Brown, Raymond J.
1977-01-01
The present invention relates to a tool setting device for use with numerically controlled machine tools, such as lathes and milling machines. A reference position of the machine tool relative to the workpiece along both the X and Y axes is utilized by the control circuit for driving the tool through its program. This reference position is determined for both axes by displacing a single linear variable displacement transducer (LVDT) with the machine tool through a T-shaped pivotal bar. The use of the T-shaped bar allows the cutting tool to be moved sequentially in the X or Y direction for indicating the actual position of the machine tool relative to the predetermined desired position in the numerical control circuit by using a single LVDT.
ERIC Educational Resources Information Center
Anoka-Hennepin Technical Coll., Minneapolis, MN.
This set of two training outlines and one basic skills set list are designed for a machine tool technology program developed during a project to retrain defense industry workers at risk of job loss or dislocation because of conversion of the defense industry. The first troubleshooting training outline lists the categories of problems that develop…
Speed-Selector Guard For Machine Tool
NASA Technical Reports Server (NTRS)
Shakhshir, Roda J.; Valentine, Richard L.
1992-01-01
Simple guardplate prevents accidental reversal of direction of rotation or sudden change of speed of lathe, milling machine, or other machine tool. Custom-made for specific machine and control settings. Allows control lever to be placed at only one setting. Operator uses handle to slide guard to engage or disengage control lever. Protects personnel from injury and equipment from damage occurring if speed- or direction-control lever inadvertently placed in wrong position.
Zhang, Bing; Schmoyer, Denise; Kirov, Stefan; Snoddy, Jay
2004-01-01
Background Microarray and other high-throughput technologies are producing large sets of interesting genes that are difficult to analyze directly. Bioinformatics tools are needed to interpret the functional information in the gene sets. Results We have created a web-based tool for data analysis and data visualization for sets of genes called GOTree Machine (GOTM). This tool was originally intended to analyze sets of co-regulated genes identified from microarray analysis but is adaptable for use with other gene sets from other high-throughput analyses. GOTree Machine generates a GOTree, a tree-like structure to navigate the Gene Ontology Directed Acyclic Graph for input gene sets. This system provides user friendly data navigation and visualization. Statistical analysis helps users to identify the most important Gene Ontology categories for the input gene sets and suggests biological areas that warrant further study. GOTree Machine is available online at . Conclusion GOTree Machine has a broad application in functional genomic, proteomic and other high-throughput methods that generate large sets of interesting genes; its primary purpose is to help users sort for interesting patterns in gene sets. PMID:14975175
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Kuan, Chihping; Zhang, YI
1991-01-01
A numerical method is developed for the minimization of deviations of real tooth surfaces from the theoretical ones. The deviations are caused by errors of manufacturing, errors of installment of machine-tool settings and distortion of surfaces by heat-treatment. The deviations are determined by coordinate measurements of gear tooth surfaces. The minimization of deviations is based on the proper correction of initially applied machine-tool settings. The contents of accomplished research project cover the following topics: (1) Descriptions of the principle of coordinate measurements of gear tooth surfaces; (2) Deviation of theoretical tooth surfaces (with examples of surfaces of hypoid gears and references for spiral bevel gears); (3) Determination of the reference point and the grid; (4) Determination of the deviations of real tooth surfaces at the points of the grid; and (5) Determination of required corrections of machine-tool settings for minimization of deviations. The procedure for minimization of deviations is based on numerical solution of an overdetermined system of n linear equations in m unknowns (m much less than n ), where n is the number of points of measurements and m is the number of parameters of applied machine-tool settings to be corrected. The developed approach is illustrated with numerical examples.
Electrical contact tool set station
Byers, M.E.
1988-02-22
An apparatus is provided for the precise setting to zero of electrically conductive cutting tools used in the machining of work pieces. An electrically conductive cylindrical pin, tapered at one end to a small flat, rests in a vee-shaped channel in a base so that its longitudinal axis is parallel to the longitudinal axis of the machine's spindle. Electronic apparatus is connected between the cylindrical pin and the electrically conductive cutting tool to produce a detectable signal when contact between tool and pin is made. The axes of the machine are set to zero by contact between the cutting tool and the sides, end or top of the cylindrical pin. Upon contact, an electrical circuit is completed, and the detectable signal is produced. The tool can then be set to zero for that axis. Should the tool contact the cylindrical pin with too much force, the cylindrical pin would be harmlessly dislodged from the vee-shaped channel, preventing damage either to the cutting tool or the cylindrical pin. 5 figs.
Hanlon, John A.; Gill, Timothy J.
2001-01-01
Machine tools can be accurately measured and positioned on manufacturing machines within very small tolerances by use of an autocollimator on a 3-axis mount on a manufacturing machine and positioned so as to focus on a reference tooling ball or a machine tool, a digital camera connected to the viewing end of the autocollimator, and a marker and measure generator for receiving digital images from the camera, then displaying or measuring distances between the projection reticle and the reference reticle on the monitoring screen, and relating the distances to the actual position of the autocollimator relative to the reference tooling ball. The images and measurements are used to set the position of the machine tool and to measure the size and shape of the machine tool tip, and examine cutting edge wear. patent
NASA Astrophysics Data System (ADS)
Sivarami Reddy, N.; Ramamurthy, D. V., Dr.; Prahlada Rao, K., Dr.
2017-08-01
This article addresses simultaneous scheduling of machines, AGVs and tools where machines are allowed to share the tools considering transfer times of jobs and tools between machines, to generate best optimal sequences that minimize makespan in a multi-machine Flexible Manufacturing System (FMS). Performance of FMS is expected to improve by effective utilization of its resources, by proper integration and synchronization of their scheduling. Symbiotic Organisms Search (SOS) algorithm is a potent tool which is a better alternative for solving optimization problems like scheduling and proven itself. The proposed SOS algorithm is tested on 22 job sets with makespan as objective for scheduling of machines and tools where machines are allowed to share tools without considering transfer times of jobs and tools and the results are compared with the results of existing methods. The results show that the SOS has outperformed. The same SOS algorithm is used for simultaneous scheduling of machines, AGVs and tools where machines are allowed to share tools considering transfer times of jobs and tools to determine the best optimal sequences that minimize makespan.
Articulated, Performance-Based Instruction Objectives Guide for Machine Shop Technology.
ERIC Educational Resources Information Center
Henderson, William Edward, Jr., Ed.
This articulation guide contains 21 units of instruction for two years of machine shop. The objectives of the program are to provide the student with the basic terminology and fundamental knowledge and skills in machining (year 1) and to teach him/her to set up and operate machine tools and make or repair metal parts, tools, and machines (year 2).…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
The Machine Tool Advanced Skills Technology (MAST) consortium was formed to address the shortage of skilled workers for the machine tools and metals-related industries. Featuring six of the nation's leading advanced technology centers, the MAST consortium developed, tested, and disseminated industry-specific skill standards and model curricula for…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This volume developed by the Machine Tool Advanced Skill Technology (MAST) program contains key administrative documents and provides additional sources for machine tool and precision manufacturing information and important points of contact in the industry. The document contains the following sections: a foreword; grant award letter; timeline for…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational speciality areas within the U.S. machine tool and metals-related…
Translations from Kommunist, Number 13, September 1978
1978-10-30
programmed machine tool here is merely a component of a more complex reprogrammable technological system. This includes the robot machine tools with...sufficient possibilities for changing technological operations and processes and automated technological lines. 52 The reprogrammable automated sets will...simulate the possibilities of such sets. A new technological level will be developed in industry related to reprogrammable automated sets, their design
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
[Present-day metal-cutting tools and working conditions].
Kondratiuk, V P
1990-01-01
Polyfunctional machine-tools of a processing centre type are characterized by a set of hygienic advantages as compared to universal machine-tools. But low degree of mechanization and automation of some auxiliary processes, and constructional defects which decrease the ergonomic characteristics of the tools, involve labour intensity in multi-machine processing. The article specifies techniques of allowable noise level assessment, and proposes hygienic recommendations, some of which have been introduced into practice.
Reverse engineering of machine-tool settings with modified roll for spiral bevel pinions
NASA Astrophysics Data System (ADS)
Liu, Guanglei; Chang, Kai; Liu, Zeliang
2013-05-01
Although a great deal of research has been dedicated to the synthesis of spiral bevel gears, little related to reverse engineering can be found. An approach is proposed to reverse the machine-tool settings of the pinion of a spiral bevel gear drive on the basis of the blank and tooth surface data obtained by a coordinate measuring machine(CMM). Real tooth contact analysis(RTCA) is performed to preliminary ascertain the contact pattern, the motion curve, as well as the position of the mean contact point. And then the tangent to the contact path and the motion curve are interpolated in the sense of the least square method to extract the initial values of the bias angle and the higher order coefficients(HOC) in modified roll motion. A trial tooth surface is generated by machine-tool settings derived from the local synthesis relating to the initial meshing performances and modified roll motion. An optimization objective is formed which equals the tooth surface deviation between the real tooth surface and the trial tooth surface. The design variables are the parameters describing the meshing performances at the mean contact point in addition to the HOC. When the objective is optimized within an arbitrarily given convergence tolerance, the machine-tool settings together with the HOC are obtained. The proposed approach is verified by a spiral bevel pinion used in the accessory gear box of an aviation engine. The trial tooth surfaces approach to the real tooth surface on the whole in the example. The results show that the convergent tooth surface deviation for the concave side on the average is less than 0.5 μm, and is less than 1.3 μm for the convex side. The biggest tooth surface deviation is 6.7 μm which is located at the corner of the grid on the convex side. Those nodes with relative bigger tooth surface deviations are all located at the boundary of the grid. An approach is proposed to figure out the machine-tool settings of a spiral bevel pinion by way of reverse engineering without having known the theoretical tooth surfaces and the corresponding machine-tool settings.
High-precision micro/nano-scale machining system
Kapoor, Shiv G.; Bourne, Keith Allen; DeVor, Richard E.
2014-08-19
A high precision micro/nanoscale machining system. A multi-axis movement machine provides relative movement along multiple axes between a workpiece and a tool holder. A cutting tool is disposed on a flexible cantilever held by the tool holder, the tool holder being movable to provide at least two of the axes to set the angle and distance of the cutting tool relative to the workpiece. A feedback control system uses measurement of deflection of the cantilever during cutting to maintain a desired cantilever deflection and hence a desired load on the cutting tool.
Machine learning and data science in soft materials engineering
NASA Astrophysics Data System (ADS)
Ferguson, Andrew L.
2018-01-01
In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.
Machine learning and data science in soft materials engineering.
Ferguson, Andrew L
2018-01-31
In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.
Precision tool holder with flexure-adjustable, three degrees of freedom for a four-axis lathe
Bono, Matthew J [Pleasanton, CA; Hibbard, Robin L [Livermore, CA
2008-03-04
A precision tool holder for precisely positioning a single point cutting tool on 4-axis lathe, such that the center of the radius of the tool nose is aligned with the B-axis of the machine tool, so as to facilitate the machining of precision meso-scale components with complex three-dimensional shapes with sub-.mu.m accuracy on a four-axis lathe. The device is designed to fit on a commercial diamond turning machine and can adjust the cutting tool position in three orthogonal directions with sub-micrometer resolution. In particular, the tool holder adjusts the tool position using three flexure-based mechanisms, with two flexure mechanisms adjusting the lateral position of the tool to align the tool with the B-axis, and a third flexure mechanism adjusting the height of the tool. Preferably, the flexures are driven by manual micrometer adjusters. In this manner, this tool holder simplifies the process of setting a tool with sub-.mu.m accuracy, to substantially reduce the time required to set the tool.
NASA Astrophysics Data System (ADS)
Zhang, P. P.; Guo, Y.; Wang, B.
2017-05-01
The main problems in milling difficult-to-machine materials are the high cutting temperature and rapid tool wear. However it is impossible to investigate tool wear in machining. Tool wear and cutting chip formation are two of the most important representations for machining efficiency and quality. The purpose of this paper is to develop the model of tool wear with cutting chip formation (width of chip and radian of chip) on difficult-to-machine materials. Thereby tool wear is monitored by cutting chip formation. A milling experiment on the machining centre with three sets cutting parameters was performed to obtain chip formation and tool wear. The experimental results show that tool wear increases gradually along with cutting process. In contrast, width of chip and radian of chip decrease. The model is developed by fitting the experimental data and formula transformations. The most of monitored errors of tool wear by the chip formation are less than 10%. The smallest error is 0.2%. Overall errors by the radian of chip are less than the ones by the width of chip. It is new way to monitor and detect tool wear by cutting chip formation in milling difficult-to-machine materials.
AFM surface imaging of AISI D2 tool steel machined by the EDM process
NASA Astrophysics Data System (ADS)
Guu, Y. H.
2005-04-01
The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.
NASA Astrophysics Data System (ADS)
Maity, Kalipada; Pradhan, Swastik
2018-04-01
In this study, machining of titanium alloy (grade 5) is carried out using MT-CVD coated cutting tool. Titanium alloys possess superior strength-to-weight ratio with good corrosion resistance. Most of the industries used titanium alloy for the manufacturing of various types of lightweight components. The parts made from Ti-6Al-4V largely used in aerospace, biomedical, automotive and marine sectors. The conventional machining of this material is very difficult, due to low thermal conductivity and high chemical reactivity properties. To achieve a good surface finish with minimum tool wear of cutting tool, the machining is carried out using MT-CVD coated cutting tool. The experiment is carried out using of Taguchi L27 array layout with three cutting variables and levels. To find out the optimum parametric setting desirability function analysis (DFA) approach is used. The analysis of variance is studied to know the percentage contribution of each cutting variables. The optimum parametric setting results calculated from DFA were validated through the confirmation test.
Yoo, Tae Keun; Kim, Sung Kean; Kim, Deok Won; Choi, Joon Yul; Lee, Wan Hyung; Oh, Ein; Park, Eun-Cheol
2013-11-01
A number of clinical decision tools for osteoporosis risk assessment have been developed to select postmenopausal women for the measurement of bone mineral density. We developed and validated machine learning models with the aim of more accurately identifying the risk of osteoporosis in postmenopausal women compared to the ability of conventional clinical decision tools. We collected medical records from Korean postmenopausal women based on the Korea National Health and Nutrition Examination Surveys. The training data set was used to construct models based on popular machine learning algorithms such as support vector machines (SVM), random forests, artificial neural networks (ANN), and logistic regression (LR) based on simple surveys. The machine learning models were compared to four conventional clinical decision tools: osteoporosis self-assessment tool (OST), osteoporosis risk assessment instrument (ORAI), simple calculated osteoporosis risk estimation (SCORE), and osteoporosis index of risk (OSIRIS). SVM had significantly better area under the curve (AUC) of the receiver operating characteristic than ANN, LR, OST, ORAI, SCORE, and OSIRIS for the training set. SVM predicted osteoporosis risk with an AUC of 0.827, accuracy of 76.7%, sensitivity of 77.8%, and specificity of 76.0% at total hip, femoral neck, or lumbar spine for the testing set. The significant factors selected by SVM were age, height, weight, body mass index, duration of menopause, duration of breast feeding, estrogen therapy, hyperlipidemia, hypertension, osteoarthritis, and diabetes mellitus. Considering various predictors associated with low bone density, the machine learning methods may be effective tools for identifying postmenopausal women at high risk for osteoporosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bono, M J; Hibbard, R L
2005-12-05
A tool holder was designed to facilitate the machining of precision meso-scale components with complex three-dimensional shapes with sub-{micro}m accuracy on a four-axis lathe. A four-axis lathe incorporates a rotary table that allows the cutting tool to swivel with respect to the workpiece to enable the machining of complex workpiece forms, and accurately machining complex meso-scale parts often requires that the cutting tool be aligned precisely along the axis of rotation of the rotary table. The tool holder designed in this study has greatly simplified the process of setting the tool in the correct location with sub-{micro}m precision. The toolmore » holder adjusts the tool position using flexures that were designed using finite element analyses. Two flexures adjust the lateral position of the tool to align the center of the nose of the tool with the axis of rotation of the B-axis, and another flexure adjusts the height of the tool. The flexures are driven by manual micrometer adjusters, each of which provides a minimum increment of motion of 20 nm. This tool holder has simplified the process of setting a tool with sub-{micro}m accuracy, and it has significantly reduced the time required to set a tool.« less
Machine learning for the meta-analyses of microbial pathogens' volatile signatures.
Palma, Susana I C J; Traguedo, Ana P; Porteira, Ana R; Frias, Maria J; Gamboa, Hugo; Roque, Ana C A
2018-02-20
Non-invasive and fast diagnostic tools based on volatolomics hold great promise in the control of infectious diseases. However, the tools to identify microbial volatile organic compounds (VOCs) discriminating between human pathogens are still missing. Artificial intelligence is increasingly recognised as an essential tool in health sciences. Machine learning algorithms based in support vector machines and features selection tools were here applied to find sets of microbial VOCs with pathogen-discrimination power. Studies reporting VOCs emitted by human microbial pathogens published between 1977 and 2016 were used as source data. A set of 18 VOCs is sufficient to predict the identity of 11 microbial pathogens with high accuracy (77%), and precision (62-100%). There is one set of VOCs associated with each of the 11 pathogens which can predict the presence of that pathogen in a sample with high accuracy and precision (86-90%). The implemented pathogen classification methodology supports future database updates to include new pathogen-VOC data, which will enrich the classifiers. The sets of VOCs identified potentiate the improvement of the selectivity of non-invasive infection diagnostics using artificial olfaction devices.
1988-05-01
Shearing Machines WR/MMI DG 3446 Forging Machinery and Hammers WR/MMI DG 3447 Wire and Metal Ribbon Forming Machines WR/MMI DG 3448 Riveting Machines ...R/MN1I DG 3449 Miscellaneous Secondary Metal Forming & Cutting WR/MMI DG Machinery 3450 Machine Tools, Portable WR/MMI DG 3455 Cutting Tools for...Secondary Metalworking Machinery WR/MMI DG WR 3465 Production Jigs, Fixtures and Templates WR/MMI DG WR 3470 Machine Shop Sets, Kits, and Outfits WR/MMI DG
NASA Astrophysics Data System (ADS)
Mia, Mozammel; Al Bashir, Mahmood; Dhar, Nikhil Ranjan
2016-10-01
Hard turning is increasingly employed in machining, lately, to replace time-consuming conventional turning followed by grinding process. An excessive amount of tool wear in hard turning is one of the main hurdles to be overcome. Many researchers have developed tool wear model, but most of them developed it for a particular work-tool-environment combination. No aggregate model is developed that can be used to predict the amount of principal flank wear for specific machining time. An empirical model of principal flank wear (VB) has been developed for the different hardness of workpiece (HRC40, HRC48 and HRC56) while turning by coated carbide insert with different configurations (SNMM and SNMG) under both dry and high pressure coolant conditions. Unlike other developed model, this model includes the use of dummy variables along with the base empirical equation to entail the effect of any changes in the input conditions on the response. The base empirical equation for principal flank wear is formulated adopting the Exponential Associate Function using the experimental results. The coefficient of dummy variable reflects the shifting of the response from one set of machining condition to another set of machining condition which is determined by simple linear regression. The independent cutting parameters (speed, rate, depth of cut) are kept constant while formulating and analyzing this model. The developed model is validated with different sets of machining responses in turning hardened medium carbon steel by coated carbide inserts. For any particular set, the model can be used to predict the amount of principal flank wear for specific machining time. Since the predicted results exhibit good resemblance with experimental data and the average percentage error is <10 %, this model can be used to predict the principal flank wear for stated conditions.
NASA Astrophysics Data System (ADS)
Khidhir, Basim A.; Mohamed, Bashir
2011-02-01
Machining parameters has an important factor on tool wear and surface finish, for that the manufacturers need to obtain optimal operating parameters with a minimum set of experiments as well as minimizing the simulations in order to reduce machining set up costs. The cutting speed is one of the most important cutting parameter to evaluate, it clearly most influences on one hand, tool life, tool stability, and cutting process quality, and on the other hand controls production flow. Due to more demanding manufacturing systems, the requirements for reliable technological information have increased. For a reliable analysis in cutting, the cutting zone (tip insert-workpiece-chip system) as the mechanics of cutting in this area are very complicated, the chip is formed in the shear plane (entrance the shear zone) and is shape in the sliding plane. The temperature contributed in the primary shear, chamfer and sticking, sliding zones are expressed as a function of unknown shear angle on the rake face and temperature modified flow stress in each zone. The experiments were carried out on a CNC lathe and surface finish and tool tip wear are measured in process. Machining experiments are conducted. Reasonable agreement is observed under turning with high depth of cut. Results of this research help to guide the design of new cutting tool materials and the studies on evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy - 276 machining.
Osteoporosis risk prediction using machine learning and conventional methods.
Kim, Sung Kean; Yoo, Tae Keun; Oh, Ein; Kim, Deok Won
2013-01-01
A number of clinical decision tools for osteoporosis risk assessment have been developed to select postmenopausal women for the measurement of bone mineral density. We developed and validated machine learning models with the aim of more accurately identifying the risk of osteoporosis in postmenopausal women, and compared with the ability of a conventional clinical decision tool, osteoporosis self-assessment tool (OST). We collected medical records from Korean postmenopausal women based on the Korea National Health and Nutrition Surveys (KNHANES V-1). The training data set was used to construct models based on popular machine learning algorithms such as support vector machines (SVM), random forests (RF), artificial neural networks (ANN), and logistic regression (LR) based on various predictors associated with low bone density. The learning models were compared with OST. SVM had significantly better area under the curve (AUC) of the receiver operating characteristic (ROC) than ANN, LR, and OST. Validation on the test set showed that SVM predicted osteoporosis risk with an AUC of 0.827, accuracy of 76.7%, sensitivity of 77.8%, and specificity of 76.0%. We were the first to perform comparisons of the performance of osteoporosis prediction between the machine learning and conventional methods using population-based epidemiological data. The machine learning methods may be effective tools for identifying postmenopausal women at high risk for osteoporosis.
Effect of Width of Kerf on Machining Accuracy and Subsurface Layer After WEDM
NASA Astrophysics Data System (ADS)
Mouralova, K.; Kovar, J.; Klakurkova, L.; Prokes, T.
2018-02-01
Wire electrical discharge machining is an unconventional machining technology that applies physical principles to material removal. The material is removed by a series of recurring current discharges between the workpiece and the tool electrode, and a `kerf' is created between the wire and the material being machined. The width of the kerf is directly dependent not only on the diameter of the wire used, but also on the machine parameter settings and, in particular, on the set of mechanical and physical properties of the material being machined. To ensure precise machining, it is important to have the width of the kerf as small as possible. The present study deals with the evaluation of the width of the kerf for four different metallic materials (some of which were subsequently heat treated using several methods) with different machine parameter settings. The kerf is investigated on metallographic cross sections using light and electron microscopy.
Three-point compound sine plate offers cost and weight savings
NASA Technical Reports Server (NTRS)
Barras, A. P.
1972-01-01
Work piece adjustment fixture reduces size, weight and set-up complexity of alignment platforms used in metal blank machining. Design benefits designers and manufacturers of machine tools and measuring equipment.
ERIC Educational Resources Information Center
Air Univ., Gunter AFS, Ala. Extension Course Inst.
This four-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for machinists. Covered in the individual volumes are machine shop fundamentals, metallurgy and advanced machine work, advanced machine work, and tool design and shop management. Each volume in the set contains a series of lessons,…
Proposed algorithm to improve job shop production scheduling using ant colony optimization method
NASA Astrophysics Data System (ADS)
Pakpahan, Eka KA; Kristina, Sonna; Setiawan, Ari
2017-12-01
This paper deals with the determination of job shop production schedule on an automatic environment. On this particular environment, machines and material handling system are integrated and controlled by a computer center where schedule were created and then used to dictate the movement of parts and the operations at each machine. This setting is usually designed to have an unmanned production process for a specified interval time. We consider here parts with various operations requirement. Each operation requires specific cutting tools. These parts are to be scheduled on machines each having identical capability, meaning that each machine is equipped with a similar set of cutting tools therefore is capable of processing any operation. The availability of a particular machine to process a particular operation is determined by the remaining life time of its cutting tools. We proposed an algorithm based on the ant colony optimization method and embedded them on matlab software to generate production schedule which minimize the total processing time of the parts (makespan). We test the algorithm on data provided by real industry and the process shows a very short computation time. This contributes a lot to the flexibility and timelines targeted on an automatic environment.
Sine-Bar Attachment For Machine Tools
NASA Technical Reports Server (NTRS)
Mann, Franklin D.
1988-01-01
Sine-bar attachment for collets, spindles, and chucks helps machinists set up quickly for precise angular cuts that require greater precision than provided by graduations of machine tools. Machinist uses attachment to index head, carriage of milling machine or lathe relative to table or turning axis of tool. Attachment accurate to 1 minute or arc depending on length of sine bar and precision of gauge blocks in setup. Attachment installs quickly and easily on almost any type of lathe or mill. Requires no special clamps or fixtures, and eliminates many trial-and-error measurements. More stable than improvised setups and not jarred out of position readily.
Methods for the Precise Locating and Forming of Arrays of Curved Features into a Workpiece
Gill, David Dennis; Keeler, Gordon A.; Serkland, Darwin K.; Mukherjee, Sayan D.
2008-10-14
Methods for manufacturing high precision arrays of curved features (e.g. lenses) in the surface of a workpiece are described utilizing orthogonal sets of inter-fitting locating grooves to mate a workpiece to a workpiece holder mounted to the spindle face of a rotating machine tool. The matching inter-fitting groove sets in the workpiece and the chuck allow precisely and non-kinematically indexing the workpiece to locations defined in two orthogonal directions perpendicular to the turning axis of the machine tool. At each location on the workpiece a curved feature can then be on-center machined to create arrays of curved features on the workpiece. The averaging effect of the corresponding sets of inter-fitting grooves provide for precise repeatability in determining, the relative locations of the centers of each of the curved features in an array of curved features.
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Zhang, YI; Chen, Jui-Sheng
1991-01-01
Research was performed to develop a computer program that will: (1) simulate the meshing and bearing contact for face milled spiral beval gears with given machine tool settings; and (2) to obtain the output, some of the data is required for hydrodynamic analysis. It is assumed that the machine tool settings and the blank data will be taken from the Gleason summaries. The theoretical aspects of the program are based on 'Local Synthesis and Tooth Contact Analysis of Face Mill Milled Spiral Bevel Gears'. The difference between the computer programs developed herein and the other one is as follows: (1) the mean contact point of tooth surfaces for gears with given machine tool settings must be determined iteratively, while parameters (H and V) are changed (H represents displacement along the pinion axis, V represents the gear displacement that is perpendicular to the plane drawn through the axes of the pinion and the gear of their initial positions), this means that when V differs from zero, the axis of the pionion and the gear are crossed but not intersected; (2) in addition to the regular output data (transmission errors and bearing contact), the new computer program provides information about the contacting force for each contact point and the sliding and the so-called rolling velocity. The following topics are covered: (1) instructions for the users as to how to insert the input data; (2) explanations regarding the output data; (3) numerical example; and (4) listing of the program.
HiVy automated translation of stateflow designs for model checking verification
NASA Technical Reports Server (NTRS)
Pingree, Paula
2003-01-01
tool set enables model checking of finite state machines designs. This is acheived by translating state-chart specifications into the input language of the Spin model checker. An abstract syntax of hierarchical sequential automata (HSA) is provided as an intermediate format tool set.
Method Of Wire Insertion For Electric Machine Stators
Brown, David L; Stabel, Gerald R; Lawrence, Robert Anthony
2005-02-08
A method of inserting coils in slots of a stator is provided. The method includes interleaving a first set of first phase windings and a first set of second phase windings on an insertion tool. The method also includes activating the insertion tool to radially insert the first set of first phase windings and the first set of second phase windings in the slots of the stator. In one embodiment, interleaving the first set of first phase windings and the first set of second phase windings on the insertion tool includes forming the first set of first phase windings in first phase openings defined in the insertion tool, and forming the first set of second phase windings in second phase openings defined in the insertion tool.
NASA Astrophysics Data System (ADS)
Chen, Mingjun; Li, Ziang; Yu, Bo; Peng, Hui; Fang, Zhen
2013-09-01
In the grinding of high quality fused silica parts with complex surface or structure using ball-headed metal bonded diamond wheel with small diameter, the existing dressing methods are not suitable to dress the ball-headed diamond wheel precisely due to that they are either on-line in process dressing which may causes collision problem or without consideration for the effects of the tool setting error and electrode wear. An on-machine precision preparation and dressing method is proposed for ball-headed diamond wheel based on electrical discharge machining. By using this method the cylindrical diamond wheel with small diameter is manufactured to hemispherical-headed form. The obtained ball-headed diamond wheel is dressed after several grinding passes to recover geometrical accuracy and sharpness which is lost due to the wheel wear. A tool setting method based on high precision optical system is presented to reduce the wheel center setting error and dimension error. The effect of electrode tool wear is investigated by electrical dressing experiments, and the electrode tool wear compensation model is established based on the experimental results which show that the value of wear ratio coefficient K' tends to be constant with the increasing of the feed length of electrode and the mean value of K' is 0.156. Grinding experiments of fused silica are carried out on a test bench to evaluate the performance of the preparation and dressing method. The experimental results show that the surface roughness of the finished workpiece is 0.03 μm. The effect of the grinding parameter and dressing frequency on the surface roughness is investigated based on the measurement results of the surface roughness. This research provides an on-machine preparation and dressing method for ball-headed metal bonded diamond wheel used in the grinding of fused silica, which provides a solution to the tool setting method and the effect of electrode tool wear.
NASA Astrophysics Data System (ADS)
Liu, Shuang; Liu, Fei; Hu, Shaohua; Yin, Zhenbiao
The major power information of the main transmission system in machine tools (MTSMT) during machining process includes effective output power (i.e. cutting power), input power and power loss from the mechanical transmission system, and the main motor power loss. These information are easy to obtain in the lab but difficult to evaluate in a manufacturing process. To solve this problem, a separation method is proposed here to extract the MTSMT power information during machining process. In this method, the energy flow and the mathematical models of major power information of MTSMT during the machining process are set up first. Based on the mathematical models and the basic data tables obtained from experiments, the above mentioned power information during machining process can be separated just by measuring the real time total input power of the spindle motor. The operation program of this method is also given.
Pocket-sized versus standard ultrasound machines in abdominal imaging.
Tse, K H; Luk, W H; Lam, M C
2014-06-01
The pocket-sized ultrasound machine has emerged as an invaluable tool for quick assessment in emergency and general practice settings. It is suitable for instant and quick assessment in cardiac imaging. However, its applicability in the imaging of other body parts has yet to be established. In this pictorial review, we compared the performance of the pocketsized ultrasound machine against the standard ultrasound machine for its image quality in common abdominal pathology.
Application of dynamic milling in stainless steel processing
NASA Astrophysics Data System (ADS)
Shan, Wenju
2017-09-01
This paper mainly introduces the method of parameter setting for NC programming of stainless steel parts by dynamic milling. Stainless steel is of high plasticity and toughness, serious hard working, large cutting force, high temperature in cutting area and easy wear of tool. It is difficult to process material. Dynamic motion technology is the newest NC programming technology of Mastercam software. It is an advanced machining idea. The tool path generated by the dynamic motion technology is more smooth, more efficient and more stable in the machining process. Dynamic motion technology is very suitable for cutting hard machining materials.
A new digitized reverse correction method for hypoid gears based on a one-dimensional probe
NASA Astrophysics Data System (ADS)
Li, Tianxing; Li, Jubo; Deng, Xiaozhong; Yang, Jianjun; Li, Genggeng; Ma, Wensuo
2017-12-01
In order to improve the tooth surface geometric accuracy and transmission quality of hypoid gears, a new digitized reverse correction method is proposed based on the measurement data from a one-dimensional probe. The minimization of tooth surface geometrical deviations is realized from the perspective of mathematical analysis and reverse engineering. Combining the analysis of complex tooth surface generation principles and the measurement mechanism of one-dimensional probes, the mathematical relationship between the theoretical designed tooth surface, the actual machined tooth surface and the deviation tooth surface is established, the mapping relation between machine-tool settings and tooth surface deviations is derived, and the essential connection between the accurate calculation of tooth surface deviations and the reverse correction method of machine-tool settings is revealed. Furthermore, a reverse correction model of machine-tool settings is built, a reverse correction strategy is planned, and the minimization of tooth surface deviations is achieved by means of the method of numerical iterative reverse solution. On this basis, a digitized reverse correction system for hypoid gears is developed by the organic combination of numerical control generation, accurate measurement, computer numerical processing, and digitized correction. Finally, the correctness and practicability of the digitized reverse correction method are proved through a reverse correction experiment. The experimental results show that the tooth surface geometric deviations meet the engineering requirements after two trial cuts and one correction.
Software Tools for Emittance Measurement and Matching for 12 GeV CEBAF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Dennis L.
2016-05-01
This paper discusses model-driven setup of the Continuous Electron Beam Accelerator Facility (CEBAF) for the 12GeV era, focusing on qsUtility. qsUtility is a set of software tools created to perform emittance measurements, analyze those measurements, and compute optics corrections based upon the measurements.qsUtility was developed as a toolset to facilitate reducing machine configuration time and reproducibility by way of an accurate accelerator model, and to provide Operations staff with tools to measure and correct machine optics with little or no assistance from optics experts.
Splendidly blended: a machine learning set up for CDU control
NASA Astrophysics Data System (ADS)
Utzny, Clemens
2017-06-01
As the concepts of machine learning and artificial intelligence continue to grow in importance in the context of internet related applications it is still in its infancy when it comes to process control within the semiconductor industry. Especially the branch of mask manufacturing presents a challenge to the concepts of machine learning since the business process intrinsically induces pronounced product variability on the background of small plate numbers. In this paper we present the architectural set up of a machine learning algorithm which successfully deals with the demands and pitfalls of mask manufacturing. A detailed motivation of this basic set up followed by an analysis of its statistical properties is given. The machine learning set up for mask manufacturing involves two learning steps: an initial step which identifies and classifies the basic global CD patterns of a process. These results form the basis for the extraction of an optimized training set via balanced sampling. A second learning step uses this training set to obtain the local as well as global CD relationships induced by the manufacturing process. Using two production motivated examples we show how this approach is flexible and powerful enough to deal with the exacting demands of mask manufacturing. In one example we show how dedicated covariates can be used in conjunction with increased spatial resolution of the CD map model in order to deal with pathological CD effects at the mask boundary. The other example shows how the model set up enables strategies for dealing tool specific CD signature differences. In this case the balanced sampling enables a process control scheme which allows usage of the full tool park within the specified tight tolerance budget. Overall, this paper shows that the current rapid developments off the machine learning algorithms can be successfully used within the context of semiconductor manufacturing.
NASA Astrophysics Data System (ADS)
Ravi, S.; Pradeep Kumar, M.
2011-09-01
Milling of hardened steel generates excessive heat during the chip formation process, which increases the temperature of cutting tool and accelerates tool wear. Application of conventional cutting fluid in milling process may not effectively control the heat generation also it has inherent health and environmental problems. To minimize health hazard and environmental problems caused by using conventional cutting fluid, a cryogenic cooling set up is developed to cool tool-chip interface using liquid nitrogen (LN 2). This paper presents results on the effect of LN 2 as a coolant on machinability of hardened AISI H13 tool steel for varying cutting speed in the range of 75-125 m/min during end milling with PVD TiAlN coated carbide inserts at a constant feed rate. The results show that machining with LN 2 lowers cutting temperature, tool flank wear, surface roughness and cutting forces as compared with dry and wet machining. With LN 2 cooling, it has been found that the cutting temperature was reduced by 57-60% and 37-42%; the tool flank wear was reduced by 29-34% and 10-12%; the surface roughness was decreased by 33-40% and 25-29% compared to dry and wet machining. The cutting forces also decreased moderately compared to dry and wet machining. This can be attributed to the fact that LN 2 machining provides better cooling and lubrication through substantial reduction in the cutting zone temperature.
Diamond Turning Of Infra-Red Components
NASA Astrophysics Data System (ADS)
Hodgson, B.; Lettington, A. H.; Stillwell, P. F. T. C.
1986-05-01
Single point diamond machining of infra-red optical components such as aluminium mirrors, germanium lenses and zinc sulphide domes is potentially the most cost effective method for their manufacture since components may be machined from the blanks to a high surface finish, requiring no subsequent polishing, in a few minutes. Machines for the production of flat surfaces are well established. Diamond turning lathes for curved surfaces however require a high capital investment which can be justified only for research purposes or high volume production. The present paper describes the development of a low cost production machine based on a Bryant Symons diamond turning lathe which is able to machine spherical components to the required form and finish. It employs two horizontal spindles one for the workpiece the other for the tool. The machined radius of curvature is set by the alignment of the axes and the radius of the tool motion, as in conventional generation. The diamond tool is always normal to the workpiece and does not need to be accurately profiled. There are two variants of this basic machine. For machining hemispherical domes the axes are at right angles while for lenses with positive or negative curvature these axes are adjustable. An aspherical machine is under development, based on the all mechanical spherical machine, but in which a ± 2 mm aspherecity may be imposed on the best fit sphere by moving the work spindle under numerical control.
Graph theory for feature extraction and classification: a migraine pathology case study.
Jorge-Hernandez, Fernando; Garcia Chimeno, Yolanda; Garcia-Zapirain, Begonya; Cabrera Zubizarreta, Alberto; Gomez Beldarrain, Maria Angeles; Fernandez-Ruanova, Begonya
2014-01-01
Graph theory is also widely used as a representational form and characterization of brain connectivity network, as is machine learning for classifying groups depending on the features extracted from images. Many of these studies use different techniques, such as preprocessing, correlations, features or algorithms. This paper proposes an automatic tool to perform a standard process using images of the Magnetic Resonance Imaging (MRI) machine. The process includes pre-processing, building the graph per subject with different correlations, atlas, relevant feature extraction according to the literature, and finally providing a set of machine learning algorithms which can produce analyzable results for physicians or specialists. In order to verify the process, a set of images from prescription drug abusers and patients with migraine have been used. In this way, the proper functioning of the tool has been proved, providing results of 87% and 92% of success depending on the classifier used.
Applications of Support Vector Machines In Chemo And Bioinformatics
NASA Astrophysics Data System (ADS)
Jayaraman, V. K.; Sundararajan, V.
2010-10-01
Conventional linear & nonlinear tools for classification, regression & data driven modeling are being replaced on a rapid scale by newer techniques & tools based on artificial intelligence and machine learning. While the linear techniques are not applicable for inherently nonlinear problems, newer methods serve as attractive alternatives for solving real life problems. Support Vector Machine (SVM) classifiers are a set of universal feed-forward network based classification algorithms that have been formulated from statistical learning theory and structural risk minimization principle. SVM regression closely follows the classification methodology. In this work recent applications of SVM in Chemo & Bioinformatics will be described with suitable illustrative examples.
NASA Astrophysics Data System (ADS)
Adesta, Erry Yulian T.; Riza, Muhammad; Avicena
2018-03-01
Tool wear prediction plays a significant role in machining industry for proper planning and control machining parameters and optimization of cutting conditions. This paper aims to investigate the effect of tool path strategies that are contour-in and zigzag tool path strategies applied on tool wear during pocket milling process. The experiments were carried out on CNC vertical machining centre by involving PVD coated carbide inserts. Cutting speed, feed rate and depth of cut were set to vary. In an experiment with three factors at three levels, Response Surface Method (RSM) design of experiment with a standard called Central Composite Design (CCD) was employed. Results obtained indicate that tool wear increases significantly at higher range of feed per tooth compared to cutting speed and depth of cut. This result of this experimental work is then proven statistically by developing empirical model. The prediction model for the response variable of tool wear for contour-in strategy developed in this research shows a good agreement with experimental work.
Phenomenology tools on cloud infrastructures using OpenStack
NASA Astrophysics Data System (ADS)
Campos, I.; Fernández-del-Castillo, E.; Heinemeyer, S.; Lopez-Garcia, A.; Pahlen, F.; Borges, G.
2013-04-01
We present a new environment for computations in particle physics phenomenology employing recent developments in cloud computing. On this environment users can create and manage "virtual" machines on which the phenomenology codes/tools can be deployed easily in an automated way. We analyze the performance of this environment based on "virtual" machines versus the utilization of physical hardware. In this way we provide a qualitative result for the influence of the host operating system on the performance of a representative set of applications for phenomenology calculations.
Detections of Propellers in Saturn's Rings using Machine Learning: Preliminary Results
NASA Astrophysics Data System (ADS)
Gordon, Mitchell K.; Showalter, Mark R.; Odess, Jennifer; Del Villar, Ambi; LaMora, Andy; Paik, Jin; Lakhani, Karim; Sergeev, Rinat; Erickson, Kristen; Galica, Carol; Grayzeck, Edwin; Morgan, Thomas; Knopf, William
2015-11-01
We report on the initial analysis of the output of a tool designed to identify persistent, non-axisymmetric features in the rings of Saturn. This project introduces a new paradigm for scientific software development. The preliminary results include what appear to be new detections of propellers in the rings of Saturn.The Planetary Data System (PDS), working with the NASA Tournament Lab (NTL), Crowd Innovation Lab at Harvard University, and the Topcoder community at Appirio, Inc., under the umbrella “Cassini Rings Challenge”, sponsored a set of competitions employing crowd sourcing and machine learning to develop a tool which could be made available to the community at large. The Challenge was tackled by running a series of separate contests to solve individual tasks prior to the major machine learning challenge. Each contest was comprised of a set of requirements, a timeline, one or more prizes, and other incentives, and was posted by Appirio to the Topcoder Community. In the case of the machine learning challenge (a “Marathon Challenge” on the Topcoder platform), members competed against each other by submitting solutions that were scored in real time and posted to a public leader-board by a scoring algorithm developed by Appirio for this contest.The current version of the algorithm was run against ~30,000 of the highest resolution Cassini ISS images. That set included 668 images with a total of 786 features previously identified as propellers in the main rings. The tool identified 81% of those previously identified propellers. In a preliminary, close examination of 130 detections identified by the tool, we determined that of the 130 detections, 11 were previously identified propeller detections, 5 appear to be new detections of known propellers, and 4 appear to be detections of propellers which have not been seen previously. A total of 20 valid detections from 130 candidates implies a relatively high false positive rate which we hope to reduce by further algorithm development. The machine learning aspect of the algorithm means that as our set of verified detections increases so does the pool of “ground-truth” data used to train the algorithm for future use.
Miller, Donald M.
1978-01-01
A micromachining tool system with X- and omega-axes is used to machine spherical, aspherical, and irregular surfaces with a maximum contour error of 100 nonometers (nm) and surface waviness of no more than 0.8 nm RMS. The omega axis, named for the angular measurement of the rotation of an eccentric mechanism supporting one end of a tool bar, enables the pulse increments of the tool toward the workpiece to be as little as 0 to 4.4 nm. A dedicated computer coordinates motion in the two axes to produce the workpiece contour. Inertia is reduced by reducing the mass pulsed toward the workpiece to about one-fifth of its former value. The tool system includes calibration instruments to calibrate the micromachining tool system. Backlash is reduced and flexing decreased by using a rotary table and servomotor to pulse the tool in the omega-axis instead of a ball screw mechanism. A thermally-stabilized spindle rotates the workpiece and is driven by a motor not mounted on the micromachining tool base through a torque-smoothing pulley and vibrationless rotary coupling. Abbe offset errors are almost eliminated by tool setting and calibration at spindle center height. Tool contour and workpiece contour are gaged on the machine; this enables the source of machining errors to be determined more readily, because the workpiece is gaged before its shape can be changed by removal from the machine.
Industrial machine systems risk assessment: a critical review of concepts and methods.
Etherton, John R
2007-02-01
Reducing the risk of work-related death and injury to machine operators and maintenance personnel poses a continuing occupational safety challenge. The risk of injury from machinery in U.S. workplaces is high. Between 1992 and 2001, there were, on average, 520 fatalities per year involving machines and, on average, 3.8 cases per 10,000 workers of nonfatal caught-in-running-machine injuries involving lost workdays. A U.S. task group recently developed a technical reference guideline, ANSI B11 TR3, "A Guide to Estimate, Evaluate, & Reduce Risks Associated with Machine Tools," that is intended to bring machine tool risk assessment practice in the United States up to or above the level now required by the international standard, ISO 14121. The ANSI guideline emphasizes identifying tasks and hazards not previously considered, particularly those associated with maintenance; and it further emphasizes teamwork among line workers, engineers, and safety professionals. The value of this critical review of concepts and methods resides in (1) its linking current risk theory to machine system risk assessment and (2) its exploration of how various risk estimation tools translate into risk-informed decisions on industrial machine system design and use. The review was undertaken to set the stage for a field evaluation study on machine risk assessment among users of the ANSI B11 TR3 method.
Tribology in secondary wood machining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, P.L.; Hawthorne, H.M.; Andiappan, J.
Secondary wood manufacturing covers a wide range of products from furniture, cabinets, doors and windows, to musical instruments. Many of these are now mass produced in sophisticated, high speed numerical controlled machines. The performance and the reliability of the tools are key to an efficient and economical manufacturing process as well as to the quality of the finished products. A program concerned with three aspects of tribology of wood machining, namely, tool wear, tool-wood friction characteristics and wood surface quality characterization, was set up in the Integrated Manufacturing Technologies Institute (IMTI) of the National Research Council of Canada. The studiesmore » include friction and wear mechanism identification and modeling, wear performance of surface-engineered tool materials, friction-induced vibration and cutting efficiency, and the influence of wear and friction on finished products. This research program underlines the importance of tribology in secondary wood manufacturing and at the same time adds new challenges to tribology research since wood is a complex, heterogeneous, material and its behavior during machining is highly sensitive to the surrounding environments and to the moisture content in the work piece.« less
Machinability of Minor Wooden Species before and after Modification with Thermo-Vacuum Technology
Sandak, Jakub; Goli, Giacomo; Cetera, Paola; Sandak, Anna; Cavalli, Alberto; Todaro, Luigi
2017-01-01
The influence of the thermal modification process on wood machinability was investigated with four minor species of low economic importance. A set of representative experimental samples was machined to the form of disks with sharp and dull tools. The resulting surface quality was visually evaluated by a team of experts according to the American standard procedure ASTM D-1666-87. The objective quantification of the surface quality was also done by means of a three dimensions (3D) surface scanner for the whole range of grain orientations. Visual assessment and 3D surface analysis showed a good agreement in terms of conclusions. The best quality of the wood surface was obtained when machining thermally modified samples. The positive effect of the material modification was apparent when cutting deodar cedar, black pine and black poplar in unfavorable conditions (i.e., against the grain). The difference was much smaller for an easy-machinability specie such as Italian alder. The use of dull tools resulted in the worst surface quality. Thermal modification has shown a very positive effect when machining with dull tools, leading to a relevant increment of the final surface smoothness. PMID:28772480
Chowdhury, M A K; Sharif Ullah, A M M; Anwar, Saqib
2017-09-12
Ti6Al4V alloys are difficult-to-cut materials that have extensive applications in the automotive and aerospace industry. A great deal of effort has been made to develop and improve the machining operations of Ti6Al4V alloys. This paper presents an experimental study that systematically analyzes the effects of the machining conditions (ultrasonic power, feed rate, spindle speed, and tool diameter) on the performance parameters (cutting force, tool wear, overcut error, and cylindricity error), while drilling high precision holes on the workpiece made of Ti6Al4V alloys using rotary ultrasonic machining (RUM). Numerical results were obtained by conducting experiments following the design of an experiment procedure. The effects of the machining conditions on each performance parameter have been determined by constructing a set of possibility distributions (i.e., trapezoidal fuzzy numbers) from the experimental data. A possibility distribution is a probability-distribution-neural representation of uncertainty, and is effective in quantifying the uncertainty underlying physical quantities when there is a limited number of data points which is the case here. Lastly, the optimal machining conditions have been identified using these possibility distributions.
Machinability of Minor Wooden Species before and after Modification with Thermo-Vacuum Technology.
Sandak, Jakub; Goli, Giacomo; Cetera, Paola; Sandak, Anna; Cavalli, Alberto; Todaro, Luigi
2017-01-28
The influence of the thermal modification process on wood machinability was investigated with four minor species of low economic importance. A set of representative experimental samples was machined to the form of disks with sharp and dull tools. The resulting surface quality was visually evaluated by a team of experts according to the American standard procedure ASTM D-1666-87. The objective quantification of the surface quality was also done by means of a three dimensions (3D) surface scanner for the whole range of grain orientations. Visual assessment and 3D surface analysis showed a good agreement in terms of conclusions. The best quality of the wood surface was obtained when machining thermally modified samples. The positive effect of the material modification was apparent when cutting deodar cedar, black pine and black poplar in unfavorable conditions (i.e., against the grain). The difference was much smaller for an easy-machinability specie such as Italian alder. The use of dull tools resulted in the worst surface quality. Thermal modification has shown a very positive effect when machining with dull tools, leading to a relevant increment of the final surface smoothness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satogata, Todd
2013-04-22
The integrated control system (ICS) is responsible for the whole ESS machine and facility: accelerator, target, neutron scattering instruments and conventional facilities. This unified approach keeps the costs of development, maintenance and support relatively low. ESS has selected a standardised, field-proven controls framework, the Experimental Physics and Industrial Control System (EPICS), which was originally developed jointly by Argonne and Los Alamos National Laboratories. Complementing this selection are best practices and experience from similar facilities regarding platform standardisation, control system development and device integration and commissioning. The components of ICS include the control system core, the control boxes, the BLED databasemore » management system, and the human machine interface. The control system core is a set of systems and tools that make it possible for the control system to provide required data, information and services to engineers, operators, physicists and the facility itself. The core components are the timing system that makes possible clock synchronisation across the facility, the machine protection system (MPS) and the personnel protection system (PPS) that prevent damage to the machine and personnel, and a set of control system services. Control boxes are servers that control a collection of equipment (for example a radio frequency cavity). The integrated control system will include many control boxes that can be assigned to one supplier, such as an internal team, a collaborating institute or a commercial vendor. This approach facilitates a clear division of responsibilities and makes integration much easier. A control box is composed of a standardised hardware platform, components, development tools and services. On the top level, it interfaces with the core control system components (timing, MPS, PPS) and with the human-machine interface. At the bottom, it interfaces with the equipment and parts of the facility through a set of analog and digital signals, real-time control loops and other communication buses. The ICS central data management system is named BLED (beam line element databases). BLED is a set of databases, tools and services that is used to store, manage and access data. It holds vital control system configuration and physics-related (lattice) information about the accelerator, target and instruments. It facilitates control system configuration by bringing together direct input-output controller (IOC) con guration and real-time data from proton and neutron beam line models. BLED also simplifies development and speeds up the code-test-debug cycle. The set of tools that access BLED will be tailored to the needs of different categories of users, such as ESS staff physicists, engineers, and operators; external partner laboratories; and visiting experimental instrument users. The human-machine interface is vital to providing a high-quality experience to ICS users. It encompasses a wide array of devices and software tools, from control room screens to engineer terminal windows; from beam physics data tools to post-mortem data analysis tools. It serves users with a wide range of skills from widely varied backgrounds. The Controls Group is developing a set of user profiles to accommodate this diverse range of use-cases and users.« less
NASA Technical Reports Server (NTRS)
Ray, R. B.
1994-01-01
OPMILL is a computer operating system for a Kearney and Trecker milling machine that provides a fast and easy way to program machine part manufacture with an IBM compatible PC. The program gives the machinist an "equation plotter" feature which plots any set of equations that define axis moves (up to three axes simultaneously) and converts those equations to a machine milling program that will move a cutter along a defined path. Other supported functions include: drill with peck, bolt circle, tap, mill arc, quarter circle, circle, circle 2 pass, frame, frame 2 pass, rotary frame, pocket, loop and repeat, and copy blocks. The system includes a tool manager that can handle up to 25 tools and automatically adjusts tool length for each tool. It will display all tool information and stop the milling machine at the appropriate time. Information for the program is entered via a series of menus and compiled to the Kearney and Trecker format. The program can then be loaded into the milling machine, the tool path graphically displayed, and tool change information or the program in Kearney and Trecker format viewed. The program has a complete file handling utility that allows the user to load the program into memory from the hard disk, save the program to the disk with comments, view directories, merge a program on the disk with one in memory, save a portion of a program in memory, and change directories. OPMILL was developed on an IBM PS/2 running DOS 3.3 with 1 MB of RAM. OPMILL was written for an IBM PC or compatible 8088 or 80286 machine connected via an RS-232 port to a Kearney and Trecker Data Mill 700/C Control milling machine. It requires a "D:" drive (fixed-disk or virtual), a browse or text display utility, and an EGA or better display. Users wishing to modify and recompile the source code will also need Turbo BASIC, Turbo C, and Crescent Software's QuickPak for Turbo BASIC. IBM PC and IBM PS/2 are registered trademarks of International Business Machines. Turbo BASIC and Turbo C are trademarks of Borland International.
Heat-Assisted Machining for Material Removal Improvement
NASA Astrophysics Data System (ADS)
Mohd Hadzley, A. B.; Hafiz, S. Muhammad; Azahar, W.; Izamshah, R.; Mohd Shahir, K.; Abu, A.
2015-09-01
Heat assisted machining (HAM) is a process where an intense heat source is used to locally soften the workpiece material before machined by high speed cutting tool. In this paper, an HAM machine is developed by modification of small CNC machine with the addition of special jig to hold the heat sources in front of the machine spindle. Preliminary experiment to evaluate the capability of HAM machine to produce groove formation for slotting process was conducted. A block AISI D2 tool steel with100mm (width) × 100mm (length) × 20mm (height) size has been cut by plasma heating with different setting of arc current, feed rate and air pressure. Their effect has been analyzed based on distance of cut (DOC).Experimental results demonstrated the most significant factor that contributed to the DOC is arc current, followed by the feed rate and air pressure. HAM improves the slotting process of AISI D2 by increasing distance of cut due to initial cutting groove that formed during thermal melting and pressurized air from the heat source.
Machine learning for neuroimaging with scikit-learn.
Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël
2014-01-01
Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.
Machine learning for neuroimaging with scikit-learn
Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël
2014-01-01
Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain. PMID:24600388
Shi, Zhenyu; Liu, Zhanqiang; Li, Yuchao; Qiao, Yang
2017-01-01
Cutting tool geometry should be very much considered in micro-cutting because it has a significant effect on the topography and accuracy of the machined surface, particularly considering the uncut chip thickness is comparable to the cutting edge radius. The objective of this paper was to clarify the influence of the mechanism of the cutting tool geometry on the surface topography in the micro-milling process. Four different cutting tools including two two-fluted end milling tools with different helix angles of 15° and 30° cutting tools, as well as two three-fluted end milling tools with different helix angles of 15° and 30° were investigated by combining theoretical modeling analysis with experimental research. The tool geometry was mathematically modeled through coordinate translation and transformation to make all three cutting edges at the cutting tool tip into the same coordinate system. Swept mechanisms, minimum uncut chip thickness, and cutting tool run-out were considered on modeling surface roughness parameters (the height of surface roughness Rz and average surface roughness Ra) based on the established mathematical model. A set of cutting experiments was carried out using four different shaped cutting tools. It was found that the sweeping volume of the cutting tool increases with the decrease of both the cutting tool helix angle and the flute number. Great coarse machined surface roughness and more non-uniform surface topography are generated when the sweeping volume increases. The outcome of this research should bring about new methodologies for micro-end milling tool design and manufacturing. The machined surface roughness can be improved by appropriately selecting the tool geometrical parameters. PMID:28772479
NASA Astrophysics Data System (ADS)
Prashanth, B. N.; Roy, Kingshuk
2017-07-01
Three Dimensional (3D) maintenance data provides a link between design and technical documentation creating interactive 3D graphical training and maintenance material. It becomes difficult for an operator to always go through huge paper manuals or come running to the computer for doing maintenance of a machine which makes the maintenance work fatigue. Above being the case, a 3D animation makes maintenance work very simple since, there is no language barrier. The research deals with the generation of 3D maintenance data of any given machine. The best tool for obtaining the 3D maintenance is selected and the tool is analyzed. Using the same tool, a detailed process for extracting the 3D maintenance data for any machine is set. This project aims at selecting the best tool for obtaining 3D maintenance data and to select the detailed process for obtaining 3D maintenance data. 3D maintenance reduces use of big volumes of manuals which creates human errors and makes the work of an operator fatiguing. Hence 3-D maintenance would help in training and maintenance and would increase productivity. 3Dvia when compared with Cortona 3D and Deep Exploration proves to be better than them. 3Dvia is good in data translation and it has the best renderings compared to the other two 3D maintenance software. 3Dvia is very user friendly and it has various options for creating 3D animations. Its Interactive Electronic Technical Publication (IETP) integration is also better than the other two software. Hence 3Dvia proves to be the best software for obtaining 3D maintenance data of any machine.
NASA Astrophysics Data System (ADS)
Shprits, Y.; Zhelavskaya, I. S.; Kellerman, A. C.; Spasojevic, M.; Kondrashov, D. A.; Ghil, M.; Aseev, N.; Castillo Tibocha, A. M.; Cervantes Villa, J. S.; Kletzing, C.; Kurth, W. S.
2017-12-01
Increasing volume of satellite measurements requires deployment of new tools that can utilize such vast amount of data. Satellite measurements are usually limited to a single location in space, which complicates the data analysis geared towards reproducing the global state of the space environment. In this study we show how measurements can be combined by means of data assimilation and how machine learning can help analyze large amounts of data and can help develop global models that are trained on single point measurement. Data Assimilation: Manual analysis of the satellite measurements is a challenging task, while automated analysis is complicated by the fact that measurements are given at various locations in space, have different instrumental errors, and often vary by orders of magnitude. We show results of the long term reanalysis of radiation belt measurements along with fully operational real-time predictions using data assimilative VERB code. Machine Learning: We present application of the machine learning tools for the analysis of NASA Van Allen Probes upper-hybrid frequency measurements. Using the obtained data set we train a new global predictive neural network. The results for the Van Allen Probes based neural network are compared with historical IMAGE satellite observations. We also show examples of predictions of geomagnetic indices using neural networks. Combination of machine learning and data assimilation: We discuss how data assimilation tools and machine learning tools can be combine so that physics-based insight into the dynamics of the particular system can be combined with empirical knowledge of it's non-linear behavior.
NASA Astrophysics Data System (ADS)
Durga Prasada Rao, V.; Harsha, N.; Raghu Ram, N. S.; Navya Geethika, V.
2018-02-01
In this work, turning was performed to optimize the surface finish or roughness (Ra) of stainless steel 304 with uncoated and coated carbide tools under dry conditions. The carbide tools were coated with Titanium Aluminium Nitride (TiAlN) nano coating using Physical Vapour Deposition (PVD) method. The machining parameters, viz., cutting speed, depth of cut and feed rate which show major impact on Ra are considered during turning. The experiments are designed as per Taguchi orthogonal array and machining process is done accordingly. Then second-order regression equations have been developed on the basis of experimental results for Ra in terms of machining parameters used. Regarding the effect of machining parameters, an upward trend is observed in Ra with respect to feed rate, and as cutting speed increases the Ra value increased slightly due to chatter and vibrations. The adequacy of response variable (Ra) is tested by conducting additional experiments. The predicted Ra values are found to be a close match of their corresponding experimental values of uncoated and coated tools. The corresponding average % errors are found to be within the acceptable limits. Then the surface roughness equations of uncoated and coated tools are set as the objectives of optimization problem and are solved by using Differential Evolution (DE) algorithm. Also the tool lives of uncoated and coated tools are predicted by using Taylor’s tool life equation.
NASA Astrophysics Data System (ADS)
Mia, Mozammel; Bashir, Mahmood Al; Dhar, Nikhil Ranjan
2016-07-01
Hard turning is gradually replacing the time consuming conventional turning process, which is typically followed by grinding, by producing surface quality compatible to grinding. The hard turned surface roughness depends on the cutting parameters, machining environments and tool insert configurations. In this article the variation of the surface roughness of the produced surfaces with the changes in tool insert configuration, use of coolant and different cutting parameters (cutting speed, feed rate) has been investigated. This investigation was performed in machining AISI 1060 steel, hardened to 56 HRC by heat treatment, using coated carbide inserts under two different machining environments. The depth of cut, fluid pressure and material hardness were kept constant. The Design of Experiment (DOE) was performed to determine the number and combination sets of different cutting parameters. A full factorial analysis has been performed to examine the effect of main factors as well as interaction effect of factors on surface roughness. A statistical analysis of variance (ANOVA) was employed to determine the combined effect of cutting parameters, environment and tool configuration. The result of this analysis reveals that environment has the most significant impact on surface roughness followed by feed rate and tool configuration respectively.
Stress and Strain Distributions during Machining of Ti-6Al-4V at Ambient and Cryogenic Temperatures
NASA Astrophysics Data System (ADS)
Rahman, Md. Fahim
Dry and liquid nitrogen pre-cooled Ti-6Al-4V samples were machined at a cutting speed of 43.2 m/min and at low (0.1 mm/rev) to high (0.4 mm/rev) feed rates for understanding the effects of temperature and strain rate on chip microstructures. During cryogenic machining, it was observed that between feed rates of 0.10 and 0.30 mm/rev, a 25% pressure reduction on tool occurred. Smaller number of chips and low tool/chip contact time and temperature were observed (compared to dry machining under ambient conditions). An in-situ set-up that consisted of a microscope and a lathe was constructed and helped to propose a novel serrated chip formation mechanism when microstructures (strain localization) and surface roughness were considered. Dimpled fracture surfaces observed in high-speed-machined chips were formed due to stable crack propagation that was also recorded during in-situ machining. An instability criterion was developed that showed easier strain localization within the 0.10-0.30mm/rev feed rate range.
Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control.
Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele
2016-09-25
This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC) device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated.
Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control
Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele
2016-01-01
This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC) device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated. PMID:27681732
Young, Sean D; Yu, Wenchao; Wang, Wei
2017-02-01
"Social big data" from technologies such as social media, wearable devices, and online searches continue to grow and can be used as tools for HIV research. Although researchers can uncover patterns and insights associated with HIV trends and transmission, the review process is time consuming and resource intensive. Machine learning methods derived from computer science might be used to assist HIV domain experts by learning how to rapidly and accurately identify patterns associated with HIV from a large set of social data. Using an existing social media data set that was associated with HIV and coded by an HIV domain expert, we tested whether 4 commonly used machine learning methods could learn the patterns associated with HIV risk behavior. We used the 10-fold cross-validation method to examine the speed and accuracy of these models in applying that knowledge to detect HIV content in social media data. Logistic regression and random forest resulted in the highest accuracy in detecting HIV-related social data (85.3%), whereas the Ridge Regression Classifier resulted in the lowest accuracy. Logistic regression yielded the fastest processing time (16.98 seconds). Machine learning can enable social big data to become a new and important tool in HIV research, helping to create a new field of "digital HIV epidemiology." If a domain expert can identify patterns in social data associated with HIV risk or HIV transmission, machine learning models could quickly and accurately learn those associations and identify potential HIV patterns in large social data sets.
Software tool for data mining and its applications
NASA Astrophysics Data System (ADS)
Yang, Jie; Ye, Chenzhou; Chen, Nianyi
2002-03-01
A software tool for data mining is introduced, which integrates pattern recognition (PCA, Fisher, clustering, hyperenvelop, regression), artificial intelligence (knowledge representation, decision trees), statistical learning (rough set, support vector machine), computational intelligence (neural network, genetic algorithm, fuzzy systems). It consists of nine function models: pattern recognition, decision trees, association rule, fuzzy rule, neural network, genetic algorithm, Hyper Envelop, support vector machine, visualization. The principle and knowledge representation of some function models of data mining are described. The software tool of data mining is realized by Visual C++ under Windows 2000. Nonmonotony in data mining is dealt with by concept hierarchy and layered mining. The software tool of data mining has satisfactorily applied in the prediction of regularities of the formation of ternary intermetallic compounds in alloy systems, and diagnosis of brain glioma.
NASA Technical Reports Server (NTRS)
Bao, Han P.
1989-01-01
The CAD/CAM of custom shoes is discussed. The solid object for machining is represented by a wireframe model with its nodes or vertices specified systematically in a grid pattern covering its entire length (point-to-point configuration). Two sets of data from CENCIT and CYBERWARE were used for machining purposes. It was found that the indexing technique (turning the stock by a small angle then moving the tool on a longitudinal path along the foot) yields the best result in terms of ease of programming, savings in wear and tear of the machine and cutting tools, and resolution of fine surface details. The work done using the LASTMOD last design system results in a shoe last specified by a number of congruent surface patches of different sizes. This data format was converted into a form amenable to the machine tool. It involves a series of sorting algorithms and interpolation algorithms to provide the grid pattern that the machine tool needs as was the case in the point to point configuration discussed above. This report also contains an in-depth treatment of the design and production technique of an integrated sole to complement the task of design and manufacture of the shoe last. Clinical data and essential production parameters are discussed. Examples of soles made through this process are given.
Toward an Improvement of the Analysis of Neural Coding.
Alegre-Cortés, Javier; Soto-Sánchez, Cristina; Albarracín, Ana L; Farfán, Fernando D; Val-Calvo, Mikel; Ferrandez, José M; Fernandez, Eduardo
2017-01-01
Machine learning and artificial intelligence have strong roots on principles of neural computation. Some examples are the structure of the first perceptron, inspired in the retina, neuroprosthetics based on ganglion cell recordings or Hopfield networks. In addition, machine learning provides a powerful set of tools to analyze neural data, which has already proved its efficacy in so distant fields of research as speech recognition, behavioral states classification, or LFP recordings. However, despite the huge technological advances in neural data reduction of dimensionality, pattern selection, and clustering during the last years, there has not been a proportional development of the analytical tools used for Time-Frequency (T-F) analysis in neuroscience. Bearing this in mind, we introduce the convenience of using non-linear, non-stationary tools, EMD algorithms in particular, for the transformation of the oscillatory neural data (EEG, EMG, spike oscillations…) into the T-F domain prior to its analysis with machine learning tools. We support that to achieve meaningful conclusions, the transformed data we analyze has to be as faithful as possible to the original recording, so that the transformations forced into the data due to restrictions in the T-F computation are not extended to the results of the machine learning analysis. Moreover, bioinspired computation such as brain-machine interface may be enriched from a more precise definition of neuronal coding where non-linearities of the neuronal dynamics are considered.
2014-01-01
Background It is important to predict the quality of a protein structural model before its native structure is known. The method that can predict the absolute local quality of individual residues in a single protein model is rare, yet particularly needed for using, ranking and refining protein models. Results We developed a machine learning tool (SMOQ) that can predict the distance deviation of each residue in a single protein model. SMOQ uses support vector machines (SVM) with protein sequence and structural features (i.e. basic feature set), including amino acid sequence, secondary structures, solvent accessibilities, and residue-residue contacts to make predictions. We also trained a SVM model with two new additional features (profiles and SOV scores) on 20 CASP8 targets and found that including them can only improve the performance when real deviations between native and model are higher than 5Å. The SMOQ tool finally released uses the basic feature set trained on 85 CASP8 targets. Moreover, SMOQ implemented a way to convert predicted local quality scores into a global quality score. SMOQ was tested on the 84 CASP9 single-domain targets. The average difference between the residue-specific distance deviation predicted by our method and the actual distance deviation on the test data is 2.637Å. The global quality prediction accuracy of the tool is comparable to other good tools on the same benchmark. Conclusion SMOQ is a useful tool for protein single model quality assessment. Its source code and executable are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/. PMID:24776231
Cao, Renzhi; Wang, Zheng; Wang, Yiheng; Cheng, Jianlin
2014-04-28
It is important to predict the quality of a protein structural model before its native structure is known. The method that can predict the absolute local quality of individual residues in a single protein model is rare, yet particularly needed for using, ranking and refining protein models. We developed a machine learning tool (SMOQ) that can predict the distance deviation of each residue in a single protein model. SMOQ uses support vector machines (SVM) with protein sequence and structural features (i.e. basic feature set), including amino acid sequence, secondary structures, solvent accessibilities, and residue-residue contacts to make predictions. We also trained a SVM model with two new additional features (profiles and SOV scores) on 20 CASP8 targets and found that including them can only improve the performance when real deviations between native and model are higher than 5Å. The SMOQ tool finally released uses the basic feature set trained on 85 CASP8 targets. Moreover, SMOQ implemented a way to convert predicted local quality scores into a global quality score. SMOQ was tested on the 84 CASP9 single-domain targets. The average difference between the residue-specific distance deviation predicted by our method and the actual distance deviation on the test data is 2.637Å. The global quality prediction accuracy of the tool is comparable to other good tools on the same benchmark. SMOQ is a useful tool for protein single model quality assessment. Its source code and executable are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/.
A translator and simulator for the Burroughs D machine
NASA Technical Reports Server (NTRS)
Roberts, J.
1972-01-01
The D Machine is described as a small user microprogrammable computer designed to be a versatile building block for such diverse functions as: disk file controllers, I/O controllers, and emulators. TRANSLANG is an ALGOL-like language, which allows D Machine users to write microprograms in an English-like format as opposed to creating binary bit pattern maps. The TRANSLANG translator parses TRANSLANG programs into D Machine microinstruction bit patterns which can be executed on the D Machine simulator. In addition to simulation and translation, the two programs also offer several debugging tools, such as: a full set of diagnostic error messages, register dumps, simulated memory dumps, traces on instructions and groups of instructions, and breakpoints.
ERIC Educational Resources Information Center
Howard, William; Williams, Richard; Yao, Jason
2010-01-01
Solid modeling is widely used as a teaching tool in summer activities with high school students. The addition of motion analysis allows concepts from statics and dynamics to be introduced to students in both qualitative and quantitative ways. Two sets of solid modeling projects--carnival rides and Rube Goldberg machines--are shown to allow the…
Method and apparatus for characterizing and enhancing the dynamic performance of machine tools
Barkman, William E; Babelay, Jr., Edwin F
2013-12-17
Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include dynamic one axis positional accuracy of the machine tool, dynamic cross-axis stability of the machine tool, and dynamic multi-axis positional accuracy of the machine tool.
Machine Shop. Module 7: Grinders. Instructor's Guide.
ERIC Educational Resources Information Center
Nobles, Jack; Gage, Mel
This document consists of materials for an eight-unit course on the following topics: (1) grinder safety and types of grinders; (2) surface grinder accessories and equipment maintenance; (3) surface grinder preparation and set-up; (4) surface grinding flat and angular surfaces; (5) cylindrical grinding; (6) tool and cutter safety; (7) tool and…
NASA Astrophysics Data System (ADS)
Remmele, Steffen; Ritzerfeld, Julia; Nickel, Walter; Hesser, Jürgen
2011-03-01
RNAi-based high-throughput microscopy screens have become an important tool in biological sciences in order to decrypt mostly unknown biological functions of human genes. However, manual analysis is impossible for such screens since the amount of image data sets can often be in the hundred thousands. Reliable automated tools are thus required to analyse the fluorescence microscopy image data sets usually containing two or more reaction channels. The herein presented image analysis tool is designed to analyse an RNAi screen investigating the intracellular trafficking and targeting of acylated Src kinases. In this specific screen, a data set consists of three reaction channels and the investigated cells can appear in different phenotypes. The main issue of the image processing task is an automatic cell segmentation which has to be robust and accurate for all different phenotypes and a successive phenotype classification. The cell segmentation is done in two steps by segmenting the cell nuclei first and then using a classifier-enhanced region growing on basis of the cell nuclei to segment the cells. The classification of the cells is realized by a support vector machine which has to be trained manually using supervised learning. Furthermore, the tool is brightness invariant allowing different staining quality and it provides a quality control that copes with typical defects during preparation and acquisition. A first version of the tool has already been successfully applied for an RNAi-screen containing three hundred thousand image data sets and the SVM extended version is designed for additional screens.
NASA Astrophysics Data System (ADS)
Sahu, Anshuman Kumar; Chatterjee, Suman; Nayak, Praveen Kumar; Sankar Mahapatra, Siba
2018-03-01
Electrical discharge machining (EDM) is a non-traditional machining process which is widely used in machining of difficult-to-machine materials. EDM process can produce complex and intrinsic shaped component made of difficult-to-machine materials, largely applied in aerospace, biomedical, die and mold making industries. To meet the required applications, the EDMed components need to possess high accuracy and excellent surface finish. In this work, EDM process is performed using Nitinol as work piece material and AlSiMg prepared by selective laser sintering (SLS) as tool electrode along with conventional copper and graphite electrodes. The SLS is a rapid prototyping (RP) method to produce complex metallic parts by additive manufacturing (AM) process. Experiments have been carried out varying different process parameters like open circuit voltage (V), discharge current (Ip), duty cycle (τ), pulse-on-time (Ton) and tool material. The surface roughness parameter like average roughness (Ra), maximum height of the profile (Rt) and average height of the profile (Rz) are measured using surface roughness measuring instrument (Talysurf). To reduce the number of experiments, design of experiment (DOE) approach like Taguchi’s L27 orthogonal array has been chosen. The surface properties of the EDM specimen are optimized by desirability function approach and the best parametric setting is reported for the EDM process. Type of tool happens to be the most significant parameter followed by interaction of tool type and duty cycle, duty cycle, discharge current and voltage. Better surface finish of EDMed specimen can be obtained with low value of voltage (V), discharge current (Ip), duty cycle (τ) and pulse on time (Ton) along with the use of AlSiMg RP electrode.
Designed tools for analysis of lithography patterns and nanostructures
NASA Astrophysics Data System (ADS)
Dervillé, Alexandre; Baderot, Julien; Bernard, Guilhem; Foucher, Johann; Grönqvist, Hanna; Labrosse, Aurélien; Martinez, Sergio; Zimmermann, Yann
2017-03-01
We introduce a set of designed tools for the analysis of lithography patterns and nano structures. The classical metrological analysis of these objects has the drawbacks of being time consuming, requiring manual tuning and lacking robustness and user friendliness. With the goal of improving the current situation, we propose new image processing tools at different levels: semi automatic, automatic and machine-learning enhanced tools. The complete set of tools has been integrated into a software platform designed to transform the lab into a virtual fab. The underlying idea is to master nano processes at the research and development level by accelerating the access to knowledge and hence speed up the implementation in product lines.
NASA Astrophysics Data System (ADS)
Prokhorov, Sergey
2017-10-01
Building industry in a present day going through the hard times. Machine and mechanism exploitation cost, on a field of construction and installation works, takes a substantial part in total building construction expenses. There is a necessity to elaborate high efficient method, which allows not only to increase production, but also to reduce direct costs during machine fleet exploitation, and to increase its energy efficiency. In order to achieve the goal we plan to use modern methods of work production, hi-tech and energy saving machine tools and technologies, and use of optimal mechanization sets. As the optimization criteria there are exploitation prime cost and set efficiency. During actual task-solving process we made a conclusion, which shows that mechanization works, energy audit with production juxtaposition, prime prices and costs for energy resources allow to make complex machine fleet supply, improve ecological level and increase construction and installation work quality.
Generated spiral bevel gears: Optimal machine-tool settings and tooth contact analysis
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Tsung, W. J.; Coy, J. J.; Heine, C.
1985-01-01
Geometry and kinematic errors were studied for Gleason generated spiral bevel gears. A new method was devised for choosing optimal machine settings. These settings provide zero kinematic errors and an improved bearing contact. The kinematic errors are a major source of noise and vibration in spiral bevel gears. The improved bearing contact gives improved conditions for lubrication. A computer program for tooth contact analysis was developed, and thereby the new generation process was confirmed. The new process is governed by the requirement that during the generation process there is directional constancy of the common normal of the contacting surfaces for generator and generated surfaces of pinion and gear.
Predicting Networked Strategic Behavior via Machine Learning and Game Theory
2015-01-13
The funding for this project was used to develop basic models, methodology and algorithms for the application of machine learning and related tools to settings in which strategic behavior is central. Among the topics studied was the development of simple behavioral models explaining and predicting human subject behavior in networked strategic experiments from prior work. These included experiments in biased voting and networked trading, among others.
Use of machine learning methods to classify Universities based on the income structure
NASA Astrophysics Data System (ADS)
Terlyga, Alexandra; Balk, Igor
2017-10-01
In this paper we discuss use of machine learning methods such as self organizing maps, k-means and Ward’s clustering to perform classification of universities based on their income. This classification will allow us to quantitate classification of universities as teaching, research, entrepreneur, etc. which is important tool for government, corporations and general public alike in setting expectation and selecting universities to achieve different goals.
A Decision Support Prototype Tool for Predicting Student Performance in an ODL Environment
ERIC Educational Resources Information Center
Kotsiantis, S. B.; Pintelas, P. E.
2004-01-01
Machine Learning algorithms fed with data sets which include information such as attendance data, test scores and other student information can provide tutors with powerful tools for decision-making. Until now, much of the research has been limited to the relation between single variables and student performance. Combining multiple variables as…
An investigation of chatter and tool wear when machining titanium
NASA Technical Reports Server (NTRS)
Sutherland, I. A.
1974-01-01
The low thermal conductivity of titanium, together with the low contact area between chip and tool and the unusually high chip velocities, gives rise to high tool tip temperatures and accelerated tool wear. Machining speeds have to be considerably reduced to avoid these high temperatures with a consequential loss of productivity. Restoring this lost productivity involves increasing other machining variables, such as feed and depth-of-cut, and can lead to another machining problem commonly known as chatter. This work is to acquaint users with these problems, to examine the variables that may be encountered when machining a material like titanium, and to advise the machine tool user on how to maximize the output from the machines and tooling available to him. Recommendations are made on ways of improving tolerances, reducing machine tool instability or chatter, and improving productivity. New tool materials, tool coatings, and coolants are reviewed and their relevance examined when machining titanium.
Quantifying Risk for Anxiety Disorders in Preschool Children: A Machine Learning Approach.
Carpenter, Kimberly L H; Sprechmann, Pablo; Calderbank, Robert; Sapiro, Guillermo; Egger, Helen L
2016-01-01
Early childhood anxiety disorders are common, impairing, and predictive of anxiety and mood disorders later in childhood. Epidemiological studies over the last decade find that the prevalence of impairing anxiety disorders in preschool children ranges from 0.3% to 6.5%. Yet, less than 15% of young children with an impairing anxiety disorder receive a mental health evaluation or treatment. One possible reason for the low rate of care for anxious preschoolers is the lack of affordable, timely, reliable and valid tools for identifying young children with clinically significant anxiety. Diagnostic interviews assessing psychopathology in young children require intensive training, take hours to administer and code, and are not available for use outside of research settings. The Preschool Age Psychiatric Assessment (PAPA) is a reliable and valid structured diagnostic parent-report interview for assessing psychopathology, including anxiety disorders, in 2 to 5 year old children. In this paper, we apply machine-learning tools to already collected PAPA data from two large community studies to identify sub-sets of PAPA items that could be developed into an efficient, reliable, and valid screening tool to assess a young child's risk for an anxiety disorder. Using machine learning, we were able to decrease by an order of magnitude the number of items needed to identify a child who is at risk for an anxiety disorder with an accuracy of over 96% for both generalized anxiety disorder (GAD) and separation anxiety disorder (SAD). Additionally, rather than considering GAD or SAD as discrete/binary entities, we present a continuous risk score representing the child's risk of meeting criteria for GAD or SAD. Identification of a short question-set that assesses risk for an anxiety disorder could be a first step toward development and validation of a relatively short screening tool feasible for use in pediatric clinics and daycare/preschool settings.
Quantifying Risk for Anxiety Disorders in Preschool Children: A Machine Learning Approach
Calderbank, Robert; Sapiro, Guillermo; Egger, Helen L.
2016-01-01
Early childhood anxiety disorders are common, impairing, and predictive of anxiety and mood disorders later in childhood. Epidemiological studies over the last decade find that the prevalence of impairing anxiety disorders in preschool children ranges from 0.3% to 6.5%. Yet, less than 15% of young children with an impairing anxiety disorder receive a mental health evaluation or treatment. One possible reason for the low rate of care for anxious preschoolers is the lack of affordable, timely, reliable and valid tools for identifying young children with clinically significant anxiety. Diagnostic interviews assessing psychopathology in young children require intensive training, take hours to administer and code, and are not available for use outside of research settings. The Preschool Age Psychiatric Assessment (PAPA) is a reliable and valid structured diagnostic parent-report interview for assessing psychopathology, including anxiety disorders, in 2 to 5 year old children. In this paper, we apply machine-learning tools to already collected PAPA data from two large community studies to identify sub-sets of PAPA items that could be developed into an efficient, reliable, and valid screening tool to assess a young child’s risk for an anxiety disorder. Using machine learning, we were able to decrease by an order of magnitude the number of items needed to identify a child who is at risk for an anxiety disorder with an accuracy of over 96% for both generalized anxiety disorder (GAD) and separation anxiety disorder (SAD). Additionally, rather than considering GAD or SAD as discrete/binary entities, we present a continuous risk score representing the child’s risk of meeting criteria for GAD or SAD. Identification of a short question-set that assesses risk for an anxiety disorder could be a first step toward development and validation of a relatively short screening tool feasible for use in pediatric clinics and daycare/preschool settings. PMID:27880812
The IHMC CmapTools software in research and education: a multi-level use case in Space Meteorology
NASA Astrophysics Data System (ADS)
Messerotti, Mauro
2010-05-01
The IHMC (Institute for Human and Machine Cognition, Florida University System, USA) CmapTools software is a powerful multi-platform tool for knowledge modelling in graphical form based on concept maps. In this work we present its application for the high-level development of a set of multi-level concept maps in the framework of Space Meteorology to act as the kernel of a space meteorology domain ontology. This is an example of a research use case, as a domain ontology coded in machine-readable form via e.g. OWL (Web Ontology Language) is suitable to be an active layer of any knowledge management system embedded in a Virtual Observatory (VO). Apart from being manageable at machine level, concept maps developed via CmapTools are intrinsically human-readable and can embed hyperlinks and objects of many kinds. Therefore they are suitable to be published on the web: the coded knowledge can be exploited for educational purposes by the students and the public, as the level of information can be naturally organized among linked concept maps in progressively increasing complexity levels. Hence CmapTools and its advanced version COE (Concept-map Ontology Editor) represent effective and user-friendly software tools for high-level knowledge represention in research and education.
The dynamic analysis of drum roll lathe for machining of rollers
NASA Astrophysics Data System (ADS)
Qiao, Zheng; Wu, Dongxu; Wang, Bo; Li, Guo; Wang, Huiming; Ding, Fei
2014-08-01
An ultra-precision machine tool for machining of the roller has been designed and assembled, and due to the obvious impact which dynamic characteristic of machine tool has on the quality of microstructures on the roller surface, the dynamic characteristic of the existing machine tool is analyzed in this paper, so is the influence of circumstance that a large scale and slender roller is fixed in the machine on dynamic characteristic of the machine tool. At first, finite element model of the machine tool is built and simplified, and based on that, the paper carries on with the finite element mode analysis and gets the natural frequency and shaking type of four steps of the machine tool. According to the above model analysis results, the weak stiffness systems of machine tool can be further improved and the reasonable bandwidth of control system of the machine tool can be designed. In the end, considering the shock which is caused by Z axis as a result of fast positioning frequently to feeding system and cutting tool, transient analysis is conducted by means of ANSYS analysis in this paper. Based on the results of transient analysis, the vibration regularity of key components of machine tool and its impact on cutting process are explored respectively.
Validation results of specifications for motion control interoperability
NASA Astrophysics Data System (ADS)
Szabo, Sandor; Proctor, Frederick M.
1997-01-01
The National Institute of Standards and Technology (NIST) is participating in the Department of Energy Technologies Enabling Agile Manufacturing (TEAM) program to establish interface standards for machine tool, robot, and coordinate measuring machine controllers. At NIST, the focus is to validate potential application programming interfaces (APIs) that make it possible to exchange machine controller components with a minimal impact on the rest of the system. This validation is taking place in the enhanced machine controller (EMC) consortium and is in cooperation with users and vendors of motion control equipment. An area of interest is motion control, including closed-loop control of individual axes and coordinated path planning. Initial tests of the motion control APIs are complete. The APIs were implemented on two commercial motion control boards that run on two different machine tools. The results for a baseline set of APIs look promising, but several issues were raised. These include resolving differing approaches in how motions are programmed and defining a standard measurement of performance for motion control. This paper starts with a summary of the process used in developing a set of specifications for motion control interoperability. Next, the EMC architecture and its classification of motion control APIs into two classes, Servo Control and Trajectory Planning, are reviewed. Selected APIs are presented to explain the basic functionality and some of the major issues involved in porting the APIs to other motion controllers. The paper concludes with a summary of the main issues and ways to continue the standards process.
Efficient production by laser materials processing integrated into metal cutting machines
NASA Astrophysics Data System (ADS)
Wiedmaier, M.; Meiners, E.; Dausinger, Friedrich; Huegel, Helmut
1994-09-01
Beam guidance of high power YAG-laser (cw, pulsed, Q-switched) with average powers up to 2000 W by flexible glass fibers facilitates the integration of the laser beam as an additional tool into metal cutting machines. Hence, technologies like laser cutting, joining, hardening, caving, structuring of surfaces and laser-marking can be applied directly inside machining centers in one setting, thereby reducing the flow of workpieces resulting in a lowering of costs and production time. Furthermore, materials with restricted machinability--especially hard materials like ceramics, hard metals or sintered alloys--can be shaped by laser-caving or laser assisted machining. Altogether, the flexibility of laser integrated machining centers is substantially increased or the efficiency of a production line is raised by time-savings or extended feasibilities with techniques like hardening, welding or caving.
2011-01-01
expensive post-weld machining; and (g) low 102 environmental impact . However, some disadvantages of the 103 FSW process have also been identified such as (a...material. Its 443 density and thermal properties are next set to that of AISI- H13 , 444 a hot-worked tool steel, frequently used as the FSW-tool 445
2011-12-30
which reduces the need for expensive post-weld machining; and (g) low environmental impact . However, some disadvantages of the FSW process have also...next set to that of AISI- H13 , a hot-worked tool steel, frequently used as the FSW-tool material (Ref 16). The work-piece material is assumed to be
Actualities and Development of Heavy-Duty CNC Machine Tool Thermal Error Monitoring Technology
NASA Astrophysics Data System (ADS)
Zhou, Zu-De; Gui, Lin; Tan, Yue-Gang; Liu, Ming-Yao; Liu, Yi; Li, Rui-Ya
2017-09-01
Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures introducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature monitoring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing technology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articles to guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.
[Research on infrared safety protection system for machine tool].
Zhang, Shuan-Ji; Zhang, Zhi-Ling; Yan, Hui-Ying; Wang, Song-De
2008-04-01
In order to ensure personal safety and prevent injury accident in machine tool operation, an infrared machine tool safety system was designed with infrared transmitting-receiving module, memory self-locked relay and voice recording-playing module. When the operator does not enter the danger area, the system has no response. Once the operator's whole or part of body enters the danger area and shades the infrared beam, the system will alarm and output an control signal to the machine tool executive element, and at the same time, the system makes the machine tool emergency stop to prevent equipment damaged and person injured. The system has a module framework, and has many advantages including safety, reliability, common use, circuit simplicity, maintenance convenience, low power consumption, low costs, working stability, easy debugging, vibration resistance and interference resistance. It is suitable for being installed and used in different machine tools such as punch machine, pour plastic machine, digital control machine, armor plate cutting machine, pipe bending machine, oil pressure machine etc.
Cyclostationarity approach for monitoring chatter and tool wear in high speed milling
NASA Astrophysics Data System (ADS)
Lamraoui, M.; Thomas, M.; El Badaoui, M.
2014-02-01
Detection of chatter and tool wear is crucial in the machining process and their monitoring is a key issue, for: (1) insuring better surface quality, (2) increasing productivity and (3) protecting both machines and safe workpiece. This paper presents an investigation of chatter and tool wear using the cyclostationary method to process the vibrations signals acquired from high speed milling. Experimental cutting tests were achieved on slot milling operation of aluminum alloy. The experimental set-up is designed for acquisition of accelerometer signals and encoding information picked up from an encoder. The encoder signal is used for re-sampling accelerometers signals in angular domain using a specific algorithm that was developed in LASPI laboratory. The use of cyclostationary on accelerometer signals has been applied for monitoring chatter and tool wear in high speed milling. The cyclostationarity appears on average properties (first order) of signals, on the energetic properties (second order) and it generates spectral lines at cyclic frequencies in spectral correlation. Angular power and kurtosis are used to analyze chatter phenomena. The formation of chatter is characterized by unstable, chaotic motion of the tool and strong anomalous fluctuations of cutting forces. Results show that stable machining generates only very few cyclostationary components of second order while chatter is strongly correlated to cyclostationary components of second order. By machining in the unstable region, chatter results in flat angular kurtosis and flat angular power, such as a pseudo (white) random signal with flat spectrum. Results reveal that spectral correlation and Wigner Ville spectrum or integrated Wigner Ville issued from second-order cyclostationary are an efficient parameter for the early diagnosis of faults in high speed machining, such as chatter, tool wear and bearings, compared to traditional stationary methods. Wigner Ville representation of the residual signal shows that the energy corresponding to the tooth passing decreases when chatter phenomenon occurs. The effect of the tool wear and the number of broken teeth on the excitation of structure resonances appears in Wigner Ville presentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.
1980-10-22
The Machine Tool Task Force (MTTF) is a multidisciplined team of international experts, whose mission was to investigate the state of the art of machine tool technology, to identify promising future directions of that technology for both the US government and private industry, and to disseminate the findings of its research in a conference and through the publication of a final report. MTTF was a two and one-half year effort that involved the participation of 122 experts in the specialized technologies of machine tools and in the management of machine tool operations. The scope of the MTTF was limited tomore » cutting-type or material-removal-type machine tools, because they represent the major share and value of all machine tools now installed or being built. The activities of the MTTF and the technical, commercial and economic signifiance of recommended activities for improving machine tool technology are discussed. (LCL)« less
NASA Astrophysics Data System (ADS)
Protim Das, Partha; Gupta, P.; Das, S.; Pradhan, B. B.; Chakraborty, S.
2018-01-01
Maraging steel (MDN 300) find its application in many industries as it exhibits high hardness which are very difficult to machine material. Electro discharge machining (EDM) is an extensively popular machining process which can be used in machining of such materials. Optimization of response parameters are essential for effective machining of these materials. Past researchers have already used Taguchi for obtaining the optimal responses of EDM process for this material with responses such as material removal rate (MRR), tool wear rate (TWR), relative wear ratio (RWR), and surface roughness (SR) considering discharge current, pulse on time, pulse off time, arc gap, and duty cycle as process parameters. In this paper, grey relation analysis (GRA) with fuzzy logic is applied to this multi objective optimization problem to check the responses by an implementation of the derived parametric setting. It was found that the parametric setting derived by the proposed method results in better a response than those reported by the past researchers. Obtained results are also verified using the technique for order of preference by similarity to ideal solution (TOPSIS). The predicted result also shows that there is a significant improvement in comparison to the results of past researchers.
Quality of clinical brain tumor MR spectra judged by humans and machine learning tools.
Kyathanahally, Sreenath P; Mocioiu, Victor; Pedrosa de Barros, Nuno; Slotboom, Johannes; Wright, Alan J; Julià-Sapé, Margarida; Arús, Carles; Kreis, Roland
2018-05-01
To investigate and compare human judgment and machine learning tools for quality assessment of clinical MR spectra of brain tumors. A very large set of 2574 single voxel spectra with short and long echo time from the eTUMOUR and INTERPRET databases were used for this analysis. Original human quality ratings from these studies as well as new human guidelines were used to train different machine learning algorithms for automatic quality control (AQC) based on various feature extraction methods and classification tools. The performance was compared with variance in human judgment. AQC built using the RUSBoost classifier that combats imbalanced training data performed best. When furnished with a large range of spectral and derived features where the most crucial ones had been selected by the TreeBagger algorithm it showed better specificity (98%) in judging spectra from an independent test-set than previously published methods. Optimal performance was reached with a virtual three-class ranking system. Our results suggest that feature space should be relatively large for the case of MR tumor spectra and that three-class labels may be beneficial for AQC. The best AQC algorithm showed a performance in rejecting spectra that was comparable to that of a panel of human expert spectroscopists. Magn Reson Med 79:2500-2510, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Towards a generalized energy prediction model for machine tools
Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H.; Dornfeld, David A.; Helu, Moneer; Rachuri, Sudarsan
2017-01-01
Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process. PMID:28652687
Towards a generalized energy prediction model for machine tools.
Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H; Dornfeld, David A; Helu, Moneer; Rachuri, Sudarsan
2017-04-01
Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process.
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the course sequences in the machine tool operation/machine tool and tool and die making technology programs cluster. Presented in the introductory section are a framework of courses and programs, description of the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roger Lew; Ronald L. Boring; Thomas A. Ulrich
Operators of critical processes, such as nuclear power production, must contend with highly complex systems, procedures, and regulations. Developing human-machine interfaces (HMIs) that better support operators is a high priority for ensuring the safe and reliable operation of critical processes. Human factors engineering (HFE) provides a rich and mature set of tools for evaluating the performance of HMIs, but the set of tools for developing and designing HMIs is still in its infancy. Here we propose that Microsoft Windows Presentation Foundation (WPF) is well suited for many roles in the research and development of HMIs for process control.
NASA Technical Reports Server (NTRS)
Friedrich, Craig R.; Warrington, Robert O.
1995-01-01
Micromechanical machining processes are those micro fabrication techniques which directly remove work piece material by either a physical cutting tool or an energy process. These processes are direct and therefore they can help reduce the cost and time for prototype development of micro mechanical components and systems. This is especially true for aerospace applications where size and weight are critical, and reliability and the operating environment are an integral part of the design and development process. The micromechanical machining processes are rapidly being recognized as a complementary set of tools to traditional lithographic processes (such as LIGA) for the fabrication of micromechanical components. Worldwide efforts in the U.S., Germany, and Japan are leading to results which sometimes rival lithography at a fraction of the time and cost. Efforts to develop processes and systems specific to aerospace applications are well underway.
Chip breaking system for automated machine tool
Arehart, Theodore A.; Carey, Donald O.
1987-01-01
The invention is a rotary selectively directional valve assembly for use in an automated turret lathe for directing a stream of high pressure liquid machining coolant to the interface of a machine tool and workpiece for breaking up ribbon-shaped chips during the formation thereof so as to inhibit scratching or other marring of the machined surfaces by these ribbon-shaped chips. The valve assembly is provided by a manifold arrangement having a plurality of circumferentially spaced apart ports each coupled to a machine tool. The manifold is rotatable with the turret when the turret is positioned for alignment of a machine tool in a machining relationship with the workpiece. The manifold is connected to a non-rotational header having a single passageway therethrough which conveys the high pressure coolant to only the port in the manifold which is in registry with the tool disposed in a working relationship with the workpiece. To position the machine tools the turret is rotated and one of the tools is placed in a material-removing relationship of the workpiece. The passageway in the header and one of the ports in the manifold arrangement are then automatically aligned to supply the machining coolant to the machine tool workpiece interface for breaking up of the chips as well as cooling the tool and workpiece during the machining operation.
NASA Astrophysics Data System (ADS)
Budi Harja, Herman; Prakosa, Tri; Raharno, Sri; Yuwana Martawirya, Yatna; Nurhadi, Indra; Setyo Nogroho, Alamsyah
2018-03-01
The production characteristic of job-shop industry at which products have wide variety but small amounts causes every machine tool will be shared to conduct production process with dynamic load. Its dynamic condition operation directly affects machine tools component reliability. Hence, determination of maintenance schedule for every component should be calculated based on actual usage of machine tools component. This paper describes study on development of monitoring system to obtaining information about each CNC machine tool component usage in real time approached by component grouping based on its operation phase. A special device has been developed for monitoring machine tool component usage by utilizing usage phase activity data taken from certain electronics components within CNC machine. The components are adaptor, servo driver and spindle driver, as well as some additional components such as microcontroller and relays. The obtained data are utilized for detecting machine utilization phases such as power on state, machine ready state or spindle running state. Experimental result have shown that the developed CNC machine tool monitoring system is capable of obtaining phase information of machine tool usage as well as its duration and displays the information at the user interface application.
Nondimensional parameter for conformal grinding: combining machine and process parameters
NASA Astrophysics Data System (ADS)
Funkenbusch, Paul D.; Takahashi, Toshio; Gracewski, Sheryl M.; Ruckman, Jeffrey L.
1999-11-01
Conformal grinding of optical materials with CNC (Computer Numerical Control) machining equipment can be used to achieve precise control over complex part configurations. However complications can arise due to the need to fabricate complex geometrical shapes at reasonable production rates. For example high machine stiffness is essential, but the need to grind 'inside' small or highly concave surfaces may require use of tooling with less than ideal stiffness characteristics. If grinding generates loads sufficient for significant tool deflection, the programmed removal depth will not be achieved. Moreover since grinding load is a function of the volumetric removal rate the amount of load deflection can vary with location on the part, potentially producing complex figure errors. In addition to machine/tool stiffness and removal rate, load generation is a function of the process parameters. For example by reducing the feed rate of the tool into the part, both the load and resultant deflection/removal error can be decreased. However this must be balanced against the need for part through put. In this paper a simple model which permits combination of machine stiffness and process parameters into a single non-dimensional parameter is adapted for a conformal grinding geometry. Errors in removal can be minimized by maintaining this parameter above a critical value. Moreover, since the value of this parameter depends on the local part geometry, it can be used to optimize process settings during grinding. For example it may be used to guide adjustment of the feed rate as a function of location on the part to eliminate figure errors while minimizing the total grinding time required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darby, John L.
LinguisticBelief is a Java computer code that evaluates combinations of linguistic variables using an approximate reasoning rule base. Each variable is comprised of fuzzy sets, and a rule base describes the reasoning on combinations of variables fuzzy sets. Uncertainty is considered and propagated through the rule base using the belief/plausibility measure. The mathematics of fuzzy sets, approximate reasoning, and belief/ plausibility are complex. Without an automated tool, this complexity precludes their application to all but the simplest of problems. LinguisticBelief automates the use of these techniques, allowing complex problems to be evaluated easily. LinguisticBelief can be used free of chargemore » on any Windows XP machine. This report documents the use and structure of the LinguisticBelief code, and the deployment package for installation client machines.« less
Research on the tool holder mode in high speed machining
NASA Astrophysics Data System (ADS)
Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao
2018-03-01
High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.
Parametric effects of turning Ti-6Al-4V alloys with aluminum oxide nanolubricants with SDBS
NASA Astrophysics Data System (ADS)
Ali, M. A. M.; Azmi, A. I.; Khalil, A. N. M.
2017-09-01
Applications of nanolubricants have been claimed to improve machinability of aerospace metals due to reduction of friction as a results of the rolling action of billions of nanoparticles at the tool-chip interface. In addition, the need to pursue for an eco-friendly machining has pushed researchers toward implementing alternative lubrication methods through minimal quantity lubrication (MQL). However, the gap in the current literature regarding the performance of nanolubricants via MQL has restricted the widespread use of this lubricant and technique in industries. The present work aims to understand the parametric effects of nanoparticles concentration, cutting speed, feed rate and nozzle angle during machining of titanium alloy, Ti-6AL-4V. Multiple performance of machinability outputs such as surface roughness, tool wear and power consumption were simultaneously determined via Taguchi orthogonal array and grey relational analyses. Prior to machining tests, the nanolubricants stabilities were investigated through the addition of surfactant; sodium dodecyl benzene sulfonate (SDBS). The results clearly indicated that inclusion of SDBS surfactant managed to reduce agglomeration in the base lubricant. Meanwhile, grey relational analyses revealed that the combination of 0.6 % nanoparticles concentration, cutting speed of 85 m/min, feed rate of 0.1 mm/rev and nozzle angle of 60o as desired setting for all the three machining outputs.
Micro electrical discharge milling using deionized water as a dielectric fluid
NASA Astrophysics Data System (ADS)
Chung, Do Kwan; Kim, Bo Hyun; Chu, Chong Nam
2007-05-01
In electrical discharge machining, dielectric fluid is an important factor affecting machining characteristics. Generally, kerosene and deionized water have been used as dielectric fluids. In micro electrical discharge milling, which uses a micro electrode as a tool, the wear of the tool electrode decreases the machining accuracy. However, the use of deionized water instead of kerosene can reduce the tool wear and increase the machining speed. This paper investigates micro electrical discharge milling using deionized water. Deionized water with high resistivity was used to minimize the machining gap. Machining characteristics such as the tool wear, machining gap and machining rate were investigated according to resistivity of deionized water. As the resistivity of deionized water decreased, the tool wear was reduced, but the machining gap increased due to electrochemical dissolution. Micro hemispheres were machined for the purpose of investigating machining efficiency between dielectric fluids, kerosene and deionized water.
Optimization of machining parameters in dry EDM of EN31 steel
NASA Astrophysics Data System (ADS)
Brar, G. S.
2018-03-01
Dry electric discharge machining (Dry EDM) is one of the novel EDM technology in which gases namely helium, argon, oxygen, nitrogen etc. are used as a dielectric medium at high pressure instead of oil based liquid dielectric. The present study investigates dry electric discharge machining (with rotary tool) of EN-31 steel to achieve lower tool wear rate (TWR) and better surface roughness (Ra) by performing a set of exploratory experiments with oxygen gas as dielectric. The effect of polarity, discharge current, gas flow pressure, pulse-on time, R.P.M. and gap voltage on the MRR, TWR and surface roughness (Ra) in dry EDM was studied with copper as rotary tool. The significant factors affecting MRR are discharge current and pulse on time. The significant factors affecting TWR are gas flow pressure, pulse on time and R.P.M. TWR was found close to zero in most of the experiments. The significant factors affecting Ra are pulse on time, gas flow pressure and R.P.M. It was found that polarity has nearly zero effect on all the three output variables.
Badal-Valero, Elena; Alvarez-Jareño, José A; Pavía, Jose M
2018-01-01
This paper is based on the analysis of the database of operations from a macro-case on money laundering orchestrated between a core company and a group of its suppliers, 26 of which had already been identified by the police as fraudulent companies. In the face of a well-founded suspicion that more companies have perpetrated criminal acts and in order to make better use of what are very limited police resources, we aim to construct a tool to detect money laundering criminals. We combine Benford's Law and machine learning algorithms (logistic regression, decision trees, neural networks, and random forests) to find patterns of money laundering criminals in the context of a real Spanish court case. After mapping each supplier's set of accounting data into a 21-dimensional space using Benford's Law and applying machine learning algorithms, additional companies that could merit further scrutiny are flagged up. A new tool to detect money laundering criminals is proposed in this paper. The tool is tested in the context of a real case. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Muralidhara, .; Vasa, Nilesh J.; Singaperumal, M.
2010-02-01
A micro-electro-discharge machine (Micro EDM) was developed incorporating a piezoactuated direct drive tool feed mechanism for micromachining of Silicon using a copper tool. Tool and workpiece materials are removed during Micro EDM process which demand for a tool wear compensation technique to reach the specified depth of machining on the workpiece. An in-situ axial tool wear and machining depth measurement system is developed to investigate axial wear ratio variations with machining depth. Stepwise micromachining experiments on silicon wafer were performed to investigate the variations in the silicon removal and tool wear depths with increase in tool feed. Based on these experimental data, a tool wear compensation method is proposed to reach the desired depth of micromachining on silicon using copper tool. Micromachining experiments are performed with the proposed tool wear compensation method and a maximum workpiece machining depth variation of 6% was observed.
Method and apparatus for characterizing and enhancing the functional performance of machine tools
Barkman, William E; Babelay, Jr., Edwin F; Smith, Kevin Scott; Assaid, Thomas S; McFarland, Justin T; Tursky, David A; Woody, Bethany; Adams, David
2013-04-30
Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include workpiece surface finish, and the ability to generate chips of the desired length.
Nanocomposites for Machining Tools
Loginov, Pavel; Mishnaevsky, Leon; Levashov, Evgeny
2017-01-01
Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance. PMID:29027926
NASA Astrophysics Data System (ADS)
Verma, Sneha K.; Chun, Sophia; Liu, Brent J.
2014-03-01
Pain is a common complication after spinal cord injury with prevalence estimates ranging 77% to 81%, which highly affects a patient's lifestyle and well-being. In the current clinical setting paper-based forms are used to classify pain correctly, however, the accuracy of diagnoses and optimal management of pain largely depend on the expert reviewer, which in many cases is not possible because of very few experts in this field. The need for a clinical decision support system that can be used by expert and non-expert clinicians has been cited in literature, but such a system has not been developed. We have designed and developed a stand-alone tool for correctly classifying pain type in spinal cord injury (SCI) patients, using Bayesian decision theory. Various machine learning simulation methods are used to verify the algorithm using a pilot study data set, which consists of 48 patients data set. The data set consists of the paper-based forms, collected at Long Beach VA clinic with pain classification done by expert in the field. Using the WEKA as the machine learning tool we have tested on the 48 patient dataset that the hypothesis that attributes collected on the forms and the pain location marked by patients have very significant impact on the pain type classification. This tool will be integrated with an imaging informatics system to support a clinical study that will test the effectiveness of using Proton Beam radiotherapy for treating spinal cord injury (SCI) related neuropathic pain as an alternative to invasive surgical lesioning.
NASA Technical Reports Server (NTRS)
Shearrow, Charles A.
1999-01-01
One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.
Bitter or not? BitterPredict, a tool for predicting taste from chemical structure.
Dagan-Wiener, Ayana; Nissim, Ido; Ben Abu, Natalie; Borgonovo, Gigliola; Bassoli, Angela; Niv, Masha Y
2017-09-21
Bitter taste is an innately aversive taste modality that is considered to protect animals from consuming toxic compounds. Yet, bitterness is not always noxious and some bitter compounds have beneficial effects on health. Hundreds of bitter compounds were reported (and are accessible via the BitterDB http://bitterdb.agri.huji.ac.il/dbbitter.php ), but numerous additional bitter molecules are still unknown. The dramatic chemical diversity of bitterants makes bitterness prediction a difficult task. Here we present a machine learning classifier, BitterPredict, which predicts whether a compound is bitter or not, based on its chemical structure. BitterDB was used as the positive set, and non-bitter molecules were gathered from literature to create the negative set. Adaptive Boosting (AdaBoost), based on decision trees machine-learning algorithm was applied to molecules that were represented using physicochemical and ADME/Tox descriptors. BitterPredict correctly classifies over 80% of the compounds in the hold-out test set, and 70-90% of the compounds in three independent external sets and in sensory test validation, providing a quick and reliable tool for classifying large sets of compounds into bitter and non-bitter groups. BitterPredict suggests that about 40% of random molecules, and a large portion (66%) of clinical and experimental drugs, and of natural products (77%) are bitter.
Machine tools and fixtures: A compilation
NASA Technical Reports Server (NTRS)
1971-01-01
As part of NASA's Technology Utilizations Program, a compilation was made of technological developments regarding machine tools, jigs, and fixtures that have been produced, modified, or adapted to meet requirements of the aerospace program. The compilation is divided into three sections that include: (1) a variety of machine tool applications that offer easier and more efficient production techniques; (2) methods, techniques, and hardware that aid in the setup, alignment, and control of machines and machine tools to further quality assurance in finished products: and (3) jigs, fixtures, and adapters that are ancillary to basic machine tools and aid in realizing their greatest potential.
Overview of the Machine-Tool Task Force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.
1981-06-08
The Machine Tool Task Force, (MTTF) surveyed the state of the art of machine tool technology for material removal for two and one-half years. This overview gives a brief summary of the approach, specific subjects covered, principal conclusions and some of the key recommendations aimed at improving the technology and advancing the productivity of machine tools. The Task Force consisted of 123 experts from the US and other countries. Their findings are documented in a five-volume report, Technology of Machine Tools.
Application of Elements of TPM Strategy for Operation Analysis of Mining Machine
NASA Astrophysics Data System (ADS)
Brodny, Jaroslaw; Tutak, Magdalena
2017-12-01
Total Productive Maintenance (TPM) strategy includes group of activities and actions in order to maintenance machines in failure-free state and without breakdowns thanks to tending limitation of failures, non-planned shutdowns, lacks and non-planned service of machines. These actions are ordered to increase effectiveness of utilization of possessed devices and machines in company. Very significant element of this strategy is connection of technical actions with changes in their perception by employees. Whereas fundamental aim of introduction this strategy is improvement of economic efficiency of enterprise. Increasing competition and necessity of reduction of production costs causes that also mining enterprises are forced to introduce this strategy. In the paper examples of use of OEE model for quantitative evaluation of selected mining devices were presented. OEE model is quantitative tool of TPM strategy and can be the base for further works connected with its introduction. OEE indicator is the product of three components which include availability and performance of the studied machine and the quality of the obtained product. The paper presents the results of the effectiveness analysis of the use of a set of mining machines included in the longwall system, which is the first and most important link in the technological line of coal production. The set of analyzed machines included the longwall shearer, armored face conveyor and cruscher. From a reliability point of view, the analyzed set of machines is a system that is characterized by the serial structure. The analysis was based on data recorded by the industrial automation system used in the mines. This method of data acquisition ensured their high credibility and a full time synchronization. Conclusions from the research and analyses should be used to reduce breakdowns, failures and unplanned downtime, increase performance and improve production quality.
A method to identify the main mode of machine tool under operating conditions
NASA Astrophysics Data System (ADS)
Wang, Daming; Pan, Yabing
2017-04-01
The identification of the modal parameters under experimental conditions is the most common procedure when solving the problem of machine tool structure vibration. However, the influence of each mode on the machine tool vibration in real working conditions remains unknown. In fact, the contributions each mode makes to the machine tool vibration during machining process are different. In this article, an active excitation modal analysis is applied to identify the modal parameters in operational condition, and the Operating Deflection Shapes (ODS) in frequencies of high level vibration that affect the quality of machining in real working conditions are obtained. Then, the ODS is decomposed by the mode shapes which are identified in operational conditions. So, the contributions each mode makes to machine tool vibration during machining process are got by decomposition coefficients. From the previous steps, we can find out the main modes which effect the machine tool more significantly in working conditions. This method was also verified to be effective by experiments.
Linear positioning laser calibration setup of CNC machine tools
NASA Astrophysics Data System (ADS)
Sui, Xiulin; Yang, Congjing
2002-10-01
The linear positioning laser calibration setup of CNC machine tools is capable of executing machine tool laser calibraiotn and backlash compensation. Using this setup, hole locations on CNC machien tools will be correct and machien tool geometry will be evaluated and adjusted. Machien tool laser calibration and backlash compensation is a simple and straightforward process. First the setup is to 'find' the stroke limits of the axis. Then the laser head is then brought into correct alignment. Second is to move the machine axis to the other extreme, the laser head is now aligned, using rotation and elevation adjustments. Finally the machine is moved to the start position and final alignment is verified. The stroke of the machine, and the machine compensation interval dictate the amount of data required for each axis. These factors determine the amount of time required for a through compensation of the linear positioning accuracy. The Laser Calibrator System monitors the material temperature and the air density; this takes into consideration machine thermal growth and laser beam frequency. This linear positioning laser calibration setup can be used on CNC machine tools, CNC lathes, horizontal centers and vertical machining centers.
Standardized Curriculum for Machine Tool Operation/Machine Shop.
ERIC Educational Resources Information Center
Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.
Standardized vocational education course titles and core contents for two courses in Mississippi are provided: machine tool operation/machine shop I and II. The first course contains the following units: (1) orientation; (2) shop safety; (3) shop math; (4) measuring tools and instruments; (5) hand and bench tools; (6) blueprint reading; (7)…
PredicT-ML: a tool for automating machine learning model building with big clinical data.
Luo, Gang
2016-01-01
Predictive modeling is fundamental to transforming large clinical data sets, or "big clinical data," into actionable knowledge for various healthcare applications. Machine learning is a major predictive modeling approach, but two barriers make its use in healthcare challenging. First, a machine learning tool user must choose an algorithm and assign one or more model parameters called hyper-parameters before model training. The algorithm and hyper-parameter values used typically impact model accuracy by over 40 %, but their selection requires many labor-intensive manual iterations that can be difficult even for computer scientists. Second, many clinical attributes are repeatedly recorded over time, requiring temporal aggregation before predictive modeling can be performed. Many labor-intensive manual iterations are required to identify a good pair of aggregation period and operator for each clinical attribute. Both barriers result in time and human resource bottlenecks, and preclude healthcare administrators and researchers from asking a series of what-if questions when probing opportunities to use predictive models to improve outcomes and reduce costs. This paper describes our design of and vision for PredicT-ML (prediction tool using machine learning), a software system that aims to overcome these barriers and automate machine learning model building with big clinical data. The paper presents the detailed design of PredicT-ML. PredicT-ML will open the use of big clinical data to thousands of healthcare administrators and researchers and increase the ability to advance clinical research and improve healthcare.
Cangelosi, Davide; Muselli, Marco; Parodi, Stefano; Blengio, Fabiola; Becherini, Pamela; Versteeg, Rogier; Conte, Massimo; Varesio, Luigi
2014-01-01
Cancer patient's outcome is written, in part, in the gene expression profile of the tumor. We previously identified a 62-probe sets signature (NB-hypo) to identify tissue hypoxia in neuroblastoma tumors and showed that NB-hypo stratified neuroblastoma patients in good and poor outcome 1. It was important to develop a prognostic classifier to cluster patients into risk groups benefiting of defined therapeutic approaches. Novel classification and data discretization approaches can be instrumental for the generation of accurate predictors and robust tools for clinical decision support. We explored the application to gene expression data of Rulex, a novel software suite including the Attribute Driven Incremental Discretization technique for transforming continuous variables into simplified discrete ones and the Logic Learning Machine model for intelligible rule generation. We applied Rulex components to the problem of predicting the outcome of neuroblastoma patients on the bases of 62 probe sets NB-hypo gene expression signature. The resulting classifier consisted in 9 rules utilizing mainly two conditions of the relative expression of 11 probe sets. These rules were very effective predictors, as shown in an independent validation set, demonstrating the validity of the LLM algorithm applied to microarray data and patients' classification. The LLM performed as efficiently as Prediction Analysis of Microarray and Support Vector Machine, and outperformed other learning algorithms such as C4.5. Rulex carried out a feature selection by selecting a new signature (NB-hypo-II) of 11 probe sets that turned out to be the most relevant in predicting outcome among the 62 of the NB-hypo signature. Rules are easily interpretable as they involve only few conditions. Our findings provided evidence that the application of Rulex to the expression values of NB-hypo signature created a set of accurate, high quality, consistent and interpretable rules for the prediction of neuroblastoma patients' outcome. We identified the Rulex weighted classification as a flexible tool that can support clinical decisions. For these reasons, we consider Rulex to be a useful tool for cancer classification from microarray gene expression data.
Automatic welding detection by an intelligent tool pipe inspection
NASA Astrophysics Data System (ADS)
Arizmendi, C. J.; Garcia, W. L.; Quintero, M. A.
2015-07-01
This work provide a model based on machine learning techniques in welds recognition, based on signals obtained through in-line inspection tool called “smart pig” in Oil and Gas pipelines. The model uses a signal noise reduction phase by means of pre-processing algorithms and attribute-selection techniques. The noise reduction techniques were selected after a literature review and testing with survey data. Subsequently, the model was trained using recognition and classification algorithms, specifically artificial neural networks and support vector machines. Finally, the trained model was validated with different data sets and the performance was measured with cross validation and ROC analysis. The results show that is possible to identify welding automatically with an efficiency between 90 and 98 percent.
NASA Technical Reports Server (NTRS)
Tick, Evan
1987-01-01
This note describes an efficient software emulator for the Warren Abstract Machine (WAM) Prolog architecture. The version of the WAM implemented is called Lcode. The Lcode emulator, written in C, executes the 'naive reverse' benchmark at 3900 LIPS. The emulator is one of a set of tools used to measure the memory-referencing characteristics and performance of Prolog programs. These tools include a compiler, assembler, and memory simulators. An overview of the Lcode architecture is given here, followed by a description and listing of the emulator code implementing each Lcode instruction. This note will be of special interest to those studying the WAM and its performance characteristics. In general, this note will be of interest to those creating efficient software emulators for abstract machine architectures.
Technology of machine tools. Volume 4. Machine tool controls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
Technology of machine tools. Volume 3. Machine tool mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tlusty, J.
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
Technology of machine tools. Volume 5. Machine tool accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hocken, R.J.
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-12
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,971] ASC Machine Tools, Inc... workers and former workers of ASC Machine Tools, Inc., Spokane Valley, Washington (the subject firm). The... workers of ASC Machine Tools, Inc., Spokane Valley, Washington. Signed in Washington, DC, on this 2nd day...
Classification Algorithms for Big Data Analysis, a Map Reduce Approach
NASA Astrophysics Data System (ADS)
Ayma, V. A.; Ferreira, R. S.; Happ, P.; Oliveira, D.; Feitosa, R.; Costa, G.; Plaza, A.; Gamba, P.
2015-03-01
Since many years ago, the scientific community is concerned about how to increase the accuracy of different classification methods, and major achievements have been made so far. Besides this issue, the increasing amount of data that is being generated every day by remote sensors raises more challenges to be overcome. In this work, a tool within the scope of InterIMAGE Cloud Platform (ICP), which is an open-source, distributed framework for automatic image interpretation, is presented. The tool, named ICP: Data Mining Package, is able to perform supervised classification procedures on huge amounts of data, usually referred as big data, on a distributed infrastructure using Hadoop MapReduce. The tool has four classification algorithms implemented, taken from WEKA's machine learning library, namely: Decision Trees, Naïve Bayes, Random Forest and Support Vector Machines (SVM). The results of an experimental analysis using a SVM classifier on data sets of different sizes for different cluster configurations demonstrates the potential of the tool, as well as aspects that affect its performance.
NASA Astrophysics Data System (ADS)
Robert-Perron, Etienne; Blais, Carl; Pelletier, Sylvain; Thomas, Yannig
2007-06-01
The green machining process is an interesting approach for solving the mediocre machining behavior of high-performance powder metallurgy (PM) steels. This process appears as a promising method for extending tool life and reducing machining costs. Recent improvements in binder/lubricant technologies have led to high green strength systems that enable green machining. So far, tool wear has been considered negligible when characterizing the machinability of green PM specimens. This inaccurate assumption may lead to the selection of suboptimum cutting conditions. The first part of this study involves the optimization of the machining parameters to minimize the effects of tool wear on the machinability in turning of green PM components. The second part of our work compares the sintered mechanical properties of components machined in green state with other machined after sintering.
EQUIPMENT FOR SPARK-ASSISTED MACHINING (OBORUDOVANIE DLYA ELEKTROISKROVOI OBRABOTKI),
MACHINE TOOLS, * ELECTROEROSIVE MACHINING), MACHINE TOOL INDUSTRY, ELECTROFORMING, ELECTRODES, ELECTROLYTIC CAPACITORS, ELECTRIC DISCHARGES, TOLERANCES(MECHANICS), SURFACE ROUGHNESS, DIES, MOLDINGS, SYNTHETIC FIBERS, USSR
MetaJC++: A flexible and automatic program transformation technique using meta framework
NASA Astrophysics Data System (ADS)
Beevi, Nadera S.; Reghu, M.; Chitraprasad, D.; Vinodchandra, S. S.
2014-09-01
Compiler is a tool to translate abstract code containing natural language terms to machine code. Meta compilers are available to compile more than one languages. We have developed a meta framework intends to combine two dissimilar programming languages, namely C++ and Java to provide a flexible object oriented programming platform for the user. Suitable constructs from both the languages have been combined, thereby forming a new and stronger Meta-Language. The framework is developed using the compiler writing tools, Flex and Yacc to design the front end of the compiler. The lexer and parser have been developed to accommodate the complete keyword set and syntax set of both the languages. Two intermediate representations have been used in between the translation of the source program to machine code. Abstract Syntax Tree has been used as a high level intermediate representation that preserves the hierarchical properties of the source program. A new machine-independent stack-based byte-code has also been devised to act as a low level intermediate representation. The byte-code is essentially organised into an output class file that can be used to produce an interpreted output. The results especially in the spheres of providing C++ concepts in Java have given an insight regarding the potential strong features of the resultant meta-language.
MLBCD: a machine learning tool for big clinical data.
Luo, Gang
2015-01-01
Predictive modeling is fundamental for extracting value from large clinical data sets, or "big clinical data," advancing clinical research, and improving healthcare. Machine learning is a powerful approach to predictive modeling. Two factors make machine learning challenging for healthcare researchers. First, before training a machine learning model, the values of one or more model parameters called hyper-parameters must typically be specified. Due to their inexperience with machine learning, it is hard for healthcare researchers to choose an appropriate algorithm and hyper-parameter values. Second, many clinical data are stored in a special format. These data must be iteratively transformed into the relational table format before conducting predictive modeling. This transformation is time-consuming and requires computing expertise. This paper presents our vision for and design of MLBCD (Machine Learning for Big Clinical Data), a new software system aiming to address these challenges and facilitate building machine learning predictive models using big clinical data. The paper describes MLBCD's design in detail. By making machine learning accessible to healthcare researchers, MLBCD will open the use of big clinical data and increase the ability to foster biomedical discovery and improve care.
Technology of machine tools. Volume 2. Machine tool systems management and utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, A.R.
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
NASA Astrophysics Data System (ADS)
Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard
2017-09-01
Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.
A machine learning approach to triaging patients with chronic obstructive pulmonary disease
Qirko, Klajdi; Smith, Ted; Corcoran, Ethan; Wysham, Nicholas G.; Bazaz, Gaurav; Kappel, George; Gerber, Anthony N.
2017-01-01
COPD patients are burdened with a daily risk of acute exacerbation and loss of control, which could be mitigated by effective, on-demand decision support tools. In this study, we present a machine learning-based strategy for early detection of exacerbations and subsequent triage. Our application uses physician opinion in a statistically and clinically comprehensive set of patient cases to train a supervised prediction algorithm. The accuracy of the model is assessed against a panel of physicians each triaging identical cases in a representative patient validation set. Our results show that algorithm accuracy and safety indicators surpass all individual pulmonologists in both identifying exacerbations and predicting the consensus triage in a 101 case validation set. The algorithm is also the top performer in sensitivity, specificity, and ppv when predicting a patient’s need for emergency care. PMID:29166411
Investigation of roughing machining simulation by using visual basic programming in NX CAM system
NASA Astrophysics Data System (ADS)
Hafiz Mohamad, Mohamad; Nafis Osman Zahid, Muhammed
2018-03-01
This paper outlines a simulation study to investigate the characteristic of roughing machining simulation in 4th axis milling processes by utilizing visual basic programming in NX CAM systems. The selection and optimization of cutting orientation in rough milling operation is critical in 4th axis machining. The main purpose of roughing operation is to approximately shape the machined parts into finished form by removing the bulk of material from workpieces. In this paper, the simulations are executed by manipulating a set of different cutting orientation to generate estimated volume removed from the machine parts. The cutting orientation with high volume removal is denoted as an optimum value and chosen to execute a roughing operation. In order to run the simulation, customized software is developed to assist the routines. Operations build-up instructions in NX CAM interface are translated into programming codes via advanced tool available in the Visual Basic Studio. The codes is customized and equipped with decision making tools to run and control the simulations. It permits the integration with any independent program files to execute specific operations. This paper aims to discuss about the simulation program and identifies optimum cutting orientations for roughing processes. The output of this study will broaden up the simulation routines performed in NX CAM systems.
NASA Astrophysics Data System (ADS)
Ravi, A. M.; Murigendrappa, S. M.
2018-04-01
In recent times, thermally enhanced machining (TEM) slowly gearing up to cut hard metals like high chrome white cast iron (HCWCI) which were impossible in conventional procedures. Also setting up of suitable cutting parameters and positioning of the heat source against the work appears to be critical in order to enhance the machinability characteristics of the work material. In this research work, the Oxy - LPG flame was used as the heat source and HCWCI as the workpiece. ANSYS-CFD-Flow software was used to develop the transient thermal model to analyze the thermal flux distribution on the work surface during TEM of HCWCI using Cubic boron nitride (CBN) tools. Non-contact type Infrared thermo sensor was used to measure the surface temperature continuously at different positions, and is validated with the thermal model results. The result confirms thermal model is a better predictive tool for thermal flux distribution analysis in TEM process.
Johnson, Donna B.; Krieger, James; MacDougall, Erin; Payne, Elizabeth; Chan, Nadine L.
2015-01-01
Policies that change environments are important tools for preventing chronic diseases, including obesity. Boards of health often have authority to adopt such policies, but few do so. This study assesses 1) how one local board of health developed a policy approach for healthy food access through vending machine guidelines (rather than regulations) and 2) the impact of the approach. Using a case study design guided by “three streams” policy theory and RE-AIM, we analyzed data from a focus group, interviews, and policy documents. The guidelines effectively supported institutional policy development in several settings. Recognition of the problem of chronic disease and the policy solution of vending machine guidelines created an opening for the board to influence nutrition environments. Institutions identified a need for support in adopting vending machine policies. Communities could benefit from the study board’s approach to using nonregulatory evidence-based guidelines as a policy tool. PMID:25927606
Zhao, Jiangsan; Bodner, Gernot; Rewald, Boris
2016-01-01
Phenotyping local crop cultivars is becoming more and more important, as they are an important genetic source for breeding – especially in regard to inherent root system architectures. Machine learning algorithms are promising tools to assist in the analysis of complex data sets; novel approaches are need to apply them on root phenotyping data of mature plants. A greenhouse experiment was conducted in large, sand-filled columns to differentiate 16 European Pisum sativum cultivars based on 36 manually derived root traits. Through combining random forest and support vector machine models, machine learning algorithms were successfully used for unbiased identification of most distinguishing root traits and subsequent pairwise cultivar differentiation. Up to 86% of pea cultivar pairs could be distinguished based on top five important root traits (Timp5) – Timp5 differed widely between cultivar pairs. Selecting top important root traits (Timp) provided a significant improved classification compared to using all available traits or randomly selected trait sets. The most frequent Timp of mature pea cultivars was total surface area of lateral roots originating from tap root segments at 0–5 cm depth. The high classification rate implies that culturing did not lead to a major loss of variability in root system architecture in the studied pea cultivars. Our results illustrate the potential of machine learning approaches for unbiased (root) trait selection and cultivar classification based on rather small, complex phenotypic data sets derived from pot experiments. Powerful statistical approaches are essential to make use of the increasing amount of (root) phenotyping information, integrating the complex trait sets describing crop cultivars. PMID:27999587
Yugandhar, K; Gromiha, M Michael
2014-09-01
Protein-protein interactions are intrinsic to virtually every cellular process. Predicting the binding affinity of protein-protein complexes is one of the challenging problems in computational and molecular biology. In this work, we related sequence features of protein-protein complexes with their binding affinities using machine learning approaches. We set up a database of 185 protein-protein complexes for which the interacting pairs are heterodimers and their experimental binding affinities are available. On the other hand, we have developed a set of 610 features from the sequences of protein complexes and utilized Ranker search method, which is the combination of Attribute evaluator and Ranker method for selecting specific features. We have analyzed several machine learning algorithms to discriminate protein-protein complexes into high and low affinity groups based on their Kd values. Our results showed a 10-fold cross-validation accuracy of 76.1% with the combination of nine features using support vector machines. Further, we observed accuracy of 83.3% on an independent test set of 30 complexes. We suggest that our method would serve as an effective tool for identifying the interacting partners in protein-protein interaction networks and human-pathogen interactions based on the strength of interactions. © 2014 Wiley Periodicals, Inc.
Machine-Learning Algorithms to Code Public Health Spending Accounts
Leider, Jonathon P.; Resnick, Beth A.; Alfonso, Y. Natalia; Bishai, David
2017-01-01
Objectives: Government public health expenditure data sets require time- and labor-intensive manipulation to summarize results that public health policy makers can use. Our objective was to compare the performances of machine-learning algorithms with manual classification of public health expenditures to determine if machines could provide a faster, cheaper alternative to manual classification. Methods: We used machine-learning algorithms to replicate the process of manually classifying state public health expenditures, using the standardized public health spending categories from the Foundational Public Health Services model and a large data set from the US Census Bureau. We obtained a data set of 1.9 million individual expenditure items from 2000 to 2013. We collapsed these data into 147 280 summary expenditure records, and we followed a standardized method of manually classifying each expenditure record as public health, maybe public health, or not public health. We then trained 9 machine-learning algorithms to replicate the manual process. We calculated recall, precision, and coverage rates to measure the performance of individual and ensembled algorithms. Results: Compared with manual classification, the machine-learning random forests algorithm produced 84% recall and 91% precision. With algorithm ensembling, we achieved our target criterion of 90% recall by using a consensus ensemble of ≥6 algorithms while still retaining 93% coverage, leaving only 7% of the summary expenditure records unclassified. Conclusions: Machine learning can be a time- and cost-saving tool for estimating public health spending in the United States. It can be used with standardized public health spending categories based on the Foundational Public Health Services model to help parse public health expenditure information from other types of health-related spending, provide data that are more comparable across public health organizations, and evaluate the impact of evidence-based public health resource allocation. PMID:28363034
Machine-Learning Algorithms to Code Public Health Spending Accounts.
Brady, Eoghan S; Leider, Jonathon P; Resnick, Beth A; Alfonso, Y Natalia; Bishai, David
Government public health expenditure data sets require time- and labor-intensive manipulation to summarize results that public health policy makers can use. Our objective was to compare the performances of machine-learning algorithms with manual classification of public health expenditures to determine if machines could provide a faster, cheaper alternative to manual classification. We used machine-learning algorithms to replicate the process of manually classifying state public health expenditures, using the standardized public health spending categories from the Foundational Public Health Services model and a large data set from the US Census Bureau. We obtained a data set of 1.9 million individual expenditure items from 2000 to 2013. We collapsed these data into 147 280 summary expenditure records, and we followed a standardized method of manually classifying each expenditure record as public health, maybe public health, or not public health. We then trained 9 machine-learning algorithms to replicate the manual process. We calculated recall, precision, and coverage rates to measure the performance of individual and ensembled algorithms. Compared with manual classification, the machine-learning random forests algorithm produced 84% recall and 91% precision. With algorithm ensembling, we achieved our target criterion of 90% recall by using a consensus ensemble of ≥6 algorithms while still retaining 93% coverage, leaving only 7% of the summary expenditure records unclassified. Machine learning can be a time- and cost-saving tool for estimating public health spending in the United States. It can be used with standardized public health spending categories based on the Foundational Public Health Services model to help parse public health expenditure information from other types of health-related spending, provide data that are more comparable across public health organizations, and evaluate the impact of evidence-based public health resource allocation.
NASA Astrophysics Data System (ADS)
Devillez, Arnaud; Dudzinski, Daniel
2007-01-01
Today the knowledge of a process is very important for engineers to find optimal combination of control parameters warranting productivity, quality and functioning without defects and failures. In our laboratory, we carry out research in the field of high speed machining with modelling, simulation and experimental approaches. The aim of our investigation is to develop a software allowing the cutting conditions optimisation to limit the number of predictive tests, and the process monitoring to prevent any trouble during machining operations. This software is based on models and experimental data sets which constitute the knowledge of the process. In this paper, we deal with the problem of vibrations occurring during a machining operation. These vibrations may cause some failures and defects to the process, like workpiece surface alteration and rapid tool wear. To measure on line the tool micro-movements, we equipped a lathe with a specific instrumentation using eddy current sensors. Obtained signals were correlated with surface finish and a signal processing algorithm was used to determine if a test is stable or unstable. Then, a fuzzy classification method was proposed to classify the tests in a space defined by the width of cut and the cutting speed. Finally, it was shown that the fuzzy classification takes into account of the measurements incertitude to compute the stability limit or stability lobes of the process.
Modal identification of spindle-tool unit in high-speed machining
NASA Astrophysics Data System (ADS)
Gagnol, Vincent; Le, Thien-Phu; Ray, Pascal
2011-10-01
The accurate knowledge of high-speed motorised spindle dynamic behaviour during machining is important in order to ensure the reliability of machine tools in service and the quality of machined parts. More specifically, the prediction of stable cutting regions, which is a critical requirement for high-speed milling operations, requires the accurate estimation of tool/holder/spindle set dynamic modal parameters. These estimations are generally obtained through Frequency Response Function (FRF) measurements of the non-rotating spindle. However, significant changes in modal parameters are expected to occur during operation, due to high-speed spindle rotation. The spindle's modal variations are highlighted through an integrated finite element model of the dynamic high-speed spindle-bearing system, taking into account rotor dynamics effects. The dependency of dynamic behaviour on speed range is then investigated and determined with accuracy. The objective of the proposed paper is to validate these numerical results through an experiment-based approach. Hence, an experimental setup is elaborated to measure rotating tool vibration during the machining operation in order to determine the spindle's modal frequency variation with respect to spindle speed in an industrial environment. The identification of natural frequencies of the spindle under rotating conditions is challenging, due to the low number of sensors and the presence of many harmonics in the measured signals. In order to overcome these issues and to extract the characteristics of the system, the spindle modes are determined through a 3-step procedure. First, spindle modes are highlighted using the Frequency Domain Decomposition (FDD) technique, with a new formulation at the considered rotating speed. These extracted modes are then analysed through the value of their respective damping ratios in order to separate the harmonics component from structural spindle natural frequencies. Finally, the stochastic properties of the modes are also investigated by considering the probability density of the retained modes. Results show a good correlation between numerical and experiment-based identified frequencies. The identified spindle-tool modal properties during machining allow the numerical model to be considered as representative of the real dynamic properties of the system.
Reducing forces during drilling brittle hard materials by using ultrasonic and variation of coolant
NASA Astrophysics Data System (ADS)
Schopf, C.; Rascher, R.
2016-11-01
The process of ultrasonic machining is especially used for brittle hard materials as the additional ultrasonic vibration of the tool at high frequencies and low amplitudes acts like a hammer on the surface. With this technology it is possible to drill holes with lower forces, therefor the machining can be done faster and the worktime is much less than conventionally. A three-axis dynamometer was used to measure the forces, which act between the tool and the sample part. A focus is set on the sharpness of the tool. The results of a test series are based on the Sauer Ultrasonic Grinding Centre. On the same machine it is possible to drill holes in the conventional way. Additional to the ultasonic Input the type an concentration of coolant is important for the Drilling-force. In the test there were three different coolant and three different concentrations tested. The combination of ultrasonic vibration and the right coolant and concentration is the best way to reduce the Forces. Another positive effect is, that lower drilling-forces produce smaller chipping on the edge of the hole. The way to reduce the forces and chipping is the main issue of this paper.
Plan for conducting an international machine tool task force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.; McClure, E.R.; Schuman, J.F.
1978-08-28
The basic objectives of the Machine Tool Task Force (MTTF) are to characterize and summarize the state of the art of cutting machine tool technology and to identify promising areas of future R and D. These goals will be accomplished with a series of multidisciplinary teams of prominent experts and individuals experienced in the specialized technologies of machine tools or in the management of machine tool operations. Experts will be drawn from all areas of the machine tool community: machine tool users or buyer organizations, builders, and R and D establishments including universities and government laboratories, both domestic and foreign.more » A plan for accomplishing this task is presented. The area of machine tool technology has been divided into about two dozen technology subjects on which teams of one or more experts will work. These teams are, in turn, organized into four principal working groups dealing, respectively, with machine tool accuracy, mechanics, control, and management systems/utilization. Details are presented on specific subjects to be covered, the organization of the Task Force and its four working groups, and the basic approach to determining the state of the art of technology and the future directions of this technology. The planned review procedure, the potential benefits, our management approach, and the schedule, as well as the key participating personnel and their background are discussed. The initial meeting of MTTF members will be held at a plenary session on October 16 and 17, 1978, in Scottsdale, AZ. The MTTF study will culminate in a conference on September 1, 1980, in Chicago, IL, immediately preceeding the 1980 International Machine Tool Show. At this time, our results will be released to the public; a series of reports will be published in late 1980.« less
Robots as Language Learning Tools
ERIC Educational Resources Information Center
Collado, Ericka
2017-01-01
Robots are machines that resemble different forms, usually those of humans or animals, that can perform preprogrammed or autonomous tasks (Robot, n.d.). With the emergence of STEM programs, there has been a rise in the use of robots in educational settings. STEM programs are those where students study science, technology, engineering and…
NASA Astrophysics Data System (ADS)
Sigurdson, J.; Tagerud, J.
1986-05-01
A UNIDO publication about machine tools with automatic control discusses the following: (1) numerical control (NC) machine tool perspectives, definition of NC, flexible manufacturing systems, robots and their industrial application, research and development, and sensors; (2) experience in developing a capability in NC machine tools; (3) policy issues; (4) procedures for retrieval of relevant documentation from data bases. Diagrams, statistics, bibliography are included.
NASA Astrophysics Data System (ADS)
Dasgupta, S.; Mukherjee, S.
2016-09-01
One of the most significant factors in metal cutting is tool life. In this research work, the effects of machining parameters on tool under wet machining environment were studied. Tool life characteristics of brazed carbide cutting tool machined against mild steel and optimization of machining parameters based on Taguchi design of experiments were examined. The experiments were conducted using three factors, spindle speed, feed rate and depth of cut each having three levels. Nine experiments were performed on a high speed semi-automatic precision central lathe. ANOVA was used to determine the level of importance of the machining parameters on tool life. The optimum machining parameter combination was obtained by the analysis of S/N ratio. A mathematical model based on multiple regression analysis was developed to predict the tool life. Taguchi's orthogonal array analysis revealed the optimal combination of parameters at lower levels of spindle speed, feed rate and depth of cut which are 550 rpm, 0.2 mm/rev and 0.5mm respectively. The Main Effects plot reiterated the same. The variation of tool life with different process parameters has been plotted. Feed rate has the most significant effect on tool life followed by spindle speed and depth of cut.
Nouretdinov, Ilia; Costafreda, Sergi G; Gammerman, Alexander; Chervonenkis, Alexey; Vovk, Vladimir; Vapnik, Vladimir; Fu, Cynthia H Y
2011-05-15
There is rapidly accumulating evidence that the application of machine learning classification to neuroimaging measurements may be valuable for the development of diagnostic and prognostic prediction tools in psychiatry. However, current methods do not produce a measure of the reliability of the predictions. Knowing the risk of the error associated with a given prediction is essential for the development of neuroimaging-based clinical tools. We propose a general probabilistic classification method to produce measures of confidence for magnetic resonance imaging (MRI) data. We describe the application of transductive conformal predictor (TCP) to MRI images. TCP generates the most likely prediction and a valid measure of confidence, as well as the set of all possible predictions for a given confidence level. We present the theoretical motivation for TCP, and we have applied TCP to structural and functional MRI data in patients and healthy controls to investigate diagnostic and prognostic prediction in depression. We verify that TCP predictions are as accurate as those obtained with more standard machine learning methods, such as support vector machine, while providing the additional benefit of a valid measure of confidence for each prediction. Copyright © 2010 Elsevier Inc. All rights reserved.
Highly Productive Tools For Turning And Milling
NASA Astrophysics Data System (ADS)
Vasilko, Karol
2015-12-01
Beside cutting speed, shift is another important parameter of machining. Its considerable influence is shown mainly in the workpiece machined surface microgeometry. In practice, mainly its combination with the radius of cutting tool tip rounding is used. Options to further increase machining productivity and machined surface quality are hidden in this approach. The paper presents variations of the design of productive cutting tools for lathe work and milling on the base of the use of the laws of the relationship among the highest reached uneveness of machined surface, tool tip radius and shift.
The in-situ 3D measurement system combined with CNC machine tools
NASA Astrophysics Data System (ADS)
Zhao, Huijie; Jiang, Hongzhi; Li, Xudong; Sui, Shaochun; Tang, Limin; Liang, Xiaoyue; Diao, Xiaochun; Dai, Jiliang
2013-06-01
With the development of manufacturing industry, the in-situ 3D measurement for the machining workpieces in CNC machine tools is regarded as the new trend of efficient measurement. We introduce a 3D measurement system based on the stereovision and phase-shifting method combined with CNC machine tools, which can measure 3D profile of the machining workpieces between the key machining processes. The measurement system utilizes the method of high dynamic range fringe acquisition to solve the problem of saturation induced by specular lights reflected from shiny surfaces such as aluminum alloy workpiece or titanium alloy workpiece. We measured two workpieces of aluminum alloy on the CNC machine tools to demonstrate the effectiveness of the developed measurement system.
Identification of Tool Wear when Machining of Austenitic Steels and Titatium by Miniature Machining
NASA Astrophysics Data System (ADS)
Pilc, Jozef; Kameník, Roman; Varga, Daniel; Martinček, Juraj; Sadilek, Marek
2016-12-01
Application of miniature machining is currently rapidly increasing mainly in biomedical industry and machining of hard-to-machine materials. Machinability of materials with increased level of toughness depends on factors that are important in the final state of surface integrity. Because of this, it is necessary to achieve high precision (varying in microns) in miniature machining. If we want to guarantee machining high precision, it is necessary to analyse tool wear intensity in direct interaction with given machined materials. During long-term cutting process, different cutting wedge deformations occur, leading in most cases to a rapid wear and destruction of the cutting wedge. This article deal with experimental monitoring of tool wear intensity during miniature machining.
Functional specifications for AI software tools for electric power applications. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faught, W.S.
1985-08-01
The principle barrier to the introduction of artificial intelligence (AI) technology to the electric power industry has not been a lack of interest or appropriate problems, for the industry abounds in both. Like most others, however, the electric power industry lacks the personnel - knowledge engineers - with the special combination of training and skills AI programming demands. Conversely, very few AI specialists are conversant with electric power industry problems and applications. The recent availability of sophisticated AI programming environments is doing much to alleviate this shortage. These products provide a set of powerful and usable software tools that enablemore » even non-AI scientists to rapidly develop AI applications. The purpose of this project was to develop functional specifications for programming tools that, when integrated with existing general-purpose knowledge engineering tools, would expedite the production of AI applications for the electric power industry. Twelve potential applications, representative of major problem domains within the nuclear power industry, were analyzed in order to identify those tools that would be of greatest value in application development. Eight tools were specified, including facilities for power plant modeling, data base inquiry, simulation and machine-machine interface.« less
Factors Governing Surface Form Accuracy In Diamond Machined Components
NASA Astrophysics Data System (ADS)
Myler, J. K.; Page, D. A.
1988-10-01
Manufacturing methods for diamond machined optical surfaces, for application at infrared wavelengths, require that a new set of criteria must be recognised for the specification of surface form. Appropriate surface form parameters are discussed with particular reference to an XY cartesian geometry CNC machine. Methods for reducing surface form errors in diamond machining are discussed for certain areas such as tool wear, tool centring, and the fixturing of the workpiece. Examples of achievable surface form accuracy are presented. Traditionally, optical surfaces have been produced by use of random polishing techniques using polishing compounds and lapping tools. For lens manufacture, the simplest surface which could be created corresponded to a sphere. The sphere is a natural outcome of a random grinding and polishing process. The measurement of the surface form accuracy would most commonly be performed using a contact test gauge plate, polished to a sphere of known radius of curvature. QA would simply be achieved using a diffuse monochromatic source and looking for residual deviations between the polished surface and the test plate. The specifications governing the manufacture of surfaces using these techniques would call for the accuracy to which the generated surface should match the test plate as defined by a spherical deviations from the required curvature and a non spherical astigmatic error. Consequently, optical design software has tolerancing routines which specifically allow the designer to assess the influence of spherical error and astigmatic error on the optical performance. The creation of general aspheric surfaces is not so straightforward using conventional polishing techniques since the surface profile is non spherical and a good approximation to a power series. For infra red applications (X = 8-12p,m) numerically controlled single point diamond turning is an alternative manufacturing technology capable of creating aspheric profiles as well as simple spheres. It is important however to realise that a diamond turning process will possess a new set of criteria which limit the accuracy of the surface profile created corresponding to a completely new set of specifications. The most important factors are:- tool centring accuracy, surface waviness, conical form error, and other rotationally symmetric non spherical errors. The fixturing of the workpiece is very different from that of a conventional lap, since in many cases the diamond machine resembles a conventional lathe geometry where the workpiece rotates at a few thousand R.P.M. Substrates must be held rigidly for rotation at such speeds as compared with more delicate mounting methods for conventional laps. Consequently the workpiece may suffer from other forms of deformation which are non-rotationally symmetric due to mounting stresses (static deformation) and stresses induced at the speed of rotation (dynamic deformation). The magnitude of each of these contributions to overall form error will be a function of the type of machine, the material, substrate, and testing design. The following sections describe each of these effects in more detail based on experience obtained on a Pneumo Precision MSG325 XY CNC machine. Certain in-process measurement techniques have been devised to minimise and quantify each contribution.
Wohl, Michael J A; Gainsbury, Sally; Stewart, Melissa J; Sztainert, Travis
2013-12-01
Although most gamblers set a monetary limit on their play, many exceed this limit--an antecedent of problematic gambling. Responsible gambling tools may assist players to gamble within their means. Historically, however, the impact of such tools has been assessed in isolation. In the current research, two responsible gambling tools that target adherence to a monetary limit were assessed among 72 electronic gaming machine (EGM) players. Participants watched an educational animation explaining how EGMs work (or a neutral video) and then played an EGM in a virtual reality environment. All participants were asked to set a monetary limit on their play, but only half were reminded when that limit was reached. Results showed that both the animation and pop-up limit reminder helped gamblers stay within their preset monetary limit; however, an interaction qualified these main effects. Among participants who did not experience the pop-up reminder, those who watched the animation stayed within their preset monetary limits more than those who did not watch the animation. For those who were reminded of their limit, however, there was no difference in limit adherence between those who watched the animation and those who did not watch the animation. From a responsible gambling perspective, the current study suggests that there is no additive effect of exposure to both responsible gambling tools. Therefore, for minimal disruption in play, a pop-up message reminding gamblers of their preset monetary limit might be preferred over the lengthier educational animation.
Use of IT platform in determination of efficiency of mining machines
NASA Astrophysics Data System (ADS)
Brodny, Jarosław; Tutak, Magdalena
2018-01-01
Determination of effective use of mining devices has very significant meaning for mining enterprises. High costs of their purchase and tenancy cause that these enterprises tend to the best use of possessed technical potential. However, specifics of mining production causes that this process not always proceeds without interferences. Practical experiences show that determination of objective measure of utilization of machine in mining enterprise is not simple. In the paper a proposition for solution of this problem is presented. For this purpose an IT platform and overall efficiency model OEE were used. This model enables to evaluate the machine in a range of its availability performance and quality of product, and constitutes a quantitative tool of TPM strategy. Adapted to the specificity of mining branch the OEE model together with acquired data from industrial automatic system enabled to determine the partial indicators and overall efficiency of tested machines. Studies were performed for a set of machines directly use in coal exploitation process. They were: longwall-shearer and armoured face conveyor, and beam stage loader. Obtained results clearly indicate that degree of use of machines by mining enterprises are unsatisfactory. Use of IT platforms will significantly facilitate the process of registration, archiving and analytical processing of the acquired data. In the paper there is presented methodology of determination of partial indices and total OEE together with a practical example of its application for investigated machines set. Also IT platform was characterized for its construction, function and application.
Three-dimensional tool radius compensation for multi-axis peripheral milling
NASA Astrophysics Data System (ADS)
Chen, Youdong; Wang, Tianmiao
2013-05-01
Few function about 3D tool radius compensation is applied to generating executable motion control commands in the existing computer numerical control (CNC) systems. Once the tool radius is changed, especially in the case of tool size changing with tool wear in machining, a new NC program has to be recreated. A generic 3D tool radius compensation method for multi-axis peripheral milling in CNC systems is presented. The offset path is calculated by offsetting the tool path along the direction of the offset vector with a given distance. The offset vector is perpendicular to both the tangent vector of the tool path and the orientation vector of the tool axis relative to the workpiece. The orientation vector equations of the tool axis relative to the workpiece are obtained through homogeneous coordinate transformation matrix and forward kinematics of generalized kinematics model of multi-axis machine tools. To avoid cutting into the corner formed by the two adjacent tool paths, the coordinates of offset path at the intersection point have been calculated according to the transition type that is determined by the angle between the two tool path tangent vectors at the corner. Through the verification by the solid cutting simulation software VERICUT® with different tool radiuses on a table-tilting type five-axis machine tool, and by the real machining experiment of machining a soup spoon on a five-axis machine tool with the developed CNC system, the effectiveness of the proposed 3D tool radius compensation method is confirmed. The proposed compensation method can be suitable for all kinds of three- to five-axis machine tools as a general form.
Hypothermic machine perfusion in kidney transplantation.
De Deken, Julie; Kocabayoglu, Peri; Moers, Cyril
2016-06-01
This article summarizes novel developments in hypothermic machine perfusion (HMP) as an organ preservation modality for kidneys recovered from deceased donors. HMP has undergone a renaissance in recent years. This renewed interest has arisen parallel to a shift in paradigms; not only optimal preservation of an often marginal quality graft is required, but also improved graft function and tools to predict the latter are expected from HMP. The focus of attention in this field is currently drawn to the protection of endothelial integrity by means of additives to the perfusion solution, improvement of the HMP solution, choice of temperature, duration of perfusion, and machine settings. HMP may offer the opportunity to assess aspects of graft viability before transplantation, which can potentially aid preselection of grafts based on characteristics such as perfusate biomarkers, as well as measurement of machine perfusion dynamics parameters. HMP has proven to be beneficial as a kidney preservation method for all types of renal grafts, most notably those retrieved from extended criteria donors. Large numbers of variables during HMP, such as duration, machine settings and additives to the perfusion solution are currently being investigated to improve renal function and graft survival. In addition, the search for biomarkers has become a focus of attention to predict graft function posttransplant.
Surface dimpling on rotating work piece using rotation cutting tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhapkar, Rohit Arun; Larsen, Eric Richard
A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupledmore » to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.« less
A low-cost machine vision system for the recognition and sorting of small parts
NASA Astrophysics Data System (ADS)
Barea, Gustavo; Surgenor, Brian W.; Chauhan, Vedang; Joshi, Keyur D.
2018-04-01
An automated machine vision-based system for the recognition and sorting of small parts was designed, assembled and tested. The system was developed to address a need to expose engineering students to the issues of machine vision and assembly automation technology, with readily available and relatively low-cost hardware and software. This paper outlines the design of the system and presents experimental performance results. Three different styles of plastic gears, together with three different styles of defective gears, were used to test the system. A pattern matching tool was used for part classification. Nine experiments were conducted to demonstrate the effects of changing various hardware and software parameters, including: conveyor speed, gear feed rate, classification, and identification score thresholds. It was found that the system could achieve a maximum system accuracy of 95% at a feed rate of 60 parts/min, for a given set of parameter settings. Future work will be looking at the effect of lighting.
Graphite fiber reinforced structure for supporting machine tools
Knight, Jr., Charles E.; Kovach, Louis; Hurst, John S.
1978-01-01
Machine tools utilized in precision machine operations require tool support structures which exhibit minimal deflection, thermal expansion and vibration characteristics. The tool support structure of the present invention is a graphite fiber reinforced composite in which layers of the graphite fibers or yarn are disposed in a 0/90.degree. pattern and bonded together with an epoxy resin. The finished composite possesses a low coefficient of thermal expansion and a substantially greater elastic modulus, stiffness-to-weight ratio, and damping factor than a conventional steel tool support utilized in similar machining operations.
NASA Astrophysics Data System (ADS)
Cardenas, Nelson; Kyrish, Matthew; Taylor, Daniel; Fraelich, Margaret; Lechuga, Oscar; Claytor, Richard; Claytor, Nelson
2015-03-01
Electro-Chemical Polishing is routinely used in the anodizing industry to achieve specular surface finishes of various metals products prior to anodizing. Electro-Chemical polishing functions by leveling the microscopic peaks and valleys of the substrate, thereby increasing specularity and reducing light scattering. The rate of attack is dependent of the physical characteristics (height, depth, and width) of the microscopic structures that constitute the surface finish. To prepare the sample, mechanical polishing such as buffing or grinding is typically required before etching. This type of mechanical polishing produces random microscopic structures at varying depths and widths, thus the electropolishing parameters are determined in an ad hoc basis. Alternatively, single point diamond turning offers excellent repeatability and highly specific control of substrate polishing parameters. While polishing, the diamond tool leaves behind an associated tool mark, which is related to the diamond tool geometry and machining parameters. Machine parameters such as tool cutting depth, speed and step over can be changed in situ, thus providing control of the spatial frequency of the microscopic structures characteristic of the surface topography of the substrate. By combining single point diamond turning with subsequent electro-chemical etching, ultra smooth polishing of both rotationally symmetric and free form mirrors and molds is possible. Additionally, machining parameters can be set to optimize post polishing for increased surface quality and reduced processing times. In this work, we present a study of substrate surface finish based on diamond turning tool mark spatial frequency with subsequent electro-chemical polishing.
Vibration Damping Analysis of Lightweight Structures in Machine Tools
Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele
2017-01-01
The dynamic behaviour of a machine tool (MT) directly influences the machining performance. The adoption of lightweight structures may reduce the effects of undesired vibrations and increase the workpiece quality. This paper aims to present and compare a set of hybrid materials that may be excellent candidates to fabricate the MT moving parts. The selected materials have high dynamic characteristics and capacity to dampen mechanical vibrations. In this way, starting from the kinematic model of a milling machine, this study evaluates a number of prototypes made of Al foam sandwiches (AFS), Al corrugated sandwiches (ACS) and composite materials reinforced by carbon fibres (CFRP). These prototypes represented the Z-axis ram of a commercial milling machine. The static and dynamical properties have been analysed by using both finite element (FE) simulations and experimental tests. The obtained results show that the proposed structures may be a valid alternative to the conventional materials of MT moving parts, increasing machining performance. In particular, the AFS prototype highlighted a damping ratio that is 20 times greater than a conventional ram (e.g., steel). Its application is particularly suitable to minimize unwanted oscillations during high-speed finishing operations. The results also show that the CFRP structure guarantees high stiffness with a weight reduced by 48.5%, suggesting effective applications in roughing operations, saving MT energy consumption. The ACS structure has a good trade-off between stiffness and damping and may represent a further alternative, if correctly evaluated. PMID:28772653
Traceability of On-Machine Tool Measurement: A Review.
Mutilba, Unai; Gomez-Acedo, Eneko; Kortaberria, Gorka; Olarra, Aitor; Yagüe-Fabra, Jose A
2017-07-11
Nowadays, errors during the manufacturing process of high value components are not acceptable in driving industries such as energy and transportation. Sectors such as aerospace, automotive, shipbuilding, nuclear power, large science facilities or wind power need complex and accurate components that demand close measurements and fast feedback into their manufacturing processes. New measuring technologies are already available in machine tools, including integrated touch probes and fast interface capabilities. They provide the possibility to measure the workpiece in-machine during or after its manufacture, maintaining the original setup of the workpiece and avoiding the manufacturing process from being interrupted to transport the workpiece to a measuring position. However, the traceability of the measurement process on a machine tool is not ensured yet and measurement data is still not fully reliable enough for process control or product validation. The scientific objective is to determine the uncertainty on a machine tool measurement and, therefore, convert it into a machine integrated traceable measuring process. For that purpose, an error budget should consider error sources such as the machine tools, components under measurement and the interactions between both of them. This paper reviews all those uncertainty sources, being mainly focused on those related to the machine tool, either on the process of geometric error assessment of the machine or on the technology employed to probe the measurand.
Vine, Michelle M; Harrington, Daniel W; Butler, Alexandra; Patte, Karen; Godin, Katelyn; Leatherdale, Scott T
2017-04-20
We investigated the extent to which a sample of Ontario and Alberta secondary schools are being compliant with their respective provincial nutrition policies, in terms of the food and beverages sold in vending machines. This observational study used objective data on drinks and snacks from vending machines, collected over three years of the COMPASS study (2012/2013-2014/2015 school years). Drink (e.g., sugar-containing carbonated/non-carbonated soft drinks, sports drinks, etc.) and snack (e.g., chips, crackers, etc.) data were coded by number of units available, price, and location of vending machine(s) in the school. Univariate and bivariate analyses were undertaken using R version 3.2.3. In order to assess policy compliancy over time, nutritional information of products in vending machines was compared to nutrition standards set out in P/PM 150 in Ontario, and those set out in the Alberta Nutrition Guidelines for Children and Youth (2012) in Alberta. Results reveal a decline over time in the proportion of schools selling sugar-containing carbonated soft drinks (9% in 2012/2013 vs. 3% in 2014/2015), crackers (26% vs. 17%) and cake products (12% vs. 5%) in vending machines, and inconsistent changes in the proportion selling chips (53%, 67% and 65% over the three school years). Conversely, results highlight increases in the proportion of vending machines selling chocolate bars (7% vs. 13%) and cookies (21% vs. 40%) between the 2012/2013 and 2014/2015 school years. Nutritional standard policies were not adhered to in the majority of schools with respect to vending machines. There is a need for investment in formal monitoring and evaluation of school policies, and the provision of information and tools to support nutrition policy implementation.
NASA Astrophysics Data System (ADS)
Czán, Andrej; Kubala, Ondrej; Danis, Igor; Czánová, Tatiana; Holubják, Jozef; Mikloš, Matej
2017-12-01
The ever-increasing production and the usage of hard-to-machine progressive materials are the main cause of continual finding of new ways and methods of machining. One of these ways is the ceramic milling tool, which combines the pros of conventional ceramic cutting materials and pros of conventional coating steel-based insert. These properties allow to improve cutting conditions and so increase the productivity with preserved quality known from conventional tools usage. In this paper, there is made the identification of properties and possibilities of this tool when machining of hard-to-machine materials such as nickel alloys using in airplanes engines. This article is focused on the analysis and evaluation ordinary technological parameters and surface quality, mainly roughness of surface and quality of machined surface and tool wearing.
Automated Inspection And Precise Grinding Of Gears
NASA Technical Reports Server (NTRS)
Frint, Harold; Glasow, Warren
1995-01-01
Method of precise grinding of spiral bevel gears involves automated inspection of gear-tooth surfaces followed by adjustments of machine-tool settings to minimize differences between actual and nominal surfaces. Similar to method described in "Computerized Inspection of Gear-Tooth Surfaces" (LEW-15736). Yields gears of higher quality, with significant reduction in manufacturing and inspection time.
Maidenbaum, Shachar; Abboud, Sami; Amedi, Amir
2014-04-01
Sensory substitution devices (SSDs) have come a long way since first developed for visual rehabilitation. They have produced exciting experimental results, and have furthered our understanding of the human brain. Unfortunately, they are still not used for practical visual rehabilitation, and are currently considered as reserved primarily for experiments in controlled settings. Over the past decade, our understanding of the neural mechanisms behind visual restoration has changed as a result of converging evidence, much of which was gathered with SSDs. This evidence suggests that the brain is more than a pure sensory-machine but rather is a highly flexible task-machine, i.e., brain regions can maintain or regain their function in vision even with input from other senses. This complements a recent set of more promising behavioral achievements using SSDs and new promising technologies and tools. All these changes strongly suggest that the time has come to revive the focus on practical visual rehabilitation with SSDs and we chart several key steps in this direction such as training protocols and self-train tools. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Yusof, M. Q. M.; Harun, H. N. S. B.; Bahar, R.
2018-01-01
Minimum quantity lubrication (MQL) is a method that uses a very small amount of liquid to reduce friction between cutting tool and work piece during machining. The implementation of MQL machining has become a viable alternative to flood cooling machining and dry machining. The overall performance has been evaluated during meso-scale milling of mild steel using different diameter milling cutters. Experiments have been conducted under two different lubrication condition: dry and MQL with variable cutting parameters. The tool wear and its surface roughness, machined surfaces microstructure and surface roughness were observed for both conditions. It was found from the results that MQL produced better results compared to dry machining. The 0.5 mm tool has been selected as the most optimum tool diameter to be used with the lowest surface roughness as well as the least flank wear generation. For the workpiece, it was observed that the cutting temperature possesses crucial effect on the microstructure and the surface roughness of the machined surface and bigger diameter tool actually resulted in higher surface roughness. The poor conductivity of the cutting tool may be one of reasons behind.
Automatic feed system for ultrasonic machining
Calkins, Noel C.
1994-01-01
Method and apparatus for ultrasonic machining in which feeding of a tool assembly holding a machining tool toward a workpiece is accomplished automatically. In ultrasonic machining, a tool located just above a workpiece and vibrating in a vertical direction imparts vertical movement to particles of abrasive material which then remove material from the workpiece. The tool does not contact the workpiece. Apparatus for moving the tool assembly vertically is provided such that it operates with a relatively small amount of friction. Adjustable counterbalance means is provided which allows the tool to be immobilized in its vertical travel. A downward force, termed overbalance force, is applied to the tool assembly. The overbalance force causes the tool to move toward the workpiece as material is removed from the workpiece.
Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehoff, Ryan R.; Watkins, Thomas R.; List, III, Frederick Alyious
2015-12-01
The purpose of the proposed project between Cummins and ORNL is to significantly reduce the cost of the tooling (machining and materials) required to create injection molds to make plastic components. Presently, the high cost of this tooling forces the design decision to make cast aluminum parts because Cummins typical production volumes are too low to allow injection molded plastic parts to be cost effective with the amortized cost of the injection molding tooling. In addition to reducing the weight of components, polymer injection molding allows the opportunity for the alternative cooling methods, via nitrogen gas. Nitrogen gas cooling offersmore » an environmentally and economically attractive cooling option, if the mold can be manufactured economically. In this project, a current injection molding design was optimized for cooling using nitrogen gas. The various components of the injection mold tooling were fabricated using the Renishaw powder bed laser additive manufacturing technology. Subsequent machining was performed on the as deposited components to form a working assembly. The injection mold is scheduled to be tested in a projection setting at a commercial vendor selected by Cummins.« less
NASA Astrophysics Data System (ADS)
Kant Garg, Girish; Garg, Suman; Sangwan, K. S.
2018-04-01
The manufacturing sector consumes huge energy demand and the machine tools used in this sector have very less energy efficiency. Selection of the optimum machining parameters for machine tools is significant for energy saving and for reduction of environmental emission. In this work an empirical model is developed to minimize the power consumption using response surface methodology. The experiments are performed on a lathe machine tool during the turning of AISI 6061 Aluminum with coated tungsten inserts. The relationship between the power consumption and machining parameters is adequately modeled. This model is used for formulation of minimum power consumption criterion as a function of optimal machining parameters using desirability function approach. The influence of machining parameters on the energy consumption has been found using the analysis of variance. The validation of the developed empirical model is proved using the confirmation experiments. The results indicate that the developed model is effective and has potential to be adopted by the industry for minimum power consumption of machine tools.
Chatter active control in a lathe machine using magnetostrictive actuator
NASA Astrophysics Data System (ADS)
Nosouhi, R.; Behbahani, S.
2011-01-01
This paper analyzes the chatter phenomena in lathe machines. Chatter is one of the main causes of inaccuracy, reduction of life cycle of the machine and tool wear in machine tools. This phenomenon limits the depth of cut as a function of the cutting speed, which consequently reduces the material removal rate and machining efficiency. Chatter control is therefore important since it increases the stability region in machining and increases the critical depth of cut in machining case. To control the chatter in lathe machines, a magnetostrictive actuator is used. The materials with magnetostriction properties are kind of smart materials of which their length changes as a result of applying an exterior magnetic field, which make them suitable for control applications. It is assumed that the actuator applies the proper force exactly at the point where the machining force is applied on the tool. In this paper the chatter stability lobes is excelled as a result of applying a PID controller on the magnetostrictive actuator equipped-tool in turning.
NASA Astrophysics Data System (ADS)
Okokpujie, Imhade Princess; Ikumapayi, Omolayo M.; Okonkwo, Ugochukwu C.; Salawu, Enesi Y.; Afolalu, Sunday A.; Dirisu, Joseph O.; Nwoke, Obinna N.; Ajayi, Oluseyi O.
2017-12-01
In recent machining operation, tool life is one of the most demanding tasks in production process, especially in the automotive industry. The aim of this paper is to study tool wear on HSS in end milling of aluminium 6061 alloy. The experiments were carried out to investigate tool wear with the machined parameters and to developed mathematical model using response surface methodology. The various machining parameters selected for the experiment are spindle speed (N), feed rate (f), axial depth of cut (a) and radial depth of cut (r). The experiment was designed using central composite design (CCD) in which 31 samples were run on SIEG 3/10/0010 CNC end milling machine. After each experiment the cutting tool was measured using scanning electron microscope (SEM). The obtained optimum machining parameter combination are spindle speed of 2500 rpm, feed rate of 200 mm/min, axial depth of cut of 20 mm, and radial depth of cut 1.0mm was found out to achieved the minimum tool wear as 0.213 mm. The mathematical model developed predicted the tool wear with 99.7% which is within the acceptable accuracy range for tool wear prediction.
Nanometric edge profile measurement of cutting tools on a diamond turning machine
NASA Astrophysics Data System (ADS)
Asai, Takemi; Arai, Yoshikazu; Cui, Yuguo; Gao, Wei
2008-10-01
Single crystal diamond tools are used for fabrication of precision parts [1-5]. Although there are many types of tools that are supplied, the tools with round nose are popular for machining very smooth surfaces. Tools with small nose radii, small wedge angles and included angles are also being utilized for fabrication of micro structured surfaces such as microlens arrays [6], diffractive optical elements and so on. In ultra precision machining, tools are very important as a part of the machining equipment. The roughness or profile of machined surface may become out of desired tolerance. It is thus necessary to know the state of the tool edge accurately. To meet these requirements, an atomic force microscope (AFM) for measuring the 3D edge profiles of tools having nanometer-scale cutting edge radii with high resolution has been developed [7-8]. Although the AFM probe unit is combined with an optical sensor for aligning the measurement probe with the tools edge top to be measured in short time in this system, this time only the AFM probe unit was used. During the measurement time, that was attached onto the ultra precision turning machine to confirm the possibility of profile measurement system.
Model-based setup assistant for progressive tools
NASA Astrophysics Data System (ADS)
Springer, Robert; Gräler, Manuel; Homberg, Werner; Henke, Christian; Trächtler, Ansgar
2018-05-01
In the field of production systems, globalization and technological progress lead to increasing requirements regarding part quality, delivery time and costs. Hence, today's production is challenged much more than a few years ago: it has to be very flexible and produce economically small batch sizes to satisfy consumer's demands and avoid unnecessary stock. Furthermore, a trend towards increasing functional integration continues to lead to an ongoing miniaturization of sheet metal components. In the industry of electric connectivity for example, the miniaturized connectors are manufactured by progressive tools, which are usually used for very large batches. These tools are installed in mechanical presses and then set up by a technician, who has to manually adjust a wide range of punch-bending operations. Disturbances like material thickness, temperatures, lubrication or tool wear complicate the setup procedure. In prospect of the increasing demand of production flexibility, this time-consuming process has to be handled more and more often. In this paper, a new approach for a model-based setup assistant is proposed as a solution, which is exemplarily applied in combination with a progressive tool. First, progressive tools, more specifically, their setup process is described and based on that, the challenges are pointed out. As a result, a systematic process to set up the machines is introduced. Following, the process is investigated with an FE-Analysis regarding the effects of the disturbances. In the next step, design of experiments is used to systematically develop a regression model of the system's behaviour. This model is integrated within an optimization in order to calculate optimal machine parameters and the following necessary adjustment of the progressive tool due to the disturbances. Finally, the assistant is tested in a production environment and the results are discussed.
Hybrid ABC Optimized MARS-Based Modeling of the Milling Tool Wear from Milling Run Experimental Data
García Nieto, Paulino José; García-Gonzalo, Esperanza; Ordóñez Galán, Celestino; Bernardo Sánchez, Antonio
2016-01-01
Milling cutters are important cutting tools used in milling machines to perform milling operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a milling tool is proposed. The model was based on the optimization tool termed artificial bee colony (ABC) in combination with multivariate adaptive regression splines (MARS) technique. This optimization mechanism involved the parameter setting in the MARS training procedure, which significantly influences the regression accuracy. Therefore, an ABC–MARS-based model was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc. Regression with optimal hyperparameters was performed and a determination coefficient of 0.94 was obtained. The ABC–MARS-based model's goodness of fit to experimental data confirmed the good performance of this model. This new model also allowed us to ascertain the most influential parameters on the milling tool flank wear with a view to proposing milling machine's improvements. Finally, conclusions of this study are exposed. PMID:28787882
García Nieto, Paulino José; García-Gonzalo, Esperanza; Ordóñez Galán, Celestino; Bernardo Sánchez, Antonio
2016-01-28
Milling cutters are important cutting tools used in milling machines to perform milling operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a milling tool is proposed. The model was based on the optimization tool termed artificial bee colony (ABC) in combination with multivariate adaptive regression splines (MARS) technique. This optimization mechanism involved the parameter setting in the MARS training procedure, which significantly influences the regression accuracy. Therefore, an ABC-MARS-based model was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc . Regression with optimal hyperparameters was performed and a determination coefficient of 0.94 was obtained. The ABC-MARS-based model's goodness of fit to experimental data confirmed the good performance of this model. This new model also allowed us to ascertain the most influential parameters on the milling tool flank wear with a view to proposing milling machine's improvements. Finally, conclusions of this study are exposed.
Extreme learning machine for reduced order modeling of turbulent geophysical flows.
San, Omer; Maulik, Romit
2018-04-01
We investigate the application of artificial neural networks to stabilize proper orthogonal decomposition-based reduced order models for quasistationary geophysical turbulent flows. An extreme learning machine concept is introduced for computing an eddy-viscosity closure dynamically to incorporate the effects of the truncated modes. We consider a four-gyre wind-driven ocean circulation problem as our prototype setting to assess the performance of the proposed data-driven approach. Our framework provides a significant reduction in computational time and effectively retains the dynamics of the full-order model during the forward simulation period beyond the training data set. Furthermore, we show that the method is robust for larger choices of time steps and can be used as an efficient and reliable tool for long time integration of general circulation models.
Extreme learning machine for reduced order modeling of turbulent geophysical flows
NASA Astrophysics Data System (ADS)
San, Omer; Maulik, Romit
2018-04-01
We investigate the application of artificial neural networks to stabilize proper orthogonal decomposition-based reduced order models for quasistationary geophysical turbulent flows. An extreme learning machine concept is introduced for computing an eddy-viscosity closure dynamically to incorporate the effects of the truncated modes. We consider a four-gyre wind-driven ocean circulation problem as our prototype setting to assess the performance of the proposed data-driven approach. Our framework provides a significant reduction in computational time and effectively retains the dynamics of the full-order model during the forward simulation period beyond the training data set. Furthermore, we show that the method is robust for larger choices of time steps and can be used as an efficient and reliable tool for long time integration of general circulation models.
NASA Astrophysics Data System (ADS)
Ma, Zhichao; Hu, Leilei; Zhao, Hongwei; Wu, Boda; Peng, Zhenxing; Zhou, Xiaoqin; Zhang, Hongguo; Zhu, Shuai; Xing, Lifeng; Hu, Huang
2010-08-01
The theories and techniques for improving machining accuracy via position control of diamond tool's tip and raising resolution of cutting depth on precise CNC lathes have been extremely focused on. A new piezo-driven ultra-precision machine tool servo system is designed and tested to improve manufacturing accuracy of workpiece. The mathematical model of machine tool servo system is established and the finite element analysis is carried out on parallel plate flexure hinges. The output position of diamond tool's tip driven by the machine tool servo system is tested via a contact capacitive displacement sensor. Proportional, integral, derivative (PID) feedback is also implemented to accommodate and compensate dynamical change owing cutting forces as well as the inherent non-linearity factors of the piezoelectric stack during cutting process. By closed loop feedback controlling strategy, the tracking error is limited to 0.8 μm. Experimental results have shown the proposed machine tool servo system could provide a tool positioning resolution of 12 nm, which is much accurate than the inherent CNC resolution magnitude. The stepped shaft of aluminum specimen with a step increment of cutting depth of 1 μm is tested, and the obtained contour illustrates the displacement command output from controller is accurately and real-time reflected on the machined part.
Modelling of human-machine interaction in equipment design of manufacturing cells
NASA Astrophysics Data System (ADS)
Cochran, David S.; Arinez, Jorge F.; Collins, Micah T.; Bi, Zhuming
2017-08-01
This paper proposes a systematic approach to model human-machine interactions (HMIs) in supervisory control of machining operations; it characterises the coexistence of machines and humans for an enterprise to balance the goals of automation/productivity and flexibility/agility. In the proposed HMI model, an operator is associated with a set of behavioural roles as a supervisor for multiple, semi-automated manufacturing processes. The model is innovative in the sense that (1) it represents an HMI based on its functions for process control but provides the flexibility for ongoing improvements in the execution of manufacturing processes; (2) it provides a computational tool to define functional requirements for an operator in HMIs. The proposed model can be used to design production systems at different levels of an enterprise architecture, particularly at the machine level in a production system where operators interact with semi-automation to accomplish the goal of 'autonomation' - automation that augments the capabilities of human beings.
AstroML: Python-powered Machine Learning for Astronomy
NASA Astrophysics Data System (ADS)
Vander Plas, Jake; Connolly, A. J.; Ivezic, Z.
2014-01-01
As astronomical data sets grow in size and complexity, automated machine learning and data mining methods are becoming an increasingly fundamental component of research in the field. The astroML project (http://astroML.org) provides a common repository for practical examples of the data mining and machine learning tools used and developed by astronomical researchers, written in Python. The astroML module contains a host of general-purpose data analysis and machine learning routines, loaders for openly-available astronomical datasets, and fast implementations of specific computational methods often used in astronomy and astrophysics. The associated website features hundreds of examples of these routines being used for analysis of real astronomical datasets, while the associated textbook provides a curriculum resource for graduate-level courses focusing on practical statistics, machine learning, and data mining approaches within Astronomical research. This poster will highlight several of the more powerful and unique examples of analysis performed with astroML, all of which can be reproduced in their entirety on any computer with the proper packages installed.
Investigations of Effect of Rotary EDM Electrode on Machining Performance of Al6061 Alloy
NASA Astrophysics Data System (ADS)
Robinson Smart, D. S.; Jenish Smart, Joses; Periasamy, C.; Ratna Kumar, P. S. Samuel
2018-04-01
Electric Discharge Machining is an essential process which is being used for machining desired shape using electrical discharges which creates sparks. There will be electrodes subjected to electric voltage and which are separated by a dielectric liquid. Removing of material will be due to the continuous and rapid current discharges between two electrodes.. The spark is very carefully controlled and localized so that it only affects the surface of the material. Usually in order to prevent the defects which are arising due to the conventional machining, the Electric Discharge Machining (EDM) machining is preferred. Also intricate and complicated shapes can be machined effectively by use of Electric Discharge Machining (EDM). The EDM process usually does not affect the heat treat below the surface. This research work focus on the design and fabrication of rotary EDM tool for machining Al6061alloy and investigation of effect of rotary tool on surface finish, material removal rate and tool wear rate. Also the effect of machining parameters of EDM such as pulse on & off time, current on material Removal Rate (MRR), Surface Roughness (SR) and Electrode wear rate (EWR) have studied. Al6061 alloy can be used for marine and offshore applications by reinforcing some other elements. The investigations have revealed that MRR (material removal rate), surface roughness (Ra) have been improved with the reduction in the tool wear rate (TWR) when the tool is rotating instead of stationary. It was clear that as rotary speed of the tool is increasing the material removal rate is increasing with the reduction of surface finish and tool wear rate.
Weegar, Rebecka; Kvist, Maria; Sundström, Karin; Brunak, Søren; Dalianis, Hercules
2015-01-01
Detection of early symptoms in cervical cancer is crucial for early treatment and survival. To find symptoms of cervical cancer in clinical text, Named Entity Recognition is needed. In this paper the Clinical Entity Finder, a machine-learning tool trained on annotated clinical text from a Swedish internal medicine emergency unit, is evaluated on cervical cancer records. The Clinical Entity Finder identifies entities of the types body part, finding and disorder and is extended with negation detection using the rule-based tool NegEx, to distinguish between negated and non-negated entities. To measure the performance of the tools on this new domain, two physicians annotated a set of clinical notes from the health records of cervical cancer patients. The inter-annotator agreement for finding, disorder and body part obtained an average F-score of 0.677 and the Clinical Entity Finder extended with NegEx had an average F-score of 0.667. PMID:26958270
Weegar, Rebecka; Kvist, Maria; Sundström, Karin; Brunak, Søren; Dalianis, Hercules
2015-01-01
Detection of early symptoms in cervical cancer is crucial for early treatment and survival. To find symptoms of cervical cancer in clinical text, Named Entity Recognition is needed. In this paper the Clinical Entity Finder, a machine-learning tool trained on annotated clinical text from a Swedish internal medicine emergency unit, is evaluated on cervical cancer records. The Clinical Entity Finder identifies entities of the types body part, finding and disorder and is extended with negation detection using the rule-based tool NegEx, to distinguish between negated and non-negated entities. To measure the performance of the tools on this new domain, two physicians annotated a set of clinical notes from the health records of cervical cancer patients. The inter-annotator agreement for finding, disorder and body part obtained an average F-score of 0.677 and the Clinical Entity Finder extended with NegEx had an average F-score of 0.667.
Slide system for machine tools
Douglass, S.S.; Green, W.L.
1980-06-12
The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.
Slide system for machine tools
Douglass, Spivey S.; Green, Walter L.
1982-01-01
The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.
Volumetric Verification of Multiaxis Machine Tool Using Laser Tracker
Aguilar, Juan José
2014-01-01
This paper aims to present a method of volumetric verification in machine tools with linear and rotary axes using a laser tracker. Beyond a method for a particular machine, it presents a methodology that can be used in any machine type. Along this paper, the schema and kinematic model of a machine with three axes of movement, two linear and one rotational axes, including the measurement system and the nominal rotation matrix of the rotational axis are presented. Using this, the machine tool volumetric error is obtained and nonlinear optimization techniques are employed to improve the accuracy of the machine tool. The verification provides a mathematical, not physical, compensation, in less time than other methods of verification by means of the indirect measurement of geometric errors of the machine from the linear and rotary axes. This paper presents an extensive study about the appropriateness and drawbacks of the regression function employed depending on the types of movement of the axes of any machine. In the same way, strengths and weaknesses of measurement methods and optimization techniques depending on the space available to place the measurement system are presented. These studies provide the most appropriate strategies to verify each machine tool taking into consideration its configuration and its available work space. PMID:25202744
Measurement of W + bb and a search for MSSM Higgs bosons with the CMS detector at the LHC
NASA Astrophysics Data System (ADS)
O'Connor, Alexander Pinpin
Tooling used to cure composite laminates in the aerospace and automotive industries must provide a dimensionally stable geometry throughout the thermal cycle applied during the part curing process. This requires that the Coefficient of Thermal Expansion (CTE) of the tooling materials match that of the composite being cured. The traditional tooling material for production applications is a nickel alloy. Poor machinability and high material costs increase the expense of metallic tooling made from nickel alloys such as 'Invar 36' or 'Invar 42'. Currently, metallic tooling is unable to meet the needs of applications requiring rapid affordable tooling solutions. In applications where the tooling is not required to have the durability provided by metals, such as for small area repair, an opportunity exists for non-metallic tooling materials like graphite, carbon foams, composites, or ceramics and machinable glasses. Nevertheless, efficient machining of brittle, non-metallic materials is challenging due to low ductility, porosity, and high hardness. The machining of a layup tool comprises a large portion of the final cost. Achieving maximum process economy requires optimization of the machining process in the given tooling material. Therefore, machinability of the tooling material is a critical aspect of the overall cost of the tool. In this work, three commercially available, brittle/porous, non-metallic candidate tooling materials were selected, namely: (AAC) Autoclaved Aerated Concrete, CB1100 ceramic block and Cfoam carbon foam. Machining tests were conducted in order to evaluate the machinability of these materials using end milling. Chip formation, cutting forces, cutting tool wear, machining induced damage, surface quality and surface integrity were investigated using High Speed Steel (HSS), carbide, diamond abrasive and Polycrystalline Diamond (PCD) cutting tools. Cutting forces were found to be random in magnitude, which was a result of material porosity. The abrasive nature of Cfoam produced rapid tool wear when using HSS and PCD type cutting tools. However, tool wear was not significant in AAC or CB1100 regardless of the type of cutting edge. Machining induced damage was observed in the form of macro-scale chipping and fracture in combination with micro-scale cracking. Transverse rupture test results revealed significant reductions in residual strength and damage tolerance in CB1100. In contrast, AAC and Cfoam showed no correlation between machining induced damage and a reduction in surface integrity. Cutting forces in machining were modeled for all materials. Cutting force regression models were developed based on Design of Experiment and Analysis of Variance. A mechanistic cutting force model was proposed based upon conventional end milling force models and statistical distributions of material porosity. In order to validate the model, predicted cutting forces were compared to experimental results. Predicted cutting forces agreed well with experimental measurements. Furthermore, over the range of cutting conditions tested, the proposed model was shown to have comparable predictive accuracy to empirically produced regression models; greatly reducing the number of cutting tests required to simulate cutting forces. Further, this work demonstrates a key adaptation of metallic cutting force models to brittle porous material; a vital step in the research into the machining of these materials using end milling.
sw-SVM: sensor weighting support vector machines for EEG-based brain-computer interfaces.
Jrad, N; Congedo, M; Phlypo, R; Rousseau, S; Flamary, R; Yger, F; Rakotomamonjy, A
2011-10-01
In many machine learning applications, like brain-computer interfaces (BCI), high-dimensional sensor array data are available. Sensor measurements are often highly correlated and signal-to-noise ratio is not homogeneously spread across sensors. Thus, collected data are highly variable and discrimination tasks are challenging. In this work, we focus on sensor weighting as an efficient tool to improve the classification procedure. We present an approach integrating sensor weighting in the classification framework. Sensor weights are considered as hyper-parameters to be learned by a support vector machine (SVM). The resulting sensor weighting SVM (sw-SVM) is designed to satisfy a margin criterion, that is, the generalization error. Experimental studies on two data sets are presented, a P300 data set and an error-related potential (ErrP) data set. For the P300 data set (BCI competition III), for which a large number of trials is available, the sw-SVM proves to perform equivalently with respect to the ensemble SVM strategy that won the competition. For the ErrP data set, for which a small number of trials are available, the sw-SVM shows superior performances as compared to three state-of-the art approaches. Results suggest that the sw-SVM promises to be useful in event-related potentials classification, even with a small number of training trials.
Modeling and simulation of five-axis virtual machine based on NX
NASA Astrophysics Data System (ADS)
Li, Xiaoda; Zhan, Xianghui
2018-04-01
Virtual technology in the machinery manufacturing industry has shown the role of growing. In this paper, the Siemens NX software is used to model the virtual CNC machine tool, and the parameters of the virtual machine are defined according to the actual parameters of the machine tool so that the virtual simulation can be carried out without loss of the accuracy of the simulation. How to use the machine builder of the CAM module to define the kinematic chain and machine components of the machine is described. The simulation of virtual machine can provide alarm information of tool collision and over cutting during the process to users, and can evaluate and forecast the rationality of the technological process.
High speed turning of compacted graphite iron using controlled modulation
NASA Astrophysics Data System (ADS)
Stalbaum, Tyler Paul
Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry. In industry, machining of CGI is done only at low speeds, less than V = 200 m/min, to avoid encountering rapid wear of the cutting tools during cutting. Studies have suggested intermittent cutting operations such as milling suffer less severe tool wear than continuous cutting. Furthermore, evidence that a hard sulfide layer which forms over the cutting edge in machining CI at high speeds is absent during machining CGI is a major factor in the difference in machinability of these material systems. The present study addresses both of these issues by modification to the conventional machining process to allow intermittent continuous cutting. The application of controlled modulation superimposed onto the cutting process -- modulation-assisted machining (MAM) -- is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining CGI at high machining speeds (> 500 m/min). The tool life is at least 20 times greater than found in conventional machining of CGI. This significant reduction in wear is a consequence of reduction in the severity of the tool-work contact conditions with MAM. The propensity for thermochemical wear of CBN is thus reduced. It is found that higher cutting speed (> 700 m/min) leads to lower tool wear with MAM. The MAM configuration employing feed-direction modulation appears feasible for implementation at high speeds and offers a solution to this challenging class of industrial machining applications. This study's approach is by series of high speed turning tests of CGI with CBN tools, comparing conventional machining to MAM for similar parameters otherwise, by tool wear measurements and machinability observations.
NASA Astrophysics Data System (ADS)
Zainal Ariffin, S.; Razlan, A.; Ali, M. Mohd; Efendee, A. M.; Rahman, M. M.
2018-03-01
Background/Objectives: The paper discusses about the optimum cutting parameters with coolant techniques condition (1.0 mm nozzle orifice, wet and dry) to optimize surface roughness, temperature and tool wear in the machining process based on the selected setting parameters. The selected cutting parameters for this study were the cutting speed, feed rate, depth of cut and coolant techniques condition. Methods/Statistical Analysis Experiments were conducted and investigated based on Design of Experiment (DOE) with Response Surface Method. The research of the aggressive machining process on aluminum alloy (A319) for automotive applications is an effort to understand the machining concept, which widely used in a variety of manufacturing industries especially in the automotive industry. Findings: The results show that the dominant failure mode is the surface roughness, temperature and tool wear when using 1.0 mm nozzle orifice, increases during machining and also can be alternative minimize built up edge of the A319. The exploration for surface roughness, productivity and the optimization of cutting speed in the technical and commercial aspects of the manufacturing processes of A319 are discussed in automotive components industries for further work Applications/Improvements: The research result also beneficial in minimizing the costs incurred and improving productivity of manufacturing firms. According to the mathematical model and equations, generated by CCD based RSM, experiments were performed and cutting coolant condition technique using size nozzle can reduces tool wear, surface roughness and temperature was obtained. Results have been analyzed and optimization has been carried out for selecting cutting parameters, shows that the effectiveness and efficiency of the system can be identified and helps to solve potential problems.
Interferometric correction system for a numerically controlled machine
Burleson, Robert R.
1978-01-01
An interferometric correction system for a numerically controlled machine is provided to improve the positioning accuracy of a machine tool, for example, for a high-precision numerically controlled machine. A laser interferometer feedback system is used to monitor the positioning of the machine tool which is being moved by command pulses to a positioning system to position the tool. The correction system compares the commanded position as indicated by a command pulse train applied to the positioning system with the actual position of the tool as monitored by the laser interferometer. If the tool position lags the commanded position by a preselected error, additional pulses are added to the pulse train applied to the positioning system to advance the tool closer to the commanded position, thereby reducing the lag error. If the actual tool position is leading in comparison to the commanded position, pulses are deleted from the pulse train where the advance error exceeds the preselected error magnitude to correct the position error of the tool relative to the commanded position.
Garcia-Chimeno, Yolanda; Garcia-Zapirain, Begonya
2015-01-01
The classification of subjects' pathologies enables a rigorousness to be applied to the treatment of certain pathologies, as doctors on occasions play with so many variables that they can end up confusing some illnesses with others. Thanks to Machine Learning techniques applied to a health-record database, it is possible to make using our algorithm. hClass contains a non-linear classification of either a supervised, non-supervised or semi-supervised type. The machine is configured using other techniques such as validation of the set to be classified (cross-validation), reduction in features (PCA) and committees for assessing the various classifiers. The tool is easy to use, and the sample matrix and features that one wishes to classify, the number of iterations and the subjects who are going to be used to train the machine all need to be introduced as inputs. As a result, the success rate is shown either via a classifier or via a committee if one has been formed. A 90% success rate is obtained in the ADABoost classifier and 89.7% in the case of a committee (comprising three classifiers) when PCA is applied. This tool can be expanded to allow the user to totally characterise the classifiers by adjusting them to each classification use.
A machine learning tool for re-planning and adaptive RT: A multicenter cohort investigation.
Guidi, G; Maffei, N; Meduri, B; D'Angelo, E; Mistretta, G M; Ceroni, P; Ciarmatori, A; Bernabei, A; Maggi, S; Cardinali, M; Morabito, V E; Rosica, F; Malara, S; Savini, A; Orlandi, G; D'Ugo, C; Bunkheila, F; Bono, M; Lappi, S; Blasi, C; Lohr, F; Costi, T
2016-12-01
To predict patients who would benefit from adaptive radiotherapy (ART) and re-planning intervention based on machine learning from anatomical and dosimetric variations in a retrospective dataset. 90 patients (pts) treated for head-neck cancer (H&N) formed a multicenter data-set. 41 H&N pts (45.6%) were considered for learning; 49 pts (54.4%) were used to test the tool. A homemade machine-learning classifier was developed to analyze volume and dose variations of parotid glands (PG). Using deformable image registration (DIR) and GPU, patients' conditions were analyzed automatically. Support Vector Machines (SVM) was used for time-series evaluation. "Inadequate" class identified patients that might benefit from replanning. Double-blind evaluation by two radiation oncologists (ROs) was carried out to validate day/week selected for re-planning by the classifier. The cohort was affected by PG mean reduction of 23.7±8.8%. During the first 3weeks, 86.7% cases show PG deformation aligned with predefined tolerance, thus not requiring re-planning. From 4th week, an increased number of pts would potentially benefit from re-planning: a mean of 58% of cases, with an inter-center variability of 8.3%, showed "inadequate" conditions. 11% of cases showed "bias" due to DIR and script failure; 6% showed "warning" output due to potential positioning issues. Comparing re-planning suggested by tool with recommended by ROs, the 4th week seems the most favorable time in 70% cases. SVM and decision-making tool was applied to overcome ART challenges. Pts would benefit from ART and ideal time for re-planning intervention was identified in this retrospective analysis. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Traceability of On-Machine Tool Measurement: A Review
Gomez-Acedo, Eneko; Kortaberria, Gorka; Olarra, Aitor
2017-01-01
Nowadays, errors during the manufacturing process of high value components are not acceptable in driving industries such as energy and transportation. Sectors such as aerospace, automotive, shipbuilding, nuclear power, large science facilities or wind power need complex and accurate components that demand close measurements and fast feedback into their manufacturing processes. New measuring technologies are already available in machine tools, including integrated touch probes and fast interface capabilities. They provide the possibility to measure the workpiece in-machine during or after its manufacture, maintaining the original setup of the workpiece and avoiding the manufacturing process from being interrupted to transport the workpiece to a measuring position. However, the traceability of the measurement process on a machine tool is not ensured yet and measurement data is still not fully reliable enough for process control or product validation. The scientific objective is to determine the uncertainty on a machine tool measurement and, therefore, convert it into a machine integrated traceable measuring process. For that purpose, an error budget should consider error sources such as the machine tools, components under measurement and the interactions between both of them. This paper reviews all those uncertainty sources, being mainly focused on those related to the machine tool, either on the process of geometric error assessment of the machine or on the technology employed to probe the measurand. PMID:28696358
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-06-01
Following a planning period during which the Lawrence Livermore Laboratory and the Department of Defense managing sponsor, the USAF Materials Laboratory, agreed on work statements, the Department of Defense Tri-Service Precision Machine-Tool Program began in February 1978. Milestones scheduled for the first quarter have been met. Tasks and manpower requirements for two basic projects, precision-machining commercialization (PMC) and a machine-tool task force (MTTF), were defined. Progress by PMC includes: (1) documentation of existing precision machine-tool technology by initiation and compilation of a bibliography containing several hundred entries: (2) identification of the problems and needs of precision turning-machine builders and ofmore » precision turning-machine users interested in developing high-precision machining capability; and (3) organization of the schedule and content of the first seminar, to be held in October 1978, which will bring together representatives from the machine-tool and optics communities to address the problems and begin the process of high-precision machining commercialization. Progress by MTTF includes: (1) planning for the organization of a team effort of approximately 60 to 80 international experts to contribute in various ways to project objectives, namely, to summarize state-of-the-art cutting-machine-tool technology and to identify areas where future R and D should prove technically and economically profitable; (2) preparation of a comprehensive plan to achieve those objectives; and (3) preliminary arrangements for a plenary session, also in October, when the task force will meet to formalize the details for implementing the plan.« less
ERIC Educational Resources Information Center
BOLDT, MILTON; POKORNY, HARRY
THIRTY-THREE MACHINE SHOP INSTRUCTORS FROM 17 STATES PARTICIPATED IN AN 8-WEEK SEMINAR TO DEVELOP THE SKILLS AND KNOWLEDGE ESSENTIAL FOR TEACHING THE OPERATION OF NUMERICALLY CONTROLLED MACHINE TOOLS. THE SEMINAR WAS GIVEN FROM JUNE 20 TO AUGUST 12, 1966, WITH COLLEGE CREDIT AVAILABLE THROUGH STOUT STATE UNIVERSITY. THE PARTICIPANTS COMPLETED AN…
An iterative learning control method with application for CNC machine tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D.I.; Kim, S.
1996-01-01
A proportional, integral, and derivative (PID) type iterative learning controller is proposed for precise tracking control of industrial robots and computer numerical controller (CNC) machine tools performing repetitive tasks. The convergence of the output error by the proposed learning controller is guaranteed under a certain condition even when the system parameters are not known exactly and unknown external disturbances exist. As the proposed learning controller is repeatedly applied to the industrial robot or the CNC machine tool with the path-dependent repetitive task, the distance difference between the desired path and the actual tracked or machined path, which is one ofmore » the most significant factors in the evaluation of control performance, is progressively reduced. The experimental results demonstrate that the proposed learning controller can improve machining accuracy when the CNC machine tool performs repetitive machining tasks.« less
The influence of machining condition and cutting tool wear on surface roughness of AISI 4340 steel
NASA Astrophysics Data System (ADS)
Natasha, A. R.; Ghani, J. A.; Che Haron, C. H.; Syarif, J.
2018-01-01
Sustainable machining by using cryogenic coolant as the cutting fluid has been proven to enhance some machining outputs. The main objective of the current work was to investigate the influence of machining conditions; dry and cryogenic, as well as the cutting tool wear on the machined surface roughness of AISI 4340 steel. The experimental tests were performed using chemical vapor deposition (CVD) coated carbide inserts. The value of machined surface roughness were measured at 3 cutting intervals; beginning, middle, and end of the cutting based on the readings of the tool flank wear. The results revealed that cryogenic turning had the greatest influence on surface roughness when machined at lower cutting speed and higher feed rate. Meanwhile, the cutting tool wear was also found to influence the surface roughness, either improving it or deteriorating it, based on the severity and the mechanism of the flank wear.
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for machine tool operation/machine shop I and II. Presented first are a…
Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel
NASA Astrophysics Data System (ADS)
Outeiro, José C.; Umbrello, Domenico; Pina, José C.; Rizzuti, Stefania
2007-05-01
Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.
Complex extreme learning machine applications in terahertz pulsed signals feature sets.
Yin, X-X; Hadjiloucas, S; Zhang, Y
2014-11-01
This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed algorithm should also be very useful in other applications requiring the classification of very large datasets. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Manuyakorn, Wiparat; Padungpak, Savitree; Luecha, Orawin; Kamchaisatian, Wasu; Sasisakulporn, Cherapat; Vilaiyuk, Soamarat; Monyakul, Veerapol; Benjaponpitak, Suwat
2015-06-01
House dust mite avoidance is advised in dust mite sensitized patients to decrease the risk to develop allergic symptoms. Maintaining a relative humidity (RH) of less than 50% in households is recommended to prevent dust mite proliferation. To investigate the efficacy of a novel temperature and humidity machine to control the level of dust mite allergens and total nasal symptom score (TNSS) in dust mite sensitized allergic rhinitis children. Children (8-15 years) with dust mite sensitized persistent allergic rhinitis (AR) were enrolled. The temperature and humidity control machine was installed in the bedroom where the enrolled children stayed for 6 months. TNSS was assessed before and every month after machine set up and the level of dust mite allergen (Der p 1 and Der f 1) from the mattress were measured before and every 2 months after machine set up using enzyme-linked immunosorbent assay (ELISA). A total of 7 children were enrolled. Noticeable reduction of Der f 1 was observed as early as 2 months after installing the machine, but proper significant differences appeared 4 months after and remained low until the end of the experiment (p <0.05). Although no correlation was observed between TNSS and the level of dust mite allergens, there was a significant reduction in TNSS at 2 and 4 months (p <0.05) and 70% of the patients were able to stop using their intranasal corticosteroids by the end of the experiment. The level of house dust mite in mattresses was significantly reduced after using the temperature and humidity control machine. This machine may be used as an effective tool to control clinical symptoms of dust mite sensitized AR children.
A Real-Time Tool Positioning Sensor for Machine-Tools
Ruiz, Antonio Ramon Jimenez; Rosas, Jorge Guevara; Granja, Fernando Seco; Honorato, Jose Carlos Prieto; Taboada, Jose Juan Esteve; Serrano, Vicente Mico; Jimenez, Teresa Molina
2009-01-01
In machining, natural oscillations, and elastic, gravitational or temperature deformations, are still a problem to guarantee the quality of fabricated parts. In this paper we present an optical measurement system designed to track and localize in 3D a reference retro-reflector close to the machine-tool's drill. The complete system and its components are described in detail. Several tests, some static (including impacts and rotations) and others dynamic (by executing linear and circular trajectories), were performed on two different machine tools. It has been integrated, for the first time, a laser tracking system into the position control loop of a machine-tool. Results indicate that oscillations and deformations close to the tool can be estimated with micrometric resolution and a bandwidth from 0 to more than 100 Hz. Therefore this sensor opens the possibility for on-line compensation of oscillations and deformations. PMID:22408472
NASA Astrophysics Data System (ADS)
Hadi Sutrisno, Himawan; Kiswanto, Gandjar; Istiyanto, Jos
2017-06-01
The rough machining is aimed at shaping a workpiece towards to its final form. This process takes up a big proportion of the machining time due to the removal of the bulk material which may affect the total machining time. In certain models, the rough machining has limitations especially on certain surfaces such as turbine blade and impeller. CBV evaluation is one of the concepts which is used to detect of areas admissible in the process of machining. While in the previous research, CBV area detection used a pair of normal vectors, in this research, the writer simplified the process to detect CBV area with a slicing line for each point cloud formed. The simulation resulted in three steps used for this method and they are: 1. Triangulation from CAD design models, 2. Development of CC point from the point cloud, 3. The slicing line method which is used to evaluate each point cloud position (under CBV and outer CBV). The result of this evaluation method can be used as a tool for orientation set-up on each CC point position of feasible areas in rough machining.
PlantCV v2: Image analysis software for high-throughput plant phenotyping
Abbasi, Arash; Berry, Jeffrey C.; Callen, Steven T.; Chavez, Leonardo; Doust, Andrew N.; Feldman, Max J.; Gilbert, Kerrigan B.; Hodge, John G.; Hoyer, J. Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony
2017-01-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning. PMID:29209576
PlantCV v2: Image analysis software for high-throughput plant phenotyping.
Gehan, Malia A; Fahlgren, Noah; Abbasi, Arash; Berry, Jeffrey C; Callen, Steven T; Chavez, Leonardo; Doust, Andrew N; Feldman, Max J; Gilbert, Kerrigan B; Hodge, John G; Hoyer, J Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony
2017-01-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.
PlantCV v2: Image analysis software for high-throughput plant phenotyping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less
PlantCV v2: Image analysis software for high-throughput plant phenotyping
Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash; ...
2017-12-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less
Machinability of hypereutectic silicon-aluminum alloys
NASA Astrophysics Data System (ADS)
Tanaka, T.; Akasawa, T.
1999-08-01
The machinability of high-silicon aluminum alloys made by a P/M process and by casting was compared. The cutting test was conducted by turning on lathes with the use of cemented carbide tools. The tool wear by machining the P/M alloy was far smaller than the tool wear by machining the cast alloy. The roughness of the machined surface of the P/M alloy is far better than that of the cast alloy, and the turning speed did not affect it greatly at higher speeds. The P/M alloy produced long chips, so the disposal can cause trouble. The size effect of silicon grains on the machinability is discussed.
Apparatus for electrical-assisted incremental forming and process thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, John; Cao, Jian
A process and apparatus for forming a sheet metal component using an electric current passing through the component. The process can include providing an incremental forming machine, the machine having at least one arcuate tipped tool and at least electrode spaced a predetermined distance from the arcuate tipped tool. The machine is operable to perform a plurality of incremental deformations on the sheet metal component using the arcuate tipped tool. The machine is also operable to apply an electric direct current through the electrode into the sheet metal component at the predetermined distance from the arcuate tipped tool while themore » machine is forming the sheet metal component.« less
NASA Astrophysics Data System (ADS)
Vu, Duy-Duc; Monies, Frédéric; Rubio, Walter
2018-05-01
A large number of studies, based on 3-axis end milling of free-form surfaces, seek to optimize tool path planning. Approaches try to optimize the machining time by reducing the total tool path length while respecting the criterion of the maximum scallop height. Theoretically, the tool path trajectories that remove the most material follow the directions in which the machined width is the largest. The free-form surface is often considered as a single machining area. Therefore, the optimization on the entire surface is limited. Indeed, it is difficult to define tool trajectories with optimal feed directions which generate largest machined widths. Another limiting point of previous approaches for effectively reduce machining time is the inadequate choice of the tool. Researchers use generally a spherical tool on the entire surface. However, the gains proposed by these different methods developed with these tools lead to relatively small time savings. Therefore, this study proposes a new method, using toroidal milling tools, for generating toolpaths in different regions on the machining surface. The surface is divided into several regions based on machining intervals. These intervals ensure that the effective radius of the tool, at each cutter-contact points on the surface, is always greater than the radius of the tool in an optimized feed direction. A parallel plane strategy is then used on the sub-surfaces with an optimal specific feed direction for each sub-surface. This method allows one to mill the entire surface with efficiency greater than with the use of a spherical tool. The proposed method is calculated and modeled using Maple software to find optimal regions and feed directions in each region. This new method is tested on a free-form surface. A comparison is made with a spherical cutter to show the significant gains obtained with a toroidal milling cutter. Comparisons with CAM software and experimental validations are also done. The results show the efficiency of the method.
Using Machine-Learning and Visualisation to Facilitate Learner Interpretation of Source Material
ERIC Educational Resources Information Center
Wolff, Annika; Mulholland, Paul; Zdrahal, Zdenek
2014-01-01
This paper describes an approach for supporting inquiry learning from source materials, realised and tested through a tool-kit. The approach is optimised for tasks that require a student to make interpretations across sets of resources, where opinions and justifications may be hard to articulate. We adopt a dialogue-based approach to learning…
Classifying Structures in the ISM with Machine Learning Techniques
NASA Astrophysics Data System (ADS)
Beaumont, Christopher; Goodman, A. A.; Williams, J. P.
2011-01-01
The processes which govern molecular cloud evolution and star formation often sculpt structures in the ISM: filaments, pillars, shells, outflows, etc. Because of their morphological complexity, these objects are often identified manually. Manual classification has several disadvantages; the process is subjective, not easily reproducible, and does not scale well to handle increasingly large datasets. We have explored to what extent machine learning algorithms can be trained to autonomously identify specific morphological features in molecular cloud datasets. We show that the Support Vector Machine algorithm can successfully locate filaments and outflows blended with other emission structures. When the objects of interest are morphologically distinct from the surrounding emission, this autonomous classification achieves >90% accuracy. We have developed a set of IDL-based tools to apply this technique to other datasets.
NASA Technical Reports Server (NTRS)
Garcia, J.
1984-01-01
Tool with stepped shoulders alines tubes for machining in preparation for welding. Alinement with machine tool axis accurate to within 5 mils (0.13mm) and completed much faster than visual setup by machinist.
Reversible micromachining locator
Salzer, Leander J.; Foreman, Larry R.
2002-01-01
A locator with a part support is used to hold a part onto the kinematic mount of a tooling machine so that the part can be held in or replaced in exactly the same position relative to the cutting tool for machining different surfaces of the part or for performing different machining operations on the same or different surfaces of the part. The locator has disposed therein a plurality of steel balls placed at equidistant positions around the planar surface of the locator and the kinematic mount has a plurality of magnets which alternate with grooves which accommodate the portions of the steel balls projecting from the locator. The part support holds the part to be machined securely in place in the locator. The locator can be easily detached from the kinematic mount, turned over, and replaced onto the same kinematic mount or another kinematic mount on another tooling machine without removing the part to be machined from the locator so that there is no need to touch or reposition the part within the locator, thereby assuring exact replication of the position of the part in relation to the cutting tool on the tooling machine for each machining operation on the part.
Learning to recognize rat social behavior: Novel dataset and cross-dataset application.
Lorbach, Malte; Kyriakou, Elisavet I; Poppe, Ronald; van Dam, Elsbeth A; Noldus, Lucas P J J; Veltkamp, Remco C
2018-04-15
Social behavior is an important aspect of rodent models. Automated measuring tools that make use of video analysis and machine learning are an increasingly attractive alternative to manual annotation. Because machine learning-based methods need to be trained, it is important that they are validated using data from different experiment settings. To develop and validate automated measuring tools, there is a need for annotated rodent interaction datasets. Currently, the availability of such datasets is limited to two mouse datasets. We introduce the first, publicly available rat social interaction dataset, RatSI. We demonstrate the practical value of the novel dataset by using it as the training set for a rat interaction recognition method. We show that behavior variations induced by the experiment setting can lead to reduced performance, which illustrates the importance of cross-dataset validation. Consequently, we add a simple adaptation step to our method and improve the recognition performance. Most existing methods are trained and evaluated in one experimental setting, which limits the predictive power of the evaluation to that particular setting. We demonstrate that cross-dataset experiments provide more insight in the performance of classifiers. With our novel, public dataset we encourage the development and validation of automated recognition methods. We are convinced that cross-dataset validation enhances our understanding of rodent interactions and facilitates the development of more sophisticated recognition methods. Combining them with adaptation techniques may enable us to apply automated recognition methods to a variety of animals and experiment settings. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluation of Algorithms for a Miles-in-Trail Decision Support Tool
NASA Technical Reports Server (NTRS)
Bloem, Michael; Hattaway, David; Bambos, Nicholas
2012-01-01
Four machine learning algorithms were prototyped and evaluated for use in a proposed decision support tool that would assist air traffic managers as they set Miles-in-Trail restrictions. The tool would display probabilities that each possible Miles-in-Trail value should be used in a given situation. The algorithms were evaluated with an expected Miles-in-Trail cost that assumes traffic managers set restrictions based on the tool-suggested probabilities. Basic Support Vector Machine, random forest, and decision tree algorithms were evaluated, as was a softmax regression algorithm that was modified to explicitly reduce the expected Miles-in-Trail cost. The algorithms were evaluated with data from the summer of 2011 for air traffic flows bound to the Newark Liberty International Airport (EWR) over the ARD, PENNS, and SHAFF fixes. The algorithms were provided with 18 input features that describe the weather at EWR, the runway configuration at EWR, the scheduled traffic demand at EWR and the fixes, and other traffic management initiatives in place at EWR. Features describing other traffic management initiatives at EWR and the weather at EWR achieved relatively high information gain scores, indicating that they are the most useful for estimating Miles-in-Trail. In spite of a high variance or over-fitting problem, the decision tree algorithm achieved the lowest expected Miles-in-Trail costs when the algorithms were evaluated using 10-fold cross validation with the summer 2011 data for these air traffic flows.
NASA Astrophysics Data System (ADS)
Buck, J. A.; Underhill, P. R.; Morelli, J.; Krause, T. W.
2017-02-01
Degradation of nuclear steam generator (SG) tubes and support structures can result in a loss of reactor efficiency. Regular in-service inspection, by conventional eddy current testing (ECT), permits detection of cracks, measurement of wall loss, and identification of other SG tube degradation modes. However, ECT is challenged by overlapping degradation modes such as might occur for SG tube fretting accompanied by tube off-set within a corroding ferromagnetic support structure. Pulsed eddy current (PEC) is an emerging technology examined here for inspection of Alloy-800 SG tubes and associated carbon steel drilled support structures. Support structure hole size was varied to simulate uniform corrosion, while SG tube was off-set relative to hole axis. PEC measurements were performed using a single driver with an 8 pick-up coil configuration in the presence of flat-bottom rectangular frets as an overlapping degradation mode. A modified principal component analysis (MPCA) was performed on the time-voltage data in order to reduce data dimensionality. The MPCA scores were then used to train a support vector machine (SVM) that simultaneously targeted four independent parameters associated with; support structure hole size, tube off-centering in two dimensions and fret depth. The support vector machine was trained, tested, and validated on experimental data. Results were compared with a previously developed artificial neural network (ANN) trained on the same data. Estimates of tube position showed comparable results between the two machine learning tools. However, the ANN produced better estimates of hole inner diameter and fret depth. The better results from ANN analysis was attributed to challenges associated with the SVM when non-constant variance is present in the data.
MATC Machine Shop '84: Specific Skill Needs Assessment for Machine Shops in the Milwaukee Area.
ERIC Educational Resources Information Center
Roberts, Keith J.
Building on previous research on the future skill needs of workers in southeastern Wisconsin, a study was conducted at Milwaukee Area Technical College (MATC) to gather information on the machine tool industry in the Milwaukee area. Interviews were conducted by MATC Machine Shop and Tool and Die faculty with representatives from 135 machine shops,…
A Review on High-Speed Machining of Titanium Alloys
NASA Astrophysics Data System (ADS)
Rahman, Mustafizur; Wang, Zhi-Gang; Wong, Yoke-San
Titanium alloys have been widely used in the aerospace, biomedical and automotive industries because of their good strength-to-weight ratio and superior corrosion resistance. However, it is very difficult to machine them due to their poor machinability. When machining titanium alloys with conventional tools, the tool wear rate progresses rapidly, and it is generally difficult to achieve a cutting speed of over 60m/min. Other types of tool materials, including ceramic, diamond, and cubic boron nitride (CBN), are highly reactive with titanium alloys at higher temperature. However, binder-less CBN (BCBN) tools, which do not have any binder, sintering agent or catalyst, have a remarkably longer tool life than conventional CBN inserts even at high cutting speeds. In order to get deeper understanding of high speed machining (HSM) of titanium alloys, the generation of mathematical models is essential. The models are also needed to predict the machining parameters for HSM. This paper aims to give an overview of recent developments in machining and HSM of titanium alloys, geometrical modeling of HSM, and cutting force models for HSM of titanium alloys.
NASA Astrophysics Data System (ADS)
Sateesh Kumar, Ch; Patel, Saroj Kumar; Das, Anshuman
2018-03-01
Temperature generation in cutting tools is one of the major causes of tool failure especially during hard machining where machining forces are quite high resulting in elevated temperatures. Thus, the present work investigates the temperature generation during hard machining of AISI 52100 steel (62 HRC hardness) with uncoated and PVD AlTiN coated Al2O3/TiCN mixed ceramic cutting tools. The experiments were performed on a heavy duty lathe machine with both coated and uncoated cutting tools under dry cutting environment. The temperature of the cutting zone was measured using an infrared thermometer and a finite element model has been adopted to predict the temperature distribution in cutting tools during machining for comparative assessment with the measured temperature. The experimental and numerical results revealed a significant reduction of cutting zone temperature during machining with PVD AlTiN coated cutting tools when compared to uncoated cutting tools during each experimental run. The main reason for decrease in temperature for AlTiN coated tools is the lower coefficient of friction offered by the coating material which allows the free flow of the chips on the rake surface when compared with uncoated cutting tools. Further, the superior wear behaviour of AlTiN coating resulted in reduction of cutting temperature.
NASA Astrophysics Data System (ADS)
Sousa, Andre R.; Schneider, Carlos A.
2001-09-01
A touch probe is used on a 3-axis vertical machine center to check against a hole plate, calibrated on a coordinate measuring machine (CMM). By comparing the results obtained from the machine tool and CMM, the main machine tool error components are measured, attesting the machine accuracy. The error values can b used also t update the error compensation table at the CNC, enhancing the machine accuracy. The method is easy to us, has a lower cost than classical test techniques, and preliminary results have shown that its uncertainty is comparable to well established techniques. In this paper the method is compared with the laser interferometric system, regarding reliability, cost and time efficiency.
Tool geometry and damage mechanisms influencing CNC turning efficiency of Ti6Al4V
NASA Astrophysics Data System (ADS)
Suresh, Sangeeth; Hamid, Darulihsan Abdul; Yazid, M. Z. A.; Nasuha, Nurdiyanah; Ain, Siti Nurul
2017-12-01
Ti6Al4V or Grade 5 titanium alloy is widely used in the aerospace, medical, automotive and fabrication industries, due to its distinctive combination of mechanical and physical properties. Ti6Al4V has always been perverse during its machining, strangely due to the same mix of properties mentioned earlier. Ti6Al4V machining has resulted in shorter cutting tool life which has led to objectionable surface integrity and rapid failure of the parts machined. However, the proven functional relevance of this material has prompted extensive research in the optimization of machine parameters and cutting tool characteristics. Cutting tool geometry plays a vital role in ensuring dimensional and geometric accuracy in machined parts. In this study, an experimental investigation is actualized to optimize the nose radius and relief angles of the cutting tools and their interaction to different levels of machining parameters. Low elastic modulus and thermal conductivity of Ti6Al4V contribute to the rapid tool damage. The impact of these properties over the tool tips damage is studied. An experimental design approach is utilized in the CNC turning process of Ti6Al4V to statistically analyze and propose optimum levels of input parameters to lengthen the tool life and enhance surface characteristics of the machined parts. A greater tool nose radius with a straight flank, combined with low feed rates have resulted in a desirable surface integrity. The presence of relief angle has proven to aggravate tool damage and also dimensional instability in the CNC turning of Ti6Al4V.
Ross, Elsie Gyang; Shah, Nigam H; Dalman, Ronald L; Nead, Kevin T; Cooke, John P; Leeper, Nicholas J
2016-11-01
A key aspect of the precision medicine effort is the development of informatics tools that can analyze and interpret "big data" sets in an automated and adaptive fashion while providing accurate and actionable clinical information. The aims of this study were to develop machine learning algorithms for the identification of disease and the prognostication of mortality risk and to determine whether such models perform better than classical statistical analyses. Focusing on peripheral artery disease (PAD), patient data were derived from a prospective, observational study of 1755 patients who presented for elective coronary angiography. We employed multiple supervised machine learning algorithms and used diverse clinical, demographic, imaging, and genomic information in a hypothesis-free manner to build models that could identify patients with PAD and predict future mortality. Comparison was made to standard stepwise linear regression models. Our machine-learned models outperformed stepwise logistic regression models both for the identification of patients with PAD (area under the curve, 0.87 vs 0.76, respectively; P = .03) and for the prediction of future mortality (area under the curve, 0.76 vs 0.65, respectively; P = .10). Both machine-learned models were markedly better calibrated than the stepwise logistic regression models, thus providing more accurate disease and mortality risk estimates. Machine learning approaches can produce more accurate disease classification and prediction models. These tools may prove clinically useful for the automated identification of patients with highly morbid diseases for which aggressive risk factor management can improve outcomes. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
ANALYTiC: An Active Learning System for Trajectory Classification.
Soares Junior, Amilcar; Renso, Chiara; Matwin, Stan
2017-01-01
The increasing availability and use of positioning devices has resulted in large volumes of trajectory data. However, semantic annotations for such data are typically added by domain experts, which is a time-consuming task. Machine-learning algorithms can help infer semantic annotations from trajectory data by learning from sets of labeled data. Specifically, active learning approaches can minimize the set of trajectories to be annotated while preserving good performance measures. The ANALYTiC web-based interactive tool visually guides users through this annotation process.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-25
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,971] ASC Machine Tools, Inc... workers and former workers of ASC Machine Tools, Inc., Spokane Valley, Washington (the subject firm). The... cut metal, including assembled equipment, component parts of equipment, and spare parts. The negative...
Tool feed influence on the machinability of CO(2) laser optics.
Arnold, J B; Steger, P J; Saito, T T
1975-08-01
Influence of tool feed on reflectivity of diamond-machined surfaces was evaluated using materials (gold, silver, and copper) from which CO(2) laser optics are primarily produced. Fifteen specimens were machined by holding all machining parameters constant, except tool feed. Tool feed was allowed to vary by controlled amounts from one evaluation zone (or part) to another. Past experience has verified that the quality of a diamond-machined surface is not a function of the cutting velocity; therefore, this experiment was conducted on the basis that a variation in cutting velocity was not an influencing factor on the diamondturning process. Inspection results of the specimens indicated that tool feeds significantly higher than 5.1 micro/rev (200 microin./rev) produced detrimental effects on the machined surfaces. In some cases, at feeds as high as 13 microm/rev (500 microin./rev), visible scoring was evident. Those surfaces produced with tool feeds less than 5.1 microm/rev had little difference in reflectivity. Measurements indicat d that their reflectivity existed in a range from 96.7% to 99.3% at 10.6 microm.
NASA Technical Reports Server (NTRS)
Voronov, Oleg
2007-01-01
Diamond smoothing tools have been proposed for use in conjunction with diamond cutting tools that are used in many finish-machining operations. Diamond machining (including finishing) is often used, for example, in fabrication of precise metal mirrors. A diamond smoothing tool according to the proposal would have a smooth spherical surface. For a given finish machining operation, the smoothing tool would be mounted next to the cutting tool. The smoothing tool would slide on the machined surface left behind by the cutting tool, plastically deforming the surface material and thereby reducing the roughness of the surface, closing microcracks and otherwise generally reducing or eliminating microscopic surface and subsurface defects, and increasing the microhardness of the surface layer. It has been estimated that if smoothing tools of this type were used in conjunction with cutting tools on sufficiently precise lathes, it would be possible to reduce the roughness of machined surfaces to as little as 3 nm. A tool according to the proposal would consist of a smoothing insert in a metal holder. The smoothing insert would be made from a diamond/metal functionally graded composite rod preform, which, in turn, would be made by sintering together a bulk single-crystal or polycrystalline diamond, a diamond powder, and a metallic alloy at high pressure. To form the spherical smoothing tip, the diamond end of the preform would be subjected to flat grinding, conical grinding, spherical grinding using diamond wheels, and finally spherical polishing and/or buffing using diamond powders. If the diamond were a single crystal, then it would be crystallographically oriented, relative to the machining motion, to minimize its wear and maximize its hardness. Spherically polished diamonds could also be useful for purposes other than smoothing in finish machining: They would likely also be suitable for use as heat-resistant, wear-resistant, unlubricated sliding-fit bearing inserts.
NASA Technical Reports Server (NTRS)
1988-01-01
A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.
Diamond machine tool face lapping machine
Yetter, H.H.
1985-05-06
An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.
NASA Astrophysics Data System (ADS)
Anderson, R. B.; Finch, N.; Clegg, S. M.; Graff, T. G.; Morris, R. V.; Laura, J.; Gaddis, L. R.
2017-12-01
Machine learning is a powerful but underutilized approach that can enable planetary scientists to derive meaningful results from the rapidly-growing quantity of available spectral data. For example, regression methods such as Partial Least Squares (PLS) and Least Absolute Shrinkage and Selection Operator (LASSO), can be used to determine chemical concentrations from ChemCam and SuperCam Laser-Induced Breakdown Spectroscopy (LIBS) data [1]. Many scientists are interested in testing different spectral data processing and machine learning methods, but few have the time or expertise to write their own software to do so. We are therefore developing a free open-source library of software called the Python Spectral Analysis Tool (PySAT) along with a flexible, user-friendly graphical interface to enable scientists to process and analyze point spectral data without requiring significant programming or machine-learning expertise. A related but separately-funded effort is working to develop a graphical interface for orbital data [2]. The PySAT point-spectra tool includes common preprocessing steps (e.g. interpolation, normalization, masking, continuum removal, dimensionality reduction), plotting capabilities, and capabilities to prepare data for machine learning such as creating stratified folds for cross validation, defining training and test sets, and applying calibration transfer so that data collected on different instruments or under different conditions can be used together. The tool leverages the scikit-learn library [3] to enable users to train and compare the results from a variety of multivariate regression methods. It also includes the ability to combine multiple "sub-models" into an overall model, a method that has been shown to improve results and is currently used for ChemCam data [4]. Although development of the PySAT point-spectra tool has focused primarily on the analysis of LIBS spectra, the relevant steps and methods are applicable to any spectral data. The tool is available at https://github.com/USGS-Astrogeology/PySAT_Point_Spectra_GUI. [1] Clegg, S.M., et al. (2017) Spectrochim Acta B. 129, 64-85. [2] Gaddis, L. et al. (2017) 3rd Planetary Data Workshop, #1986. [3] http://scikit-learn.org/ [4] Anderson, R.B., et al. (2017) Spectrochim. Acta B. 129, 49-57.
Controlling the type and the form of chip when machining steel
NASA Astrophysics Data System (ADS)
Gruby, S. V.; Lasukov, A. A.; Nekrasov, R. Yu; Politsinsky, E. V.; Arkhipova, D. A.
2016-08-01
The type of the chip produced in the process of machining influences many factors of production process. Controlling the type of chip when cutting metals is important for producing swarf chips and for easing its utilization as well as for protecting the machined surface, cutting tool and the worker. In the given work we provide the experimental data on machining structural steel with implanted tool. The authors show that it is possible to control the chip formation process to produce the required type of chip by selecting the material for machining the tool surface.
Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining
Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin
2016-01-01
Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing. PMID:27854322
Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining.
Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin
2016-11-16
Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.
The construction of support vector machine classifier using the firefly algorithm.
Chao, Chih-Feng; Horng, Ming-Huwi
2015-01-01
The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy.
The Construction of Support Vector Machine Classifier Using the Firefly Algorithm
Chao, Chih-Feng; Horng, Ming-Huwi
2015-01-01
The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy. PMID:25802511
The U.S. Machine Tool Industry and the Defense Industrial Base
1983-01-01
GOLD, Director, Research Program in Industrial Economics , Case Western Reserve University HAMILTON HERMAN, Management Consultant NATHANIEL S. HOWE...Traditional U.S. Machine Tool Industry ........ 8 Technological Trends Shaping the Industry ........ 18 Economic Trends .................................. 23...sustained economic recovery and aggressive steps by both government and industry, an effectively com- petitive domestic machine tool industry can emerge
Technology of machine tools. Volume 1. Executive summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
PCD tool wear and its monitoring in machining tungsten
NASA Astrophysics Data System (ADS)
Wang, Lijiang; Zhang, Zhenlie; Sun, Qi; Liu, Pin
The views of Chinese and foreign researchers are quite different as to whether or not polycrystalline diamond (PCD) tools can machine tungsten that is used in the aerospace and electronic industries. A study is presented that shows the possibility of machining tungsten, and a new method is developed for monitoring the tool wear in production.
Machine and Woodworking Tool Safety. Module SH-24. Safety and Health.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This student module on machine and woodworking tool safety is one of 50 modules concerned with job safety and health. This module discusses specific practices and precautions concerned with the efficient operation and use of most machine and woodworking tools in use today. Following the introduction, 13 objectives (each keyed to a page in the…
Machinability of titanium metal matrix composites (Ti-MMCs)
NASA Astrophysics Data System (ADS)
Aramesh, Maryam
Titanium metal matrix composites (Ti-MMCs), as a new generation of materials, have various potential applications in aerospace and automotive industries. The presence of ceramic particles enhances the physical and mechanical properties of the alloy matrix. However, the hard and abrasive nature of these particles causes various issues in the field of their machinability. Severe tool wear and short tool life are the most important drawbacks of machining this class of materials. There is very limited work in the literature regarding the machinability of this class of materials especially in the area of tool life estimation and tool wear. By far, polycrystalline diamond (PCD) tools appear to be the best choice for machining MMCs from researchers' point of view. However, due to their high cost, economical alternatives are sought. Cubic boron nitride (CBN) inserts, as the second hardest available tools, show superior characteristics such as great wear resistance, high hardness at elevated temperatures, a low coefficient of friction and a high melting point. Yet, so far CBN tools have not been studied during machining of Ti-MMCs. In this study, a comprehensive study has been performed to explore the tool wear mechanisms of CBN inserts during turning of Ti-MMCs. The unique morphology of the worn faces of the tools was investigated for the first time, which led to new insights in the identification of chemical wear mechanisms during machining of Ti-MMCs. Utilizing the full tool life capacity of cutting tools is also very crucial, due to the considerable costs associated with suboptimal replacement of tools. This strongly motivates development of a reliable model for tool life estimation under any cutting conditions. In this study, a novel model based on the survival analysis methodology is developed to estimate the progressive states of tool wear under any cutting conditions during machining of Ti-MMCs. This statistical model takes into account the machining time in addition to the effect of cutting parameters. Thus, promising results were obtained which showed a very good agreement with the experimental results. Moreover, a more advanced model was constructed, by adding the tool wear as another variable to the previous model. Therefore, a new model was proposed for estimating the remaining life of worn inserts under different cutting conditions, using the current tool wear data as an input. The results of this model were validated with the experimental results. The estimated results were well consistent with the results obtained from the experiments.
NASA Astrophysics Data System (ADS)
Chahrazed, Yahiaoui; Jean-Louis, Lanet; Mohamed, Mezghiche; Karim, Tamine
2018-01-01
Fault attack represents one of the serious threats against Java Card security. It consists of physical perturbation of chip components to introduce faults in the code execution. A fault may be induced using a laser beam to impact opcodes and operands of instructions. This could lead to a mutation of the application code in such a way that it becomes hostile. Any successful attack may reveal a secret information stored in the card or grant an undesired authorisation. We propose a methodology to recognise, during the development step, the sensitive patterns to the fault attack in the Java Card applications. It is based on the concepts from text categorisation and machine learning. In fact, in this method, we represented the patterns using opcodes n-grams as features, and we evaluated different machine learning classifiers. The results show that the classifiers performed poorly when classifying dangerous sensitive patterns, due to the imbalance of our data-set. The number of dangerous sensitive patterns is much lower than the number of not dangerous patterns. We used resampling techniques to balance the class distribution in our data-set. The experimental results indicated that the resampling techniques improved the accuracy of the classifiers. In addition, our proposed method reduces the execution time of sensitive patterns classification in comparison to the SmartCM tool. This tool is used in our study to evaluate the effect of faults on Java Card applications.
Introducing Explorer of Taxon Concepts with a case study on spider measurement matrix building.
Cui, Hong; Xu, Dongfang; Chong, Steven S; Ramirez, Martin; Rodenhausen, Thomas; Macklin, James A; Ludäscher, Bertram; Morris, Robert A; Soto, Eduardo M; Koch, Nicolás Mongiardino
2016-11-17
Taxonomic descriptions are traditionally composed in natural language and published in a format that cannot be directly used by computers. The Exploring Taxon Concepts (ETC) project has been developing a set of web-based software tools that convert morphological descriptions published in telegraphic style to character data that can be reused and repurposed. This paper introduces the first semi-automated pipeline, to our knowledge, that converts morphological descriptions into taxon-character matrices to support systematics and evolutionary biology research. We then demonstrate and evaluate the use of the ETC Input Creation - Text Capture - Matrix Generation pipeline to generate body part measurement matrices from a set of 188 spider morphological descriptions and report the findings. From the given set of spider taxonomic publications, two versions of input (original and normalized) were generated and used by the ETC Text Capture and ETC Matrix Generation tools. The tools produced two corresponding spider body part measurement matrices, and the matrix from the normalized input was found to be much more similar to a gold standard matrix hand-curated by the scientist co-authors. Special conventions utilized in the original descriptions (e.g., the omission of measurement units) were attributed to the lower performance of using the original input. The results show that simple normalization of the description text greatly increased the quality of the machine-generated matrix and reduced edit effort. The machine-generated matrix also helped identify issues in the gold standard matrix. ETC Text Capture and ETC Matrix Generation are low-barrier and effective tools for extracting measurement values from spider taxonomic descriptions and are more effective when the descriptions are self-contained. Special conventions that make the description text less self-contained challenge automated extraction of data from biodiversity descriptions and hinder the automated reuse of the published knowledge. The tools will be updated to support new requirements revealed in this case study.
Performance of machine-learning scoring functions in structure-based virtual screening.
Wójcikowski, Maciej; Ballester, Pedro J; Siedlecki, Pawel
2017-04-25
Classical scoring functions have reached a plateau in their performance in virtual screening and binding affinity prediction. Recently, machine-learning scoring functions trained on protein-ligand complexes have shown great promise in small tailored studies. They have also raised controversy, specifically concerning model overfitting and applicability to novel targets. Here we provide a new ready-to-use scoring function (RF-Score-VS) trained on 15 426 active and 893 897 inactive molecules docked to a set of 102 targets. We use the full DUD-E data sets along with three docking tools, five classical and three machine-learning scoring functions for model building and performance assessment. Our results show RF-Score-VS can substantially improve virtual screening performance: RF-Score-VS top 1% provides 55.6% hit rate, whereas that of Vina only 16.2% (for smaller percent the difference is even more encouraging: RF-Score-VS top 0.1% achieves 88.6% hit rate for 27.5% using Vina). In addition, RF-Score-VS provides much better prediction of measured binding affinity than Vina (Pearson correlation of 0.56 and -0.18, respectively). Lastly, we test RF-Score-VS on an independent test set from the DEKOIS benchmark and observed comparable results. We provide full data sets to facilitate further research in this area (http://github.com/oddt/rfscorevs) as well as ready-to-use RF-Score-VS (http://github.com/oddt/rfscorevs_binary).
Cheng, Tiejun; Li, Qingliang; Wang, Yanli; Bryant, Stephen H
2011-02-28
Aqueous solubility is recognized as a critical parameter in both the early- and late-stage drug discovery. Therefore, in silico modeling of solubility has attracted extensive interests in recent years. Most previous studies have been limited in using relatively small data sets with limited diversity, which in turn limits the predictability of derived models. In this work, we present a support vector machines model for the binary classification of solubility by taking advantage of the largest known public data set that contains over 46 000 compounds with experimental solubility. Our model was optimized in combination with a reduction and recombination feature selection strategy. The best model demonstrated robust performance in both cross-validation and prediction of two independent test sets, indicating it could be a practical tool to select soluble compounds for screening, purchasing, and synthesizing. Moreover, our work may be used for comparative evaluation of solubility classification studies ascribe to the use of completely public resources.
Operating System For Numerically Controlled Milling Machine
NASA Technical Reports Server (NTRS)
Ray, R. B.
1992-01-01
OPMILL program is operating system for Kearney and Trecker milling machine providing fast easy way to program manufacture of machine parts with IBM-compatible personal computer. Gives machinist "equation plotter" feature, which plots equations that define movements and converts equations to milling-machine-controlling program moving cutter along defined path. System includes tool-manager software handling up to 25 tools and automatically adjusts to account for each tool. Developed on IBM PS/2 computer running DOS 3.3 with 1 MB of random-access memory.
UIVerify: A Web-Based Tool for Verification and Automatic Generation of User Interfaces
NASA Technical Reports Server (NTRS)
Shiffman, Smadar; Degani, Asaf; Heymann, Michael
2004-01-01
In this poster, we describe a web-based tool for verification and automatic generation of user interfaces. The verification component of the tool accepts as input a model of a machine and a model of its interface, and checks that the interface is adequate (correct). The generation component of the tool accepts a model of a given machine and the user's task, and then generates a correct and succinct interface. This write-up will demonstrate the usefulness of the tool by verifying the correctness of a user interface to a flight-control system. The poster will include two more examples of using the tool: verification of the interface to an espresso machine, and automatic generation of a succinct interface to a large hypothetical machine.
USSR Report, Machine Tools and Metalworking Equipment, No. 6
1983-05-18
production output per machine tool at a tool plant average 2-3 times the figures for tool shops. This is explained by the well-known advantages of...specialized production. Specifically, the advantages of standardization and unification of machine- attachment design can be fully exploited in...lemiiiiä IS MVCti\\e UtiUzation °f appropriate special equipmeT ters)! million thread-cutting dies, and 2.3 million milling cut- The advantages of
Progress with modeling activity landscapes in drug discovery.
Vogt, Martin
2018-04-19
Activity landscapes (ALs) are representations and models of compound data sets annotated with a target-specific activity. In contrast to quantitative structure-activity relationship (QSAR) models, ALs aim at characterizing structure-activity relationships (SARs) on a large-scale level encompassing all active compounds for specific targets. The popularity of AL modeling has grown substantially with the public availability of large activity-annotated compound data sets. AL modeling crucially depends on molecular representations and similarity metrics used to assess structural similarity. Areas covered: The concepts of AL modeling are introduced and its basis in quantitatively assessing molecular similarity is discussed. The different types of AL modeling approaches are introduced. AL designs can broadly be divided into three categories: compound-pair based, dimensionality reduction, and network approaches. Recent developments for each of these categories are discussed focusing on the application of mathematical, statistical, and machine learning tools for AL modeling. AL modeling using chemical space networks is covered in more detail. Expert opinion: AL modeling has remained a largely descriptive approach for the analysis of SARs. Beyond mere visualization, the application of analytical tools from statistics, machine learning and network theory has aided in the sophistication of AL designs and provides a step forward in transforming ALs from descriptive to predictive tools. To this end, optimizing representations that encode activity relevant features of molecules might prove to be a crucial step.
NASA Astrophysics Data System (ADS)
Chetan; Narasimhulu, A.; Ghosh, S.; Rao, P. V.
2015-07-01
Machinability of titanium is poor due to its low thermal conductivity and high chemical affinity. Lower thermal conductivity of titanium alloy is undesirable on the part of cutting tool causing extensive tool wear. The main task of this work is to predict the various wear mechanisms involved during machining of Ti alloy (Ti6Al4V) and to formulate an analytical mathematical tool wear model for the same. It has been found from various experiments that adhesive and diffusion wear are the dominating wear during machining of Ti alloy with PVD coated tungsten carbide tool. It is also clear from the experiments that the tool wear increases with the increase in cutting parameters like speed, feed and depth of cut. The wear model was validated by carrying out dry machining of Ti alloy at suitable cutting conditions. It has been found that the wear model is able to predict the flank wear suitably under gentle cutting conditions.
A Security Monitoring Framework For Virtualization Based HEP Infrastructures
NASA Astrophysics Data System (ADS)
Gomez Ramirez, A.; Martinez Pedreira, M.; Grigoras, C.; Betev, L.; Lara, C.; Kebschull, U.;
2017-10-01
High Energy Physics (HEP) distributed computing infrastructures require automatic tools to monitor, analyze and react to potential security incidents. These tools should collect and inspect data such as resource consumption, logs and sequence of system calls for detecting anomalies that indicate the presence of a malicious agent. They should also be able to perform automated reactions to attacks without administrator intervention. We describe a novel framework that accomplishes these requirements, with a proof of concept implementation for the ALICE experiment at CERN. We show how we achieve a fully virtualized environment that improves the security by isolating services and Jobs without a significant performance impact. We also describe a collected dataset for Machine Learning based Intrusion Prevention and Detection Systems on Grid computing. This dataset is composed of resource consumption measurements (such as CPU, RAM and network traffic), logfiles from operating system services, and system call data collected from production Jobs running in an ALICE Grid test site and a big set of malware samples. This malware set was collected from security research sites. Based on this dataset, we will proceed to develop Machine Learning algorithms able to detect malicious Jobs.
Review on CNC-Rapid Prototyping
NASA Astrophysics Data System (ADS)
Z, M. Nafis O.; Y, Nafrizuan M.; A, Munira M.; J, Kartina
2012-09-01
This article reviewed developments of Computerized Numerical Control (CNC) technology in rapid prototyping process. Rapid prototyping (RP) can be classified into three major groups; subtractive, additive and virtual. CNC rapid prototyping is grouped under the subtractive category which involves material removal from the workpiece that is larger than the final part. Richard Wysk established the use of CNC machines for rapid prototyping using sets of 2½-D tool paths from various orientations about a rotary axis to machine parts without refixturing. Since then, there are few developments on this process mainly aimed to optimized the operation and increase the process capabilities to stand equal with common additive type of RP. These developments include the integration between machining and deposition process (hybrid RP), adoption of RP to the conventional machine and optimization of the CNC rapid prototyping process based on controlled parameters. The article ended by concluding that the CNC rapid prototyping research area has a vast space for improvement as in the conventional machining processes. Further developments and findings will enhance the usage of this method and minimize the limitation of current approach in building a prototype.
Application of Machine Learning to Rotorcraft Health Monitoring
NASA Technical Reports Server (NTRS)
Cody, Tyler; Dempsey, Paula J.
2017-01-01
Machine learning is a powerful tool for data exploration and model building with large data sets. This project aimed to use machine learning techniques to explore the inherent structure of data from rotorcraft gear tests, relationships between features and damage states, and to build a system for predicting gear health for future rotorcraft transmission applications. Classical machine learning techniques are difficult, if not irresponsible to apply to time series data because many make the assumption of independence between samples. To overcome this, Hidden Markov Models were used to create a binary classifier for identifying scuffing transitions and Recurrent Neural Networks were used to leverage long distance relationships in predicting discrete damage states. When combined in a workflow, where the binary classifier acted as a filter for the fatigue monitor, the system was able to demonstrate accuracy in damage state prediction and scuffing identification. The time dependent nature of the data restricted data exploration to collecting and analyzing data from the model selection process. The limited amount of available data was unable to give useful information, and the division of training and testing sets tended to heavily influence the scores of the models across combinations of features and hyper-parameters. This work built a framework for tracking scuffing and fatigue on streaming data and demonstrates that machine learning has much to offer rotorcraft health monitoring by using Bayesian learning and deep learning methods to capture the time dependent nature of the data. Suggested future work is to implement the framework developed in this project using a larger variety of data sets to test the generalization capabilities of the models and allow for data exploration.
Ahmed, Yassmin Seid; Fox-Rabinovich, German; Paiva, Jose Mario; Wagg, Terry; Veldhuis, Stephen Clarence
2017-10-25
During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool-chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear.
Method for machining steel with diamond tools
Casstevens, J.M.
1984-01-01
The present invention is directed to a method for machine optical quality finishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.
Method for machining steel with diamond tools
Casstevens, John M.
1986-01-01
The present invention is directed to a method for machining optical quality inishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.
NASA Astrophysics Data System (ADS)
Yingfei, Ge; de Escalona, Patricia Muñoz; Galloway, Alexander
2017-01-01
The efficiency of a machining process can be measured by evaluating the quality of the machined surface and the tool wear rate. The research reported herein is mainly focused on the effect of cutting parameters and tool wear on the machined surface defects, surface roughness, deformation layer and residual stresses when dry milling Stellite 6, deposited by overlay on a carbon steel surface. The results showed that under the selected cutting conditions, abrasion, diffusion, peeling, chipping and breakage were the main tool wear mechanisms presented. Also the feed rate was the primary factor affecting the tool wear with an influence of 83%. With regard to the influence of cutting parameters on the surface roughness, the primary factors were feed rate and cutting speed with 57 and 38%, respectively. In addition, in general, as tool wear increased, the surface roughness increased and the deformation layer was found to be influenced more by the cutting parameters rather than the tool wear. Compressive residual stresses were observed in the un-machined surface, and when machining longer than 5 min, residual stress changed 100% from compression to tension. Finally, results showed that micro-crack initiation was the main mechanism for chip formation.
Thermal Error Test and Intelligent Modeling Research on the Spindle of High Speed CNC Machine Tools
NASA Astrophysics Data System (ADS)
Luo, Zhonghui; Peng, Bin; Xiao, Qijun; Bai, Lu
2018-03-01
Thermal error is the main factor affecting the accuracy of precision machining. Through experiments, this paper studies the thermal error test and intelligent modeling for the spindle of vertical high speed CNC machine tools in respect of current research focuses on thermal error of machine tool. Several testing devices for thermal error are designed, of which 7 temperature sensors are used to measure the temperature of machine tool spindle system and 2 displacement sensors are used to detect the thermal error displacement. A thermal error compensation model, which has a good ability in inversion prediction, is established by applying the principal component analysis technology, optimizing the temperature measuring points, extracting the characteristic values closely associated with the thermal error displacement, and using the artificial neural network technology.
Armean, Irina M; Lilley, Kathryn S; Trotter, Matthew W B; Pilkington, Nicholas C V; Holden, Sean B
2018-06-01
Protein-protein interactions (PPI) play a crucial role in our understanding of protein function and biological processes. The standardization and recording of experimental findings is increasingly stored in ontologies, with the Gene Ontology (GO) being one of the most successful projects. Several PPI evaluation algorithms have been based on the application of probabilistic frameworks or machine learning algorithms to GO properties. Here, we introduce a new training set design and machine learning based approach that combines dependent heterogeneous protein annotations from the entire ontology to evaluate putative co-complex protein interactions determined by empirical studies. PPI annotations are built combinatorically using corresponding GO terms and InterPro annotation. We use a S.cerevisiae high-confidence complex dataset as a positive training set. A series of classifiers based on Maximum Entropy and support vector machines (SVMs), each with a composite counterpart algorithm, are trained on a series of training sets. These achieve a high performance area under the ROC curve of ≤0.97, outperforming go2ppi-a previously established prediction tool for protein-protein interactions (PPI) based on Gene Ontology (GO) annotations. https://github.com/ima23/maxent-ppi. sbh11@cl.cam.ac.uk. Supplementary data are available at Bioinformatics online.
ERIC Educational Resources Information Center
Crossley, Scott A.
2013-01-01
This paper provides an agenda for replication studies focusing on second language (L2) writing and the use of natural language processing (NLP) tools and machine learning algorithms. Specifically, it introduces a range of the available NLP tools and machine learning algorithms and demonstrates how these could be used to replicate seminal studies…
1989-01-30
absolutely forbid the dealing of retaliatory blows to those of the masses who give their opinions. Fifth, on the basis of their analyses they pass on...Timber Artificial Board Cement Plate Glass Power Equipment Machine Tool Precision Machine Tool Large Machine Tool Automobile Truck Tractor Small...the State Bureau of Building Materials Industry said that the industry must manufacture more varieties of high quality cement, glass , pottery, and
Ambiguity and variability of database and software names in bioinformatics.
Duck, Geraint; Kovacevic, Aleksandar; Robertson, David L; Stevens, Robert; Nenadic, Goran
2015-01-01
There are numerous options available to achieve various tasks in bioinformatics, but until recently, there were no tools that could systematically identify mentions of databases and tools within the literature. In this paper we explore the variability and ambiguity of database and software name mentions and compare dictionary and machine learning approaches to their identification. Through the development and analysis of a corpus of 60 full-text documents manually annotated at the mention level, we report high variability and ambiguity in database and software mentions. On a test set of 25 full-text documents, a baseline dictionary look-up achieved an F-score of 46 %, highlighting not only variability and ambiguity but also the extensive number of new resources introduced. A machine learning approach achieved an F-score of 63 % (with precision of 74 %) and 70 % (with precision of 83 %) for strict and lenient matching respectively. We characterise the issues with various mention types and propose potential ways of capturing additional database and software mentions in the literature. Our analyses show that identification of mentions of databases and tools is a challenging task that cannot be achieved by relying on current manually-curated resource repositories. Although machine learning shows improvement and promise (primarily in precision), more contextual information needs to be taken into account to achieve a good degree of accuracy.
2011-01-01
Background Cardiotocography (CTG) is the most widely used tool for fetal surveillance. The visual analysis of fetal heart rate (FHR) traces largely depends on the expertise and experience of the clinician involved. Several approaches have been proposed for the effective interpretation of FHR. In this paper, a new approach for FHR feature extraction based on empirical mode decomposition (EMD) is proposed, which was used along with support vector machine (SVM) for the classification of FHR recordings as 'normal' or 'at risk'. Methods The FHR were recorded from 15 subjects at a sampling rate of 4 Hz and a dataset consisting of 90 randomly selected records of 20 minutes duration was formed from these. All records were labelled as 'normal' or 'at risk' by two experienced obstetricians. A training set was formed by 60 records, the remaining 30 left as the testing set. The standard deviations of the EMD components are input as features to a support vector machine (SVM) to classify FHR samples. Results For the training set, a five-fold cross validation test resulted in an accuracy of 86% whereas the overall geometric mean of sensitivity and specificity was 94.8%. The Kappa value for the training set was .923. Application of the proposed method to the testing set (30 records) resulted in a geometric mean of 81.5%. The Kappa value for the testing set was .684. Conclusions Based on the overall performance of the system it can be stated that the proposed methodology is a promising new approach for the feature extraction and classification of FHR signals. PMID:21244712
NASA Astrophysics Data System (ADS)
Chen, Shun-Tong; Chang, Chih-Hsien
2013-12-01
This study presents a novel approach to the fabrication of a biomedical-mold for producing convex platform PMMA (poly-methyl-meth-acrylate) slides for counting cells. These slides allow for the microscopic examination of urine sediment cells. Manufacturing of such slides incorporates three important procedures: (1) the development of a tabletop high-precision dual-spindle CNC (computerized numerical control) machine tool; (2) the formation of a boron-doped polycrystalline composite diamond (BD-PCD) wheel-tool on the machine tool developed in procedure (1); and (3) the cutting of a multi-groove-biomedical-mold array using the formed diamond wheel-tool in situ on the developed machine. The machine incorporates a hybrid working platform providing wheel-tool thinning using spark erosion to cut, polish, and deburr microgrooves on NAK80 steel directly. With consideration given for the electrical conductive properties of BD-PCD, the diamond wheel-tool is thinned to a thickness of 5 µm by rotary wire electrical discharge machining. The thinned wheel-tool can grind microgrooves 10 µm wide. An embedded design, which inserts a close fitting precision core into the biomedical-mold to create step-difference (concave inward) of 50 µm in height between the core and the mold, is also proposed and realized. The perpendicular dual-spindles and precision rotary stage are features that allow for biomedical-mold machining without the necessity of uploading and repositioning materials until all tasks are completed. A PMMA biomedical-slide with a plurality of juxtaposed counting chambers is formed and its usefulness verified.
Parametric analysis of plastic strain and force distribution in single pass metal spinning
NASA Astrophysics Data System (ADS)
Choudhary, Shashank; Tejesh, Chiruvolu Mohan; Regalla, Srinivasa Prakash; Suresh, Kurra
2013-12-01
Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.
Oracle Applications Patch Administration Tool (PAT) Beta Version
DOE Office of Scientific and Technical Information (OSTI.GOV)
2002-01-04
PAT is a Patch Administration Tool that provides analysis, tracking, and management of Oracle Application patches. This includes capabilities as outlined below: Patch Analysis & Management Tool Outline of capabilities: Administration Patch Data Maintenance -- track Oracle Application patches applied to what database instance & machine Patch Analysis capture text files (readme.txt and driver files) form comparison detail report comparison detail PL/SQL package comparison detail SQL scripts detail JSP module comparison detail Parse and load the current applptch.txt (10.7) or load patch data from Oracle Application database patch tables (11i) Display Analysis -- Compare patch to be applied with currentmore » Oracle Application installed Appl_top code versions Patch Detail Module comparison detail Analyze and display one Oracle Application module patch. Patch Management -- automatic queue and execution of patches Administration Parameter maintenance -- setting for directory structure of Oracle Application appl_top Validation data maintenance -- machine names and instances to patch Operation Patch Data Maintenance Schedule a patch (queue for later execution) Run a patch (queue for immediate execution) Review the patch logs Patch Management Reports« less
A Sensor-Based Method for Diagnostics of Machine Tool Linear Axes.
Vogl, Gregory W; Weiss, Brian A; Donmez, M Alkan
2015-01-01
A linear axis is a vital subsystem of machine tools, which are vital systems within many manufacturing operations. When installed and operating within a manufacturing facility, a machine tool needs to stay in good condition for parts production. All machine tools degrade during operations, yet knowledge of that degradation is illusive; specifically, accurately detecting degradation of linear axes is a manual and time-consuming process. Thus, manufacturers need automated and efficient methods to diagnose the condition of their machine tool linear axes without disruptions to production. The Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) project at the National Institute of Standards and Technology (NIST) developed a sensor-based method to quickly estimate the performance degradation of linear axes. The multi-sensor-based method uses data collected from a 'sensor box' to identify changes in linear and angular errors due to axis degradation; the sensor box contains inclinometers, accelerometers, and rate gyroscopes to capture this data. The sensors are expected to be cost effective with respect to savings in production losses and scrapped parts for a machine tool. Numerical simulations, based on sensor bandwidth and noise specifications, show that changes in straightness and angular errors could be known with acceptable test uncertainty ratios. If a sensor box resides on a machine tool and data is collected periodically, then the degradation of the linear axes can be determined and used for diagnostics and prognostics to help optimize maintenance, production schedules, and ultimately part quality.
A Sensor-Based Method for Diagnostics of Machine Tool Linear Axes
Vogl, Gregory W.; Weiss, Brian A.; Donmez, M. Alkan
2017-01-01
A linear axis is a vital subsystem of machine tools, which are vital systems within many manufacturing operations. When installed and operating within a manufacturing facility, a machine tool needs to stay in good condition for parts production. All machine tools degrade during operations, yet knowledge of that degradation is illusive; specifically, accurately detecting degradation of linear axes is a manual and time-consuming process. Thus, manufacturers need automated and efficient methods to diagnose the condition of their machine tool linear axes without disruptions to production. The Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) project at the National Institute of Standards and Technology (NIST) developed a sensor-based method to quickly estimate the performance degradation of linear axes. The multi-sensor-based method uses data collected from a ‘sensor box’ to identify changes in linear and angular errors due to axis degradation; the sensor box contains inclinometers, accelerometers, and rate gyroscopes to capture this data. The sensors are expected to be cost effective with respect to savings in production losses and scrapped parts for a machine tool. Numerical simulations, based on sensor bandwidth and noise specifications, show that changes in straightness and angular errors could be known with acceptable test uncertainty ratios. If a sensor box resides on a machine tool and data is collected periodically, then the degradation of the linear axes can be determined and used for diagnostics and prognostics to help optimize maintenance, production schedules, and ultimately part quality. PMID:28691039
Test-bench system for a borehole azimuthal acoustic reflection imaging logging tool
NASA Astrophysics Data System (ADS)
Liu, Xianping; Ju, Xiaodong; Qiao, Wenxiao; Lu, Junqiang; Men, Baiyong; Liu, Dong
2016-06-01
The borehole azimuthal acoustic reflection imaging logging tool (BAAR) is a new generation of imaging logging tool, which is able to investigate stratums in a relatively larger range of space around the borehole. The BAAR is designed based on the idea of modularization with a very complex structure, so it has become urgent for us to develop a dedicated test-bench system to debug each module of the BAAR. With the help of a test-bench system introduced in this paper, test and calibration of BAAR can be easily achieved. The test-bench system is designed based on the client/server model. The hardware system mainly consists of a host computer, an embedded controlling board, a bus interface board, a data acquisition board and a telemetry communication board. The host computer serves as the human machine interface and processes the uploaded data. The software running on the host computer is designed based on VC++. The embedded controlling board uses Advanced Reduced Instruction Set Machines 7 (ARM7) as the micro controller and communicates with the host computer via Ethernet. The software for the embedded controlling board is developed based on the operating system uClinux. The bus interface board, data acquisition board and telemetry communication board are designed based on a field programmable gate array (FPGA) and provide test interfaces for the logging tool. To examine the feasibility of the test-bench system, it was set up to perform a test on BAAR. By analyzing the test results, an unqualified channel of the electronic receiving cabin was discovered. It is suggested that the test-bench system can be used to quickly determine the working condition of sub modules of BAAR and it is of great significance in improving production efficiency and accelerating industrial production of the logging tool.
Miniaturized multiwavelength digital holography sensor for extensive in-machine tool measurement
NASA Astrophysics Data System (ADS)
Seyler, Tobias; Fratz, Markus; Beckmann, Tobias; Bertz, Alexander; Carl, Daniel
2017-06-01
In this paper we present a miniaturized digital holographic sensor (HoloCut) for operation inside a machine tool. With state-of-the-art 3D measurement systems, short-range structures such as tool marks cannot be resolved inside a machine tool chamber. Up to now, measurements had to be conducted outside the machine tool and thus processing data are generated offline. The sensor presented here uses digital multiwavelength holography to get 3D-shape-information of the machined sample. By using three wavelengths, we get a large artificial wavelength with a large unambiguous measurement range of 0.5mm and achieve micron repeatability even in the presence of laser speckles on rough surfaces. In addition, a digital refocusing algorithm based on phase noise is implemented to extend the measurement range beyond the limits of the artificial wavelength and geometrical depth-of-focus. With complex wave field propagation, the focus plane can be shifted after the camera images have been taken and a sharp image with extended depth of focus is constructed consequently. With 20mm x 20mm field of view the sensor enables measurement of both macro- and micro-structure (such as tool marks) with an axial resolution of 1 µm, lateral resolution of 7 µm and consequently allows processing data to be generated online which in turn qualifies it as a machine tool control. To make HoloCut compact enough for operation inside a machining center, the beams are arranged in two planes: The beams are split into reference beam and object beam in the bottom plane and combined onto the camera in the top plane later on. Using a mechanical standard interface according to DIN 69893 and having a very compact size of 235mm x 140mm x 215mm (WxHxD) and a weight of 7.5 kg, HoloCut can be easily integrated into different machine tools and extends no more in height than a typical processing tool.
STAMPS: Software Tool for Automated MRI Post-processing on a supercomputer.
Bigler, Don C; Aksu, Yaman; Miller, David J; Yang, Qing X
2009-08-01
This paper describes a Software Tool for Automated MRI Post-processing (STAMP) of multiple types of brain MRIs on a workstation and for parallel processing on a supercomputer (STAMPS). This software tool enables the automation of nonlinear registration for a large image set and for multiple MR image types. The tool uses standard brain MRI post-processing tools (such as SPM, FSL, and HAMMER) for multiple MR image types in a pipeline fashion. It also contains novel MRI post-processing features. The STAMP image outputs can be used to perform brain analysis using Statistical Parametric Mapping (SPM) or single-/multi-image modality brain analysis using Support Vector Machines (SVMs). Since STAMPS is PBS-based, the supercomputer may be a multi-node computer cluster or one of the latest multi-core computers.
Classification of ROTSE Variable Stars using Machine Learning
NASA Astrophysics Data System (ADS)
Wozniak, P. R.; Akerlof, C.; Amrose, S.; Brumby, S.; Casperson, D.; Gisler, G.; Kehoe, R.; Lee, B.; Marshall, S.; McGowan, K. E.; McKay, T.; Perkins, S.; Priedhorsky, W.; Rykoff, E.; Smith, D. A.; Theiler, J.; Vestrand, W. T.; Wren, J.; ROTSE Collaboration
2001-12-01
We evaluate several Machine Learning algorithms as potential tools for automated classification of variable stars. Using the ROTSE sample of ~1800 variables from a pilot study of 5% of the whole sky, we compare the effectiveness of a supervised technique (Support Vector Machines, SVM) versus unsupervised methods (K-means and Autoclass). There are 8 types of variables in the sample: RR Lyr AB, RR Lyr C, Delta Scuti, Cepheids, detached eclipsing binaries, contact binaries, Miras and LPVs. Preliminary results suggest a very high ( ~95%) efficiency of SVM in isolating a few best defined classes against the rest of the sample, and good accuracy ( ~70-75%) for all classes considered simultaneously. This includes some degeneracies, irreducible with the information at hand. Supervised methods naturally outperform unsupervised methods, in terms of final error rate, but unsupervised methods offer many advantages for large sets of unlabeled data. Therefore, both types of methods should be considered as promising tools for mining vast variability surveys. We project that there are more than 30,000 periodic variables in the ROTSE-I data base covering the entire local sky between V=10 and 15.5 mag. This sample size is already stretching the time capabilities of human analysts.
NASA Astrophysics Data System (ADS)
Gohil, Vikas; Puri, YM
2018-04-01
Turning by electrical discharge machining (EDM) is an emerging area of research. Generally, wire-EDM is used in EDM turning because it is not concerned with electrode tooling cost. In EDM turning wire electrode leaves cusps on the machined surface because of its small diameters and wire breakage which greatly affect the surface finish of the machined part. Moreover, one of the limitations of the process is low machining speed as compared to constituent processes. In this study, conventional EDM was employed for turning purpose in order to generate free-form cylindrical geometries on difficult-to-cut materials. Therefore, a specially designed turning spindle was mounted on a conventional die-sinking EDM machine to rotate the work piece. A conductive preshaped strip of copper as a forming tool is fed (reciprocate) continuously against the rotating work piece; thus, a mirror image of the tool is formed on the circumference of the work piece. In this way, an axisymmetric work piece can be made with small tools. The developed process is termed as the electrical discharge turning (EDT). In the experiments, the effect of machining parameters, such as pulse-on time, peak current, gap voltage and tool thickness on the MRR, and TWR were investigated and practical machining was carried out by turning of SS-304 stainless steel work piece.
Recent developments in turning hardened steels - A review
NASA Astrophysics Data System (ADS)
Sivaraman, V.; Prakash, S.
2017-05-01
Hard materials ranging from HRC 45 - 68 such as hardened AISI H13, AISI 4340, AISI 52100, D2 STL, D3 STEEL Steel etc., need super hard tool materials to machine. Turning of these hard materials is termed as hard turning. Hard turning makes possible direct machining of the hard materials and also eliminates the lubricant requirement and thus favoring dry machining. Hard turning is a finish turning process and hence conventional grinding is not required. Development of the new advanced super hard tool materials such as ceramic inserts, Cubic Boron Nitride, Polycrystalline Cubic Boron Nitride etc. enabled the turning of these materials. PVD and CVD methods of coating have made easier the production of single and multi layered coated tool inserts. Coatings of TiN, TiAlN, TiC, Al2O3, AlCrN over cemented carbide inserts has lead to the machining of difficult to machine materials. Advancement in the process of hard machining paved way for better surface finish, long tool life, reduced tool wear, cutting force and cutting temperatures. Micro and Nano coated carbide inserts, nanocomposite coated PCBN inserts, micro and nano CBN coated carbide inserts and similar developments have made machining of hardened steels much easier and economical. In this paper, broad literature review on turning of hardened steels including optimizing process parameters, cooling requirements, different tool materials etc., are done.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Yonggang
In implementation of nuclear safeguards, many different techniques are being used to monitor operation of nuclear facilities and safeguard nuclear materials, ranging from radiation detectors, flow monitors, video surveillance, satellite imagers, digital seals to open source search and reports of onsite inspections/verifications. Each technique measures one or more unique properties related to nuclear materials or operation processes. Because these data sets have no or loose correlations, it could be beneficial to analyze the data sets together to improve the effectiveness and efficiency of safeguards processes. Advanced visualization techniques and machine-learning based multi-modality analysis could be effective tools in such integratedmore » analysis. In this project, we will conduct a survey of existing visualization and analysis techniques for multi-source data and assess their potential values in nuclear safeguards.« less
Nariya, Maulik K; Kim, Jae Hyun; Xiong, Jian; Kleindl, Peter A; Hewarathna, Asha; Fisher, Adam C; Joshi, Sangeeta B; Schöneich, Christian; Forrest, M Laird; Middaugh, C Russell; Volkin, David B; Deeds, Eric J
2017-11-01
There is growing interest in generating physicochemical and biological analytical data sets to compare complex mixture drugs, for example, products from different manufacturers. In this work, we compare various crofelemer samples prepared from a single lot by filtration with varying molecular weight cutoffs combined with incubation for different times at different temperatures. The 2 preceding articles describe experimental data sets generated from analytical characterization of fractionated and degraded crofelemer samples. In this work, we use data mining techniques such as principal component analysis and mutual information scores to help visualize the data and determine discriminatory regions within these large data sets. The mutual information score identifies chemical signatures that differentiate crofelemer samples. These signatures, in many cases, would likely be missed by traditional data analysis tools. We also found that supervised learning classifiers robustly discriminate samples with around 99% classification accuracy, indicating that mathematical models of these physicochemical data sets are capable of identifying even subtle differences in crofelemer samples. Data mining and machine learning techniques can thus identify fingerprint-type attributes of complex mixture drugs that may be used for comparative characterization of products. Copyright © 2017 American Pharmacists Association®. All rights reserved.
A Guide for Industrial Mobilization
1989-03-01
packages; and cient, increased production controls may be needed. These actions include: i. Releasing machine tool trigger or- ders and increasing buys...710). the Department of Defense to maintain facili- 4. The National Defense Act authorizes: ties, machine tools , production equipment, and skilled...Defense Industrial Reserve Act pro- Room 3876, U.S. Departm nt of Commerce vides for the reserve of machine tools and other Washington, D.C. 20230 or
Coupling for joining a ball nut to a machine tool carriage
Gerth, Howard L.
1979-01-01
The present invention relates to an improved coupling for joining a lead screw ball nut to a machine tool carriage. The ball nut is coupled to the machine tool carriage by a plurality of laterally flexible bolts which function as hinges during the rotation of the lead screw for substantially reducing lateral carriage movement due to wobble in the lead screw.
ERIC Educational Resources Information Center
Larson, Milton E.
This guide is designed for use by any person or groups of persons responsible for planning occupational programs in the machine trades. Its major purpose is to elicit the necessary information for the writing of educational specifications for facilities to house needed vocational programs in machine tool operation, machine shop, and tool and die…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklin, Lyndsey; Pirrung, Megan A.; Blaha, Leslie M.
Cyber network analysts follow complex processes in their investigations of potential threats to their network. Much research is dedicated to providing automated tool support in the effort to make their tasks more efficient, accurate, and timely. This tool support comes in a variety of implementations from machine learning algorithms that monitor streams of data to visual analytic environments for exploring rich and noisy data sets. Cyber analysts, however, often speak of a need for tools which help them merge the data they already have and help them establish appropriate baselines against which to compare potential anomalies. Furthermore, existing threat modelsmore » that cyber analysts regularly use to structure their investigation are not often leveraged in support tools. We report on our work with cyber analysts to understand they analytic process and how one such model, the MITRE ATT&CK Matrix [32], is used to structure their analytic thinking. We present our efforts to map specific data needed by analysts into the threat model to inform our eventual visualization designs. We examine data mapping for gaps where the threat model is under-supported by either data or tools. We discuss these gaps as potential design spaces for future research efforts. We also discuss the design of a prototype tool that combines machine-learning and visualization components to support cyber analysts working with this threat model.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
... tooling, but should include ``all property, i.e., special test equipment, ground support equipment, machine tools and machines and other intangibles to maintain capability.'' Response: DoD is fully...
NASA Astrophysics Data System (ADS)
Kwintarini, Widiyanti; Wibowo, Agung; Arthaya, Bagus M.; Yuwana Martawirya, Yatna
2018-03-01
The purpose of this study was to improve the accuracy of three-axis CNC Milling Vertical engines with a general approach by using mathematical modeling methods of machine tool geometric errors. The inaccuracy of CNC machines can be caused by geometric errors that are an important factor during the manufacturing process and during the assembly phase, and are factors for being able to build machines with high-accuracy. To improve the accuracy of the three-axis vertical milling machine, by knowing geometric errors and identifying the error position parameters in the machine tool by arranging the mathematical modeling. The geometric error in the machine tool consists of twenty-one error parameters consisting of nine linear error parameters, nine angle error parameters and three perpendicular error parameters. The mathematical modeling approach of geometric error with the calculated alignment error and angle error in the supporting components of the machine motion is linear guide way and linear motion. The purpose of using this mathematical modeling approach is the identification of geometric errors that can be helpful as reference during the design, assembly and maintenance stages to improve the accuracy of CNC machines. Mathematically modeling geometric errors in CNC machine tools can illustrate the relationship between alignment error, position and angle on a linear guide way of three-axis vertical milling machines.
Agile Machining and Inspection Non-Nuclear Report (NNR) Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazarus, Lloyd
This report is a high level summary of the eight major projects funded by the Agile Machining and Inspection Non-Nuclear Readiness (NNR) project (FY06.0422.3.04.R1). The largest project of the group is the Rapid Response project in which the six major sub categories are summarized. This project focused on the operations of the machining departments that will comprise Special Applications Machining (SAM) in the Kansas City Responsive Infrastructure Manufacturing & Sourcing (KCRIMS) project. This project was aimed at upgrading older machine tools, developing new inspection tools, eliminating Classified Removable Electronic Media (CREM) in the handling of classified Numerical Control (NC) programsmore » by installing the CRONOS network, and developing methods to automatically load Coordinated-Measuring Machine (CMM) inspection data into bomb books and product score cards. Finally, the project personnel leaned perations of some of the machine tool cells, and now have the model to continue this activity.« less
Method for producing hard-surfaced tools and machine components
McHargue, Carl J.
1985-01-01
In one aspect, the invention comprises a method for producing tools and machine components having superhard crystalline-ceramic work surfaces. Broadly, the method comprises two steps: A tool or machine component having a ceramic near-surface region is mounted in ion-implantation apparatus. The region then is implanted with metal ions to form, in the region, a metastable alloy of the ions and said ceramic. The region containing the alloy is characterized by a significant increase in hardness properties, such as microhardness, fracture-toughness, and/or scratch-resistance. The resulting improved article has good thermal stability at temperatures characteristic of typical tool and machine-component uses. The method is relatively simple and reproducible.
Method for producing hard-surfaced tools and machine components
McHargue, C.J.
1981-10-21
In one aspect, the invention comprises a method for producing tools and machine components having superhard crystalline-ceramic work surfaces. Broadly, the method comprises two steps: a tool or machine component having a ceramic near-surface region is mounted in ion-implantation apparatus. The region then is implanted with metal ions to form, in the region, a metastable alloy of the ions and said ceramic. The region containing the alloy is characterized by a significant increase in hardness properties, such as microhardness, fracture-toughness, and/or scratch-resistance. The resulting improved article has good thermal stability at temperatures characteristic of typical tool and machine-component uses. The method is relatively simple and reproducible.
Research on the EDM Technology for Micro-holes at Complex Spatial Locations
NASA Astrophysics Data System (ADS)
Y Liu, J.; Guo, J. M.; Sun, D. J.; Cai, Y. H.; Ding, L. T.; Jiang, H.
2017-12-01
For the demands on machining micro-holes at complex spatial location, several key technical problems are conquered such as micro-Electron Discharge Machining (micro-EDM) power supply system’s development, the host structure’s design and machining process technical. Through developing low-voltage power supply circuit, high-voltage circuit, micro and precision machining circuit and clearance detection system, the narrow pulse and high frequency six-axis EDM machining power supply system is developed to meet the demands on micro-hole discharging machining. With the method of combining the CAD structure design, CAE simulation analysis, modal test, ODS (Operational Deflection Shapes) test and theoretical analysis, the host construction and key axes of the machine tool are optimized to meet the position demands of the micro-holes. Through developing the special deionized water filtration system to make sure that the machining process is stable enough. To verify the machining equipment and processing technical developed in this paper through developing the micro-hole’s processing flow and test on the real machine tool. As shown in the final test results: the efficient micro-EDM machining pulse power supply system, machine tool host system, deionized filtration system and processing method developed in this paper meet the demands on machining micro-holes at complex spatial locations.
“Investigations on the machinability of Waspaloy under dry environment”
NASA Astrophysics Data System (ADS)
Deepu, J.; Kuppan, P.; SBalan, A. S.; Oyyaravelu, R.
2016-09-01
Nickel based superalloy, Waspaloy is extensively used in gas turbine, aerospace and automobile industries because of their unique combination of properties like high strength at elevated temperatures, resistance to chemical degradation and excellent wear resistance in many hostile environments. It is considered as one of the difficult to machine superalloy due to excessive tool wear and poor surface finish. The present paper is an attempt for removing cutting fluids from turning process of Waspaloy and to make the processes environmentally safe. For this purpose, the effect of machining parameters such as cutting speed and feed rate on the cutting force, cutting temperature, surface finish and tool wear were investigated barrier. Consequently, the strength and tool wear resistance and tool life increased significantly. Response Surface Methodology (RSM) has been used for developing and analyzing a mathematical model which describes the relationship between machining parameters and output variables. Subsequently ANOVA was used to check the adequacy of the regression model as well as each machining variables. The optimal cutting parameters were determined based on multi-response optimizations by composite desirability approach in order to minimize cutting force, average surface roughness and maximum flank wear. The results obtained from the experiments shown that machining of Waspaloy using coated carbide tool with special ranges of parameters, cutting fluid could be completely removed from machining process
A Pythonic Approach for Computational Geosciences and Geo-Data Processing
NASA Astrophysics Data System (ADS)
Morra, G.; Yuen, D. A.; Lee, S. M.
2016-12-01
Computational methods and data analysis play a constantly increasing role in Earth Sciences however students and professionals need to climb a steep learning curve before reaching a sufficient level that allows them to run effective models. Furthermore the recent arrival and new powerful machine learning tools such as Torch and Tensor Flow has opened new possibilities but also created a new realm of complications related to the completely different technology employed. We present here a series of examples entirely written in Python, a language that combines the simplicity of Matlab with the power and speed of compiled languages such as C, and apply them to a wide range of geological processes such as porous media flow, multiphase fluid-dynamics, creeping flow and many-faults interaction. We also explore ways in which machine learning can be employed in combination with numerical modelling. From immediately interpreting a large number of modeling results to optimizing a set of modeling parameters to obtain a desired optimal simulation. We show that by using Python undergraduate and graduate can learn advanced numerical technologies with a minimum dedicated effort, which in turn encourages them to develop more numerical tools and quickly progress in their computational abilities. We also show how Python allows combining modeling with machine learning as pieces of LEGO, therefore simplifying the transition towards a new kind of scientific geo-modelling. The conclusion is that Python is an ideal tool to create an infrastructure for geosciences that allows users to quickly develop tools, reuse techniques and encourage collaborative efforts to interpret and integrate geo-data in profound new ways.
Automated Engineering Design (AED); An approach to automated documentation
NASA Technical Reports Server (NTRS)
Mcclure, C. W.
1970-01-01
The automated engineering design (AED) is reviewed, consisting of a high level systems programming language, a series of modular precoded subroutines, and a set of powerful software machine tools that effectively automate the production and design of new languages. AED is used primarily for development of problem and user-oriented languages. Software production phases are diagramed, and factors which inhibit effective documentation are evaluated.
Crux: Rapid Open Source Protein Tandem Mass Spectrometry Analysis
2015-01-01
Efficiently and accurately analyzing big protein tandem mass spectrometry data sets requires robust software that incorporates state-of-the-art computational, machine learning, and statistical methods. The Crux mass spectrometry analysis software toolkit (http://cruxtoolkit.sourceforge.net) is an open source project that aims to provide users with a cross-platform suite of analysis tools for interpreting protein mass spectrometry data. PMID:25182276
ERIC Educational Resources Information Center
Klerfelt, Anna
2004-01-01
Children today live in different cultural settings. The pre-school culture is one of them and the media culture outside the pre-school another. These cultures are in different ways characterised by opposite and often even conflicting traditions. This article shows how educators and children handle this dilemma by using interaction as a tool to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tal, J.; Lopez, A.; Edwards, J.M.
1995-04-01
In this paper, an alternative solution to the traditional CNC machine tool controller has been introduced. Software and hardware modules have been described and their incorporation in a CNC control system has been outlined. This type of CNC machine tool controller demonstrates that technology is accessible and can be readily implemented into an open architecture machine tool controller. Benefit to the user is greater controller flexibility, while being economically achievable. PC based, motion as well as non-motion features will provide flexibility through a Windows environment. Up-grading this type of controller system through software revisions will keep the machine tool inmore » a competitive state with minimal effort. Software and hardware modules are mass produced permitting competitive procurement and incorporation. Open architecture CNC systems provide diagnostics thus enhancing maintainability, and machine tool up-time. A major concern of traditional CNC systems has been operator training time. Training time can be greatly minimized by making use of Windows environment features.« less
Fox-Rabinovich, German; Wagg, Terry
2017-01-01
During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool–chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear. PMID:29068405
Rotary fast tool servo system and methods
Montesanti, Richard C.; Trumper, David L.
2007-10-02
A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. A pair of position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.
Rotary fast tool servo system and methods
Montesanti, Richard C [Cambridge, MA; Trumper, David L [Plaistow, NH; Kirtley, Jr., James L.
2009-08-18
A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. One or more position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.
JPRS Report, Science & Technology, Europe & Latin America.
1988-01-22
Rex Malik; ZERO UN INFORMATIQUE, 31 Aug 87) 25 FACTORY AUTOMATION, ROBOTICS West Europe Seeks To Halt Japanese Inroads in Machine Tool Sector...aircraft. 25048 CSO: 3698/A014 26 FACTORY AUTOMATION, ROBOTICS vrEST EUROpE WEST EUROPE SEEKS TO HALT JAPANESE INROADS IN MACHINE TOOL SECTOR...Trumpf, by the same journalist; first paragraph is L’USINE NOUVELLE introduction] [Excerpts] European machine - tool builders are stepping up mutual
Translations on North Korea No. 622
1978-10-13
Pyongyang Power Station 5 July Electric Factory Hamhung Machine Tool Factory Kosan Plastic Pipe Factory Sog’wangea Plastic Pipe Factory 8...August Factory Double Chollima Hamhung Disabled Veterans’ Plastic Goods Factory Mangyongdae Machine Tool Factory Kangso Coal Mine Tongdaewon Garment...21 Jul 78 p 4) innovating in machine tool production (NC 21 Jul 78 p 2) in 40 days of the 蔴 days of combat" raised coal production 10 percent
Pellet to Part Manufacturing System for CNCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roschli, Alex C.; Love, Lonnie J.; Post, Brian K.
Oak Ridge National Laboratory’s Manufacturing Demonstration Facility worked with Hybrid Manufacturing Technologies to develop a compact prototype composite additive manufacturing head that can effectively extrude injection molding pellets. The head interfaces with conventional CNC machine tools enabling rapid conversion of conventional machine tools to additive manufacturing tools. The intent was to enable wider adoption of Big Area Additive Manufacturing (BAAM) technology and combine BAAM technology with conventional machining systems.
ERIC Educational Resources Information Center
Polette, Douglas Lee
To determine what type of maintenance training the prospective industrial arts teacher should receive in the woodworking area and how this information should be taught, a research instrument was constructed using information obtained from a review of relevant literature. Specific data on machine tool maintenance was gathered by the use of two…
Machining of AISI D2 Tool Steel with Multiple Hole Electrodes by EDM Process
NASA Astrophysics Data System (ADS)
Prasad Prathipati, R.; Devuri, Venkateswarlu; Cheepu, Muralimohan; Gudimetla, Kondaiah; Uzwal Kiran, R.
2018-03-01
In recent years, with the increasing of technology the demand for machining processes is increasing for the newly developed materials. The conventional machining processes are not adequate to meet the accuracy of the machining of these materials. The non-conventional machining processes of electrical discharge machining is one of the most efficient machining processes is being widely used to machining of high accuracy products of various industries. The optimum selection of process parameters is very important in machining processes as that of an electrical discharge machining as they determine surface quality and dimensional precision of the obtained parts, even though time consumption rate is higher for machining of large dimension features. In this work, D2 high carbon and chromium tool steel has been machined using electrical discharge machining with the multiple hole electrode technique. The D2 steel has several applications such as forming dies, extrusion dies and thread rolling. But the machining of this tool steel is very hard because of it shard alloyed elements of V, Cr and Mo which enhance its strength and wear properties. However, the machining is possible by using electrical discharge machining process and the present study implemented a new technique to reduce the machining time using a multiple hole copper electrode. In this technique, while machining with multiple holes electrode, fin like projections are obtained, which can be removed easily by chipping. Then the finishing is done by using solid electrode. The machining time is reduced to around 50% while using multiple hole electrode technique for electrical discharge machining.
12. TOOL ROOM SHOWING LANDIS MACHINE CO. BOL/T THREADER (L), ...
12. TOOL ROOM SHOWING LANDIS MACHINE CO. BOL/T THREADER (L), OSTER MANUFACTURING CO. PIPE MASTER (R), AND OLDMAN KINK, A SHOP-MADE WELDING STRENGTH TESTER (L, BACKGROUND). VIEW NORTHEAST - Oldman Boiler Works, Office/Machine Shop, 32 Illinois Street, Buffalo, Erie County, NY
SECIMTools: a suite of metabolomics data analysis tools.
Kirpich, Alexander S; Ibarra, Miguel; Moskalenko, Oleksandr; Fear, Justin M; Gerken, Joseph; Mi, Xinlei; Ashrafi, Ali; Morse, Alison M; McIntyre, Lauren M
2018-04-20
Metabolomics has the promise to transform the area of personalized medicine with the rapid development of high throughput technology for untargeted analysis of metabolites. Open access, easy to use, analytic tools that are broadly accessible to the biological community need to be developed. While technology used in metabolomics varies, most metabolomics studies have a set of features identified. Galaxy is an open access platform that enables scientists at all levels to interact with big data. Galaxy promotes reproducibility by saving histories and enabling the sharing workflows among scientists. SECIMTools (SouthEast Center for Integrated Metabolomics) is a set of Python applications that are available both as standalone tools and wrapped for use in Galaxy. The suite includes a comprehensive set of quality control metrics (retention time window evaluation and various peak evaluation tools), visualization techniques (hierarchical cluster heatmap, principal component analysis, modular modularity clustering), basic statistical analysis methods (partial least squares - discriminant analysis, analysis of variance, t-test, Kruskal-Wallis non-parametric test), advanced classification methods (random forest, support vector machines), and advanced variable selection tools (least absolute shrinkage and selection operator LASSO and Elastic Net). SECIMTools leverages the Galaxy platform and enables integrated workflows for metabolomics data analysis made from building blocks designed for easy use and interpretability. Standard data formats and a set of utilities allow arbitrary linkages between tools to encourage novel workflow designs. The Galaxy framework enables future data integration for metabolomics studies with other omics data.
Fabrication of micro-lens array on convex surface by meaning of micro-milling
NASA Astrophysics Data System (ADS)
Zhang, Peng; Du, Yunlong; Wang, Bo; Shan, Debin
2014-08-01
In order to develop the application of the micro-milling technology, and to fabricate ultra-precision optical surface with complex microstructure, in this paper, the primary experimental research on micro-milling complex microstructure array is carried out. A complex microstructure array surface with vary parameters is designed, and the mathematic model of the surface is set up and simulated. For the fabrication of the designed microstructure array surface, a micro three-axis ultra-precision milling machine tool is developed, aerostatic guideway drove directly by linear motor is adopted in order to guarantee the enough stiffness of the machine, and novel numerical control strategy with linear encoders of 5nm resolution used as the feedback of the control system is employed to ensure the extremely high motion control accuracy. With the help of CAD/CAM technology, convex micro lens array on convex spherical surface with different scales on material of polyvinyl chloride (PVC) and pure copper is fabricated using micro tungsten carbide ball end milling tool based on the ultra-precision micro-milling machine. Excellent nanometer-level micro-movement performance of the axis is proved by motion control experiment. The fabrication is nearly as the same as the design, the characteristic scale of the microstructure is less than 200μm and the accuracy is better than 1μm. It prove that ultra-precision micro-milling technology based on micro ultra-precision machine tool is a suitable and optional method for micro manufacture of microstructure array surface on different kinds of materials, and with the development of micro milling cutter, ultraprecision micro-milling complex microstructure surface will be achieved in future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sankel, David J.; Clair, Aaron B. St.; Langsfield, Joshua D.
2006-11-01
Toothpaste is a graphical user interface and Computer Aided Drafting/Manufacturing (CAD/CAM) software package used to plan tool paths for Galil Motion Control hardware. The software is a tool for computer controlled dispensing of materials. The software may be used for solid freeform fabrication of components or the precision printing of inks. Mathematical calculations are used to produce a set of segments and arcs that when coupled together will fill space. The paths of the segments and arcs are then translated into a machine language that controls the motion of motors and translational stages to produce tool paths in three dimensions.more » As motion begins material(s) are dispensed or printed along the three-dimensional pathway.« less
Interpolator for numerically controlled machine tools
Bowers, Gary L.; Davenport, Clyde M.; Stephens, Albert E.
1976-01-01
A digital differential analyzer circuit is provided that depending on the embodiment chosen can carry out linear, parabolic, circular or cubic interpolation. In the embodiment for parabolic interpolations, the circuit provides pulse trains for the X and Y slide motors of a two-axis machine to effect tool motion along a parabolic path. The pulse trains are generated by the circuit in such a way that parabolic tool motion is obtained from information contained in only one block of binary input data. A part contour may be approximated by one or more parabolic arcs. Acceleration and initial velocity values from a data block are set in fixed bit size registers for each axis separately but simultaneously and the values are integrated to obtain the movement along the respective axis as a function of time. Integration is performed by continual addition at a specified rate of an integrand value stored in one register to the remainder temporarily stored in another identical size register. Overflows from the addition process are indicative of the integral. The overflow output pulses from the second integration may be applied to motors which position the respective machine slides according to a parabolic motion in time to produce a parabolic machine tool motion in space. An additional register for each axis is provided in the circuit to allow "floating" of the radix points of the integrand registers and the velocity increment to improve position accuracy and to reduce errors encountered when the acceleration integrand magnitudes are small when compared to the velocity integrands. A divider circuit is provided in the output of the circuit to smooth the output pulse spacing and prevent motor stall, because the overflow pulses produced in the binary addition process are spaced unevenly in time. The divider has the effect of passing only every nth motor drive pulse, with n being specifiable. The circuit inputs (integrands, rates, etc.) are scaled to give exactly n times the desired number of pulses out, in order to compensate for the divider.
Molecular dynamic simulation for nanometric cutting of single-crystal face-centered cubic metals.
Huang, Yanhua; Zong, Wenjun
2014-01-01
In this work, molecular dynamics simulations are performed to investigate the influence of material properties on the nanometric cutting of single crystal copper and aluminum with a diamond cutting tool. The atomic interactions in the two metallic materials are modeled by two sets of embedded atom method (EAM) potential parameters. Simulation results show that although the plastic deformation of the two materials is achieved by dislocation activities, the deformation behavior and related physical phenomena, such as the machining forces, machined surface quality, and chip morphology, are significantly different for different materials. Furthermore, the influence of material properties on the nanometric cutting has a strong dependence on the operating temperature.
NASA Technical Reports Server (NTRS)
Gryphon, Coranth D.; Miller, Mark D.
1991-01-01
PCLIPS (Parallel CLIPS) is a set of extensions to the C Language Integrated Production System (CLIPS) expert system language. PCLIPS is intended to provide an environment for the development of more complex, extensive expert systems. Multiple CLIPS expert systems are now capable of running simultaneously on separate processors, or separate machines, thus dramatically increasing the scope of solvable tasks within the expert systems. As a tool for parallel processing, PCLIPS allows for an expert system to add to its fact-base information generated by other expert systems, thus allowing systems to assist each other in solving a complex problem. This allows individual expert systems to be more compact and efficient, and thus run faster or on smaller machines.
Process Damping and Cutting Tool Geometry in Machining
NASA Astrophysics Data System (ADS)
Taylor, C. M.; Sims, N. D.; Turner, S.
2011-12-01
Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.
Large robotized turning centers described
NASA Astrophysics Data System (ADS)
Kirsanov, V. V.; Tsarenko, V. I.
1985-09-01
The introduction of numerical control (NC) machine tools has made it possible to automate machining in series and small series production. The organization of automated production sections merged NC machine tools with automated transport systems. However, both the one and the other require the presence of an operative at the machine for low skilled operations. Industrial robots perform a number of auxiliary operations, such as equipment loading-unloading and control, changing cutting and auxiliary tools, controlling workpieces and parts, and cleaning of location surfaces. When used with a group of equipment they perform transfer operations between the machine tools. Industrial robots eliminate the need for workers to form auxiliary operations. This underscores the importance of developing robotized manufacturing centers providing for minimal human participation in production and creating conditions for two and three shift operation of equipment. Work carried out at several robotized manufacturing centers for series and small series production is described.
Javanrouh, Niloufar; Daneshpour, Maryam S; Soltanian, Ali Reza; Tapak, Leili
2018-06-05
Obesity is a serious health problem that leads to low quality of life and early mortality. To the purpose of prevention and gene therapy for such a worldwide disease, genome wide association study is a powerful tool for finding SNPs associated with increased risk of obesity. To conduct an association analysis, kernel machine regression is a generalized regression method, has an advantage of considering the epistasis effects as well as the correlation between individuals due to unknown factors. In this study, information of the people who participated in Tehran cardio-metabolic genetic study was used. They were genotyped for the chromosomal region, evaluation 986 variations located at 16q12.2; build 38hg. Kernel machine regression and single SNP analysis were used to assess the association between obesity and SNPs genotyped data. We found that associated SNP sets with obesity, were almost in the FTO (P = 0.01), AIKTIP (P = 0.02) and MMP2 (P = 0.02) genes. Moreover, two SNPs, i.e., rs10521296 and rs11647470, showed significant association with obesity using kernel regression (P = 0.02). In conclusion, significant sets were randomly distributed throughout the region with more density around the FTO, AIKTIP and MMP2 genes. Furthermore, two intergenic SNPs showed significant association after using kernel machine regression. Therefore, more studies have to be conducted to assess their functionality or precise mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Chao; Yang, Sheng-Chao; Guo, Qiao-Sheng; Zheng, Kai-Yan; Wang, Ping-Li; Meng, Zhen-Gui
2016-01-01
A combination of Fourier transform infrared spectroscopy with chemometrics tools provided an approach for studying Marsdenia tenacissima according to its geographical origin. A total of 128 M. tenacissima samples from four provinces in China were analyzed with FTIR spectroscopy. Six pattern recognition methods were used to construct the discrimination models: support vector machine-genetic algorithms, support vector machine-particle swarm optimization, K-nearest neighbors, radial basis function neural network, random forest and support vector machine-grid search. Experimental results showed that K-nearest neighbors was superior to other mathematical algorithms after data were preprocessed with wavelet de-noising, with a discrimination rate of 100% in both the training and prediction sets. This study demonstrated that FTIR spectroscopy coupled with K-nearest neighbors could be successfully applied to determine the geographical origins of M. tenacissima samples, thereby providing reliable authentication in a rapid, cheap and noninvasive way.
Molecular, metabolic, and genetic control: An introduction
NASA Astrophysics Data System (ADS)
Tyson, John J.; Mackey, Michael C.
2001-03-01
The living cell is a miniature, self-reproducing, biochemical machine. Like all machines, it has a power supply, a set of working components that carry out its necessary tasks, and control systems that ensure the proper coordination of these tasks. In this Special Issue, we focus on the molecular regulatory systems that control cell metabolism, gene expression, environmental responses, development, and reproduction. As for the control systems in human-engineered machines, these regulatory networks can be described by nonlinear dynamical equations, for example, ordinary differential equations, reaction-diffusion equations, stochastic differential equations, or cellular automata. The articles collected here illustrate (i) a range of theoretical problems presented by modern concepts of cellular regulation, (ii) some strategies for converting molecular mechanisms into dynamical systems, (iii) some useful mathematical tools for analyzing and simulating these systems, and (iv) the sort of results that derive from serious interplay between theory and experiment.
Tool simplifies machining of pipe ends for precision welding
NASA Technical Reports Server (NTRS)
Matus, S. T.
1969-01-01
Single tool prepares a pipe end for precision welding by simultaneously performing internal machining, end facing, and bevel cutting to specification standards. The machining operation requires only one milling adjustment, can be performed quickly, and produces the high quality pipe-end configurations required to ensure precision-welded joints.
Machine Translation and Other Translation Technologies.
ERIC Educational Resources Information Center
Melby, Alan
1996-01-01
Examines the application of linguistic theory to machine translation and translator tools, discusses the use of machine translation and translator tools in the real world of translation, and addresses the impact of translation technology on conceptions of language and other issues. Findings indicate that the human mind is flexible and linguistic…
29 CFR 1926.303 - Abrasive wheels and tools.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...
29 CFR 1926.303 - Abrasive wheels and tools.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...
29 CFR 1926.303 - Abrasive wheels and tools.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...
Optical alignment of electrodes on electrical discharge machines
NASA Technical Reports Server (NTRS)
Boissevain, A. G.; Nelson, B. W.
1972-01-01
Shadowgraph system projects magnified image on screen so that alignment of small electrodes mounted on electrical discharge machines can be corrected and verified. Technique may be adapted to other machine tool equipment where physical contact cannot be made during inspection and access to tool limits conventional runout checking procedures.
Performance of machine-learning scoring functions in structure-based virtual screening
Wójcikowski, Maciej; Ballester, Pedro J.; Siedlecki, Pawel
2017-01-01
Classical scoring functions have reached a plateau in their performance in virtual screening and binding affinity prediction. Recently, machine-learning scoring functions trained on protein-ligand complexes have shown great promise in small tailored studies. They have also raised controversy, specifically concerning model overfitting and applicability to novel targets. Here we provide a new ready-to-use scoring function (RF-Score-VS) trained on 15 426 active and 893 897 inactive molecules docked to a set of 102 targets. We use the full DUD-E data sets along with three docking tools, five classical and three machine-learning scoring functions for model building and performance assessment. Our results show RF-Score-VS can substantially improve virtual screening performance: RF-Score-VS top 1% provides 55.6% hit rate, whereas that of Vina only 16.2% (for smaller percent the difference is even more encouraging: RF-Score-VS top 0.1% achieves 88.6% hit rate for 27.5% using Vina). In addition, RF-Score-VS provides much better prediction of measured binding affinity than Vina (Pearson correlation of 0.56 and −0.18, respectively). Lastly, we test RF-Score-VS on an independent test set from the DEKOIS benchmark and observed comparable results. We provide full data sets to facilitate further research in this area (http://github.com/oddt/rfscorevs) as well as ready-to-use RF-Score-VS (http://github.com/oddt/rfscorevs_binary). PMID:28440302
1985-10-01
83K0385 FINAL REPORT D Vol. 4 00 THERMAL EFFECTS ON THE ACCURACY OF LD NUME" 1ICALLY CONTROLLED MACHINE TOOLS PREPARED BY I Raghunath Venugopal and M...OF NUMERICALLY CONTROLLED MACHINE TOOLS 12 PERSONAL AJ’HOR(S) Venunorial, Raghunath and M. M. Barash 13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF...TOOLS Prepared by Raghunath Venugopal and M. M. Barash Accesion For Unannounced 0 Justification ........................................... October 1085
NASA Astrophysics Data System (ADS)
Mebrahitom, A.; Rizuan, D.; Azmir, M.; Nassif, M.
2016-02-01
High speed milling is one of the recent technologies used to produce mould inserts due to the need for high surface finish. It is a faster machining process where it uses a small side step and a small down step combined with very high spindle speed and feed rate. In order to effectively use the HSM capabilities, optimizing the tool path strategies and machining parameters is an important issue. In this paper, six different tool path strategies have been investigated on the surface finish and machining time of a rectangular cavities of ESR Stavax material. CAD/CAM application of CATIA V5 machining module for pocket milling of the cavities was used for process planning.
Research of a smart cutting tool based on MEMS strain gauge
NASA Astrophysics Data System (ADS)
Zhao, Y.; Zhao, Y. L.; Shao, YW; Hu, T. J.; Zhang, Q.; Ge, X. H.
2018-03-01
Cutting force is an important factor that affects machining accuracy, cutting vibration and tool wear. Machining condition monitoring by cutting force measurement is a key technology for intelligent manufacture. Current cutting force sensors exist problems of large volume, complex structure and poor compatibility in practical application, for these problems, a smart cutting tool is proposed in this paper for cutting force measurement. Commercial MEMS (Micro-Electro-Mechanical System) strain gauges with high sensitivity and small size are adopted as transducing element of the smart tool, and a structure optimized cutting tool is fabricated for MEMS strain gauge bonding. Static calibration results show that the developed smart cutting tool is able to measure cutting forces in both X and Y directions, and the cross-interference error is within 3%. Its general accuracy is 3.35% and 3.27% in X and Y directions, and sensitivity is 0.1 mV/N, which is very suitable for measuring small cutting forces in high speed and precision machining. The smart cutting tool is portable and reliable for practical application in CNC machine tool.
A decision model to predict the risk of the first fall onset.
Deschamps, Thibault; Le Goff, Camille G; Berrut, Gilles; Cornu, Christophe; Mignardot, Jean-Baptiste
2016-08-01
Miscellaneous features from various domains are accepted to be associated with the risk of falling in the elderly. However, only few studies have focused on establishing clinical tools to predict the risk of the first fall onset. A model that would objectively and easily evaluate the risk of a first fall occurrence in the coming year still needs to be built. We developed a model based on machine learning, which might help the medical staff predict the risk of the first fall onset in a one-year time window. Overall, 426 older adults who had never fallen were assessed on 73 variables, comprising medical, social and physical outcomes, at t0. Each fall was recorded at a prospective 1-year follow-up. A decision tree was built on a randomly selected training subset of the cohort (80% of the full-set) and validated on an independent test set. 82 participants experienced a first fall during the follow-up. The machine learning process independently extracted 13 powerful parameters and built a model showing 89% of accuracy for the overall classification with 83%-82% of true positive fallers and 96%-61% of true negative non-fallers (training set vs. independent test set). This study provides a pilot tool that could easily help the gerontologists refine the evaluation of the risk of the first fall onset and prioritize the effective prevention strategies. The study also offers a transparent framework for future, related investigation that would validate the clinical relevance of the established model by independently testing its accuracy on larger cohort. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bashir, K.; Alkali, A. U.; Elmunafi, M. H. S.; Yusof, N. M.
2018-04-01
Recent trend in turning hardened materials have gained popularity because of its immense machinability benefits. However, several machining processes like thermal assisted machining and cryogenic machining have reveal superior machinability benefits over conventional dry turning of hardened materials. Various engineering materials have been studied. However, investigations on AISI O1 tool steel have not been widely reported. In this paper, surface finish and surface integrity dominant when hard turning AISI O1 tool steel is analysed. The study is focused on the performance of wiper coated ceramic tool with respect to surface roughness and surface integrity of hardened tool steel. Hard turned tool steel was machined at varying cutting speed of 100, 155 and 210 m/min and feed rate of 0.05, 0.125 and 0.20mm/rev. The depth of cut of 0.2mm was maintained constant throughout the machining trials. Machining was conducted using dry turning on 200E-axis CNC lathe. The experimental study revealed that the surface finish is relatively superior at higher cutting speed of 210m/min. The surface finish increases when cutting speed increases whereas surface finish is generally better at lower feed rate of 0.05mm/rev. The experimental study conducted have revealed that phenomena such as work piece vibration due to poor or improper mounting on the spindle also contributed to higher surface roughness value of 0.66Ra during turning at 0.2mm/rev. Traces of white layer was observed when viewed with optical microscope which shows evidence of cutting effects on the turned work material at feed rate of 0.2 rev/min
New tool holder design for cryogenic machining of Ti6Al4V
NASA Astrophysics Data System (ADS)
Bellin, Marco; Sartori, Stefano; Ghiotti, Andrea; Bruschi, Stefania
2017-10-01
The renewed demand of increasing the machinability of the Ti6Al4V titanium alloy to produce biomedical and aerospace parts working at high temperature has recently led to the application of low-temperature coolants instead of conventional cutting fluids to increase both the tool life and the machined surface integrity. In particular, the liquid nitrogen directed to the tool rake face has shown a great capability of reducing the temperature at the chip-tool interface, as well as the chemical interaction between the tool coating and the titanium to be machined, therefore limiting the tool crater wear, and improving, at the same time, the chip breakability. Furthermore, the nitrogen is a safe, non-harmful, non-corrosive, odorless, recyclable, non-polluting and abundant gas, characteristics that further qualify it as an environmental friendly coolant to be applied to machining processes. However, the behavior of the system composed by the tool and the tool holder, exposed to the cryogenics temperatures may represent a critical issue in order to obtain components within the required geometrical tolerances. On this basis, the paper aims at presenting the design of an innovative tool holder installed on a CNC lathe, which includes the cryogenic coolant provision system, and which is able to hinder the part possible distortions due to the liquid nitrogen adduction by stabilizing its dimensions through the use of heating cartridges and appropriate sensors to monitor the temperature evolution of the tool holder.
Venkatesan, K
2017-07-01
Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60-150 m/min, feed rates of 0.05-0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.
On the bistable zone of milling processes
Dombovari, Zoltan; Stepan, Gabor
2015-01-01
A modal-based model of milling machine tools subjected to time-periodic nonlinear cutting forces is introduced. The model describes the phenomenon of bistability for certain cutting parameters. In engineering, these parameter domains are referred to as unsafe zones, where steady-state milling may switch to chatter for certain perturbations. In mathematical terms, these are the parameter domains where the periodic solution of the corresponding nonlinear, time-periodic delay differential equation is linearly stable, but its domain of attraction is limited due to the existence of an unstable quasi-periodic solution emerging from a secondary Hopf bifurcation. A semi-numerical method is presented to identify the borders of these bistable zones by tracking the motion of the milling tool edges as they might leave the surface of the workpiece during the cutting operation. This requires the tracking of unstable quasi-periodic solutions and the checking of their grazing to a time-periodic switching surface in the infinite-dimensional phase space. As the parameters of the linear structural behaviour of the tool/machine tool system can be obtained by means of standard modal testing, the developed numerical algorithm provides efficient support for the design of milling processes with quick estimates of those parameter domains where chatter can still appear in spite of setting the parameters into linearly stable domains. PMID:26303918
e-IQ and IQ knowledge mining for generalized LDA
NASA Astrophysics Data System (ADS)
Jenkins, Jeffrey; van Bergem, Rutger; Sweet, Charles; Vietsch, Eveline; Szu, Harold
2015-05-01
How can the human brain uncover patterns, associations and features in real-time, real-world data? There must be a general strategy used to transform raw signals into useful features, but representing this generalization in the context of our information extraction tool set is lacking. In contrast to Big Data (BD), Large Data Analysis (LDA) has become a reachable multi-disciplinary goal in recent years due in part to high performance computers and algorithm development, as well as the availability of large data sets. However, the experience of Machine Learning (ML) and information communities has not been generalized into an intuitive framework that is useful to researchers across disciplines. The data exploration phase of data mining is a prime example of this unspoken, ad-hoc nature of ML - the Computer Scientist works with a Subject Matter Expert (SME) to understand the data, and then build tools (i.e. classifiers, etc.) which can benefit the SME and the rest of the researchers in that field. We ask, why is there not a tool to represent information in a meaningful way to the researcher asking the question? Meaning is subjective and contextual across disciplines, so to ensure robustness, we draw examples from several disciplines and propose a generalized LDA framework for independent data understanding of heterogeneous sources which contribute to Knowledge Discovery in Databases (KDD). Then, we explore the concept of adaptive Information resolution through a 6W unsupervised learning methodology feedback system. In this paper, we will describe the general process of man-machine interaction in terms of an asymmetric directed graph theory (digging for embedded knowledge), and model the inverse machine-man feedback (digging for tacit knowledge) as an ANN unsupervised learning methodology. Finally, we propose a collective learning framework which utilizes a 6W semantic topology to organize heterogeneous knowledge and diffuse information to entities within a society in a personalized way.
Big Data Tools as Applied to ATLAS Event Data
NASA Astrophysics Data System (ADS)
Vukotic, I.; Gardner, R. W.; Bryant, L. A.
2017-10-01
Big Data technologies have proven to be very useful for storage, processing and visualization of derived metrics associated with ATLAS distributed computing (ADC) services. Logfiles, database records, and metadata from a diversity of systems have been aggregated and indexed to create an analytics platform for ATLAS ADC operations analysis. Dashboards, wide area data access cost metrics, user analysis patterns, and resource utilization efficiency charts are produced flexibly through queries against a powerful analytics cluster. Here we explore whether these techniques and associated analytics ecosystem can be applied to add new modes of open, quick, and pervasive access to ATLAS event data. Such modes would simplify access and broaden the reach of ATLAS public data to new communities of users. An ability to efficiently store, filter, search and deliver ATLAS data at the event and/or sub-event level in a widely supported format would enable or significantly simplify usage of machine learning environments and tools like Spark, Jupyter, R, SciPy, Caffe, TensorFlow, etc. Machine learning challenges such as the Higgs Boson Machine Learning Challenge, the Tracking challenge, Event viewers (VP1, ATLANTIS, ATLASrift), and still to be developed educational and outreach tools would be able to access the data through a simple REST API. In this preliminary investigation we focus on derived xAOD data sets. These are much smaller than the primary xAODs having containers, variables, and events of interest to a particular analysis. Being encouraged with the performance of Elasticsearch for the ADC analytics platform, we developed an algorithm for indexing derived xAOD event data. We have made an appropriate document mapping and have imported a full set of standard model W/Z datasets. We compare the disk space efficiency of this approach to that of standard ROOT files, the performance in simple cut flow type of data analysis, and will present preliminary results on its scaling characteristics with different numbers of clients, query complexity, and size of the data retrieved.
A group communication approach for mobile computing mobile channel: An ISIS tool for mobile services
NASA Astrophysics Data System (ADS)
Cho, Kenjiro; Birman, Kenneth P.
1994-05-01
This paper examines group communication as an infrastructure to support mobility of users, and presents a simple scheme to support user mobility by means of switching a control point between replicated servers. We describe the design and implementation of a set of tools, called Mobile Channel, for use with the ISIS system. Mobile Channel is based on a combination of the two replication schemes: the primary-backup approach and the state machine approach. Mobile Channel implements a reliable one-to-many FIFO channel, in which a mobile client sees a single reliable server; servers, acting as a state machine, see multicast messages from clients. Migrations of mobile clients are handled as an intentional primary switch, and hand-offs or server failures are completely masked to mobile clients. To achieve high performance, servers are replicated at a sliding-window level. Our scheme provides a simple abstraction of migration, eliminates complicated hand-off protocols, provides fault-tolerance and is implemented within the existing group communication mechanism.
Machine tools error characterization and compensation by on-line measurement of artifact
NASA Astrophysics Data System (ADS)
Wahid Khan, Abdul; Chen, Wuyi; Wu, Lili
2009-11-01
Most manufacturing machine tools are utilized for mass production or batch production with high accuracy at a deterministic manufacturing principle. Volumetric accuracy of machine tools depends on the positional accuracy of the cutting tool, probe or end effector related to the workpiece in the workspace volume. In this research paper, a methodology is presented for volumetric calibration of machine tools by on-line measurement of an artifact or an object of a similar type. The machine tool geometric error characterization was carried out through a standard or an artifact, having similar geometry to the mass production or batch production product. The artifact was measured at an arbitrary position in the volumetric workspace with a calibrated Renishaw touch trigger probe system. Positional errors were stored into a computer for compensation purpose, to further run the manufacturing batch through compensated codes. This methodology was found quite effective to manufacture high precision components with more dimensional accuracy and reliability. Calibration by on-line measurement gives the advantage to improve the manufacturing process by use of deterministic manufacturing principle and found efficient and economical but limited to the workspace or envelop surface of the measured artifact's geometry or the profile.
NASA Astrophysics Data System (ADS)
Adeyeri, Michael Kanisuru; Mpofu, Khumbulani
2017-06-01
The article is centred on software system development for manufacturing company that produces polyethylene bags using mostly conventional machines in a competitive world where each business enterprise desires to stand tall. This is meant to assist in gaining market shares, taking maintenance and production decisions by the dynamism and flexibilities embedded in the package as customers' demand varies under the duress of meeting the set goals. The production and machine condition monitoring software (PMCMS) is programmed in C# and designed in such a way to support hardware integration, real-time machine conditions monitoring, which is based on condition maintenance approach, maintenance decision suggestions and suitable production strategies as the demand for products keeps changing in a highly competitive environment. PMCMS works with an embedded device which feeds it with data from the various machines being monitored at the workstation, and the data are read at the base station through transmission via a wireless transceiver and stored in a database. A case study was used in the implementation of the developed system, and the results show that it can monitor the machine's health condition effectively by displaying machines' health status, gives repair suggestions to probable faults, decides strategy for both production methods and maintenance, and, thus, can enhance maintenance performance obviously.
NASA Astrophysics Data System (ADS)
Pezzi, M.; Favaro, M.; Gregori, D.; Ricci, P. P.; Sapunenko, V.
2014-06-01
In large computing centers, such as the INFN CNAF Tier1 [1], is essential to be able to configure all the machines, depending on use, in an automated way. For several years at the Tier1 has been used Quattor[2], a server provisioning tool, which is currently used in production. Nevertheless we have recently started a comparison study involving other tools able to provide specific server installation and configuration features and also offer a proper full customizable solution as an alternative to Quattor. Our choice at the moment fell on integration between two tools: Cobbler [3] for the installation phase and Puppet [4] for the server provisioning and management operation. The tool should provide the following properties in order to replicate and gradually improve the current system features: implement a system check for storage specific constraints such as kernel modules black list at boot time to avoid undesired SAN (Storage Area Network) access during disk partitioning; a simple and effective mechanism for kernel upgrade and downgrade; the ability of setting package provider using yum, rpm or apt; easy to use Virtual Machine installation support including bonding and specific Ethernet configuration; scalability for managing thousands of nodes and parallel installations. This paper describes the results of the comparison and the tests carried out to verify the requirements and the new system suitability in the INFN-T1 environment.
Multi-category micro-milling tool wear monitoring with continuous hidden Markov models
NASA Astrophysics Data System (ADS)
Zhu, Kunpeng; Wong, Yoke San; Hong, Geok Soon
2009-02-01
In-process monitoring of tool conditions is important in micro-machining due to the high precision requirement and high tool wear rate. Tool condition monitoring in micro-machining poses new challenges compared to conventional machining. In this paper, a multi-category classification approach is proposed for tool flank wear state identification in micro-milling. Continuous Hidden Markov models (HMMs) are adapted for modeling of the tool wear process in micro-milling, and estimation of the tool wear state given the cutting force features. For a noise-robust approach, the HMM outputs are connected via a medium filter to minimize the tool state before entry into the next state due to high noise level. A detailed study on the selection of HMM structures for tool condition monitoring (TCM) is presented. Case studies on the tool state estimation in the micro-milling of pure copper and steel demonstrate the effectiveness and potential of these methods.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-02
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,554] International Business Machines (IBM), Software Group Business Unit, Optim Data Studio Tools QA, San Jose, CA; Notice of... determination of the TAA petition filed on behalf of workers at International Business Machines (IBM), Software...
NASA Astrophysics Data System (ADS)
Singh, Jagdeep; Sharma, Rajiv Kumar
2016-12-01
Electrical discharge machining (EDM) is a well-known nontraditional manufacturing process to machine the difficult-to-machine (DTM) materials which have unique hardness properties. Researchers have successfully performed hybridization to improve this process by incorporating powders into the EDM process known as powder-mixed EDM process. This process drastically improves process efficiency by increasing material removal rate, micro-hardness, as well as reducing the tool wear rate and surface roughness. EDM also has some input parameters, including pulse-on time, dielectric levels and its type, current setting, flushing pressure, and so on, which have a significant effect on EDM performance. However, despite their positive influence, investigating the effects of these parameters on environmental conditions is necessary. Most studies demonstrate the use of kerosene oil as dielectric fluid. Nevertheless, in this work, the authors highlight the findings with respect to three different dielectric fluids, including kerosene oil, EDM oil, and distilled water using one-variable-at-a-time approach for machining as well as environmental aspects. The hazard and operability analysis is employed to identify the inherent safety factors associated with powder-mixed EDM of WC-Co.
Evaluating the electrical discharge machining (EDM) parameters with using carbon nanotubes
NASA Astrophysics Data System (ADS)
Sari, M. M.; Noordin, M. Y.; Brusa, E.
2012-09-01
Electrical discharge machining (EDM) is one of the most accurate non traditional manufacturing processes available for creating tiny apertures, complex or simple shapes and geometries within parts and assemblies. Performance of the EDM process is usually evaluated in terms of surface roughness, existence of cracks, voids and recast layer on the surface of product, after machining. Unfortunately, the high heat generated on the electrically discharged material during the EDM process decreases the quality of products. Carbon nanotubes display unexpected strength and unique electrical and thermal properties. Multi-wall carbon nanotubes are therefore on purpose added to the dielectric used in the EDM process to improve its performance when machining the AISI H13 tool steel, by means of copper electrodes. Some EDM parameters such as material removal rate, electrode wear rate, surface roughness and recast layer are here first evaluated, then compared to the outcome of EDM performed without using nanotubes mixed to the dielectric. Independent variables investigated are pulse on time, peak current and interval time. Experimental evidences show that EDM process operated by mixing multi-wall carbon nanotubes within the dielectric looks more efficient, particularly if machining parameters are set at low pulse of energy.
1978-03-01
J16 Photograph 3 Knurling Tool Installed in Machine . . ....... 16 Photograph 4 Shrapnel Pattern Being Knurled Into M42 Grenade Cylinder...body Fenn mill embossing rolls. Roehlen was awarded a cuxiu**L am’i labricated a knurling tool for use in the modified Tesker thread-rolling machine ...automatic grinding machine . IKratz-Wilde was not successful in developing tooling to produce domes to the inertia-welded assembly design. (See Figure
Migrating EO/IR sensors to cloud-based infrastructure as service architectures
NASA Astrophysics Data System (ADS)
Berglie, Stephen T.; Webster, Steven; May, Christopher M.
2014-06-01
The Night Vision Image Generator (NVIG), a product of US Army RDECOM CERDEC NVESD, is a visualization tool used widely throughout Army simulation environments to provide fully attributed synthesized, full motion video using physics-based sensor and environmental effects. The NVIG relies heavily on contemporary hardware-based acceleration and GPU processing techniques, which push the envelope of both enterprise and commodity-level hypervisor support for providing virtual machines with direct access to hardware resources. The NVIG has successfully been integrated into fully virtual environments where system architectures leverage cloudbased technologies to various extents in order to streamline infrastructure and service management. This paper details the challenges presented to engineers seeking to migrate GPU-bound processes, such as the NVIG, to virtual machines and, ultimately, Cloud-Based IAS architectures. In addition, it presents the path that led to success for the NVIG. A brief overview of Cloud-Based infrastructure management tool sets is provided, and several virtual desktop solutions are outlined. A discrimination is made between general purpose virtual desktop technologies compared to technologies that expose GPU-specific capabilities, including direct rendering and hard ware-based video encoding. Candidate hypervisor/virtual machine configurations that nominally satisfy the virtualized hardware-level GPU requirements of the NVIG are presented , and each is subsequently reviewed in light of its implications on higher-level Cloud management techniques. Implementation details are included from the hardware level, through the operating system, to the 3D graphics APls required by the NVIG and similar GPU-bound tools.
Tool path strategy and cutting process monitoring in intelligent machining
NASA Astrophysics Data System (ADS)
Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei
2018-06-01
Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchill, R. Michael
Apache Spark is explored as a tool for analyzing large data sets from the magnetic fusion simulation code XGCI. Implementation details of Apache Spark on the NERSC Edison supercomputer are discussed, including binary file reading, and parameter setup. Here, an unsupervised machine learning algorithm, k-means clustering, is applied to XGCI particle distribution function data, showing that highly turbulent spatial regions do not have common coherent structures, but rather broad, ring-like structures in velocity space.
Ngo, Trieu-Du; Tran, Thanh-Dao; Le, Minh-Tri; Thai, Khac-Minh
2016-11-01
The human P-glycoprotein (P-gp) efflux pump is of great interest for medicinal chemists because of its important role in multidrug resistance (MDR). Because of the high polyspecificity as well as the unavailability of high-resolution X-ray crystal structures of this transmembrane protein, ligand-based, and structure-based approaches which were machine learning, homology modeling, and molecular docking were combined for this study. In ligand-based approach, individual two-dimensional quantitative structure-activity relationship models were developed using different machine learning algorithms and subsequently combined into the Ensemble model which showed good performance on both the diverse training set and the validation sets. The applicability domain and the prediction quality of the developed models were also judged using the state-of-the-art methods and tools. In our structure-based approach, the P-gp structure and its binding region were predicted for a docking study to determine possible interactions between the ligands and the receptor. Based on these in silico tools, hit compounds for reversing MDR were discovered from the in-house and DrugBank databases through virtual screening using prediction models and molecular docking in an attempt to restore cancer cell sensitivity to cytotoxic drugs.
Micro-optical fabrication by ultraprecision diamond machining and precision molding
NASA Astrophysics Data System (ADS)
Li, Hui; Li, Likai; Naples, Neil J.; Roblee, Jeffrey W.; Yi, Allen Y.
2017-06-01
Ultraprecision diamond machining and high volume molding for affordable high precision high performance optical elements are becoming a viable process in optical industry for low cost high quality microoptical component manufacturing. In this process, first high precision microoptical molds are fabricated using ultraprecision single point diamond machining followed by high volume production methods such as compression or injection molding. In the last two decades, there have been steady improvements in ultraprecision machine design and performance, particularly with the introduction of both slow tool and fast tool servo. Today optical molds, including freeform surfaces and microlens arrays, are routinely diamond machined to final finish without post machining polishing. For consumers, compression molding or injection molding provide efficient and high quality optics at extremely low cost. In this paper, first ultraprecision machine design and machining processes such as slow tool and fast too servo are described then both compression molding and injection molding of polymer optics are discussed. To implement precision optical manufacturing by molding, numerical modeling can be included in the future as a critical part of the manufacturing process to ensure high product quality.
Material Choice for spindle of machine tools
NASA Astrophysics Data System (ADS)
Gouasmi, S.; Merzoug, B.; Abba, G.; Kherredine, L.
2012-02-01
The requirements of contemporary industry and the flashing development of modern sciences impose restrictions on the majority of the elements of machines; the resulting financial constraints can be satisfied by a better output of the production equipment. As for those concerning the design, the resistance and the correct operation of the product, these require the development of increasingly precise parts, therefore the use of increasingly powerful tools [5]. The precision of machining and the output of the machine tools are generally determined by the precision of rotation of the spindle, indeed, more this one is large more the dimensions to obtain are in the zone of tolerance and the defects of shape are minimized. During the development of the machine tool, the spindle which by definition is a rotating shaft receiving and transmitting to the work piece or the cutting tool the rotational movement, must be designed according to certain optimal parameters to be able to ensure the precision required. This study will be devoted to the choice of the material of the spindle fulfilling the imposed requirements of precision.
Classification of Variable Objects in Massive Sky Monitoring Surveys
NASA Astrophysics Data System (ADS)
Woźniak, Przemek; Wyrzykowski, Łukasz; Belokurov, Vasily
2012-03-01
The era of great sky surveys is upon us. Over the past decade we have seen rapid progress toward a continuous photometric record of the optical sky. Numerous sky surveys are discovering and monitoring variable objects by hundreds of thousands. Advances in detector, computing, and networking technology are driving applications of all shapes and sizes ranging from small all sky monitors, through networks of robotic telescopes of modest size, to big glass facilities equipped with giga-pixel CCD mosaics. The Large Synoptic Survey Telescope will be the first peta-scale astronomical survey [18]. It will expand the volume of the parameter space available to us by three orders of magnitude and explore the mutable heavens down to an unprecedented level of sensitivity. Proliferation of large, multidimensional astronomical data sets is stimulating the work on new methods and tools to handle the identification and classification challenge [3]. Given exponentially growing data rates, automated classification of variability types is quickly becoming a necessity. Taking humans out of the loop not only eliminates the subjective nature of visual classification, but is also an enabling factor for time-critical applications. Full automation is especially important for studies of explosive phenomena such as γ-ray bursts that require rapid follow-up observations before the event is over. While there is a general consensus that machine learning will provide a viable solution, the available algorithmic toolbox remains underutilized in astronomy by comparison with other fields such as genomics or market research. Part of the problem is the nature of astronomical data sets that tend to be dominated by a variety of irregularities. Not all algorithms can handle gracefully uneven time sampling, missing features, or sparsely populated high-dimensional spaces. More sophisticated algorithms and better tools available in standard software packages are required to facilitate the adoption of machine learning in astronomy. The goal of this chapter is to show a number of successful applications of state-of-the-art machine learning methodology to time-resolved astronomical data, illustrate what is possible today, and help identify areas for further research and development. After a brief comparison of the utility of various machine learning classifiers, the discussion focuses on support vector machines (SVM), neural nets, and self-organizing maps. Traditionally, to detect and classify transient variability astronomers used ad hoc scan statistics. These methods will remain important as feature extractors for input into generic machine learning algorithms. Experience shows that the performance of machine learning tools on astronomical data critically depends on the definition and quality of the input features, and that a considerable amount of preprocessing is required before standard algorithms can be applied. However, with continued investments of effort by a growing number of astro-informatics savvy computer scientists and astronomers the much-needed expertise and infrastructure are growing faster than ever.
Atmospheric Science Data Center
2013-04-01
MISR Center Block Time Tool The misr_time tool calculates the block center times for MISR Level 1B2 files. This is ... version of the IDL package or by using the IDL Virtual Machine application. The IDL Virtual Machine is bundled with IDL and is ...
Ma, X H; Wang, R; Tan, C Y; Jiang, Y Y; Lu, T; Rao, H B; Li, X Y; Go, M L; Low, B C; Chen, Y Z
2010-10-04
Multitarget agents have been increasingly explored for enhancing efficacy and reducing countertarget activities and toxicities. Efficient virtual screening (VS) tools for searching selective multitarget agents are desired. Combinatorial support vector machines (C-SVM) were tested as VS tools for searching dual-inhibitors of 11 combinations of 9 anticancer kinase targets (EGFR, VEGFR, PDGFR, Src, FGFR, Lck, CDK1, CDK2, GSK3). C-SVM trained on 233-1,316 non-dual-inhibitors correctly identified 26.8%-57.3% (majority >36%) of the 56-230 intra-kinase-group dual-inhibitors (equivalent to the 50-70% yields of two independent individual target VS tools), and 12.2% of the 41 inter-kinase-group dual-inhibitors. C-SVM were fairly selective in misidentifying as dual-inhibitors 3.7%-48.1% (majority <20%) of the 233-1,316 non-dual-inhibitors of the same kinase pairs and 0.98%-4.77% of the 3,971-5,180 inhibitors of other kinases. C-SVM produced low false-hit rates in misidentifying as dual-inhibitors 1,746-4,817 (0.013%-0.036%) of the 13.56 M PubChem compounds, 12-175 (0.007%-0.104%) of the 168 K MDDR compounds, and 0-84 (0.0%-2.9%) of the 19,495-38,483 MDDR compounds similar to the known dual-inhibitors. C-SVM was compared to other VS methods Surflex-Dock, DOCK Blaster, kNN and PNN against the same sets of kinase inhibitors and the full set or subset of the 1.02 M Zinc clean-leads data set. C-SVM produced comparable dual-inhibitor yields, slightly better false-hit rates for kinase inhibitors, and significantly lower false-hit rates for the Zinc clean-leads data set. Combinatorial SVM showed promising potential for searching selective multitarget agents against intra-kinase-group kinases without explicit knowledge of multitarget agents.
Study on electroplating technology of diamond tools for machining hard and brittle materials
NASA Astrophysics Data System (ADS)
Cui, Ying; Chen, Jian Hua; Sun, Li Peng; Wang, Yue
2016-10-01
With the development of the high speed cutting, the ultra-precision machining and ultrasonic vibration technique in processing hard and brittle material , the requirement of cutting tools is becoming higher and higher. As electroplated diamond tools have distinct advantages, such as high adaptability, high durability, long service life and good dimensional stability, the cutting tools are effective and extensive used in grinding hard and brittle materials. In this paper, the coating structure of electroplating diamond tool is described. The electroplating process flow is presented, and the influence of pretreatment on the machining quality is analyzed. Through the experimental research and summary, the reasonable formula of the electrolyte, the electroplating technologic parameters and the suitable sanding method were determined. Meanwhile, the drilling experiment on glass-ceramic shows that the electroplating process can effectively improve the cutting performance of diamond tools. It has laid a good foundation for further improving the quality and efficiency of the machining of hard and brittle materials.
Method and apparatus for suppressing regenerative instability and related chatter in machine tools
Segalman, Daniel J.; Redmond, James M.
2001-01-01
Methods of and apparatuses for mitigating chatter vibrations in machine tools or components thereof. Chatter therein is suppressed by periodically or continuously varying the stiffness of the cutting tool (or some component of the cutting tool), and hence the resonant frequency of the cutting tool (or some component thereof). The varying of resonant frequency of the cutting tool can be accomplished by modulating the stiffness of the cutting tool, the cutting tool holder, or any other component of the support for the cutting tool. By periodically altering the impedance of the cutting tool assembly, chatter is mitigated. In one embodiment, a cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface.
Method and apparatus for suppressing regenerative instability and related chatter in machine tools
Segalman, Daniel J.; Redmond, James M.
1999-01-01
Methods of and apparatuses for mitigating chatter vibrations in machine tools or components thereof. Chatter therein is suppressed by periodically or continuously varying the stiffness of the cutting tool (or some component of the cutting tool), and hence the resonant frequency of the cutting tool (or some component thereof). The varying of resonant frequency of the cutting tool can be accomplished by modulating the stiffness of the cutting tool, the cutting tool holder, or any other component of the support for the cutting tool. By periodically altering the impedance of the cutting tool assembly, chatter is mitigated. In one embodiment, a cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface.
NASA Astrophysics Data System (ADS)
Doetz, M.; Dambon, O.; Klocke, F.; Bulla, B.; Schottka, K.; Robertson, D. J.
2017-10-01
Ultra-precision diamond turning enables the manufacturing of parts with mirror-like surfaces and highest form accuracies out of non-ferrous, a few crystalline and plastic materials. Furthermore, an ultrasonic assistance has the ability to push these boundaries and enables the machining of materials like steel, which is not possible in a conventional way due to the excessive tool wear caused by the affinity of carbon to iron. Usually monocrystalline diamonds tools are applied due to their unsurpassed cutting edge properties. New cutting tool material developments have shown that it is possible to produce tools made of nano-polycrystalline diamonds with cutting edges equivalent to monocrystalline diamonds. In nano-polycrystalline diamonds ultra-fine grains of a few tens of nanometers are firmly and directly bonded together creating an unisotropic structure. The properties of this material are described to be isotropic, harder and tougher than those of the monocrystalline diamonds, which are unisotropic. This publication will present machining results from the newest investigations of the process potential of this new polycrystalline cutting material. In order to provide a baseline with which to characterize the cutting material cutting experiments on different conventional machinable materials like Cooper or Aluminum are performed. The results provide information on the roughness and the topography of the surface focusing on the comparison to the results while machining with monocrystalline diamond. Furthermore, the cutting material is tested in machining steel with ultrasonic assistance with a focus on tool life time and surface roughness. An outlook on the machinability of other materials will be given.
Mewes, D; Trapp, R P
2000-01-01
Guards on machine tools are meant to protect operators from injuries caused by tools, workpieces, and fragments hurled out of the machine's working zone. This article presents the impact resistance requirements, which guards according to European safety standards for machine tools must satisfy. Based upon these standards the impact resistance of different guard materials was determined using cylindrical steel projectiles. Polycarbonate proves to be a suitable material for vision panels because of its high energy absorption capacity. The impact resistance of 8-mm thick polycarbonate is roughly equal to that of a 3-mm thick steel sheet Fe P01. The limited ageing stability, however, makes it necessary to protect polycarbonate against cooling lubricants by means of additional panes on both sides.
NASA Astrophysics Data System (ADS)
shunhe, Li; jianhua, Rao; lin, Gui; weimin, Zhang; degang, Liu
2017-11-01
The result of remanufacturing evaluation is the basis for judging whether the heavy duty machine tool can remanufacture in the EOL stage of the machine tool lifecycle management.The objectivity and accuracy of evaluation is the key to the evaluation method.In this paper, the catastrophe progression method is introduced into the quantitative evaluation of heavy duty machine tools’ remanufacturing,and the results are modified by the comprehensive adjustment method,which makes the evaluation results accord with the standard of human conventional thinking.Using the catastrophe progression method to establish the heavy duty machine tools’ quantitative evaluation model,to evaluate the retired TK6916 type CNC floor milling-boring machine’s remanufacturing.The evaluation process is simple,high quantification,the result is objective.
Open access for ALICE analysis based on virtualization technology
NASA Astrophysics Data System (ADS)
Buncic, P.; Gheata, M.; Schutz, Y.
2015-12-01
Open access is one of the important leverages for long-term data preservation for a HEP experiment. To guarantee the usability of data analysis tools beyond the experiment lifetime it is crucial that third party users from the scientific community have access to the data and associated software. The ALICE Collaboration has developed a layer of lightweight components built on top of virtualization technology to hide the complexity and details of the experiment-specific software. Users can perform basic analysis tasks within CernVM, a lightweight generic virtual machine, paired with an ALICE specific contextualization. Once the virtual machine is launched, a graphical user interface is automatically started without any additional configuration. This interface allows downloading the base ALICE analysis software and running a set of ALICE analysis modules. Currently the available tools include fully documented tutorials for ALICE analysis, such as the measurement of strange particle production or the nuclear modification factor in Pb-Pb collisions. The interface can be easily extended to include an arbitrary number of additional analysis modules. We present the current status of the tools used by ALICE through the CERN open access portal, and the plans for future extensions of this system.
Mycofier: a new machine learning-based classifier for fungal ITS sequences.
Delgado-Serrano, Luisa; Restrepo, Silvia; Bustos, Jose Ricardo; Zambrano, Maria Mercedes; Anzola, Juan Manuel
2016-08-11
The taxonomic and phylogenetic classification based on sequence analysis of the ITS1 genomic region has become a crucial component of fungal ecology and diversity studies. Nowadays, there is no accurate alignment-free classification tool for fungal ITS1 sequences for large environmental surveys. This study describes the development of a machine learning-based classifier for the taxonomical assignment of fungal ITS1 sequences at the genus level. A fungal ITS1 sequence database was built using curated data. Training and test sets were generated from it. A Naïve Bayesian classifier was built using features from the primary sequence with an accuracy of 87 % in the classification at the genus level. The final model was based on a Naïve Bayes algorithm using ITS1 sequences from 510 fungal genera. This classifier, denoted as Mycofier, provides similar classification accuracy compared to BLASTN, but the database used for the classification contains curated data and the tool, independent of alignment, is more efficient and contributes to the field, given the lack of an accurate classification tool for large data from fungal ITS1 sequences. The software and source code for Mycofier are freely available at https://github.com/ldelgado-serrano/mycofier.git .
1951-03-14
human "We have been very much occupied In perfect. engineering to the improvement of the air-navigation ing the machines and the tools which the...a man-machine system which will ever, if he were only considered as an instrument, yield optimal results in the way of efficiency and a tool , a motor...operation of machines and equipment and system development, which will permit tools , the emphasis has been upon the adjustment of an orderly and
Machine Tool Series. Duty Task List.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This task list is intended for use in planning and/or evaluating a competency-based course to prepare machine tool, drill press, grinding machine, lathe, mill, and/or power saw operators. The listing is divided into six sections, with each one outlining the tasks required to perform the duties that have been identified for the given occupation.…
Laser assisted machining: a state of art review
NASA Astrophysics Data System (ADS)
Punugupati, Gurabvaiah; Kandi, Kishore Kumar; Bose, P. S. C.; Rao, C. S. P.
2016-09-01
Difficult-to-cut materials have increasing demand in aerospace and automobile industries due to their high yield stress, high strength to weight ratio, high toughness, high wear resistance, high creep, high corrosion resistivity, ability to retain high strength at high temperature, etc. The machinability of these advanced materials, using conventional methods of machining is typical due to the high temperature and pressure at the cutting zone and tool and properties such as low thermal conductivity, high cutting forces and cutting temperatures makes the materials difficult to machine. Laser assisted machining (LAM) is a new and innovative technique for machining the difficult-to-cut materials. This paper deals with a review on the advances in lasers, tools and the mechanism of machining using LAM and their effects.
NASA Astrophysics Data System (ADS)
Balaykin, A. V.; Bezsonov, K. A.; Nekhoroshev, M. V.; Shulepov, A. P.
2018-01-01
This paper dwells upon a variance parameterization method. Variance or dimensional parameterization is based on sketching, with various parametric links superimposed on the sketch objects and user-imposed constraints in the form of an equation system that determines the parametric dependencies. This method is fully integrated in a top-down design methodology to enable the creation of multi-variant and flexible fixture assembly models, as all the modeling operations are hierarchically linked in the built tree. In this research the authors consider a parameterization method of machine tooling used for manufacturing parts using multiaxial CNC machining centers in the real manufacturing process. The developed method allows to significantly reduce tooling design time when making changes of a part’s geometric parameters. The method can also reduce time for designing and engineering preproduction, in particular, for development of control programs for CNC equipment and control and measuring machines, automate the release of design and engineering documentation. Variance parameterization helps to optimize construction of parts as well as machine tooling using integrated CAE systems. In the framework of this study, the authors demonstrate a comprehensive approach to parametric modeling of machine tooling in the CAD package used in the real manufacturing process of aircraft engines.
Diamond tool machining of materials which react with diamond
Lundin, Ralph L.; Stewart, Delbert D.; Evans, Christopher J.
1992-01-01
Apparatus for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond.
Lu, Li; Liu, Shusheng; Shi, Shenggen; Yang, Jianzhong
2011-10-01
China-made 5-axis simultaneous contouring CNC machine tool and domestically developed industrial computer-aided manufacture (CAM) technology were used for full crown fabrication and measurement of crown accuracy, with an attempt to establish an open CAM system for dental processing and to promote the introduction of domestic dental computer-aided design (CAD)/CAM system. Commercially available scanning equipment was used to make a basic digital tooth model after preparation of crown, and CAD software that comes with the scanning device was employed to design the crown by using domestic industrial CAM software to process the crown data in order to generate a solid model for machining purpose, and then China-made 5-axis simultaneous contouring CNC machine tool was used to complete machining of the whole crown and the internal accuracy of the crown internal was measured by using 3D-MicroCT. The results showed that China-made 5-axis simultaneous contouring CNC machine tool in combination with domestic industrial CAM technology can be used for crown making and the crown was well positioned in die. The internal accuracy was successfully measured by using 3D-MicroCT. It is concluded that an open CAM system for dentistry on the basis of China-made 5-axis simultaneous contouring CNC machine tool and domestic industrial CAM software has been established, and development of the system will promote the introduction of domestically-produced dental CAD/CAM system.
Activity Catalog Tool (ACT) user manual, version 2.0
NASA Technical Reports Server (NTRS)
Segal, Leon D.; Andre, Anthony D.
1994-01-01
This report comprises the user manual for version 2.0 of the Activity Catalog Tool (ACT) software program, developed by Leon D. Segal and Anthony D. Andre in cooperation with NASA Ames Aerospace Human Factors Research Division, FLR branch. ACT is a software tool for recording and analyzing sequences of activity over time that runs on the Macintosh platform. It was designed as an aid for professionals who are interested in observing and understanding human behavior in field settings, or from video or audio recordings of the same. Specifically, the program is aimed at two primary areas of interest: human-machine interactions and interactions between humans. The program provides a means by which an observer can record an observed sequence of events, logging such parameters as frequency and duration of particular events. The program goes further by providing the user with a quantified description of the observed sequence, through application of a basic set of statistical routines, and enables merging and appending of several files and more extensive analysis of the resultant data.
ERIC Educational Resources Information Center
Stadt, Ronald; And Others
This catalog provides performance objectives, tasks, standards, and performance guides associated with current occupational information relating to the job content of machinists, specifically tool grinder operators, production lathe operators, and production screw machine operators. The catalog is comprised of 262 performance objectives, tool and…
Fabrication of a grazing incidence telescope by grinding and polishing techniques on aluminum
NASA Technical Reports Server (NTRS)
Gallagher, Dennis; Cash, Webster; Green, James
1991-01-01
The paper describes the fabrication processes, by grinding and polishing, used in making the mirrors for a f/2.8 Wolter type-I grazing incidence telescope at Boulder (Colorado), together with testing procedure used to determine the quality of the images. All grinding and polishing is done on specially designed machine that consists of a horizontal spindle to hold and rotate the mirror and a stroke arm machine to push the various tools back and forth along the mirrors length. The progress is checked by means of the ronchi test during all grinding and polishing stages. Current measurements of the telescope's image quality give a FWHM measurement of 44 arcsec, with the goal set at 5-10 arcsec quality.
NASA Technical Reports Server (NTRS)
Johannsen, G.; Rouse, W. B.
1978-01-01
A hierarchy of human activities is derived by analyzing automobile driving in general terms. A structural description leads to a block diagram and a time-sharing computer analogy. The range of applicability of existing mathematical models is considered with respect to the hierarchy of human activities in actual complex tasks. Other mathematical tools so far not often applied to man machine systems are also discussed. The mathematical descriptions at least briefly considered here include utility, estimation, control, queueing, and fuzzy set theory as well as artificial intelligence techniques. Some thoughts are given as to how these methods might be integrated and how further work might be pursued.
System technology for laser-assisted milling with tool integrated optics
NASA Astrophysics Data System (ADS)
Hermani, Jan-Patrick; Emonts, Michael; Brecher, Christian
2013-02-01
High strength metal alloys and ceramics offer a huge potential for increased efficiency (e. g. in engine components for aerospace or components for gas turbines). However, mass application is still hampered by cost- and time-consuming end-machining due to long processing times and high tool wear. Laser-induced heating shortly before machining can reduce the material strength and improve machinability significantly. The Fraunhofer IPT has developed and successfully realized a new approach for laser-assisted milling with spindle and tool integrated, co-rotating optics. The novel optical system inside the tool consists of one deflection prism to position the laser spot in front of the cutting insert and one focusing lens. Using a fiber laser with high beam quality the laser spot diameter can be precisely adjusted to the chip size. A high dynamic adaption of the laser power signal according to the engagement condition of the cutting tool was realized in order not to irradiate already machined work piece material. During the tool engagement the laser power is controlled in proportion to the current material removal rate, which has to be calculated continuously. The needed geometric values are generated by a CAD/CAM program and converted into a laser power signal by a real-time controller. The developed milling tool with integrated optics and the algorithm for laser power control enable a multi-axis laser-assisted machining of complex parts.
NASA Technical Reports Server (NTRS)
Sampson, Paul G.; Sny, Linda C.
1992-01-01
The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).
Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; Aoyama, Hideki; Case, Keith
2015-01-01
Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process) and a fuzzy COmplex PRoportional ASsessment (COPRAS) for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment.
Worldwide Report, Telecommunications Policy, Research and Development, No. 281.
1983-08-02
communications line. This line will automatically link Cotonou with Ouagadougou without having to pass through Paris. The agreement was signed this morning in... finished parts e.g. auto and motocycle assembly plants ^wKch most of the^time are wrongly referred to as "industries". . Unlike Brazil, Nigeria...tends to think that the machine tools factory will end up as these assembly plants of imported finished parts unless the government sets up other
NASA Astrophysics Data System (ADS)
Endah, S. N.; Nugraheni, D. M. K.; Adhy, S.; Sutikno
2017-04-01
According to Law No. 32 of 2002 and the Indonesian Broadcasting Commission Regulation No. 02/P/KPI/12/2009 & No. 03/P/KPI/12/2009, stated that broadcast programs should not scold with harsh words, not harass, insult or demean minorities and marginalized groups. However, there are no suitable tools to censor those words automatically. Therefore, researches to develop a system of intelligent software to censor the words automatically are needed. To conduct censor, the system must be able to recognize the words in question. This research proposes the classification of speech divide into two classes using Support Vector Machine (SVM), first class is set of rude words and the second class is set of properly words. The speech pitch values as an input in SVM, it used for the development of the system for the Indonesian rude swear word. The results of the experiment show that SVM is good for this system.
Pesesky, Mitchell W; Hussain, Tahir; Wallace, Meghan; Patel, Sanket; Andleeb, Saadia; Burnham, Carey-Ann D; Dantas, Gautam
2016-01-01
The time-to-result for culture-based microorganism recovery and phenotypic antimicrobial susceptibility testing necessitates initial use of empiric (frequently broad-spectrum) antimicrobial therapy. If the empiric therapy is not optimal, this can lead to adverse patient outcomes and contribute to increasing antibiotic resistance in pathogens. New, more rapid technologies are emerging to meet this need. Many of these are based on identifying resistance genes, rather than directly assaying resistance phenotypes, and thus require interpretation to translate the genotype into treatment recommendations. These interpretations, like other parts of clinical diagnostic workflows, are likely to be increasingly automated in the future. We set out to evaluate the two major approaches that could be amenable to automation pipelines: rules-based methods and machine learning methods. The rules-based algorithm makes predictions based upon current, curated knowledge of Enterobacteriaceae resistance genes. The machine-learning algorithm predicts resistance and susceptibility based on a model built from a training set of variably resistant isolates. As our test set, we used whole genome sequence data from 78 clinical Enterobacteriaceae isolates, previously identified to represent a variety of phenotypes, from fully-susceptible to pan-resistant strains for the antibiotics tested. We tested three antibiotic resistance determinant databases for their utility in identifying the complete resistome for each isolate. The predictions of the rules-based and machine learning algorithms for these isolates were compared to results of phenotype-based diagnostics. The rules based and machine-learning predictions achieved agreement with standard-of-care phenotypic diagnostics of 89.0 and 90.3%, respectively, across twelve antibiotic agents from six major antibiotic classes. Several sources of disagreement between the algorithms were identified. Novel variants of known resistance factors and incomplete genome assembly confounded the rules-based algorithm, resulting in predictions based on gene family, rather than on knowledge of the specific variant found. Low-frequency resistance caused errors in the machine-learning algorithm because those genes were not seen or seen infrequently in the test set. We also identified an example of variability in the phenotype-based results that led to disagreement with both genotype-based methods. Genotype-based antimicrobial susceptibility testing shows great promise as a diagnostic tool, and we outline specific research goals to further refine this methodology.
The Impact Of Surface Shape Of Chip-Breaker On Machined Surface
NASA Astrophysics Data System (ADS)
Šajgalík, Michal; Czán, Andrej; Martinček, Juraj; Varga, Daniel; Hemžský, Pavel; Pitela, David
2015-12-01
Machined surface is one of the most used indicators of workpiece quality. But machined surface is influenced by several factors such as cutting parameters, cutting material, shape of cutting tool or cutting insert, micro-structure of machined material and other known as technological parameters. By improving of these parameters, we can improve machined surface. In the machining, there is important to identify the characteristics of main product of these processes - workpiece, but also the byproduct - the chip. Size and shape of chip has impact on lifetime of cutting tools and its inappropriate form can influence the machine functionality and lifetime, too. This article deals with elimination of long chip created when machining of shaft in automotive industry and with impact of shape of chip-breaker on shape of chip in various cutting conditions based on production requirements.
ERIC Educational Resources Information Center
Hepburn, Larry; Shin, Masako
This document, one of eight in a multi-cultural competency-based vocational/technical curricula series, is on machine trades. This program is designed to run 36 weeks and cover 6 instructional areas: use of measuring tools; benchwork/tool bit grinding; lathe work; milling work; precision grinding; and combination machine work. A duty-task index…
NASA Astrophysics Data System (ADS)
Lucian, P.; Gheorghe, S.
2017-08-01
This paper presents a new method, based on FRISCO formula, for optimizing the choice of the best control system for kinematical feed chains with great distance between slides used in computer numerical controlled machine tools. Such machines are usually, but not limited to, used for machining large and complex parts (mostly in the aviation industry) or complex casting molds. For such machine tools the kinematic feed chains are arranged in a dual-parallel drive structure that allows the mobile element to be moved by the two kinematical branches and their related control systems. Such an arrangement allows for high speed and high rigidity (a critical requirement for precision machining) during the machining process. A significant issue for such an arrangement it’s the ability of the two parallel control systems to follow the same trajectory accurately in order to address this issue it is necessary to achieve synchronous motion control for the two kinematical branches ensuring that the correct perpendicular position it’s kept by the mobile element during its motion on the two slides.
Cutting Zone Temperature Identification During Machining of Nickel Alloy Inconel 718
NASA Astrophysics Data System (ADS)
Czán, Andrej; Daniš, Igor; Holubják, Jozef; Zaušková, Lucia; Czánová, Tatiana; Mikloš, Matej; Martikáň, Pavol
2017-12-01
Quality of machined surface is affected by quality of cutting process. There are many parameters, which influence on the quality of the cutting process. The cutting temperature is one of most important parameters that influence the tool life and the quality of machined surfaces. Its identification and determination is key objective in specialized machining processes such as dry machining of hard-to-machine materials. It is well known that maximum temperature is obtained in the tool rake face at the vicinity of the cutting edge. A moderate level of cutting edge temperature and a low thermal shock reduce the tool wear phenomena, and a low temperature gradient in the machined sublayer reduces the risk of high tensile residual stresses. The thermocouple method was used to measure the temperature directly in the cutting zone. An original thermocouple was specially developed for measuring of temperature in the cutting zone, surface and subsurface layers of machined surface. This paper deals with identification of temperature and temperature gradient during dry peripheral milling of Inconel 718. The measurements were used to identification the temperature gradients and to reconstruct the thermal distribution in cutting zone with various cutting conditions.
An efficient scheme for automatic web pages categorization using the support vector machine
NASA Astrophysics Data System (ADS)
Bhalla, Vinod Kumar; Kumar, Neeraj
2016-07-01
In the past few years, with an evolution of the Internet and related technologies, the number of the Internet users grows exponentially. These users demand access to relevant web pages from the Internet within fraction of seconds. To achieve this goal, there is a requirement of an efficient categorization of web page contents. Manual categorization of these billions of web pages to achieve high accuracy is a challenging task. Most of the existing techniques reported in the literature are semi-automatic. Using these techniques, higher level of accuracy cannot be achieved. To achieve these goals, this paper proposes an automatic web pages categorization into the domain category. The proposed scheme is based on the identification of specific and relevant features of the web pages. In the proposed scheme, first extraction and evaluation of features are done followed by filtering the feature set for categorization of domain web pages. A feature extraction tool based on the HTML document object model of the web page is developed in the proposed scheme. Feature extraction and weight assignment are based on the collection of domain-specific keyword list developed by considering various domain pages. Moreover, the keyword list is reduced on the basis of ids of keywords in keyword list. Also, stemming of keywords and tag text is done to achieve a higher accuracy. An extensive feature set is generated to develop a robust classification technique. The proposed scheme was evaluated using a machine learning method in combination with feature extraction and statistical analysis using support vector machine kernel as the classification tool. The results obtained confirm the effectiveness of the proposed scheme in terms of its accuracy in different categories of web pages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, J.K.
1997-11-01
This seminar describes a process and methodology that uses structured natural language to enable the construction of precise information requirements directly from users, experts, and managers. The main focus of this natural language approach is to create the precise information requirements and to do it in such a way that the business and technical experts are fully accountable for the results. These requirements can then be implemented using appropriate tools and technology. This requirement set is also a universal learning tool because it has all of the knowledge that is needed to understand a particular process (e.g., expense vouchers, projectmore » management, budget reviews, tax, laws, machine function).« less
Computer Simulation Of An In-Process Surface Finish Sensor.
NASA Astrophysics Data System (ADS)
Rakels, Jan H.
1987-01-01
It is generally accepted, that optical methods are the most promising for the in-process measurement of surface finish. These methods have the advantages of being non-contacting and fast data acquisition. Furthermore, these optical instruments can be easily retrofitted on existing machine-tools. In the Micro-Engineering Centre at the University of Warwick, an optical sensor has been developed which can measure the rms roughness, slope and wavelength of turned and precision ground surfaces during machining. The operation of this device is based upon the Kirchhoff-Fresnel diffraction integral. Application of this theory to ideal turned and ground surfaces is straightforward, and indeed the calculated diffraction patterns are in close agreement with patterns produced by an actual optical instrument. Since it is mathematically difficult to introduce real machine-tool behaviour into the diffraction integral, a computer program has been devised, which simulates the operation of the optical sensor. The program produces a diffraction pattern as a graphical output. Comparison between computer generated and actual diffraction patterns of the same surfaces show a high correlation. The main aim of this program is to construct an atlas, which maps known machine-tool errors versus optical diffraction patterns. This atlas can then be used for machine-tool condition diagnostics. It has been found that optical monitoring is very sensitive to minor defects. Therefore machine-tool detoriation can be detected before it is detrimental.
Research Results Of Stress-Strain State Of Cutting Tool When Aviation Materials Turning
NASA Astrophysics Data System (ADS)
Serebrennikova, A. G.; Nikolaeva, E. P.; Savilov, A. V.; Timofeev, S. A.; Pyatykh, A. S.
2018-01-01
Titanium alloys and stainless steels are hard-to-machine of all the machining types. Cutting edge state of turning tool after machining titanium and high-strength aluminium alloys and corrosion-resistant high-alloy steel has been studied. Cutting forces and chip contact arears with the rake surface of cutter has been measured. The relationship of cutting forces and residual stresses are shown. Cutting forces and residual stresses vs value of cutting tool rake angle relation were obtained. Measurements of residual stresses were performed by x-ray diffraction.
A defect-driven diagnostic method for machine tool spindles
Vogl, Gregory W.; Donmez, M. Alkan
2016-01-01
Simple vibration-based metrics are, in many cases, insufficient to diagnose machine tool spindle condition. These metrics couple defect-based motion with spindle dynamics; diagnostics should be defect-driven. A new method and spindle condition estimation device (SCED) were developed to acquire data and to separate system dynamics from defect geometry. Based on this method, a spindle condition metric relying only on defect geometry is proposed. Application of the SCED on various milling and turning spindles shows that the new approach is robust for diagnosing the machine tool spindle condition. PMID:28065985
Hsieh, Chung-Ho; Lu, Ruey-Hwa; Lee, Nai-Hsin; Chiu, Wen-Ta; Hsu, Min-Huei; Li, Yu-Chuan Jack
2011-01-01
Diagnosing acute appendicitis clinically is still difficult. We developed random forests, support vector machines, and artificial neural network models to diagnose acute appendicitis. Between January 2006 and December 2008, patients who had a consultation session with surgeons for suspected acute appendicitis were enrolled. Seventy-five percent of the data set was used to construct models including random forest, support vector machines, artificial neural networks, and logistic regression. Twenty-five percent of the data set was withheld to evaluate model performance. The area under the receiver operating characteristic curve (AUC) was used to evaluate performance, which was compared with that of the Alvarado score. Data from a total of 180 patients were collected, 135 used for training and 45 for testing. The mean age of patients was 39.4 years (range, 16-85). Final diagnosis revealed 115 patients with and 65 without appendicitis. The AUC of random forest, support vector machines, artificial neural networks, logistic regression, and Alvarado was 0.98, 0.96, 0.91, 0.87, and 0.77, respectively. The sensitivity, specificity, positive, and negative predictive values of random forest were 94%, 100%, 100%, and 87%, respectively. Random forest performed better than artificial neural networks, logistic regression, and Alvarado. We demonstrated that random forest can predict acute appendicitis with good accuracy and, deployed appropriately, can be an effective tool in clinical decision making. Copyright © 2011 Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tillmann, W.; Schaak, C.; Biermann, D.; Aßmuth, R.; Goeke, S.
2017-03-01
Cemented carbide (hard metal) cutting tools are the first choice to machine hard materials or to conduct high performance cutting processes. Main advantages of cemented carbide cutting tools are their high wear resistance (hardness) and good high temperature strength. In contrast, cemented carbide cutting tools are characterized by a low toughness and generate higher production costs, especially due to limited resources. Usually, cemented carbide cutting tools are produced by means of powder metallurgical processes. Compared to conventional manufacturing routes, these processes are more expensive and only a limited number of geometries can be realized. Furthermore, post-processing and preparing the cutting edges in order to achieve high performance tools is often required. In the present paper, an alternative method to substitute solid cemented carbide cutting tools is presented. Cutting tools made of conventional high speed steels (HSS) were coated with thick WC-Co (88/12) layers by means of thermal spraying (HVOF). The challenge is to obtain a dense, homogenous, and near-net-shape coating on the flanks and the cutting edge. For this purpose, different coating strategies were realized using an industrial robot. The coating properties were subsequently investigated. After this initial step, the surfaces of the cutting tools were ground and selected cutting edges were prepared by means of wet abrasive jet machining to achieve a smooth and round micro shape. Machining tests were conducted with these coated, ground and prepared cutting tools. The occurring wear phenomena were analyzed and compared to conventional HSS cutting tools. Overall, the results of the experiments proved that the coating withstands mechanical stresses during machining. In the conducted experiments, the coated cutting tools showed less wear than conventional HSS cutting tools. With respect to the initial wear resistance, additional benefits can be obtained by preparing the cutting edge by means of wet abrasive jet machining.
NASA Astrophysics Data System (ADS)
Spoelstra, Paul; Djakow, Eugen; Homberg, Werner
2017-10-01
The production of complex organic shapes in sheet metals is gaining more importance in the food industry due to increasing functional and hygienic demands. Hence it is necessary to produce parts with complex geometries promoting cleanability and general sanitation leading to improvement of food safety. In this context, and especially when stainless steel has to be formed into highly complex geometries while maintaining desired surface properties, it is inevitable that alternative manufacturing processes will need to be used which meet these requirements. Rubber pad forming offers high potential when it comes to shaping complex parts with excellent surface quality, with virtually no tool marks and scratches. Especially in cases where only small series are to be produced, rubber pad forming processes offers both technological and economic advantages. Due to the flexible punch, variation in metal thickness can be used with the same forming tool. The investments to set-up Rubber pad forming is low in comparison to conventional sheet metal forming processes. The process facilitates production of shallow sheet metal parts with complex contours and bends. Different bending sequences in a multiple tool set-up can also be conducted. The planned contribution thus describes a brief overview of the rubber pad technology. It shows the prototype rubber pad forming machine which can be used to perform complex part geometries made from stainless steel (1.4301). Based on an analysis of the already existing systems and new machines for rubber pad forming processes, together with their process properties, influencing variables and areas of application, some relevant parts for the food industry are presented.
NASA Astrophysics Data System (ADS)
Nieto, Paulino José García; García-Gonzalo, Esperanza; Vilán, José Antonio Vilán; Robleda, Abraham Segade
2015-12-01
The main aim of this research work is to build a new practical hybrid regression model to predict the milling tool wear in a regular cut as well as entry cut and exit cut of a milling tool. The model was based on Particle Swarm Optimization (PSO) in combination with support vector machines (SVMs). This optimization mechanism involved kernel parameter setting in the SVM training procedure, which significantly influences the regression accuracy. Bearing this in mind, a PSO-SVM-based model, which is based on the statistical learning theory, was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc. To accomplish the objective of this study, the experimental dataset represents experiments from runs on a milling machine under various operating conditions. In this way, data sampled by three different types of sensors (acoustic emission sensor, vibration sensor and current sensor) were acquired at several positions. A second aim is to determine the factors with the greatest bearing on the milling tool flank wear with a view to proposing milling machine's improvements. Firstly, this hybrid PSO-SVM-based regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the flank wear (output variable) and input variables (time, depth of cut, feed, etc.). Indeed, regression with optimal hyperparameters was performed and a determination coefficient of 0.95 was obtained. The agreement of this model with experimental data confirmed its good performance. Secondly, the main advantages of this PSO-SVM-based model are its capacity to produce a simple, easy-to-interpret model, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, the main conclusions of this study are exposed.
The Tool Life of Ball Nose end Mill Depending on the Different Types of Ramping
NASA Astrophysics Data System (ADS)
Vopát, Tomáš; Peterka, Jozef; Kováč, Martin
2014-12-01
The article deals with the cutting tool wear measurement process and tool life of ball nose end mill depending on upward ramping and downward ramping. The aim was to determine and compare the wear (tool life) of ball nose end mill for different types of copy milling operations, as well as to specify particular steps of the measurement process. In addition, we examined and observed cutter contact areas of ball nose end mill with machined material. For tool life test, DMG DMU 85 monoBLOCK 5-axis CNC milling machine was used. In the experiment, cutting speed, feed rate, axial depth of cut and radial depth of cut were not changed. The cutting tool wear was measured on Zoller Genius 3s universal measuring machine. The results show different tool life of ball nose end mills depending on the copy milling strategy.
NASA Astrophysics Data System (ADS)
Mahapatra, Prasant Kumar; Sethi, Spardha; Kumar, Amod
2015-10-01
In conventional tool positioning technique, sensors embedded in the motion stages provide the accurate tool position information. In this paper, a machine vision based system and image processing technique for motion measurement of lathe tool from two-dimensional sequential images captured using charge coupled device camera having a resolution of 250 microns has been described. An algorithm was developed to calculate the observed distance travelled by the tool from the captured images. As expected, error was observed in the value of the distance traversed by the tool calculated from these images. Optimization of errors due to machine vision system, calibration, environmental factors, etc. in lathe tool movement was carried out using two soft computing techniques, namely, artificial immune system (AIS) and particle swarm optimization (PSO). The results show better capability of AIS over PSO.
Pre-resistance-welding resistance check
Destefan, Dennis E.; Stompro, David A.
1991-01-01
A preweld resistance check for resistance welding machines uses an open circuited measurement to determine the welding machine resistance, a closed circuit measurement to determine the parallel resistance of a workpiece set and the machine, and a calculation to determine the resistance of the workpiece set. Any variation in workpiece set or machine resistance is an indication that the weld may be different from a control weld.
Computer-aided design/computer-aided manufacturing skull base drill.
Couldwell, William T; MacDonald, Joel D; Thomas, Charles L; Hansen, Bradley C; Lapalikar, Aniruddha; Thakkar, Bharat; Balaji, Alagar K
2017-05-01
The authors have developed a simple device for computer-aided design/computer-aided manufacturing (CAD-CAM) that uses an image-guided system to define a cutting tool path that is shared with a surgical machining system for drilling bone. Information from 2D images (obtained via CT and MRI) is transmitted to a processor that produces a 3D image. The processor generates code defining an optimized cutting tool path, which is sent to a surgical machining system that can drill the desired portion of bone. This tool has applications for bone removal in both cranial and spine neurosurgical approaches. Such applications have the potential to reduce surgical time and associated complications such as infection or blood loss. The device enables rapid removal of bone within 1 mm of vital structures. The validity of such a machining tool is exemplified in the rapid (< 3 minutes machining time) and accurate removal of bone for transtemporal (for example, translabyrinthine) approaches.
Toward transient finite element simulation of thermal deformation of machine tools in real-time
NASA Astrophysics Data System (ADS)
Naumann, Andreas; Ruprecht, Daniel; Wensch, Joerg
2018-01-01
Finite element models without simplifying assumptions can accurately describe the spatial and temporal distribution of heat in machine tools as well as the resulting deformation. In principle, this allows to correct for displacements of the Tool Centre Point and enables high precision manufacturing. However, the computational cost of FE models and restriction to generic algorithms in commercial tools like ANSYS prevents their operational use since simulations have to run faster than real-time. For the case where heat diffusion is slow compared to machine movement, we introduce a tailored implicit-explicit multi-rate time stepping method of higher order based on spectral deferred corrections. Using the open-source FEM library DUNE, we show that fully coupled simulations of the temperature field are possible in real-time for a machine consisting of a stock sliding up and down on rails attached to a stand.
Howitzer Ammunition System Procurement (HASP).
1991-07-01
machine tools , etc.) * Most critical part of base to reassemble. IPP * Industry to plan round-specific...beyond allowed tolerances. - Conducting tolerance studies and funding machining studies at sul’on "’actors. " Facility development was controlled by the...Manufacturing Balimoy Mfg. of Venice, Inc. Action Manufacturing Co. Lanson Industries Inc. Hercules Aerospace Company CIMA Machine & Tool Co., Inc. Talley Defense Systems Tracor Aerospace Inc. BMY E49030APPBMAC
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 9 2011-10-01 2011-10-01 false Roadway machines, small tools and supplies, and snow removal (accounts XX-19-36 to XX-19-38, inclusive). 1242.28 Section 1242.28 Transportation Other... PASSENGER SERVICE FOR RAILROADS 1 Operating Expenses-Way and Structures § 1242.28 Roadway machines, small...
Translations on USSR Resources, Number 767.
1978-01-19
photography and so on). The amount of data obtained as a result of additional surveys makes it possible to evaluate the intensity and configuration...machine tools , chemical products, refrigerators, as well as potatoes and products of livestock breeding. The Kazakh SSR made an enormous leap in its...of the fuel and water power resources of Georgia, Azerbaydzhan and Armenia. Petroleum, transport and electrical machine building, machine tool
Predicting human liver microsomal stability with machine learning techniques.
Sakiyama, Yojiro; Yuki, Hitomi; Moriya, Takashi; Hattori, Kazunari; Suzuki, Misaki; Shimada, Kaoru; Honma, Teruki
2008-02-01
To ensure a continuing pipeline in pharmaceutical research, lead candidates must possess appropriate metabolic stability in the drug discovery process. In vitro ADMET (absorption, distribution, metabolism, elimination, and toxicity) screening provides us with useful information regarding the metabolic stability of compounds. However, before the synthesis stage, an efficient process is required in order to deal with the vast quantity of data from large compound libraries and high-throughput screening. Here we have derived a relationship between the chemical structure and its metabolic stability for a data set of in-house compounds by means of various in silico machine learning such as random forest, support vector machine (SVM), logistic regression, and recursive partitioning. For model building, 1952 proprietary compounds comprising two classes (stable/unstable) were used with 193 descriptors calculated by Molecular Operating Environment. The results using test compounds have demonstrated that all classifiers yielded satisfactory results (accuracy > 0.8, sensitivity > 0.9, specificity > 0.6, and precision > 0.8). Above all, classification by random forest as well as SVM yielded kappa values of approximately 0.7 in an independent validation set, slightly higher than other classification tools. These results suggest that nonlinear/ensemble-based classification methods might prove useful in the area of in silico ADME modeling.
Diamond tool machining of materials which react with diamond
Lundin, R.L.; Stewart, D.D.; Evans, C.J.
1992-04-14
An apparatus is described for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond. 1 figs.
Lathe tool bit and holder for machining fiberglass materials
NASA Technical Reports Server (NTRS)
Winn, L. E. (Inventor)
1972-01-01
A lathe tool and holder combination for machining resin impregnated fiberglass cloth laminates is described. The tool holder and tool bit combination is designed to accommodate a conventional carbide-tipped, round shank router bit as the cutting medium, and provides an infinite number of cutting angles in order to produce a true and smooth surface in the fiberglass material workpiece with every pass of the tool bit. The technique utilizes damaged router bits which ordinarily would be discarded.
Safety issues in high speed machining
NASA Astrophysics Data System (ADS)
1994-05-01
There are several risks related to High-Speed Milling, but they have not been systematically determined or studied so far. Increased loads by high centrifugal forces may result in dramatic hazards. Flying tools or fragments from a tool with high kinetic energy may damage surrounding people, machines and devices. In the project, mechanical risks were evaluated, theoretic values for kinetic energies of rotating tools were calculated, possible damages of the flying objects were determined and terms to eliminate the risks were considered. The noise levels of the High-Speed Machining center owned by the Helsinki University of Technology (HUT) and the Technical Research Center of Finland (VTT) in practical machining situation were measured and the results were compared to those after basic preventive measures were taken.
NASA Astrophysics Data System (ADS)
Radziszewski, Kacper
2017-10-01
The following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital. During the experiment, as an input training data set, five local geometry parameters combined has given the best results: Theta, Pi, Rho in spherical coordinate system based on the capital volume centroid, followed by Z value of the Cartesian coordinate system and a distance from vertical planes created based on the capital symmetry. Additionally during the experiment, artificial neural network hidden layers optimal count and structure was found, giving results of the error below 0.2% for the mentioned before input parameters. Once successfully trained artificial network, was able to mimic the details composition on any other geometry type given. Despite of calculating the transformed geometry locally and separately for each of the thousands of surface points, system could create visually attractive and diverse, complex patterns. Designed tool, based on the supervised learning method of machine learning, gives possibility of generating new architectural forms- free of the designer’s imagination bounds. Implementing the infinitely broad computational methods of machine learning, or Artificial Intelligence in general, not only could accelerate and simplify the design process, but give an opportunity to explore never seen before, unpredictable forms or everyday architectural practice solutions.
Modeling and Analysis of CNC Milling Process Parameters on Al3030 based Composite
NASA Astrophysics Data System (ADS)
Gupta, Anand; Soni, P. K.; Krishna, C. M.
2018-04-01
The machining of Al3030 based composites on Computer Numerical Control (CNC) high speed milling machine have assumed importance because of their wide application in aerospace industries, marine industries and automotive industries etc. Industries mainly focus on surface irregularities; material removal rate (MRR) and tool wear rate (TWR) which usually depends on input process parameters namely cutting speed, feed in mm/min, depth of cut and step over ratio. Many researchers have carried out researches in this area but very few have taken step over ratio or radial depth of cut also as one of the input variables. In this research work, the study of characteristics of Al3030 is carried out at high speed CNC milling machine over the speed range of 3000 to 5000 r.p.m. Step over ratio, depth of cut and feed rate are other input variables taken into consideration in this research work. A total nine experiments are conducted according to Taguchi L9 orthogonal array. The machining is carried out on high speed CNC milling machine using flat end mill of diameter 10mm. Flatness, MRR and TWR are taken as output parameters. Flatness has been measured using portable Coordinate Measuring Machine (CMM). Linear regression models have been developed using Minitab 18 software and result are validated by conducting selected additional set of experiments. Selection of input process parameters in order to get best machining outputs is the key contributions of this research work.
Machinability of Stellite 6 hardfacing
NASA Astrophysics Data System (ADS)
Benghersallah, M.; Boulanouar, L.; Le Coz, G.; Devillez, A.; Dudzinski, D.
2010-06-01
This paper reports some experimental findings concerning the machinability at high cutting speed of nickel-base weld-deposited hardfacings for the manufacture of hot tooling. The forging work involves extreme impacts, forces, stresses and temperatures. Thus, mould dies must be extremely resistant. The aim of the project is to create a rapid prototyping process answering to forging conditions integrating a Stellite 6 hardfacing deposed PTA process. This study talks about the dry machining of the hardfacing, using a two tips machining tool and a high speed milling machine equipped by a power consumption recorder Wattpilote. The aim is to show the machinability of the hardfacing, measuring the power and the tip wear by optical microscope and white light interferometer, using different strategies and cutting conditions.
Investigation of Machine-ability of Inconel 800 in EDM with Coated Electrode
NASA Astrophysics Data System (ADS)
Karunakaran, K.; Chandrasekaran, M.
2017-03-01
The Inconel 800 is a high temperature application alloy which is classified as a nickel based super alloy. It has wide scope in aerospace engineering, gas Turbine etc. The machine-ability studies were found limited on this material. Hence This research focuses on machine-ability studies on EDM of Inconel 800 with Silver Coated Electrolyte Copper Electrode. The purpose of coating on electrode is to reduce tool wear. The factors pulse on Time, Pulse off Time and Peck Current were considered to observe the responses of surface roughness, material removal rate, tool wear rate. Taguchi Full Factorial Design is employed for Design the experiment. Some specific findings were reported and the percentage of contribution of each parameter was furnished
Finite Element Simulation of Machining of Ti6Al4V Alloy
NASA Astrophysics Data System (ADS)
Rizzuti, S.; Umbrello, D.
2011-05-01
Titanium and its alloys are an important class of materials, especially for aerospace applications, due to their excellent combination of strength and fracture toughness as well as low density. However, these materials are generally regarded as difficult to machine because of their low thermal conductivity and high chemical reactivity with cutting tool materials. Moreover, the low thermal conductivity of Titanium inhibits dissipation of heat within the workpiece causing an higher temperature at the cutting edge and generating for higher cutting speed a rapid chipping at the cutting edge which leads to catastrophic failure. In addition, chip morphology significantly influences the thermo-mechanical behaviour at the workpiece/tool interface, which also affects the tool life. In this paper a finite element analysis of machining of TiAl6V4 is presented. In particular, cutting force, chip morphology and segmentation are taken into account due to their predominant roles to determine machinability and tool wear during the machining of these alloys. Results in terms of residual stresses are also presented. Moreover, the numerical results are compared with experimental ones.
Auer, Michael M.; Griffiths, Mark D.
2015-01-01
Over the last few years, there have been an increasing number of gaming operators that have incorporated on-screen pop-up messages while gamblers play on slot machines and/or online as one of a range of tools to help encourage responsible gambling. Coupled with this, there has also been an increase in empirical research into whether such pop-up messages are effective, particularly in laboratory settings. However, very few studies have been conducted on the utility of pop-up messages in real-world gambling settings. The present study investigated the effects of normative and self-appraisal feedback in a slot machine pop-up message compared to a simple (non-enhanced) pop-up message. The study was conducted in a real-world gambling environment by comparing the behavioral tracking data of two representative random samples of 800,000 gambling sessions (i.e., 1.6 million sessions in total) across two conditions (i.e., simple pop-up message versus an enhanced pop-up message). The results indicated that the additional normative and self-appraisal content doubled the number of gamblers who stopped playing after they received the enhanced pop-up message (1.39%) compared to the simple pop-up message (0.67%). The data suggest that pop-up messages influence only a small number of gamblers to cease long playing sessions and that enhanced messages are slightly more effective in helping gamblers to stop playing in-session. PMID:25852630
Simplify and Accelerate Earth Science Data Preparation to Systemize Machine Learning
NASA Astrophysics Data System (ADS)
Kuo, K. S.; Rilee, M. L.; Oloso, A.
2017-12-01
Data preparation is the most laborious and time-consuming part of machine learning. The effort required is usually more than linearly proportional to the varieties of data used. From a system science viewpoint, useful machine learning in Earth Science likely involves diverse datasets. Thus, simplifying data preparation to ease the systemization of machine learning in Earth Science is of immense value. The technologies we have developed and applied to an array database, SciDB, are explicitly designed for the purpose, including the innovative SpatioTemporal Adaptive-Resolution Encoding (STARE), a remapping tool suite, and an efficient implementation of connected component labeling (CCL). STARE serves as a universal Earth data representation that homogenizes data varieties and facilitates spatiotemporal data placement as well as alignment, to maximize query performance on massively parallel, distributed computing resources for a major class of analysis. Moreover, it converts spatiotemporal set operations into fast and efficient integer interval operations, supporting in turn moving-object analysis. Integrative analysis requires more than overlapping spatiotemporal sets. For example, meaningful comparison of temperature fields obtained with different means and resolutions requires their transformation to the same grid. Therefore, remapping has been implemented to enable integrative analysis. Finally, Earth Science investigations are generally studies of phenomena, e.g. tropical cyclone, atmospheric river, and blizzard, through their associated events, like hurricanes Katrina and Sandy. Unfortunately, except for a few high-impact phenomena, comprehensive episodic records are lacking. Consequently, we have implemented an efficient CCL tracking algorithm, enabling event-based investigations within climate data records beyond mere event presence. In summary, we have implemented the core unifying capabilities on a Big Data technology to enable systematic machine learning in Earth Science.
Measurement techniques for determining the static stiffness of foundations for machine tools
NASA Astrophysics Data System (ADS)
Myers, A.; Barrans, S. M.; Ford, D. G.
2005-01-01
The paper presents a novel technique for accurately measuring the static stiffness of a machine tool concrete foundation using various items of metrology equipment. The foundation was loaded in a number of different ways which simulated the erection of the machine, traversing of the axes and loading of the heaviest component. The results were compared with the stiffness tolerances specified for the foundation which were deemed necessary in order that the machine alignments could be achieved. This paper is a continuation of research previously published for a FEA of the foundation.
NASA Astrophysics Data System (ADS)
Abellán-Nebot, J. V.; Liu, J.; Romero, F.
2009-11-01
The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Fritz, John Floren
2013-08-27
Minimega is a simple emulytics platform for creating testbeds of networked devices. The platform consists of easily deployable tools to facilitate bringing up large networks of virtual machines including Windows, Linux, and Android. Minimega attempts to allow experiments to be brought up quickly with nearly no configuration. Minimega also includes tools for simple cluster management, as well as tools for creating Linux based virtual machine images.
Web-Based Machine Translation as a Tool for Promoting Electronic Literacy and Language Awareness
ERIC Educational Resources Information Center
Williams, Lawrence
2006-01-01
This article addresses a pervasive problem of concern to teachers of many foreign languages: the use of Web-Based Machine Translation (WBMT) by students who do not understand the complexities of this relatively new tool. Although networked technologies have greatly increased access to many language and communication tools, WBMT is still…
miREE: miRNA recognition elements ensemble
2011-01-01
Background Computational methods for microRNA target prediction are a fundamental step to understand the miRNA role in gene regulation, a key process in molecular biology. In this paper we present miREE, a novel microRNA target prediction tool. miREE is an ensemble of two parts entailing complementary but integrated roles in the prediction. The Ab-Initio module leverages upon a genetic algorithmic approach to generate a set of candidate sites on the basis of their microRNA-mRNA duplex stability properties. Then, a Support Vector Machine (SVM) learning module evaluates the impact of microRNA recognition elements on the target gene. As a result the prediction takes into account information regarding both miRNA-target structural stability and accessibility. Results The proposed method significantly improves the state-of-the-art prediction tools in terms of accuracy with a better balance between specificity and sensitivity, as demonstrated by the experiments conducted on several large datasets across different species. miREE achieves this result by tackling two of the main challenges of current prediction tools: (1) The reduced number of false positives for the Ab-Initio part thanks to the integration of a machine learning module (2) the specificity of the machine learning part, obtained through an innovative technique for rich and representative negative records generation. The validation was conducted on experimental datasets where the miRNA:mRNA interactions had been obtained through (1) direct validation where even the binding site is provided, or through (2) indirect validation, based on gene expression variations obtained from high-throughput experiments where the specific interaction is not validated in detail and consequently the specific binding site is not provided. Conclusions The coupling of two parts: a sensitive Ab-Initio module and a selective machine learning part capable of recognizing the false positives, leads to an improved balance between sensitivity and specificity. miREE obtains a reasonable trade-off between filtering false positives and identifying targets. miREE tool is available online at http://didattica-online.polito.it/eda/miREE/ PMID:22115078
Farran, Bassam; Channanath, Arshad Mohamed; Behbehani, Kazem; Thanaraj, Thangavel Alphonse
2013-01-01
Objective We build classification models and risk assessment tools for diabetes, hypertension and comorbidity using machine-learning algorithms on data from Kuwait. We model the increased proneness in diabetic patients to develop hypertension and vice versa. We ascertain the importance of ethnicity (and natives vs expatriate migrants) and of using regional data in risk assessment. Design Retrospective cohort study. Four machine-learning techniques were used: logistic regression, k-nearest neighbours (k-NN), multifactor dimensionality reduction and support vector machines. The study uses fivefold cross validation to obtain generalisation accuracies and errors. Setting Kuwait Health Network (KHN) that integrates data from primary health centres and hospitals in Kuwait. Participants 270 172 hospital visitors (of which, 89 858 are diabetic, 58 745 hypertensive and 30 522 comorbid) comprising Kuwaiti natives, Asian and Arab expatriates. Outcome measures Incident type 2 diabetes, hypertension and comorbidity. Results Classification accuracies of >85% (for diabetes) and >90% (for hypertension) are achieved using only simple non-laboratory-based parameters. Risk assessment tools based on k-NN classification models are able to assign ‘high’ risk to 75% of diabetic patients and to 94% of hypertensive patients. Only 5% of diabetic patients are seen assigned ‘low’ risk. Asian-specific models and assessments perform even better. Pathological conditions of diabetes in the general population or in hypertensive population and those of hypertension are modelled. Two-stage aggregate classification models and risk assessment tools, built combining both the component models on diabetes (or on hypertension), perform better than individual models. Conclusions Data on diabetes, hypertension and comorbidity from the cosmopolitan State of Kuwait are available for the first time. This enabled us to apply four different case–control models to assess risks. These tools aid in the preliminary non-intrusive assessment of the population. Ethnicity is seen significant to the predictive models. Risk assessments need to be developed using regional data as we demonstrate the applicability of the American Diabetes Association online calculator on data from Kuwait. PMID:23676796
NASA Astrophysics Data System (ADS)
Debra, Daniel B.; Hesselink, Lambertus; Binford, Thomas
1990-05-01
There are a number of fields that require or can use to advantage very high precision in machining. For example, further development of high energy lasers and x ray astronomy depend critically on the manufacture of light weight reflecting metal optical components. To fabricate these optical components with machine tools they will be made of metal with mirror quality surface finish. By mirror quality surface finish, it is meant that the dimensions tolerances on the order of 0.02 microns and surface roughness of 0.07. These accuracy targets fall in the category of ultra precision machining. They cannot be achieved by a simple extension of conventional machining processes and techniques. They require single crystal diamond tools, special attention to vibration isolation, special isolation of machine metrology, and on line correction of imperfection in the motion of the machine carriages on their way.
Classification and authentication of unknown water samples using machine learning algorithms.
Kundu, Palash K; Panchariya, P C; Kundu, Madhusree
2011-07-01
This paper proposes the development of water sample classification and authentication, in real life which is based on machine learning algorithms. The proposed techniques used experimental measurements from a pulse voltametry method which is based on an electronic tongue (E-tongue) instrumentation system with silver and platinum electrodes. E-tongue include arrays of solid state ion sensors, transducers even of different types, data collectors and data analysis tools, all oriented to the classification of liquid samples and authentication of unknown liquid samples. The time series signal and the corresponding raw data represent the measurement from a multi-sensor system. The E-tongue system, implemented in a laboratory environment for 6 numbers of different ISI (Bureau of Indian standard) certified water samples (Aquafina, Bisleri, Kingfisher, Oasis, Dolphin, and McDowell) was the data source for developing two types of machine learning algorithms like classification and regression. A water data set consisting of 6 numbers of sample classes containing 4402 numbers of features were considered. A PCA (principal component analysis) based classification and authentication tool was developed in this study as the machine learning component of the E-tongue system. A proposed partial least squares (PLS) based classifier, which was dedicated as well; to authenticate a specific category of water sample evolved out as an integral part of the E-tongue instrumentation system. The developed PCA and PLS based E-tongue system emancipated an overall encouraging authentication percentage accuracy with their excellent performances for the aforesaid categories of water samples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; Aoyama, Hideki; Case, Keith
2015-01-01
Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process) and a fuzzy COmplex PRoportional ASsessment (COPRAS) for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment. PMID:26368541
Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method
NASA Astrophysics Data System (ADS)
Carbonell, Josep Maria; Oñate, Eugenio; Suárez, Benjamín
2013-09-01
Underground construction involves all sort of challenges in analysis, design, project and execution phases. The dimension of tunnels and their structural requirements are growing, and so safety and security demands do. New engineering tools are needed to perform a safer planning and design. This work presents the advances in the particle finite element method (PFEM) for the modelling and the analysis of tunneling processes including the wear of the cutting tools. The PFEM has its foundation on the Lagrangian description of the motion of a continuum built from a set of particles with known physical properties. The method uses a remeshing process combined with the alpha-shape technique to detect the contacting surfaces and a finite element method for the mechanical computations. A contact procedure has been developed for the PFEM which is combined with a constitutive model for predicting the excavation front and the wear of cutting tools. The material parameters govern the coupling of frictional contact and wear between the interacting domains at the excavation front. The PFEM allows predicting several parameters which are relevant for estimating the performance of a tunnelling boring machine such as wear in the cutting tools, the pressure distribution on the face of the boring machine and the vibrations produced in the machinery and the adjacent soil/rock. The final aim is to help in the design of the excavating tools and in the planning of the tunnelling operations. The applications presented show that the PFEM is a promising technique for the analysis of tunnelling problems.
NASA Astrophysics Data System (ADS)
Hancher, M.
2017-12-01
Recent years have seen promising results from many research teams applying deep learning techniques to geospatial data processing. In that same timeframe, TensorFlow has emerged as the most popular framework for deep learning in general, and Google has assembled petabytes of Earth observation data from a wide variety of sources and made them available in analysis-ready form in the cloud through Google Earth Engine. Nevertheless, developing and applying deep learning to geospatial data at scale has been somewhat cumbersome to date. We present a new set of tools and techniques that simplify this process. Our approach combines the strengths of several underlying tools: TensorFlow for its expressive deep learning framework; Earth Engine for data management, preprocessing, postprocessing, and visualization; and other tools in Google Cloud Platform to train TensorFlow models at scale, perform additional custom parallel data processing, and drive the entire process from a single familiar Python development environment. These tools can be used to easily apply standard deep neural networks, convolutional neural networks, and other custom model architectures to a variety of geospatial data structures. We discuss our experiences applying these and related tools to a range of machine learning problems, including classic problems like cloud detection, building detection, land cover classification, as well as more novel problems like illegal fishing detection. Our improved tools will make it easier for geospatial data scientists to apply modern deep learning techniques to their own problems, and will also make it easier for machine learning researchers to advance the state of the art of those techniques.
Torp-Pedersen, Søren; Christensen, Robin; Szkudlarek, Marcin; Ellegaard, Karen; D'Agostino, Maria Antonietta; Iagnocco, Annamaria; Naredo, Esperanza; Balint, Peter; Wakefield, Richard J; Torp-Pedersen, Arendse; Terslev, Lene
2015-02-01
To determine how settings for power and color Doppler ultrasound sensitivity vary on different high- and intermediate-range ultrasound machines and to evaluate the impact of these changes on Doppler scoring of inflamed joints. Six different types of ultrasound machines were used. On each machine, the factory setting for superficial musculoskeletal scanning was used unchanged for both color and power Doppler modalities. The settings were then adjusted for increased Doppler sensitivity, and these settings were designated study settings. Eleven patients with rheumatoid arthritis (RA) with wrist involvement were scanned on the 6 machines, each with 4 settings, generating 264 Doppler images for scoring and color quantification. Doppler sensitivity was measured with a quantitative assessment of Doppler activity: color fraction. Higher color fraction indicated higher sensitivity. Power Doppler was more sensitive on half of the machines, whereas color Doppler was more sensitive on the other half, using both factory settings and study settings. There was an average increase in Doppler sensitivity, despite modality, of 78% when study settings were applied. Over the 6 machines, 2 Doppler modalities, and 2 settings, the grades for each of 7 of the patients varied between 0 and 3, while the grades for each of the other 4 patients varied between 0 and 2. The effect of using different machines, Doppler modalities, and settings has a considerable influence on the quantification of inflammation by ultrasound in RA patients, and this must be taken into account in multicenter studies. Copyright © 2015 by the American College of Rheumatology.
Toxicity challenges in environmental chemicals: Prediction of ...
Physiologically based pharmacokinetic (PBPK) models bridge the gap between in vitro assays and in vivo effects by accounting for the adsorption, distribution, metabolism, and excretion of xenobiotics, which is especially useful in the assessment of human toxicity. Quantitative structure-activity relationships (QSAR) serve as a vital tool for the high-throughput prediction of chemical-specific PBPK parameters, such as the fraction of a chemical unbound by plasma protein (Fub). The presented work explores the merit of utilizing experimental pharmaceutical Fub data for the construction of a universal QSAR model, in order to compensate for the limited range of high-quality experimental Fub data for environmentally relevant chemicals, such as pollutants, pesticides, and consumer products. Independent QSAR models were constructed with three machine-learning algorithms, k nearest neighbors (kNN), random forest (RF), and support vector machine (SVM) regression, from a large pharmaceutical training set (~1000) and assessed with independent test sets of pharmaceuticals (~200) and environmentally relevant chemicals in the ToxCast program (~400). Small descriptor sets yielded the optimal balance of model complexity and performance, providing insight into the biochemical factors of plasma protein binding, while preventing over fitting to the training set. Overlaps in chemical space between pharmaceutical and environmental compounds were considered through applicability of do
Pre-Finishing of SiC for Optical Applications
NASA Technical Reports Server (NTRS)
Rozzi, Jay; Clavier, Odile; Gagne, John
2011-01-01
13 Manufacturing & Prototyping A method is based on two unique processing steps that are both based on deterministic machining processes using a single-point diamond turning (SPDT) machine. In the first step, a high-MRR (material removal rate) process is used to machine the part within several microns of the final geometry. In the second step, a low-MRR process is used to machine the part to near optical quality using a novel ductile regime machining (DRM) process. DRM is a deterministic machining process associated with conditions under high hydrostatic pressures and very small depths of cut. Under such conditions, using high negative-rake angle cutting tools, the high-pressure region near the tool corresponds to a plastic zone, where even a brittle material will behave in a ductile manner. In the high-MRR processing step, the objective is to remove material with a sufficiently high rate such that the process is economical, without inducing large-scale subsurface damage. A laser-assisted machining approach was evaluated whereby a CO2 laser was focused in advance of the cutting tool. While CVD (chemical vapor deposition) SiC was successfully machined with this approach, the cutting forces were substantially higher than cuts at room temperature under the same machining conditions. During the experiments, the expansion of the part and the tool due to the heating was carefully accounted for. The higher cutting forces are most likely due to a small reduction in the shear strength of the material compared with a larger increase in friction forces due to the thermal softening effect. The key advantage is that the hybrid machine approach has the potential to achieve optical quality without the need for a separate optical finishing step. Also, this method is scalable, so one can easily progress from machining 50-mm-diameter samples to the 250-mm-diameter mirror that NASA desires.
25. VIEW OF THE MACHINE TOOL LAYOUT IN ROOMS 244 ...
25. VIEW OF THE MACHINE TOOL LAYOUT IN ROOMS 244 AND 296. MACHINES WERE USED FOR STAINLESS STEEL FABRICATION (THE J-LINE). THE ORIGINAL DRAWING HAS BEEN ARCHIVED ON MICROFILM. THE DRAWING WAS REPRODUCED AT THE BEST QUALITY POSSIBLE. LETTERS AND NUMBERS IN THE CIRCLES INDICATE FOOTER AND/OR COLUMN LOCATIONS. - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO
Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool
NASA Astrophysics Data System (ADS)
Guo, Qianjian; Fan, Shuo; Xu, Rufeng; Cheng, Xiang; Zhao, Guoyong; Yang, Jianguo
2017-05-01
Aiming at the problem of low machining accuracy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of temperature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC-NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 μm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.
Surface structuring of boron doped CVD diamond by micro electrical discharge machining
NASA Astrophysics Data System (ADS)
Schubert, A.; Berger, T.; Martin, A.; Hackert-Oschätzchen, M.; Treffkorn, N.; Kühn, R.
2018-05-01
Boron doped diamond materials, which are generated by Chemical Vapor Deposition (CVD), offer a great potential for the application on highly stressed tools, e. g. in cutting or forming processes. As a result of the CVD process rough surfaces arise, which require a finishing treatment in particular for the application in forming tools. Cutting techniques such as milling and grinding are hardly applicable for the finish machining because of the high strength of diamond. Due to its process principle of ablating material by melting and evaporating, Electrical Discharge Machining (EDM) is independent of hardness, brittleness or toughness of the workpiece material. EDM is a suitable technology for machining and structuring CVD diamond, since boron doped CVD diamond is electrically conductive. In this study the ablation characteristics of boron doped CVD diamond by micro electrical discharge machining are investigated. Experiments were carried out to investigate the influence of different process parameters on the machining result. The impact of tool-polarity, voltage and discharge energy on the resulting erosion geometry and the tool wear was analyzed. A variation in path overlapping during the erosion of planar areas leads to different microstructures. The results show that micro EDM is a suitable technology for finishing of boron doped CVD diamond.
Electromagnetic variable degrees of freedom actuator systems and methods
Montesanti, Richard C [Pleasanton, CA; Trumper, David L [Plaistow, NH; Kirtley, Jr., James L.
2009-02-17
The present invention provides a variable reluctance actuator system and method that can be adapted for simultaneous rotation and translation of a moving element by applying a normal-direction magnetic flux on the moving element. In a beneficial example arrangement, the moving element includes a swing arm that carries a cutting tool at a set radius from an axis of rotation so as to produce a rotary fast tool servo that provides a tool motion in a direction substantially parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. An actuator rotates a swing arm such that a cutting tool moves toward and away from a mounted rotating workpiece in a controlled manner in order to machine the workpiece. Position sensors provide rotation and displacement information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in feed slide of a precision lathe.
How good are publicly available web services that predict bioactivity profiles for drug repurposing?
Murtazalieva, K A; Druzhilovskiy, D S; Goel, R K; Sastry, G N; Poroikov, V V
2017-10-01
Drug repurposing provides a non-laborious and less expensive way for finding new human medicines. Computational assessment of bioactivity profiles shed light on the hidden pharmacological potential of the launched drugs. Currently, several freely available computational tools are available via the Internet, which predict multitarget profiles of drug-like compounds. They are based on chemical similarity assessment (ChemProt, SuperPred, SEA, SwissTargetPrediction and TargetHunter) or machine learning methods (ChemProt and PASS). To compare their performance, this study has created two evaluation sets, consisting of (1) 50 well-known repositioned drugs and (2) 12 drugs recently patented for new indications. In the first set, sensitivity values varied from 0.64 (TarPred) to 1.00 (PASS Online) for the initial indications and from 0.64 (TarPred) to 0.98 (PASS Online) for the repurposed indications. In the second set, sensitivity values varied from 0.08 (SuperPred) to 1.00 (PASS Online) for the initial indications and from 0.00 (SuperPred) to 1.00 (PASS Online) for the repurposed indications. Thus, this analysis demonstrated that the performance of machine learning methods surpassed those of chemical similarity assessments, particularly in the case of novel repurposed indications.
An experimental investigation on orthogonal cutting of hybrid CFRP/Ti stacks
NASA Astrophysics Data System (ADS)
Xu, Jinyang; El Mansori, Mohamed
2016-10-01
Hybrid CFRP/Ti stack has been widely used in the modern aerospace industry owing to its superior mechanical/physical properties and excellent structural functions. Several applications require mechanical machining of these hybrid composite stacks in order to achieve dimensional accuracy and assembly performance. However, machining of such composite-to-metal alliance is usually an extremely challenging task in the manufacturing sectors due to the disparate natures of each stacked constituent and their respective poor machinability. Special issues may arise from the high force/heat generation, severe subsurface damage and rapid tool wear. To study the fundamental mechanisms controlling the bi-material machining, this paper presented an experimental study on orthogonal cutting of hybrid CFRP/Ti stack by using superior polycrystalline diamond (PCD) tipped tools. The utilized cutting parameters for hybrid CFRP/Ti machining were rigorously adopted through a compromise selection due to the disparate machinability behaviors of the CFRP laminate and Ti alloy. The key cutting responses in terms of cutting force generation, machined surface quality and tool wear mechanism were precisely addressed. The experimental results highlighted the involved five stages of CFRP/Ti cutting and the predominant crater wear and edge fracture failure governing the PCD cutting process.
Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D; Duvenaud, David; Maclaurin, Dougal; Blood-Forsythe, Martin A; Chae, Hyun Sik; Einzinger, Markus; Ha, Dong-Gwang; Wu, Tony; Markopoulos, Georgios; Jeon, Soonok; Kang, Hosuk; Miyazaki, Hiroshi; Numata, Masaki; Kim, Sunghan; Huang, Wenliang; Hong, Seong Ik; Baldo, Marc; Adams, Ryan P; Aspuru-Guzik, Alán
2016-10-01
Virtual screening is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available computer time and constant improvement of simulation and machine learning techniques. We report an integrated organic functional material design process that incorporates theoretical insight, quantum chemistry, cheminformatics, machine learning, industrial expertise, organic synthesis, molecular characterization, device fabrication and optoelectronic testing. After exploring a search space of 1.6 million molecules and screening over 400,000 of them using time-dependent density functional theory, we identified thousands of promising novel organic light-emitting diode molecules across the visible spectrum. Our team collaboratively selected the best candidates from this set. The experimentally determined external quantum efficiencies for these synthesized candidates were as large as 22%.
NASA Astrophysics Data System (ADS)
Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.; Duvenaud, David; MacLaurin, Dougal; Blood-Forsythe, Martin A.; Chae, Hyun Sik; Einzinger, Markus; Ha, Dong-Gwang; Wu, Tony; Markopoulos, Georgios; Jeon, Soonok; Kang, Hosuk; Miyazaki, Hiroshi; Numata, Masaki; Kim, Sunghan; Huang, Wenliang; Hong, Seong Ik; Baldo, Marc; Adams, Ryan P.; Aspuru-Guzik, Alán
2016-10-01
Virtual screening is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available computer time and constant improvement of simulation and machine learning techniques. We report an integrated organic functional material design process that incorporates theoretical insight, quantum chemistry, cheminformatics, machine learning, industrial expertise, organic synthesis, molecular characterization, device fabrication and optoelectronic testing. After exploring a search space of 1.6 million molecules and screening over 400,000 of them using time-dependent density functional theory, we identified thousands of promising novel organic light-emitting diode molecules across the visible spectrum. Our team collaboratively selected the best candidates from this set. The experimentally determined external quantum efficiencies for these synthesized candidates were as large as 22%.
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Lee, Hong-Tao
1989-01-01
A new approach for determination of machine-tool settings for spiral bevel gears is proposed. The proposed settings provide a predesigned parabolic function of transmission errors and the desired location and orientation of the bearing contact. The predesigned parabolic function of transmission errors is able to absorb piece-wise linear functions of transmission errors that are caused by the gear misalignment and reduce gear noise. The gears are face-milled by head cutters with conical surfaces or surfaces of revolution. A computer program for simulation of meshing, bearing contact and determination of transmission errors for misaligned gear has been developed.
Quantum algorithms for topological and geometric analysis of data
Lloyd, Seth; Garnerone, Silvano; Zanardi, Paolo
2016-01-01
Extracting useful information from large data sets can be a daunting task. Topological methods for analysing data sets provide a powerful technique for extracting such information. Persistent homology is a sophisticated tool for identifying topological features and for determining how such features persist as the data is viewed at different scales. Here we present quantum machine learning algorithms for calculating Betti numbers—the numbers of connected components, holes and voids—in persistent homology, and for finding eigenvectors and eigenvalues of the combinatorial Laplacian. The algorithms provide an exponential speed-up over the best currently known classical algorithms for topological data analysis. PMID:26806491
NASA Astrophysics Data System (ADS)
Susmitha, M.; Sharan, P.; Jyothi, P. N.
2016-09-01
Friction between work piece-cutting tool-chip generates heat in the machining zone. The heat generated reduces the tool life, increases surface roughness and decreases the dimensional sensitiveness of work material. This can be overcome by using cutting fluids during machining. They are used to provide lubrication and cooling effects between cutting tool and work piece and cutting tool and chip during machining operation. As a result, important benefits would be achieved such longer tool life, easy chip flow and higher machining quality in the machining processes. Non-edible vegetable oils have received considerable research attention in the last decades owing to their remarkable improved tribological characteristics and due to increasing attention to environmental issues, have driven the lubricant industry toward eco friendly products from renewable sources. In the present work, different non-edible vegetable oils are used as cutting fluid during drilling of Mild steel work piece. Non-edible vegetable oils, used are Karanja oil (Honge), Neem oil and blend of these two oils. The effect of these cutting fluids on chip formation, surface roughness and cutting force are investigated and the results obtained are compared with results obtained with petroleum based cutting fluids and dry conditions.
Calibrated thermal microscopy of the tool-chip interface in machining
NASA Astrophysics Data System (ADS)
Yoon, Howard W.; Davies, Matthew A.; Burns, Timothy J.; Kennedy, M. D.
2000-03-01
A critical parameter in predicting tool wear during machining and in accurate computer simulations of machining is the spatially-resolved temperature at the tool-chip interface. We describe the development and the calibration of a nearly diffraction-limited thermal-imaging microscope to measure the spatially-resolved temperatures during the machining of an AISI 1045 steel with a tungsten-carbide tool bit. The microscope has a target area of 0.5 mm X 0.5 mm square region with a < 5 micrometers spatial resolution and is based on a commercial InSb 128 X 128 focal plane array with an all reflective microscope objective. The minimum frame image acquisition time is < 1 ms. The microscope is calibrated using a standard blackbody source from the radiance temperature calibration laboratory at the National Institute of Standards and Technology, and the emissivity of the machined material is deduced from the infrared reflectivity measurements. The steady-state thermal images from the machining of 1045 steel are compared to previous determinations of tool temperatures from micro-hardness measurements and are found to be in agreement with those studies. The measured average chip temperatures are also in agreement with the temperature rise estimated from energy balance considerations. From these calculations and the agreement between the experimental and the calculated determinations of the emissivity of the 1045 steel, the standard uncertainty of the temperature measurements is estimated to be about 45 degree(s)C at 900 degree(s)C.
Sustainable cooling method for machining titanium alloy
NASA Astrophysics Data System (ADS)
Boswell, B.; Islam, M. N.
2016-02-01
Hard to machine materials such as Titanium Alloy TI-6AI-4V Grade 5 are notoriously known to generate high temperatures and adverse reactions between the workpiece and the tool tip materials. These conditions all contribute to an increase in the wear mechanisms, reducing tool life. Titanium Alloy, for example always requires coolant to be used during machining. However, traditional flood cooling needs to be replaced due to environmental issues, and an alternative cooling method found that has minimum impact on the environment. For true sustainable cooling of the tool it is necessary to account for all energy used in the cooling process, including the energy involved in producing the coolant. Previous research has established that efficient cooling of the tool interface improves the tool life and cutting action. The objective of this research is to determine the most appropriate sustainable cooling method that can also reduce the rate of wear at the tool interface.
Tool Wear Monitoring Using Time Series Analysis
NASA Astrophysics Data System (ADS)
Song, Dong Yeul; Ohara, Yasuhiro; Tamaki, Haruo; Suga, Masanobu
A tool wear monitoring approach considering the nonlinear behavior of cutting mechanism caused by tool wear and/or localized chipping is proposed, and its effectiveness is verified through the cutting experiment and actual turning machining. Moreover, the variation in the surface roughness of the machined workpiece is also discussed using this approach. In this approach, the residual error between the actually measured vibration signal and the estimated signal obtained from the time series model corresponding to dynamic model of cutting is introduced as the feature of diagnosis. Consequently, it is found that the early tool wear state (i.e. flank wear under 40µm) can be monitored, and also the optimal tool exchange time and the tool wear state for actual turning machining can be judged by this change in the residual error. Moreover, the variation of surface roughness Pz in the range of 3 to 8µm can be estimated by the monitoring of the residual error.
Applying machine learning classification techniques to automate sky object cataloguing
NASA Astrophysics Data System (ADS)
Fayyad, Usama M.; Doyle, Richard J.; Weir, W. Nick; Djorgovski, Stanislav
1993-08-01
We describe the application of an Artificial Intelligence machine learning techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Mt. Palomar Northern Sky Survey is nearly completed. This survey provides comprehensive coverage of the northern celestial hemisphere in the form of photographic plates. The plates are being transformed into digitized images whose quality will probably not be surpassed in the next ten to twenty years. The images are expected to contain on the order of 107 galaxies and 108 stars. Astronomers wish to determine which of these sky objects belong to various classes of galaxies and stars. Unfortunately, the size of this data set precludes analysis in an exclusively manual fashion. Our approach is to develop a software system which integrates the functions of independently developed techniques for image processing and data classification. Digitized sky images are passed through image processing routines to identify sky objects and to extract a set of features for each object. These routines are used to help select a useful set of attributes for classifying sky objects. Then GID3 (Generalized ID3) and O-B Tree, two inductive learning techniques, learns classification decision trees from examples. These classifiers will then be applied to new data. These developmnent process is highly interactive, with astronomer input playing a vital role. Astronomers refine the feature set used to construct sky object descriptions, and evaluate the performance of the automated classification technique on new data. This paper gives an overview of the machine learning techniques with an emphasis on their general applicability, describes the details of our specific application, and reports the initial encouraging results. The results indicate that our machine learning approach is well-suited to the problem. The primary benefit of the approach is increased data reduction throughput. Another benefit is consistency of classification. The classification rules which are the product of the inductive learning techniques will form an objective, examinable basis for classifying sky objects. A final, not to be underestimated benefit is that astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems based on automatically catalogued data.
NASA Astrophysics Data System (ADS)
Setiawan, A.; Wangsaputra, R.; Martawirya, Y. Y.; Halim, A. H.
2016-02-01
This paper deals with Flexible Manufacturing System (FMS) production rescheduling due to unavailability of cutting tools caused either of cutting tool failure or life time limit. The FMS consists of parallel identical machines integrated with an automatic material handling system and it runs fully automatically. Each machine has a same cutting tool configuration that consists of different geometrical cutting tool types on each tool magazine. The job usually takes two stages. Each stage has sequential operations allocated to machines considering the cutting tool life. In the real situation, the cutting tool can fail before the cutting tool life is reached. The objective in this paper is to develop a dynamic scheduling algorithm when a cutting tool is broken during unmanned and a rescheduling needed. The algorithm consists of four steps. The first step is generating initial schedule, the second step is determination the cutting tool failure time, the third step is determination of system status at cutting tool failure time and the fourth step is the rescheduling for unfinished jobs. The approaches to solve the problem are complete-reactive scheduling and robust-proactive scheduling. The new schedules result differences starting time and completion time of each operations from the initial schedule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curry, Bennett
The Arizona Commerce Authority (ACA) conducted an Innovation in Advanced Manufacturing Grant Competition to support and grow southern and central Arizona’s Aerospace and Defense (A&D) industry and its supply chain. The problem statement for this grant challenge was that many A&D machining processes utilize older generation CNC machine tool technologies that can result an inefficient use of resources – energy, time and materials – compared to the latest state-of-the-art CNC machines. Competitive awards funded projects to develop innovative new tools and technologies that reduce energy consumption for older generation machine tools and foster working relationships between industry small to medium-sizedmore » manufacturing enterprises and third-party solution providers. During the 42-month term of this grant, 12 competitive awards were made. Final reports have been included with this submission.« less
NASA Astrophysics Data System (ADS)
Zhao, Fei; Zhang, Chi; Yang, Guilin; Chen, Chinyin
2016-12-01
This paper presents an online estimation method of cutting error by analyzing of internal sensor readings. The internal sensors of numerical control (NC) machine tool are selected to avoid installation problem. The estimation mathematic model of cutting error was proposed to compute the relative position of cutting point and tool center point (TCP) from internal sensor readings based on cutting theory of gear. In order to verify the effectiveness of the proposed model, it was simulated and experimented in gear generating grinding process. The cutting error of gear was estimated and the factors which induce cutting error were analyzed. The simulation and experiments verify that the proposed approach is an efficient way to estimate the cutting error of work-piece during machining process.
Method and system for fault accommodation of machines
NASA Technical Reports Server (NTRS)
Goebel, Kai Frank (Inventor); Subbu, Rajesh Venkat (Inventor); Rausch, Randal Thomas (Inventor); Frederick, Dean Kimball (Inventor)
2011-01-01
A method for multi-objective fault accommodation using predictive modeling is disclosed. The method includes using a simulated machine that simulates a faulted actual machine, and using a simulated controller that simulates an actual controller. A multi-objective optimization process is performed, based on specified control settings for the simulated controller and specified operational scenarios for the simulated machine controlled by the simulated controller, to generate a Pareto frontier-based solution space relating performance of the simulated machine to settings of the simulated controller, including adjustment to the operational scenarios to represent a fault condition of the simulated machine. Control settings of the actual controller are adjusted, represented by the simulated controller, for controlling the actual machine, represented by the simulated machine, in response to a fault condition of the actual machine, based on the Pareto frontier-based solution space, to maximize desirable operational conditions and minimize undesirable operational conditions while operating the actual machine in a region of the solution space defined by the Pareto frontier.
Chip morphology as a performance predictor during high speed end milling of soda lime glass
NASA Astrophysics Data System (ADS)
Bagum, M. N.; Konneh, M.; Abdullah, K. A.; Ali, M. Y.
2018-01-01
Soda lime glass has application in DNA arrays and lab on chip manufacturing. Although investigation revealed that machining of such brittle material is possible using ductile mode under controlled cutting parameters and tool geometry, it remains a challenging task. Furthermore, ability of ductile machining is usually assed through machined surface texture examination. Soda lime glass is a strain rate and temperature sensitive material. Hence, influence on attainment of ductile surface due to adiabatic heat generated during high speed end milling using uncoated tungsten carbide tool is investigated in this research. Experimental runs were designed using central composite design (CCD), taking spindle speed, feed rate and depth of cut as input variable and tool-chip contact point temperature (Ttc) and the surface roughness (Rt) as responses. Along with machined surface texture, Rt and chip morphology was examined to assess machinability of soda lime glass. The relation between Ttc and chip morphology was examined. Investigation showed that around glass transition temperature (Tg) ductile chip produced and subsequently clean and ductile final machined surface produced.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Div. of Curriculum Development.
The document is an instructor's guide for a course on universal tool grinder operation. The course is designed to train people in making complicated machine setups and precision in the grinding operations and, although intended primarily for adult learners, it can be adapted for high school use. The guide is divided into three parts: (1) the…
Situational Awareness of Network System Roles (SANSR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huffer, Kelly M; Reed, Joel W
In a large enterprise it is difficult for cyber security analysts to know what services and roles every machine on the network is performing (e.g., file server, domain name server, email server). Using network flow data, already collected by most enterprises, we developed a proof-of-concept tool that discovers the roles of a system using both clustering and categorization techniques. The tool's role information would allow cyber analysts to detect consequential changes in the network, initiate incident response plans, and optimize their security posture. The results of this proof-of-concept tool proved to be quite accurate on three real data sets. Wemore » will present the algorithms used in the tool, describe the results of preliminary testing, provide visualizations of the results, and discuss areas for future work. Without this kind of situational awareness, cyber analysts cannot quickly diagnose an attack or prioritize remedial actions.« less
NASA Astrophysics Data System (ADS)
Seo, Hyunju; Han, Jeong-Yeol; Kim, Sug-Whan; Seong, Sehyun; Yoon, Siyoung; Lee, Kyungmook; Lee, Haengbok
2015-09-01
Today, CVD SiC mirrors are readily available in the market. However, it is well known to the community that the key surface fabrication processes and, in particular, the material removal characteristics of the CVD SiC mirror surface varies sensitively depending on the shop floor polishing and figuring variables. We investigated the material removal characteristics of CVD SiC mirror surfaces using a new and patented polishing tool called orthogonal velocity tool (OVT) that employs two orthogonal velocity fields generated simultaneously during polishing and figuring machine runs. We built an in-house OVT machine and its operating principle allows for generation of pseudo Gaussian shapes of material removal from the target surface. The shapes are very similar to the tool influence functions (TIFs) of other polishing machine such as IRP series polishing machines from Zeeko. Using two CVD SiC mirrors of 150 mm in diameter and flat surface, we ran trial material removal experiments over the machine run parameter ranges from 12.901 to 25.867 psi in pressure, 0.086 m/sec to 0.147 m/sec in tool linear velocity, and 5 to 15 sec in dwell time. An in-house developed data analysis program was used to obtain a number of Gaussian shaped TIFs and the resulting material removal coefficient varies from 3.35 to 9.46 um/psi hour m/sec with the mean value to 5.90 ± 1.26(standard deviation). We report the technical details of the new OVT machine, of the data analysis program, of the experiments and the results together with the implications to the future development of the OVT machine and process for large CVD SiC mirror surfaces.
NASA Technical Reports Server (NTRS)
Stoms, R. M.
1984-01-01
Numerically-controlled 5-axis machine tool uses transformer and meter to determine and indicate whether tool is in home position, but lacks built-in test mode to check them. Tester makes possible test, and repair of components at machine rather then replace them when operation seems suspect.
Robotic edge machining using elastic abrasive tool
NASA Astrophysics Data System (ADS)
Sidorova, A. V.; Semyonov, E. N.; Belomestnykh, A. S.
2018-03-01
The article describes a robotic center designed for automation of finishing operations, and analyzes technological aspects of an elastic abrasive tool applied for edge machining. Based on the experimental studies, practical recommendations on the application of the robotic center for finishing operations were developed.
Apprentice Machine Theory Outline.
ERIC Educational Resources Information Center
Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.
This volume contains outlines for 16 courses in machine theory that are designed for machine tool apprentices. Addressed in the individual course outlines are the following topics: basic concepts; lathes; milling machines; drills, saws, and shapers; heat treatment and metallurgy; grinders; quality control; hydraulics and pneumatics;…
Caggiano, Alessandra
2018-03-09
Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features ( k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear ( VB max ) was achieved, with predicted values very close to the measured tool wear values.
2018-01-01
Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features (k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear (VBmax) was achieved, with predicted values very close to the measured tool wear values. PMID:29522443
Vending machine assessment methodology. A systematic review.
Matthews, Melissa A; Horacek, Tanya M
2015-07-01
The nutritional quality of food and beverage products sold in vending machines has been implicated as a contributing factor to the development of an obesogenic food environment. How comprehensive, reliable, and valid are the current assessment tools for vending machines to support or refute these claims? A systematic review was conducted to summarize, compare, and evaluate the current methodologies and available tools for vending machine assessment. A total of 24 relevant research studies published between 1981 and 2013 met inclusion criteria for this review. The methodological variables reviewed in this study include assessment tool type, study location, machine accessibility, product availability, healthfulness criteria, portion size, price, product promotion, and quality of scientific practice. There were wide variations in the depth of the assessment methodologies and product healthfulness criteria utilized among the reviewed studies. Of the reviewed studies, 39% evaluated machine accessibility, 91% evaluated product availability, 96% established healthfulness criteria, 70% evaluated portion size, 48% evaluated price, 52% evaluated product promotion, and 22% evaluated the quality of scientific practice. Of all reviewed articles, 87% reached conclusions that provided insight into the healthfulness of vended products and/or vending environment. Product healthfulness criteria and complexity for snack and beverage products was also found to be variable between the reviewed studies. These findings make it difficult to compare results between studies. A universal, valid, and reliable vending machine assessment tool that is comprehensive yet user-friendly is recommended. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nguyen, Minh Q.; Allebach, Jan P.
2015-01-01
In our previous work1 , we presented a block-based technique to analyze printed page uniformity both visually and metrically. The features learned from the models were then employed in a Support Vector Machine (SVM) framework to classify the pages into one of the two categories of acceptable and unacceptable quality. In this paper, we introduce a set of tools for machine learning in the assessment of printed page uniformity. This work is primarily targeted to the printing industry, specifically the ubiquitous laser, electrophotographic printer. We use features that are well-correlated with the rankings of expert observers to develop a novel machine learning framework that allows one to achieve the minimum "false alarm" rate, subject to a chosen "miss" rate. Surprisingly, most of the research that has been conducted on machine learning does not consider this framework. During the process of developing a new product, test engineers will print hundreds of test pages, which can be scanned and then analyzed by an autonomous algorithm. Among these pages, most may be of acceptable quality. The objective is to find the ones that are not. These will provide critically important information to systems designers, regarding issues that need to be addressed in improving the printer design. A "miss" is defined to be a page that is not of acceptable quality to an expert observer that the prediction algorithm declares to be a "pass". Misses are a serious problem, since they represent problems that will not be seen by the systems designers. On the other hand, "false alarms" correspond to pages that an expert observer would declare to be of acceptable quality, but which are flagged by the prediction algorithm as "fails". In a typical printer testing and development scenario, such pages would be examined by an expert, and found to be of acceptable quality after all. "False alarm" pages result in extra pages to be examined by expert observers, which increases labor cost. But "false alarms" are not nearly as catastrophic as "misses", which represent potentially serious problems that are never seen by the systems developers. This scenario motivates us to develop a machine learning framework that will achieve the minimum "false alarm" rate subject to a specified "miss" rate. In order to construct such a set of receiver operating characteristic2 (ROC) curves, we examine various tools for the prediction, ranging from an exhaustive search over the space of the nonlinear discriminants to a Cost-Sentitive SVM3 framework. We then compare the curves gained from those methods. Our work shows promise for applying a standard framework to obtain a full ROC curve when it comes to tackling other machine learning problems in industry.
NASA Astrophysics Data System (ADS)
Luo, Xichun; Tong, Zhen; Liang, Yingchun
2014-12-01
In this article, the shape transferability of using nanoscale multi-tip diamond tools in the diamond turning for scale-up manufacturing of nanostructures has been demonstrated. Atomistic multi-tip diamond tool models were built with different tool geometries in terms of the difference in the tip cross-sectional shape, tip angle, and the feature of tool tip configuration, to determine their effect on the applied forces and the machined nano-groove geometries. The quality of machined nanostructures was characterized by the thickness of the deformed layers and the dimensional accuracy achieved. Simulation results show that diamond turning using nanoscale multi-tip tools offers tremendous shape transferability in machining nanostructures. Both periodic and non-periodic nano-grooves with different cross-sectional shapes can be successfully fabricated using the multi-tip tools. A hypothesis of minimum designed ratio of tool tip distance to tip base width (L/Wf) of the nanoscale multi-tip diamond tool for the high precision machining of nanostructures was proposed based on the analytical study of the quality of the nanostructures fabricated using different types of the multi-tip tools. Nanometric cutting trials using nanoscale multi-tip diamond tools (different in L/Wf) fabricated by focused ion beam (FIB) were then conducted to verify the hypothesis. The investigations done in this work imply the potential of using the nanoscale multi-tip diamond tool for the deterministic fabrication of period and non-periodic nanostructures, which opens up the feasibility of using the process as a versatile manufacturing technique in nanotechnology.
Metric Use in the Tool Industry. A Status Report and a Test of Assessment Methodology.
1982-04-20
Weights and Measures) CIM - Computer-Integrated Manufacturing CNC - Computer Numerical Control DOD - Department of Defense DODISS - DOD Index of...numerically-controlled ( CNC ) machines that have an inch-millimeter selection switch and a corresponding dual readout scale. S -4- The use of both metric...satisfactorily met the demands of both domestic and foreign customers for metric machine tools by providing either metric- capable machines or NC and CNC
ODISEES: A New Paradigm in Data Access
NASA Astrophysics Data System (ADS)
Huffer, E.; Little, M. M.; Kusterer, J.
2013-12-01
As part of its ongoing efforts to improve access to data, the Atmospheric Science Data Center has developed a high-precision Earth Science domain ontology (the 'ES Ontology') implemented in a graph database ('the Semantic Metadata Repository') that is used to store detailed, semantically-enhanced, parameter-level metadata for ASDC data products. The ES Ontology provides the semantic infrastructure needed to drive the ASDC's Ontology-Driven Interactive Search Environment for Earth Science ('ODISEES'), a data discovery and access tool, and will support additional data services such as analytics and visualization. The ES ontology is designed on the premise that naming conventions alone are not adequate to provide the information needed by prospective data consumers to assess the suitability of a given dataset for their research requirements; nor are current metadata conventions adequate to support seamless machine-to-machine interactions between file servers and end-user applications. Data consumers need information not only about what two data elements have in common, but also about how they are different. End-user applications need consistent, detailed metadata to support real-time data interoperability. The ES ontology is a highly precise, bottom-up, queriable model of the Earth Science domain that focuses on critical details about the measurable phenomena, instrument techniques, data processing methods, and data file structures. Earth Science parameters are described in detail in the ES Ontology and mapped to the corresponding variables that occur in ASDC datasets. Variables are in turn mapped to well-annotated representations of the datasets that they occur in, the instrument(s) used to create them, the instrument platforms, the processing methods, etc., creating a linked-data structure that allows both human and machine users to access a wealth of information critical to understanding and manipulating the data. The mappings are recorded in the Semantic Metadata Repository as RDF-triples. An off-the-shelf Ontology Development Environment and a custom Metadata Conversion Tool comprise a human-machine/machine-machine hybrid tool that partially automates the creation of metadata as RDF-triples by interfacing with existing metadata repositories and providing a user interface that solicits input from a human user, when needed. RDF-triples are pushed to the Ontology Development Environment, where a reasoning engine executes a series of inference rules whose antecedent conditions can be satisfied by the initial set of RDF-triples, thereby generating the additional detailed metadata that is missing in existing repositories. A SPARQL Endpoint, a web-based query service and a Graphical User Interface allow prospective data consumers - even those with no familiarity with NASA data products - to search the metadata repository to find and order data products that meet their exact specifications. A web-based API will provide an interface for machine-to-machine transactions.
Effect of micro-scale texturing on the cutting tool performance
NASA Astrophysics Data System (ADS)
Vasumathy, D.; Meena, Anil
2018-05-01
The present study is mainly focused on the cutting performance of the micro-scale textured carbide tools while turning AISI 304 austenitic stainless steel under dry cutting environment. The texture on the rake face of the carbide tools was fabricated by laser machining. The cutting performance of the textured tools was further compared with conventional tools in terms of cutting forces, tool wear, machined surface quality and chip curl radius. SEM and EDS analyses have been also performed to better understand the tool surface characteristics. Results show that the grooves help in breaking the tool-chip contact leading to a lesser tool-chip contact area which results in reduced iron (Fe) adhesion to the tool.
Shrivastava, Vimal K; Londhe, Narendra D; Sonawane, Rajendra S; Suri, Jasjit S
2016-04-01
Psoriasis is an autoimmune skin disease with red and scaly plaques on skin and affecting about 125 million people worldwide. Currently, dermatologist use visual and haptic methods for diagnosis the disease severity. This does not help them in stratification and risk assessment of the lesion stage and grade. Further, current methods add complexity during monitoring and follow-up phase. The current diagnostic tools lead to subjectivity in decision making and are unreliable and laborious. This paper presents a first comparative performance study of its kind using principal component analysis (PCA) based CADx system for psoriasis risk stratification and image classification utilizing: (i) 11 higher order spectra (HOS) features, (ii) 60 texture features, and (iii) 86 color feature sets and their seven combinations. Aggregate 540 image samples (270 healthy and 270 diseased) from 30 psoriasis patients of Indian ethnic origin are used in our database. Machine learning using PCA is used for dominant feature selection which is then fed to support vector machine classifier (SVM) to obtain optimized performance. Three different protocols are implemented using three kinds of feature sets. Reliability index of the CADx is computed. Among all feature combinations, the CADx system shows optimal performance of 100% accuracy, 100% sensitivity and specificity, when all three sets of feature are combined. Further, our experimental result with increasing data size shows that all feature combinations yield high reliability index throughout the PCA-cutoffs except color feature set and combination of color and texture feature sets. HOS features are powerful in psoriasis disease classification and stratification. Even though, independently, all three set of features HOS, texture, and color perform competitively, but when combined, the machine learning system performs the best. The system is fully automated, reliable and accurate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Machinability of IPS Empress 2 framework ceramic.
Schmidt, C; Weigl, P
2000-01-01
Using ceramic materials for an automatic production of ceramic dentures by CAD/CAM is a challenge, because many technological, medical, and optical demands must be considered. The IPS Empress 2 framework ceramic meets most of them. This study shows the possibilities for machining this ceramic with economical parameters. The long life-time requirement for ceramic dentures requires a ductile machined surface to avoid the well-known subsurface damages of brittle materials caused by machining. Slow and rapid damage propagation begins at break outs and cracks, and limits life-time significantly. Therefore, ductile machined surfaces are an important demand for machine dental ceramics. The machining tests were performed with various parameters such as tool grain size and feed speed. Denture ceramics were machined by jig grinding on a 5-axis CNC milling machine (Maho HGF 500) with a high-speed spindle up to 120,000 rpm. The results of the wear test indicate low tool wear. With one tool, you can machine eight occlusal surfaces including roughing and finishing. One occlusal surface takes about 60 min machining time. Recommended parameters for roughing are middle diamond grain size (D107), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 1000 mm/min, depth of cut a(e) = 0.06 mm, width of contact a(p) = 0.8 mm, and for finishing ultra fine diamond grain size (D46), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 100 mm/min, depth of cut a(e) = 0.02 mm, width of contact a(p) = 0.8 mm. The results of the machining tests give a reference for using IPS Empress(R) 2 framework ceramic in CAD/CAM systems. Copyright 2000 John Wiley & Sons, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunshah, R.F.; Shabaik, A.H.
The process of Activated Reactive Evaporation is used to synthesize superhard materials like carbides, oxides, nitrides and ultrafine grain cermets. The deposits are characterized by hardness, microstructure, microprobe analysis for chemistry and lattice parameter measurements. The synthesis and characterization of TiC-Ni cermets and Al/sub 2/O/sub 3/ are given. High speed steel tool coated with TiC, TiC-Ni and TaC are tested for machining performance at different speeds and feeds. The machining evaluation and the selection of coatings is based on the rate of deterioration of the coating tool temperature, and cutting forces. Tool life tests show coated high speed steel toolsmore » having 150 to 300% improvement in tool life compared to uncoated tools. Variability in the quality of the ground edge on high speed steel inserts produce a great scatter in the machining evaluation data.« less
Positional reference system for ultraprecision machining
Arnold, Jones B.; Burleson, Robert R.; Pardue, Robert M.
1982-01-01
A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of position interferometers and part contour description data inputs to calculate error components for each axis of movement and output them to corresponding axis drives with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.
Positional reference system for ultraprecision machining
Arnold, J.B.; Burleson, R.R.; Pardue, R.M.
1980-09-12
A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of positions interferometers and part contour description data input to calculate error components for each axis of movement and output them to corresponding axis driven with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.
Detection of Cutting Tool Wear using Statistical Analysis and Regression Model
NASA Astrophysics Data System (ADS)
Ghani, Jaharah A.; Rizal, Muhammad; Nuawi, Mohd Zaki; Haron, Che Hassan Che; Ramli, Rizauddin
2010-10-01
This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals. A statistical-based method called Integrated Kurtosis-based Algorithm for Z-Filter technique, called I-kaz was used for developing a regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out using a CNC turning machine Colchester Master Tornado T4 in dry cutting condition. A Kistler 9255B dynamometer was used to measure the cutting force signals, which were transmitted, analyzed, and displayed in the DasyLab software. Various force signals from machining operation were analyzed, and each has its own I-kaz 3D coefficient. This coefficient was examined and its relationship with flank wear lands (VB) was determined. A regression model was developed due to this relationship, and results of the regression model shows that the I-kaz 3D coefficient value decreases as tool wear increases. The result then is used for real time tool wear monitoring.
4. Credit JPL. Original 4" x 5" black and white ...
4. Credit JPL. Original 4" x 5" black and white negative housed in the JPL Archives, Pasadena, California. This interior view displays the machine shop in the Administration/Shops Building (the compass angle of the view is undetermined). Looking clockwise from the lower left, the machine tools in view are a power hacksaw, a heat-treatment oven (with white gloves on top), a large hydraulic press with a tool grinder at its immediate right; along the wall in the back of the view are various unidentified machine tool attachments and a vertical milling machine. In the background, a machinist is operating a radial drilling machine, to the right of which is a small drill press. To the lower right, another machinist is operating a Pratt & Whitney engine lathe; behind the operator stand a workbench and vertical bandsaw (JPL negative no. 384-10939, 29 July 1975). - Jet Propulsion Laboratory Edwards Facility, Administration & Shops Building, Edwards Air Force Base, Boron, Kern County, CA
Modelling of teeth of a gear transmission for modern manufacturing technologies
NASA Astrophysics Data System (ADS)
Monica, Z.; Banaś, W.; Ćwikla, G.; Topolska, S.
2017-08-01
The technological process of manufacturing of gear wheels is influenced by many factors. It is designated depending on the type of material from which the gear is to be produced, its heat treatment parameters, the required accuracy, the geometrical form and the modifications of the tooth. Therefor the parameters selection process is not easy and moreover it is unambiguous. Another important stage of the technological process is the selection of appropriate tools to properly machine teeth in the operations of both roughing and finishing. In the presented work the focus is put first of all on modern production methods of gears using technologically advanced instruments in comparison with conventional tools. Conventional processing tools such as gear hobbing cutters or Fellows gear-shaper cutters are used from the beginning of the machines for the production of gear wheels. With the development of technology and the creation of CNC machines designated for machining of gears wheel it was also developed the manufacturing technology as well as the design knowledge concerning the technological tools. Leading manufacturers of cutting tools extended the range of tools designated for machining of gears on the so-called hobbing cutters with inserted cemented carbide tips. The same have be introduced to Fellows gear-shaper cutters. The results of tests show that is advantaged to use hobbing cutters with inserted cemented carbide tips for milling gear wheels with a high number of teeth, where the time gains are very high, in relation to the use of conventional milling cutters.
SWIFT-Review: a text-mining workbench for systematic review.
Howard, Brian E; Phillips, Jason; Miller, Kyle; Tandon, Arpit; Mav, Deepak; Shah, Mihir R; Holmgren, Stephanie; Pelch, Katherine E; Walker, Vickie; Rooney, Andrew A; Macleod, Malcolm; Shah, Ruchir R; Thayer, Kristina
2016-05-23
There is growing interest in using machine learning approaches to priority rank studies and reduce human burden in screening literature when conducting systematic reviews. In addition, identifying addressable questions during the problem formulation phase of systematic review can be challenging, especially for topics having a large literature base. Here, we assess the performance of the SWIFT-Review priority ranking algorithm for identifying studies relevant to a given research question. We also explore the use of SWIFT-Review during problem formulation to identify, categorize, and visualize research areas that are data rich/data poor within a large literature corpus. Twenty case studies, including 15 public data sets, representing a range of complexity and size, were used to assess the priority ranking performance of SWIFT-Review. For each study, seed sets of manually annotated included and excluded titles and abstracts were used for machine training. The remaining references were then ranked for relevance using an algorithm that considers term frequency and latent Dirichlet allocation (LDA) topic modeling. This ranking was evaluated with respect to (1) the number of studies screened in order to identify 95 % of known relevant studies and (2) the "Work Saved over Sampling" (WSS) performance metric. To assess SWIFT-Review for use in problem formulation, PubMed literature search results for 171 chemicals implicated as EDCs were uploaded into SWIFT-Review (264,588 studies) and categorized based on evidence stream and health outcome. Patterns of search results were surveyed and visualized using a variety of interactive graphics. Compared with the reported performance of other tools using the same datasets, the SWIFT-Review ranking procedure obtained the highest scores on 11 out of 15 of the public datasets. Overall, these results suggest that using machine learning to triage documents for screening has the potential to save, on average, more than 50 % of the screening effort ordinarily required when using un-ordered document lists. In addition, the tagging and annotation capabilities of SWIFT-Review can be useful during the activities of scoping and problem formulation. Text-mining and machine learning software such as SWIFT-Review can be valuable tools to reduce the human screening burden and assist in problem formulation.
Qin, Zijian; Wang, Maolin; Yan, Aixia
2017-07-01
In this study, quantitative structure-activity relationship (QSAR) models using various descriptor sets and training/test set selection methods were explored to predict the bioactivity of hepatitis C virus (HCV) NS3/4A protease inhibitors by using a multiple linear regression (MLR) and a support vector machine (SVM) method. 512 HCV NS3/4A protease inhibitors and their IC 50 values which were determined by the same FRET assay were collected from the reported literature to build a dataset. All the inhibitors were represented with selected nine global and 12 2D property-weighted autocorrelation descriptors calculated from the program CORINA Symphony. The dataset was divided into a training set and a test set by a random and a Kohonen's self-organizing map (SOM) method. The correlation coefficients (r 2 ) of training sets and test sets were 0.75 and 0.72 for the best MLR model, 0.87 and 0.85 for the best SVM model, respectively. In addition, a series of sub-dataset models were also developed. The performances of all the best sub-dataset models were better than those of the whole dataset models. We believe that the combination of the best sub- and whole dataset SVM models can be used as reliable lead designing tools for new NS3/4A protease inhibitors scaffolds in a drug discovery pipeline. Copyright © 2017 Elsevier Ltd. All rights reserved.
Software Development Cost Estimation Executive Summary
NASA Technical Reports Server (NTRS)
Hihn, Jairus M.; Menzies, Tim
2006-01-01
Identify simple fully validated cost models that provide estimation uncertainty with cost estimate. Based on COCOMO variable set. Use machine learning techniques to determine: a) Minimum number of cost drivers required for NASA domain based cost models; b) Minimum number of data records required and c) Estimation Uncertainty. Build a repository of software cost estimation information. Coordinating tool development and data collection with: a) Tasks funded by PA&E Cost Analysis; b) IV&V Effort Estimation Task and c) NASA SEPG activities.
Technical Report on Occupations in Numerically Controlled Metal-Cutting Machining.
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC. U.S. Employment Service.
At the present time, only 5 percent of the short-run metal-cutting machining in the United States is done by numerically controlled machined tools, but within the next decade it is expected to increase by 50 percent. Numerically controlled machines use taped data which is changed into instructions and directs the machine to do certain steps…
Paques, Joseph-Jean; Gauthier, François; Perez, Alejandro
2007-01-01
To assess and plan future risk-analysis research projects, 275 documents describing methods and tools for assessing the risks associated with industrial machines or with other sectors such as the military, and the nuclear and aeronautics industries, etc., were collected. These documents were in the format of published books or papers, standards, technical guides and company procedures collected throughout industry. From the collected documents, 112 documents were selected for analysis; 108 methods applied or potentially applicable for assessing the risks associated with industrial machines were analyzed and classified. This paper presents the main quantitative results of the analysis of the methods and tools.
Williams, R.R.
1980-09-03
The present invention is directed to a method and device for determining the location of a cutting tool with respect to the rotational axis of a spindle-mounted workpiece. A vacuum cup supporting a machinable sacrificial pin is secured to the workpiece at a location where the pin will project along and encompass the rotational axis of the workpiece. The pin is then machined into a cylinder. The position of the surface of the cutting tool contacting the machine cylinder is spaced from the rotational axis of the workpiece a distance equal to the radius of the cylinder.
Williams, Richard R.
1982-01-01
The present invention is directed to a method and device for determining the location of a cutting tool with respect to the rotational axis of a spindle-mounted workpiece. A vacuum cup supporting a machinable sacrifical pin is secured to the workpiece at a location where the pin will project along and encompass the rotational axis of the workpiece. The pin is then machined into a cylinder. The position of the surface of the cutting tool contacting the machine cylinder is spaced from the rotational aixs of the workpiece a distance equal to the radius of the cylinder.
Investigation of approximate models of experimental temperature characteristics of machines
NASA Astrophysics Data System (ADS)
Parfenov, I. V.; Polyakov, A. N.
2018-05-01
This work is devoted to the investigation of various approaches to the approximation of experimental data and the creation of simulation mathematical models of thermal processes in machines with the aim of finding ways to reduce the time of their field tests and reducing the temperature error of the treatments. The main methods of research which the authors used in this work are: the full-scale thermal testing of machines; realization of various approaches at approximation of experimental temperature characteristics of machine tools by polynomial models; analysis and evaluation of modelling results (model quality) of the temperature characteristics of machines and their derivatives up to the third order in time. As a result of the performed researches, rational methods, type, parameters and complexity of simulation mathematical models of thermal processes in machine tools are proposed.
High performance cutting using micro-textured tools and low pressure jet coolant
NASA Astrophysics Data System (ADS)
Obikawa, Toshiyuki; Nakatsukasa, Ryuta; Hayashi, Mamoru; Ohno, Tatsumi
2018-05-01
Tool inserts with different kinds of microtexture on the flank face were fabricated by laser irradiation for promoting the heat transfer from the tool face to the coolant. In addition to the micro-textured tools, jet coolant was applied to the tool tip from the side of the flank face, but under low-pressure conditions, to make Reynolds number of coolant as high as possible in the wedge shape zone between the tool flank and machined surface. First, the effect of jet coolant on the flank wear evolution was investigated using a tool without microtexture. The jet coolant showed an excellent improvement of the tool life in machining stainless steel SUS304 at higher cutting speeds. It was found that both the flow rate and velocity of jet coolant were indispensable to high performance cutting. Next, the effect of microtexture on the flank wear evolution was investigated using jet coolant. Three types of micro grooves extended tool life largely compared to the tool without microtexture. It was found that the depth of groove was one of important parameters affecting the tool life extension. As a result, the tool life was extended by more than l00 % using the microtextured tools and jet coolant compared to machining using flood coolant and a tool without microtexture.
Multisensor systems today and tomorrow: Machine control, diagnosis and thermal compensation
NASA Astrophysics Data System (ADS)
Nunzio, D'Addea
2000-05-01
Multisensor techniques that deal with control of tribology test rig and with diagnosis and thermal error compensation of machine tools are the starting point for some consideration about the use of these techniques as in fuzzy and neural net systems. The author comes to conclusion that anticipatory systems and multisensor techniques will have in the next future a great improvement and a great development mainly in the thermal error compensation of machine tools.
NASA Astrophysics Data System (ADS)
Driscoll, Brandon; Jaffray, David; Coolens, Catherine
2014-03-01
Purpose: To provide clinicians & researchers participating in multi-centre clinical trials with a central repository for large volume dynamic imaging data as well as a set of tools for providing end-to-end testing and image analysis standards of practice. Methods: There are three main pieces to the data archiving and analysis system; the PACS server, the data analysis computer(s) and the high-speed networks that connect them. Each clinical trial is anonymized using a customizable anonymizer and is stored on a PACS only accessible by AE title access control. The remote analysis station consists of a single virtual machine per trial running on a powerful PC supporting multiple simultaneous instances. Imaging data management and analysis is performed within ClearCanvas Workstation® using custom designed plug-ins for kinetic modelling (The DCE-Tool®), quality assurance (The DCE-QA Tool) and RECIST. Results: A framework has been set up currently serving seven clinical trials spanning five hospitals with three more trials to be added over the next six months. After initial rapid image transfer (+ 2 MB/s), all data analysis is done server side making it robust and rapid. This has provided the ability to perform computationally expensive operations such as voxel-wise kinetic modelling on very large data archives (+20 GB/50k images/patient) remotely with minimal end-user hardware. Conclusions: This system is currently in its proof of concept stage but has been used successfully to send and analyze data from remote hospitals. Next steps will involve scaling up the system with a more powerful PACS and multiple high powered analysis machines as well as adding real-time review capabilities.
Contemporary machine learning: techniques for practitioners in the physical sciences
NASA Astrophysics Data System (ADS)
Spears, Brian
2017-10-01
Machine learning is the science of using computers to find relationships in data without explicitly knowing or programming those relationships in advance. Often without realizing it, we employ machine learning every day as we use our phones or drive our cars. Over the last few years, machine learning has found increasingly broad application in the physical sciences. This most often involves building a model relationship between a dependent, measurable output and an associated set of controllable, but complicated, independent inputs. The methods are applicable both to experimental observations and to databases of simulated output from large, detailed numerical simulations. In this tutorial, we will present an overview of current tools and techniques in machine learning - a jumping-off point for researchers interested in using machine learning to advance their work. We will discuss supervised learning techniques for modeling complicated functions, beginning with familiar regression schemes, then advancing to more sophisticated decision trees, modern neural networks, and deep learning methods. Next, we will cover unsupervised learning and techniques for reducing the dimensionality of input spaces and for clustering data. We'll show example applications from both magnetic and inertial confinement fusion. Along the way, we will describe methods for practitioners to help ensure that their models generalize from their training data to as-yet-unseen test data. We will finally point out some limitations to modern machine learning and speculate on some ways that practitioners from the physical sciences may be particularly suited to help. This work was performed by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Anderson, R. B.; Finch, N.; Clegg, S. M.; Graff, T.; Morris, R. V.; Laura, J.
2018-04-01
The PySAT point spectra tool provides a flexible graphical interface, enabling scientists to apply a wide variety of preprocessing and machine learning methods to point spectral data, with an emphasis on multivariate regression.