was considered. Factor analysis and Quantification theory type I were used to eliminate considered inappropriate evaluation items and to examine the relationship between evaluation items and product design factors. Product design specifications were established for verification. The results showed that converting user evaluation into crucial design verification factors by the generalized evaluation scale based on product attributes as well as the design factors applications in product design can improve users' UD evaluation. The design process of this study is expected to contribute to user-centered UD application.

  8. Distributed design tools: Mapping targeted design tools onto a Web-based distributed architecture for high-performance computing

    SciTech Connect

    Holmes, V.P.; Linebarger, J.M.; Miller, D.J.; Poore, C.A.

    1999-11-30

    Design Tools use a Web-based Java interface to guide a product designer through the design-to-analysis cycle for a specific, well-constrained design problem. When these Design Tools are mapped onto a Web-based distributed architecture for high-performance computing, the result is a family of Distributed Design Tools (DDTs). The software components that enable this mapping consist of a Task Sequencer, a generic Script Execution Service, and the storage of both data and metadata in an active, object-oriented database called the Product Database Operator (PDO). The benefits of DDTs include improved security, reliability, scalability (in both problem size and computing hardware), robustness, and reusability. In addition, access to the PDO unlocks its wide range of services for distributed components, such as lookup and launch capability, persistent shared memory for communication between cooperating services, state management, event notification, and archival of design-to-analysis session data.

  9. Aerospace Power Systems Design and Analysis (APSDA) Tool

    NASA Technical Reports Server (NTRS)

    Truong, Long V.

    1998-01-01

    The conceptual design of space and/or planetary electrical power systems has required considerable effort. Traditionally, in the early stages of the design cycle (conceptual design), the researchers have had to thoroughly study and analyze tradeoffs between system components, hardware architectures, and operating parameters (such as frequencies) to optimize system mass, efficiency, reliability, and cost. This process could take anywhere from several months to several years (as for the former Space Station Freedom), depending on the scale of the system. Although there are many sophisticated commercial software design tools for personal computers (PC's), none of them can support or provide total system design. To meet this need, researchers at the NASA Lewis Research Center cooperated with Professor George Kusic from the University of Pittsburgh to develop a new tool to help project managers and design engineers choose the best system parameters as quickly as possible in the early design stages (in days instead of months). It is called the Aerospace Power Systems Design and Analysis (APSDA) Tool. By using this tool, users can obtain desirable system design and operating parameters such as system weight, electrical distribution efficiency, bus power, and electrical load schedule. With APSDA, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. user interface. It operates on any PC running the MS-DOS (Microsoft Corp.) operating system, version 5.0 or later. A color monitor (EGA or VGA) and two-button mouse are required. The APSDA tool was presented at the 30th Intersociety Energy Conversion Engineering Conference (IECEC) and is being beta tested at several NASA centers. Beta test packages are available for evaluation by contacting the author.

  10. LabVIEW-Based Data Acquisition, Control, and Analysis Programs for BESSY as Versatile Tools for Optimization and Machine Controls

    SciTech Connect

    Dressler, O.; Feikes, J.; Kuske, P.; Kuszynski, J.

    2004-11-10

    Complex machines like synchrotron light sources or newly proposed Free Electron Lasers (FEL) posses a variety of coupled parameters that need complex optimization procedures to achieve best possible working conditions. A programming tool like LabVIEW, with its emphasis on easy data acquisition and its very high flexibility, is used extensively to simultaneously access diverse measurement instruments like Scopes, Spectrum Analyzers, and Waveform Generators and combine them into measurement routines which can access all process variables available under EPICS.

  11. Tools for Designing and Analyzing Structures

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.

    2005-01-01

    Structural Design and Analysis Toolset is a collection of approximately 26 Microsoft Excel spreadsheet programs, each of which performs calculations within a different subdiscipline of structural design and analysis. These programs present input and output data in user-friendly, menu-driven formats. Although these programs cannot solve complex cases like those treated by larger finite element codes, these programs do yield quick solutions to numerous common problems more rapidly than the finite element codes, thereby making it possible to quickly perform multiple preliminary analyses - e.g., to establish approximate limits prior to detailed analyses by the larger finite element codes. These programs perform different types of calculations, as follows: 1. determination of geometric properties for a variety of standard structural components; 2. analysis of static, vibrational, and thermal- gradient loads and deflections in certain structures (mostly beams and, in the case of thermal-gradients, mirrors); 3. kinetic energies of fans; 4. detailed analysis of stress and buckling in beams, plates, columns, and a variety of shell structures; and 5. temperature dependent properties of materials, including figures of merit that characterize strength, stiffness, and deformation response to thermal gradients

  12. Integrated Development Of Noise-Dust Woodworking Machines At The Design Stage

    NASA Astrophysics Data System (ADS)

    Chukarin, A. N.; Buligin, Y. I.; Alexeenko, L. N.; Romanov, V. A.

    2017-01-01

    The article deals the problem of creating of integrated security systems from the effects of hazardous and harmful factors of woodworking machinery on the design stage. Proposed the machine device design, which provides noise-dust protection of the operator fulfill the criterion of maximum permissible levels of noise and dust concentrations.

  13. Physiological cognitive state assessment: applications for designing effective human-machine systems.

    PubMed

    Estepp, Justin R; Christensen, James C

    2011-01-01

    Significant growth in the field of neuroscience has occurred over the last decade such that new application areas for basic research techniques are opening up to practitioners in many other areas. Of particular interest to many is the principle of neuroergonomics, by which the traditional work in neuroscience and its related topics can be applied to non-traditional areas such as human-machine system design. While work in neuroergonomics certainly predates the use of the term in the literature (previously identified by others as applied neuroscience, operational neuroscience, etc.), there is great promise in the larger framework that is represented by the general context of the terminology. Here, we focus on the very specific concept that principles in brain-computer interfaces, neural prosthetics and the larger realm of machine learning using physiological inputs can be applied directly to the design and implementation of augmented human-machine systems. Indeed, work in this area has been ongoing for more than 25 years with very little cross-talk and collaboration between clinical and applied researchers. We propose that, given increased interest in augmented human-machine systems based on cognitive state, further progress will require research in the same vein as that being done in the aforementioned communities, and that all researchers with a vested interest in physiologically-based machine learning techniques can benefit from increased collaboration. We thereby seek to describe the current state of cognitive state assessment in human-machine systems, the problems and challenges faced, and the tightly-coupled relationship with other research areas. This supports the larger work of the Cognitive State Assessment 2011 Competition by setting the stage for the purpose of the session by showing the need to increase research in the machine learning techniques used by practitioners of augmented human-machine system design.

  14. The monitoring of transient regimes on machine tools based on speed, acceleration and active electric power absorbed by motors

    NASA Astrophysics Data System (ADS)

    Horodinca, M.

    2016-08-01

    This paper intend to propose some new results related with computer aided monitoring of transient regimes on machine-tools based on the evolution of active electrical power absorbed by the electric motor used to drive the main kinematic chains and the evolution of rotational speed and acceleration of the main shaft. The active power is calculated in numerical format using the evolution of instantaneous voltage and current delivered by electrical power system to the electric motor. The rotational speed and acceleration of the main shaft are calculated based on the signal delivered by a sensor. Three real-time analogic signals are acquired with a very simple computer assisted setup which contains a voltage transformer, a current transformer, an AC generator as rotational speed sensor, a data acquisition system and a personal computer. The data processing and analysis was done using Matlab software. Some different transient regimes were investigated; several important conclusions related with the advantages of this monitoring technique were formulated. Many others features of the experimental setup are also available: to supervise the mechanical loading of machine-tools during cutting processes or for diagnosis of machine-tools condition by active electrical power signal analysis in frequency domain.

  15. User's manual for tooth contact analysis of face-milled spiral bevel gears with given machine-tool settings

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Zhang, YI; Chen, Jui-Sheng

    1991-01-01

    Research was performed to develop a computer program that will: (1) simulate the meshing and bearing contact for face milled spiral beval gears with given machine tool settings; and (2) to obtain the output, some of the data is required for hydrodynamic analysis. It is assumed that the machine tool settings and the blank data will be taken from the Gleason summaries. The theoretical aspects of the program are based on 'Local Synthesis and Tooth Contact Analysis of Face Mill Milled Spiral Bevel Gears'. The difference between the computer programs developed herein and the other one is as follows: (1) the mean contact point of tooth surfaces for gears with given machine tool settings must be determined iteratively, while parameters (H and V) are changed (H represents displacement along the pinion axis, V represents the gear displacement that is perpendicular to the plane drawn through the axes of the pinion and the gear of their initial positions), this means that when V differs from zero, the axis of the pionion and the gear are crossed but not intersected; (2) in addition to the regular output data (transmission errors and bearing contact), the new computer program provides information about the contacting force for each contact point and the sliding and the so-called rolling velocity. The following topics are covered: (1) instructions for the users as to how to insert the input data; (2) explanations regarding the output data; (3) numerical example; and (4) listing of the program.

  16. When product designers use perceptually based color tools

    NASA Astrophysics Data System (ADS)

    Bender, Walter R.

    1998-07-01

    Palette synthesis and analysis tools have been built based upon a model of color experience. This model adjusts formal compositional elements such as hue, value, chroma, and their contrasts, as well as size and proportion. Clothing and household product designers were given these tools to give guidance to their selection of seasonal palettes for use in production of the private-label merchandise of a large retail chain. The designers chose base palettes. Accents to these palettes were generated with and without the aid of the color tools. These palettes are compared by using perceptual metrics and interviews. The results are presented.

  17. When product designers use perceptually based color tools

    NASA Astrophysics Data System (ADS)

    Bender, Walter R.

    2001-01-01

    Palette synthesis and analysis tools have been built based upon a model of color experience. This model adjusts formal compositional elements such as hue, value, chroma, and their contrasts, as well as size and proportion. Clothing and household product designers were given these tools to guide their selection of seasonal palettes in the production of the private-label merchandise in a large retail chain. The designers chose base palettes. Accents to these palettes were generated with and without the aid of the color tools. These palettes are compared by using perceptual metrics and interviews. The results are presented.

  18. Automatic Differentiation as a tool in engineering design

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.; Hall, Laura E.

    1992-01-01

    Automatic Differentiation (AD) is a tool that systematically implements the chain rule of differentiation to obtain the derivatives of functions calculated by computer programs. In this paper, it is assessed as a tool for engineering design. The paper discusses the forward and reverse modes of AD, their computing requirements, and approaches to implementing AD. It continues with application to two different tools to two medium-size structural analysis problems to generate sensitivity information typically necessary in an optimization or design situation. The paper concludes with the observation that AD is to be preferred to finite differencing in most cases, as long as sufficient computer storage is available.

  19. Design of dynamic load-balancing tools for parallel applications

    SciTech Connect

    Devine, K.D.; Hendrickson, B.A.; Boman, E.G.; St. John, M.; Vaughan, C.T.

    2000-01-03

    The design of general-purpose dynamic load-balancing tools for parallel applications is more challenging than the design of static partitioning tools. Both algorithmic and software engineering issues arise. The authors have addressed many of these issues in the design of the Zoltan dynamic load-balancing library. Zoltan has an object-oriented interface that makes it easy to use and provides separation between the application and the load-balancing algorithms. It contains a suite of dynamic load-balancing algorithms, including both geometric and graph-based algorithms. Its design makes it valuable both as a partitioning tool for a variety of applications and as a research test-bed for new algorithmic development. In this paper, the authors describe Zoltan's design and demonstrate its use in an unstructured-mesh finite element application.

  20. Responsive materials: A novel design for enhanced machine-augmented composites

    NASA Astrophysics Data System (ADS)

    Bafekrpour, Ehsan; Molotnikov, Andrey; Weaver, James C.; Brechet, Yves; Estrin, Yuri

    2014-01-01

    The concept of novel responsive materials with a displacement conversion capability was further developed through the design of new machine-augmented composites (MACs). Embedded converter machines and MACs with improved geometry were designed and fabricated by multi-material 3D printing. This technique proved to be very effective in fabricating these novel composites with tuneable elastic moduli of the matrix and the embedded machines and excellent bonding between them. Substantial improvement in the displacement conversion efficiency of the new MACs over the existing ones was demonstrated. Also, the new design trebled the energy absorption of the MACs. Applications in energy absorbers as well as mechanical sensors and actuators are thus envisaged. A further type of MACs with conversion ability, viz. conversion of compressive displacements to torsional ones, was also proposed.

  1. Responsive materials: a novel design for enhanced machine-augmented composites.

    PubMed

    Bafekrpour, Ehsan; Molotnikov, Andrey; Weaver, James C; Brechet, Yves; Estrin, Yuri

    2014-01-21

    The concept of novel responsive materials with a displacement conversion capability was further developed through the design of new machine-augmented composites (MACs). Embedded converter machines and MACs with improved geometry were designed and fabricated by multi-material 3D printing. This technique proved to be very effective in fabricating these novel composites with tuneable elastic moduli of the matrix and the embedded machines and excellent bonding between them. Substantial improvement in the displacement conversion efficiency of the new MACs over the existing ones was demonstrated. Also, the new design trebled the energy absorption of the MACs. Applications in energy absorbers as well as mechanical sensors and actuators are thus envisaged. A further type of MACs with conversion ability, viz. conversion of compressive displacements to torsional ones, was also proposed.

  2. Responsive materials: A novel design for enhanced machine-augmented composites

    PubMed Central

    Bafekrpour, Ehsan; Molotnikov, Andrey; Weaver, James C.; Brechet, Yves; Estrin, Yuri

    2014-01-01

    The concept of novel responsive materials with a displacement conversion capability was further developed through the design of new machine-augmented composites (MACs). Embedded converter machines and MACs with improved geometry were designed and fabricated by multi-material 3D printing. This technique proved to be very effective in fabricating these novel composites with tuneable elastic moduli of the matrix and the embedded machines and excellent bonding between them. Substantial improvement in the displacement conversion efficiency of the new MACs over the existing ones was demonstrated. Also, the new design trebled the energy absorption of the MACs. Applications in energy absorbers as well as mechanical sensors and actuators are thus envisaged. A further type of MACs with conversion ability, viz. conversion of compressive displacements to torsional ones, was also proposed. PMID:24445490

  3. Learning by Design: Good Video Games as Learning Machines

    ERIC Educational Resources Information Center

    Gee, James Paul

    2005-01-01

    This article asks how good video and computer game designers manage to get new players to learn long, complex and difficult games. The short answer is that designers of good games have hit on excellent methods for getting people to learn and to enjoy learning. The longer answer is more complex. Integral to this answer are the good principles of…

  4. Design of the Eurofighter human-machine interface

    NASA Astrophysics Data System (ADS)

    Smith, Chris J.

    1998-09-01

    Every new generation of fighter aircraft presents new challenges for the various design disciplines that are involved in their development; the current generation of fighters -- Eurofighter, Rafale, and F22 -- are no different in this respect. We look to using new structural materials advanced flight control systems, and even better and more comprehensive sensors to extend the system's overall performance and capability. This paper looks at the area of cockpit design -- the 'how do we keep the pilot in real control of his tasks' part of the total package of the aircraft and weapons system design. I will look at the design requirements for the cockpit, and discuss some potential solutions to the inevitable resulting design problems.

  5. Using naturalistic driving films as a design tool for investigating driver requirements in HMI design for ADAS.

    PubMed

    Wang, Minjuan; Sun, Dong; Chen, Fang

    2012-01-01

    In recent years, there are many naturalistic driving projects have been conducted, such as the 100-Car Project (Naturalistic Driving study in United State), EuroFOT(European Large-Scale Field Operational Tests on Vehicle Systems), SeMi- FOT(Sweden Michigan Naturalistic Field Operational Test and etc. However, those valuable naturalistic driving data hasn't been applied into Human-machine Interaction (HMI) design for Advanced Driver Assistance Systems (ADAS), a good HMI design for ADAS requires a deep understanding of drive environment and the interactions between the driving car and other road users in different situations. The results demonstrated the benefits of using naturalistic driving films as a mean for enhancing focus group discussion for better understanding driver's needs and traffic environment constraints. It provided an efficient tool for designers to have inside knowledge about drive and the needs for information presentation; The recommendations for how to apply this method is discussed in the paper.

  6. Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning.

    PubMed

    Ballard, Zachary S; Shir, Daniel; Bhardwaj, Aashish; Bazargan, Sarah; Sathianathan, Shyama; Ozcan, Aydogan

    2017-02-28

    Plasmonic sensors have been used for a wide range of biological and chemical sensing applications. Emerging nanofabrication techniques have enabled these sensors to be cost-effectively mass manufactured onto various types of substrates. To accompany these advances, major improvements in sensor read-out devices must also be achieved to fully realize the broad impact of plasmonic nanosensors. Here, we propose a machine learning framework which can be used to design low-cost and mobile multispectral plasmonic readers that do not use traditionally employed bulky and expensive stabilized light sources or high-resolution spectrometers. By training a feature selection model over a large set of fabricated plasmonic nanosensors, we select the optimal set of illumination light-emitting diodes needed to create a minimum-error refractive index prediction model, which statistically takes into account the varied spectral responses and fabrication-induced variability of a given sensor design. This computational sensing approach was experimentally validated using a modular mobile plasmonic reader. We tested different plasmonic sensors with hexagonal and square periodicity nanohole arrays and revealed that the optimal illumination bands differ from those that are "intuitively" selected based on the spectral features of the sensor, e.g., transmission peaks or valleys. This framework provides a universal tool for the plasmonics community to design low-cost and mobile multispectral readers, helping the translation of nanosensing technologies to various emerging applications such as wearable sensing, personalized medicine, and point-of-care diagnostics. Beyond plasmonics, other types of sensors that operate based on spectral changes can broadly benefit from this approach, including e.g., aptamer-enabled nanoparticle assays and graphene-based sensors, among others.

  7. Man-Machine Interface (MMI) Requirements Definition and Design Guidelines

    DTIC Science & Technology

    1981-02-01

    OF I NOV65 ;5 OSOLETE UNCIASSIFIED SECURITY CLASiFICATION OF THIS PAGE (litan Data ffntered) - _ up ow MN S CIU .CLASSIPV•ATION Or THIS PAGEII(hn Da.a...make. As an art, MMu design is best practiced by experts, by specialists experienced in the human engineering of man-computer systems. But such experts...some way to embody expert Judgment in the form of explicit procedures and guidelines[for MMI design.4 Present human engineering standards and design

  8. On the design of man-machine systems - Principles, practices and prospects

    NASA Technical Reports Server (NTRS)

    Rouse, William B.; Cody, William J.

    1988-01-01

    A large proportion of the problems associated with complex systems have been attributed, at least in part, to the human operators, maintenance personnel, or managers who work within these systems. It appears, therefore, that improving man-machine system design may contribute to decreasing substantially the frequency of problems in complex systems. In this paper, alternative views of how the design of man-machine systems might be improved are described and contrasted. A two-part approach for achieving the desired improvements is proposed.

  9. Productive Conjunctions: The Design of Effective Literacy and Thinking Tools

    ERIC Educational Resources Information Center

    Whitehead, David

    2005-01-01

    The application of research outcomes aligned to a single paradigm can result in the design of polarized classroom pedagogies. In contrast, the application of multi-paradigmatic perspectives can result in the design of effective literacy and thinking tools. The research outcomes from cognitive and neuro-psychologists adopting normative…

  10. Orchestrating Learning Activities Using the CADMOS Learning Design Tool

    ERIC Educational Resources Information Center

    Katsamani, Maria; Retalis, Symeon

    2013-01-01

    This paper gives an overview of CADMOS (CoursewAre Development Methodology for Open instructional Systems), a graphical IMS-LD Level A & B compliant learning design (LD) tool, which promotes the concept of "separation of concerns" during the design process, via the creation of two models: the conceptual model, which describes the…

  11. SAPTA: a new design tool for improving TALE nuclease activity.

    PubMed

    Lin, Yanni; Fine, Eli J; Zheng, Zhilan; Antico, Christopher J; Voit, Richard A; Porteus, Matthew H; Cradick, Thomas J; Bao, Gang

    2014-04-01

    Transcription activator-like effector nucleases (TALENs) have become a powerful tool for genome editing due to the simple code linking the amino acid sequences of their DNA-binding domains to TALEN nucleotide targets. While the initial TALEN-design guidelines are very useful, user-friendly tools defining optimal TALEN designs for robust genome editing need to be developed. Here we evaluated existing guidelines and developed new design guidelines for TALENs based on 205 TALENs tested, and established the scoring algorithm for predicting TALEN activity (SAPTA) as a new online design tool. For any input gene of interest, SAPTA gives a ranked list of potential TALEN target sites, facilitating the selection of optimal TALEN pairs based on predicted activity. SAPTA-based TALEN designs increased the average intracellular TALEN monomer activity by >3-fold, and resulted in an average endogenous gene-modification frequency of 39% for TALENs containing the repeat variable di-residue NK that favors specificity rather than activity. It is expected that SAPTA will become a useful and flexible tool for designing highly active TALENs for genome-editing applications. SAPTA can be accessed via the website at http://baolab.bme.gatech.edu/Research/BioinformaticTools/TAL_targeter.html.

  12. Data Mining and Machine Learning Tools for Combinatorial Material Science of All-Oxide Photovoltaic Cells.

    PubMed

    Yosipof, Abraham; Nahum, Oren E; Anderson, Assaf Y; Barad, Hannah-Noa; Zaban, Arie; Senderowitz, Hanoch

    2015-06-01

    Growth in energy demands, coupled with the need for clean energy, are likely to make solar cells an important part of future energy resources. In particular, cells entirely made of metal oxides (MOs) have the potential to provide clean and affordable energy if their power conversion efficiencies are improved. Such improvements require the development of new MOs which could benefit from combining combinatorial material sciences for producing solar cells libraries with data mining tools to direct synthesis efforts. In this work we developed a data mining workflow and applied it to the analysis of two recently reported solar cell libraries based on Titanium and Copper oxides. Our results demonstrate that QSAR models with good prediction statistics for multiple solar cells properties could be developed and that these models highlight important factors affecting these properties in accord with experimental findings. The resulting models are therefore suitable for designing better solar cells.

  13. Effect of design variables on starting torque of single phase flux-reversal machine

    NASA Astrophysics Data System (ADS)

    Won, Sung Hong; Kim, Tae Heoung; Jang, Ki-Bong; Choi, Seung-Kil; Oh, Won Seok; Lee, Ju

    2006-04-01

    This article introduces a single phase flux-reversal machine (FRM) and presents the design method to improve its starting torque. The effects of the design parameters on the characteristic and starting torque are analyzed by the finite element method. The design variables considered are tapered airgap, stepped airgap, slotted teeth, and asymmetric PM width. As a result, we can find the best model in producing starting torque of a single phase 2/3 FRM.

  14. 49 CFR 1242.28 - Roadway machines, small tools and supplies, and snow removal (accounts XX-19-36 to XX-19-38...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Roadway machines, small tools and supplies, and snow removal (accounts XX-19-36 to XX-19-38, inclusive). 1242.28 Section 1242.28 Transportation Other... PASSENGER SERVICE FOR RAILROADS 1 Operating Expenses-Way and Structures § 1242.28 Roadway machines,...

  15. 49 CFR 1242.28 - Roadway machines, small tools and supplies, and snow removal (accounts XX-19-36 to XX-19-38...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Roadway machines, small tools and supplies, and snow removal (accounts XX-19-36 to XX-19-38, inclusive). 1242.28 Section 1242.28 Transportation Other... PASSENGER SERVICE FOR RAILROADS 1 Operating Expenses-Way and Structures § 1242.28 Roadway machines,...

  16. 49 CFR 1242.28 - Roadway machines, small tools and supplies, and snow removal (accounts XX-19-36 to XX-19-38...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Roadway machines, small tools and supplies, and snow removal (accounts XX-19-36 to XX-19-38, inclusive). 1242.28 Section 1242.28 Transportation Other... PASSENGER SERVICE FOR RAILROADS 1 Operating Expenses-Way and Structures § 1242.28 Roadway machines,...

  17. 49 CFR 1242.28 - Roadway machines, small tools and supplies, and snow removal (accounts XX-19-36 to XX-19-38...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Roadway machines, small tools and supplies, and snow removal (accounts XX-19-36 to XX-19-38, inclusive). 1242.28 Section 1242.28 Transportation Other... PASSENGER SERVICE FOR RAILROADS 1 Operating Expenses-Way and Structures § 1242.28 Roadway machines,...

  18. 49 CFR 1242.28 - Roadway machines, small tools and supplies, and snow removal (accounts XX-19-36 to XX-19-38...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Roadway machines, small tools and supplies, and snow removal (accounts XX-19-36 to XX-19-38, inclusive). 1242.28 Section 1242.28 Transportation Other... PASSENGER SERVICE FOR RAILROADS 1 Operating Expenses-Way and Structures § 1242.28 Roadway machines,...

  19. The role of guideline-based design tools

    SciTech Connect

    Fox, J.A.

    1993-10-01

    User System Interface (USI) design guidelines are one of the more popular tools that have been developed to aid designers in creating effective interfaces. When used properly, guidelines can provide the basis for a structured design methodology throughout the system life cycle. A survey published by Mosier and Smith (1986) provides an in-depth account of guideline usage. That 1986 survey showed that guidelines were used in varying degrees by virtually all types of people involved in the design and evaluation of USIs. Design guidelines are one of the older USI design tools, and the continued popularity of guidelines can be seen by the continued updating and expansion of guideline compendiums to keep up with new advances in the field.

  20. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 11: Computer-Aided Manufacturing & Advanced CNC, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  1. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 12: Instrumentation, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  2. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 14: Automated Equipment Technician (CIM), of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  3. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 15: Administrative Information, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This volume developed by the Machine Tool Advanced Skill Technology (MAST) program contains key administrative documents and provides additional sources for machine tool and precision manufacturing information and important points of contact in the industry. The document contains the following sections: a foreword; grant award letter; timeline for…

  4. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 1: Executive Summary, of a 15-Volume Set of Skills Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    The Machine Tool Advanced Skills Technology (MAST) consortium was formed to address the shortage of skilled workers for the machine tools and metals-related industries. Featuring six of the nation's leading advanced technology centers, the MAST consortium developed, tested, and disseminated industry-specific skill standards and model curricula for…

  5. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 7: Industrial Maintenance Technology, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  6. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 6: Welding, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  7. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 8: Sheet Metal & Composites, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  8. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 5: Mold Making, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational speciality areas within the U.S. machine tool and metals-related…

  9. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 2: Career Development, General Education and Remediation, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  10. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 4: Manufacturing Engineering Technology, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  11. Effect of biomimetic coupling units' morphologies on rolling contact fatigue wear resistance of steel from machine tool rolling tracks

    NASA Astrophysics Data System (ADS)

    Yang, Wanshi; Zhou, Hong; Sun, Liang; Wang, Chuanwei; Chen, Zhikai

    2014-04-01

    The rolling contact fatigue wear resistance plays an important role on ensuring machining precision of machine tool using rolling tracks. Bio-inspired wearable surfaces with the alternated hardness were prepared on the specimen of steel material from machine tool rolling tracks by biomimetic coupling laser remelting method to imitate biological coupling principle. The microstructures and micromorphologies of bionic units in different sizes were characterized by optical microscope. The specimens with bionic units in different sizes and distributions were tested for rolling contact fatigue wear resistance. Combining the finite element analysis and the results of wear tests, a discussion on rolling contact fatigue wear was had. The specimens with bionic units had better rolling contact fatigue wear resistance than the untreated one, while the specimens with bionic units in the alternative depth's distributions present a better rolling contact fatigue wear resistance than the ones with bionic units in the single depth's distribution. It attributed to the alternative distribution made further improvement on the dispersion of depth of stress concentration.

  12. Tool vibration detection with eddy current sensors in machining process and computation of stability lobes using fuzzy classifiers

    NASA Astrophysics Data System (ADS)

    Devillez, Arnaud; Dudzinski, Daniel

    2007-01-01

    Today the knowledge of a process is very important for engineers to find optimal combination of control parameters warranting productivity, quality and functioning without defects and failures. In our laboratory, we carry out research in the field of high speed machining with modelling, simulation and experimental approaches. The aim of our investigation is to develop a software allowing the cutting conditions optimisation to limit the number of predictive tests, and the process monitoring to prevent any trouble during machining operations. This software is based on models and experimental data sets which constitute the knowledge of the process. In this paper, we deal with the problem of vibrations occurring during a machining operation. These vibrations may cause some failures and defects to the process, like workpiece surface alteration and rapid tool wear. To measure on line the tool micro-movements, we equipped a lathe with a specific instrumentation using eddy current sensors. Obtained signals were correlated with surface finish and a signal processing algorithm was used to determine if a test is stable or unstable. Then, a fuzzy classification method was proposed to classify the tests in a space defined by the width of cut and the cutting speed. Finally, it was shown that the fuzzy classification takes into account of the measurements incertitude to compute the stability limit or stability lobes of the process.

  13. Man-machine interface analysis of the flight design system

    NASA Technical Reports Server (NTRS)

    Ramsey, H. R.; Atwood, M. E.; Willoughby, J. K.

    1978-01-01

    The objective of the current effort was to perform a broad analysis of the human factors issues involved in the design of the Flight Design System (FDS). The analysis was intended to include characteristics of the system itself, such as: (1) basic structure and functional capabilities of FDS; (2) user backgrounds, capabilities, and possible modes of use; (3) FDS interactive dialogue, problem solving aids; (4) system data management capabilities; and to include, as well, such system related matters as: (1) flight design team structure; (2) roles of technicians; (3) user training; and (4) methods of evaluating system performance. Wherever possible, specific recommendations are made. In other cases, the issues which seem most important are identified. In some cases, additional analyses or experiments which might provide resolution are suggested.

  14. Accelerating Battery Design Using Computer-Aided Engineering Tools: Preprint

    SciTech Connect

    Pesaran, A.; Heon, G. H.; Smith, K.

    2011-01-01

    Computer-aided engineering (CAE) is a proven pathway, especially in the automotive industry, to improve performance by resolving the relevant physics in complex systems, shortening the product development design cycle, thus reducing cost, and providing an efficient way to evaluate parameters for robust designs. Academic models include the relevant physics details, but neglect engineering complexities. Industry models include the relevant macroscopic geometry and system conditions, but simplify the fundamental physics too much. Most of the CAE battery tools for in-house use are custom model codes and require expert users. There is a need to make these battery modeling and design tools more accessible to end users such as battery developers, pack integrators, and vehicle makers. Developing integrated and physics-based CAE battery tools can reduce the design, build, test, break, re-design, re-build, and re-test cycle and help lower costs. NREL has been involved in developing various models to predict the thermal and electrochemical performance of large-format cells and has used in commercial three-dimensional finite-element analysis and computational fluid dynamics to study battery pack thermal issues. These NREL cell and pack design tools can be integrated to help support the automotive industry and to accelerate battery design.

  15. Design of new frictional testing machine for shallow fault materials

    NASA Astrophysics Data System (ADS)

    Tadai, O.; Tanikawa, W.; Hirose, T.; Sakaguchi, M.; Lin, W.

    2009-12-01

    Subduction thrust faults at shallow depth mainly consist of granular and clay-rich materials which strengths are influenced by the presence of pore water. Dilatation and pore pressure generation of fault zones by the dynamic friction will increase the volumetric water content in fault zone, which can assist the fault weakening by acoustic fluidization or hydrodynamic lubrication mechanism. Therefore the evaluation of rheology for clay minerals rich in pore water is critical for understanding of seismic behaviors at shallow depth. Here, we introduce a new testing apparatus for the purpose of accurate evaluation of friction behavior for incohesive fault rock materials. Our machine can shear granular materials up to 80 mm of outer diameter and maximum thickness of 40 mm. The capacities of axial load, torque, and motor are 100kN, 500Nm and 30kW, respectively, and pore pressure is increased up to 50 MPa. Maximum rotation speed is 660 rpm, which is equivalent to 1 m/s of the average slip velocity when sample diameter is 60 mm. We can monitor the dynamic changes of pore pressure and temperature at sliding surface during the friction tests. We can also control the pore pressure, axial load, pore pressure and temperature independently. All parameters can be held at targeted values and be generated at constant incremental velocity. We can control the rotation more sensitively to program the complicated rotation history that slip velocity and acceleration change during the rotation. We used powdered smectite and illite in our friction tests. We measured normal stress dependence on shear stress at normal stress up to 25 MPa with a constant rotation speed from 0.01 to 1 rpm. Normal stress is proportional to shear stress for dry clay minerals, and the friction coefficients are from 0.3 to 0.5. On the other hand, very low friction is observed in clay minerals saturated by water, and shear strength is nearly constant at various normal stresses. Our results suggest that clay

  16. Integrated learning in practical machine element design course: a case study of V-pulley design

    NASA Astrophysics Data System (ADS)

    Tantrabandit, Manop

    2014-06-01

    To achieve an effective integrated learning in Machine Element Design course, it is of importance to bridge the basic knowledge and skills of element designs. The multiple core learning leads the pathway which consists of two main parts. The first part involves teaching documents of which the contents are number of V-groove formulae, standard of V-grooved pulleys, and parallel key dimension's formulae. The second part relates to the subjects that the students have studied prior to participating in this integrated learning course, namely Material Selection, Manufacturing Process, Applied Engineering Drawing, CAD (Computer Aided Design) animation software. Moreover, an intensive cooperation between a lecturer and students is another key factor to fulfill the success of integrated learning. Last but not least, the students need to share their knowledge within the group and among the other groups aiming to gain knowledge of and skills in 1) the application of CAD-software to build up manufacture part drawings, 2) assembly drawing, 3) simulation to verify the strength of loaded pulley by method of Finite Element Analysis (FEA), 4) the software to create animation of mounting and dismounting of a pulley to a shaft, and 5) an instruction manual. The end product of this integrated learning, as a result of the above 1 to 5 knowledge and skills obtained, the participating students can create an assembly derived from manufacture part drawings and a video presentation with bilingual (English-Thai) audio description of Vpulley with datum diameter of 250 mm, 4 grooves, and type of groove: SPA.

  17. Involving users in the design cycle for parallel tools second period September 1, 1994--January 31, 1995

    SciTech Connect

    Pancake, C.M.

    1995-01-31

    Parallel programmers do not use software tools, in spite fact that parallel development is a difficult and time-consuming task that could benefit from tool support. It has become increasingly clear that the simple availability of elegant, powerful software tools employing the latest technology is not enough. Usability is the real key to success; users simply do not adopt tools that fail to respond to their needs. Research in the area of usability engineering indicates that five design principles can have significant impact on parallel tool usability: tools must be based on demonstrable user requirements; actively involve users throughout tool design; minimize tool complexity to reduce the learning curve support the tool across multiple machine platforms to amortize the user`s investment employ iterative refinement techniques to improve tool usability. Those principles served as the starting point for a Parallel Tools Consortium project to develop a tool that will help users determine the final state of a program that crashes or is terminated forcibly. Carried out over a period of ten months, the project involved the collaboration of tool researchers, and implementors, and users. This report describes how user-centered design techniques were applied to ensure that the tool would provide simple, intuitive support for the programmer`s task. Users were recruited for the project working group so that they could have direct input to design decisions, even in the earliest sets of user trials. Additional feedback was acquired from a broader user base, in three distinct phases. These were spaced out over a period of six months so that feedback could be analyzed, then applied to refine the tool before the next trial. In some cases, user input kept us from investing substantial effort in features that would not have been used or appreciated. In others, feedback showed us where our conceptions of usefulness did not quite align with those of the user community.

  18. Using Modern Design Tools for Digital Avionics Development

    NASA Technical Reports Server (NTRS)

    Hyde, David W.; Lakin, David R., II; Asquith, Thomas E.

    2000-01-01

    Using Modem Design Tools for Digital Avionics Development Shrinking development time and increased complexity of new avionics forces the designer to use modem tools and methods during hardware development. Engineers at the Marshall Space Flight Center have successfully upgraded their design flow and used it to develop a Mongoose V based radiation tolerant processor board for the International Space Station's Water Recovery System. The design flow, based on hardware description languages, simulation, synthesis, hardware models, and full functional software model libraries, allowed designers to fully simulate the processor board from reset, through initialization before any boards were built. The fidelity of a digital simulation is limited to the accuracy of the models used and how realistically the designer drives the circuit's inputs during simulation. By using the actual silicon during simulation, device modeling errors are reduced. Numerous design flaws were discovered early in the design phase when they could be easily fixed. The use of hardware models and actual MIPS software loaded into full functional memory models also provided checkout of the software development environment. This paper will describe the design flow used to develop the processor board and give examples of errors that were found using the tools. An overview of the processor board firmware will also be covered.

  19. Airport Pavement Test Machine Design and Cost Study

    DTIC Science & Technology

    1993-10-01

    3-3 Total Initial Costs ......................................... 3-4 First Year Operational...assist the FAA in determining the full-scale testing needed to develop and verify the new design procedures The first planning meeting of the working...Douglas Aircraft Company The major conclusion from the first meeting was that full-scale test data must be generated for development and verification

  20. Development of an Advanced Carbide Cutting Tool for Nickel-based Alloy Machining

    DTIC Science & Technology

    2006-08-28

    Inconel 718 utilizing state-of-the-market and state-of-the-art methods. The goal of increasing machining productivity by 40% was achieved with the...project is turning of Inconel 718 alloy. 1.3 Funding The total NCDMM funding for the project was $150,000 ($120,000 for labor and $30,000 for workpiece...tasks Task 1: Review current Inconel machining practice Task 2: Establish the current state of the art in Inconel 718 turning  Establish baseline data

  1. Design and development of a micro polycrystalline diamond ball end mill for micro/nano freeform machining of hard and brittle materials

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Wang, Z. G.; Nakamoto, K.; Yamazaki, K.

    2009-11-01

    Micro end mills play a key role in micro/nano milling applications for intricate three-dimensional die/molds or sensors for micro-electro-mechanical systems (MEMS). In order to achieve higher machining accuracy and longer tool life, micro end mills are usually made of ultra-hard materials such as polycrystalline diamond (PCD) or cubic boron nitride (CBN). One of the best choices for their fabrication is the wire electrical discharge machining (WEDM) method. There are two basic categories of micro end mills, namely the ball end mill for 3D freeform surface machining and straight/round edge end mills for non-freeform surface machining. This paper focuses on the design and development of the micro ball end mill for hard and brittle materials. Firstly, the available typical ball end mill is analyzed. Secondly, a micro ball end mill with uniform axial rake and clearance angles is designed and analyzed by the finite element method (FEM). The designed micro ball end mill only needs simultaneously three linear and one index rotational WEDM axes instead of simultaneously five WEDM axes for traditional ball end mills. Then, micro PCD ball end mills are fabricated and the radius variation follows in ±2.0 µm, which is more accurate than commercially available ones. Finally, the 3D freeform geometry milling on tungsten carbide (WC) and silicon wafer successfully demonstrated the possibility of micro-mechanical freeform machining by the developed micro ball end mill.

  2. Advanced Electric Submersible Pump Design Tool for Geothermal Applications

    SciTech Connect

    Xuele Qi; Norman Turnquist; Farshad Ghasripoor

    2012-05-31

    Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300 C geothermal water at 80kg/s flow rate in a maximum 10-5/8-inch diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis has been developed to design ESPs for geothermal applications. Design of Experiments was also performed to optimize the geometry and performance. The designed mixed-flow type centrifugal impeller and diffuser exhibit high efficiency and head rise under simulated EGS conditions. The design tool has been validated by comparing the prediction to experimental data of an existing ESP product.

  3. Internet MEMS design tools based on component technology

    NASA Astrophysics Data System (ADS)

    Brueck, Rainer; Schumer, Christian

    1999-03-01

    The micro electromechanical systems (MEMS) industry in Europe is characterized by small and medium sized enterprises specialized on products to solve problems in specific domains like medicine, automotive sensor technology, etc. In this field of business the technology driven design approach known from micro electronics is not appropriate. Instead each design problem aims at its own, specific technology to be used for the solution. The variety of technologies at hand, like Si-surface, Si-bulk, LIGA, laser, precision engineering requires a huge set of different design tools to be available. No single SME can afford to hold licenses for all these tools. This calls for a new and flexible way of designing, implementing and distributing design software. The Internet provides a flexible manner of offering software access along with methodologies of flexible licensing e.g. on a pay-per-use basis. New communication technologies like ADSL, TV cable of satellites as carriers promise to offer a bandwidth sufficient even for interactive tools with graphical interfaces in the near future. INTERLIDO is an experimental tool suite for process specification and layout verification for lithography based MEMS technologies to be accessed via the Internet. The first version provides a Java implementation even including a graphical editor for process specification. Currently, a new version is brought into operation that is based on JavaBeans component technology. JavaBeans offers the possibility to realize independent interactive design assistants, like a design rule checking assistants, a process consistency checking assistants, a technology definition assistants, a graphical editor assistants, etc. that may reside distributed over the Internet, communicating via Internet protocols. Each potential user thus is able to configure his own dedicated version of a design tool set dedicated to the requirements of the current problem to be solved.

  4. Effects of Toy Crane Design-Based Learning on Simple Machines

    ERIC Educational Resources Information Center

    Korur, Fikret; Efe, Gülfem; Erdogan, Fisun; Tunç, Berna

    2017-01-01

    The aim of this 2-group study was to investigate the following question: Are there significant differences between scaffolded design-based learning controlled using 7 forms and teacher-directed instruction methods for the toy crane project on grade 7 students' posttest scores on the simple machines achievement test, attitude toward simple…

  5. Man-Machine Integrated Design and Analysis System (MIDAS): Functional Overview

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Neukom, Christian

    1998-01-01

    Included in the series of screen print-outs illustrates the structure and function of the Man-Machine Integrated Design and Analysis System (MIDAS). Views into the use of the system and editors are featured. The use-case in this set of graphs includes the development of a simulation scenario.

  6. Materials and optimized designs for human-machine interfaces via epidermal electronics.

    PubMed

    Jeong, Jae-Woong; Yeo, Woon-Hong; Akhtar, Aadeel; Norton, James J S; Kwack, Young-Jin; Li, Shuo; Jung, Sung-Young; Su, Yewang; Lee, Woosik; Xia, Jing; Cheng, Huanyu; Huang, Yonggang; Choi, Woon-Seop; Bretl, Timothy; Rogers, John A

    2013-12-17

    Thin, soft, and elastic electronics with physical properties well matched to the epidermis can be conformally and robustly integrated with the skin. Materials and optimized designs for such devices are presented for surface electromyography (sEMG). The findings enable sEMG from wide ranging areas of the body. The measurements have quality sufficient for advanced forms of human-machine interface.

  7. Design of automation tools for management of descent traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Nedell, William

    1988-01-01

    The design of an automated air traffic control system based on a hierarchy of advisory tools for controllers is described. Compatibility of the tools with the human controller, a key objective of the design, is achieved by a judicious selection of tasks to be automated and careful attention to the design of the controller system interface. The design comprises three interconnected subsystems referred to as the Traffic Management Advisor, the Descent Advisor, and the Final Approach Spacing Tool. Each of these subsystems provides a collection of tools for specific controller positions and tasks. This paper focuses primarily on the Descent Advisor which provides automation tools for managing descent traffic. The algorithms, automation modes, and graphical interfaces incorporated in the design are described. Information generated by the Descent Advisor tools is integrated into a plan view traffic display consisting of a high-resolution color monitor. Estimated arrival times of aircraft are presented graphically on a time line, which is also used interactively in combination with a mouse input device to select and schedule arrival times. Other graphical markers indicate the location of the fuel-optimum top-of-descent point and the predicted separation distances of aircraft at a designated time-control point. Computer generated advisories provide speed and descent clearances which the controller can issue to aircraft to help them arrive at the feeder gate at the scheduled times or with specified separation distances. Two types of horizontal guidance modes, selectable by the controller, provide markers for managing the horizontal flightpaths of aircraft under various conditions. The entire system consisting of descent advisor algorithm, a library of aircraft performance models, national airspace system data bases, and interactive display software has been implemented on a workstation made by Sun Microsystems, Inc. It is planned to use this configuration in operational

  8. EDECT: An Energy Design, Evaluation, and Comparison Tool.

    DTIC Science & Technology

    1986-01-01

    medium offices and retail stores , and private clinics are envelope dosinant examples. Conversely, system dominant buildings’ major energy loads come from...AD-A17l 261 EDECT: AN ENERGY DESIGN EVALUATION AND COMPARISON TOOL 1/2 (U) AIR FORCE INST OF TECH &RIGHT-PATTERSON AFS OH Wi D ALLEY 1986 RFIT/CI/NR...TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED EDECT: An Energy Design, Evaluation, and TlESIS/I~$ /r/t N Comparison Tool 6. PERFORMING ORG

  9. Business Machine Repairer. A Catalog of Tasks, Performance Objectives, Performance Guides, Tools, and Equipment.

    ERIC Educational Resources Information Center

    Davenport, Richard; And Others

    This Vocational-Technical Education Consortium of States (V-TECS) catalog provides performance objectives and performance guides (teaching steps) associated with current occupational information relating to the job content of Business Machine Repair. Uses include validation of existing programs, testing of instructional effectiveness,…

  10. Interdisciplinary approach to tool-handle design based on medical imaging.

    PubMed

    Harih, G; Cretnik, A

    2013-01-01

    Products are becoming increasingly complex; therefore, designers are faced with a challenging task to incorporate new functionality, higher performance, and optimal shape design. Traditional user-centered design techniques such as designing with anthropometric data do not incorporate enough subject data to design products with optimal shape for best fit to the target population. To overcome these limitations, we present an interdisciplinary approach with medical imaging. The use of this approach is being presented on the development of an optimal sized and shaped tool handle where the hand is imaged using magnetic resonance imaging machine. The obtained images of the hand are reconstructed and imported into computer-aided design software, where optimal shape of the handle is obtained with Boolean operations. Methods can be used to develop fully customized products with optimal shape to provide best fit to the target population. This increases subjective comfort rating, performance and can prevent acute and cumulative trauma disorders. Provided methods are especially suited for products where high stresses and exceptional performance is expected (high performance tools, professional sports, and military equipment, etc.). With the use of these interdisciplinary methods, the value of the product is increased, which also increases the competitiveness of the product on the market.

  11. Advanced Vibration Analysis Tool Developed for Robust Engine Rotor Designs

    NASA Technical Reports Server (NTRS)

    Min, James B.

    2005-01-01

    The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo- Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using natural-frequency curve veerings to identify ranges of operating conditions (rotational speeds and engine orders) in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued.

  12. Identification of geometric deviations inherent to multi-axis machine tools based on the pose measurement principle

    NASA Astrophysics Data System (ADS)

    Haitao, Li; Junjie, Guo; Yufen, Deng; Jindong, Wang; Xinrong, He

    2016-12-01

    The laser tracker is an effective instrument for measuring 3D relative displacement in a work volume because its attitude can be freely changed. This paper presents a novel principle to realize the precise calibration of a numerical control (NC) machine tool accurately and quickly; this is the ‘pose measurement principle’, for measuring errors. We also introduce an algorithm for identifying geometric deviations. A NC precise table mounted on a motion axis and a laser tracker are used for the coordinate determination of three fixed points to obtain the pose information of each motion axis, then calculate the pose deviations, and finally identify all the errors. For the error identification, first, according to the definition of geometric errors, we extend the concept of pose deviations, and represent the six geometric errors using a position deviation vector and attitude deviation vector. Next, we geometrically identify the three angular errors and linear errors in order; the error mathematical model for the linear axis and rotary axis are developed, respectively. Moreover, the validity of the calibration algorithm for the base station, measuring points and identification of errors are confirmed by simulations. In the end, the proposed method is applied to a three-axis NC milling machine tool and a rotary table, and then the geometric deviations are identified successfully in 3 h and 2.5 h, respectively. Comparative experiments by means of other instruments also agree well with the proposed method. Thus, the proposed method can be applied to the measurement of the multi-axis machine tool.

  13. Tool & Die and EDM Series. Educational Resources for the Machine Tool Industry. Course Syllabi, Instructor's Handbook, [and] Student Laboratory Manual.

    ERIC Educational Resources Information Center

    Texas State Technical Coll. System, Waco.

    This package consists of course syllabi, an instructor's handbook, and a student laboratory manual for a 2-year vocational training program to prepare students for entry-level employment as tool and die makers. The program was developed through a modification of the DACUM (Developing a Curriculum) technique. The course syllabi volume begins with…

  14. New tools for the simulation and design of calorimeters

    SciTech Connect

    Womersley, W.J.

    1989-07-10

    Two new approaches to the simulation and design of large hermetic calorimeters are presented. Firstly, the Shower Library scheme used in the fast generation of showers in the Monte Carlo of the calorimeter for the D-Zero experiment at the Fermilab Tevatron is described. Secondly, a tool for the design future calorimeters is described, which can be integrated with a computer aided design system to give engineering designers an immediate idea of the relative physics capabilities of different geometries. 9 refs., 6 figs., 1 tab.

  15. Bearingless AC Homopolar Machine Design and Control for Distributed Flywheel Energy Storage

    NASA Astrophysics Data System (ADS)

    Severson, Eric Loren

    The increasing ownership of electric vehicles, in-home solar and wind generation, and wider penetration of renewable energies onto the power grid has created a need for grid-based energy storage to provide energy-neutral services. These services include frequency regulation, which requires short response-times, high power ramping capabilities, and several charge cycles over the course of one day; and diurnal load-/generation-following services to offset the inherent mismatch between renewable generation and the power grid's load profile, which requires low self-discharge so that a reasonable efficiency is obtained over a 24 hour storage interval. To realize the maximum benefits of energy storage, the technology should be modular and have minimum geographic constraints, so that it is easily scalable according to local demands. Furthermore, the technology must be economically viable to participate in the energy markets. There is currently no storage technology that is able to simultaneously meet all of these needs. This dissertation focuses on developing a new energy storage device based on flywheel technology to meet these needs. It is shown that the bearingless ac homopolar machine can be used to overcome key obstacles in flywheel technology, namely: unacceptable self-discharge and overall system cost and complexity. Bearingless machines combine the functionality of a magnetic bearing and a motor/generator into a single electromechanical device. Design of these machines is particularly challenging due to cross-coupling effects and trade-offs between motor and magnetic bearing capabilities. The bearingless ac homopolar machine adds to these design challenges due to its 3D flux paths requiring computationally expensive 3D finite element analysis. At the time this dissertation was started, bearingless ac homopolar machines were a highly immature technology. This dissertation advances the state-of-the-art of these machines through research contributions in the areas of

  16. Online learning control using adaptive critic designs with sparse kernel machines.

    PubMed

    Xu, Xin; Hou, Zhongsheng; Lian, Chuanqiang; He, Haibo

    2013-05-01

    In the past decade, adaptive critic designs (ACDs), including heuristic dynamic programming (HDP), dual heuristic programming (DHP), and their action-dependent ones, have been widely studied to realize online learning control of dynamical systems. However, because neural networks with manually designed features are commonly used to deal with continuous state and action spaces, the generalization capability and learning efficiency of previous ACDs still need to be improved. In this paper, a novel framework of ACDs with sparse kernel machines is presented by integrating kernel methods into the critic of ACDs. To improve the generalization capability as well as the computational efficiency of kernel machines, a sparsification method based on the approximately linear dependence analysis is used. Using the sparse kernel machines, two kernel-based ACD algorithms, that is, kernel HDP (KHDP) and kernel DHP (KDHP), are proposed and their performance is analyzed both theoretically and empirically. Because of the representation learning and generalization capability of sparse kernel machines, KHDP and KDHP can obtain much better performance than previous HDP and DHP with manually designed neural networks. Simulation and experimental results of two nonlinear control problems, that is, a continuous-action inverted pendulum problem and a ball and plate control problem, demonstrate the effectiveness of the proposed kernel ACD methods.

  17. Designing Focused Chemical Libraries Enriched in Protein-Protein Interaction Inhibitors using Machine-Learning Methods

    PubMed Central

    Reynès, Christelle; Host, Hélène; Camproux, Anne-Claude; Laconde, Guillaume; Leroux, Florence; Mazars, Anne; Deprez, Benoit; Fahraeus, Robin; Villoutreix, Bruno O.; Sperandio, Olivier

    2010-01-01

    Protein-protein interactions (PPIs) may represent one of the next major classes of therapeutic targets. So far, only a minute fraction of the estimated 650,000 PPIs that comprise the human interactome are known with a tiny number of complexes being drugged. Such intricate biological systems cannot be cost-efficiently tackled using conventional high-throughput screening methods. Rather, time has come for designing new strategies that will maximize the chance for hit identification through a rationalization of the PPI inhibitor chemical space and the design of PPI-focused compound libraries (global or target-specific). Here, we train machine-learning-based models, mainly decision trees, using a dataset of known PPI inhibitors and of regular drugs in order to determine a global physico-chemical profile for putative PPI inhibitors. This statistical analysis unravels two important molecular descriptors for PPI inhibitors characterizing specific molecular shapes and the presence of a privileged number of aromatic bonds. The best model has been transposed into a computer program, PPI-HitProfiler, that can output from any drug-like compound collection a focused chemical library enriched in putative PPI inhibitors. Our PPI inhibitor profiler is challenged on the experimental screening results of 11 different PPIs among which the p53/MDM2 interaction screened within our own CDithem platform, that in addition to the validation of our concept led to the identification of 4 novel p53/MDM2 inhibitors. Collectively, our tool shows a robust behavior on the 11 experimental datasets by correctly profiling 70% of the experimentally identified hits while removing 52% of the inactive compounds from the initial compound collections. We strongly believe that this new tool can be used as a global PPI inhibitor profiler prior to screening assays to reduce the size of the compound collections to be experimentally screened while keeping most of the true PPI inhibitors. PPI-HitProfiler is

  18. Heterocyclic Regioisomer Enumeration (HREMS): A Cheminformatics Design Tool.

    PubMed

    Tyagarajan, Sriram; Lowden, Christopher T; Peng, Zhengwei; Dykstra, Kevin D; Sherer, Edward C; Krska, Shane W

    2015-06-22

    We report the development and implementation of a cheminformatics tool which aids in the design of compounds during exploratory chemistry and lead optimization. The Heterocyclic Regioisomer Enumeration and MDDR Search (HREMS) tool allows medicinal chemists to build greater structural diversity into their synthetic planning by enabling a systematic, automated enumeration of heterocyclic regioisomers of target structures. To help chemists overcome biases arising from past experience or synthetic accessibility, the HREMS tool further provides statistics on clinical testing for each enumerated regioisomer substructure using an automated search of a commercial database. Ready access to this type of information can help chemists make informed choices on the targets they will pursue being mindful of past experience with these structures in drug development. This tool and its components can be incorporated into other cheminformatics workflows to leverage their capabilities in triaging and in silico compound enumeration.

  19. Application and design of induction machine damping unit (IMDU) for eliminating subsynchronous resonance

    NASA Astrophysics Data System (ADS)

    Purushothaman, Sujit

    The IEEE First and Second Benchmark Models for subsynchronous resonance (SSR) are used to analyze the damping properties of an induction machine damping unit (IMDU) coupled to the shaft of a turbo-generator set. This study investigates the rating and location of the induction machine that, without the aid of any controllers, effectively damps sub-synchronous resonance for all line series compensation levels. Eigenvalue analyses are performed on linearized models of the shaft system including the induction machine to find the optimum location. The best location of the IMDU, providing maximum damping, is next to the HP turbine at the end of the shaft. Time domain simulations are conducted to find the adequate rating of the induction machine. It is observed that a small size, high power (about 10% of the generator rating), low energy machine effectively damps SSR. The IMDU reduces peak torques in shaft sections during transients. In the study, it is demonstrated that the addition of an IMDU at the end of the shaft would have prevented the SSR events of 1970 and 1971 that caused major damage to the Mohave Desert generator shafts. A basic design of the IMDU is presented derived from a closed form solution of Maxwell's equations in squirrel cage induction motors. The solution is obtained for a cylindrical multi-layer geometry. The squirrel cage is represented by an equivalent anisotropic homogeneous medium. The effect of stator slots and teeth is included by a second anisotropic homogeneous medium. The induction motor is modeled as six concentric cylindrical layers representing the different construction components of the motor. The governing partial differential equations are solved for the excitation source, conducting and non-conducting regions. The formulas obtained allow for efficient calculations of machine performance which may help the motor designer to select the proper parameters of the machine that fit the design requirements. Accuracy of the modeling method

  20. Automatic differentiation as a tool in engineering design

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois; Hall, Laura E.

    1992-01-01

    Automatic Differentiation (AD) is a tool that systematically implements the chain rule of differentiation to obtain the derivatives of functions calculated by computer programs. AD is assessed as a tool for engineering design. The forward and reverse modes of AD, their computing requirements, as well as approaches to implementing AD are discussed. The application of two different tools to two medium-size structural analysis problems to generate sensitivity information typically necessary in an optimization or design situation is also discussed. The observation is made that AD is to be preferred to finite differencing in most cases, as long as sufficient computer storage is available; in some instances, AD may be the alternative to consider in lieu of analytical sensitivity analysis.