2. GENERAL VIEW OF HYDRAULIC 48' BORING MILL. Manufactured by ...
2. GENERAL VIEW OF HYDRAULIC 48' BORING MILL. Manufactured by Simmons Machine Tool Corporation, Albany, New York, and Betts Company, a division of Niles Tool Company, Hamilton, Ohio. - Juniata Shops, Erecting Shop & Machine Shop, East of Fourth Avenue, between Fourth & Fifth Streets, Altoona, Blair County, PA
Study on boring hardened materials dryly by ultrasonic vibration cutter
NASA Astrophysics Data System (ADS)
Zhang, Jiangzhong; Zhang, Heng; Zhang, Yue
2011-05-01
It has been one of the difficulties that high-precision hole on hardened materials is machined. The supersonic vibration boring acoustic system in the lathe in which supersonic wave energy is applied on tool is introduced to create pulse power on the cutting process. The separation vibration cutting is achieved by the pulse force. The comparative tests on boring accuracy and surface quality are carried. The quality of surface machined by this method is compared to that by grinding. This cutting is the green cutting. The boring process system is stability. Under the condition that the cutting speed is less than or equal to 1/3 the tool vibration speed, the cutting force is pulse force and the Cutting energy is of high concentration in time, space and direction. The pulse energy effects on the cutting unit in less than one ten-thousandth second. Traditional cutting of irregular movement elastic compression are eliminated. The cutting force is greatly reduced. The cutting temperature is at room temperature. The tool life is greatly increased. Shape precision and surface quality is greatly improved. The regulations of the ultrasonic vibration boring dry cutting of hardened material are also summarized. The test results show that the ultrasonic vibration cutting tool boring is of very superior cutting mechanism and is a high-precision deep-hole machining of hardened materials, efficient cutting methods.
Ashbaugh, F.A.; Murry, K.R.
1986-02-10
A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting flutes formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first flute tip to the axis of rotation plus the distance from the second flute tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second flute tip to the axis of rotation minus one-half the distance from the first flute tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.
Ashbaugh, Fred N.; Murry, Kenneth R.
1988-12-27
A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting edges formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first cutting edge tip to the axis of rotation plus the distance from the second cutting edge tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second cutting edge tip to the axis of rotation minus one-half the distance from the first cutting edge tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashbaugh, F.A.; Murry, K.R.
A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting flutes formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first flute tip to the axis of rotation plus the distance from the second flute tip to themore » axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second flute tip to the axis of rotation minus one-half the distance from the first flute tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.« less
A bi-axial active boring tool for chatter mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redmond, J.M.; Barney, P.S.
This paper summarizes results of metal cutting tests using an actively damped boring bar to suppress regenerative chatter. PZT stack actuators were integrated into a commercially available two-inch diameter boring bar to suppress bending vibrations. Since the modified tool requires no specialized mounting hardware, it can be readily mounted on a variety of machines. A cutting test using the prototype bar to remove metal from a hardened steel workpiece verifies that the authors actively damped tool yields significant vibration reduction and improved surface finish as compared to the open-loop case. In addition, the overall performance of the prototype bar ismore » compared to that of an unmodified bar of pristine geometry, revealing that a significant enlargement of the stable machining envelope is obtained through application of feedback control.« less
Development and testing of an active boring bar for increased chatter immunity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redmond, J.; Barney, P.
Recent advances in smart materials have renewed interest in the development of improved manufacturing processes featuring sensing, processing, and active control. In particular, vibration suppression in metal cutting has received much attention because of its potential for enhancing part quality while reducing the time and cost of production. Although active tool clamps have been recently demonstrated, they are often accompanied by interfacing issues that limit their applicability to specific machines. Under the auspices of the Laboratory Directed Research and Development program, the project titled {open_quotes}Smart Cutting Tools for Precision Manufacturing{close_quotes} developed an alternative approach to active vibration control in machining.more » Using the boring process as a vehicle for exploration, a commercially available tool was modified to incorporate PZT stack actuators for active suppression of its bending modes. Since the modified tool requires no specialized mounting hardware, it can be readily mounted on many machines. Cutting tests conducted on a horizontal lathe fitted with a hardened steel workpiece verify that the actively damped boring bar yields significant vibration reduction and improved surface finishes as compared to an unmodified tool.« less
123. BENCH SHOP, SOUTH WALL SHOWING TOOL SHARPENER ON LEFT ...
123. BENCH SHOP, SOUTH WALL SHOWING TOOL SHARPENER ON LEFT AND WOOD BORING MACHINE ON RIGHT. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA
30 CFR 18.22 - Boring-type machines equipped for auxiliary face ventilation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Boring-type machines equipped for auxiliary... AND ACCESSORIES Construction and Design Requirements § 18.22 Boring-type machines equipped for auxiliary face ventilation. Each boring-type continuous-mining machine that is submitted for approval shall...
30 CFR 18.22 - Boring-type machines equipped for auxiliary face ventilation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Boring-type machines equipped for auxiliary... AND ACCESSORIES Construction and Design Requirements § 18.22 Boring-type machines equipped for auxiliary face ventilation. Each boring-type continuous-mining machine that is submitted for approval shall...
30 CFR 18.22 - Boring-type machines equipped for auxiliary face ventilation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Boring-type machines equipped for auxiliary... AND ACCESSORIES Construction and Design Requirements § 18.22 Boring-type machines equipped for auxiliary face ventilation. Each boring-type continuous-mining machine that is submitted for approval shall...
30 CFR 18.22 - Boring-type machines equipped for auxiliary face ventilation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Boring-type machines equipped for auxiliary... AND ACCESSORIES Construction and Design Requirements § 18.22 Boring-type machines equipped for auxiliary face ventilation. Each boring-type continuous-mining machine that is submitted for approval shall...
30 CFR 18.22 - Boring-type machines equipped for auxiliary face ventilation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boring-type machines equipped for auxiliary... AND ACCESSORIES Construction and Design Requirements § 18.22 Boring-type machines equipped for auxiliary face ventilation. Each boring-type continuous-mining machine that is submitted for approval shall...
21. INTERIOR VIEW OF THE MACHINE SHOP LOOKING SOUTH. FROM ...
21. INTERIOR VIEW OF THE MACHINE SHOP LOOKING SOUTH. FROM LEFT TO RIGHT, PULLEY'S ABOVE FOR THE LATHE BELOW, ENTRANCE TO THE ELECTRICAL MOTOR ROOM, BORING MACHINE, PLANER, TOOL, BENCH AGAINST THE BACK WALL, DOORWAY INTO THE ANNEX, LONG LATHE. WOOD STOVE IN THE FOREGROUND RIGHT. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
15 CFR 700.31 - Metalworking machines.
Code of Federal Regulations, 2011 CFR
2011-01-01
... machines covered by this section include: Bending and forming machines Boring machines Broaching machines... Planers and shapers Polishing, lapping, boring, and finishing machines Punching and shearing machines...
15 CFR 700.31 - Metalworking machines.
Code of Federal Regulations, 2012 CFR
2012-01-01
... machines covered by this section include: Bending and forming machines Boring machines Broaching machines... Planers and shapers Polishing, lapping, boring, and finishing machines Punching and shearing machines...
15 CFR 700.31 - Metalworking machines.
Code of Federal Regulations, 2013 CFR
2013-01-01
... machines covered by this section include: Bending and forming machines Boring machines Broaching machines... Planers and shapers Polishing, lapping, boring, and finishing machines Punching and shearing machines...
15 CFR 700.31 - Metalworking machines.
Code of Federal Regulations, 2014 CFR
2014-01-01
... machines covered by this section include: Bending and forming machines Boring machines Broaching machines... Planers and shapers Polishing, lapping, boring, and finishing machines Punching and shearing machines...
15 CFR 700.31 - Metalworking machines.
Code of Federal Regulations, 2010 CFR
2010-01-01
... machines covered by this section include: Bending and forming machines Boring machines Broaching machines... Planers and shapers Polishing, lapping, boring, and finishing machines Punching and shearing machines...
NASA Astrophysics Data System (ADS)
shunhe, Li; jianhua, Rao; lin, Gui; weimin, Zhang; degang, Liu
2017-11-01
The result of remanufacturing evaluation is the basis for judging whether the heavy duty machine tool can remanufacture in the EOL stage of the machine tool lifecycle management.The objectivity and accuracy of evaluation is the key to the evaluation method.In this paper, the catastrophe progression method is introduced into the quantitative evaluation of heavy duty machine tools’ remanufacturing,and the results are modified by the comprehensive adjustment method,which makes the evaluation results accord with the standard of human conventional thinking.Using the catastrophe progression method to establish the heavy duty machine tools’ quantitative evaluation model,to evaluate the retired TK6916 type CNC floor milling-boring machine’s remanufacturing.The evaluation process is simple,high quantification,the result is objective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sverdlin, A.
This patent describes a boring machine for boring in situ spaced axially aligned bearing housings on an internal combustion engine body after removal of a crankshaft from the engine body. The bearing housings include a pair of opposed end bearing housings and intermediate bearing housings between the end bearing housings. The portable boring machine comprises: an elongate rotary boring bar mounted concentrically within the bearing housings and having ends extending outwardly from the opposed end bearing housings; an end mounting member wholly supported by each of the end bearing housings and positioned between the boring bar and the associated endmore » bearing housing for supporting the boring bar thereat. Each end mounting member includes an inner concentric portion engaging the boring bar and mounted for rotation therewith, an outer concentric portion engaging the inner surface of the adjacent end bearing housing and permitting relative rotation of the inner concentric portion and the boring bar, and adjusting means.« less
4. VIEW OF VERTICAL BORING MACHINE. (Bullard) Vertical turning lathe ...
4. VIEW OF VERTICAL BORING MACHINE. (Bullard) Vertical turning lathe (VTL). Machining the fixture for GE Turboshroud. G.S. O'Brien, operator. - Juniata Shops, Machine Shop No. 1, East of Fourth Avenue at Third Street, Altoona, Blair County, PA
Experiments and simulation of thermal behaviors of the dual-drive servo feed system
NASA Astrophysics Data System (ADS)
Yang, Jun; Mei, Xuesong; Feng, Bin; Zhao, Liang; Ma, Chi; Shi, Hu
2015-01-01
The machine tool equipped with the dual-drive servo feed system could realize high feed speed as well as sharp precision. Currently, there is no report about the thermal behaviors of the dual-drive machine, and the current research of the thermal characteristics of machines mainly focuses on steady simulation. To explore the influence of thermal characterizations on the precision of a jib boring machine assembled dual-drive feed system, the thermal equilibrium tests and the research on thermal-mechanical transient behaviors are carried out. A laser interferometer, infrared thermography and a temperature-displacement acquisition system are applied to measure the temperature distribution and thermal deformation at different feed speeds. Subsequently, the finite element method (FEM) is used to analyze the transient thermal behaviors of the boring machine. The complex boundary conditions, such as heat sources and convective heat transfer coefficient, are calculated. Finally, transient variances in temperatures and deformations are compared with the measured values, and the errors between the measurement and the simulation of the temperature and the thermal error are 2 °C and 2.5 μm, respectively. The researching results demonstrate that the FEM model can predict the thermal error and temperature distribution very well under specified operating condition. Moreover, the uneven temperature gradient is due to the asynchronous dual-drive structure that results in thermal deformation. Additionally, the positioning accuracy decreases as the measured point became further away from the motor, and the thermal error and equilibrium period both increase with feed speeds. The research proposes a systematical method to measure and simulate the boring machine transient thermal behaviors.
NASA Astrophysics Data System (ADS)
Yigit, Ufuk; Cigeroglu, Ender; Budak, Erhan
2017-09-01
Chatter is a self-excited type of vibration that develops during machining due to process-structure dynamic interactions resulting in modulated chip thickness. Chatter is an important problem as it results in poor surface quality, reduced productivity and tool life. The stability of a cutting process is strongly influenced by the frequency response function (FRF) at the cutting point. In this study, the effect of piezoelectric shunt damping on chatter vibrations in a boring process is studied. In piezoelectric shunt damping method, an electrical impedance is connected to a piezoelectric transducer which is bonded on cutting tool. Electrical impedance of the circuit consisting of piezoceramic transducer and passive shunt is tuned to the desired natural frequency of the cutting tool in order to maximize damping. The optimum damping is achieved in analytical and finite element models (FEM) by using a genetic algorithm focusing on the real part of the tool point FRF rather than the amplitude. Later, a practical boring bar is considered where the optimum circuit parameters are obtained by the FEM. Afterwards, the effect of the optimized piezoelectric shunt damping on the dynamic rigidity and absolute stability limit of the cutting process are investigated experimentally by modal analysis and cutting tests. It is both theoretically and experimentally shown that application of piezoelectric shunt damping results in a significant increase in the absolute stability limit in boring operations.
122. BENCH SHOP, SOUTHWEST CORNER SHOWING WOOD BORING MACHINE. DOOR ...
122. BENCH SHOP, SOUTHWEST CORNER SHOWING WOOD BORING MACHINE. DOOR TO WOODSHOP ON RIGHT. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Justice, J.C.; Delli-Gatti, F.A.
1985-12-03
A mining machine is utilized for making original generally horizontal bores in coal seams, and for enlarging preexisting bores. A single cutting head is mounted for rotation about a first horizontal axis generally perpendicular to the dimension of elongation of the horizontal bore, and is pivotal about a second horizontal axis, parallel to the first axis, to change its cutting, vertical position within the bore. A non-rotatable body member, with side wall supports, is mounted posteriorly of the cutting head, and includes a conveyor mechanism and a power mechanism operatively connected to it. The machine can be sumped into amore » bore and then the cutting head rotated about the second axis to change the vertical position thereof, and then moved rearwardly, any cut material being continuously conveyed to the bore mouth by the conveyor mechanism. The amount of vertical movement during the pivoting action about the second axis is controlled in response to the automatic sensing of the thickness of the coal seam in which the machine operates.« less
Tunnel Boring Machine Performance Study. Final Report
DOT National Transportation Integrated Search
1984-06-01
Full face tunnel boring machine "TBM" performance during the excavation of 6 tunnels in sedimentary rock is considered in terms of utilization, penetration rates and cutter wear. The construction records are analyzed and the results are used to inves...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashbaugh, F.N.; Murry, K.R.
A method of boring two concentric holes of different depths is described utilizing an elongated boring tool having a tool axis of rotation, a longitudinally disposed tool centerline axis, and first and second transverse cutting edges at one end thereof extending across the boring tool, the second cutting edge being longitudinally rearwardly recessed with respect to the first cutting edge. The method consists of inserting the boring tool into an adjustable boring head, adjusting a distance B between the tool centerline axis and the tool axis of rotation such that the tool axis of rotation intersects a first boring areamore » of the first cutting edge; and boring the concentric holes having respectively larger and smaller diameters.« less
NASA Technical Reports Server (NTRS)
Hibdon, R. A.
1979-01-01
Portable unit and special fixture serve as boring mill. Machine, fabricated primarily from scrap metal, was designed and set up in about 12 working days. It has reduced setup and boring time by 66 percent as compared with existing boring miles, thereby making latter available for other jobs. Unit can be operated by one man.
Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method
NASA Astrophysics Data System (ADS)
Carbonell, Josep Maria; Oñate, Eugenio; Suárez, Benjamín
2013-09-01
Underground construction involves all sort of challenges in analysis, design, project and execution phases. The dimension of tunnels and their structural requirements are growing, and so safety and security demands do. New engineering tools are needed to perform a safer planning and design. This work presents the advances in the particle finite element method (PFEM) for the modelling and the analysis of tunneling processes including the wear of the cutting tools. The PFEM has its foundation on the Lagrangian description of the motion of a continuum built from a set of particles with known physical properties. The method uses a remeshing process combined with the alpha-shape technique to detect the contacting surfaces and a finite element method for the mechanical computations. A contact procedure has been developed for the PFEM which is combined with a constitutive model for predicting the excavation front and the wear of cutting tools. The material parameters govern the coupling of frictional contact and wear between the interacting domains at the excavation front. The PFEM allows predicting several parameters which are relevant for estimating the performance of a tunnelling boring machine such as wear in the cutting tools, the pressure distribution on the face of the boring machine and the vibrations produced in the machinery and the adjacent soil/rock. The final aim is to help in the design of the excavating tools and in the planning of the tunnelling operations. The applications presented show that the PFEM is a promising technique for the analysis of tunnelling problems.
NASA Astrophysics Data System (ADS)
Biermann, Dirk; Heilmann, Markus
Due to the tendency of downsizing of components, also the industrial relevance of bore holes with small diameters and high length-to-diameter ratios rises with the growing requirements on parts. In these applications, the combination of laser pre-drilling and single-lip deep hole drilling can shorten the process chain in machining components with non-planar surfaces, or can reduce tool wear in machining case-hardened materials. In this research, the combination of these processes was realized and investigated for the very first time.
Mechanics of Cutting and Boring. Part 7. Dynamics and Energetics of Axial Rotation Machines,
1981-12-01
systematic analytical scheme that can be used to facilitate future work on the mechanics of cutting and boring machines. In the industrial sector, rock...Proceedings. Chapter 66, p. 1149-1158. Mellor, M. and I. Hawkes (1972) How to rate a hard-rock borer. World Construction, Sept, p. 21-23. (Also in Ingenieria
Where tunneling equipment is heading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singhal, R.K.
1984-02-01
A variety of equipment is being used for roadheading and tunneling in the mining industry. This includes hydraulic/rotary precussive drills for use in conventional drill and blast, drum-type continuous miners, roadheaders, mini-and midi-full facers for small size openings, soft rock shielded tunnel boring machines, and hard rock tunnel boring machines. The availability, performance, and specifications for tunneling equipment are discussed.
Boring deep holes in southern pine
G. E. Woodson; C. W. McMillin
1972-01-01
When holes 10-1/2 inches deep and I inch in diameter were made with either a ship auger or a double-spur, double-twist machine bit, clogging occurred at a shallower depth (avg. 6.5 inches) when boring across the grain than when boring along the grain (avg. 10.1 inches). In both boring directions, thrust force and torque demand for unclogged bits were less for the ship...
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Bock, Hendrik Pieter Jacobus; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi
2016-06-21
An apparatus, such as an electrical machine, is provided. The apparatus can include a rotor defining a rotor bore and a conduit disposed in and extending axially along the rotor bore. The conduit can have an annular conduit body defining a plurality of orifices disposed axially along the conduit and extending through the conduit body. The rotor can have an inner wall that at least partially defines the rotor bore. The orifices can extend through the conduit body along respective orifice directions, and the rotor and conduit can be configured to provide a line of sight along the orifice directionmore » from the respective orifices to the inner wall.« less
Dust and gas exposure in tunnel construction work.
Bakke, B; Stewart, P; Ulvestad, B; Eduard, W
2001-01-01
Personal exposures to dust and gases were measured among 189 underground construction workers who were divided into seven occupational groups performing similar tasks in similar working conditions: drill and blast crew; shaft-drilling crew; tunnel-boring machine crew; shotcreting operators; support workers; concrete workers; and electricians. Outdoor tunnel workers were included as a low-exposed reference group. The highest geometric mean (GM) exposures to total dust (6-7 mg/m3) and respirable dust (2-3 mg/m3) were found for the shotcreters, shaft drillers, and tunnel-boring machine workers. Shaft drillers and tunnel-boring machine workers also had the highest GM exposures to respirable alpha-quartz (0.3-0.4 mg/m3), which exceeded the Norwegian occupational exposure limit (OEL) of 0.1 mg/m3. Shaft drillers had the highest exposure to oil mists (GM=1.4 mg/m3), which was generated mainly from pneumatic drilling. For other groups, exposure to oil mist from diesel exhaust and spraying of oil onto concrete forms resulted in exposures of 0.1-0.5 mg/m3. Exposure to nitrogen dioxide was similar across all groups (GM=0.4-0.9 ppm), except for shaft drillers and tunnel-boring machine workers, who had lower exposures. High short-term exposures (>10 ppm), however, occurred when workers were passing through the blasting cloud.
4. VIEW OF BORING MILL IN OPERATION, operator unknown (note ...
4. VIEW OF BORING MILL IN OPERATION, operator unknown (note console in background). - Juniata Shops, Erecting Shop & Machine Shop, East of Fourth Avenue, between Fourth & Fifth Streets, Altoona, Blair County, PA
PLANING MILL, FIRST FLOOR INTERIOR, LOOKING WEST. A WHEEL BORING ...
PLANING MILL, FIRST FLOOR INTERIOR, LOOKING WEST. A WHEEL BORING MACHINE AND SUPERVISORS OFFICE ARE VISIBLE. - Southern Pacific, Sacramento Shops, Planing Mill, 111 I Street, Sacramento, Sacramento County, CA
3. VIEW OF BORING MILL IN OPERATION, operator unknown (note ...
3. VIEW OF BORING MILL IN OPERATION, operator unknown (note console in background). - Juniata Shops, Erecting Shop & Machine Shop, East of Fourth Avenue, between Fourth & Fifth Streets, Altoona, Blair County, PA
6. VIEW OF BORING MILL. Chuck action of locomotive wheel ...
6. VIEW OF BORING MILL. Chuck action of locomotive wheel Wheel weight 1200 pounds, 3'-0' diameter. Table 53' in diameter Wheel is 48'. Largest hole that can be bored is 9-1/2' plus (GE axle is 10'). - Juniata Shops, Erecting Shop & Machine Shop, East of Fourth Avenue, between Fourth & Fifth Streets, Altoona, Blair County, PA
Experimental research of kinetic and dynamic characteristics of temperature movements of machines
NASA Astrophysics Data System (ADS)
Parfenov, I. V.; Polyakov, A. N.
2018-03-01
Nowadays, the urgency of informational support of machines at different stages of their life cycle is increasing in the form of various experimental characteristics that determine the criteria for working capacity. The effectiveness of forming the base of experimental characteristics of machines is related directly to the duration of their field tests. In this research, the authors consider a new technique that allows reducing the duration of full-scale testing of machines by 30%. To this end, three new indicator coefficients were calculated in real time to determine the moments corresponding to the characteristic points. In the work, new terms for thermal characteristics of machine tools are introduced: kinetic and dynamic characteristics of the temperature movements of the machine. This allow taking into account not only the experimental values for the temperature displacements of the elements of the carrier system of the machine, but also their derivatives up to the third order, inclusively. The work is based on experimental data obtained in the course of full-scale thermal tests of a drilling-milling and boring CNC machine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ringgenberg, P.D.; Burris, W.J.
1988-06-28
A method is described of flow testing a formation in a wellbore, comprising: providing a testing string including at least one annulus pressure responsive tool bore closure valve; providing a packer and setting the packer in the wellbore to seal thereacross; running the testing string into the wellbore with the tool bore closure valve in an open position; stinging into the set packer with the bottom of the testing string; increasing pressure a first time in the wellbore annulus around the testing string and above the set packer without cycling the tool bore closure valve; reducing pressure in the wellboremore » annulus; closing the tool bore closure valve responsive to the pressure reduction; increasing pressure a second time in the wellbore annulus; reopening the tool bore closure valve responsive to the second increase; and flowing fluids from the formation through the reopened tool bore closure valve.« less
8. VIEW OF WHEEL RACK FOR BORING MILL. Fork loading ...
8. VIEW OF WHEEL RACK FOR BORING MILL. Fork loading crane, manufactured by Cleveland Tramrail, 2-1/2 ton capacity. - Juniata Shops, Erecting Shop & Machine Shop, East of Fourth Avenue, between Fourth & Fifth Streets, Altoona, Blair County, PA
9. VIEW OF WHEEL RACK FOR BORING MILL. Fork loading ...
9. VIEW OF WHEEL RACK FOR BORING MILL. Fork loading crane, manufactured by Cleveland Tramrail, 2-1/2 ton capacity. - Juniata Shops, Erecting Shop & Machine Shop, East of Fourth Avenue, between Fourth & Fifth Streets, Altoona, Blair County, PA
Lightweight piston-rod assembly for a reciprocating machine
Corey, John A.; Walsh, Michael M.
1986-01-01
In a reciprocating machine, there is provided a hollow piston including a dome portion on one end and a base portion on the opposite end. The base portion includes a central bore into which a rod is hermetically fixed in radial and angular alignment. The extending end of the rod has a reduced diameter portion adapted to fit into the central bore of a second member such as a cross-head assembly, and to be secured thereto in radial and axial alignment with the piston.
Integrated test plan for directional boring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volk, B.W.
This integrated test plan describes the field testing of the DITCH WITCH Directional Boring System. DITCH WITCH is a registered trademark of The Charles Machine Works, Inc., Perry, Oklahoma. The test is being conducted as a coordinated effort between Charles Machine Works (CMW), Sandia National Laboratories (SNL), and the Westinghouse Hanford Company (WHC). Funding for the WHC portion of the project is through the Volatile Organic Compound-Arid Integrated Demonstration (VOC-Arid ID). The purpose of the test is to evaluate the performance of the directional boring system for possible future use on environmental restoration projects at Hanford and other Department ofmore » Energy (DOE) sites. The test will be conducted near the 200 Areas Fire Station located between the 200 East and 200 West Area of the Hanford Site. The directional boring system will be used to drill and complete (with fiberglass casing) two horizontal boreholes. A third borehole will be drilled to test sampling equipment but will not be completed with casing.« less
Method for machining holes in composite materials
NASA Technical Reports Server (NTRS)
Daniels, Julia G. (Inventor); Ledbetter, Frank E., III (Inventor); Clemons, Johnny M. (Inventor); Penn, Benjamin G. (Inventor); White, William T. (Inventor)
1987-01-01
A method for boring well defined holes in a composite material such as graphite/epoxy is discussed. A slurry of silicon carbide powder and water is projected onto a work area of the composite material in which a hole is to be bored with a conventional drill bit. The silicon carbide powder and water slurry allow the drill bit, while experiencing only normal wear, to bore smooth, cylindrical holes in the composite material.
Moisture content of southern pine as related to thrust, torque, and chip formation in boring
Charles W. McMillin; George E. Woodson
1972-01-01
Holes 3-1/2 inches deep were bored with a 1-inch spur machine bit in southern pine having specific gravity of 0.53 (ovendry weight and volume at 10.4 percent moisture). The bit was rotated at 2,4000 rpm and removed chips 0.020 inch thick. For wood mositure contents ranging from ovendry to saturation, thrust was lower when boring along the grain (Average 98 pounds)...
6. VIEW OF LATHE OF EAST END OF MACHINE SHOP ...
6. VIEW OF LATHE OF EAST END OF MACHINE SHOP No. 2 ADDITION. THE 78 1/2' X 100 LATHE BORES OUT CENTERS, OR TREPANNS, OF FORGING. - U.S. Steel Homestead Works, Machine Shop No. 2, Along Monongahela River, Homestead, Allegheny County, PA
Optimization of a novel large field of view distortion phantom for MR-only treatment planning.
Price, Ryan G; Knight, Robert A; Hwang, Ken-Pin; Bayram, Ersin; Nejad-Davarani, Siamak P; Glide-Hurst, Carri K
2017-07-01
MR-only treatment planning requires images of high geometric fidelity, particularly for large fields of view (FOV). However, the availability of large FOV distortion phantoms with analysis software is currently limited. This work sought to optimize a modular distortion phantom to accommodate multiple bore configurations and implement distortion characterization in a widely implementable solution. To determine candidate materials, 1.0 T MR and CT images were acquired of twelve urethane foam samples of various densities and strengths. Samples were precision-machined to accommodate 6 mm diameter paintballs used as landmarks. Final material candidates were selected by balancing strength, machinability, weight, and cost. Bore sizes and minimum aperture width resulting from couch position were tabulated from the literature (14 systems, 5 vendors). Bore geometry and couch position were simulated using MATLAB to generate machine-specific models to optimize the phantom build. Previously developed software for distortion characterization was modified for several magnet geometries (1.0 T, 1.5 T, 3.0 T), compared against previously published 1.0 T results, and integrated into the 3D Slicer application platform. All foam samples provided sufficient MR image contrast with paintball landmarks. Urethane foam (compressive strength ∼1000 psi, density ~20 lb/ft 3 ) was selected for its accurate machinability and weight characteristics. For smaller bores, a phantom version with the following parameters was used: 15 foam plates, 55 × 55 × 37.5 cm 3 (L×W×H), 5,082 landmarks, and weight ~30 kg. To accommodate > 70 cm wide bores, an extended build used 20 plates spanning 55 × 55 × 50 cm 3 with 7,497 landmarks and weight ~44 kg. Distortion characterization software was implemented as an external module into 3D Slicer's plugin framework and results agreed with the literature. The design and implementation of a modular, extendable distortion phantom was optimized for several bore configurations. The phantom and analysis software will be available for multi-institutional collaborations and cross-validation trials to support MR-only planning. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Moisture content of southern pine as related to thrust, torque, and chip formation in boring
C. W. McMillin; G. E. Woodson
1972-01-01
Holes 3-1/2 inches deep were bored with a 1-inch spur machine bit in southern pine having specific gravity of 0.53 (ovendry weight and volume at 10.4 percent moisture). The bit was rotated at 2,400 rpm and removed chips 0.020 inch thick. For wood moisture contents ranging from ovendry to saturation, thrust was lower when boring along the grain (average 98 pounds) than...
Fragmentation Energy-Saving Theory of Full Face Rock Tunnel Boring Machine Disc Cutters
NASA Astrophysics Data System (ADS)
Zhang, Zhao-Huang; Gong, Guo-Fang; Gao, Qing-Feng; Sun, Fei
2017-07-01
Attempts to minimize energy consumption of a tunnel boring machine disc cutter during the process of fragmentation have largely focused on optimizing disc-cutter spacing, as determined by the minimum specific energy required for fragmentation; however, indentation tests showed that rock deforms plastically beneath the cutters. Equations for thrust were developed for both the traditional, popularly employed disc cutter and anew design based on three-dimensional theory. The respective energy consumption for penetration, rolling, and side-slip fragmentations were obtained. A change in disc-cutter fragmentation angles resulted in a change in the nature of the interaction between the cutter and rock, which lowered the specific energy of fragmentation. During actual field excavations to the same penetration length, the combined energy consumption for fragmentation using the newly designed cutters was 15% lower than that when using the traditional design. This paper presents a theory for energy saving in tunnel boring machines. Investigation results showed that the disc cutters designed using this theory were more durable than traditional designs, and effectively lowered the energy consumption.
Different Techniques For Producing Precision Holes (>20 mm) In Hardened Steel—Comparative Results
NASA Astrophysics Data System (ADS)
Coelho, R. T.; Tanikawa, S. T.
2009-11-01
High speed machining (HSM), or high performance machining, has been one of the most recent technological advances. When applied to milling operations, using adequate machines, CAM programs and tooling, it allows cutting hardened steels, which was not feasible just a couple of years ago. The use of very stiff and precision machines has created the possibilities of machining holes in hardened steels, such as AISI H13 with 48-50 HRC, using helical interpolations, for example. Such process is particularly useful for holes with diameter bigger than normal solid carbide drills commercially available, around 20 mm, or higher. Such holes may need narrow tolerances, fine surface finishing, which can be obtained just by end milling operations. The present work compares some of the strategies used to obtain such holes by end milling, and also some techniques employed to finish them, by milling, boring and also by fine grinding at the same machine. Results indicate that it is possible to obtain holes with less than 0.36 m in circularity, 7.41 m in cylindricity and 0.12 m in surface roughness Ra. Additionally, there is less possibilities of obtaining heat affected layers when using such technique.
A Computer-Controlled Laser Bore Scanner
NASA Astrophysics Data System (ADS)
Cheng, Charles C.
1980-08-01
This paper describes the design and engineering of a laser scanning system for production applications. The laser scanning techniques, the timing control, the logic design of the pattern recognition subsystem, the digital computer servo control for the loading and un-loading of parts, and the laser probe rotation and its synchronization will be discussed. The laser inspection machine is designed to automatically inspect the surface of precision-bored holes, such as those in automobile master cylinders, without contacting the machined surface. Although the controls are relatively sophisticated, operation of the laser inspection machine is simple. A laser light beam from a commercially available gas laser, directed through a probe, scans the entire surface of the bore. Reflected light, picked up through optics by photoelectric sensors, generates signals that are fed to a mini-computer for processing. A pattern recognition techniques program in the computer determines acceptance or rejection of the part being inspected. The system's acceptance specifications are adjustable and are set to the user's established tolerances. However, the computer-controlled laser system is capable of defining from 10 to 75 rms surface finish, and voids or flaws from 0.0005 to 0.020 inch. Following the successful demonstration with an engineering prototype, the described laser machine has proved its capability to consistently ensure high-quality master brake cylinders. It thus provides a safety improvement for the automotive braking system. Flawless, smooth cylinder bores eliminate premature wearing of the rubber seals, resulting in a longer-lasting master brake cylinder and a safer and more reliable automobile. The results obtained from use of this system, which has been in operation about a year for replacement of a tedious, manual operation on one of the high-volume lines at the Bendix Hydraulics Division, have been very satisfactory.
Grinding tool for making hemispherical bores in hard materials
Duran, E.L.
1985-04-03
A grinding tool for forming hemispherical bores in hard materials such as boron carbide. The tool comprises a hemicircular grinding bit, formed of a metal bond diamond matrix, which is mounted transversely on one end of a tubular tool shaft. The bit includes a spherically curved outer edge surface which is the active grinding surface of the tool. Two coolant fluid ports on opposite sides of the bit enable introduction of coolant fluid through the bore of the tool shaft so as to be emitted adjacent the opposite sides of the grinding bit, thereby providing optimum cooling of both the workpiece and the bit.
Heumann, Frederick K.; Wilkinson, Jay C.; Wooding, David R.
1997-01-01
A remote appliance for supporting a tool for performing work at a worksite on a substantially circular bore of a workpiece and for providing video signals of the worksite to a remote monitor comprising: a baseplate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the baseplate and positioned to roll against the bore of the workpiece when the baseplate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the baseplate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the baseplate such that the working end of the tool is positioned on the inner face side of the baseplate; a camera for providing video signals of the worksite to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the baseplate, the camera holding means being adjustably attached to the outer face of the baseplate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris.
Downhole surge valve for earth boring apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, D.W.
1990-05-29
This patent describes a boring tool assembly having an underground percussion mole boring tool powered by a working fluid, the tool being driven through the earth by a rigid drill string pushed by a drilling frame, and a downhole valve assembly fixed between the downhole end of the drill string and the too, the improved downhole valve assembly. It comprises: a valve spool having an open first end, a closed second end and a peripheral sidewall, an axial bore extending partly through the valve spool from the open first end; a radial passage adjacent the closed second and of themore » valve spool, the radial passage extending radially from the valve spool axial bore through the valve spool peripheral sidewall; an axial groove in the peripheral sidewall of the valve spool; a valve body having a first end, a second end and a peripheral sidewall, an axial bore extending through the valve body, the valve spool extending through the valve body axial bore so that the second end of the valve body is adjacent the closed second end of the valve spool, the valve spool being axially moveable within the valve body axial bore; an axial slot; a free-floating key element; a valve housing; and seal means.« less
ERIC Educational Resources Information Center
Sagan, Carl
1975-01-01
The author of this article believes that human survival depends upon the ability to develop and work with machines of high artificial intelligence. He lists uses of such machines, including terrestrial mining, outer space exploration, and other tasks too dangerous, too expensive, or too boring for human beings. (MA)
Drilling side holes from a borehole
NASA Technical Reports Server (NTRS)
Collins, E. R., Jr.
1980-01-01
Machine takes long horizontal stratum samples from confines of 21 cm bore hole. Stacked interlocking half cylindrical shells mate to form rigid thrust tube. Drive shaft and core storage device is flexible and retractable. Entire machine fits in 10 meter length of steel tube. Machine could drill drainage or ventilation holes in coal mines, or provide important information for geological, oil, and geothermal surveys.
Apparatus and method for routing a transmission line through a downhole tool
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Briscoe, Michael; Reynolds, Jay
2006-07-04
A method for routing a transmission line through a tool joint having a primary and secondary shoulder, a central bore, and a longitudinal axis, includes drilling a straight channel, at a positive, nominal angle with respect to the longitudinal axis, through the tool joint from the secondary shoulder to a point proximate the inside wall of the centtral bore. The method further includes milling back, from within the central bore, a second channel to merge with the straight channel, thereby forming a continuous channel from the secondary shoulder to the central bore. In selected embodiments, drilling is accomplished by gun-drilling the straight channel. In other embodiments, the method includes tilting the tool joint before drilling to produce the positive, nominal angle. In selected embodiments, the positive, nominal angle is less than or equal to 15 degrees.
Heumann, F.K.; Wilkinson, J.C.; Wooding, D.R.
1997-12-16
A remote appliance for supporting a tool for performing work at a work site on a substantially circular bore of a work piece and for providing video signals of the work site to a remote monitor comprises: a base plate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the base plate and positioned to roll against the bore of the work piece when the base plate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the base plate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the base plate such that the working end of the tool is positioned on the inner face side of the base plate; a camera for providing video signals of the work site to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the base plate, the camera holding means being adjustably attached to the outer face of the base plate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris. 5 figs.
The need for artificial intelligence as an aid in controlling a manufacturing operation
NASA Astrophysics Data System (ADS)
Weyand, J.
AI applications to industrial production and planning are discussed and illustrated with diagrams and drawings. Applications examined include flexible automation of manufacturing processes (robots with open manual control, robots programmable to meet product specifications, self-regulated robots, and robots capable of learning), flexible fault detection and diagnostics, production control, and overall planning and management (product strategies, marketing, determination of development capacity, site selection, project organization, and technology investment strategies). For the case of robots, problems in the design and operation of a state-of-the-art machine-tool cell (for hole boring, milling, and joining) are analyzed in detail.
Pulling tool for use with reeled tubing and method for operating tools from wellbores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pleasants, C.W.
1991-08-20
This patent describes a tool for latching to and/or pulling a well operating tool having a fishing neck from a downhole location in pipe in a well bore. It comprises an elongated tubular housing assembly defining a longitudinal bore; means connecting the housing assembly to an end of a string of reeled tubing for passing the housing assembly through the wellbore and into contact with the fishing neck and for introducing fluid into the longitudinal bore; means disposed on the housing assembly for automatically latching to the fishing neck upon the housing assembly engaging the fishing neck; means responsive tomore » a predetermined fluid condition in the bore for releasing the latching means from the fishing neck to permit the tool to be removed from the wellbore; and means responsive to a predetermined mechanical force exerted, via the reeled tubing, on the housing assembly and on the fishing neck for releasing the latching means from the fishing neck.« less
NASA Astrophysics Data System (ADS)
Macias, F. J.; Dahl, F.; Bruland, A.
2016-05-01
The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.
Development of an active boring bar for increased chatter immunity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redmond, J.; Barney, P.; Smith, D.
The development and initial evaluation of a prototype boring bar featuring active vibration control for increased chatter immunity is described. The significance of active damping both normal and tangential to the workpiece surface is evaluated, indicating the need for two axis control to ensure adequate performance over expected variations in tool mounting procedures. The prototype tool features a commercially available boring bar modified to accommodate four PZT stack actuators for two axis bending control. Measured closed-loop dynamics are combined with a computer model of the boring process to simulate increased metal removal rate and improved workpiece surface finish through activemore » control.« less
39. July 1974. WOOD SHOP, VIEW LOOKING NORTHWEST, SHOWING (LEFTTORIGHT): ...
39. July 1974. WOOD SHOP, VIEW LOOKING NORTHWEST, SHOWING (LEFT-TO-RIGHT): GRUBER-BUILT HUB-BORING MACHINE, MORTISING MACHINE, AND GRUBER-BUILT BELT-SANDER: ALL ARE POWERED FROM LINESHAFTING IN THE BLACKSMITH SHOP. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA
Heavy duty precision leveling jacks expedite setup time on horizontal boring mill
NASA Technical Reports Server (NTRS)
Dellenbaugh, W.; Jones, C.
1966-01-01
Leveling jack is a precise alignment tool which expedites the setup of components or assemblies up to 2500 pounds on horizontal boring mills. This tool eliminates the necessity of wedges and blocks to shim the components to proper position.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mc Donald, W.J.; Pittard, G.T.; Maurer, W.C.
A controllable tool for drilling holes in the earth is described comprising a hollow elongated rigid supporting drill pipe having a forward end for entering the earth, means supporting the drill pipe for earth boring or piercing movement, including means for moving the drill pipe longitudinally for penetrating the earth, the drill pipe moving means being constructed to permit addition and removal of supporting drill pipe during earth penetrating operation, a boring mole supported on the forward end of the hollow low drill pipe comprising a cylindrical housing supported on and open to the forward end of the drill pipe,more » a first means on the front end for applying a boring force to the soil comprising an anvil having a striking surface inside the housing and a boring surface outside the housing, a second means comprising a reciprocally movable hammer positioned in the housing to apply a percussive force to the anvil striking surface for transmitting a percussive force to the boring force applying means, and means permitting introduction of air pressure supplied through the hollow pipe into the housing for operating the hammer and for discharging spent air from the housing to the hole being bored, and the tool being operable to penetrate the earth upon longitudinal movement of the drill rod by the longitudinal rod moving means and operation of the mole by reciprocal movement of the hammer.« less
A system for comparison of boring parameters of mini-HDD machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunsaulis, F.R.
A system has been developed to accurately evaluate changes in performance of a mini-horizontal directional drilling (HDD) system in the backreaming/pullback portion of a bore as the parameters influencing the backream are changed. Parameters incorporated in the study include spindle rotation rate, rate of pull, fluid flow rate, and backreamer design. The boring system is able to run at variable, operator-determined rates of spindle rotation and pullback speed utilizing electronic feedback controls for regulation. Spindle torque and pullback force are continuously measured and recorded giving an indication of the performance of the unit. A method has also been developed tomore » measure the pull load on the installed service line to determine the effect of the boring parameters on the service line. Variability of soil along the bore path is measured and quantified using a soil sampling system developed for the study. Sample results obtained with the system are included in the report. 2 refs., 5 figs., 2 tabs.« less
22. INTERIOR VIEW OF THE MACHINE SHOP LOOKING NORTH. FROM ...
22. INTERIOR VIEW OF THE MACHINE SHOP LOOKING NORTH. FROM LEFT TO RIGHT, NORTH END OF THE LONG LATHE, WOOD STOVE WITH A BRICK HEARTH FLOOR, FAR BACK LEFT CORNER IS THE MAIN CLUTCH FOR THE MILL POWER SHAFTS, SHAFT LATHE, SMALL PLANER, BORING MACHINE WITH IONIC COLUMN DETAIL., AND THE ENTRANCE TO THE ELECTRICAL MOTOR ROOM. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
Manual adjustable probe tool for friction stir welding
NASA Technical Reports Server (NTRS)
Oelgoetz, Peter A. (Inventor); Ding, Jeff (Inventor)
2000-01-01
A friction stir welding tool is provided generally comprising three parts: a rotatable welding tool body (22) that has an outer threaded surface (32) and a probe (24) extending from a distal end of the body, a shoulder (26), which has a threaded inner surface (40) and a bore (36) at a distal end of the shoulder, and a jam nut (28), which has a threaded inner surface (42). The shoulder is threaded onto the tool body such that the probe extends from the shoulder through the bore by a preferred length. The jam nut is then threaded onto the tool body to secure the shoulder. The tool is operatively connected to a drive motor for rotating the tool body. The shoulder may include a knife edge projecting from the distal end (38) thereof adjacent the bore. The knife edge inhibits the weld material from migrating along the probe to intrude inside the shoulder, where it may prevent separation of the tool body and the shoulder when readjustment of the tool is necessary.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-30
..., Texas, Notification of Proposed Production Activity, Bauer Manufacturing Inc., (Pile Drivers, Boring... produce pile drivers and leads, boring machinery, foundation construction equipment, foundation casings, related parts and sub-assemblies, and tools and accessories for pile drivers and boring machinery within...
OVERALL VIEW OF SOUTHERN DUCTILE'S PATTERN REPAIR SHOP, SHOWING A ...
OVERALL VIEW OF SOUTHERN DUCTILE'S PATTERN REPAIR SHOP, SHOWING A SPANISH-MADE FORADIA BORING MACHINE IN THE FOREGROUND. - Southern Ductile Casting Company, Mold Making, 2217 Carolina Avenue, Bessemer, Jefferson County, AL
40. July 1974. WOOD SHOP, VIEW LOOKING SOUTHWEST, SHOWING GRUBER ...
40. July 1974. WOOD SHOP, VIEW LOOKING SOUTHWEST, SHOWING GRUBER- BUILT HUB-BORING MACHINE. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA
Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru
2004-10-12
An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.
Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru
2005-05-24
An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.
U.S. Geological Survey Combined Well-Bore Flow and Depth-Dependent Water Sampler
Izbicki, John A.; Christensen, Allen H.; Hanson, Randall T.; Martin, Peter; Crawford, Steven M.; Smith, Gregory A.
1999-01-01
The U.S. Geological Survey has developed a combined well-bore flow and depth-dependent sample collection tool. It is suitable for use in existing production wells having limited access and clearances as small as 1 inch. The combination of well-bore flow and depth-dependent water-quality data is especially effective in assessing changes in aquifer properties and water quality with depth. These are direct measures of changes in well yield and ground-water quality with depth under actual operating conditions. Combinations of other geophysical tools capable of making these measurements, such as vertical-axis current meters used with wire-line samplers, are commercially available but these tools are large and can not easily enter existing production wells.
Drill string transmission line
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Bradford, Kline; Fox, Joe
2006-03-28
A transmission line assembly for transmitting information along a downhole tool comprising a pin end, a box end, and a central bore traveling between the pin end and the box end, is disclosed in one embodiment of the invention as including a protective conduit. A transmission line is routed through the protective conduit. The protective conduit is routed through the central bore and the ends of the protective conduit are routed through channels formed in the pin end and box end of the downhole tool. The protective conduit is elastically forced into a spiral or other non-linear path along the interior surface of the central bore by compressing the protective conduit to a length within the downhole tool shorter than the protective conduit.
26. July 1974. BENCH SHOP, VIEW LOOKING SOUTH, SHOWING THE ...
26. July 1974. BENCH SHOP, VIEW LOOKING SOUTH, SHOWING THE BORING MACHINE PURCHASED IN 1885. THE BIT MAY BE LOWERED BY THE HANGING LINKAGE OR THE TABLE RAISED BY THE FOOT PEDAL. NOTICE THE CHASE FOR THE BELTS, BUILT NO LESS CAREFULLY THAN THE MACHINE ITSELF. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA
JPRS Report, Science & Technology, USSR: Science & Technology Policy..
1987-11-13
is necessary to have for comparison a gauge —"how much he should have done." How to surmount these difficulties is a theme for a separate study. Here...undergo in the shop complete machining, including the milling of complex surfaces, the boring of sockets, grooving, the drilling of holes, including deep...particularly machine building products. Thus, the sectorial ministries are implementing programs of the complete standardization and metrological
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wemple, R.P.; Meyer, R.D.; Jacobson, R.D.
This work in partnership with industry is a continuation of cost- effective innovative, directional boring development begun in FY90 and planed to extend into FY94. Several demonstrations of the strategy of building hybrid hardware from utilities installation, geothermal, and soil mechanics technologies have been performed at Sandia National Laboratories (SNL) and at Charles Machine works (CMW) test sites as well as at a commercial refinery site. Additional tests at the SNL Directional Boring Test Range (DBTR) and a lagoon site are planned in calendar 1991. A new companion project to develop and demonstrate a hybrid capability for horizontal logging withmore » penetrometers, specialty instruments and samplers has been taken from concept to early prototype hardware. The project goal of extending the tracking/locating capability of the shallow boring equipment to 80in. is being pursued with encouraging results at 40in. depths. Boring costs, not including tailored well completions dictated by individual site parameters, are estimated at $20 to $50 per foot. Applications continue to emerge for this work and interest continues to be expressed by DoD and EPA researchers and environmental site engineers. 12 figs.« less
NASA Technical Reports Server (NTRS)
Pettit, Donald R. (Inventor); Penner, Ronald K. (Inventor); Franklin, Larry D. (Inventor); Camarda, Charles J. (Inventor)
2008-01-01
Methods and tool for simultaneously forming a bore in a work piece and forming a series of threads in said bore. In an embodiment, the tool has a predetermined axial length, a proximal end, and a distal end, said tool comprising: a shank located at said proximal end; a pilot drill portion located at said distal end; and a mill portion intermediately disposed between said shank and said pilot drill portion. The mill portion is comprised of at least two drill-tap sections of predetermined axial lengths and at least one transition section of predetermined axial length, wherein each of said at least one transition section is sandwiched between a distinct set of two of said at least two drill-tap sections. The at least two drill-tap sections are formed of one or more drill-tap cutting teeth spirally increasing along said at least two drill-tap sections, wherein said tool is self-advanced in said work piece along said formed threads, and wherein said tool simultaneously forms said bore and said series of threads along a substantially similar longitudinal axis.
Replaceable filters and cones for flared-tubing connectors
NASA Technical Reports Server (NTRS)
Grant, L. E.; Howland, B. T.
1970-01-01
Connector is modified by machining the cone from one end before the fitting is bored to accommodate a metallic-filament type of slip-in filter. Thus, when surface of the cone is damaged, only the cone needs replacement.
NASA Astrophysics Data System (ADS)
Valent, Philip J.; Riggins, Michael
1989-04-01
An overview is given of current and developing technologies and techniques for performing geotechnical investigations for siting and designing Cold Water Pipes (CWP) for shelf-resting Ocean Thermal Energy Conversion (OTEC) power plants. The geotechnical in situ tools used to measure the required parameters and the equipment/systems used to deploy these tools are identified. The capabilities of these geotechnical tools and deployment systems are compared to the data requirements for the CWP foundation/anchor design, and shortfalls are identified. For the last phase of geotechnical data gathering for design, a drillship will be required to perform soil boring work, to obtain required high quality sediment samples for laboratory dynamic testing, and to perform deep penetration in situ tests. To remedy shortfalls and to reduce the future OTEC CWP geotechnical survey costs, it is recommended that a seafloor resting machine be developed to advance the friction cone penetrometer, and also probably a pressuremeter, to provide geotechnical parameters to shallow subseafloor penetrations on slopes of 35 deg and in water depths to 1300 m.
Development of guided horizontal boring tools. Final report, June 1984-March 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, W.J.; Herben, W.C.; Pittard, G.T.
Maurer Engineering Inc. (MEI), under a contract with the Gas Research Institute (GRI), has led a team of research and manufacturing companies with the goal of developing a guided boring tool for installing gas distribution piping. Studies indicated guided horizontal boring systems can provide gas utilities with a more effective and economical method for installing pipe than conventional techniques with a potential cost savings of at least 15% to 50%. A comprehensive state of technology review of horizontal boring tools identified concepts appropriate to being directionally controlled. Development of a universal system was found impractical because the requirements for shortmore » and extended range systems are significantly different. Concepts for steering and tracking were evaluated through lab and field experiments which progressed from proof of concept tests to cooperative field tests with gas utilities at the various stages of system development. The systems were brought to commercial status with needed modifications and the technology transferred to licensees who would market the systems. The program resulted in the development and commercialization of five distinct guided boring system. Pipe can now be installed more rapidly over longer distances with a minimal amount of excavation required for launching and retrieval. This means increased work crew productivity, reduced disturbance to landscaping and environmentally sensitive areas, and reduced traffic disruption and public inconvenience.« less
High performance railgun barrels for laboratory use
NASA Astrophysics Data System (ADS)
Bauer, David P.; Newman, Duane C.
1993-01-01
High performance low-cost, laboratory railgun barrels are now available, comprised of an inherently stiff containment structure which surrounds the bore components machined from 'off the-shelf' materials. The shape of the containment structure was selected to make the barrel inherently stiff. The structure consists of stainless steel laminations which do not compromise the electrical efficiency of the railgun. The modular design enhances the utility of the barrel, as it is easy to service between shots, and can be 're-cored' to produce different configurations and sizes using the same structure. We have produced barrels ranging from 15 mm to 90 mm square bore, a 30 mm round bore, and in lengths varying from 0.25 meters to 10 meters long. Successful tests with both plasma and solid metal armatures have demonstrated the versatility and performance of this design.
PLANING MILL, FIRST FLOOR INTERIOR, LOOKING SOUTH. THE LARGE DEVICE ...
PLANING MILL, FIRST FLOOR INTERIOR, LOOKING SOUTH. THE LARGE DEVICE IS A WHEEL BORING MACHINE USED DURING THE TIME THIS AREA WAS A WHEEL SHOP. - Southern Pacific, Sacramento Shops, Planing Mill, 111 I Street, Sacramento, Sacramento County, CA
Sensors of vibration and acoustic emission for monitoring of boring with skiving cutters
NASA Astrophysics Data System (ADS)
Shamarin, N. N.; Filippov, A. V.; Podgornyh, O. A.; Filippova, E. O.
2017-01-01
Diagnosing processing system conditions is a key area in automation of modern machinery production. The article presents the results of a preliminary experimental research of the boring process using conventional and skiving cutters under the conditions of the low stiffness processing system. Acoustic emission and vibration sensors are used for cutting process diagnosis. Surface roughness after machining is determined using a laser scanning microscope. As a result, it is found that the use of skiving cutters provides greater stability of the cutting process and lower surface roughness as compared with conventional cutters.
A T-Type Capacitive Sensor Capable of Measuring 5-DOF Error Motions of Precision Spindles
Xiang, Kui; Qiu, Rongbo; Mei, Deqing; Chen, Zichen
2017-01-01
The precision spindle is a core component of high-precision machine tools, and the accurate measurement of its error motions is important for improving its rotation accuracy as well as the work performance of the machine. This paper presents a T-type capacitive sensor (T-type CS) with an integrated structure. The proposed sensor can measure the 5-degree-of-freedom (5-DOF) error motions of a spindle in-situ and simultaneously by integrating electrode groups in the cylindrical bore of the stator and the outer end face of its flange, respectively. Simulation analysis and experimental results show that the sensing electrode groups with differential measurement configuration have near-linear output for the different types of rotor displacements. What’s more, the additional capacitance generated by fringe effects has been reduced about 90% with the sensing electrode groups fabricated based on flexible printed circuit board (FPCB) and related processing technologies. The improved signal processing circuit has also been increased one times in the measuring performance and makes the measured differential output capacitance up to 93% of the theoretical values. PMID:28846631
Extruded Tunnel Lining System : Phase 1. Conceptual Design and Feasibility Testing.
DOT National Transportation Integrated Search
1979-09-01
The Extruded Tunnel Lining System (ETLS) has been conceived as a means of continuously placing the final concrete tunnel lining directly behind a tunnel boring machine. The system will shorten the time required to excavate and line a tunnel section, ...
2012-04-01
caliber ammunition that were commercially available were used in this study: (1) lead ball (M33 ball) and (2) armor piercing ( machine hardened steel, M2 ...each test fire. The barrel will be a machined 0.50 caliber, 1 in 15-inch right twist bore, 29-inch length barrel without a muzzle brake; muzzle brake...11 Figure 15. Fired M2 50-caliber round
NASA Astrophysics Data System (ADS)
Zhang, Zhao-Huang; Fei, Sun; Liang, Meng
2016-08-01
At present, disc cutters of a full face rock tunnel boring machine are mostly mounted in the traditional way. Practical use in engineering projects reveals that this installation method not only heavily affects the operation life of disc cutters, but also increases the energy consumption of a full face rock tunnel boring machine. To straighten out this issue, therefore, a rock-breaking model is developed for disc cutters' movement after the research on the rock breaking of forward-slanting disc cutters. Equations of its displacement are established based on the analysis of velocity vector of a disc cutter's rock-breaking point. The functional relations then are brought forward between the displacement parameters of a rock-breaking point and its coordinate through the analysis of micro displacement of a rock-breaking point. Thus, the geometric equations of rock deformation are derived for the forward-slanting installation of disc cutters. With a linear relationship remaining between the acting force and its deformation either before or after the leap breaking, the constitutive relation of rock deformation can be expressed in the form of generalized Hooke law, hence the comparative analysis of the variation in the resistance of rock to the disc cutters mounted in the forward-slanting way with that in the traditional way. It is discovered that with the same penetration, strain of the rock in contact with forward-slanting disc cutters is apparently on the decline, in other words, the resistance of rock to disc cutters is reduced. Thus wear of disc cutters resulted from friction is lowered and energy consumption is correspondingly decreased. It will be useful for the development of installation and design theory of disc cutters, and significant for the breakthrough in the design of full face rock tunnel boring machine.
Engineer Design of a Mono-Mooring System.
1966-01-01
swivels . When asked whether the bogie rails were machined by a large radius boring mill , Mr. Coombe indicated that these rails are rolled then V welded...lifted aboard the transp ort vessel , the disposi- tion of the various system compo- nents shall be as follows: 1. Buoy shall be complete , with...tugboat , equipped with towing winch or pow9r capstan , LOA 110 ’ — 120’, twin screw; BHP-l000 minimum . 7. It has been assumed that weld- ing machines
NASA Astrophysics Data System (ADS)
Schaeffer, Kevin P.
Tunnel boring machines (TBMs) are routinely used for the excavation of tunnels across a range of ground conditions, from hard rock to soft ground. In complex ground conditions and in urban environments, the TBM susceptible to damage due to uncertainty of what lies ahead of the tunnel face. The research presented here explores the application of electrical resistivity theory for use in the TBM tunneling environment to detect changing conditions ahead of the machine. Electrical resistivity offers a real-time and continuous imaging solution to increase the resolution of information along the tunnel alignment and may even unveil previously unknown geologic or man-made features ahead of the TBM. The studies presented herein, break down the tunneling environment and the electrical system to understand how its fundamental parameters can be isolated and tested, identifying how they influence the ability to predict changes ahead of the tunnel face. A proof-of-concept, scaled experimental model was constructed in order assess the ability of the model to predict a metal pipe (or rod) ahead of face as the TBM excavates through a saturated sand. The model shows that a prediction of up to three tunnel diameters could be achieved, but the unique presence of the pipe (or rod) could not be concluded with certainty. Full scale finite element models were developed in order evaluate the various influences on the ability to detect changing conditions ahead of the face. Results show that TBM/tunnel geometry, TBM type, and electrode geometry can drastically influence prediction ahead of the face by tens of meters. In certain conditions (i.e., small TBM diameter, low cover depth, large material contrasts), changes can be detected over 100 meters in front of the TBM. Various electrode arrays were considered and show that in order to better detect more finite differences (e.g., boulder, lens, pipe), the use of individual cutting tools as electrodes is highly advantageous to increase spatial resolution and current density close to the cutterhead.
A new Wankel-type compressor and vacuum pump
NASA Astrophysics Data System (ADS)
Garside, D. W.
2017-08-01
When the Wankel principles were first published in the early 1950s most of the initial work was aimed at developing a compressor . At that time many of the characteristics appeared to promise a superior machine than hitherto known. However, all the early designs resulted in a high value for the minimum clearance volume (CV) and this problem was never overcome. Knowledge now gained from the development and manufacture of the Wankel engine has enabled the evolution of a new compressor concept where the rotor flank, radially very close-fitting over its central area, provides gas sealing with the housing bore. The rotor has an increased radial clearance towards the apices which makes the machine practical to manufacture. The ‘nesting’ of the rotor flank with the housing bore at the end of the exhaust stroke results in an extremely small CV. This machine promises to possess an exceptional combination of all the attributes which are important in achieving high energy efficiency in positive-displacement compressors and vacuum pumps: - near-zero CV - low mechanical friction losses - low internal gas leakage (assisted via oil flooding) - high volumetric efficiency. In addition it is compact, lightweight, vibration-free, consists of few components, and can be built in any chamber size. The Paper discusses the features and characteristics of the design.
Learning micro incision surgery without the learning curve
Navin, Shoba; Parikh, Rajul
2008-01-01
We describe a method of learning micro incision cataract surgery painlessly with the minimum of learning curves. A large-bore or standard anterior chamber maintainer (ACM) facilitates learning without change of machine or preferred surgical technique. Experience with the use of an ACM during phacoemulsification is desirable. PMID:18292624
NASA Astrophysics Data System (ADS)
Dutta, N. G.
2012-11-01
Bharatiya Nabhikiya Vidyut Nigam (BHAVINI) is engaged in construction of 500MW Prototype Fast Breeder Reactor (PFBR) at Kalpak am, Chennai. In this very important and prestigious national programme Special Product Division (SPD) of M/s Kay Bouvet Engg.pvt. ltd. (M/s KBEPL) Satara is contributing in a major way by supplying many important sub-assemblies like- Under Water trolley (UWT), Airlocks (PAL, EAL) Container and Storage Rack (CSR) Vessels in Fuel Transfer Cell (FTC) etc for PFBR. SPD of KBEPL caters to the requirements of Government departments like - Department of Atomic Energy (DAE), BARC, Defense, and Government undertakings like NPCIL, BHAVINI, BHEL etc. and other precision Heavy Engg. Industries. SPD is equipped with large size Horizontal Boring Machines, Vertical Boring Machines, Planno milling, Vertical Turret Lathe (VTL) & Radial drilling Machine, different types of welding machines etc. PFBR is 500 MWE sodium cooled pool type reactor in which energy is produced by fissions of mixed oxides of Uranium and Plutonium pellets by fast neutrons and it also breeds uranium by conversion of thorium, put along with fuel rod in the reactor. In the long run, the breeder reactor produces more fuel then it consumes. India has taken the lead to go ahead with Fast Breeder Reactor Programme to produce electricity primarily because India has large reserve of Thorium. To use Thorium as further fuel in future, thorium has to be converted in Uranium by PFBR Technology.
Method and apparatus for transmitting and receiving data to and from a downhole tool
Hall, David R.; Fox, Joe
2007-03-13
A transmission line network system for transmitting and/or receiving data from a downhole tool. The invention is achieved by providing one or more transceiving elements, preferably rings, at either end of a downhole tool. A conduit containing a coaxial cable capable of communicating an electrical signal is attached to the transceiving element and extends through a central bore of the downhole tool and through the central bore of any tool intermediate the first transceiving element and a second transceiving element. Upon receiving an electrical signal from the cable, the second transceiving element may convert such signal to a magnetic field. The magnetic field may be detected by a third transceiving element in close proximity to the second transceiving element. In this manner, many different tools may be included in a downhole transmission network without requiring substantial modification, if any, of any particular tool.
Optical probe for porosity defect detection on inner diameter surfaces of machined bores
NASA Astrophysics Data System (ADS)
Kulkarni, Ojas P.; Islam, Mohammed N.; Terry, Fred L.
2010-12-01
We demonstrate an optical probe for detection of porosity inside spool bores of a transmission valve body with diameters down to 5 mm. The probe consists of a graded-index relay rod that focuses a laser beam spot onto the inner surface of the bore. Detectors, placed in the specular and grazing directions with respect to the incident beam, measure the change in scattered intensity when a surface defect is encountered. Based on the scattering signatures in the two directions, the system can also validate the depth of the defect and distinguish porosity from bump-type defects coming out of the metal surface. The system can detect porosity down to a 50-μm lateral dimension and ~40 μm in depth with >3-dB contrast over the background intensity fluctuations. Porosity detection systems currently use manual inspection techniques on the plant floor, and the demonstrated probe provides a noncontact technique that can help automotive manufacturers meet high-quality standards during production.
Whet Students' Appetites with Food-Related Drafting Project
ERIC Educational Resources Information Center
Pucillo, John M.
2010-01-01
Students sometimes find introductory drafting and design a boring subject. They must learn the basic skills necessary for drafting and architecture and this may require repetition in order to reinforce those skills. One way to keep students interested is to have them draw objects they encounter in their own lives instead of abstract machine parts…
Electrical Discharge Machining (EDM) Gun Barrel Bore and Rifling Feasibility Study
1974-09-01
11 I + | , + + in cri es sss asa f^piis aisa -^ nro^ HH^ S I I + VD 1X> ^3 Wfl ^mvo ^00...and high erosion rates encountered in high performance gun designs such as the GAU-7/A DD , :°N RM73 1473 EDITION OF 1 NOV 65 IS OBSOLETE
DOT National Transportation Integrated Search
1978-12-01
This study is the final phase of a muck pipeline program begun in 1973. The objective of the study was to evaluate a pneumatic pipeline system for muck haulage from a tunnel excavated by a tunnel boring machine. The system was comprised of a muck pre...
40 CFR 63.10685 - What are the requirements for the control of contaminants from scrap?
Code of Federal Regulations, 2013 CFR
2013-07-01
... not charge to a furnace metallic scrap that contains scrap from motor vehicle bodies, engine blocks... vehicle bodies, engine blocks, oil filters, oily turnings, machine shop borings, transformers or... restriction does not apply to any post-consumer engine blocks, post-consumer oil filters, or oily turnings...
40 CFR 63.10685 - What are the requirements for the control of contaminants from scrap?
Code of Federal Regulations, 2012 CFR
2012-07-01
... not charge to a furnace metallic scrap that contains scrap from motor vehicle bodies, engine blocks... vehicle bodies, engine blocks, oil filters, oily turnings, machine shop borings, transformers or... restriction does not apply to any post-consumer engine blocks, post-consumer oil filters, or oily turnings...
40 CFR 63.10685 - What are the requirements for the control of contaminants from scrap?
Code of Federal Regulations, 2014 CFR
2014-07-01
... not charge to a furnace metallic scrap that contains scrap from motor vehicle bodies, engine blocks... vehicle bodies, engine blocks, oil filters, oily turnings, machine shop borings, transformers or... restriction does not apply to any post-consumer engine blocks, post-consumer oil filters, or oily turnings...
NASA Astrophysics Data System (ADS)
Blau, P. J.; Howe, J. Y.; Coffey, D. W.; Trejo, R. M.; Kenik, E. D.; Jolly, B. C.; Yang, N.
2012-08-01
Fine holes in metal alloys are employed for many important technological purposes, including cooling and the precise atomization of liquids. For example, they play an important role in the metering and delivery of fuel to the combustion chambers in energy-efficient, low-emission diesel engines. Electro-discharge machining (EDM) is one process employed to produce such holes. Since the hole shape and bore morphology can affect fluid flow, and holes also represent structural discontinuities in the tips of the spray nozzles, it is important to understand the microstructures adjacent to these holes, the features of the hole walls, and the nanomechanical properties of the material that was in some manner altered by the EDM hole-making process. Several techniques were used to characterize the structure and properties of spray-holes in a commercial injector nozzle. These include scanning electron microscopy, cross sectioning and metallographic etching, bore surface roughness measurements by optical interferometry, scanning electron microscopy, and transmission electron microscopy of recast EDM layers extracted with the help of a focused ion beam.
Lin, Jiarui; Gao, Kai; Gao, Yang; Wang, Zheng
2017-10-01
In order to detect the position of the cutting shield at the head of a double shield tunnel boring machine (TBM) during the excavation, this paper develops a combined measurement system which is mainly composed of several optical feature points, a monocular vision sensor, a laser target sensor, and a total station. The different elements of the combined system are mounted on the TBM in suitable sequence, and the position of the cutting shield in the reference total station frame is determined by coordinate transformations. Subsequently, the structure of the feature points and matching technique for them are expounded, the position measurement method based on monocular vision is presented, and the calibration methods for the unknown relationships among different parts of the system are proposed. Finally, a set of experimental platforms to simulate the double shield TBM is established, and accuracy verification experiments are conducted. Experimental results show that the mean deviation of the system is 6.8 mm, which satisfies the requirements of double shield TBM guidance.
A survey on adaptive engine technology for serious games
NASA Astrophysics Data System (ADS)
Rasim, Langi, Armein Z. R.; Munir, Rosmansyah, Yusep
2016-02-01
Serious Games has become a priceless tool in learning because it can simulate abstract concept to appear more realistic. The problem faced is that the players have different ability in playing the games. This causes the players to become frustrated if the game is too difficult or to get bored if it is too easy. Serious games have non-player character (NPC) in it. The NPC should be able to adapt to the players in such a way so that the players can feel comfortable in playing the games. Because of that, serious games development must involve an adaptive engine, which is by applying a learning machine that can adapt to different players. The development of adaptive engine can be viewed in terms of the frameworks and the algorithms. Frameworks include rules based, plan based, organization description based, proficiency of player based, and learning style and cognitive state based. Algorithms include agents based and non-agent based
Glatthorn, Raymond H.
1986-01-01
A cam-controlled boring bar system (100) includes a first housing (152) which is rotatable about its longitudinal axis (154), and a second housing in the form of a cam-controlled slide (158) which is also rotatable about the axis (154) as well as being translatable therealong. A tool-holder (180) is mounted within the slide (158) for holding a single point cutting tool. Slide (158) has a rectangular configuration and is disposed within a rectangularly configured portion of the first housing (152). Arcuate cam slots (192) are defined within a side plate (172) of the housing (152), while cam followers (194) are mounted upon the cam slide (158) for cooperative engagement with the cam slots (192). In this manner, as the housing (152) and slide (158) rotate, and as the slide (158) also translates, a through-bore (14) having an hourglass configuration will be formed within a workpiece (16) which may be, for example, a nuclear reactor steam generator tube support plate.
Testing of an actively damped boring bar featuring structurally integrated PZT stack actuators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redmond, J.; Barney, P.
This paper summarizes the results of cutting tests performed using an actively damped boring bar to minimize chatter in metal cutting. A commercially available 2 inch diameter boring bar was modified to incorporate PZT stack actuators for controlling tool bending vibrations encountered during metal removal. The extensional motion of the actuators induce bending moments in the host structure through a two-point preloaded mounting scheme. Cutting tests performed at various speeds and depths of cuts on a hardened steel workpiece illustrate the bar`s effectiveness toward eliminating chatter vibrations and improving workpiece surface finish.
Modified soldering iron speeds cutting of synthetic materials
NASA Technical Reports Server (NTRS)
Schafer, W. G., Jr.
1966-01-01
Modified soldering iron cuts large lots of synthetic materials economically without leaving frayed or jagged edges. The soldering iron is modified by machining an axial slot in its heating element tip and mounting a cutting disk in it. An alternate design has an axially threaded bore in the tip to permit the use of various shapes of cutting blades.
Yu, Bin-Sheng; Yang, Zhan-Kun; Li, Ze-Min; Zeng, Li-Wen; Wang, Li-Bing; Lu, William Weijia
2011-08-01
An in vitro biomechanical cadaver study. To evaluate the pull-out strength after 5000 cyclic loading among 4 revision techniques for the loosened iliac screw using corticocancellous bone, longer screw, traditional cement augmentation, and boring cement augmentation. Iliac screw loosening is still a clinical problem for lumbo-iliac fusion. Although many revision techniques using corticocancellous bone, larger screw, and polymethylmethacrylate (PMMA) augmentation were applied in repairing pedicle screw loosening, their biomechanical effects on the loosened iliac screw remain undetermined. Eight fresh human cadaver pelvises with the bone mineral density values ranging from 0.83 to 0.97 g/cm were adopted in this study. After testing the primary screw of 7.5 mm diameter and 70 mm length, 4 revision techniques were sequentially established and tested on the same pelvis as follows: corticocancellous bone, longer screw with 100 mm length, traditional PMMA augmentation, and boring PMMA augmentation. The difference of the boring technique from traditional PMMA augmentation is that PMMA was injected into the screw tract through 3 boring holes of outer cortical shell without removing the screw. On an MTS machine, after 5000 cyclic compressive loading of -200∼-500 N to the screw head, axial maximum pull-out strengths of the 5 screws were measured and analyzed. The pull-out strengths of the primary screw and 4 revised screws with corticocancellous bone, longer screw and traditional and boring PMMA augmentation were 1167 N, 361 N, 854 N, 1954 N, and 1820 N, respectively. Although longer screw method obtained significantly higher pull-out strength than corticocancellous bone (P<0.05), the revised screws using these 2 techniques exhibited notably lower pull-out strength than the primary screw and 2 PMMA-augmented screws (P<0.05). Either traditional or boring PMMA screw showed obviously higher pull-out strength than the primary screw (P<0.05); however, no significant difference of pull-out strength was detected between the 2 PMMA screws (P>0.05). Wadding corticocancellous bone and increasing screw length failed to provide sufficient anchoring strength for a loosened iliac screw; however, both traditional and boring PMMA-augmented techniques could effectively increase the fixation strength. On the basis of the viewpoint of minimal invasion, the boring PMMA augmentation may serve as a suitable salvage technique for iliac screw loosening.
Cutting holes in fabric-faced panels
NASA Technical Reports Server (NTRS)
Peterson, S. A.
1981-01-01
Tool has 2 carbide inserts that bore clean holes through fibrous material with knifelike slicing action. Cutting edge of insert is curved, with plane inner surface at 30 degree angle to tool axis. Drill press or hand-held drill can be used to hold cutting tool.
Effects of Process Parameters on Ultrasonic Micro-Hole Drilling in Glass and Ruby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schorderet, Alain; Deghilage, Emmanuel; Agbeviade, Kossi
2011-05-04
Brittle materials such as ceramics, glasses and oxide single crystals find increasing applications in advanced micro-engineering products. Machining small features in such materials represents a manufacturing challenge. Ultrasonic drilling constitutes a promising technique for realizing simple micro-holes of high diameter-to-depth ratio. The process involves impacting abrasive particles in suspension in a liquid slurry between tool and work piece. Among the process performance criteria, the drilling time (productivity) is one of the most important quantities to evaluate the suitability of the process for industrial applications.This paper summarizes recent results pertaining to the ultrasonic micro-drilling process obtained with a semi-industrial 3-axis machine.more » The workpiece is vibrated at 40 kHz frequency with an amplitude of several micrometers. A voice-coil actuator and a control loop based on the drilling force impose the tool feed. In addition, the tool is rotated at a prescribed speed to improve the drilling speed as well as the hole geometry. Typically, a WC wire serves as tool to bore 200 {mu}m diameter micro-holes of 300 to 1,000 {mu}m depth in glass and ruby. The abrasive slurry contains B4C particles of 1 {mu}m to 5 {mu}m diameter in various concentrations.This paper discusses, on the basis of the experimental results, the influence of several parameters on the drilling time. First, the results show that the control strategy based on the drilling force allows to reach higher feed rates (avoiding tool breakage). Typically, a 8 um/s feed rate is achieved with glass and 0.9 {mu}m/s with ruby. Tool rotation, even for values as low as 50 rpm, increases productivity and improves holes geometry. Drilling with 1 {mu}m and 5 {mu}m B4C particles yields similar productivity results. Our future research will focus on using the presented results to develop a model that can serve to optimize the process for different applications.« less
Research and development of energy-efficient high back-pressure compressor
NASA Astrophysics Data System (ADS)
1983-09-01
Improved-efficiency compressors were developed in four capacity sizes. Changes to the baseline compressor were made to the motors, valve plates, and mufflers. The adoption of a slower running speed compressor required larger displacements to maintain the desired capacity. This involved both bore and stroke modifications. All changes that were made to the compressor are readily adaptable to manufacture. Prototype compressors were built and tested. The largest capacity size (4000 Btu/h) was selected for testing in a vending machine. Additional testing was performed on the prototype compressors in order to rate them on an alternate refrigerant. A market analysis was performed to determine the potential acceptance of the improved-efficiency machines by a vending machine manufacturer, who supplies a retail sales system of a major soft drink company.
Hybrid MRI-Ultrasound acquisitions, and scannerless real-time imaging.
Preiswerk, Frank; Toews, Matthew; Cheng, Cheng-Chieh; Chiou, Jr-Yuan George; Mei, Chang-Sheng; Schaefer, Lena F; Hoge, W Scott; Schwartz, Benjamin M; Panych, Lawrence P; Madore, Bruno
2017-09-01
To combine MRI, ultrasound, and computer science methodologies toward generating MRI contrast at the high frame rates of ultrasound, inside and even outside the MRI bore. A small transducer, held onto the abdomen with an adhesive bandage, collected ultrasound signals during MRI. Based on these ultrasound signals and their correlations with MRI, a machine-learning algorithm created synthetic MR images at frame rates up to 100 per second. In one particular implementation, volunteers were taken out of the MRI bore with the ultrasound sensor still in place, and MR images were generated on the basis of ultrasound signal and learned correlations alone in a "scannerless" manner. Hybrid ultrasound-MRI data were acquired in eight separate imaging sessions. Locations of liver features, in synthetic images, were compared with those from acquired images: The mean error was 1.0 pixel (2.1 mm), with best case 0.4 and worst case 4.1 pixels (in the presence of heavy coughing). For results from outside the bore, qualitative validation involved optically tracked ultrasound imaging with/without coughing. The proposed setup can generate an accurate stream of high-speed MR images, up to 100 frames per second, inside or even outside the MR bore. Magn Reson Med 78:897-908, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Borehole geological assessment
NASA Technical Reports Server (NTRS)
Spuck, W. H., III (Inventor)
1979-01-01
A method and apparatus are discussed for performing geological assessments of a formation located along a borehole, and a boring tool that bores a pair of holes into the walls of the borehole and into the surrounding strata along with a pair of probes which are installed in the holes. One of the probes applies an input such as a current or pressured fluid, and the other probe senses a corresponding input which it receives from the strata.
Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.
2000-01-01
A fluid-sampling tool for obtaining a fluid sample from a container. When used in combination with a rotatable drill, the tool bores a hole into a container wall, withdraws a fluid sample from the container, and seals the borehole. The tool collects fluid sample without exposing the operator or the environment to the fluid or to wall shavings from the container.
ERIC Educational Resources Information Center
Saavedra Montes, A. J.; Botero Castro, H. A.; Hernandez Riveros, J. A.
2010-01-01
Many laboratory courses have become iterative processes in which students only seek to meet the requirements and pass the course. Some students believe these courses are boring and do not give them training as engineers. To provide a solution to the poor motivation of students in laboratories with few resources, this work proposes the method…
Method and apparatus for characterizing and enhancing the dynamic performance of machine tools
Barkman, William E; Babelay, Jr., Edwin F
2013-12-17
Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include dynamic one axis positional accuracy of the machine tool, dynamic cross-axis stability of the machine tool, and dynamic multi-axis positional accuracy of the machine tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and for improving remediation of contaminated sites. Termed "hydrophysical logging," this technology is based on the concept of measuring repeated depth profiles of fluid electric conductivity in a borehole that is pumping. As fluid enters the wellbore, its distinct electric conductivity causes peaks in the conductivity log that grow and migrate upward with time. Analysis of the evolution of the peaks enables characterization of groundwater flow distribution more quickly, more cost effectively, and with higher resolutionmore » than ever before. Combining the unique interpretation software Bore II with advanced downhole instrumentation (the hydrophysical logging tool), the method quantifies inflow and outflow locations, their associated flow rates, and the basic water quality parameters of the associated formation waters (e.g., pH, oxidation-reduction potential, temperature). In addition, when applied in conjunction with downhole fluid sampling, Bore II makes possible a complete assessment of contaminant concentration within groundwater.« less
Assembly for facilitating inservice inspection of a reactor coolant pump rotor
Veronesi, Luciano
1990-01-01
A reactor coolant pump has an outer casing with an internal cavity holding a coolant and a rotor rotatably mounted in the cavity within the coolant. An assembly for permitting inservice inspection of the pump rotor without first draining the coolant from the casing cavity is attached to an end of the pump. A cylindrical bore is defined through the casing in axial alignment with an end of pump rotor and opening into the internal cavity. An extension attached on the rotor end and rotatable therewith has a cylindrical coupler member extending into the bore. An outer end of the coupler member has an element configured to receive a tool for performance of inservice rotor inspection. A hollow cylindrical member is disposed in the bore and surrounds the coupler member. The cylindrical member is slidably movable relative to the coupler member along the bore between a retracted position wherein the cylindrical member is stored for normal pump operation and an extended position wherein the cylindrical member is extended for permitting inservice rotor inspection. A cover member is detachably and sealably attached to the casing across the bore for closing the bore and retaining the cylindrical member at its retracted position for normal pump operation. Upon detachment of the cover member, the cylindrical member can be extended to permit inservice rotor inspection.
NASA Astrophysics Data System (ADS)
Kumar, R.; Sulaiman, E.; Soomro, H. A.; Jusoh, L. I.; Bahrim, F. S.; Omar, M. F.
2017-08-01
The recent change in innovation and employments of high-temperature magnets, permanent magnet flux switching machine (PMFSM) has turned out to be one of the suitable contenders for seaward boring, however, less intended for downhole because of high atmospheric temperature. Subsequently, this extensive review manages the design enhancement and performance examination of external rotor PMFSM for the downhole application. Preparatory, the essential design parameters required for machine configuration are computed numerically. At that point, the design enhancement strategy is actualized through deterministic technique. At last, preliminary and refined execution of the machine is contrasted and as a consequence, the yield torque is raised from 16.39Nm to 33.57Nm while depreciating the cogging torque and PM weight up to 1.77Nm and 0.79kg, individually. In this manner, it is inferred that purposed enhanced design of 12slot-22pole with external rotor is convenient for the downhole application.
An investigation of chatter and tool wear when machining titanium
NASA Technical Reports Server (NTRS)
Sutherland, I. A.
1974-01-01
The low thermal conductivity of titanium, together with the low contact area between chip and tool and the unusually high chip velocities, gives rise to high tool tip temperatures and accelerated tool wear. Machining speeds have to be considerably reduced to avoid these high temperatures with a consequential loss of productivity. Restoring this lost productivity involves increasing other machining variables, such as feed and depth-of-cut, and can lead to another machining problem commonly known as chatter. This work is to acquaint users with these problems, to examine the variables that may be encountered when machining a material like titanium, and to advise the machine tool user on how to maximize the output from the machines and tooling available to him. Recommendations are made on ways of improving tolerances, reducing machine tool instability or chatter, and improving productivity. New tool materials, tool coatings, and coolants are reviewed and their relevance examined when machining titanium.
NASA Astrophysics Data System (ADS)
Sivarami Reddy, N.; Ramamurthy, D. V., Dr.; Prahlada Rao, K., Dr.
2017-08-01
This article addresses simultaneous scheduling of machines, AGVs and tools where machines are allowed to share the tools considering transfer times of jobs and tools between machines, to generate best optimal sequences that minimize makespan in a multi-machine Flexible Manufacturing System (FMS). Performance of FMS is expected to improve by effective utilization of its resources, by proper integration and synchronization of their scheduling. Symbiotic Organisms Search (SOS) algorithm is a potent tool which is a better alternative for solving optimization problems like scheduling and proven itself. The proposed SOS algorithm is tested on 22 job sets with makespan as objective for scheduling of machines and tools where machines are allowed to share tools without considering transfer times of jobs and tools and the results are compared with the results of existing methods. The results show that the SOS has outperformed. The same SOS algorithm is used for simultaneous scheduling of machines, AGVs and tools where machines are allowed to share tools considering transfer times of jobs and tools to determine the best optimal sequences that minimize makespan.
The dynamic analysis of drum roll lathe for machining of rollers
NASA Astrophysics Data System (ADS)
Qiao, Zheng; Wu, Dongxu; Wang, Bo; Li, Guo; Wang, Huiming; Ding, Fei
2014-08-01
An ultra-precision machine tool for machining of the roller has been designed and assembled, and due to the obvious impact which dynamic characteristic of machine tool has on the quality of microstructures on the roller surface, the dynamic characteristic of the existing machine tool is analyzed in this paper, so is the influence of circumstance that a large scale and slender roller is fixed in the machine on dynamic characteristic of the machine tool. At first, finite element model of the machine tool is built and simplified, and based on that, the paper carries on with the finite element mode analysis and gets the natural frequency and shaking type of four steps of the machine tool. According to the above model analysis results, the weak stiffness systems of machine tool can be further improved and the reasonable bandwidth of control system of the machine tool can be designed. In the end, considering the shock which is caused by Z axis as a result of fast positioning frequently to feeding system and cutting tool, transient analysis is conducted by means of ANSYS analysis in this paper. Based on the results of transient analysis, the vibration regularity of key components of machine tool and its impact on cutting process are explored respectively.
Motorized wellbore fishing tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, L.E.; Schasteen, T.
1989-08-15
This patent describes a fishing tool for retrieving an article located in a wellbore, wherein the fishing tool may be lowered into the wellbore by means connected to one end of the fishing tool. The fishing tool comprising: an elongated tubular body; an inner sleeve member secured to the body and extending axially within the body; a ball key disposed within each of the openings and movable at least partially into the bore in locking registration with a fishing head connected to the article; an outer sleeve member disposed in sleeved relationship around the inner sleeve member and movable axiallymore » between first and second positions with respect to the inner sleeve member. The outer sleeve member being operable to prevent, in the first position, radial outward movement of the ball keys out of the bore. The outer sleeve member including recess means formed thereon such that in the second position of the outer sleeve member the recess means is adjacent to the circumferentially spaced openings to allow limited radial outward movement of the ball keys; and means for axially moving the outer sleeve member between the first and second positions for engaging and releasing the fishing head with respect to the tool.« less
Actualities and Development of Heavy-Duty CNC Machine Tool Thermal Error Monitoring Technology
NASA Astrophysics Data System (ADS)
Zhou, Zu-De; Gui, Lin; Tan, Yue-Gang; Liu, Ming-Yao; Liu, Yi; Li, Rui-Ya
2017-09-01
Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures introducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature monitoring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing technology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articles to guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.
Quality Designed Twin Wire Arc Spraying of Aluminum Bores
NASA Astrophysics Data System (ADS)
König, Johannes; Lahres, Michael; Methner, Oliver
2015-01-01
After 125 years of development in combustion engines, the attractiveness of these powerplants still gains a great deal of attention. The efficiency of engines has been increased continuously through numerous innovations during the last years. Especially in the field of motor engineering, consequent friction optimization leads to cost-effective fuel consumption advantages and a CO2 reduction. This is the motivation and adjusting lever of NANOSLIDE® from Mercedes-Benz. The twin wire arc-spraying process of the aluminum bore creates a thin, iron-carbon-alloyed coating which is surface-finished through honing. Due to the continuous development in engines, the coating strategies must be adapted in parallel to achieve a quality-conformed coating result. The most important factors to this end are the controlled indemnification of a minimal coating thickness and a homogeneous coating deposition of the complete bore. A specific system enables the measuring and adjusting of the part and the central plunging of the coating torch into the bore to achieve a homogeneous coating thickness. Before and after measurement of the bore diameter enables conclusions about the coating thickness. A software tool specifically developed for coating deposition can transfer this information to a model that predicts the coating deposition as a function of the coating strategy.
[Research on infrared safety protection system for machine tool].
Zhang, Shuan-Ji; Zhang, Zhi-Ling; Yan, Hui-Ying; Wang, Song-De
2008-04-01
In order to ensure personal safety and prevent injury accident in machine tool operation, an infrared machine tool safety system was designed with infrared transmitting-receiving module, memory self-locked relay and voice recording-playing module. When the operator does not enter the danger area, the system has no response. Once the operator's whole or part of body enters the danger area and shades the infrared beam, the system will alarm and output an control signal to the machine tool executive element, and at the same time, the system makes the machine tool emergency stop to prevent equipment damaged and person injured. The system has a module framework, and has many advantages including safety, reliability, common use, circuit simplicity, maintenance convenience, low power consumption, low costs, working stability, easy debugging, vibration resistance and interference resistance. It is suitable for being installed and used in different machine tools such as punch machine, pour plastic machine, digital control machine, armor plate cutting machine, pipe bending machine, oil pressure machine etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.
1980-10-22
The Machine Tool Task Force (MTTF) is a multidisciplined team of international experts, whose mission was to investigate the state of the art of machine tool technology, to identify promising future directions of that technology for both the US government and private industry, and to disseminate the findings of its research in a conference and through the publication of a final report. MTTF was a two and one-half year effort that involved the participation of 122 experts in the specialized technologies of machine tools and in the management of machine tool operations. The scope of the MTTF was limited tomore » cutting-type or material-removal-type machine tools, because they represent the major share and value of all machine tools now installed or being built. The activities of the MTTF and the technical, commercial and economic signifiance of recommended activities for improving machine tool technology are discussed. (LCL)« less
Mechanics of Cutting and Boring. Part 5. Dynamics and Energetics of Identation Tools,
1980-09-01
51 Action of a studded disc .................................................................................................... 53 Action of a...toothed cutter .................................................................................................. 55 Forces on a studded disc...59 Energetics of a studded disc
Towards a generalized energy prediction model for machine tools
Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H.; Dornfeld, David A.; Helu, Moneer; Rachuri, Sudarsan
2017-01-01
Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process. PMID:28652687
Towards a generalized energy prediction model for machine tools.
Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H; Dornfeld, David A; Helu, Moneer; Rachuri, Sudarsan
2017-04-01
Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process.
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the course sequences in the machine tool operation/machine tool and tool and die making technology programs cluster. Presented in the introductory section are a framework of courses and programs, description of the…
Chip breaking system for automated machine tool
Arehart, Theodore A.; Carey, Donald O.
1987-01-01
The invention is a rotary selectively directional valve assembly for use in an automated turret lathe for directing a stream of high pressure liquid machining coolant to the interface of a machine tool and workpiece for breaking up ribbon-shaped chips during the formation thereof so as to inhibit scratching or other marring of the machined surfaces by these ribbon-shaped chips. The valve assembly is provided by a manifold arrangement having a plurality of circumferentially spaced apart ports each coupled to a machine tool. The manifold is rotatable with the turret when the turret is positioned for alignment of a machine tool in a machining relationship with the workpiece. The manifold is connected to a non-rotational header having a single passageway therethrough which conveys the high pressure coolant to only the port in the manifold which is in registry with the tool disposed in a working relationship with the workpiece. To position the machine tools the turret is rotated and one of the tools is placed in a material-removing relationship of the workpiece. The passageway in the header and one of the ports in the manifold arrangement are then automatically aligned to supply the machining coolant to the machine tool workpiece interface for breaking up of the chips as well as cooling the tool and workpiece during the machining operation.
Locating scatterers while drilling using seismic noise due to tunnel boring machine
NASA Astrophysics Data System (ADS)
Harmankaya, U.; Kaslilar, A.; Wapenaar, K.; Draganov, D.
2018-05-01
Unexpected geological structures can cause safety and economic risks during underground excavation. Therefore, predicting possible geological threats while drilling a tunnel is important for operational safety and for preventing expensive standstills. Subsurface information for tunneling is provided by exploratory wells and by surface geological and geophysical investigations, which are limited by location and resolution, respectively. For detailed information about the structures ahead of the tunnel face, geophysical methods are applied during the tunnel-drilling activity. We present a method inspired by seismic interferometry and ambient-noise correlation that can be used for detecting scatterers, such as boulders and cavities, ahead of a tunnel while drilling. A similar method has been proposed for active-source seismic data and validated using laboratory and field data. Here, we propose to utilize the seismic noise generated by a Tunnel Boring Machine (TBM), and recorded at the surface. We explain our method at the hand of data from finite-difference modelling of noise-source wave propagation in a medium where scatterers are present. Using the modelled noise records, we apply cross-correlation to obtain correlation gathers. After isolating the scattered arrivals in these gathers, we cross-correlate again and invert for the correlated traveltime to locate scatterers. We show the potential of the method for locating the scatterers while drilling using noise records due to TBM.
NASA Astrophysics Data System (ADS)
Budi Harja, Herman; Prakosa, Tri; Raharno, Sri; Yuwana Martawirya, Yatna; Nurhadi, Indra; Setyo Nogroho, Alamsyah
2018-03-01
The production characteristic of job-shop industry at which products have wide variety but small amounts causes every machine tool will be shared to conduct production process with dynamic load. Its dynamic condition operation directly affects machine tools component reliability. Hence, determination of maintenance schedule for every component should be calculated based on actual usage of machine tools component. This paper describes study on development of monitoring system to obtaining information about each CNC machine tool component usage in real time approached by component grouping based on its operation phase. A special device has been developed for monitoring machine tool component usage by utilizing usage phase activity data taken from certain electronics components within CNC machine. The components are adaptor, servo driver and spindle driver, as well as some additional components such as microcontroller and relays. The obtained data are utilized for detecting machine utilization phases such as power on state, machine ready state or spindle running state. Experimental result have shown that the developed CNC machine tool monitoring system is capable of obtaining phase information of machine tool usage as well as its duration and displays the information at the user interface application.
Research on the tool holder mode in high speed machining
NASA Astrophysics Data System (ADS)
Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao
2018-03-01
High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.
Hanlon, John A.; Gill, Timothy J.
2001-01-01
Machine tools can be accurately measured and positioned on manufacturing machines within very small tolerances by use of an autocollimator on a 3-axis mount on a manufacturing machine and positioned so as to focus on a reference tooling ball or a machine tool, a digital camera connected to the viewing end of the autocollimator, and a marker and measure generator for receiving digital images from the camera, then displaying or measuring distances between the projection reticle and the reference reticle on the monitoring screen, and relating the distances to the actual position of the autocollimator relative to the reference tooling ball. The images and measurements are used to set the position of the machine tool and to measure the size and shape of the machine tool tip, and examine cutting edge wear. patent
Micro electrical discharge milling using deionized water as a dielectric fluid
NASA Astrophysics Data System (ADS)
Chung, Do Kwan; Kim, Bo Hyun; Chu, Chong Nam
2007-05-01
In electrical discharge machining, dielectric fluid is an important factor affecting machining characteristics. Generally, kerosene and deionized water have been used as dielectric fluids. In micro electrical discharge milling, which uses a micro electrode as a tool, the wear of the tool electrode decreases the machining accuracy. However, the use of deionized water instead of kerosene can reduce the tool wear and increase the machining speed. This paper investigates micro electrical discharge milling using deionized water. Deionized water with high resistivity was used to minimize the machining gap. Machining characteristics such as the tool wear, machining gap and machining rate were investigated according to resistivity of deionized water. As the resistivity of deionized water decreased, the tool wear was reduced, but the machining gap increased due to electrochemical dissolution. Micro hemispheres were machined for the purpose of investigating machining efficiency between dielectric fluids, kerosene and deionized water.
NASA Astrophysics Data System (ADS)
Muralidhara, .; Vasa, Nilesh J.; Singaperumal, M.
2010-02-01
A micro-electro-discharge machine (Micro EDM) was developed incorporating a piezoactuated direct drive tool feed mechanism for micromachining of Silicon using a copper tool. Tool and workpiece materials are removed during Micro EDM process which demand for a tool wear compensation technique to reach the specified depth of machining on the workpiece. An in-situ axial tool wear and machining depth measurement system is developed to investigate axial wear ratio variations with machining depth. Stepwise micromachining experiments on silicon wafer were performed to investigate the variations in the silicon removal and tool wear depths with increase in tool feed. Based on these experimental data, a tool wear compensation method is proposed to reach the desired depth of micromachining on silicon using copper tool. Micromachining experiments are performed with the proposed tool wear compensation method and a maximum workpiece machining depth variation of 6% was observed.
Method and apparatus for characterizing and enhancing the functional performance of machine tools
Barkman, William E; Babelay, Jr., Edwin F; Smith, Kevin Scott; Assaid, Thomas S; McFarland, Justin T; Tursky, David A; Woody, Bethany; Adams, David
2013-04-30
Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include workpiece surface finish, and the ability to generate chips of the desired length.
Impact of Advance Rate on Entrapment Risk of a Double-Shielded TBM in Squeezing Ground
NASA Astrophysics Data System (ADS)
Hasanpour, Rohola; Rostami, Jamal; Barla, Giovanni
2015-05-01
Shielded tunnel boring machines (TBMs) can get stuck in squeezing ground due to excessive tunnel convergence under high in situ stress. This typically coincides with extended machine stoppages, when the ground has sufficient time to undergo substantial displacements. Excessive convergence of the ground beyond the designated overboring means ground pressure against the shield and high shield frictional resistance that, in some cases, cannot be overcome by the TBM thrust system. This leads to machine entrapment in the ground, which causes significant delays and requires labor-intensive and risky operations of manual excavation to release the machine. To evaluate the impact of the time factor on the possibility of machine entrapment, a comprehensive 3D finite difference simulation of a double-shielded TBM in squeezing ground was performed. The modeling allowed for observation of the impact of the tunnel advance rate on the possibility of machine entrapment in squeezing ground. For this purpose, the model included rock mass properties related to creep in severe squeezing conditions. This paper offers an overview of the modeling results for a given set of rock mass and TBM parameters, as well as lining characteristics, including the magnitude of displacement and contact forces on shields and ground pressure on segmental lining versus time for different advance rates.
Nanocomposites for Machining Tools
Loginov, Pavel; Mishnaevsky, Leon; Levashov, Evgeny
2017-01-01
Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance. PMID:29027926
Boredom at work: proximal and distal consequences of affective work-related boredom.
van Hooff, Madelon L M; van Hooft, Edwin A J
2014-07-01
Boredom is an emotion that occurs regularly at the workplace, with negative consequences for the employee and the organization. It is therefore important to understand why work-related boredom leads to such adverse consequences and what can be done to mitigate its occurrence and its negative consequences. In the present study we proposed a model suggesting that feelings of boredom at work induce immediate affect-based bored behaviors, and that such bored behavior leads to depressive complaints, distress, and counterproductive work behavior. We further posed that job crafting can mitigate work-related boredom and its negative outcomes. Results of a survey study among 189 employees showed that work-related boredom and bored behavior are empirically distinct, though related, constructs. Work-related boredom was positively related to depressive complaints, distress, and counterproductive work behavior, and these associations were fully mediated by bored behavior. Job crafting related negatively to work-related boredom, and attenuated the relationship of work-related boredom with bored behavior. Moreover, the indirect effects of work-related boredom through bored behavior on its outcomes were smaller the more employees engaged in job crafting. This research enhances insight into work-related boredom by showing that boredom as an affective state can be distinguished from its proximal behavioral consequences, and by providing a first onset to obtain insight in moderating and mediating mechanisms that may explain work-related boredom's consequences. It highlights the importance of employees' opportunities to work in jobs that do not cause work-related boredom to develop, and the role of job crafting as a potential intervention tool.
NASA Technical Reports Server (NTRS)
Shearrow, Charles A.
1999-01-01
One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.
Machine tools and fixtures: A compilation
NASA Technical Reports Server (NTRS)
1971-01-01
As part of NASA's Technology Utilizations Program, a compilation was made of technological developments regarding machine tools, jigs, and fixtures that have been produced, modified, or adapted to meet requirements of the aerospace program. The compilation is divided into three sections that include: (1) a variety of machine tool applications that offer easier and more efficient production techniques; (2) methods, techniques, and hardware that aid in the setup, alignment, and control of machines and machine tools to further quality assurance in finished products: and (3) jigs, fixtures, and adapters that are ancillary to basic machine tools and aid in realizing their greatest potential.
Overview of the Machine-Tool Task Force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.
1981-06-08
The Machine Tool Task Force, (MTTF) surveyed the state of the art of machine tool technology for material removal for two and one-half years. This overview gives a brief summary of the approach, specific subjects covered, principal conclusions and some of the key recommendations aimed at improving the technology and advancing the productivity of machine tools. The Task Force consisted of 123 experts from the US and other countries. Their findings are documented in a five-volume report, Technology of Machine Tools.
Development and experimentation of an eye/brain/task testbed
NASA Technical Reports Server (NTRS)
Harrington, Nora; Villarreal, James
1987-01-01
The principal objective is to develop a laboratory testbed that will provide a unique capability to elicit, control, record, and analyze the relationship of operator task loading, operator eye movement, and operator brain wave data in a computer system environment. The ramifications of an integrated eye/brain monitor to the man machine interface are staggering. The success of such a system would benefit users of space and defense, paraplegics, and the monitoring of boring screens (nuclear power plants, air defense, etc.)
16. INTERIOR VIEW OF HILLMAN FAN HOUSE ENGINE ROOM LOOKING ...
16. INTERIOR VIEW OF HILLMAN FAN HOUSE ENGINE ROOM LOOKING EAST This overview of the 1883 Pittston Engine and Machine Company steam engine includes the flywheel and pillowblock in the foreground, with the shaft and cylinder in the background. The engine is a horizontal, slide valve type of 30 inch bore and 60 inch stroke that turned the fan at 49 revolutions per minute. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA
Disposition of feedwater nozzle UT indications in a BWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leshnoff, S.D.; Orski, M.A.
A technical logic is developed, which justifies the disposition of feedwater nozzle ultrasonic testing (UT) indications in order to return to operation without visual inspection of the vessel inside surface. Present regulatory guidance is to inspect the inside surface from the inside if a reportable indication is found. A highly sensitive, tomographic UT technique, developed by Kraftwerk Union, is used to detect and size machined notches in the blend radius and bore regions of a full-sized feedwater nozzle mock-up.
A method to identify the main mode of machine tool under operating conditions
NASA Astrophysics Data System (ADS)
Wang, Daming; Pan, Yabing
2017-04-01
The identification of the modal parameters under experimental conditions is the most common procedure when solving the problem of machine tool structure vibration. However, the influence of each mode on the machine tool vibration in real working conditions remains unknown. In fact, the contributions each mode makes to the machine tool vibration during machining process are different. In this article, an active excitation modal analysis is applied to identify the modal parameters in operational condition, and the Operating Deflection Shapes (ODS) in frequencies of high level vibration that affect the quality of machining in real working conditions are obtained. Then, the ODS is decomposed by the mode shapes which are identified in operational conditions. So, the contributions each mode makes to machine tool vibration during machining process are got by decomposition coefficients. From the previous steps, we can find out the main modes which effect the machine tool more significantly in working conditions. This method was also verified to be effective by experiments.
Linear positioning laser calibration setup of CNC machine tools
NASA Astrophysics Data System (ADS)
Sui, Xiulin; Yang, Congjing
2002-10-01
The linear positioning laser calibration setup of CNC machine tools is capable of executing machine tool laser calibraiotn and backlash compensation. Using this setup, hole locations on CNC machien tools will be correct and machien tool geometry will be evaluated and adjusted. Machien tool laser calibration and backlash compensation is a simple and straightforward process. First the setup is to 'find' the stroke limits of the axis. Then the laser head is then brought into correct alignment. Second is to move the machine axis to the other extreme, the laser head is now aligned, using rotation and elevation adjustments. Finally the machine is moved to the start position and final alignment is verified. The stroke of the machine, and the machine compensation interval dictate the amount of data required for each axis. These factors determine the amount of time required for a through compensation of the linear positioning accuracy. The Laser Calibrator System monitors the material temperature and the air density; this takes into consideration machine thermal growth and laser beam frequency. This linear positioning laser calibration setup can be used on CNC machine tools, CNC lathes, horizontal centers and vertical machining centers.
Standardized Curriculum for Machine Tool Operation/Machine Shop.
ERIC Educational Resources Information Center
Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.
Standardized vocational education course titles and core contents for two courses in Mississippi are provided: machine tool operation/machine shop I and II. The first course contains the following units: (1) orientation; (2) shop safety; (3) shop math; (4) measuring tools and instruments; (5) hand and bench tools; (6) blueprint reading; (7)…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brezovec, D.
1983-11-01
A new coal mining machine that was going to pull some 40 million tons of coal from the Appalachian coalfields by 1986 has had more than its share of start-up problems. The machine, known as the Thin Seam Miner (TSM), is a $2.7-million auger-type mining machine that is designed to bore 220 ft into new or abandoned highwalls (CA 5/82 p. 106). Gamma-ray sensors located near the continuous drum miner-type cutter head monitor for rock and other sensors monitor for methane. The machines are designed to produce about 425 tons per shift from a 36-in.-thick coal seam. The machines weremore » introduced officially to the American coal industry at a luncheon Aug. 19, 1981, in a ballroom at the Lexington, Ky., Hyatt Regency Hotel. At the luncheon, some 200 coal industry executives and others sipped champagne and listened to glowing reports of how 24 of the machines would produce 2.2 million tons of coal by the end of 1981 and 64 of the machines would produce 6.6 million tons by the end of 1982. The machines would be built in Holland by RijnSchelde-Verolme (RSV), a major Dutch shipbuilder, and managed in the United States by Advanced Coal Management (ACM), a company formed for the purpose by James D. Stacy, a colorful, cigar-smoking stock car owner whose experience in the coal business dated from only the mid-1970s.« less
Technology of machine tools. Volume 4. Machine tool controls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
Technology of machine tools. Volume 3. Machine tool mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tlusty, J.
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
Technology of machine tools. Volume 5. Machine tool accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hocken, R.J.
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-12
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,971] ASC Machine Tools, Inc... workers and former workers of ASC Machine Tools, Inc., Spokane Valley, Washington (the subject firm). The... workers of ASC Machine Tools, Inc., Spokane Valley, Washington. Signed in Washington, DC, on this 2nd day...
Brown, Raymond J.
1977-01-01
The present invention relates to a tool setting device for use with numerically controlled machine tools, such as lathes and milling machines. A reference position of the machine tool relative to the workpiece along both the X and Y axes is utilized by the control circuit for driving the tool through its program. This reference position is determined for both axes by displacing a single linear variable displacement transducer (LVDT) with the machine tool through a T-shaped pivotal bar. The use of the T-shaped bar allows the cutting tool to be moved sequentially in the X or Y direction for indicating the actual position of the machine tool relative to the predetermined desired position in the numerical control circuit by using a single LVDT.
NASA Astrophysics Data System (ADS)
Robert-Perron, Etienne; Blais, Carl; Pelletier, Sylvain; Thomas, Yannig
2007-06-01
The green machining process is an interesting approach for solving the mediocre machining behavior of high-performance powder metallurgy (PM) steels. This process appears as a promising method for extending tool life and reducing machining costs. Recent improvements in binder/lubricant technologies have led to high green strength systems that enable green machining. So far, tool wear has been considered negligible when characterizing the machinability of green PM specimens. This inaccurate assumption may lead to the selection of suboptimum cutting conditions. The first part of this study involves the optimization of the machining parameters to minimize the effects of tool wear on the machinability in turning of green PM components. The second part of our work compares the sintered mechanical properties of components machined in green state with other machined after sintering.
High Speed Photographic Analysis Of Railgun Plasmas
NASA Astrophysics Data System (ADS)
Macintyre, I. B.
1985-02-01
Various experiments are underway at the Materials Research Laboratories, Australian Department of Defence, to develop a theory for the behaviour and propulsion action of plasmas in rail guns. Optical recording and imaging devices, with their low vulnerability to the effects of magnetic and electric fields present in the vicinity of electromagnetic launchers, have proven useful as diagnostic tools. This paper describes photoinstrumentation systems developed to provide visual qualitative assessment of the behaviour of plasma travelling along the bore of railgun launchers. In addition, a quantitative system is incorporated providing continuous data (on a microsecond time scale) of (a) Length of plasma during flight along the launcher bore. (b) Velocity of plasma. (c) Distribution of plasma with respect to time after creation. (d) Plasma intensity profile as it travels along the launcher bore. The evolution of the techniques used is discussed. Two systems were employed. The first utilized a modified high speed streak camera to record the light emitted from the plasma, through specially prepared fibre optic cables. The fibre faces external to the bore were then imaged onto moving film. The technique involved the insertion of fibres through the launcher body to enable the plasma to be viewed at discrete positions as it travelled along the launcher bore. Camera configuration, fibre optic preparation and experimental results are outlined. The second system utilized high speed streak and framing photography in conjunction with accurate sensitometric control procedures on the recording film. The two cameras recorded the plasma travelling along the bore of a specially designed transparent launcher. The streak camera, fitted with a precise slit size, recorded a streak image of the upper brightness range of the plasma as it travelled along the launcher's bore. The framing camera recorded an overall view of the launcher and the plasma path, to the maximum possible, governed by the film's ability to reproduce the plasma's brightness range. The instrumentation configuration, calibration, and film measurement using microdensitometer scanning techniques to evaluate inbore plasma behaviour, are also presented.
EQUIPMENT FOR SPARK-ASSISTED MACHINING (OBORUDOVANIE DLYA ELEKTROISKROVOI OBRABOTKI),
MACHINE TOOLS, * ELECTROEROSIVE MACHINING), MACHINE TOOL INDUSTRY, ELECTROFORMING, ELECTRODES, ELECTROLYTIC CAPACITORS, ELECTRIC DISCHARGES, TOLERANCES(MECHANICS), SURFACE ROUGHNESS, DIES, MOLDINGS, SYNTHETIC FIBERS, USSR
Vibration damping method and apparatus
Redmond, James M.; Barney, Patrick S.; Parker, Gordon G.; Smith, David A.
1999-01-01
The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof.
Biomechanics of substrate boring by fig wasps.
Kundanati, Lakshminath; Gundiah, Namrata
2014-06-01
Female insects of diverse orders bore into substrates to deposit their eggs. Such insects must overcome several biomechanical challenges to successfully oviposit, which include the selection of suitable substrates through which the ovipositor can penetrate without itself fracturing. In many cases, the insect may also need to steer and manipulate the ovipositor within the substrate to deliver eggs at desired locations before rapidly retracting her ovipositor to avoid predation. In the case of female parasitoid ichneumonid wasps, this process is repeated multiple times during her lifetime, thus testing the ability of the ovipositioning apparatus to endure fracture and fatigue. What specific adaptations does the ovipositioning apparatus of a female ichneumonoid wasp possess to withstand these challenges? We addressed this question using a model system composed of parasitoid and pollinator fig wasps. First, we show that parasitoid ovipositor tips have teeth-like structures, preferentially enriched with zinc, unlike the smooth morphology of pollinator ovipositors. We describe sensillae present on the parasitoid ovipositor tip that are likely to aid in the detection of chemical species and mechanical deformations and sample microenvironments within the substrate. Second, using atomic force microscopy, we show that parasitoid tip regions have a higher modulus compared with regions proximal to the abdomen in parasitoid and pollinator ovipositors. Finally, we use videography to film wasps during substrate boring and analyse buckling of the ovipositor to estimate the forces required for substrate boring. Together, these results allow us to describe the biomechanical principles underlying substrate boring in parasitoid ichneumonid wasps. Such studies may be useful for the biomimetic design of surgical tools and in the use of novel mechanisms to bore through hard substrates. © 2014. Published by The Company of Biologists Ltd.
Technology of machine tools. Volume 2. Machine tool systems management and utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, A.R.
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
NASA Astrophysics Data System (ADS)
Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard
2017-09-01
Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.
NASA Astrophysics Data System (ADS)
Zhang, P. P.; Guo, Y.; Wang, B.
2017-05-01
The main problems in milling difficult-to-machine materials are the high cutting temperature and rapid tool wear. However it is impossible to investigate tool wear in machining. Tool wear and cutting chip formation are two of the most important representations for machining efficiency and quality. The purpose of this paper is to develop the model of tool wear with cutting chip formation (width of chip and radian of chip) on difficult-to-machine materials. Thereby tool wear is monitored by cutting chip formation. A milling experiment on the machining centre with three sets cutting parameters was performed to obtain chip formation and tool wear. The experimental results show that tool wear increases gradually along with cutting process. In contrast, width of chip and radian of chip decrease. The model is developed by fitting the experimental data and formula transformations. The most of monitored errors of tool wear by the chip formation are less than 10%. The smallest error is 0.2%. Overall errors by the radian of chip are less than the ones by the width of chip. It is new way to monitor and detect tool wear by cutting chip formation in milling difficult-to-machine materials.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
Field precision machining technology of target chamber in ICF lasers
NASA Astrophysics Data System (ADS)
Xu, Yuanli; Wu, Wenkai; Shi, Sucun; Duan, Lin; Chen, Gang; Wang, Baoxu; Song, Yugang; Liu, Huilin; Zhu, Mingzhi
2016-10-01
In ICF lasers, many independent laser beams are required to be positioned on target with a very high degree of accuracy during a shot. The target chamber provides a precision platform and datum reference for final optics assembly and target collimation and location system. The target chamber consists of shell with welded flanges, reinforced concrete pedestal, and lateral support structure. The field precision machining technology of target chamber in ICF lasers have been developed based on ShenGuangIII (SGIII). The same center of the target chamber is adopted in the process of design, fabrication, and alignment. The technologies of beam collimation and datum reference transformation are developed for the fabrication, positioning and adjustment of target chamber. A supporting and rotating mechanism and a special drilling machine are developed to bore the holes of ports. An adjustment mechanism is designed to accurately position the target chamber. In order to ensure the collimation requirements of the beam leading and focusing and the target positioning, custom-machined spacers are used to accurately correct the alignment error of the ports. Finally, this paper describes the chamber center, orientation, and centering alignment error measurements of SGIII. The measurements show the field precision machining of SGIII target chamber meet its design requirement. These information can be used on similar systems.
Plan for conducting an international machine tool task force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.; McClure, E.R.; Schuman, J.F.
1978-08-28
The basic objectives of the Machine Tool Task Force (MTTF) are to characterize and summarize the state of the art of cutting machine tool technology and to identify promising areas of future R and D. These goals will be accomplished with a series of multidisciplinary teams of prominent experts and individuals experienced in the specialized technologies of machine tools or in the management of machine tool operations. Experts will be drawn from all areas of the machine tool community: machine tool users or buyer organizations, builders, and R and D establishments including universities and government laboratories, both domestic and foreign.more » A plan for accomplishing this task is presented. The area of machine tool technology has been divided into about two dozen technology subjects on which teams of one or more experts will work. These teams are, in turn, organized into four principal working groups dealing, respectively, with machine tool accuracy, mechanics, control, and management systems/utilization. Details are presented on specific subjects to be covered, the organization of the Task Force and its four working groups, and the basic approach to determining the state of the art of technology and the future directions of this technology. The planned review procedure, the potential benefits, our management approach, and the schedule, as well as the key participating personnel and their background are discussed. The initial meeting of MTTF members will be held at a plenary session on October 16 and 17, 1978, in Scottsdale, AZ. The MTTF study will culminate in a conference on September 1, 1980, in Chicago, IL, immediately preceeding the 1980 International Machine Tool Show. At this time, our results will be released to the public; a series of reports will be published in late 1980.« less
NASA Astrophysics Data System (ADS)
Sigurdson, J.; Tagerud, J.
1986-05-01
A UNIDO publication about machine tools with automatic control discusses the following: (1) numerical control (NC) machine tool perspectives, definition of NC, flexible manufacturing systems, robots and their industrial application, research and development, and sensors; (2) experience in developing a capability in NC machine tools; (3) policy issues; (4) procedures for retrieval of relevant documentation from data bases. Diagrams, statistics, bibliography are included.
NASA Astrophysics Data System (ADS)
Dasgupta, S.; Mukherjee, S.
2016-09-01
One of the most significant factors in metal cutting is tool life. In this research work, the effects of machining parameters on tool under wet machining environment were studied. Tool life characteristics of brazed carbide cutting tool machined against mild steel and optimization of machining parameters based on Taguchi design of experiments were examined. The experiments were conducted using three factors, spindle speed, feed rate and depth of cut each having three levels. Nine experiments were performed on a high speed semi-automatic precision central lathe. ANOVA was used to determine the level of importance of the machining parameters on tool life. The optimum machining parameter combination was obtained by the analysis of S/N ratio. A mathematical model based on multiple regression analysis was developed to predict the tool life. Taguchi's orthogonal array analysis revealed the optimal combination of parameters at lower levels of spindle speed, feed rate and depth of cut which are 550 rpm, 0.2 mm/rev and 0.5mm respectively. The Main Effects plot reiterated the same. The variation of tool life with different process parameters has been plotted. Feed rate has the most significant effect on tool life followed by spindle speed and depth of cut.
Highly Productive Tools For Turning And Milling
NASA Astrophysics Data System (ADS)
Vasilko, Karol
2015-12-01
Beside cutting speed, shift is another important parameter of machining. Its considerable influence is shown mainly in the workpiece machined surface microgeometry. In practice, mainly its combination with the radius of cutting tool tip rounding is used. Options to further increase machining productivity and machined surface quality are hidden in this approach. The paper presents variations of the design of productive cutting tools for lathe work and milling on the base of the use of the laws of the relationship among the highest reached uneveness of machined surface, tool tip radius and shift.
Vibration damping method and apparatus
Redmond, J.M.; Barney, P.S.; Parker, G.G.; Smith, D.A.
1999-06-22
The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof. 38 figs.
The in-situ 3D measurement system combined with CNC machine tools
NASA Astrophysics Data System (ADS)
Zhao, Huijie; Jiang, Hongzhi; Li, Xudong; Sui, Shaochun; Tang, Limin; Liang, Xiaoyue; Diao, Xiaochun; Dai, Jiliang
2013-06-01
With the development of manufacturing industry, the in-situ 3D measurement for the machining workpieces in CNC machine tools is regarded as the new trend of efficient measurement. We introduce a 3D measurement system based on the stereovision and phase-shifting method combined with CNC machine tools, which can measure 3D profile of the machining workpieces between the key machining processes. The measurement system utilizes the method of high dynamic range fringe acquisition to solve the problem of saturation induced by specular lights reflected from shiny surfaces such as aluminum alloy workpiece or titanium alloy workpiece. We measured two workpieces of aluminum alloy on the CNC machine tools to demonstrate the effectiveness of the developed measurement system.
Investigation of metallurgical coatings for automotive applications
NASA Astrophysics Data System (ADS)
Su, Jun Feng
Metallurgical coatings have been widely used in the automotive industry from component machining, engine daily running to body decoration due to their high hardness, wear resistance, corrosion resistance and low friction coefficient. With high demands in energy saving, weight reduction and limiting environmental impact, the use of new materials such as light Aluminum/magnesium alloys with high strength-weight ratio for engine block and advanced high-strength steel (AHSS) with better performance in crash energy management for die stamping, are increasing. However, challenges are emerging when these new materials are applied such as the wear of the relative soft light alloys and machining tools for hard AHSS. The protective metallurgical coatings are the best option to profit from these new materials' advantages without altering largely in mass production equipments, machinery, tools and human labor. In this dissertation, a plasma electrolytic oxidation (PEO) coating processing on aluminum alloys was introduced in engine cylinder bores to resist wear and corrosion. The tribological behavior of the PEO coatings under boundary and starve lubrication conditions was studied experimentally and numerically for the first time. Experimental results of the PEO coating demonstrated prominent wear resistance and low friction, taking into account the extreme working conditions. The numerical elastohydrodynamic lubrication (EHL) and asperity contact based tribological study also showed a promising approach on designing low friction and high wear resistant PEO coatings. Other than the fabrication of the new coatings, a novel coating evaluation methodology, namely, inclined impact sliding tester was presented in the second part of this dissertation. This methodology has been developed and applied in testing and analyzing physical vapor deposition (PVD)/ chemical vapor deposition (CVD)/PEO coatings. Failure mechanisms of these common metallurgical hard coatings were systematically studied and summarized via the new testing methodology. Field tests based on the new coating characterization technique proved that this methodology is reliable, effective and economical.
Identification of Tool Wear when Machining of Austenitic Steels and Titatium by Miniature Machining
NASA Astrophysics Data System (ADS)
Pilc, Jozef; Kameník, Roman; Varga, Daniel; Martinček, Juraj; Sadilek, Marek
2016-12-01
Application of miniature machining is currently rapidly increasing mainly in biomedical industry and machining of hard-to-machine materials. Machinability of materials with increased level of toughness depends on factors that are important in the final state of surface integrity. Because of this, it is necessary to achieve high precision (varying in microns) in miniature machining. If we want to guarantee machining high precision, it is necessary to analyse tool wear intensity in direct interaction with given machined materials. During long-term cutting process, different cutting wedge deformations occur, leading in most cases to a rapid wear and destruction of the cutting wedge. This article deal with experimental monitoring of tool wear intensity during miniature machining.
NASA Technical Reports Server (NTRS)
Loomis, W. R.
1976-01-01
The feasibility of an emergency aspirator once-through lubrication system was demonstrated as a viable survivability concept for Army helicopter mainshaft engine bearings for periods as long as 30 minutes. It was also shown in an experimental study using a 46-mm bore bearing test machine that an oil-air mist once-through system with auxiliary air cooling is an effective primary lubrication system at speeds up to 2,500,000 DN for extended operating periods of at least 50 hours.
Three-dimensional tool radius compensation for multi-axis peripheral milling
NASA Astrophysics Data System (ADS)
Chen, Youdong; Wang, Tianmiao
2013-05-01
Few function about 3D tool radius compensation is applied to generating executable motion control commands in the existing computer numerical control (CNC) systems. Once the tool radius is changed, especially in the case of tool size changing with tool wear in machining, a new NC program has to be recreated. A generic 3D tool radius compensation method for multi-axis peripheral milling in CNC systems is presented. The offset path is calculated by offsetting the tool path along the direction of the offset vector with a given distance. The offset vector is perpendicular to both the tangent vector of the tool path and the orientation vector of the tool axis relative to the workpiece. The orientation vector equations of the tool axis relative to the workpiece are obtained through homogeneous coordinate transformation matrix and forward kinematics of generalized kinematics model of multi-axis machine tools. To avoid cutting into the corner formed by the two adjacent tool paths, the coordinates of offset path at the intersection point have been calculated according to the transition type that is determined by the angle between the two tool path tangent vectors at the corner. Through the verification by the solid cutting simulation software VERICUT® with different tool radiuses on a table-tilting type five-axis machine tool, and by the real machining experiment of machining a soup spoon on a five-axis machine tool with the developed CNC system, the effectiveness of the proposed 3D tool radius compensation method is confirmed. The proposed compensation method can be suitable for all kinds of three- to five-axis machine tools as a general form.
Wu, Yunke; Trepanowski, Nevada F; Molongoski, John J; Reagel, Peter F; Lingafelter, Steven W; Nadel, Hannah; Myers, Scott W; Ray, Ann M
2017-01-16
Global trade facilitates the inadvertent movement of insect pests and subsequent establishment of populations outside their native ranges. Despite phytosanitary measures, nonnative insects arrive at United States (U.S.) ports of entry as larvae in solid wood packaging material (SWPM). Identification of wood-boring larval insects is important for pest risk analysis and management, but is difficult beyond family level due to highly conserved morphology. Therefore, we integrated DNA barcoding and rearing of larvae to identify wood-boring insects in SWPM. From 2012 to 2015, we obtained larvae of 338 longhorned beetles (Cerambycidae) and 38 metallic wood boring beetles (Buprestidae) intercepted in SWPM associated with imported products at six U.S. ports. We identified 265 specimens to species or genus using DNA barcodes. Ninety-three larvae were reared to adults and identified morphologically. No conflict was found between the two approaches, which together identified 275 cerambycids (23 genera) and 16 buprestids (4 genera). Our integrated approach confirmed novel DNA barcodes for seven species (10 specimens) of woodborers not in public databases. This study demonstrates the utility of DNA barcoding as a tool for regulatory agencies. We provide important documentation of potential beetle pests that may cross country borders through the SWPM pathway.
Wu, Yunke; Trepanowski, Nevada F.; Molongoski, John J.; Reagel, Peter F.; Lingafelter, Steven W.; Nadel, Hannah; Myers, Scott W.; Ray, Ann M.
2017-01-01
Global trade facilitates the inadvertent movement of insect pests and subsequent establishment of populations outside their native ranges. Despite phytosanitary measures, nonnative insects arrive at United States (U.S.) ports of entry as larvae in solid wood packaging material (SWPM). Identification of wood-boring larval insects is important for pest risk analysis and management, but is difficult beyond family level due to highly conserved morphology. Therefore, we integrated DNA barcoding and rearing of larvae to identify wood-boring insects in SWPM. From 2012 to 2015, we obtained larvae of 338 longhorned beetles (Cerambycidae) and 38 metallic wood boring beetles (Buprestidae) intercepted in SWPM associated with imported products at six U.S. ports. We identified 265 specimens to species or genus using DNA barcodes. Ninety-three larvae were reared to adults and identified morphologically. No conflict was found between the two approaches, which together identified 275 cerambycids (23 genera) and 16 buprestids (4 genera). Our integrated approach confirmed novel DNA barcodes for seven species (10 specimens) of woodborers not in public databases. This study demonstrates the utility of DNA barcoding as a tool for regulatory agencies. We provide important documentation of potential beetle pests that may cross country borders through the SWPM pathway. PMID:28091577
Surface dimpling on rotating work piece using rotation cutting tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhapkar, Rohit Arun; Larsen, Eric Richard
A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupledmore » to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.« less
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
Graphite fiber reinforced structure for supporting machine tools
Knight, Jr., Charles E.; Kovach, Louis; Hurst, John S.
1978-01-01
Machine tools utilized in precision machine operations require tool support structures which exhibit minimal deflection, thermal expansion and vibration characteristics. The tool support structure of the present invention is a graphite fiber reinforced composite in which layers of the graphite fibers or yarn are disposed in a 0/90.degree. pattern and bonded together with an epoxy resin. The finished composite possesses a low coefficient of thermal expansion and a substantially greater elastic modulus, stiffness-to-weight ratio, and damping factor than a conventional steel tool support utilized in similar machining operations.
ERIC Educational Resources Information Center
Bokor, Julie
2012-01-01
Practicing correct pipetting procedure doesn't have to be boring. "Pipetting by Coordinates" is an effective way to teach necessary pipetting skills in an enjoyable manner. Students create designs as they add volumes of colored water to specific wells and gain experience using a basic biotechnology tool.
Update of correlations between cone penetration and boring log data.
DOT National Transportation Integrated Search
2008-03-01
The cone penetration test (CPT) has been widely used in Louisiana in the last two decades as an in situ tool to characterize engineering : properties of soils. In addition, conventional drilling and sample retrieval using Shelby tube followed by labo...
Traceability of On-Machine Tool Measurement: A Review.
Mutilba, Unai; Gomez-Acedo, Eneko; Kortaberria, Gorka; Olarra, Aitor; Yagüe-Fabra, Jose A
2017-07-11
Nowadays, errors during the manufacturing process of high value components are not acceptable in driving industries such as energy and transportation. Sectors such as aerospace, automotive, shipbuilding, nuclear power, large science facilities or wind power need complex and accurate components that demand close measurements and fast feedback into their manufacturing processes. New measuring technologies are already available in machine tools, including integrated touch probes and fast interface capabilities. They provide the possibility to measure the workpiece in-machine during or after its manufacture, maintaining the original setup of the workpiece and avoiding the manufacturing process from being interrupted to transport the workpiece to a measuring position. However, the traceability of the measurement process on a machine tool is not ensured yet and measurement data is still not fully reliable enough for process control or product validation. The scientific objective is to determine the uncertainty on a machine tool measurement and, therefore, convert it into a machine integrated traceable measuring process. For that purpose, an error budget should consider error sources such as the machine tools, components under measurement and the interactions between both of them. This paper reviews all those uncertainty sources, being mainly focused on those related to the machine tool, either on the process of geometric error assessment of the machine or on the technology employed to probe the measurand.
NASA Astrophysics Data System (ADS)
Czán, Andrej; Kubala, Ondrej; Danis, Igor; Czánová, Tatiana; Holubják, Jozef; Mikloš, Matej
2017-12-01
The ever-increasing production and the usage of hard-to-machine progressive materials are the main cause of continual finding of new ways and methods of machining. One of these ways is the ceramic milling tool, which combines the pros of conventional ceramic cutting materials and pros of conventional coating steel-based insert. These properties allow to improve cutting conditions and so increase the productivity with preserved quality known from conventional tools usage. In this paper, there is made the identification of properties and possibilities of this tool when machining of hard-to-machine materials such as nickel alloys using in airplanes engines. This article is focused on the analysis and evaluation ordinary technological parameters and surface quality, mainly roughness of surface and quality of machined surface and tool wearing.
TOOL ASSEMBLY WITH BI-DIRECTIONAL BEARING
Longhurst, G.E.
1961-07-11
A two-direction motion bearing which is incorporated in a refueling nuclear fuel element trsnsfer tool assembly is described. A plurality of bi- directional bearing assembliesare fixed equi-distantly about the circumference of the transfer tool assembly to provide the tool assembly with a bearing surface- for both axial and rotational motion. Each bi-directional bearing assembly contains a plurality of circumferentially bulged rollers mounted in a unique arrangement which will provide a bearing surface for rotational movement of the tool assembly within a bore. The bi-direc tional bearing assembly itself is capable of rational motion and thus provides for longitudinal movement of the tool assembly.
NASA Astrophysics Data System (ADS)
Yusof, M. Q. M.; Harun, H. N. S. B.; Bahar, R.
2018-01-01
Minimum quantity lubrication (MQL) is a method that uses a very small amount of liquid to reduce friction between cutting tool and work piece during machining. The implementation of MQL machining has become a viable alternative to flood cooling machining and dry machining. The overall performance has been evaluated during meso-scale milling of mild steel using different diameter milling cutters. Experiments have been conducted under two different lubrication condition: dry and MQL with variable cutting parameters. The tool wear and its surface roughness, machined surfaces microstructure and surface roughness were observed for both conditions. It was found from the results that MQL produced better results compared to dry machining. The 0.5 mm tool has been selected as the most optimum tool diameter to be used with the lowest surface roughness as well as the least flank wear generation. For the workpiece, it was observed that the cutting temperature possesses crucial effect on the microstructure and the surface roughness of the machined surface and bigger diameter tool actually resulted in higher surface roughness. The poor conductivity of the cutting tool may be one of reasons behind.
Automatic feed system for ultrasonic machining
Calkins, Noel C.
1994-01-01
Method and apparatus for ultrasonic machining in which feeding of a tool assembly holding a machining tool toward a workpiece is accomplished automatically. In ultrasonic machining, a tool located just above a workpiece and vibrating in a vertical direction imparts vertical movement to particles of abrasive material which then remove material from the workpiece. The tool does not contact the workpiece. Apparatus for moving the tool assembly vertically is provided such that it operates with a relatively small amount of friction. Adjustable counterbalance means is provided which allows the tool to be immobilized in its vertical travel. A downward force, termed overbalance force, is applied to the tool assembly. The overbalance force causes the tool to move toward the workpiece as material is removed from the workpiece.
NASA Astrophysics Data System (ADS)
Kant Garg, Girish; Garg, Suman; Sangwan, K. S.
2018-04-01
The manufacturing sector consumes huge energy demand and the machine tools used in this sector have very less energy efficiency. Selection of the optimum machining parameters for machine tools is significant for energy saving and for reduction of environmental emission. In this work an empirical model is developed to minimize the power consumption using response surface methodology. The experiments are performed on a lathe machine tool during the turning of AISI 6061 Aluminum with coated tungsten inserts. The relationship between the power consumption and machining parameters is adequately modeled. This model is used for formulation of minimum power consumption criterion as a function of optimal machining parameters using desirability function approach. The influence of machining parameters on the energy consumption has been found using the analysis of variance. The validation of the developed empirical model is proved using the confirmation experiments. The results indicate that the developed model is effective and has potential to be adopted by the industry for minimum power consumption of machine tools.
Chatter active control in a lathe machine using magnetostrictive actuator
NASA Astrophysics Data System (ADS)
Nosouhi, R.; Behbahani, S.
2011-01-01
This paper analyzes the chatter phenomena in lathe machines. Chatter is one of the main causes of inaccuracy, reduction of life cycle of the machine and tool wear in machine tools. This phenomenon limits the depth of cut as a function of the cutting speed, which consequently reduces the material removal rate and machining efficiency. Chatter control is therefore important since it increases the stability region in machining and increases the critical depth of cut in machining case. To control the chatter in lathe machines, a magnetostrictive actuator is used. The materials with magnetostriction properties are kind of smart materials of which their length changes as a result of applying an exterior magnetic field, which make them suitable for control applications. It is assumed that the actuator applies the proper force exactly at the point where the machining force is applied on the tool. In this paper the chatter stability lobes is excelled as a result of applying a PID controller on the magnetostrictive actuator equipped-tool in turning.
High-temperature, high-pressure bonding of nested tubular metallic components
Quinby, T.C.
A tool is described for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators. The target assembly comprising a uranum foil and an aluninum-alloy substrate. The tool is composed of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.
NASA Astrophysics Data System (ADS)
Okokpujie, Imhade Princess; Ikumapayi, Omolayo M.; Okonkwo, Ugochukwu C.; Salawu, Enesi Y.; Afolalu, Sunday A.; Dirisu, Joseph O.; Nwoke, Obinna N.; Ajayi, Oluseyi O.
2017-12-01
In recent machining operation, tool life is one of the most demanding tasks in production process, especially in the automotive industry. The aim of this paper is to study tool wear on HSS in end milling of aluminium 6061 alloy. The experiments were carried out to investigate tool wear with the machined parameters and to developed mathematical model using response surface methodology. The various machining parameters selected for the experiment are spindle speed (N), feed rate (f), axial depth of cut (a) and radial depth of cut (r). The experiment was designed using central composite design (CCD) in which 31 samples were run on SIEG 3/10/0010 CNC end milling machine. After each experiment the cutting tool was measured using scanning electron microscope (SEM). The obtained optimum machining parameter combination are spindle speed of 2500 rpm, feed rate of 200 mm/min, axial depth of cut of 20 mm, and radial depth of cut 1.0mm was found out to achieved the minimum tool wear as 0.213 mm. The mathematical model developed predicted the tool wear with 99.7% which is within the acceptable accuracy range for tool wear prediction.
Nanometric edge profile measurement of cutting tools on a diamond turning machine
NASA Astrophysics Data System (ADS)
Asai, Takemi; Arai, Yoshikazu; Cui, Yuguo; Gao, Wei
2008-10-01
Single crystal diamond tools are used for fabrication of precision parts [1-5]. Although there are many types of tools that are supplied, the tools with round nose are popular for machining very smooth surfaces. Tools with small nose radii, small wedge angles and included angles are also being utilized for fabrication of micro structured surfaces such as microlens arrays [6], diffractive optical elements and so on. In ultra precision machining, tools are very important as a part of the machining equipment. The roughness or profile of machined surface may become out of desired tolerance. It is thus necessary to know the state of the tool edge accurately. To meet these requirements, an atomic force microscope (AFM) for measuring the 3D edge profiles of tools having nanometer-scale cutting edge radii with high resolution has been developed [7-8]. Although the AFM probe unit is combined with an optical sensor for aligning the measurement probe with the tools edge top to be measured in short time in this system, this time only the AFM probe unit was used. During the measurement time, that was attached onto the ultra precision turning machine to confirm the possibility of profile measurement system.
NASA Astrophysics Data System (ADS)
Ma, Zhichao; Hu, Leilei; Zhao, Hongwei; Wu, Boda; Peng, Zhenxing; Zhou, Xiaoqin; Zhang, Hongguo; Zhu, Shuai; Xing, Lifeng; Hu, Huang
2010-08-01
The theories and techniques for improving machining accuracy via position control of diamond tool's tip and raising resolution of cutting depth on precise CNC lathes have been extremely focused on. A new piezo-driven ultra-precision machine tool servo system is designed and tested to improve manufacturing accuracy of workpiece. The mathematical model of machine tool servo system is established and the finite element analysis is carried out on parallel plate flexure hinges. The output position of diamond tool's tip driven by the machine tool servo system is tested via a contact capacitive displacement sensor. Proportional, integral, derivative (PID) feedback is also implemented to accommodate and compensate dynamical change owing cutting forces as well as the inherent non-linearity factors of the piezoelectric stack during cutting process. By closed loop feedback controlling strategy, the tracking error is limited to 0.8 μm. Experimental results have shown the proposed machine tool servo system could provide a tool positioning resolution of 12 nm, which is much accurate than the inherent CNC resolution magnitude. The stepped shaft of aluminum specimen with a step increment of cutting depth of 1 μm is tested, and the obtained contour illustrates the displacement command output from controller is accurately and real-time reflected on the machined part.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
The Machine Tool Advanced Skills Technology (MAST) consortium was formed to address the shortage of skilled workers for the machine tools and metals-related industries. Featuring six of the nation's leading advanced technology centers, the MAST consortium developed, tested, and disseminated industry-specific skill standards and model curricula for…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This volume developed by the Machine Tool Advanced Skill Technology (MAST) program contains key administrative documents and provides additional sources for machine tool and precision manufacturing information and important points of contact in the industry. The document contains the following sections: a foreword; grant award letter; timeline for…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational speciality areas within the U.S. machine tool and metals-related…
Investigations of Effect of Rotary EDM Electrode on Machining Performance of Al6061 Alloy
NASA Astrophysics Data System (ADS)
Robinson Smart, D. S.; Jenish Smart, Joses; Periasamy, C.; Ratna Kumar, P. S. Samuel
2018-04-01
Electric Discharge Machining is an essential process which is being used for machining desired shape using electrical discharges which creates sparks. There will be electrodes subjected to electric voltage and which are separated by a dielectric liquid. Removing of material will be due to the continuous and rapid current discharges between two electrodes.. The spark is very carefully controlled and localized so that it only affects the surface of the material. Usually in order to prevent the defects which are arising due to the conventional machining, the Electric Discharge Machining (EDM) machining is preferred. Also intricate and complicated shapes can be machined effectively by use of Electric Discharge Machining (EDM). The EDM process usually does not affect the heat treat below the surface. This research work focus on the design and fabrication of rotary EDM tool for machining Al6061alloy and investigation of effect of rotary tool on surface finish, material removal rate and tool wear rate. Also the effect of machining parameters of EDM such as pulse on & off time, current on material Removal Rate (MRR), Surface Roughness (SR) and Electrode wear rate (EWR) have studied. Al6061 alloy can be used for marine and offshore applications by reinforcing some other elements. The investigations have revealed that MRR (material removal rate), surface roughness (Ra) have been improved with the reduction in the tool wear rate (TWR) when the tool is rotating instead of stationary. It was clear that as rotary speed of the tool is increasing the material removal rate is increasing with the reduction of surface finish and tool wear rate.
Slide system for machine tools
Douglass, S.S.; Green, W.L.
1980-06-12
The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.
Slide system for machine tools
Douglass, Spivey S.; Green, Walter L.
1982-01-01
The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.
Volumetric Verification of Multiaxis Machine Tool Using Laser Tracker
Aguilar, Juan José
2014-01-01
This paper aims to present a method of volumetric verification in machine tools with linear and rotary axes using a laser tracker. Beyond a method for a particular machine, it presents a methodology that can be used in any machine type. Along this paper, the schema and kinematic model of a machine with three axes of movement, two linear and one rotational axes, including the measurement system and the nominal rotation matrix of the rotational axis are presented. Using this, the machine tool volumetric error is obtained and nonlinear optimization techniques are employed to improve the accuracy of the machine tool. The verification provides a mathematical, not physical, compensation, in less time than other methods of verification by means of the indirect measurement of geometric errors of the machine from the linear and rotary axes. This paper presents an extensive study about the appropriateness and drawbacks of the regression function employed depending on the types of movement of the axes of any machine. In the same way, strengths and weaknesses of measurement methods and optimization techniques depending on the space available to place the measurement system are presented. These studies provide the most appropriate strategies to verify each machine tool taking into consideration its configuration and its available work space. PMID:25202744
Subsurface Exploration Methods for Soft Ground Rapid Transit Tunnels : Volume 2. Appendixes A-F.
DOT National Transportation Integrated Search
1976-04-01
This study assesses subsurface exploration methods with respect to their ability to provide adequate data for the construction of rapid transit, soft-ground bored and cut-and-cover tunnels. Geophysical and other exploration tools not now widely used ...
Measurement of W + bb and a search for MSSM Higgs bosons with the CMS detector at the LHC
NASA Astrophysics Data System (ADS)
O'Connor, Alexander Pinpin
Tooling used to cure composite laminates in the aerospace and automotive industries must provide a dimensionally stable geometry throughout the thermal cycle applied during the part curing process. This requires that the Coefficient of Thermal Expansion (CTE) of the tooling materials match that of the composite being cured. The traditional tooling material for production applications is a nickel alloy. Poor machinability and high material costs increase the expense of metallic tooling made from nickel alloys such as 'Invar 36' or 'Invar 42'. Currently, metallic tooling is unable to meet the needs of applications requiring rapid affordable tooling solutions. In applications where the tooling is not required to have the durability provided by metals, such as for small area repair, an opportunity exists for non-metallic tooling materials like graphite, carbon foams, composites, or ceramics and machinable glasses. Nevertheless, efficient machining of brittle, non-metallic materials is challenging due to low ductility, porosity, and high hardness. The machining of a layup tool comprises a large portion of the final cost. Achieving maximum process economy requires optimization of the machining process in the given tooling material. Therefore, machinability of the tooling material is a critical aspect of the overall cost of the tool. In this work, three commercially available, brittle/porous, non-metallic candidate tooling materials were selected, namely: (AAC) Autoclaved Aerated Concrete, CB1100 ceramic block and Cfoam carbon foam. Machining tests were conducted in order to evaluate the machinability of these materials using end milling. Chip formation, cutting forces, cutting tool wear, machining induced damage, surface quality and surface integrity were investigated using High Speed Steel (HSS), carbide, diamond abrasive and Polycrystalline Diamond (PCD) cutting tools. Cutting forces were found to be random in magnitude, which was a result of material porosity. The abrasive nature of Cfoam produced rapid tool wear when using HSS and PCD type cutting tools. However, tool wear was not significant in AAC or CB1100 regardless of the type of cutting edge. Machining induced damage was observed in the form of macro-scale chipping and fracture in combination with micro-scale cracking. Transverse rupture test results revealed significant reductions in residual strength and damage tolerance in CB1100. In contrast, AAC and Cfoam showed no correlation between machining induced damage and a reduction in surface integrity. Cutting forces in machining were modeled for all materials. Cutting force regression models were developed based on Design of Experiment and Analysis of Variance. A mechanistic cutting force model was proposed based upon conventional end milling force models and statistical distributions of material porosity. In order to validate the model, predicted cutting forces were compared to experimental results. Predicted cutting forces agreed well with experimental measurements. Furthermore, over the range of cutting conditions tested, the proposed model was shown to have comparable predictive accuracy to empirically produced regression models; greatly reducing the number of cutting tests required to simulate cutting forces. Further, this work demonstrates a key adaptation of metallic cutting force models to brittle porous material; a vital step in the research into the machining of these materials using end milling.
Modeling and simulation of five-axis virtual machine based on NX
NASA Astrophysics Data System (ADS)
Li, Xiaoda; Zhan, Xianghui
2018-04-01
Virtual technology in the machinery manufacturing industry has shown the role of growing. In this paper, the Siemens NX software is used to model the virtual CNC machine tool, and the parameters of the virtual machine are defined according to the actual parameters of the machine tool so that the virtual simulation can be carried out without loss of the accuracy of the simulation. How to use the machine builder of the CAM module to define the kinematic chain and machine components of the machine is described. The simulation of virtual machine can provide alarm information of tool collision and over cutting during the process to users, and can evaluate and forecast the rationality of the technological process.
Morrell, Roger J.; Larson, David A.; Ruzzi, Peter L.
1994-01-01
A double acting bit holder that permits bits held in it to be resharpened during cutting action to increase energy efficiency by reducing the amount of small chips produced. The holder consist of: a stationary base portion capable of being fixed to a cutter head of an excavation machine and having an integral extension therefrom with a bore hole therethrough to accommodate a pin shaft; a movable portion coextensive with the base having a pin shaft integrally extending therefrom that is insertable in the bore hole of the base member to permit the moveable portion to rotate about the axis of the pin shaft; a recess in the movable portion of the holder to accommodate a shank of a bit; and a biased spring disposed in adjoining openings in the base and moveable portions of the holder to permit the moveable portion to pivot around the pin shaft during cutting action of a bit fixed in a turret to allow front, mid and back positions of the bit during cutting to lessen creation of small chip amounts and resharpen the bit during excavation use.
High speed turning of compacted graphite iron using controlled modulation
NASA Astrophysics Data System (ADS)
Stalbaum, Tyler Paul
Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry. In industry, machining of CGI is done only at low speeds, less than V = 200 m/min, to avoid encountering rapid wear of the cutting tools during cutting. Studies have suggested intermittent cutting operations such as milling suffer less severe tool wear than continuous cutting. Furthermore, evidence that a hard sulfide layer which forms over the cutting edge in machining CI at high speeds is absent during machining CGI is a major factor in the difference in machinability of these material systems. The present study addresses both of these issues by modification to the conventional machining process to allow intermittent continuous cutting. The application of controlled modulation superimposed onto the cutting process -- modulation-assisted machining (MAM) -- is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining CGI at high machining speeds (> 500 m/min). The tool life is at least 20 times greater than found in conventional machining of CGI. This significant reduction in wear is a consequence of reduction in the severity of the tool-work contact conditions with MAM. The propensity for thermochemical wear of CBN is thus reduced. It is found that higher cutting speed (> 700 m/min) leads to lower tool wear with MAM. The MAM configuration employing feed-direction modulation appears feasible for implementation at high speeds and offers a solution to this challenging class of industrial machining applications. This study's approach is by series of high speed turning tests of CGI with CBN tools, comparing conventional machining to MAM for similar parameters otherwise, by tool wear measurements and machinability observations.
Interferometric correction system for a numerically controlled machine
Burleson, Robert R.
1978-01-01
An interferometric correction system for a numerically controlled machine is provided to improve the positioning accuracy of a machine tool, for example, for a high-precision numerically controlled machine. A laser interferometer feedback system is used to monitor the positioning of the machine tool which is being moved by command pulses to a positioning system to position the tool. The correction system compares the commanded position as indicated by a command pulse train applied to the positioning system with the actual position of the tool as monitored by the laser interferometer. If the tool position lags the commanded position by a preselected error, additional pulses are added to the pulse train applied to the positioning system to advance the tool closer to the commanded position, thereby reducing the lag error. If the actual tool position is leading in comparison to the commanded position, pulses are deleted from the pulse train where the advance error exceeds the preselected error magnitude to correct the position error of the tool relative to the commanded position.
Traceability of On-Machine Tool Measurement: A Review
Gomez-Acedo, Eneko; Kortaberria, Gorka; Olarra, Aitor
2017-01-01
Nowadays, errors during the manufacturing process of high value components are not acceptable in driving industries such as energy and transportation. Sectors such as aerospace, automotive, shipbuilding, nuclear power, large science facilities or wind power need complex and accurate components that demand close measurements and fast feedback into their manufacturing processes. New measuring technologies are already available in machine tools, including integrated touch probes and fast interface capabilities. They provide the possibility to measure the workpiece in-machine during or after its manufacture, maintaining the original setup of the workpiece and avoiding the manufacturing process from being interrupted to transport the workpiece to a measuring position. However, the traceability of the measurement process on a machine tool is not ensured yet and measurement data is still not fully reliable enough for process control or product validation. The scientific objective is to determine the uncertainty on a machine tool measurement and, therefore, convert it into a machine integrated traceable measuring process. For that purpose, an error budget should consider error sources such as the machine tools, components under measurement and the interactions between both of them. This paper reviews all those uncertainty sources, being mainly focused on those related to the machine tool, either on the process of geometric error assessment of the machine or on the technology employed to probe the measurand. PMID:28696358
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-06-01
Following a planning period during which the Lawrence Livermore Laboratory and the Department of Defense managing sponsor, the USAF Materials Laboratory, agreed on work statements, the Department of Defense Tri-Service Precision Machine-Tool Program began in February 1978. Milestones scheduled for the first quarter have been met. Tasks and manpower requirements for two basic projects, precision-machining commercialization (PMC) and a machine-tool task force (MTTF), were defined. Progress by PMC includes: (1) documentation of existing precision machine-tool technology by initiation and compilation of a bibliography containing several hundred entries: (2) identification of the problems and needs of precision turning-machine builders and ofmore » precision turning-machine users interested in developing high-precision machining capability; and (3) organization of the schedule and content of the first seminar, to be held in October 1978, which will bring together representatives from the machine-tool and optics communities to address the problems and begin the process of high-precision machining commercialization. Progress by MTTF includes: (1) planning for the organization of a team effort of approximately 60 to 80 international experts to contribute in various ways to project objectives, namely, to summarize state-of-the-art cutting-machine-tool technology and to identify areas where future R and D should prove technically and economically profitable; (2) preparation of a comprehensive plan to achieve those objectives; and (3) preliminary arrangements for a plenary session, also in October, when the task force will meet to formalize the details for implementing the plan.« less
NASA Astrophysics Data System (ADS)
Dey, Kaushik; Ghose, A. K.
2011-09-01
Rock excavation is carried out either by drilling and blasting or using rock-cutting machines like rippers, bucket wheel excavators, surface miners, road headers etc. Economics of mechanised rock excavation by rock-cutting machines largely depends on the achieved production rates. Thus, assessment of the performance (productivity) is important prior to deploying a rock-cutting machine. In doing so, several researchers have classified rockmass in different ways and have developed cuttability indices to correlate machine performance directly. However, most of these indices were developed to assess the performance of road headers/tunnel-boring machines apart from a few that were developed in the earlier days when the ripper was a popular excavating equipment. Presently, around 400 surface miners are in operation around the world amongst which, 105 are in India. Until now, no rockmass classification system is available to assess the performance of surface miners. Surface miners are being deployed largely on trial and error basis or based on the performance charts provided by the manufacturer. In this context, it is logical to establish a suitable cuttability index to predict the performance of surface miners. In this present paper, the existing cuttability indices are reviewed and a new cuttability indexes proposed. A new relationship is also developed to predict the output from surface miners using the proposed cuttability index.
Lee, Joo Yong; Jeh, Seong Uk; Kim, Man Deuk; Kang, Dong Hyuk; Kwon, Jong Kyou; Ham, Won Sik; Choi, Young Deuk; Cho, Kang Su
2017-06-27
Percutaneous nephrolithotomy (PCNL) is performed to treat relatively large renal stones. Recent publications indicate that tubeless and total tubeless (stentless) PCNL is safe in selected patients. We performed a systematic review and network meta-analysis to evaluate the feasibility and safety of different PCNL procedures, including total tubeless, tubeless with stent, small-bore tube, and large-bore tube PCNLs. PubMed, Cochrane Central Register of Controlled Trials, and EMBASE™ databases were searched to identify randomized controlled trials published before December 30, 2013. One researcher examined all titles and abstracts found by the searches. Two investigators independently evaluated the full-text articles to determine whether those met the inclusion criteria. Qualities of included studies were rated with Cochrane's risk-of-bias assessment tool. Sixteen studies were included in the final syntheses including pairwise and network meta-analyses. Operation time, pain scores, and transfusion rates were not significantly different between PCNL procedures. Network meta-analyses demonstrated that for hemoglobin changes, total tubeless PCNL may be superior to standard PCNL (mean difference [MD] 0.65, 95% CI 0.14-1.13) and tubeless PCNLs with stent (MD -1.14, 95% CI -1.65--0.62), and small-bore PCNL may be superior to tubeless PCNL with stent (MD 1.30, 95% CI 0.27-2.26). Network meta-analyses also showed that for length of hospital stay, total tubeless (MD 1.33, 95% CI 0.23-2.43) and tubeless PCNLs with stent (MD 0.99, 95% CI 0.19-1.79) may be superior to standard PCNL. In rank probability tests, small-bore tube and total tubeless PCNLs were superior for operation time, pain scores, and hemoglobin changes. For hemoglobin changes, total tubeless and small-bore PCNLs may be superior to other methods. For hospital stay, total tubeless and tubeless PCNLs with stent may be superior to other procedures.
ERIC Educational Resources Information Center
BOLDT, MILTON; POKORNY, HARRY
THIRTY-THREE MACHINE SHOP INSTRUCTORS FROM 17 STATES PARTICIPATED IN AN 8-WEEK SEMINAR TO DEVELOP THE SKILLS AND KNOWLEDGE ESSENTIAL FOR TEACHING THE OPERATION OF NUMERICALLY CONTROLLED MACHINE TOOLS. THE SEMINAR WAS GIVEN FROM JUNE 20 TO AUGUST 12, 1966, WITH COLLEGE CREDIT AVAILABLE THROUGH STOUT STATE UNIVERSITY. THE PARTICIPANTS COMPLETED AN…
An iterative learning control method with application for CNC machine tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D.I.; Kim, S.
1996-01-01
A proportional, integral, and derivative (PID) type iterative learning controller is proposed for precise tracking control of industrial robots and computer numerical controller (CNC) machine tools performing repetitive tasks. The convergence of the output error by the proposed learning controller is guaranteed under a certain condition even when the system parameters are not known exactly and unknown external disturbances exist. As the proposed learning controller is repeatedly applied to the industrial robot or the CNC machine tool with the path-dependent repetitive task, the distance difference between the desired path and the actual tracked or machined path, which is one ofmore » the most significant factors in the evaluation of control performance, is progressively reduced. The experimental results demonstrate that the proposed learning controller can improve machining accuracy when the CNC machine tool performs repetitive machining tasks.« less
The influence of machining condition and cutting tool wear on surface roughness of AISI 4340 steel
NASA Astrophysics Data System (ADS)
Natasha, A. R.; Ghani, J. A.; Che Haron, C. H.; Syarif, J.
2018-01-01
Sustainable machining by using cryogenic coolant as the cutting fluid has been proven to enhance some machining outputs. The main objective of the current work was to investigate the influence of machining conditions; dry and cryogenic, as well as the cutting tool wear on the machined surface roughness of AISI 4340 steel. The experimental tests were performed using chemical vapor deposition (CVD) coated carbide inserts. The value of machined surface roughness were measured at 3 cutting intervals; beginning, middle, and end of the cutting based on the readings of the tool flank wear. The results revealed that cryogenic turning had the greatest influence on surface roughness when machined at lower cutting speed and higher feed rate. Meanwhile, the cutting tool wear was also found to influence the surface roughness, either improving it or deteriorating it, based on the severity and the mechanism of the flank wear.
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for machine tool operation/machine shop I and II. Presented first are a…
Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel
NASA Astrophysics Data System (ADS)
Outeiro, José C.; Umbrello, Domenico; Pina, José C.; Rizzuti, Stefania
2007-05-01
Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
Development of an electromagnetic imaging system for well bore integrity inspection
NASA Astrophysics Data System (ADS)
Plotnikov, Yuri; Wheeler, Frederick W.; Mandal, Sudeep; Climent, Helene C.; Kasten, A. Matthias; Ross, William
2017-02-01
State-of-the-art imaging technologies for monitoring the integrity of oil and gas well bores are typically limited to the inspection of metal casings and cement bond interfaces close to the first casing region. The objective of this study is to develop and evaluate a novel well-integrity inspection system that is capable of providing enhanced information about the flaw structure and topology of hydrocarbon producing well bores. In order to achieve this, we propose the development of a multi-element electromagnetic (EM) inspection tool that can provide information about material loss in the first and second casing structure as well as information about eccentricity between multiple casing strings. Furthermore, the information gathered from the EM inspection tool will be combined with other imaging modalities (e.g. data from an x-ray backscatter imaging device). The independently acquired data are then fused to achieve a comprehensive assessment of integrity with greater accuracy. A test rig composed of several concentric metal casings with various defect structures was assembled and imaged. Initial test results were obtained with a scanning system design that includes a single transmitting coil and several receiving coils mounted on a single rod. A mechanical linear translation stage was used to move the EM sensors in the axial direction during data acquisition. For simplicity, a single receiving coil and repetitive scans were employed to simulate performance of the designed receiving sensor array system. The resulting electromagnetic images enable the detection of the metal defects in the steel pipes. Responses from several sensors were used to assess the location and amount of material loss in the first and second metal pipe as well as the relative eccentric position between these two pipes. The results from EM measurements and x-ray backscatter simulations demonstrate that data fusion from several sensing modalities can provide an enhanced assessment of flaw structures in producing well bores and potentially allow for early detection of anomalies that if undetected might lead to catastrophic failures.
A Real-Time Tool Positioning Sensor for Machine-Tools
Ruiz, Antonio Ramon Jimenez; Rosas, Jorge Guevara; Granja, Fernando Seco; Honorato, Jose Carlos Prieto; Taboada, Jose Juan Esteve; Serrano, Vicente Mico; Jimenez, Teresa Molina
2009-01-01
In machining, natural oscillations, and elastic, gravitational or temperature deformations, are still a problem to guarantee the quality of fabricated parts. In this paper we present an optical measurement system designed to track and localize in 3D a reference retro-reflector close to the machine-tool's drill. The complete system and its components are described in detail. Several tests, some static (including impacts and rotations) and others dynamic (by executing linear and circular trajectories), were performed on two different machine tools. It has been integrated, for the first time, a laser tracking system into the position control loop of a machine-tool. Results indicate that oscillations and deformations close to the tool can be estimated with micrometric resolution and a bandwidth from 0 to more than 100 Hz. Therefore this sensor opens the possibility for on-line compensation of oscillations and deformations. PMID:22408472
Machinability of hypereutectic silicon-aluminum alloys
NASA Astrophysics Data System (ADS)
Tanaka, T.; Akasawa, T.
1999-08-01
The machinability of high-silicon aluminum alloys made by a P/M process and by casting was compared. The cutting test was conducted by turning on lathes with the use of cemented carbide tools. The tool wear by machining the P/M alloy was far smaller than the tool wear by machining the cast alloy. The roughness of the machined surface of the P/M alloy is far better than that of the cast alloy, and the turning speed did not affect it greatly at higher speeds. The P/M alloy produced long chips, so the disposal can cause trouble. The size effect of silicon grains on the machinability is discussed.
Apparatus for electrical-assisted incremental forming and process thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, John; Cao, Jian
A process and apparatus for forming a sheet metal component using an electric current passing through the component. The process can include providing an incremental forming machine, the machine having at least one arcuate tipped tool and at least electrode spaced a predetermined distance from the arcuate tipped tool. The machine is operable to perform a plurality of incremental deformations on the sheet metal component using the arcuate tipped tool. The machine is also operable to apply an electric direct current through the electrode into the sheet metal component at the predetermined distance from the arcuate tipped tool while themore » machine is forming the sheet metal component.« less
NASA Astrophysics Data System (ADS)
Vu, Duy-Duc; Monies, Frédéric; Rubio, Walter
2018-05-01
A large number of studies, based on 3-axis end milling of free-form surfaces, seek to optimize tool path planning. Approaches try to optimize the machining time by reducing the total tool path length while respecting the criterion of the maximum scallop height. Theoretically, the tool path trajectories that remove the most material follow the directions in which the machined width is the largest. The free-form surface is often considered as a single machining area. Therefore, the optimization on the entire surface is limited. Indeed, it is difficult to define tool trajectories with optimal feed directions which generate largest machined widths. Another limiting point of previous approaches for effectively reduce machining time is the inadequate choice of the tool. Researchers use generally a spherical tool on the entire surface. However, the gains proposed by these different methods developed with these tools lead to relatively small time savings. Therefore, this study proposes a new method, using toroidal milling tools, for generating toolpaths in different regions on the machining surface. The surface is divided into several regions based on machining intervals. These intervals ensure that the effective radius of the tool, at each cutter-contact points on the surface, is always greater than the radius of the tool in an optimized feed direction. A parallel plane strategy is then used on the sub-surfaces with an optimal specific feed direction for each sub-surface. This method allows one to mill the entire surface with efficiency greater than with the use of a spherical tool. The proposed method is calculated and modeled using Maple software to find optimal regions and feed directions in each region. This new method is tested on a free-form surface. A comparison is made with a spherical cutter to show the significant gains obtained with a toroidal milling cutter. Comparisons with CAM software and experimental validations are also done. The results show the efficiency of the method.
NASA Technical Reports Server (NTRS)
Garcia, J.
1984-01-01
Tool with stepped shoulders alines tubes for machining in preparation for welding. Alinement with machine tool axis accurate to within 5 mils (0.13mm) and completed much faster than visual setup by machinist.
Reversible micromachining locator
Salzer, Leander J.; Foreman, Larry R.
2002-01-01
A locator with a part support is used to hold a part onto the kinematic mount of a tooling machine so that the part can be held in or replaced in exactly the same position relative to the cutting tool for machining different surfaces of the part or for performing different machining operations on the same or different surfaces of the part. The locator has disposed therein a plurality of steel balls placed at equidistant positions around the planar surface of the locator and the kinematic mount has a plurality of magnets which alternate with grooves which accommodate the portions of the steel balls projecting from the locator. The part support holds the part to be machined securely in place in the locator. The locator can be easily detached from the kinematic mount, turned over, and replaced onto the same kinematic mount or another kinematic mount on another tooling machine without removing the part to be machined from the locator so that there is no need to touch or reposition the part within the locator, thereby assuring exact replication of the position of the part in relation to the cutting tool on the tooling machine for each machining operation on the part.
Articulated, Performance-Based Instruction Objectives Guide for Machine Shop Technology.
ERIC Educational Resources Information Center
Henderson, William Edward, Jr., Ed.
This articulation guide contains 21 units of instruction for two years of machine shop. The objectives of the program are to provide the student with the basic terminology and fundamental knowledge and skills in machining (year 1) and to teach him/her to set up and operate machine tools and make or repair metal parts, tools, and machines (year 2).…
MATC Machine Shop '84: Specific Skill Needs Assessment for Machine Shops in the Milwaukee Area.
ERIC Educational Resources Information Center
Roberts, Keith J.
Building on previous research on the future skill needs of workers in southeastern Wisconsin, a study was conducted at Milwaukee Area Technical College (MATC) to gather information on the machine tool industry in the Milwaukee area. Interviews were conducted by MATC Machine Shop and Tool and Die faculty with representatives from 135 machine shops,…
A Review on High-Speed Machining of Titanium Alloys
NASA Astrophysics Data System (ADS)
Rahman, Mustafizur; Wang, Zhi-Gang; Wong, Yoke-San
Titanium alloys have been widely used in the aerospace, biomedical and automotive industries because of their good strength-to-weight ratio and superior corrosion resistance. However, it is very difficult to machine them due to their poor machinability. When machining titanium alloys with conventional tools, the tool wear rate progresses rapidly, and it is generally difficult to achieve a cutting speed of over 60m/min. Other types of tool materials, including ceramic, diamond, and cubic boron nitride (CBN), are highly reactive with titanium alloys at higher temperature. However, binder-less CBN (BCBN) tools, which do not have any binder, sintering agent or catalyst, have a remarkably longer tool life than conventional CBN inserts even at high cutting speeds. In order to get deeper understanding of high speed machining (HSM) of titanium alloys, the generation of mathematical models is essential. The models are also needed to predict the machining parameters for HSM. This paper aims to give an overview of recent developments in machining and HSM of titanium alloys, geometrical modeling of HSM, and cutting force models for HSM of titanium alloys.
NASA Astrophysics Data System (ADS)
Sateesh Kumar, Ch; Patel, Saroj Kumar; Das, Anshuman
2018-03-01
Temperature generation in cutting tools is one of the major causes of tool failure especially during hard machining where machining forces are quite high resulting in elevated temperatures. Thus, the present work investigates the temperature generation during hard machining of AISI 52100 steel (62 HRC hardness) with uncoated and PVD AlTiN coated Al2O3/TiCN mixed ceramic cutting tools. The experiments were performed on a heavy duty lathe machine with both coated and uncoated cutting tools under dry cutting environment. The temperature of the cutting zone was measured using an infrared thermometer and a finite element model has been adopted to predict the temperature distribution in cutting tools during machining for comparative assessment with the measured temperature. The experimental and numerical results revealed a significant reduction of cutting zone temperature during machining with PVD AlTiN coated cutting tools when compared to uncoated cutting tools during each experimental run. The main reason for decrease in temperature for AlTiN coated tools is the lower coefficient of friction offered by the coating material which allows the free flow of the chips on the rake surface when compared with uncoated cutting tools. Further, the superior wear behaviour of AlTiN coating resulted in reduction of cutting temperature.
NASA Astrophysics Data System (ADS)
Sousa, Andre R.; Schneider, Carlos A.
2001-09-01
A touch probe is used on a 3-axis vertical machine center to check against a hole plate, calibrated on a coordinate measuring machine (CMM). By comparing the results obtained from the machine tool and CMM, the main machine tool error components are measured, attesting the machine accuracy. The error values can b used also t update the error compensation table at the CNC, enhancing the machine accuracy. The method is easy to us, has a lower cost than classical test techniques, and preliminary results have shown that its uncertainty is comparable to well established techniques. In this paper the method is compared with the laser interferometric system, regarding reliability, cost and time efficiency.
Tool geometry and damage mechanisms influencing CNC turning efficiency of Ti6Al4V
NASA Astrophysics Data System (ADS)
Suresh, Sangeeth; Hamid, Darulihsan Abdul; Yazid, M. Z. A.; Nasuha, Nurdiyanah; Ain, Siti Nurul
2017-12-01
Ti6Al4V or Grade 5 titanium alloy is widely used in the aerospace, medical, automotive and fabrication industries, due to its distinctive combination of mechanical and physical properties. Ti6Al4V has always been perverse during its machining, strangely due to the same mix of properties mentioned earlier. Ti6Al4V machining has resulted in shorter cutting tool life which has led to objectionable surface integrity and rapid failure of the parts machined. However, the proven functional relevance of this material has prompted extensive research in the optimization of machine parameters and cutting tool characteristics. Cutting tool geometry plays a vital role in ensuring dimensional and geometric accuracy in machined parts. In this study, an experimental investigation is actualized to optimize the nose radius and relief angles of the cutting tools and their interaction to different levels of machining parameters. Low elastic modulus and thermal conductivity of Ti6Al4V contribute to the rapid tool damage. The impact of these properties over the tool tips damage is studied. An experimental design approach is utilized in the CNC turning process of Ti6Al4V to statistically analyze and propose optimum levels of input parameters to lengthen the tool life and enhance surface characteristics of the machined parts. A greater tool nose radius with a straight flank, combined with low feed rates have resulted in a desirable surface integrity. The presence of relief angle has proven to aggravate tool damage and also dimensional instability in the CNC turning of Ti6Al4V.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-25
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,971] ASC Machine Tools, Inc... workers and former workers of ASC Machine Tools, Inc., Spokane Valley, Washington (the subject firm). The... cut metal, including assembled equipment, component parts of equipment, and spare parts. The negative...
Tool feed influence on the machinability of CO(2) laser optics.
Arnold, J B; Steger, P J; Saito, T T
1975-08-01
Influence of tool feed on reflectivity of diamond-machined surfaces was evaluated using materials (gold, silver, and copper) from which CO(2) laser optics are primarily produced. Fifteen specimens were machined by holding all machining parameters constant, except tool feed. Tool feed was allowed to vary by controlled amounts from one evaluation zone (or part) to another. Past experience has verified that the quality of a diamond-machined surface is not a function of the cutting velocity; therefore, this experiment was conducted on the basis that a variation in cutting velocity was not an influencing factor on the diamondturning process. Inspection results of the specimens indicated that tool feeds significantly higher than 5.1 micro/rev (200 microin./rev) produced detrimental effects on the machined surfaces. In some cases, at feeds as high as 13 microm/rev (500 microin./rev), visible scoring was evident. Those surfaces produced with tool feeds less than 5.1 microm/rev had little difference in reflectivity. Measurements indicat d that their reflectivity existed in a range from 96.7% to 99.3% at 10.6 microm.
NASA Technical Reports Server (NTRS)
Voronov, Oleg
2007-01-01
Diamond smoothing tools have been proposed for use in conjunction with diamond cutting tools that are used in many finish-machining operations. Diamond machining (including finishing) is often used, for example, in fabrication of precise metal mirrors. A diamond smoothing tool according to the proposal would have a smooth spherical surface. For a given finish machining operation, the smoothing tool would be mounted next to the cutting tool. The smoothing tool would slide on the machined surface left behind by the cutting tool, plastically deforming the surface material and thereby reducing the roughness of the surface, closing microcracks and otherwise generally reducing or eliminating microscopic surface and subsurface defects, and increasing the microhardness of the surface layer. It has been estimated that if smoothing tools of this type were used in conjunction with cutting tools on sufficiently precise lathes, it would be possible to reduce the roughness of machined surfaces to as little as 3 nm. A tool according to the proposal would consist of a smoothing insert in a metal holder. The smoothing insert would be made from a diamond/metal functionally graded composite rod preform, which, in turn, would be made by sintering together a bulk single-crystal or polycrystalline diamond, a diamond powder, and a metallic alloy at high pressure. To form the spherical smoothing tip, the diamond end of the preform would be subjected to flat grinding, conical grinding, spherical grinding using diamond wheels, and finally spherical polishing and/or buffing using diamond powders. If the diamond were a single crystal, then it would be crystallographically oriented, relative to the machining motion, to minimize its wear and maximize its hardness. Spherically polished diamonds could also be useful for purposes other than smoothing in finish machining: They would likely also be suitable for use as heat-resistant, wear-resistant, unlubricated sliding-fit bearing inserts.
Noncontact ultrasound detection of exotic insects in wood packing materials
Mary R. Fleming; Dinesh K. Agrawal; Mahesh C. Bhardwaj; Leah S. Bauer; John J. Janowiak; Jeffrey E. Shield; Kelli Hoover; Rustum Roy
2005-01-01
Nondestructive methods for detection of wood-boring insects such as the Asian longhorned beetle (ALB), Anoplophora glabripennis (Coleoptera: Cerambycidae) inside solid wood packing materials is a valuable tool in the fight to exclude exotic insects from attacking a nation?s timber resources. Nondestructive, non-contact, ultrasound was investigated as...
Fantasy and Experiential-Gestalt Therapy.
ERIC Educational Resources Information Center
Witchel, Robert
Fantasy activities are part of everyday experience. The author imagines hugging or touching someone, daydreams about sitting on a bench or riverbank, visualizes standing up during a boring meeting and shouting "let's wake up and do something!" Fantasy is also a tool that can be used in experimenting with new behavior, becoming more aware…
Sudoku Puzzles as Chemistry Learning Tools
ERIC Educational Resources Information Center
Crute, Thomas D.; Myers, Stephanie A.
2007-01-01
A sudoku puzzle was designed that incorporated lists of chemistry terms like polyatomic ions, organic functional groups or strong nucleophiles that students need to learn. It was found that students enjoyed solving such puzzles and also such puzzles made the boring tasks of memorizing basic chemical terms an exciting one.
Radar Cuts Subsoil Survey Costs
NASA Technical Reports Server (NTRS)
Johnson, R.; Glaccum, R.
1984-01-01
Soil features located with minimum time and labor. Ground-penetrating radar (GPR) system supplements manual and mechanical methods in performing subsurface soil survey. Mobile system obtains graphic profile of soil discontinuities and interfaces as function of depth. One or two test borings necessary to substantiate soil profile. GPR proves useful as reconnaissance tool.
Some diagnostic interpretations from railgun plasma profile experiments
NASA Astrophysics Data System (ADS)
Stainsby, D. F.; Bedford, A. J.
1984-03-01
Some aspects of a railgun experimental series to investigate plasma profiles are reviewed. Certain diagnostic records clearly show plasma leakage past the projectile, and correspondence between various in-bore events and muzzle voltage. A muzzle flash detector is shown to have a useful role as a plasma diagnostic tool.
High-precision micro/nano-scale machining system
Kapoor, Shiv G.; Bourne, Keith Allen; DeVor, Richard E.
2014-08-19
A high precision micro/nanoscale machining system. A multi-axis movement machine provides relative movement along multiple axes between a workpiece and a tool holder. A cutting tool is disposed on a flexible cantilever held by the tool holder, the tool holder being movable to provide at least two of the axes to set the angle and distance of the cutting tool relative to the workpiece. A feedback control system uses measurement of deflection of the cantilever during cutting to maintain a desired cantilever deflection and hence a desired load on the cutting tool.
NASA Technical Reports Server (NTRS)
1988-01-01
A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.
Diamond machine tool face lapping machine
Yetter, H.H.
1985-05-06
An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.
Controlling the type and the form of chip when machining steel
NASA Astrophysics Data System (ADS)
Gruby, S. V.; Lasukov, A. A.; Nekrasov, R. Yu; Politsinsky, E. V.; Arkhipova, D. A.
2016-08-01
The type of the chip produced in the process of machining influences many factors of production process. Controlling the type of chip when cutting metals is important for producing swarf chips and for easing its utilization as well as for protecting the machined surface, cutting tool and the worker. In the given work we provide the experimental data on machining structural steel with implanted tool. The authors show that it is possible to control the chip formation process to produce the required type of chip by selecting the material for machining the tool surface.
Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining
Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin
2016-01-01
Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing. PMID:27854322
Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining.
Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin
2016-11-16
Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.
AFM surface imaging of AISI D2 tool steel machined by the EDM process
NASA Astrophysics Data System (ADS)
Guu, Y. H.
2005-04-01
The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.
High-temperature, high-pressure bonding of nested tubular metallic components
Quinby, Thomas C.
1980-01-01
This invention is a tool for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.
The U.S. Machine Tool Industry and the Defense Industrial Base
1983-01-01
GOLD, Director, Research Program in Industrial Economics , Case Western Reserve University HAMILTON HERMAN, Management Consultant NATHANIEL S. HOWE...Traditional U.S. Machine Tool Industry ........ 8 Technological Trends Shaping the Industry ........ 18 Economic Trends .................................. 23...sustained economic recovery and aggressive steps by both government and industry, an effectively com- petitive domestic machine tool industry can emerge
Technology of machine tools. Volume 1. Executive summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
PCD tool wear and its monitoring in machining tungsten
NASA Astrophysics Data System (ADS)
Wang, Lijiang; Zhang, Zhenlie; Sun, Qi; Liu, Pin
The views of Chinese and foreign researchers are quite different as to whether or not polycrystalline diamond (PCD) tools can machine tungsten that is used in the aerospace and electronic industries. A study is presented that shows the possibility of machining tungsten, and a new method is developed for monitoring the tool wear in production.
Machine and Woodworking Tool Safety. Module SH-24. Safety and Health.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This student module on machine and woodworking tool safety is one of 50 modules concerned with job safety and health. This module discusses specific practices and precautions concerned with the efficient operation and use of most machine and woodworking tools in use today. Following the introduction, 13 objectives (each keyed to a page in the…
Machinability of titanium metal matrix composites (Ti-MMCs)
NASA Astrophysics Data System (ADS)
Aramesh, Maryam
Titanium metal matrix composites (Ti-MMCs), as a new generation of materials, have various potential applications in aerospace and automotive industries. The presence of ceramic particles enhances the physical and mechanical properties of the alloy matrix. However, the hard and abrasive nature of these particles causes various issues in the field of their machinability. Severe tool wear and short tool life are the most important drawbacks of machining this class of materials. There is very limited work in the literature regarding the machinability of this class of materials especially in the area of tool life estimation and tool wear. By far, polycrystalline diamond (PCD) tools appear to be the best choice for machining MMCs from researchers' point of view. However, due to their high cost, economical alternatives are sought. Cubic boron nitride (CBN) inserts, as the second hardest available tools, show superior characteristics such as great wear resistance, high hardness at elevated temperatures, a low coefficient of friction and a high melting point. Yet, so far CBN tools have not been studied during machining of Ti-MMCs. In this study, a comprehensive study has been performed to explore the tool wear mechanisms of CBN inserts during turning of Ti-MMCs. The unique morphology of the worn faces of the tools was investigated for the first time, which led to new insights in the identification of chemical wear mechanisms during machining of Ti-MMCs. Utilizing the full tool life capacity of cutting tools is also very crucial, due to the considerable costs associated with suboptimal replacement of tools. This strongly motivates development of a reliable model for tool life estimation under any cutting conditions. In this study, a novel model based on the survival analysis methodology is developed to estimate the progressive states of tool wear under any cutting conditions during machining of Ti-MMCs. This statistical model takes into account the machining time in addition to the effect of cutting parameters. Thus, promising results were obtained which showed a very good agreement with the experimental results. Moreover, a more advanced model was constructed, by adding the tool wear as another variable to the previous model. Therefore, a new model was proposed for estimating the remaining life of worn inserts under different cutting conditions, using the current tool wear data as an input. The results of this model were validated with the experimental results. The estimated results were well consistent with the results obtained from the experiments.
Operating System For Numerically Controlled Milling Machine
NASA Technical Reports Server (NTRS)
Ray, R. B.
1992-01-01
OPMILL program is operating system for Kearney and Trecker milling machine providing fast easy way to program manufacture of machine parts with IBM-compatible personal computer. Gives machinist "equation plotter" feature, which plots equations that define movements and converts equations to milling-machine-controlling program moving cutter along defined path. System includes tool-manager software handling up to 25 tools and automatically adjusts to account for each tool. Developed on IBM PS/2 computer running DOS 3.3 with 1 MB of random-access memory.
UIVerify: A Web-Based Tool for Verification and Automatic Generation of User Interfaces
NASA Technical Reports Server (NTRS)
Shiffman, Smadar; Degani, Asaf; Heymann, Michael
2004-01-01
In this poster, we describe a web-based tool for verification and automatic generation of user interfaces. The verification component of the tool accepts as input a model of a machine and a model of its interface, and checks that the interface is adequate (correct). The generation component of the tool accepts a model of a given machine and the user's task, and then generates a correct and succinct interface. This write-up will demonstrate the usefulness of the tool by verifying the correctness of a user interface to a flight-control system. The poster will include two more examples of using the tool: verification of the interface to an espresso machine, and automatic generation of a succinct interface to a large hypothetical machine.
USSR Report, Machine Tools and Metalworking Equipment, No. 6
1983-05-18
production output per machine tool at a tool plant average 2-3 times the figures for tool shops. This is explained by the well-known advantages of...specialized production. Specifically, the advantages of standardization and unification of machine- attachment design can be fully exploited in...lemiiiiä IS MVCti\\e UtiUzation °f appropriate special equipmeT ters)! million thread-cutting dies, and 2.3 million milling cut- The advantages of
[Present-day metal-cutting tools and working conditions].
Kondratiuk, V P
1990-01-01
Polyfunctional machine-tools of a processing centre type are characterized by a set of hygienic advantages as compared to universal machine-tools. But low degree of mechanization and automation of some auxiliary processes, and constructional defects which decrease the ergonomic characteristics of the tools, involve labour intensity in multi-machine processing. The article specifies techniques of allowable noise level assessment, and proposes hygienic recommendations, some of which have been introduced into practice.
NASA Astrophysics Data System (ADS)
Chetan; Narasimhulu, A.; Ghosh, S.; Rao, P. V.
2015-07-01
Machinability of titanium is poor due to its low thermal conductivity and high chemical affinity. Lower thermal conductivity of titanium alloy is undesirable on the part of cutting tool causing extensive tool wear. The main task of this work is to predict the various wear mechanisms involved during machining of Ti alloy (Ti6Al4V) and to formulate an analytical mathematical tool wear model for the same. It has been found from various experiments that adhesive and diffusion wear are the dominating wear during machining of Ti alloy with PVD coated tungsten carbide tool. It is also clear from the experiments that the tool wear increases with the increase in cutting parameters like speed, feed and depth of cut. The wear model was validated by carrying out dry machining of Ti alloy at suitable cutting conditions. It has been found that the wear model is able to predict the flank wear suitably under gentle cutting conditions.
Ahmed, Yassmin Seid; Fox-Rabinovich, German; Paiva, Jose Mario; Wagg, Terry; Veldhuis, Stephen Clarence
2017-10-25
During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool-chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear.
Method for machining steel with diamond tools
Casstevens, J.M.
1984-01-01
The present invention is directed to a method for machine optical quality finishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.
Method for machining steel with diamond tools
Casstevens, John M.
1986-01-01
The present invention is directed to a method for machining optical quality inishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.
NASA Astrophysics Data System (ADS)
Yingfei, Ge; de Escalona, Patricia Muñoz; Galloway, Alexander
2017-01-01
The efficiency of a machining process can be measured by evaluating the quality of the machined surface and the tool wear rate. The research reported herein is mainly focused on the effect of cutting parameters and tool wear on the machined surface defects, surface roughness, deformation layer and residual stresses when dry milling Stellite 6, deposited by overlay on a carbon steel surface. The results showed that under the selected cutting conditions, abrasion, diffusion, peeling, chipping and breakage were the main tool wear mechanisms presented. Also the feed rate was the primary factor affecting the tool wear with an influence of 83%. With regard to the influence of cutting parameters on the surface roughness, the primary factors were feed rate and cutting speed with 57 and 38%, respectively. In addition, in general, as tool wear increased, the surface roughness increased and the deformation layer was found to be influenced more by the cutting parameters rather than the tool wear. Compressive residual stresses were observed in the un-machined surface, and when machining longer than 5 min, residual stress changed 100% from compression to tension. Finally, results showed that micro-crack initiation was the main mechanism for chip formation.
Thermal Error Test and Intelligent Modeling Research on the Spindle of High Speed CNC Machine Tools
NASA Astrophysics Data System (ADS)
Luo, Zhonghui; Peng, Bin; Xiao, Qijun; Bai, Lu
2018-03-01
Thermal error is the main factor affecting the accuracy of precision machining. Through experiments, this paper studies the thermal error test and intelligent modeling for the spindle of vertical high speed CNC machine tools in respect of current research focuses on thermal error of machine tool. Several testing devices for thermal error are designed, of which 7 temperature sensors are used to measure the temperature of machine tool spindle system and 2 displacement sensors are used to detect the thermal error displacement. A thermal error compensation model, which has a good ability in inversion prediction, is established by applying the principal component analysis technology, optimizing the temperature measuring points, extracting the characteristic values closely associated with the thermal error displacement, and using the artificial neural network technology.
ERIC Educational Resources Information Center
Crossley, Scott A.
2013-01-01
This paper provides an agenda for replication studies focusing on second language (L2) writing and the use of natural language processing (NLP) tools and machine learning algorithms. Specifically, it introduces a range of the available NLP tools and machine learning algorithms and demonstrates how these could be used to replicate seminal studies…
1989-01-30
absolutely forbid the dealing of retaliatory blows to those of the masses who give their opinions. Fifth, on the basis of their analyses they pass on...Timber Artificial Board Cement Plate Glass Power Equipment Machine Tool Precision Machine Tool Large Machine Tool Automobile Truck Tractor Small...the State Bureau of Building Materials Industry said that the industry must manufacture more varieties of high quality cement, glass , pottery, and
NASA Astrophysics Data System (ADS)
Chen, Shun-Tong; Chang, Chih-Hsien
2013-12-01
This study presents a novel approach to the fabrication of a biomedical-mold for producing convex platform PMMA (poly-methyl-meth-acrylate) slides for counting cells. These slides allow for the microscopic examination of urine sediment cells. Manufacturing of such slides incorporates three important procedures: (1) the development of a tabletop high-precision dual-spindle CNC (computerized numerical control) machine tool; (2) the formation of a boron-doped polycrystalline composite diamond (BD-PCD) wheel-tool on the machine tool developed in procedure (1); and (3) the cutting of a multi-groove-biomedical-mold array using the formed diamond wheel-tool in situ on the developed machine. The machine incorporates a hybrid working platform providing wheel-tool thinning using spark erosion to cut, polish, and deburr microgrooves on NAK80 steel directly. With consideration given for the electrical conductive properties of BD-PCD, the diamond wheel-tool is thinned to a thickness of 5 µm by rotary wire electrical discharge machining. The thinned wheel-tool can grind microgrooves 10 µm wide. An embedded design, which inserts a close fitting precision core into the biomedical-mold to create step-difference (concave inward) of 50 µm in height between the core and the mold, is also proposed and realized. The perpendicular dual-spindles and precision rotary stage are features that allow for biomedical-mold machining without the necessity of uploading and repositioning materials until all tasks are completed. A PMMA biomedical-slide with a plurality of juxtaposed counting chambers is formed and its usefulness verified.
A Sensor-Based Method for Diagnostics of Machine Tool Linear Axes.
Vogl, Gregory W; Weiss, Brian A; Donmez, M Alkan
2015-01-01
A linear axis is a vital subsystem of machine tools, which are vital systems within many manufacturing operations. When installed and operating within a manufacturing facility, a machine tool needs to stay in good condition for parts production. All machine tools degrade during operations, yet knowledge of that degradation is illusive; specifically, accurately detecting degradation of linear axes is a manual and time-consuming process. Thus, manufacturers need automated and efficient methods to diagnose the condition of their machine tool linear axes without disruptions to production. The Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) project at the National Institute of Standards and Technology (NIST) developed a sensor-based method to quickly estimate the performance degradation of linear axes. The multi-sensor-based method uses data collected from a 'sensor box' to identify changes in linear and angular errors due to axis degradation; the sensor box contains inclinometers, accelerometers, and rate gyroscopes to capture this data. The sensors are expected to be cost effective with respect to savings in production losses and scrapped parts for a machine tool. Numerical simulations, based on sensor bandwidth and noise specifications, show that changes in straightness and angular errors could be known with acceptable test uncertainty ratios. If a sensor box resides on a machine tool and data is collected periodically, then the degradation of the linear axes can be determined and used for diagnostics and prognostics to help optimize maintenance, production schedules, and ultimately part quality.
A Sensor-Based Method for Diagnostics of Machine Tool Linear Axes
Vogl, Gregory W.; Weiss, Brian A.; Donmez, M. Alkan
2017-01-01
A linear axis is a vital subsystem of machine tools, which are vital systems within many manufacturing operations. When installed and operating within a manufacturing facility, a machine tool needs to stay in good condition for parts production. All machine tools degrade during operations, yet knowledge of that degradation is illusive; specifically, accurately detecting degradation of linear axes is a manual and time-consuming process. Thus, manufacturers need automated and efficient methods to diagnose the condition of their machine tool linear axes without disruptions to production. The Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) project at the National Institute of Standards and Technology (NIST) developed a sensor-based method to quickly estimate the performance degradation of linear axes. The multi-sensor-based method uses data collected from a ‘sensor box’ to identify changes in linear and angular errors due to axis degradation; the sensor box contains inclinometers, accelerometers, and rate gyroscopes to capture this data. The sensors are expected to be cost effective with respect to savings in production losses and scrapped parts for a machine tool. Numerical simulations, based on sensor bandwidth and noise specifications, show that changes in straightness and angular errors could be known with acceptable test uncertainty ratios. If a sensor box resides on a machine tool and data is collected periodically, then the degradation of the linear axes can be determined and used for diagnostics and prognostics to help optimize maintenance, production schedules, and ultimately part quality. PMID:28691039
Enhancing the Online Classroom: Transitioning from Discussion to Engagement
ERIC Educational Resources Information Center
Acolatse, Tanae Wolo
2016-01-01
The discussion board is a tool used in online teaching that allows students to share ideas and facilitate learning. Research suggests that while the discussion board has been an enlightening experience for online students, there is concern that the online classroom has become stagnant and in some cases boring and ineffective. This paper proposes…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-26
... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-39-2013] Foreign-Trade Zone 265--Conroe, Texas: Authorization of Production Activity; Bauer Manufacturing Inc. (Foundation Casings and Tools/Accessories for Pile Drivers and Boring Machinery), Conroe, Texas On April 18, 2013, the City of Conroe, Texas, grantee...
Engage and Excite Students with Educational Games
ERIC Educational Resources Information Center
Petsche, Jennifer
2011-01-01
Using educational games to learn or reinforce lessons engages students and turns a potentially boring subject into something exciting and desirable to know! Games offer teachers and parents a new way to grab students' attention so that they will retain information. Games have become a teaching tool, an invaluable resource for reaching students in…
Miniaturized multiwavelength digital holography sensor for extensive in-machine tool measurement
NASA Astrophysics Data System (ADS)
Seyler, Tobias; Fratz, Markus; Beckmann, Tobias; Bertz, Alexander; Carl, Daniel
2017-06-01
In this paper we present a miniaturized digital holographic sensor (HoloCut) for operation inside a machine tool. With state-of-the-art 3D measurement systems, short-range structures such as tool marks cannot be resolved inside a machine tool chamber. Up to now, measurements had to be conducted outside the machine tool and thus processing data are generated offline. The sensor presented here uses digital multiwavelength holography to get 3D-shape-information of the machined sample. By using three wavelengths, we get a large artificial wavelength with a large unambiguous measurement range of 0.5mm and achieve micron repeatability even in the presence of laser speckles on rough surfaces. In addition, a digital refocusing algorithm based on phase noise is implemented to extend the measurement range beyond the limits of the artificial wavelength and geometrical depth-of-focus. With complex wave field propagation, the focus plane can be shifted after the camera images have been taken and a sharp image with extended depth of focus is constructed consequently. With 20mm x 20mm field of view the sensor enables measurement of both macro- and micro-structure (such as tool marks) with an axial resolution of 1 µm, lateral resolution of 7 µm and consequently allows processing data to be generated online which in turn qualifies it as a machine tool control. To make HoloCut compact enough for operation inside a machining center, the beams are arranged in two planes: The beams are split into reference beam and object beam in the bottom plane and combined onto the camera in the top plane later on. Using a mechanical standard interface according to DIN 69893 and having a very compact size of 235mm x 140mm x 215mm (WxHxD) and a weight of 7.5 kg, HoloCut can be easily integrated into different machine tools and extends no more in height than a typical processing tool.
NASA Astrophysics Data System (ADS)
Gohil, Vikas; Puri, YM
2018-04-01
Turning by electrical discharge machining (EDM) is an emerging area of research. Generally, wire-EDM is used in EDM turning because it is not concerned with electrode tooling cost. In EDM turning wire electrode leaves cusps on the machined surface because of its small diameters and wire breakage which greatly affect the surface finish of the machined part. Moreover, one of the limitations of the process is low machining speed as compared to constituent processes. In this study, conventional EDM was employed for turning purpose in order to generate free-form cylindrical geometries on difficult-to-cut materials. Therefore, a specially designed turning spindle was mounted on a conventional die-sinking EDM machine to rotate the work piece. A conductive preshaped strip of copper as a forming tool is fed (reciprocate) continuously against the rotating work piece; thus, a mirror image of the tool is formed on the circumference of the work piece. In this way, an axisymmetric work piece can be made with small tools. The developed process is termed as the electrical discharge turning (EDT). In the experiments, the effect of machining parameters, such as pulse-on time, peak current, gap voltage and tool thickness on the MRR, and TWR were investigated and practical machining was carried out by turning of SS-304 stainless steel work piece.
Recent developments in turning hardened steels - A review
NASA Astrophysics Data System (ADS)
Sivaraman, V.; Prakash, S.
2017-05-01
Hard materials ranging from HRC 45 - 68 such as hardened AISI H13, AISI 4340, AISI 52100, D2 STL, D3 STEEL Steel etc., need super hard tool materials to machine. Turning of these hard materials is termed as hard turning. Hard turning makes possible direct machining of the hard materials and also eliminates the lubricant requirement and thus favoring dry machining. Hard turning is a finish turning process and hence conventional grinding is not required. Development of the new advanced super hard tool materials such as ceramic inserts, Cubic Boron Nitride, Polycrystalline Cubic Boron Nitride etc. enabled the turning of these materials. PVD and CVD methods of coating have made easier the production of single and multi layered coated tool inserts. Coatings of TiN, TiAlN, TiC, Al2O3, AlCrN over cemented carbide inserts has lead to the machining of difficult to machine materials. Advancement in the process of hard machining paved way for better surface finish, long tool life, reduced tool wear, cutting force and cutting temperatures. Micro and Nano coated carbide inserts, nanocomposite coated PCBN inserts, micro and nano CBN coated carbide inserts and similar developments have made machining of hardened steels much easier and economical. In this paper, broad literature review on turning of hardened steels including optimizing process parameters, cooling requirements, different tool materials etc., are done.
Machining of glass and quartz using nanosecond and picosecond laser pulses
NASA Astrophysics Data System (ADS)
Ashkenasi, David; Kaszemeikat, Tristan; Mueller, Norbert; Lemke, Andreas; Eichler, Hans Joachim
2012-03-01
New laser processing strategies in micro processing of glass, quartz and other optically transparent materials are being developed with increasing effort. Utilizing diode-pumped solid-state laser generating nanosecond pulsed green (532 nm) laser light in conjunction with either scanners or special trepanning systems can provide for reliable glass machining at excellent efficiency. Micro ablation can be induced either from the front or rear side of the glass sample. Ablation rates of over 100 μm per pulse can be achieved in rear side processing. In comparison, picosecond laser processing of glass and quartz (at a wavelength of 1064 or 532 nm) yield smaller feed rates at however much better surface and bore wall quality. This is of great importance for small sized features, e.g. through-hole diameters smaller 50 μm in thin glass. Critical for applications with minimum micro cracks and maximum performance is an appropriate distribution of laser pulses over the work piece along with optimum laser parameters. Laser machining tasks are long aspect micro drilling, slanted through holes, internal contour cuts, micro pockets and more complex geometries in e.g. soda-lime glass, B33, B270, D236T, AF45 and BK7 glass, quartz, and Zerodur.
A Guide for Industrial Mobilization
1989-03-01
packages; and cient, increased production controls may be needed. These actions include: i. Releasing machine tool trigger or- ders and increasing buys...710). the Department of Defense to maintain facili- 4. The National Defense Act authorizes: ties, machine tools , production equipment, and skilled...Defense Industrial Reserve Act pro- Room 3876, U.S. Departm nt of Commerce vides for the reserve of machine tools and other Washington, D.C. 20230 or
Coupling for joining a ball nut to a machine tool carriage
Gerth, Howard L.
1979-01-01
The present invention relates to an improved coupling for joining a lead screw ball nut to a machine tool carriage. The ball nut is coupled to the machine tool carriage by a plurality of laterally flexible bolts which function as hinges during the rotation of the lead screw for substantially reducing lateral carriage movement due to wobble in the lead screw.
ERIC Educational Resources Information Center
Larson, Milton E.
This guide is designed for use by any person or groups of persons responsible for planning occupational programs in the machine trades. Its major purpose is to elicit the necessary information for the writing of educational specifications for facilities to house needed vocational programs in machine tool operation, machine shop, and tool and die…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
... tooling, but should include ``all property, i.e., special test equipment, ground support equipment, machine tools and machines and other intangibles to maintain capability.'' Response: DoD is fully...
NASA Astrophysics Data System (ADS)
Kwintarini, Widiyanti; Wibowo, Agung; Arthaya, Bagus M.; Yuwana Martawirya, Yatna
2018-03-01
The purpose of this study was to improve the accuracy of three-axis CNC Milling Vertical engines with a general approach by using mathematical modeling methods of machine tool geometric errors. The inaccuracy of CNC machines can be caused by geometric errors that are an important factor during the manufacturing process and during the assembly phase, and are factors for being able to build machines with high-accuracy. To improve the accuracy of the three-axis vertical milling machine, by knowing geometric errors and identifying the error position parameters in the machine tool by arranging the mathematical modeling. The geometric error in the machine tool consists of twenty-one error parameters consisting of nine linear error parameters, nine angle error parameters and three perpendicular error parameters. The mathematical modeling approach of geometric error with the calculated alignment error and angle error in the supporting components of the machine motion is linear guide way and linear motion. The purpose of using this mathematical modeling approach is the identification of geometric errors that can be helpful as reference during the design, assembly and maintenance stages to improve the accuracy of CNC machines. Mathematically modeling geometric errors in CNC machine tools can illustrate the relationship between alignment error, position and angle on a linear guide way of three-axis vertical milling machines.
Boring apparatus capable of boring straight holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, C.R.
The invention relates to a rock boring assembly for producing a straight hole for use in a drill string above a pilot boring bit of predetermined diameter smaller than the desired final hole size. The boring assembly comprises a small conical boring bit and a larger conical boring, the conical boring bits mounted on lower and upper ends of an enlongated spacer, respectively, and the major effective cutting diameters of each of the conical boring bits being at least 10% greater than the minor effective cutting diameter of the respective bit. The spacer has a cross-section resistant bending and spacesmore » the conical boring bits apart a distance at least 5 times the major cutting diameter of the small conical boring bit, thereby spacing the pivot points provided by the two conical boring bits to limit bodily angular deflection of the assembly and providing a substantial moment arm to resist lateral forces applied to the assembly by the pilot bit and drill string. The spacing between the conical bits is less than about 20 times the major cutting diameter of the lower conical boring bit to enable the spacer to act as a bend-resistant beam to resist angular deflection of the axis of either of the conical boring bits relative to the other when it receives uneven lateral force due to non-uniformity of cutting conditions about the circumference of the bit. Advantageously the boring bits also are self-advancing and feature skewed rollers. 7 claims.« less
Agile Machining and Inspection Non-Nuclear Report (NNR) Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazarus, Lloyd
This report is a high level summary of the eight major projects funded by the Agile Machining and Inspection Non-Nuclear Readiness (NNR) project (FY06.0422.3.04.R1). The largest project of the group is the Rapid Response project in which the six major sub categories are summarized. This project focused on the operations of the machining departments that will comprise Special Applications Machining (SAM) in the Kansas City Responsive Infrastructure Manufacturing & Sourcing (KCRIMS) project. This project was aimed at upgrading older machine tools, developing new inspection tools, eliminating Classified Removable Electronic Media (CREM) in the handling of classified Numerical Control (NC) programsmore » by installing the CRONOS network, and developing methods to automatically load Coordinated-Measuring Machine (CMM) inspection data into bomb books and product score cards. Finally, the project personnel leaned perations of some of the machine tool cells, and now have the model to continue this activity.« less
Method for producing hard-surfaced tools and machine components
McHargue, Carl J.
1985-01-01
In one aspect, the invention comprises a method for producing tools and machine components having superhard crystalline-ceramic work surfaces. Broadly, the method comprises two steps: A tool or machine component having a ceramic near-surface region is mounted in ion-implantation apparatus. The region then is implanted with metal ions to form, in the region, a metastable alloy of the ions and said ceramic. The region containing the alloy is characterized by a significant increase in hardness properties, such as microhardness, fracture-toughness, and/or scratch-resistance. The resulting improved article has good thermal stability at temperatures characteristic of typical tool and machine-component uses. The method is relatively simple and reproducible.
Method for producing hard-surfaced tools and machine components
McHargue, C.J.
1981-10-21
In one aspect, the invention comprises a method for producing tools and machine components having superhard crystalline-ceramic work surfaces. Broadly, the method comprises two steps: a tool or machine component having a ceramic near-surface region is mounted in ion-implantation apparatus. The region then is implanted with metal ions to form, in the region, a metastable alloy of the ions and said ceramic. The region containing the alloy is characterized by a significant increase in hardness properties, such as microhardness, fracture-toughness, and/or scratch-resistance. The resulting improved article has good thermal stability at temperatures characteristic of typical tool and machine-component uses. The method is relatively simple and reproducible.
Optimal maintenance policy incorporating system level and unit level for mechanical systems
NASA Astrophysics Data System (ADS)
Duan, Chaoqun; Deng, Chao; Wang, Bingran
2018-04-01
The study works on a multi-level maintenance policy combining system level and unit level under soft and hard failure modes. The system experiences system-level preventive maintenance (SLPM) when the conditional reliability of entire system exceeds SLPM threshold, and also undergoes a two-level maintenance for each single unit, which is initiated when a single unit exceeds its preventive maintenance (PM) threshold, and the other is performed simultaneously the moment when any unit is going for maintenance. The units experience both periodic inspections and aperiodic inspections provided by failures of hard-type units. To model the practical situations, two types of economic dependence have been taken into account, which are set-up cost dependence and maintenance expertise dependence due to the same technology and tool/equipment can be utilised. The optimisation problem is formulated and solved in a semi-Markov decision process framework. The objective is to find the optimal system-level threshold and unit-level thresholds by minimising the long-run expected average cost per unit time. A formula for the mean residual life is derived for the proposed multi-level maintenance policy. The method is illustrated by a real case study of feed subsystem from a boring machine, and a comparison with other policies demonstrates the effectiveness of our approach.
Compressed-air work is entering the field of high pressures.
Le Péchon, J Cl; Gourdon, G
2010-01-01
Since 1850, compressed-air work has been used to prevent shafts or tunnels under construction from flooding. Until the 1980s, workers were digging in compressed-air environments. Since the introduction of tunnel boring machines (TBMs), very little digging under pressure is needed. However, the wearing out of cutter-head tools requires inspection and repair. Compressed-air workers enter the pressurized working chamber only occasionally to perform such repairs. Pressures between 3.5 and 4.5 bar, that stand outside a reasonable range for air breathing, were reached by 2002. Offshore deep diving technology had to be adapted to TBM work. Several sites have used mixed gases: in Japan for deep shaft sinking (4.8 bar), in The Netherlands at Western Scheldt Tunnels (6.9 bar), in Russia for St. Petersburg Metro (5.8 bar) and in the United States at Seattle (5.8 bar). Several tunnel projects are in progress that may involve higher pressures: Hallandsås (Sweden) interventions in heliox saturation up to 13 bar, and Lake Mead (U.S.) interventions to about 12 bar (2010). Research on TBMs and grouting technologies tries to reduce the requirements for hyperbaric works. Adapted international rules, expertise and services for saturation work, shuttles and trained personnel matching industrial requirements are the challenges.
The self-adjusting file (SAF) system: An evidence-based update.
Metzger, Zvi
2014-09-01
Current rotary file systems are effective tools. Nevertheless, they have two main shortcomings: They are unable to effectively clean and shape oval canals and depend too much on the irrigant to do the cleaning, which is an unrealistic illusionThey may jeopardize the long-term survival of the tooth via unnecessary, excessive removal of sound dentin and creation of micro-cracks in the remaining root dentin. The new Self-adjusting File (SAF) technology uses a hollow, compressible NiTi file, with no central metal core, through which a continuous flow of irrigant is provided throughout the procedure. The SAF technology allows for effective cleaning of all root canals including oval canals, thus allowing for the effective disinfection and obturation of all canal morphologies. This technology uses a new concept of cleaning and shaping in which a uniform layer of dentin is removed from around the entire perimeter of the root canal, thus avoiding unnecessary excessive removal of sound dentin. Furthermore, the mode of action used by this file system does not apply the machining of all root canals to a circular bore, as do all other rotary file systems, and does not cause micro-cracks in the remaining root dentin. The new SAF technology allows for a new concept in cleaning and shaping root canals: Minimally Invasive 3D Endodontics.
Research on the EDM Technology for Micro-holes at Complex Spatial Locations
NASA Astrophysics Data System (ADS)
Y Liu, J.; Guo, J. M.; Sun, D. J.; Cai, Y. H.; Ding, L. T.; Jiang, H.
2017-12-01
For the demands on machining micro-holes at complex spatial location, several key technical problems are conquered such as micro-Electron Discharge Machining (micro-EDM) power supply system’s development, the host structure’s design and machining process technical. Through developing low-voltage power supply circuit, high-voltage circuit, micro and precision machining circuit and clearance detection system, the narrow pulse and high frequency six-axis EDM machining power supply system is developed to meet the demands on micro-hole discharging machining. With the method of combining the CAD structure design, CAE simulation analysis, modal test, ODS (Operational Deflection Shapes) test and theoretical analysis, the host construction and key axes of the machine tool are optimized to meet the position demands of the micro-holes. Through developing the special deionized water filtration system to make sure that the machining process is stable enough. To verify the machining equipment and processing technical developed in this paper through developing the micro-hole’s processing flow and test on the real machine tool. As shown in the final test results: the efficient micro-EDM machining pulse power supply system, machine tool host system, deionized filtration system and processing method developed in this paper meet the demands on machining micro-holes at complex spatial locations.
“Investigations on the machinability of Waspaloy under dry environment”
NASA Astrophysics Data System (ADS)
Deepu, J.; Kuppan, P.; SBalan, A. S.; Oyyaravelu, R.
2016-09-01
Nickel based superalloy, Waspaloy is extensively used in gas turbine, aerospace and automobile industries because of their unique combination of properties like high strength at elevated temperatures, resistance to chemical degradation and excellent wear resistance in many hostile environments. It is considered as one of the difficult to machine superalloy due to excessive tool wear and poor surface finish. The present paper is an attempt for removing cutting fluids from turning process of Waspaloy and to make the processes environmentally safe. For this purpose, the effect of machining parameters such as cutting speed and feed rate on the cutting force, cutting temperature, surface finish and tool wear were investigated barrier. Consequently, the strength and tool wear resistance and tool life increased significantly. Response Surface Methodology (RSM) has been used for developing and analyzing a mathematical model which describes the relationship between machining parameters and output variables. Subsequently ANOVA was used to check the adequacy of the regression model as well as each machining variables. The optimal cutting parameters were determined based on multi-response optimizations by composite desirability approach in order to minimize cutting force, average surface roughness and maximum flank wear. The results obtained from the experiments shown that machining of Waspaloy using coated carbide tool with special ranges of parameters, cutting fluid could be completely removed from machining process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tal, J.; Lopez, A.; Edwards, J.M.
1995-04-01
In this paper, an alternative solution to the traditional CNC machine tool controller has been introduced. Software and hardware modules have been described and their incorporation in a CNC control system has been outlined. This type of CNC machine tool controller demonstrates that technology is accessible and can be readily implemented into an open architecture machine tool controller. Benefit to the user is greater controller flexibility, while being economically achievable. PC based, motion as well as non-motion features will provide flexibility through a Windows environment. Up-grading this type of controller system through software revisions will keep the machine tool inmore » a competitive state with minimal effort. Software and hardware modules are mass produced permitting competitive procurement and incorporation. Open architecture CNC systems provide diagnostics thus enhancing maintainability, and machine tool up-time. A major concern of traditional CNC systems has been operator training time. Training time can be greatly minimized by making use of Windows environment features.« less
Fox-Rabinovich, German; Wagg, Terry
2017-01-01
During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool–chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear. PMID:29068405
JPRS Report, Science & Technology, Europe & Latin America.
1988-01-22
Rex Malik; ZERO UN INFORMATIQUE, 31 Aug 87) 25 FACTORY AUTOMATION, ROBOTICS West Europe Seeks To Halt Japanese Inroads in Machine Tool Sector...aircraft. 25048 CSO: 3698/A014 26 FACTORY AUTOMATION, ROBOTICS vrEST EUROpE WEST EUROPE SEEKS TO HALT JAPANESE INROADS IN MACHINE TOOL SECTOR...Trumpf, by the same journalist; first paragraph is L’USINE NOUVELLE introduction] [Excerpts] European machine - tool builders are stepping up mutual
Translations on North Korea No. 622
1978-10-13
Pyongyang Power Station 5 July Electric Factory Hamhung Machine Tool Factory Kosan Plastic Pipe Factory Sog’wangea Plastic Pipe Factory 8...August Factory Double Chollima Hamhung Disabled Veterans’ Plastic Goods Factory Mangyongdae Machine Tool Factory Kangso Coal Mine Tongdaewon Garment...21 Jul 78 p 4) innovating in machine tool production (NC 21 Jul 78 p 2) in 40 days of the 蔴 days of combat" raised coal production 10 percent
Pellet to Part Manufacturing System for CNCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roschli, Alex C.; Love, Lonnie J.; Post, Brian K.
Oak Ridge National Laboratory’s Manufacturing Demonstration Facility worked with Hybrid Manufacturing Technologies to develop a compact prototype composite additive manufacturing head that can effectively extrude injection molding pellets. The head interfaces with conventional CNC machine tools enabling rapid conversion of conventional machine tools to additive manufacturing tools. The intent was to enable wider adoption of Big Area Additive Manufacturing (BAAM) technology and combine BAAM technology with conventional machining systems.
ERIC Educational Resources Information Center
Polette, Douglas Lee
To determine what type of maintenance training the prospective industrial arts teacher should receive in the woodworking area and how this information should be taught, a research instrument was constructed using information obtained from a review of relevant literature. Specific data on machine tool maintenance was gathered by the use of two…
Machining of AISI D2 Tool Steel with Multiple Hole Electrodes by EDM Process
NASA Astrophysics Data System (ADS)
Prasad Prathipati, R.; Devuri, Venkateswarlu; Cheepu, Muralimohan; Gudimetla, Kondaiah; Uzwal Kiran, R.
2018-03-01
In recent years, with the increasing of technology the demand for machining processes is increasing for the newly developed materials. The conventional machining processes are not adequate to meet the accuracy of the machining of these materials. The non-conventional machining processes of electrical discharge machining is one of the most efficient machining processes is being widely used to machining of high accuracy products of various industries. The optimum selection of process parameters is very important in machining processes as that of an electrical discharge machining as they determine surface quality and dimensional precision of the obtained parts, even though time consumption rate is higher for machining of large dimension features. In this work, D2 high carbon and chromium tool steel has been machined using electrical discharge machining with the multiple hole electrode technique. The D2 steel has several applications such as forming dies, extrusion dies and thread rolling. But the machining of this tool steel is very hard because of it shard alloyed elements of V, Cr and Mo which enhance its strength and wear properties. However, the machining is possible by using electrical discharge machining process and the present study implemented a new technique to reduce the machining time using a multiple hole copper electrode. In this technique, while machining with multiple holes electrode, fin like projections are obtained, which can be removed easily by chipping. Then the finishing is done by using solid electrode. The machining time is reduced to around 50% while using multiple hole electrode technique for electrical discharge machining.
12. TOOL ROOM SHOWING LANDIS MACHINE CO. BOL/T THREADER (L), ...
12. TOOL ROOM SHOWING LANDIS MACHINE CO. BOL/T THREADER (L), OSTER MANUFACTURING CO. PIPE MASTER (R), AND OLDMAN KINK, A SHOP-MADE WELDING STRENGTH TESTER (L, BACKGROUND). VIEW NORTHEAST - Oldman Boiler Works, Office/Machine Shop, 32 Illinois Street, Buffalo, Erie County, NY
Process Damping and Cutting Tool Geometry in Machining
NASA Astrophysics Data System (ADS)
Taylor, C. M.; Sims, N. D.; Turner, S.
2011-12-01
Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.
Player Modeling for Intelligent Difficulty Adjustment
NASA Astrophysics Data System (ADS)
Missura, Olana; Gärtner, Thomas
In this paper we aim at automatically adjusting the difficulty of computer games by clustering players into different types and supervised prediction of the type from short traces of gameplay. An important ingredient of video games is to challenge players by providing them with tasks of appropriate and increasing difficulty. How this difficulty should be chosen and increase over time strongly depends on the ability, experience, perception and learning curve of each individual player. It is a subjective parameter that is very difficult to set. Wrong choices can easily lead to players stopping to play the game as they get bored (if underburdened) or frustrated (if overburdened). An ideal game should be able to adjust its difficulty dynamically governed by the player’s performance. Modern video games utilise a game-testing process to investigate among other factors the perceived difficulty for a multitude of players. In this paper, we investigate how machine learning techniques can be used for automatic difficulty adjustment. Our experiments confirm the potential of machine learning in this application.
Large robotized turning centers described
NASA Astrophysics Data System (ADS)
Kirsanov, V. V.; Tsarenko, V. I.
1985-09-01
The introduction of numerical control (NC) machine tools has made it possible to automate machining in series and small series production. The organization of automated production sections merged NC machine tools with automated transport systems. However, both the one and the other require the presence of an operative at the machine for low skilled operations. Industrial robots perform a number of auxiliary operations, such as equipment loading-unloading and control, changing cutting and auxiliary tools, controlling workpieces and parts, and cleaning of location surfaces. When used with a group of equipment they perform transfer operations between the machine tools. Industrial robots eliminate the need for workers to form auxiliary operations. This underscores the importance of developing robotized manufacturing centers providing for minimal human participation in production and creating conditions for two and three shift operation of equipment. Work carried out at several robotized manufacturing centers for series and small series production is described.
Tool simplifies machining of pipe ends for precision welding
NASA Technical Reports Server (NTRS)
Matus, S. T.
1969-01-01
Single tool prepares a pipe end for precision welding by simultaneously performing internal machining, end facing, and bevel cutting to specification standards. The machining operation requires only one milling adjustment, can be performed quickly, and produces the high quality pipe-end configurations required to ensure precision-welded joints.
Machine Translation and Other Translation Technologies.
ERIC Educational Resources Information Center
Melby, Alan
1996-01-01
Examines the application of linguistic theory to machine translation and translator tools, discusses the use of machine translation and translator tools in the real world of translation, and addresses the impact of translation technology on conceptions of language and other issues. Findings indicate that the human mind is flexible and linguistic…
29 CFR 1926.303 - Abrasive wheels and tools.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...
29 CFR 1926.303 - Abrasive wheels and tools.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...
29 CFR 1926.303 - Abrasive wheels and tools.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...
Optical alignment of electrodes on electrical discharge machines
NASA Technical Reports Server (NTRS)
Boissevain, A. G.; Nelson, B. W.
1972-01-01
Shadowgraph system projects magnified image on screen so that alignment of small electrodes mounted on electrical discharge machines can be corrected and verified. Technique may be adapted to other machine tool equipment where physical contact cannot be made during inspection and access to tool limits conventional runout checking procedures.
1985-10-01
83K0385 FINAL REPORT D Vol. 4 00 THERMAL EFFECTS ON THE ACCURACY OF LD NUME" 1ICALLY CONTROLLED MACHINE TOOLS PREPARED BY I Raghunath Venugopal and M...OF NUMERICALLY CONTROLLED MACHINE TOOLS 12 PERSONAL AJ’HOR(S) Venunorial, Raghunath and M. M. Barash 13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF...TOOLS Prepared by Raghunath Venugopal and M. M. Barash Accesion For Unannounced 0 Justification ........................................... October 1085
Using Games as a Tool in Teaching Vocabulary to Young Learners
ERIC Educational Resources Information Center
Bakhsh, Sahar Ameer
2016-01-01
Over the last few decades, teaching English become a phenomenon in Saudi Arabia, especially to young learners. English is taught as a main subject in kindergarten and elementary schools. Like any other children, Saudis accept new foreign languages easily, but they get bored very fast if the teacher is teaching them using the old conventional…
Parasitology as a Teaching Tool: Isolation of Apicomplexan Cysts from Store-Bought Meat
ERIC Educational Resources Information Center
Eggleston, Tracy L.; Fitzpatrick, Eileen; Hager, Kristin M.
2008-01-01
There are obstacles to teaching science; however, these obstacles are not insurmountable. One obstacle is the students themselves. Students often labor under the misconception or anxiety that the course material will be too difficult to understand, or boring (mind-numbing), or that the information learned will not be applicable in their day-to-day…
Online Vocabulary Games as a Tool for Teaching and Learning English Vocabulary
ERIC Educational Resources Information Center
Yip, Florence W. M.; Kwan, Alvin C. M.
2006-01-01
Vocabulary learning is often perceived as boring by learners, especially for those who grew up in the digital age. This paper reports a study of the usefulness of online games in vocabulary learning for some undergraduate students. Three teachers and 100 engineering students participated in a quasi-experimental study for approximately nine weeks.…
Using Prezi in Higher Education
ERIC Educational Resources Information Center
Strasser, Nora
2014-01-01
PowerPoint can be viewed as boring and commonplace (Craig & Amernic, 2006). While it is a great tool, using a more dynamic presentation editor may better capture the attention of a class or any other group of people. Having an editor that is cloud-based allows for more flexibility and collaboration than is possible with PowerPoint (Settle,…
A comparison of trap type and height for capturing cerambycid beetles (Coleoptera)
Elizabeth E. Graham; Therese M. Poland; Deborah G. McCullough; Jocelyn G. Millar
2012-01-01
Wood-boring beetles in the family Cerambycidae (Coleoptera) play important roles in many forest ecosystems. However, increasing numbers of invasive cerambycid species are transported to new countries by global commerce and threaten forest health in the United States and worldwide. Our goal was to identify effective detection tools for a broad array of cerambycid...
Speed-Selector Guard For Machine Tool
NASA Technical Reports Server (NTRS)
Shakhshir, Roda J.; Valentine, Richard L.
1992-01-01
Simple guardplate prevents accidental reversal of direction of rotation or sudden change of speed of lathe, milling machine, or other machine tool. Custom-made for specific machine and control settings. Allows control lever to be placed at only one setting. Operator uses handle to slide guard to engage or disengage control lever. Protects personnel from injury and equipment from damage occurring if speed- or direction-control lever inadvertently placed in wrong position.
NASA Astrophysics Data System (ADS)
Mebrahitom, A.; Rizuan, D.; Azmir, M.; Nassif, M.
2016-02-01
High speed milling is one of the recent technologies used to produce mould inserts due to the need for high surface finish. It is a faster machining process where it uses a small side step and a small down step combined with very high spindle speed and feed rate. In order to effectively use the HSM capabilities, optimizing the tool path strategies and machining parameters is an important issue. In this paper, six different tool path strategies have been investigated on the surface finish and machining time of a rectangular cavities of ESR Stavax material. CAD/CAM application of CATIA V5 machining module for pocket milling of the cavities was used for process planning.
NASA Astrophysics Data System (ADS)
Geng, Qi; Bruland, Amund; Macias, Francisco Javier
2018-01-01
The consumption of TBM disc cutters is influenced by the ground conditions (e.g. intact rock properties, rock mass properties, etc.), the TBM boring parameters (e.g. thrust, RPM, penetration, etc.) and the cutterhead design parameters (e.g. cutterhead shape, cutter layout). Previous researchers have done much work on the influence of the ground conditions and TBM boring parameters on cutter consumption; however, limited research has been found on the relationship between the cutterhead design and cutter consumption. The purpose of the present paper is to study the influence of layout on consumption for the TBM face cutters. Data collected from six tunnels (i.e. the Røssåga Headrace Tunnel in Norway, the Qinling Railway Tunnel in China, tubes 3 and 4 of the Guadarrama Railway Tunnel in Spain, the parallel tubes of the Vigo-Das Maceiras Tunnel in Spain) were used for analysis. The cutter consumption shape curve defined as the fitted function of the normalized cutter consumption versus the cutter position radius is found to be uniquely determined by the cutter layout and was used for analysis. The straightness and smoothness indexes are introduced to evaluate the quality of the shape curves. The analytical results suggest that the spacing of face cutters in the inner and outer parts of cutterhead should to be slightly larger and smaller, respectively, than the average spacing, and the difference of the position angles between the neighbouring cutters should be constant among the cutter positions. The 2-spiral layout pattern is found to be better than other layout patterns in view of cutter consumption and cutterhead force balance.
Research of a smart cutting tool based on MEMS strain gauge
NASA Astrophysics Data System (ADS)
Zhao, Y.; Zhao, Y. L.; Shao, YW; Hu, T. J.; Zhang, Q.; Ge, X. H.
2018-03-01
Cutting force is an important factor that affects machining accuracy, cutting vibration and tool wear. Machining condition monitoring by cutting force measurement is a key technology for intelligent manufacture. Current cutting force sensors exist problems of large volume, complex structure and poor compatibility in practical application, for these problems, a smart cutting tool is proposed in this paper for cutting force measurement. Commercial MEMS (Micro-Electro-Mechanical System) strain gauges with high sensitivity and small size are adopted as transducing element of the smart tool, and a structure optimized cutting tool is fabricated for MEMS strain gauge bonding. Static calibration results show that the developed smart cutting tool is able to measure cutting forces in both X and Y directions, and the cross-interference error is within 3%. Its general accuracy is 3.35% and 3.27% in X and Y directions, and sensitivity is 0.1 mV/N, which is very suitable for measuring small cutting forces in high speed and precision machining. The smart cutting tool is portable and reliable for practical application in CNC machine tool.
NASA Astrophysics Data System (ADS)
Bashir, K.; Alkali, A. U.; Elmunafi, M. H. S.; Yusof, N. M.
2018-04-01
Recent trend in turning hardened materials have gained popularity because of its immense machinability benefits. However, several machining processes like thermal assisted machining and cryogenic machining have reveal superior machinability benefits over conventional dry turning of hardened materials. Various engineering materials have been studied. However, investigations on AISI O1 tool steel have not been widely reported. In this paper, surface finish and surface integrity dominant when hard turning AISI O1 tool steel is analysed. The study is focused on the performance of wiper coated ceramic tool with respect to surface roughness and surface integrity of hardened tool steel. Hard turned tool steel was machined at varying cutting speed of 100, 155 and 210 m/min and feed rate of 0.05, 0.125 and 0.20mm/rev. The depth of cut of 0.2mm was maintained constant throughout the machining trials. Machining was conducted using dry turning on 200E-axis CNC lathe. The experimental study revealed that the surface finish is relatively superior at higher cutting speed of 210m/min. The surface finish increases when cutting speed increases whereas surface finish is generally better at lower feed rate of 0.05mm/rev. The experimental study conducted have revealed that phenomena such as work piece vibration due to poor or improper mounting on the spindle also contributed to higher surface roughness value of 0.66Ra during turning at 0.2mm/rev. Traces of white layer was observed when viewed with optical microscope which shows evidence of cutting effects on the turned work material at feed rate of 0.2 rev/min
New tool holder design for cryogenic machining of Ti6Al4V
NASA Astrophysics Data System (ADS)
Bellin, Marco; Sartori, Stefano; Ghiotti, Andrea; Bruschi, Stefania
2017-10-01
The renewed demand of increasing the machinability of the Ti6Al4V titanium alloy to produce biomedical and aerospace parts working at high temperature has recently led to the application of low-temperature coolants instead of conventional cutting fluids to increase both the tool life and the machined surface integrity. In particular, the liquid nitrogen directed to the tool rake face has shown a great capability of reducing the temperature at the chip-tool interface, as well as the chemical interaction between the tool coating and the titanium to be machined, therefore limiting the tool crater wear, and improving, at the same time, the chip breakability. Furthermore, the nitrogen is a safe, non-harmful, non-corrosive, odorless, recyclable, non-polluting and abundant gas, characteristics that further qualify it as an environmental friendly coolant to be applied to machining processes. However, the behavior of the system composed by the tool and the tool holder, exposed to the cryogenics temperatures may represent a critical issue in order to obtain components within the required geometrical tolerances. On this basis, the paper aims at presenting the design of an innovative tool holder installed on a CNC lathe, which includes the cryogenic coolant provision system, and which is able to hinder the part possible distortions due to the liquid nitrogen adduction by stabilizing its dimensions through the use of heating cartridges and appropriate sensors to monitor the temperature evolution of the tool holder.
Venkatesan, K
2017-07-01
Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60-150 m/min, feed rates of 0.05-0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.
Machine tools error characterization and compensation by on-line measurement of artifact
NASA Astrophysics Data System (ADS)
Wahid Khan, Abdul; Chen, Wuyi; Wu, Lili
2009-11-01
Most manufacturing machine tools are utilized for mass production or batch production with high accuracy at a deterministic manufacturing principle. Volumetric accuracy of machine tools depends on the positional accuracy of the cutting tool, probe or end effector related to the workpiece in the workspace volume. In this research paper, a methodology is presented for volumetric calibration of machine tools by on-line measurement of an artifact or an object of a similar type. The machine tool geometric error characterization was carried out through a standard or an artifact, having similar geometry to the mass production or batch production product. The artifact was measured at an arbitrary position in the volumetric workspace with a calibrated Renishaw touch trigger probe system. Positional errors were stored into a computer for compensation purpose, to further run the manufacturing batch through compensated codes. This methodology was found quite effective to manufacture high precision components with more dimensional accuracy and reliability. Calibration by on-line measurement gives the advantage to improve the manufacturing process by use of deterministic manufacturing principle and found efficient and economical but limited to the workspace or envelop surface of the measured artifact's geometry or the profile.
Multi-category micro-milling tool wear monitoring with continuous hidden Markov models
NASA Astrophysics Data System (ADS)
Zhu, Kunpeng; Wong, Yoke San; Hong, Geok Soon
2009-02-01
In-process monitoring of tool conditions is important in micro-machining due to the high precision requirement and high tool wear rate. Tool condition monitoring in micro-machining poses new challenges compared to conventional machining. In this paper, a multi-category classification approach is proposed for tool flank wear state identification in micro-milling. Continuous Hidden Markov models (HMMs) are adapted for modeling of the tool wear process in micro-milling, and estimation of the tool wear state given the cutting force features. For a noise-robust approach, the HMM outputs are connected via a medium filter to minimize the tool state before entry into the next state due to high noise level. A detailed study on the selection of HMM structures for tool condition monitoring (TCM) is presented. Case studies on the tool state estimation in the micro-milling of pure copper and steel demonstrate the effectiveness and potential of these methods.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-02
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,554] International Business Machines (IBM), Software Group Business Unit, Optim Data Studio Tools QA, San Jose, CA; Notice of... determination of the TAA petition filed on behalf of workers at International Business Machines (IBM), Software...
1978-03-01
J16 Photograph 3 Knurling Tool Installed in Machine . . ....... 16 Photograph 4 Shrapnel Pattern Being Knurled Into M42 Grenade Cylinder...body Fenn mill embossing rolls. Roehlen was awarded a cuxiu**L am’i labricated a knurling tool for use in the modified Tesker thread-rolling machine ...automatic grinding machine . IKratz-Wilde was not successful in developing tooling to produce domes to the inertia-welded assembly design. (See Figure
Tool path strategy and cutting process monitoring in intelligent machining
NASA Astrophysics Data System (ADS)
Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei
2018-06-01
Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.
1988-05-01
Shearing Machines WR/MMI DG 3446 Forging Machinery and Hammers WR/MMI DG 3447 Wire and Metal Ribbon Forming Machines WR/MMI DG 3448 Riveting Machines ...R/MN1I DG 3449 Miscellaneous Secondary Metal Forming & Cutting WR/MMI DG Machinery 3450 Machine Tools, Portable WR/MMI DG 3455 Cutting Tools for...Secondary Metalworking Machinery WR/MMI DG WR 3465 Production Jigs, Fixtures and Templates WR/MMI DG WR 3470 Machine Shop Sets, Kits, and Outfits WR/MMI DG
Micro-optical fabrication by ultraprecision diamond machining and precision molding
NASA Astrophysics Data System (ADS)
Li, Hui; Li, Likai; Naples, Neil J.; Roblee, Jeffrey W.; Yi, Allen Y.
2017-06-01
Ultraprecision diamond machining and high volume molding for affordable high precision high performance optical elements are becoming a viable process in optical industry for low cost high quality microoptical component manufacturing. In this process, first high precision microoptical molds are fabricated using ultraprecision single point diamond machining followed by high volume production methods such as compression or injection molding. In the last two decades, there have been steady improvements in ultraprecision machine design and performance, particularly with the introduction of both slow tool and fast tool servo. Today optical molds, including freeform surfaces and microlens arrays, are routinely diamond machined to final finish without post machining polishing. For consumers, compression molding or injection molding provide efficient and high quality optics at extremely low cost. In this paper, first ultraprecision machine design and machining processes such as slow tool and fast too servo are described then both compression molding and injection molding of polymer optics are discussed. To implement precision optical manufacturing by molding, numerical modeling can be included in the future as a critical part of the manufacturing process to ensure high product quality.
Material Choice for spindle of machine tools
NASA Astrophysics Data System (ADS)
Gouasmi, S.; Merzoug, B.; Abba, G.; Kherredine, L.
2012-02-01
The requirements of contemporary industry and the flashing development of modern sciences impose restrictions on the majority of the elements of machines; the resulting financial constraints can be satisfied by a better output of the production equipment. As for those concerning the design, the resistance and the correct operation of the product, these require the development of increasingly precise parts, therefore the use of increasingly powerful tools [5]. The precision of machining and the output of the machine tools are generally determined by the precision of rotation of the spindle, indeed, more this one is large more the dimensions to obtain are in the zone of tolerance and the defects of shape are minimized. During the development of the machine tool, the spindle which by definition is a rotating shaft receiving and transmitting to the work piece or the cutting tool the rotational movement, must be designed according to certain optimal parameters to be able to ensure the precision required. This study will be devoted to the choice of the material of the spindle fulfilling the imposed requirements of precision.
Interrelating the breakage and composition of mined and drill core coal
NASA Astrophysics Data System (ADS)
Wilson, Terril Edward
Particle size distribution of coal is important if the coal is to be beneficiated, or if a coal sales contract includes particle size specifications. An exploration bore core sample of coal ought to be reduced from its original cylindrical form to a particle size distribution and particle composition that reflects, insofar as possible, a process stream of raw coal it represents. Often, coal cores are reduced with a laboratory crushing machine, the product of which does not match the raw coal size distribution. This study proceeds from work in coal bore core reduction by Australian investigators. In this study, as differentiated from the Australian work, drop-shatter impact breakage followed by dry batch tumbling in steel cylinder rotated about its transverse axis are employed to characterize the core material in terms of first-order and zeroth-order breakage rate constants, which are indices of the propensity of the coal to degrade during excavation and handling. Initial drop-shatter and dry tumbling calibrations were done with synthetic cores composed of controlled low-strength concrete incorporating fly ash (as a partial substitute for Portland cement) in order to reduce material variables and conserve difficult-to-obtain coal cores. Cores of three different coalbeds--Illinois No. 6, Upper Freeport, and Pocahontas No. 5 were subjected to drop-shatter and dry batch tumbling tests to determine breakage response. First-order breakage, characterized by a first-order breakage index for each coal, occurred in the drop-shatter tests. First- and zeroth-order breakage occurred in dry batch tumbling; disappearance of coarse particles and creation of fine particles occurred in a systematic way that could be represented mathematically. Certain of the coal cores available for testing were dry and friable. Comparison of coal preparation plant feed with a crushed bore core and a bore core prepared by drop-shatter and tumbling (all from the same Illinois No.6 coal mining property) indicated that the size distribution and size fraction composition of the drop-shattered/tumbled core more closely resembled the plant feed than the crushed core. An attempt to determine breakage parameters (to allow use of selection and breakage functions and population balance models in the description of bore core size reduction) was initiated. Rank determination of the three coal types was done, indicating that higher rank associates with higher breakage propensity. The two step procedure of drop-shatter and dry batch tumbling simulates the first-order (volume breakage) and zeroth-order (abrasion of particle surfaces) that occur in excavation and handling operations, and is appropriate for drill core reduction prior to laboratory analysis.
Atmospheric Science Data Center
2013-04-01
MISR Center Block Time Tool The misr_time tool calculates the block center times for MISR Level 1B2 files. This is ... version of the IDL package or by using the IDL Virtual Machine application. The IDL Virtual Machine is bundled with IDL and is ...
Study on electroplating technology of diamond tools for machining hard and brittle materials
NASA Astrophysics Data System (ADS)
Cui, Ying; Chen, Jian Hua; Sun, Li Peng; Wang, Yue
2016-10-01
With the development of the high speed cutting, the ultra-precision machining and ultrasonic vibration technique in processing hard and brittle material , the requirement of cutting tools is becoming higher and higher. As electroplated diamond tools have distinct advantages, such as high adaptability, high durability, long service life and good dimensional stability, the cutting tools are effective and extensive used in grinding hard and brittle materials. In this paper, the coating structure of electroplating diamond tool is described. The electroplating process flow is presented, and the influence of pretreatment on the machining quality is analyzed. Through the experimental research and summary, the reasonable formula of the electrolyte, the electroplating technologic parameters and the suitable sanding method were determined. Meanwhile, the drilling experiment on glass-ceramic shows that the electroplating process can effectively improve the cutting performance of diamond tools. It has laid a good foundation for further improving the quality and efficiency of the machining of hard and brittle materials.
Method and apparatus for suppressing regenerative instability and related chatter in machine tools
Segalman, Daniel J.; Redmond, James M.
2001-01-01
Methods of and apparatuses for mitigating chatter vibrations in machine tools or components thereof. Chatter therein is suppressed by periodically or continuously varying the stiffness of the cutting tool (or some component of the cutting tool), and hence the resonant frequency of the cutting tool (or some component thereof). The varying of resonant frequency of the cutting tool can be accomplished by modulating the stiffness of the cutting tool, the cutting tool holder, or any other component of the support for the cutting tool. By periodically altering the impedance of the cutting tool assembly, chatter is mitigated. In one embodiment, a cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface.
Method and apparatus for suppressing regenerative instability and related chatter in machine tools
Segalman, Daniel J.; Redmond, James M.
1999-01-01
Methods of and apparatuses for mitigating chatter vibrations in machine tools or components thereof. Chatter therein is suppressed by periodically or continuously varying the stiffness of the cutting tool (or some component of the cutting tool), and hence the resonant frequency of the cutting tool (or some component thereof). The varying of resonant frequency of the cutting tool can be accomplished by modulating the stiffness of the cutting tool, the cutting tool holder, or any other component of the support for the cutting tool. By periodically altering the impedance of the cutting tool assembly, chatter is mitigated. In one embodiment, a cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface.
NASA Astrophysics Data System (ADS)
Doetz, M.; Dambon, O.; Klocke, F.; Bulla, B.; Schottka, K.; Robertson, D. J.
2017-10-01
Ultra-precision diamond turning enables the manufacturing of parts with mirror-like surfaces and highest form accuracies out of non-ferrous, a few crystalline and plastic materials. Furthermore, an ultrasonic assistance has the ability to push these boundaries and enables the machining of materials like steel, which is not possible in a conventional way due to the excessive tool wear caused by the affinity of carbon to iron. Usually monocrystalline diamonds tools are applied due to their unsurpassed cutting edge properties. New cutting tool material developments have shown that it is possible to produce tools made of nano-polycrystalline diamonds with cutting edges equivalent to monocrystalline diamonds. In nano-polycrystalline diamonds ultra-fine grains of a few tens of nanometers are firmly and directly bonded together creating an unisotropic structure. The properties of this material are described to be isotropic, harder and tougher than those of the monocrystalline diamonds, which are unisotropic. This publication will present machining results from the newest investigations of the process potential of this new polycrystalline cutting material. In order to provide a baseline with which to characterize the cutting material cutting experiments on different conventional machinable materials like Cooper or Aluminum are performed. The results provide information on the roughness and the topography of the surface focusing on the comparison to the results while machining with monocrystalline diamond. Furthermore, the cutting material is tested in machining steel with ultrasonic assistance with a focus on tool life time and surface roughness. An outlook on the machinability of other materials will be given.
Mewes, D; Trapp, R P
2000-01-01
Guards on machine tools are meant to protect operators from injuries caused by tools, workpieces, and fragments hurled out of the machine's working zone. This article presents the impact resistance requirements, which guards according to European safety standards for machine tools must satisfy. Based upon these standards the impact resistance of different guard materials was determined using cylindrical steel projectiles. Polycarbonate proves to be a suitable material for vision panels because of its high energy absorption capacity. The impact resistance of 8-mm thick polycarbonate is roughly equal to that of a 3-mm thick steel sheet Fe P01. The limited ageing stability, however, makes it necessary to protect polycarbonate against cooling lubricants by means of additional panes on both sides.
Catalog of worldwide tidal bore occurrences and characteristics
Bartsch-Winkler, S.; Lynch, David K.
1988-01-01
Documentation of tidal bore phenomena occurring throughout the world aids in defining the typical geographical setting of tidal bores and enables prediction of their occurrence in remote areas. Tidal bores are naturally occurring, tidally generated, solitary, moving water waves up to 6 meters in height that form upstream in estuaries with semidiurnal or nearly semidiurnal tide ranges exceeding 4 meters. Estuarine settings that have tidal bores typically include meandering fluvial systems with shallow gradients. Bores are well defined, having amplitudes greater than wind- or turbulence-caused waves, and may be undular or breaking. Formation of a bore is dependent on depth and velocity of the incoming tide and river outflow. Bores may occur in series (in several channels) or in succession (marking each tidal pulse). Tidal bores propagate up tidal estuaries a greater distance than the width of the estuary and most occur within 100 kilometers upstream of the estuary mouth. Because they are dynamic, bores cause difficulties in some shipping ports and are targets for eradication. Tidal bores are known to occur, or to have occurred in the recent past, in at least 67 localities in 16 countries at all latitudes, including every continent except Antarctica. Parts of Argentina, Canada, Central America, China, Mozambique, Madagascar, Northern Europe, North and South Korea, the United Kingdom, and the U.S.S.R. probably have additional undiscovered or unreported tidal bores. In Turnagain Arm estuary in Alaska, bores cause an abrupt increase in salinity, suspended sediment, surface character, and bottom pressure, a decrease in illumination of the water column, and a change in water temperature. Tidal bores occurring in Turnagain Arm, Alaska, have the
NASA Technical Reports Server (NTRS)
Ray, R. B.
1994-01-01
OPMILL is a computer operating system for a Kearney and Trecker milling machine that provides a fast and easy way to program machine part manufacture with an IBM compatible PC. The program gives the machinist an "equation plotter" feature which plots any set of equations that define axis moves (up to three axes simultaneously) and converts those equations to a machine milling program that will move a cutter along a defined path. Other supported functions include: drill with peck, bolt circle, tap, mill arc, quarter circle, circle, circle 2 pass, frame, frame 2 pass, rotary frame, pocket, loop and repeat, and copy blocks. The system includes a tool manager that can handle up to 25 tools and automatically adjusts tool length for each tool. It will display all tool information and stop the milling machine at the appropriate time. Information for the program is entered via a series of menus and compiled to the Kearney and Trecker format. The program can then be loaded into the milling machine, the tool path graphically displayed, and tool change information or the program in Kearney and Trecker format viewed. The program has a complete file handling utility that allows the user to load the program into memory from the hard disk, save the program to the disk with comments, view directories, merge a program on the disk with one in memory, save a portion of a program in memory, and change directories. OPMILL was developed on an IBM PS/2 running DOS 3.3 with 1 MB of RAM. OPMILL was written for an IBM PC or compatible 8088 or 80286 machine connected via an RS-232 port to a Kearney and Trecker Data Mill 700/C Control milling machine. It requires a "D:" drive (fixed-disk or virtual), a browse or text display utility, and an EGA or better display. Users wishing to modify and recompile the source code will also need Turbo BASIC, Turbo C, and Crescent Software's QuickPak for Turbo BASIC. IBM PC and IBM PS/2 are registered trademarks of International Business Machines. Turbo BASIC and Turbo C are trademarks of Borland International.
1951-03-14
human "We have been very much occupied In perfect. engineering to the improvement of the air-navigation ing the machines and the tools which the...a man-machine system which will ever, if he were only considered as an instrument, yield optimal results in the way of efficiency and a tool , a motor...operation of machines and equipment and system development, which will permit tools , the emphasis has been upon the adjustment of an orderly and
Analogy as a Tool for the Acquisition of English Verb Tenses among Low Proficiency L2 Learners
ERIC Educational Resources Information Center
Yoke, Soo Kum; Hasan, Nor Haniza
2014-01-01
The teaching of English grammar to second language learners is usually a tedious, stressful and time consuming activity and even after all the effort, students have generally found these lessons boring and confusing. As such, innovative language instructors have been trying different approaches to the teaching of grammar in their classrooms. Using…
The impacts of a stem boring weevil, Mecinus janthinus, on dalmatian toadflax, Linaria dalmatica
Marjolein Schat
2008-01-01
Classical biological control of weeds is generally considered an effective, safe, and cost effective tool for controlling widespread weeds in natural areas. However, only 60% of releases have become established and, of those, only 50% have led to control. Therefore, understanding the impacts of agents on target weeds across spatial scales, at different insect densities...
Machine Tool Series. Duty Task List.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This task list is intended for use in planning and/or evaluating a competency-based course to prepare machine tool, drill press, grinding machine, lathe, mill, and/or power saw operators. The listing is divided into six sections, with each one outlining the tasks required to perform the duties that have been identified for the given occupation.…
Laser assisted machining: a state of art review
NASA Astrophysics Data System (ADS)
Punugupati, Gurabvaiah; Kandi, Kishore Kumar; Bose, P. S. C.; Rao, C. S. P.
2016-09-01
Difficult-to-cut materials have increasing demand in aerospace and automobile industries due to their high yield stress, high strength to weight ratio, high toughness, high wear resistance, high creep, high corrosion resistivity, ability to retain high strength at high temperature, etc. The machinability of these advanced materials, using conventional methods of machining is typical due to the high temperature and pressure at the cutting zone and tool and properties such as low thermal conductivity, high cutting forces and cutting temperatures makes the materials difficult to machine. Laser assisted machining (LAM) is a new and innovative technique for machining the difficult-to-cut materials. This paper deals with a review on the advances in lasers, tools and the mechanism of machining using LAM and their effects.
Percussive mole boring device with electronic transmitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stangl, G.A.; Lee, D.W.; Wilson, D.A.
This patent describes an improvement in an unguided percussive mole boring device. It is for use with a flexible hose connected to the mole boring device for providing a source of percussive power to drive the mole boring device, percussive means connected to the flexible hose and driven by a percussive power source for impacting the mole boring device.
NASA Astrophysics Data System (ADS)
Balaykin, A. V.; Bezsonov, K. A.; Nekhoroshev, M. V.; Shulepov, A. P.
2018-01-01
This paper dwells upon a variance parameterization method. Variance or dimensional parameterization is based on sketching, with various parametric links superimposed on the sketch objects and user-imposed constraints in the form of an equation system that determines the parametric dependencies. This method is fully integrated in a top-down design methodology to enable the creation of multi-variant and flexible fixture assembly models, as all the modeling operations are hierarchically linked in the built tree. In this research the authors consider a parameterization method of machine tooling used for manufacturing parts using multiaxial CNC machining centers in the real manufacturing process. The developed method allows to significantly reduce tooling design time when making changes of a part’s geometric parameters. The method can also reduce time for designing and engineering preproduction, in particular, for development of control programs for CNC equipment and control and measuring machines, automate the release of design and engineering documentation. Variance parameterization helps to optimize construction of parts as well as machine tooling using integrated CAE systems. In the framework of this study, the authors demonstrate a comprehensive approach to parametric modeling of machine tooling in the CAD package used in the real manufacturing process of aircraft engines.
Diamond tool machining of materials which react with diamond
Lundin, Ralph L.; Stewart, Delbert D.; Evans, Christopher J.
1992-01-01
Apparatus for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond.
Lu, Li; Liu, Shusheng; Shi, Shenggen; Yang, Jianzhong
2011-10-01
China-made 5-axis simultaneous contouring CNC machine tool and domestically developed industrial computer-aided manufacture (CAM) technology were used for full crown fabrication and measurement of crown accuracy, with an attempt to establish an open CAM system for dental processing and to promote the introduction of domestic dental computer-aided design (CAD)/CAM system. Commercially available scanning equipment was used to make a basic digital tooth model after preparation of crown, and CAD software that comes with the scanning device was employed to design the crown by using domestic industrial CAM software to process the crown data in order to generate a solid model for machining purpose, and then China-made 5-axis simultaneous contouring CNC machine tool was used to complete machining of the whole crown and the internal accuracy of the crown internal was measured by using 3D-MicroCT. The results showed that China-made 5-axis simultaneous contouring CNC machine tool in combination with domestic industrial CAM technology can be used for crown making and the crown was well positioned in die. The internal accuracy was successfully measured by using 3D-MicroCT. It is concluded that an open CAM system for dentistry on the basis of China-made 5-axis simultaneous contouring CNC machine tool and domestic industrial CAM software has been established, and development of the system will promote the introduction of domestically-produced dental CAD/CAM system.
ERIC Educational Resources Information Center
Stadt, Ronald; And Others
This catalog provides performance objectives, tasks, standards, and performance guides associated with current occupational information relating to the job content of machinists, specifically tool grinder operators, production lathe operators, and production screw machine operators. The catalog is comprised of 262 performance objectives, tool and…
Conditions for tidal bore formation in convergent alluvial estuaries
NASA Astrophysics Data System (ADS)
Bonneton, Philippe; Filippini, Andrea Gilberto; Arpaia, Luca; Bonneton, Natalie; Ricchiuto, Mario
2016-04-01
Over the last decade there has been an increasing interest in tidal bore dynamics. However most studies have been focused on small-scale bore processes. The present paper describes the first quantitative study, at the estuary scale, of the conditions for tidal bore formation in convergent alluvial estuaries. When freshwater discharge and large-scale spatial variations of the estuary water depth can be neglected, tide propagation in such estuaries is controlled by three main dimensionless parameters: the nonlinearity parameter ε0 , the convergence ratio δ0 and the friction parameter ϕ0. In this paper we explore this dimensionless parameter space, in terms of tidal bore occurrence, from a database of 21 estuaries (8 tidal-bore estuaries and 13 non tidal-bore estuaries). The field data point out that tidal bores occur for convergence ratios close to the critical convergence δc. A new proposed definition of the friction parameter highlights a clear separation on the parameter plane (ϕ0,ε0) between tidal-bore estuaries and non tidal-bore estuaries. More specifically, we have established that tidal bores occur in convergent estuaries when the nonlinearity parameter is greater than a critical value, εc , which is an increasing function of the friction parameter ϕ0. This result has been confirmed by numerical simulations of the two-dimensional Saint Venant equations. The real-estuary observations and the numerical simulations also show that, contrary to what is generally assumed, tide amplification is not a necessary condition for tidal bore formation. The effect of freshwater discharge on tidal bore occurrence has been analyzed from the database acquired during three long-term campaigns carried out on the Gironde/Garonne estuary. We have shown that in the upper estuary the tidal bore intensity is mainly governed by the local dimensionless tide amplitude ε. The bore intensity is an increasing function of ε and this relationship does not depend on freshwater discharge. However, freshwater discharge damps the tidal wave during its propagation and thus reduces ε and consequently limits the tidal bore development in the estuary. To take into account this process in the tidal-bore scaling analysis, it is necessary to introduce a fourth external parameter, the dimensionless river discharge Q0 .
Applications of NTNU/SINTEF Drillability Indices in Hard Rock Tunneling
NASA Astrophysics Data System (ADS)
Zare, S.; Bruland, A.
2013-01-01
Drillability indices, i.e., the Drilling Rate Index™ (DRI), Bit Wear Index™ (BWI), Cutter Life Index™ (CLI), and Vickers Hardness Number Rock (VHNR), are indirect measures of rock drillability. These indices are recognized as providing practical characterization of rock properties used in the Norwegian University of Science and Technology (NTNU) time and cost prediction models available for hard rock tunneling and surface excavation. The tests form the foundation of various hard rock equipment capacity and performance prediction methods. In this paper, application of the tests for tunnel boring machine (TBM) and drill and blast (D&B) tunneling is investigated and the impact of the indices on excavation time and costs is presented.
NASA Astrophysics Data System (ADS)
Khidhir, Basim A.; Mohamed, Bashir
2011-02-01
Machining parameters has an important factor on tool wear and surface finish, for that the manufacturers need to obtain optimal operating parameters with a minimum set of experiments as well as minimizing the simulations in order to reduce machining set up costs. The cutting speed is one of the most important cutting parameter to evaluate, it clearly most influences on one hand, tool life, tool stability, and cutting process quality, and on the other hand controls production flow. Due to more demanding manufacturing systems, the requirements for reliable technological information have increased. For a reliable analysis in cutting, the cutting zone (tip insert-workpiece-chip system) as the mechanics of cutting in this area are very complicated, the chip is formed in the shear plane (entrance the shear zone) and is shape in the sliding plane. The temperature contributed in the primary shear, chamfer and sticking, sliding zones are expressed as a function of unknown shear angle on the rake face and temperature modified flow stress in each zone. The experiments were carried out on a CNC lathe and surface finish and tool tip wear are measured in process. Machining experiments are conducted. Reasonable agreement is observed under turning with high depth of cut. Results of this research help to guide the design of new cutting tool materials and the studies on evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy - 276 machining.
NASA Astrophysics Data System (ADS)
Ravi, S.; Pradeep Kumar, M.
2011-09-01
Milling of hardened steel generates excessive heat during the chip formation process, which increases the temperature of cutting tool and accelerates tool wear. Application of conventional cutting fluid in milling process may not effectively control the heat generation also it has inherent health and environmental problems. To minimize health hazard and environmental problems caused by using conventional cutting fluid, a cryogenic cooling set up is developed to cool tool-chip interface using liquid nitrogen (LN 2). This paper presents results on the effect of LN 2 as a coolant on machinability of hardened AISI H13 tool steel for varying cutting speed in the range of 75-125 m/min during end milling with PVD TiAlN coated carbide inserts at a constant feed rate. The results show that machining with LN 2 lowers cutting temperature, tool flank wear, surface roughness and cutting forces as compared with dry and wet machining. With LN 2 cooling, it has been found that the cutting temperature was reduced by 57-60% and 37-42%; the tool flank wear was reduced by 29-34% and 10-12%; the surface roughness was decreased by 33-40% and 25-29% compared to dry and wet machining. The cutting forces also decreased moderately compared to dry and wet machining. This can be attributed to the fact that LN 2 machining provides better cooling and lubrication through substantial reduction in the cutting zone temperature.
System technology for laser-assisted milling with tool integrated optics
NASA Astrophysics Data System (ADS)
Hermani, Jan-Patrick; Emonts, Michael; Brecher, Christian
2013-02-01
High strength metal alloys and ceramics offer a huge potential for increased efficiency (e. g. in engine components for aerospace or components for gas turbines). However, mass application is still hampered by cost- and time-consuming end-machining due to long processing times and high tool wear. Laser-induced heating shortly before machining can reduce the material strength and improve machinability significantly. The Fraunhofer IPT has developed and successfully realized a new approach for laser-assisted milling with spindle and tool integrated, co-rotating optics. The novel optical system inside the tool consists of one deflection prism to position the laser spot in front of the cutting insert and one focusing lens. Using a fiber laser with high beam quality the laser spot diameter can be precisely adjusted to the chip size. A high dynamic adaption of the laser power signal according to the engagement condition of the cutting tool was realized in order not to irradiate already machined work piece material. During the tool engagement the laser power is controlled in proportion to the current material removal rate, which has to be calculated continuously. The needed geometric values are generated by a CAD/CAM program and converted into a laser power signal by a real-time controller. The developed milling tool with integrated optics and the algorithm for laser power control enable a multi-axis laser-assisted machining of complex parts.
NASA Technical Reports Server (NTRS)
Sampson, Paul G.; Sny, Linda C.
1992-01-01
The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Unless otherwise specified, borings shall be taken approximately 1 foot above the face brand to 1 foot below the face brand. For pressure treated Western Red Cedar and all butt treated poles, borings shall... fewer than 20 poles shall be bored once. Charges with less than 15 poles shall be bored once and bored...
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Unless otherwise specified, borings shall be taken approximately 1 foot above the face brand to 1 foot below the face brand. For pressure treated Western Red Cedar and all butt treated poles, borings shall... fewer than 20 poles shall be bored once. Charges with less than 15 poles shall be bored once and bored...
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Unless otherwise specified, borings shall be taken approximately 1 foot above the face brand to 1 foot below the face brand. For pressure treated Western Red Cedar and all butt treated poles, borings shall... fewer than 20 poles shall be bored once. Charges with less than 15 poles shall be bored once and bored...
Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; Aoyama, Hideki; Case, Keith
2015-01-01
Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process) and a fuzzy COmplex PRoportional ASsessment (COPRAS) for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment.
The Impact Of Surface Shape Of Chip-Breaker On Machined Surface
NASA Astrophysics Data System (ADS)
Šajgalík, Michal; Czán, Andrej; Martinček, Juraj; Varga, Daniel; Hemžský, Pavel; Pitela, David
2015-12-01
Machined surface is one of the most used indicators of workpiece quality. But machined surface is influenced by several factors such as cutting parameters, cutting material, shape of cutting tool or cutting insert, micro-structure of machined material and other known as technological parameters. By improving of these parameters, we can improve machined surface. In the machining, there is important to identify the characteristics of main product of these processes - workpiece, but also the byproduct - the chip. Size and shape of chip has impact on lifetime of cutting tools and its inappropriate form can influence the machine functionality and lifetime, too. This article deals with elimination of long chip created when machining of shaft in automotive industry and with impact of shape of chip-breaker on shape of chip in various cutting conditions based on production requirements.
ERIC Educational Resources Information Center
Hepburn, Larry; Shin, Masako
This document, one of eight in a multi-cultural competency-based vocational/technical curricula series, is on machine trades. This program is designed to run 36 weeks and cover 6 instructional areas: use of measuring tools; benchwork/tool bit grinding; lathe work; milling work; precision grinding; and combination machine work. A duty-task index…
Precision tool holder with flexure-adjustable, three degrees of freedom for a four-axis lathe
Bono, Matthew J [Pleasanton, CA; Hibbard, Robin L [Livermore, CA
2008-03-04
A precision tool holder for precisely positioning a single point cutting tool on 4-axis lathe, such that the center of the radius of the tool nose is aligned with the B-axis of the machine tool, so as to facilitate the machining of precision meso-scale components with complex three-dimensional shapes with sub-.mu.m accuracy on a four-axis lathe. The device is designed to fit on a commercial diamond turning machine and can adjust the cutting tool position in three orthogonal directions with sub-micrometer resolution. In particular, the tool holder adjusts the tool position using three flexure-based mechanisms, with two flexure mechanisms adjusting the lateral position of the tool to align the tool with the B-axis, and a third flexure mechanism adjusting the height of the tool. Preferably, the flexures are driven by manual micrometer adjusters. In this manner, this tool holder simplifies the process of setting a tool with sub-.mu.m accuracy, to substantially reduce the time required to set the tool.
NASA Astrophysics Data System (ADS)
Jena, D. P.; Panigrahi, S. N.
2016-03-01
Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.
Sutherland, Garnette R; Wolfsberger, Stefan; Lama, Sanju; Zarei-nia, Kourosh
2013-01-01
Intraoperative imaging disrupts the rhythm of surgery despite providing an excellent opportunity for surgical monitoring and assessment. To allow surgery within real-time images, neuroArm, a teleoperated surgical robotic system, was conceptualized. The objective was to design and manufacture a magnetic resonance-compatible robot with a human-machine interface that could reproduce some of the sight, sound, and touch of surgery at a remote workstation. University of Calgary researchers worked with MacDonald, Dettwiler and Associates engineers to produce a requirements document, preliminary design review, and critical design review, followed by the manufacture, preclinical testing, and clinical integration of neuroArm. During the preliminary design review, the scope of the neuroArm project changed to performing microsurgery outside the magnet and stereotaxy inside the bore. neuroArm was successfully manufactured and installed in an intraoperative magnetic resonance imaging operating room. neuroArm was clinically integrated into 35 cases in a graded fashion. As a result of this experience, neuroArm II is in development, and advances in technology will allow microsurgery within the bore of the magnet. neuroArm represents a successful interdisciplinary collaboration. It has positive implications for the future of robotic technology in neurosurgery in that the precision and accuracy of robots will continue to augment human capability.
NASA Astrophysics Data System (ADS)
Lucian, P.; Gheorghe, S.
2017-08-01
This paper presents a new method, based on FRISCO formula, for optimizing the choice of the best control system for kinematical feed chains with great distance between slides used in computer numerical controlled machine tools. Such machines are usually, but not limited to, used for machining large and complex parts (mostly in the aviation industry) or complex casting molds. For such machine tools the kinematic feed chains are arranged in a dual-parallel drive structure that allows the mobile element to be moved by the two kinematical branches and their related control systems. Such an arrangement allows for high speed and high rigidity (a critical requirement for precision machining) during the machining process. A significant issue for such an arrangement it’s the ability of the two parallel control systems to follow the same trajectory accurately in order to address this issue it is necessary to achieve synchronous motion control for the two kinematical branches ensuring that the correct perpendicular position it’s kept by the mobile element during its motion on the two slides.
Cutting Zone Temperature Identification During Machining of Nickel Alloy Inconel 718
NASA Astrophysics Data System (ADS)
Czán, Andrej; Daniš, Igor; Holubják, Jozef; Zaušková, Lucia; Czánová, Tatiana; Mikloš, Matej; Martikáň, Pavol
2017-12-01
Quality of machined surface is affected by quality of cutting process. There are many parameters, which influence on the quality of the cutting process. The cutting temperature is one of most important parameters that influence the tool life and the quality of machined surfaces. Its identification and determination is key objective in specialized machining processes such as dry machining of hard-to-machine materials. It is well known that maximum temperature is obtained in the tool rake face at the vicinity of the cutting edge. A moderate level of cutting edge temperature and a low thermal shock reduce the tool wear phenomena, and a low temperature gradient in the machined sublayer reduces the risk of high tensile residual stresses. The thermocouple method was used to measure the temperature directly in the cutting zone. An original thermocouple was specially developed for measuring of temperature in the cutting zone, surface and subsurface layers of machined surface. This paper deals with identification of temperature and temperature gradient during dry peripheral milling of Inconel 718. The measurements were used to identification the temperature gradients and to reconstruct the thermal distribution in cutting zone with various cutting conditions.
Piston pump and method of reducing vapor lock
Phillips, Benjamin A.; Harvey, Michael N.
2000-02-15
A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.
Piston pump and method of reducing vapor lock
Phillips, Benjamin A.; Harvey, Michael N.
2001-01-30
A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.
Machine learning and data science in soft materials engineering
NASA Astrophysics Data System (ADS)
Ferguson, Andrew L.
2018-01-01
In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.
Machine learning and data science in soft materials engineering.
Ferguson, Andrew L
2018-01-31
In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.
Code of Federal Regulations, 2011 CFR
2011-01-01
... shall be bored at any point of the periphery approximately 6-12 inches (15.24-30.48 cm) above ground... fewer than 20 poles shall be bored once. Charges with less than 15 poles shall be bored once and bored... in the lot. (D) Retention samples shall be comprised of borings, representative of pole volumes for...
Computer Simulation Of An In-Process Surface Finish Sensor.
NASA Astrophysics Data System (ADS)
Rakels, Jan H.
1987-01-01
It is generally accepted, that optical methods are the most promising for the in-process measurement of surface finish. These methods have the advantages of being non-contacting and fast data acquisition. Furthermore, these optical instruments can be easily retrofitted on existing machine-tools. In the Micro-Engineering Centre at the University of Warwick, an optical sensor has been developed which can measure the rms roughness, slope and wavelength of turned and precision ground surfaces during machining. The operation of this device is based upon the Kirchhoff-Fresnel diffraction integral. Application of this theory to ideal turned and ground surfaces is straightforward, and indeed the calculated diffraction patterns are in close agreement with patterns produced by an actual optical instrument. Since it is mathematically difficult to introduce real machine-tool behaviour into the diffraction integral, a computer program has been devised, which simulates the operation of the optical sensor. The program produces a diffraction pattern as a graphical output. Comparison between computer generated and actual diffraction patterns of the same surfaces show a high correlation. The main aim of this program is to construct an atlas, which maps known machine-tool errors versus optical diffraction patterns. This atlas can then be used for machine-tool condition diagnostics. It has been found that optical monitoring is very sensitive to minor defects. Therefore machine-tool detoriation can be detected before it is detrimental.
NASA Astrophysics Data System (ADS)
Maity, Kalipada; Pradhan, Swastik
2018-04-01
In this study, machining of titanium alloy (grade 5) is carried out using MT-CVD coated cutting tool. Titanium alloys possess superior strength-to-weight ratio with good corrosion resistance. Most of the industries used titanium alloy for the manufacturing of various types of lightweight components. The parts made from Ti-6Al-4V largely used in aerospace, biomedical, automotive and marine sectors. The conventional machining of this material is very difficult, due to low thermal conductivity and high chemical reactivity properties. To achieve a good surface finish with minimum tool wear of cutting tool, the machining is carried out using MT-CVD coated cutting tool. The experiment is carried out using of Taguchi L27 array layout with three cutting variables and levels. To find out the optimum parametric setting desirability function analysis (DFA) approach is used. The analysis of variance is studied to know the percentage contribution of each cutting variables. The optimum parametric setting results calculated from DFA were validated through the confirmation test.
Remotely adjustable fishing jar and method for using same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyatt, W.B.
1992-10-20
This patent describes a method for providing a jarring force to dislodge objects stuck in well bores, the method it comprises: connecting a jarring tool between an operating string and an object in a well bore; selecting a jarring force to be applied to the object; setting the selected reference jarring force into a mechanical memory mechanism by progressively engaging a first latch body and a second latch body; retaining the reference jarring force in the mechanical memory mechanism during diminution of tensional force applied by the operating string; and initiating an upwardly directed impact force within the jarring toolmore » by increasing tensional force on the operating string to a value greater than the tensional force corresponding with the selected jarring force. This patent also describes a remotely adjustable downhole fishing jar apparatus comprising: an operating mandrel; an impact release spring; a mechanical memory mechanism; and releasable latching means.« less
Research Results Of Stress-Strain State Of Cutting Tool When Aviation Materials Turning
NASA Astrophysics Data System (ADS)
Serebrennikova, A. G.; Nikolaeva, E. P.; Savilov, A. V.; Timofeev, S. A.; Pyatykh, A. S.
2018-01-01
Titanium alloys and stainless steels are hard-to-machine of all the machining types. Cutting edge state of turning tool after machining titanium and high-strength aluminium alloys and corrosion-resistant high-alloy steel has been studied. Cutting forces and chip contact arears with the rake surface of cutter has been measured. The relationship of cutting forces and residual stresses are shown. Cutting forces and residual stresses vs value of cutting tool rake angle relation were obtained. Measurements of residual stresses were performed by x-ray diffraction.
A defect-driven diagnostic method for machine tool spindles
Vogl, Gregory W.; Donmez, M. Alkan
2016-01-01
Simple vibration-based metrics are, in many cases, insufficient to diagnose machine tool spindle condition. These metrics couple defect-based motion with spindle dynamics; diagnostics should be defect-driven. A new method and spindle condition estimation device (SCED) were developed to acquire data and to separate system dynamics from defect geometry. Based on this method, a spindle condition metric relying only on defect geometry is proposed. Application of the SCED on various milling and turning spindles shows that the new approach is robust for diagnosing the machine tool spindle condition. PMID:28065985
Diamond Turning Of Infra-Red Components
NASA Astrophysics Data System (ADS)
Hodgson, B.; Lettington, A. H.; Stillwell, P. F. T. C.
1986-05-01
Single point diamond machining of infra-red optical components such as aluminium mirrors, germanium lenses and zinc sulphide domes is potentially the most cost effective method for their manufacture since components may be machined from the blanks to a high surface finish, requiring no subsequent polishing, in a few minutes. Machines for the production of flat surfaces are well established. Diamond turning lathes for curved surfaces however require a high capital investment which can be justified only for research purposes or high volume production. The present paper describes the development of a low cost production machine based on a Bryant Symons diamond turning lathe which is able to machine spherical components to the required form and finish. It employs two horizontal spindles one for the workpiece the other for the tool. The machined radius of curvature is set by the alignment of the axes and the radius of the tool motion, as in conventional generation. The diamond tool is always normal to the workpiece and does not need to be accurately profiled. There are two variants of this basic machine. For machining hemispherical domes the axes are at right angles while for lenses with positive or negative curvature these axes are adjustable. An aspherical machine is under development, based on the all mechanical spherical machine, but in which a ± 2 mm aspherecity may be imposed on the best fit sphere by moving the work spindle under numerical control.
NASA Astrophysics Data System (ADS)
Tillmann, W.; Schaak, C.; Biermann, D.; Aßmuth, R.; Goeke, S.
2017-03-01
Cemented carbide (hard metal) cutting tools are the first choice to machine hard materials or to conduct high performance cutting processes. Main advantages of cemented carbide cutting tools are their high wear resistance (hardness) and good high temperature strength. In contrast, cemented carbide cutting tools are characterized by a low toughness and generate higher production costs, especially due to limited resources. Usually, cemented carbide cutting tools are produced by means of powder metallurgical processes. Compared to conventional manufacturing routes, these processes are more expensive and only a limited number of geometries can be realized. Furthermore, post-processing and preparing the cutting edges in order to achieve high performance tools is often required. In the present paper, an alternative method to substitute solid cemented carbide cutting tools is presented. Cutting tools made of conventional high speed steels (HSS) were coated with thick WC-Co (88/12) layers by means of thermal spraying (HVOF). The challenge is to obtain a dense, homogenous, and near-net-shape coating on the flanks and the cutting edge. For this purpose, different coating strategies were realized using an industrial robot. The coating properties were subsequently investigated. After this initial step, the surfaces of the cutting tools were ground and selected cutting edges were prepared by means of wet abrasive jet machining to achieve a smooth and round micro shape. Machining tests were conducted with these coated, ground and prepared cutting tools. The occurring wear phenomena were analyzed and compared to conventional HSS cutting tools. Overall, the results of the experiments proved that the coating withstands mechanical stresses during machining. In the conducted experiments, the coated cutting tools showed less wear than conventional HSS cutting tools. With respect to the initial wear resistance, additional benefits can be obtained by preparing the cutting edge by means of wet abrasive jet machining.
The Tool Life of Ball Nose end Mill Depending on the Different Types of Ramping
NASA Astrophysics Data System (ADS)
Vopát, Tomáš; Peterka, Jozef; Kováč, Martin
2014-12-01
The article deals with the cutting tool wear measurement process and tool life of ball nose end mill depending on upward ramping and downward ramping. The aim was to determine and compare the wear (tool life) of ball nose end mill for different types of copy milling operations, as well as to specify particular steps of the measurement process. In addition, we examined and observed cutter contact areas of ball nose end mill with machined material. For tool life test, DMG DMU 85 monoBLOCK 5-axis CNC milling machine was used. In the experiment, cutting speed, feed rate, axial depth of cut and radial depth of cut were not changed. The cutting tool wear was measured on Zoller Genius 3s universal measuring machine. The results show different tool life of ball nose end mills depending on the copy milling strategy.
NASA Astrophysics Data System (ADS)
Mahapatra, Prasant Kumar; Sethi, Spardha; Kumar, Amod
2015-10-01
In conventional tool positioning technique, sensors embedded in the motion stages provide the accurate tool position information. In this paper, a machine vision based system and image processing technique for motion measurement of lathe tool from two-dimensional sequential images captured using charge coupled device camera having a resolution of 250 microns has been described. An algorithm was developed to calculate the observed distance travelled by the tool from the captured images. As expected, error was observed in the value of the distance traversed by the tool calculated from these images. Optimization of errors due to machine vision system, calibration, environmental factors, etc. in lathe tool movement was carried out using two soft computing techniques, namely, artificial immune system (AIS) and particle swarm optimization (PSO). The results show better capability of AIS over PSO.
ERIC Educational Resources Information Center
Cox, James F., III; Walker, Edward D., II
2005-01-01
Production planning and control (PPC) systems and operations performance measures are topics that students generally find both boring and difficult to understand. In the article, the authors present a production line game that they have found to be an effective tool to increase student interest in the topics as well as student comprehension. The…
ERIC Educational Resources Information Center
De Vecchis, Gino; Pasquinelli D'Allegra, Daniela; Pesaresi, Cristiano
2011-01-01
During the last few years the Italian school system has seen significant changes but geography continues to be considered a boring and un-useful discipline by public institutions. The main problem is the widespread geographic illiteracy and the fact that very often people do not know the objectives, methodology and tools of geographical studies.…
ERIC Educational Resources Information Center
Murugaiah, Puvaneswary
2016-01-01
In computer-assisted language learning (CALL), technological tools are often used both as an end and as a means to an end (Levy & Stockwell, 2006). Microsoft PowerPoint is an example of the latter as it is commonly used in oral presentations in classrooms. However, many student presentations are often boring as students generally read from…
Computer-aided design/computer-aided manufacturing skull base drill.
Couldwell, William T; MacDonald, Joel D; Thomas, Charles L; Hansen, Bradley C; Lapalikar, Aniruddha; Thakkar, Bharat; Balaji, Alagar K
2017-05-01
The authors have developed a simple device for computer-aided design/computer-aided manufacturing (CAD-CAM) that uses an image-guided system to define a cutting tool path that is shared with a surgical machining system for drilling bone. Information from 2D images (obtained via CT and MRI) is transmitted to a processor that produces a 3D image. The processor generates code defining an optimized cutting tool path, which is sent to a surgical machining system that can drill the desired portion of bone. This tool has applications for bone removal in both cranial and spine neurosurgical approaches. Such applications have the potential to reduce surgical time and associated complications such as infection or blood loss. The device enables rapid removal of bone within 1 mm of vital structures. The validity of such a machining tool is exemplified in the rapid (< 3 minutes machining time) and accurate removal of bone for transtemporal (for example, translabyrinthine) approaches.
Toward transient finite element simulation of thermal deformation of machine tools in real-time
NASA Astrophysics Data System (ADS)
Naumann, Andreas; Ruprecht, Daniel; Wensch, Joerg
2018-01-01
Finite element models without simplifying assumptions can accurately describe the spatial and temporal distribution of heat in machine tools as well as the resulting deformation. In principle, this allows to correct for displacements of the Tool Centre Point and enables high precision manufacturing. However, the computational cost of FE models and restriction to generic algorithms in commercial tools like ANSYS prevents their operational use since simulations have to run faster than real-time. For the case where heat diffusion is slow compared to machine movement, we introduce a tailored implicit-explicit multi-rate time stepping method of higher order based on spectral deferred corrections. Using the open-source FEM library DUNE, we show that fully coupled simulations of the temperature field are possible in real-time for a machine consisting of a stock sliding up and down on rails attached to a stand.
Howitzer Ammunition System Procurement (HASP).
1991-07-01
machine tools , etc.) * Most critical part of base to reassemble. IPP * Industry to plan round-specific...beyond allowed tolerances. - Conducting tolerance studies and funding machining studies at sul’on "’actors. " Facility development was controlled by the...Manufacturing Balimoy Mfg. of Venice, Inc. Action Manufacturing Co. Lanson Industries Inc. Hercules Aerospace Company CIMA Machine & Tool Co., Inc. Talley Defense Systems Tracor Aerospace Inc. BMY E49030APPBMAC
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 9 2011-10-01 2011-10-01 false Roadway machines, small tools and supplies, and snow removal (accounts XX-19-36 to XX-19-38, inclusive). 1242.28 Section 1242.28 Transportation Other... PASSENGER SERVICE FOR RAILROADS 1 Operating Expenses-Way and Structures § 1242.28 Roadway machines, small...
ERIC Educational Resources Information Center
Anoka-Hennepin Technical Coll., Minneapolis, MN.
This set of two training outlines and one basic skills set list are designed for a machine tool technology program developed during a project to retrain defense industry workers at risk of job loss or dislocation because of conversion of the defense industry. The first troubleshooting training outline lists the categories of problems that develop…
Translations on USSR Resources, Number 767.
1978-01-19
photography and so on). The amount of data obtained as a result of additional surveys makes it possible to evaluate the intensity and configuration...machine tools , chemical products, refrigerators, as well as potatoes and products of livestock breeding. The Kazakh SSR made an enormous leap in its...of the fuel and water power resources of Georgia, Azerbaydzhan and Armenia. Petroleum, transport and electrical machine building, machine tool
Diamond tool machining of materials which react with diamond
Lundin, R.L.; Stewart, D.D.; Evans, C.J.
1992-04-14
An apparatus is described for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond. 1 figs.
Lathe tool bit and holder for machining fiberglass materials
NASA Technical Reports Server (NTRS)
Winn, L. E. (Inventor)
1972-01-01
A lathe tool and holder combination for machining resin impregnated fiberglass cloth laminates is described. The tool holder and tool bit combination is designed to accommodate a conventional carbide-tipped, round shank router bit as the cutting medium, and provides an infinite number of cutting angles in order to produce a true and smooth surface in the fiberglass material workpiece with every pass of the tool bit. The technique utilizes damaged router bits which ordinarily would be discarded.
Safety issues in high speed machining
NASA Astrophysics Data System (ADS)
1994-05-01
There are several risks related to High-Speed Milling, but they have not been systematically determined or studied so far. Increased loads by high centrifugal forces may result in dramatic hazards. Flying tools or fragments from a tool with high kinetic energy may damage surrounding people, machines and devices. In the project, mechanical risks were evaluated, theoretic values for kinetic energies of rotating tools were calculated, possible damages of the flying objects were determined and terms to eliminate the risks were considered. The noise levels of the High-Speed Machining center owned by the Helsinki University of Technology (HUT) and the Technical Research Center of Finland (VTT) in practical machining situation were measured and the results were compared to those after basic preventive measures were taken.
Zundelevich, A; Lazar, B; Ilan, M
2007-01-01
Bioerosion by boring sponges is an important mechanism shaping the structure of coral reefs all around the world. To determine the excavation rate by boring sponges, we developed a system in which chemical and mechanical boring rates [calcium carbonate (CaCO(3)) dissolution and chip production, respectively] were measured simultaneously in experimental tanks containing reefal rock inhabited by a boring sponge. Pione cf. vastifica (Hancock 1849) was chosen as a model species to study the erosion rate of boring sponges. It is an abundant species in the coral reefs of the Nature Reserve Reef, Elat, Gulf of Aqaba, northern Red Sea, reaching maximum abundance at 25-30 m. The rate of chemical bioerosion was determined from the increase in tank-seawater alkalinity over time, and the mechanical bioerosion rate was estimated from the total amount of CaCO(3) chips produced over the same time interval. The measured bioerosion rate of P. cf. vastifica was 2.3 g m(-2) sponge day(-1), showing seasonal but not diurnal variations, suggesting that the zooxanthellae harboring the sponge have no effect on its boring rate. The experiments indicated clearly that per each mass of chips that P. cf. vastifica produces during its boring activity, it dissolves three masses of reef CaCO(3) framework. Assuming that some additional boring sponges can use a similar strategy of bioerosion, these findings suggest that chips, the most obvious erosion products of boring sponges, represent only a small fraction of boring sponge bioerosion capacity.
Machinability of Stellite 6 hardfacing
NASA Astrophysics Data System (ADS)
Benghersallah, M.; Boulanouar, L.; Le Coz, G.; Devillez, A.; Dudzinski, D.
2010-06-01
This paper reports some experimental findings concerning the machinability at high cutting speed of nickel-base weld-deposited hardfacings for the manufacture of hot tooling. The forging work involves extreme impacts, forces, stresses and temperatures. Thus, mould dies must be extremely resistant. The aim of the project is to create a rapid prototyping process answering to forging conditions integrating a Stellite 6 hardfacing deposed PTA process. This study talks about the dry machining of the hardfacing, using a two tips machining tool and a high speed milling machine equipped by a power consumption recorder Wattpilote. The aim is to show the machinability of the hardfacing, measuring the power and the tip wear by optical microscope and white light interferometer, using different strategies and cutting conditions.
Investigation of Machine-ability of Inconel 800 in EDM with Coated Electrode
NASA Astrophysics Data System (ADS)
Karunakaran, K.; Chandrasekaran, M.
2017-03-01
The Inconel 800 is a high temperature application alloy which is classified as a nickel based super alloy. It has wide scope in aerospace engineering, gas Turbine etc. The machine-ability studies were found limited on this material. Hence This research focuses on machine-ability studies on EDM of Inconel 800 with Silver Coated Electrolyte Copper Electrode. The purpose of coating on electrode is to reduce tool wear. The factors pulse on Time, Pulse off Time and Peck Current were considered to observe the responses of surface roughness, material removal rate, tool wear rate. Taguchi Full Factorial Design is employed for Design the experiment. Some specific findings were reported and the percentage of contribution of each parameter was furnished
Finite Element Simulation of Machining of Ti6Al4V Alloy
NASA Astrophysics Data System (ADS)
Rizzuti, S.; Umbrello, D.
2011-05-01
Titanium and its alloys are an important class of materials, especially for aerospace applications, due to their excellent combination of strength and fracture toughness as well as low density. However, these materials are generally regarded as difficult to machine because of their low thermal conductivity and high chemical reactivity with cutting tool materials. Moreover, the low thermal conductivity of Titanium inhibits dissipation of heat within the workpiece causing an higher temperature at the cutting edge and generating for higher cutting speed a rapid chipping at the cutting edge which leads to catastrophic failure. In addition, chip morphology significantly influences the thermo-mechanical behaviour at the workpiece/tool interface, which also affects the tool life. In this paper a finite element analysis of machining of TiAl6V4 is presented. In particular, cutting force, chip morphology and segmentation are taken into account due to their predominant roles to determine machinability and tool wear during the machining of these alloys. Results in terms of residual stresses are also presented. Moreover, the numerical results are compared with experimental ones.
The self-adjusting file (SAF) system: An evidence-based update
Metzger, Zvi
2014-01-01
Current rotary file systems are effective tools. Nevertheless, they have two main shortcomings: They are unable to effectively clean and shape oval canals and depend too much on the irrigant to do the cleaning, which is an unrealistic illusionThey may jeopardize the long-term survival of the tooth via unnecessary, excessive removal of sound dentin and creation of micro-cracks in the remaining root dentin. The new Self-adjusting File (SAF) technology uses a hollow, compressible NiTi file, with no central metal core, through which a continuous flow of irrigant is provided throughout the procedure. The SAF technology allows for effective cleaning of all root canals including oval canals, thus allowing for the effective disinfection and obturation of all canal morphologies. This technology uses a new concept of cleaning and shaping in which a uniform layer of dentin is removed from around the entire perimeter of the root canal, thus avoiding unnecessary excessive removal of sound dentin. Furthermore, the mode of action used by this file system does not apply the machining of all root canals to a circular bore, as do all other rotary file systems, and does not cause micro-cracks in the remaining root dentin. The new SAF technology allows for a new concept in cleaning and shaping root canals: Minimally Invasive 3D Endodontics. PMID:25298639
Design of New Muzzle for 80mm Diamter Single-Stage Gas Gun
NASA Astrophysics Data System (ADS)
Russell, R. T.; Starks, K. S.; Grote, D. L., II; Vandersall, K. S.; Zhou, M.; Thadhani, N. N.
1999-06-01
In this paper, we describe the design of a new muzzle for the Georgia Institute of Technology's 80mm diameter single-stage gas gun. The muzzle is designed to accommodate both normal and inclined impact experiments. Modular target-holding assemblies are mounted on a hardened tool steel annular plate 3 inches in thickness and 15 inches in diameter. This plate is threaded on to the gun barrel and locked into place by an anti-backlash assembly to prevent loss of alignment. The target mount for normal impact experiments consists of two 4.5 inch diameter semi-cylindrical ring sections with surfaces lapped perpendicular to the major bore axis. The inclined target mount includes a pair of concentric cylinder sections with an inner diameter of 8 inches. Tilt adjustment is achieved around two mutually perpendicular and intersecting axis of rotation, as in a gimbals assembly. Coarse alignment allows for angles between -10 and +30 degrees. Fine alignment is achieved using 3/8 inch machine screws with 40 threads per inch. This mechanism yields a precision of 0.025 inches per revolution, the same precision found in a micrometer. The linear distance between the adjustment mechanisms and the axes of rotation geometrically enhances fine alignment. Velocity measurement assemblies using shear pins, time of arrival pins, and laser/photo-diode circuits are designed as bolt-on modules.
Vogiatzis, Konstantinos; Zafiropoulou, Vassiliki; Mouzakis, Haralampos
2018-10-15
The Line 3 Extension from Aghia Marina to Piraeus constitutes one of the most significant construction projects in full development in Athens Greater area. For the management and abatement of the air borne noise generated from surface, and/or underground construction activities, relevant machinery operation, and trucks movements at open worksites and the tunnel, a continuous monthly noise and vibration monitoring program is enforced in order to assess any potential intrusion of the acoustic environment. On basis of measured 24 hour L eq noise levels, both L den and L night EU indices were assessed along with vibration velocity for every worksite and tunnel construction activity. The existing environmental noise background generated mainly from road traffic was assessed in order to evaluate potential effects on both air borne noise from construction activities. This comprehensive monitoring program aims to protect the inhabitants in the vicinity of worksites and the tunnel surrounding from construction noise and vibration processing and evaluating all necessary mitigation measures. Especially, for the protection of sensitive receptors, this program may serve as a tool ensuring a successful management of both noise and vibration levels emitted from open air construction activities and (Tunnel Boring Machine) TBM or hammer/pilling operation by implementing mitigation measures where necessary. Copyright © 2018 Elsevier B.V. All rights reserved.
Saito, Shigeyoshi; Tanaka, Keiko; Hashido, Takashi
2016-07-01
This study aimed to compare the uniformity of fat suppression and image quality between liver acquisition with volume acceleration flex (LAVA-Flex) and LAVA on 60-cm conventional-bore and 70-cm wide-bore 3.0-T magnetic resonance imaging (MRI). The uniformity of fat suppression by LAVA-Flex and LAVA was assessed as the efficiency of suppression of superficial fat at the levels of the liver dome, porta, and renal hilum. Percentage standard deviation (%SD) was calculated using the following equation: %SD (%) = 100 × SD of the regions of interest (ROIs)/mean value of the signal intensity (SI) in the ROIs. Signal-to-noise ratio (SNR) and contrast ratio (CR) were calculated. In the LAVA sequence, the %SD in all slices on wide-bore 3.0-T MRI was significantly higher than that on conventional-bore 3.0-T MRI (P < 0.01). However, there was no significant difference in fat signal uniformity between the conventional and wide-bore scanners when LAVA-Flex was used. In the liver, there were no significant differences in SNR between the two sequences. However, the SNR in the pancreas was lower for the wide-bore scanner than for the conventional-bore scanner for both sequences (P < 0.05). There were no significant differences in CR for the liver and fat between LAVA-Flex and LAVA in both scanners. The CR in the LAVA-Flex images obtained by wide-bore MRI was significantly higher than that in the LAVA-Flex images recorded by conventional-bore MRI (P < 0.001). LAVA-Flex offers more homogenous fat suppression in the upper abdomen than LAVA for both conventional and wide-bore 3.0-T MRI.
Measurement techniques for determining the static stiffness of foundations for machine tools
NASA Astrophysics Data System (ADS)
Myers, A.; Barrans, S. M.; Ford, D. G.
2005-01-01
The paper presents a novel technique for accurately measuring the static stiffness of a machine tool concrete foundation using various items of metrology equipment. The foundation was loaded in a number of different ways which simulated the erection of the machine, traversing of the axes and loading of the heaviest component. The results were compared with the stiffness tolerances specified for the foundation which were deemed necessary in order that the machine alignments could be achieved. This paper is a continuation of research previously published for a FEA of the foundation.
NASA Astrophysics Data System (ADS)
Abellán-Nebot, J. V.; Liu, J.; Romero, F.
2009-11-01
The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Fritz, John Floren
2013-08-27
Minimega is a simple emulytics platform for creating testbeds of networked devices. The platform consists of easily deployable tools to facilitate bringing up large networks of virtual machines including Windows, Linux, and Android. Minimega attempts to allow experiments to be brought up quickly with nearly no configuration. Minimega also includes tools for simple cluster management, as well as tools for creating Linux based virtual machine images.
Web-Based Machine Translation as a Tool for Promoting Electronic Literacy and Language Awareness
ERIC Educational Resources Information Center
Williams, Lawrence
2006-01-01
This article addresses a pervasive problem of concern to teachers of many foreign languages: the use of Web-Based Machine Translation (WBMT) by students who do not understand the complexities of this relatively new tool. Although networked technologies have greatly increased access to many language and communication tools, WBMT is still…
Production Of Hydroxylated Fatty Acids In Genetically Modified Plants
Hall, David R.; Fox, Joe
2002-05-21
An annular wire harness for use in drill pipe comprising two rings interconnected by one or more insulated conductors. The rings are positioned within annular grooves located within the tool joints and the conductors are fixed within grooves along the bore wall of the pipe. The rings may be recessed within annular grooves in order to permit refacing of the tool joint. The rings are provided with means for coupling a power and data signal from an adjacent pipe to the conductors in such a fashion that the signal may be transmitted along the drill pipe and along an entire drill string.
NASA Astrophysics Data System (ADS)
Debra, Daniel B.; Hesselink, Lambertus; Binford, Thomas
1990-05-01
There are a number of fields that require or can use to advantage very high precision in machining. For example, further development of high energy lasers and x ray astronomy depend critically on the manufacture of light weight reflecting metal optical components. To fabricate these optical components with machine tools they will be made of metal with mirror quality surface finish. By mirror quality surface finish, it is meant that the dimensions tolerances on the order of 0.02 microns and surface roughness of 0.07. These accuracy targets fall in the category of ultra precision machining. They cannot be achieved by a simple extension of conventional machining processes and techniques. They require single crystal diamond tools, special attention to vibration isolation, special isolation of machine metrology, and on line correction of imperfection in the motion of the machine carriages on their way.
Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; Aoyama, Hideki; Case, Keith
2015-01-01
Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process) and a fuzzy COmplex PRoportional ASsessment (COPRAS) for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment. PMID:26368541
Method for bonding a transmission line to a downhole tool
Hall, David R.; Fox, Joe
2007-11-06
An apparatus for bonding a transmission line to the central bore of a downhole tool includes a pre-formed interface for bonding a transmission line to the inside diameter of a downhole tool. The pre-formed interface includes a first surface that substantially conforms to the outside contour of a transmission line and a second surface that substantially conforms to the inside diameter of a downhole tool. In another aspect of the invention, a method for bonding a transmission line to the inside diameter of a downhole tool includes positioning a transmission line near the inside wall of a downhole tool and placing a mold near the transmission line and the inside wall. The method further includes injecting a bonding material into the mold and curing the bonding material such that the bonding material bonds the transmission line to the inside wall.
Pre-Finishing of SiC for Optical Applications
NASA Technical Reports Server (NTRS)
Rozzi, Jay; Clavier, Odile; Gagne, John
2011-01-01
13 Manufacturing & Prototyping A method is based on two unique processing steps that are both based on deterministic machining processes using a single-point diamond turning (SPDT) machine. In the first step, a high-MRR (material removal rate) process is used to machine the part within several microns of the final geometry. In the second step, a low-MRR process is used to machine the part to near optical quality using a novel ductile regime machining (DRM) process. DRM is a deterministic machining process associated with conditions under high hydrostatic pressures and very small depths of cut. Under such conditions, using high negative-rake angle cutting tools, the high-pressure region near the tool corresponds to a plastic zone, where even a brittle material will behave in a ductile manner. In the high-MRR processing step, the objective is to remove material with a sufficiently high rate such that the process is economical, without inducing large-scale subsurface damage. A laser-assisted machining approach was evaluated whereby a CO2 laser was focused in advance of the cutting tool. While CVD (chemical vapor deposition) SiC was successfully machined with this approach, the cutting forces were substantially higher than cuts at room temperature under the same machining conditions. During the experiments, the expansion of the part and the tool due to the heating was carefully accounted for. The higher cutting forces are most likely due to a small reduction in the shear strength of the material compared with a larger increase in friction forces due to the thermal softening effect. The key advantage is that the hybrid machine approach has the potential to achieve optical quality without the need for a separate optical finishing step. Also, this method is scalable, so one can easily progress from machining 50-mm-diameter samples to the 250-mm-diameter mirror that NASA desires.
Analysis of Driven Pile Capacity within Pre-Bored Soil : Research Project Capsule
DOT National Transportation Integrated Search
2017-10-01
Pre-boring is a method used to facilitate large displacement pile driving in hard/dense soils (see Figure 1). By pre-boring a pilot hole, the end bearing and side friction within the pre-bored zone are reduced, thus aiding pile driving installation. ...
25. VIEW OF THE MACHINE TOOL LAYOUT IN ROOMS 244 ...
25. VIEW OF THE MACHINE TOOL LAYOUT IN ROOMS 244 AND 296. MACHINES WERE USED FOR STAINLESS STEEL FABRICATION (THE J-LINE). THE ORIGINAL DRAWING HAS BEEN ARCHIVED ON MICROFILM. THE DRAWING WAS REPRODUCED AT THE BEST QUALITY POSSIBLE. LETTERS AND NUMBERS IN THE CIRCLES INDICATE FOOTER AND/OR COLUMN LOCATIONS. - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO
Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool
NASA Astrophysics Data System (ADS)
Guo, Qianjian; Fan, Shuo; Xu, Rufeng; Cheng, Xiang; Zhao, Guoyong; Yang, Jianguo
2017-05-01
Aiming at the problem of low machining accuracy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of temperature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC-NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 μm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.
Surface structuring of boron doped CVD diamond by micro electrical discharge machining
NASA Astrophysics Data System (ADS)
Schubert, A.; Berger, T.; Martin, A.; Hackert-Oschätzchen, M.; Treffkorn, N.; Kühn, R.
2018-05-01
Boron doped diamond materials, which are generated by Chemical Vapor Deposition (CVD), offer a great potential for the application on highly stressed tools, e. g. in cutting or forming processes. As a result of the CVD process rough surfaces arise, which require a finishing treatment in particular for the application in forming tools. Cutting techniques such as milling and grinding are hardly applicable for the finish machining because of the high strength of diamond. Due to its process principle of ablating material by melting and evaporating, Electrical Discharge Machining (EDM) is independent of hardness, brittleness or toughness of the workpiece material. EDM is a suitable technology for machining and structuring CVD diamond, since boron doped CVD diamond is electrically conductive. In this study the ablation characteristics of boron doped CVD diamond by micro electrical discharge machining are investigated. Experiments were carried out to investigate the influence of different process parameters on the machining result. The impact of tool-polarity, voltage and discharge energy on the resulting erosion geometry and the tool wear was analyzed. A variation in path overlapping during the erosion of planar areas leads to different microstructures. The results show that micro EDM is a suitable technology for finishing of boron doped CVD diamond.
Osteoporosis risk prediction using machine learning and conventional methods.
Kim, Sung Kean; Yoo, Tae Keun; Oh, Ein; Kim, Deok Won
2013-01-01
A number of clinical decision tools for osteoporosis risk assessment have been developed to select postmenopausal women for the measurement of bone mineral density. We developed and validated machine learning models with the aim of more accurately identifying the risk of osteoporosis in postmenopausal women, and compared with the ability of a conventional clinical decision tool, osteoporosis self-assessment tool (OST). We collected medical records from Korean postmenopausal women based on the Korea National Health and Nutrition Surveys (KNHANES V-1). The training data set was used to construct models based on popular machine learning algorithms such as support vector machines (SVM), random forests (RF), artificial neural networks (ANN), and logistic regression (LR) based on various predictors associated with low bone density. The learning models were compared with OST. SVM had significantly better area under the curve (AUC) of the receiver operating characteristic (ROC) than ANN, LR, and OST. Validation on the test set showed that SVM predicted osteoporosis risk with an AUC of 0.827, accuracy of 76.7%, sensitivity of 77.8%, and specificity of 76.0%. We were the first to perform comparisons of the performance of osteoporosis prediction between the machine learning and conventional methods using population-based epidemiological data. The machine learning methods may be effective tools for identifying postmenopausal women at high risk for osteoporosis.
Electrical contact tool set station
Byers, M.E.
1988-02-22
An apparatus is provided for the precise setting to zero of electrically conductive cutting tools used in the machining of work pieces. An electrically conductive cylindrical pin, tapered at one end to a small flat, rests in a vee-shaped channel in a base so that its longitudinal axis is parallel to the longitudinal axis of the machine's spindle. Electronic apparatus is connected between the cylindrical pin and the electrically conductive cutting tool to produce a detectable signal when contact between tool and pin is made. The axes of the machine are set to zero by contact between the cutting tool and the sides, end or top of the cylindrical pin. Upon contact, an electrical circuit is completed, and the detectable signal is produced. The tool can then be set to zero for that axis. Should the tool contact the cylindrical pin with too much force, the cylindrical pin would be harmlessly dislodged from the vee-shaped channel, preventing damage either to the cutting tool or the cylindrical pin. 5 figs.
System and method for multi-stage bypass, low operating temperature suppressor for automatic weapons
Moss, William C.; Anderson, Andrew T.
2015-06-09
The present disclosure relates to a suppressor for use with a weapon. The suppressor may be formed to have a body portion having a bore extending concentric with a bore axis of the weapon barrel. An opening in the bore extends at least substantially circumferentially around the bore. A flow path communicates with the opening and defines a channel for redirecting gasses flowing in the bore out from the bore, through the opening, into a rearward direction in the flow path. The flow path raises a pressure at the opening to generate a Mach disk within the bore at a location approximately coincident with the opening. The Mach disk forms as a virtual baffle to divert at least a portion of the gasses into the opening and into the flow path.
Miller, Donald M.
1978-01-01
A micromachining tool system with X- and omega-axes is used to machine spherical, aspherical, and irregular surfaces with a maximum contour error of 100 nonometers (nm) and surface waviness of no more than 0.8 nm RMS. The omega axis, named for the angular measurement of the rotation of an eccentric mechanism supporting one end of a tool bar, enables the pulse increments of the tool toward the workpiece to be as little as 0 to 4.4 nm. A dedicated computer coordinates motion in the two axes to produce the workpiece contour. Inertia is reduced by reducing the mass pulsed toward the workpiece to about one-fifth of its former value. The tool system includes calibration instruments to calibrate the micromachining tool system. Backlash is reduced and flexing decreased by using a rotary table and servomotor to pulse the tool in the omega-axis instead of a ball screw mechanism. A thermally-stabilized spindle rotates the workpiece and is driven by a motor not mounted on the micromachining tool base through a torque-smoothing pulley and vibrationless rotary coupling. Abbe offset errors are almost eliminated by tool setting and calibration at spindle center height. Tool contour and workpiece contour are gaged on the machine; this enables the source of machining errors to be determined more readily, because the workpiece is gaged before its shape can be changed by removal from the machine.
Industrial machine systems risk assessment: a critical review of concepts and methods.
Etherton, John R
2007-02-01
Reducing the risk of work-related death and injury to machine operators and maintenance personnel poses a continuing occupational safety challenge. The risk of injury from machinery in U.S. workplaces is high. Between 1992 and 2001, there were, on average, 520 fatalities per year involving machines and, on average, 3.8 cases per 10,000 workers of nonfatal caught-in-running-machine injuries involving lost workdays. A U.S. task group recently developed a technical reference guideline, ANSI B11 TR3, "A Guide to Estimate, Evaluate, & Reduce Risks Associated with Machine Tools," that is intended to bring machine tool risk assessment practice in the United States up to or above the level now required by the international standard, ISO 14121. The ANSI guideline emphasizes identifying tasks and hazards not previously considered, particularly those associated with maintenance; and it further emphasizes teamwork among line workers, engineers, and safety professionals. The value of this critical review of concepts and methods resides in (1) its linking current risk theory to machine system risk assessment and (2) its exploration of how various risk estimation tools translate into risk-informed decisions on industrial machine system design and use. The review was undertaken to set the stage for a field evaluation study on machine risk assessment among users of the ANSI B11 TR3 method.
An experimental investigation on orthogonal cutting of hybrid CFRP/Ti stacks
NASA Astrophysics Data System (ADS)
Xu, Jinyang; El Mansori, Mohamed
2016-10-01
Hybrid CFRP/Ti stack has been widely used in the modern aerospace industry owing to its superior mechanical/physical properties and excellent structural functions. Several applications require mechanical machining of these hybrid composite stacks in order to achieve dimensional accuracy and assembly performance. However, machining of such composite-to-metal alliance is usually an extremely challenging task in the manufacturing sectors due to the disparate natures of each stacked constituent and their respective poor machinability. Special issues may arise from the high force/heat generation, severe subsurface damage and rapid tool wear. To study the fundamental mechanisms controlling the bi-material machining, this paper presented an experimental study on orthogonal cutting of hybrid CFRP/Ti stack by using superior polycrystalline diamond (PCD) tipped tools. The utilized cutting parameters for hybrid CFRP/Ti machining were rigorously adopted through a compromise selection due to the disparate machinability behaviors of the CFRP laminate and Ti alloy. The key cutting responses in terms of cutting force generation, machined surface quality and tool wear mechanism were precisely addressed. The experimental results highlighted the involved five stages of CFRP/Ti cutting and the predominant crater wear and edge fracture failure governing the PCD cutting process.
NASA Astrophysics Data System (ADS)
Susmitha, M.; Sharan, P.; Jyothi, P. N.
2016-09-01
Friction between work piece-cutting tool-chip generates heat in the machining zone. The heat generated reduces the tool life, increases surface roughness and decreases the dimensional sensitiveness of work material. This can be overcome by using cutting fluids during machining. They are used to provide lubrication and cooling effects between cutting tool and work piece and cutting tool and chip during machining operation. As a result, important benefits would be achieved such longer tool life, easy chip flow and higher machining quality in the machining processes. Non-edible vegetable oils have received considerable research attention in the last decades owing to their remarkable improved tribological characteristics and due to increasing attention to environmental issues, have driven the lubricant industry toward eco friendly products from renewable sources. In the present work, different non-edible vegetable oils are used as cutting fluid during drilling of Mild steel work piece. Non-edible vegetable oils, used are Karanja oil (Honge), Neem oil and blend of these two oils. The effect of these cutting fluids on chip formation, surface roughness and cutting force are investigated and the results obtained are compared with results obtained with petroleum based cutting fluids and dry conditions.
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Kuan, Chihping; Zhang, YI
1991-01-01
A numerical method is developed for the minimization of deviations of real tooth surfaces from the theoretical ones. The deviations are caused by errors of manufacturing, errors of installment of machine-tool settings and distortion of surfaces by heat-treatment. The deviations are determined by coordinate measurements of gear tooth surfaces. The minimization of deviations is based on the proper correction of initially applied machine-tool settings. The contents of accomplished research project cover the following topics: (1) Descriptions of the principle of coordinate measurements of gear tooth surfaces; (2) Deviation of theoretical tooth surfaces (with examples of surfaces of hypoid gears and references for spiral bevel gears); (3) Determination of the reference point and the grid; (4) Determination of the deviations of real tooth surfaces at the points of the grid; and (5) Determination of required corrections of machine-tool settings for minimization of deviations. The procedure for minimization of deviations is based on numerical solution of an overdetermined system of n linear equations in m unknowns (m much less than n ), where n is the number of points of measurements and m is the number of parameters of applied machine-tool settings to be corrected. The developed approach is illustrated with numerical examples.
Calibrated thermal microscopy of the tool-chip interface in machining
NASA Astrophysics Data System (ADS)
Yoon, Howard W.; Davies, Matthew A.; Burns, Timothy J.; Kennedy, M. D.
2000-03-01
A critical parameter in predicting tool wear during machining and in accurate computer simulations of machining is the spatially-resolved temperature at the tool-chip interface. We describe the development and the calibration of a nearly diffraction-limited thermal-imaging microscope to measure the spatially-resolved temperatures during the machining of an AISI 1045 steel with a tungsten-carbide tool bit. The microscope has a target area of 0.5 mm X 0.5 mm square region with a < 5 micrometers spatial resolution and is based on a commercial InSb 128 X 128 focal plane array with an all reflective microscope objective. The minimum frame image acquisition time is < 1 ms. The microscope is calibrated using a standard blackbody source from the radiance temperature calibration laboratory at the National Institute of Standards and Technology, and the emissivity of the machined material is deduced from the infrared reflectivity measurements. The steady-state thermal images from the machining of 1045 steel are compared to previous determinations of tool temperatures from micro-hardness measurements and are found to be in agreement with those studies. The measured average chip temperatures are also in agreement with the temperature rise estimated from energy balance considerations. From these calculations and the agreement between the experimental and the calculated determinations of the emissivity of the 1045 steel, the standard uncertainty of the temperature measurements is estimated to be about 45 degree(s)C at 900 degree(s)C.
Sustainable cooling method for machining titanium alloy
NASA Astrophysics Data System (ADS)
Boswell, B.; Islam, M. N.
2016-02-01
Hard to machine materials such as Titanium Alloy TI-6AI-4V Grade 5 are notoriously known to generate high temperatures and adverse reactions between the workpiece and the tool tip materials. These conditions all contribute to an increase in the wear mechanisms, reducing tool life. Titanium Alloy, for example always requires coolant to be used during machining. However, traditional flood cooling needs to be replaced due to environmental issues, and an alternative cooling method found that has minimum impact on the environment. For true sustainable cooling of the tool it is necessary to account for all energy used in the cooling process, including the energy involved in producing the coolant. Previous research has established that efficient cooling of the tool interface improves the tool life and cutting action. The objective of this research is to determine the most appropriate sustainable cooling method that can also reduce the rate of wear at the tool interface.
Tool Wear Monitoring Using Time Series Analysis
NASA Astrophysics Data System (ADS)
Song, Dong Yeul; Ohara, Yasuhiro; Tamaki, Haruo; Suga, Masanobu
A tool wear monitoring approach considering the nonlinear behavior of cutting mechanism caused by tool wear and/or localized chipping is proposed, and its effectiveness is verified through the cutting experiment and actual turning machining. Moreover, the variation in the surface roughness of the machined workpiece is also discussed using this approach. In this approach, the residual error between the actually measured vibration signal and the estimated signal obtained from the time series model corresponding to dynamic model of cutting is introduced as the feature of diagnosis. Consequently, it is found that the early tool wear state (i.e. flank wear under 40µm) can be monitored, and also the optimal tool exchange time and the tool wear state for actual turning machining can be judged by this change in the residual error. Moreover, the variation of surface roughness Pz in the range of 3 to 8µm can be estimated by the monitoring of the residual error.
NASA Astrophysics Data System (ADS)
Setiawan, A.; Wangsaputra, R.; Martawirya, Y. Y.; Halim, A. H.
2016-02-01
This paper deals with Flexible Manufacturing System (FMS) production rescheduling due to unavailability of cutting tools caused either of cutting tool failure or life time limit. The FMS consists of parallel identical machines integrated with an automatic material handling system and it runs fully automatically. Each machine has a same cutting tool configuration that consists of different geometrical cutting tool types on each tool magazine. The job usually takes two stages. Each stage has sequential operations allocated to machines considering the cutting tool life. In the real situation, the cutting tool can fail before the cutting tool life is reached. The objective in this paper is to develop a dynamic scheduling algorithm when a cutting tool is broken during unmanned and a rescheduling needed. The algorithm consists of four steps. The first step is generating initial schedule, the second step is determination the cutting tool failure time, the third step is determination of system status at cutting tool failure time and the fourth step is the rescheduling for unfinished jobs. The approaches to solve the problem are complete-reactive scheduling and robust-proactive scheduling. The new schedules result differences starting time and completion time of each operations from the initial schedule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curry, Bennett
The Arizona Commerce Authority (ACA) conducted an Innovation in Advanced Manufacturing Grant Competition to support and grow southern and central Arizona’s Aerospace and Defense (A&D) industry and its supply chain. The problem statement for this grant challenge was that many A&D machining processes utilize older generation CNC machine tool technologies that can result an inefficient use of resources – energy, time and materials – compared to the latest state-of-the-art CNC machines. Competitive awards funded projects to develop innovative new tools and technologies that reduce energy consumption for older generation machine tools and foster working relationships between industry small to medium-sizedmore » manufacturing enterprises and third-party solution providers. During the 42-month term of this grant, 12 competitive awards were made. Final reports have been included with this submission.« less
NASA Astrophysics Data System (ADS)
Zhao, Fei; Zhang, Chi; Yang, Guilin; Chen, Chinyin
2016-12-01
This paper presents an online estimation method of cutting error by analyzing of internal sensor readings. The internal sensors of numerical control (NC) machine tool are selected to avoid installation problem. The estimation mathematic model of cutting error was proposed to compute the relative position of cutting point and tool center point (TCP) from internal sensor readings based on cutting theory of gear. In order to verify the effectiveness of the proposed model, it was simulated and experimented in gear generating grinding process. The cutting error of gear was estimated and the factors which induce cutting error were analyzed. The simulation and experiments verify that the proposed approach is an efficient way to estimate the cutting error of work-piece during machining process.
Chip morphology as a performance predictor during high speed end milling of soda lime glass
NASA Astrophysics Data System (ADS)
Bagum, M. N.; Konneh, M.; Abdullah, K. A.; Ali, M. Y.
2018-01-01
Soda lime glass has application in DNA arrays and lab on chip manufacturing. Although investigation revealed that machining of such brittle material is possible using ductile mode under controlled cutting parameters and tool geometry, it remains a challenging task. Furthermore, ability of ductile machining is usually assed through machined surface texture examination. Soda lime glass is a strain rate and temperature sensitive material. Hence, influence on attainment of ductile surface due to adiabatic heat generated during high speed end milling using uncoated tungsten carbide tool is investigated in this research. Experimental runs were designed using central composite design (CCD), taking spindle speed, feed rate and depth of cut as input variable and tool-chip contact point temperature (Ttc) and the surface roughness (Rt) as responses. Along with machined surface texture, Rt and chip morphology was examined to assess machinability of soda lime glass. The relation between Ttc and chip morphology was examined. Investigation showed that around glass transition temperature (Tg) ductile chip produced and subsequently clean and ductile final machined surface produced.
Steering mechanism for a subsoil boring apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinnan, F.R.
This paper describes a subsoil boring apparatus. It comprises: a rotatable, steerable boring assembly; motor means for producing rotary motion; pipe string means coupled to the motor means and the boring assembly to import rotation thereto; and impacting means coupled to the motor means to apply impact forces to the pipe string means to improve the steerability of the boring assembly wherein only on of the motor means and the impact means can be applied to the k pipe string means at one time.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Div. of Curriculum Development.
The document is an instructor's guide for a course on universal tool grinder operation. The course is designed to train people in making complicated machine setups and precision in the grinding operations and, although intended primarily for adult learners, it can be adapted for high school use. The guide is divided into three parts: (1) the…
NASA Astrophysics Data System (ADS)
Seo, Hyunju; Han, Jeong-Yeol; Kim, Sug-Whan; Seong, Sehyun; Yoon, Siyoung; Lee, Kyungmook; Lee, Haengbok
2015-09-01
Today, CVD SiC mirrors are readily available in the market. However, it is well known to the community that the key surface fabrication processes and, in particular, the material removal characteristics of the CVD SiC mirror surface varies sensitively depending on the shop floor polishing and figuring variables. We investigated the material removal characteristics of CVD SiC mirror surfaces using a new and patented polishing tool called orthogonal velocity tool (OVT) that employs two orthogonal velocity fields generated simultaneously during polishing and figuring machine runs. We built an in-house OVT machine and its operating principle allows for generation of pseudo Gaussian shapes of material removal from the target surface. The shapes are very similar to the tool influence functions (TIFs) of other polishing machine such as IRP series polishing machines from Zeeko. Using two CVD SiC mirrors of 150 mm in diameter and flat surface, we ran trial material removal experiments over the machine run parameter ranges from 12.901 to 25.867 psi in pressure, 0.086 m/sec to 0.147 m/sec in tool linear velocity, and 5 to 15 sec in dwell time. An in-house developed data analysis program was used to obtain a number of Gaussian shaped TIFs and the resulting material removal coefficient varies from 3.35 to 9.46 um/psi hour m/sec with the mean value to 5.90 ± 1.26(standard deviation). We report the technical details of the new OVT machine, of the data analysis program, of the experiments and the results together with the implications to the future development of the OVT machine and process for large CVD SiC mirror surfaces.
Shi, Zhenyu; Liu, Zhanqiang; Li, Yuchao; Qiao, Yang
2017-01-01
Cutting tool geometry should be very much considered in micro-cutting because it has a significant effect on the topography and accuracy of the machined surface, particularly considering the uncut chip thickness is comparable to the cutting edge radius. The objective of this paper was to clarify the influence of the mechanism of the cutting tool geometry on the surface topography in the micro-milling process. Four different cutting tools including two two-fluted end milling tools with different helix angles of 15° and 30° cutting tools, as well as two three-fluted end milling tools with different helix angles of 15° and 30° were investigated by combining theoretical modeling analysis with experimental research. The tool geometry was mathematically modeled through coordinate translation and transformation to make all three cutting edges at the cutting tool tip into the same coordinate system. Swept mechanisms, minimum uncut chip thickness, and cutting tool run-out were considered on modeling surface roughness parameters (the height of surface roughness Rz and average surface roughness Ra) based on the established mathematical model. A set of cutting experiments was carried out using four different shaped cutting tools. It was found that the sweeping volume of the cutting tool increases with the decrease of both the cutting tool helix angle and the flute number. Great coarse machined surface roughness and more non-uniform surface topography are generated when the sweeping volume increases. The outcome of this research should bring about new methodologies for micro-end milling tool design and manufacturing. The machined surface roughness can be improved by appropriately selecting the tool geometrical parameters. PMID:28772479
Ceramic Heads Decrease Metal Release Caused by Head-taper Fretting and Corrosion.
Kocagoz, Sevi B; Underwood, Richard J; MacDonald, Daniel W; Gilbert, Jeremy L; Kurtz, Steven M
2016-04-01
Metal release resulting from taper fretting and corrosion is a clinical concern, because wear and corrosion products may stimulate adverse local tissue reactions. Unimodular hip arthroplasties have a conical taper between the femoral head (head bore taper) and the femoral stem (stem cone taper). The use of ceramic heads has been suggested as a way of reducing the generation of wear and corrosion products from the head bore/stem cone taper junction. A previous semiquantitative study found that ceramic heads had less visual evidence of fretting-corrosion damage compared with CoCr heads; but, to our knowledge, no studies have quantified the volumetric material loss from the head bore and stem cone tapers of a matched cohort of ceramic and metal heads. We asked: (1) Do ceramic heads result in less volume of material loss at the head-stem junction compared with CoCr heads; (2) do stem cone tapers have less volumetric material loss compared with CoCr head bore tapers; (3) do visual fretting-corrosion scores correlate with volumetric material loss; and (4) are device, patient, or intraoperative factors associated with volumetric material loss? A quantitative method was developed to estimate volumetric material loss from the head and stem taper in previously matched cohorts of 50 ceramic and 50 CoCr head-stem pairs retrieved during revision surgery for causes not related to adverse reactions to metal particles. The cohorts were matched according to (1) implantation time, (2) stem flexural rigidity, and (3) lateral offset. Fretting corrosion was assessed visually using a previously published four-point, semiquantitative scoring system. The volumetric loss was measured using a precision roundness machine. Using 24 equally spaced axial traces, the volumetric loss was estimated using a linear least squares fit to interpolate the as-manufactured surfaces. The results of this analysis were considered in the context of device (taper angle clearance, head size, head offset, lateral offset, stem material, and stem surface finish) and patient factors that were obtained from the patients' operative records (implantation time, age at insertion, activity level, and BMI). The cumulative volumetric material losses estimated for the ceramic cohort had a median of 0.0 mm(3) per year (range, 0.0-0.4 mm(3)). The cumulative volumetric material losses estimated for the CoCr cohort had a median of 0.1 mm(3) per year (range, 0.0-8.8 mm(3)). An order of magnitude reduction in volumetric material loss was found when a ceramic head was used instead of a CoCr head (p < 0.0001). In the CoCr cohort, the femoral head bore tapers had a median material loss of 0.02 mm(3) (range, 0.0-8.7 mm(3)) and the stem cone tapers had a median material loss of 0.0 mm(3) (range, 0.0-0.32 mm(3)/year). There was greater material loss from femoral head bore tapers compared with stem cone tapers in the CoCr cohort (p < 0.001). There was a positive correlation between visual scoring and volumetric material loss (Spearman's ρ = 0.67, p < 0.01). Although visual scoring was effective for preliminary screening to separate tapers with no or mild damage from tapers with moderate to severe damage, it was not capable of discriminating in the large range of material loss observed at the taper surfaces with moderate to severe fretting-corrosion damage, indicated with a score of 3 or 4. We observed no correlations between volumetric material loss and device and patient factors. The majority of estimated material loss from the head bore-stem cone junctions resulting from taper fretting and corrosion was from the CoCr head bore tapers as opposed to the stem cone tapers. Additionally, the total material loss from the ceramic cohort showed a reduction in the amount of metal released by an order of magnitude compared with the CoCr cohort. We found that ceramic femoral heads may be an effective means by which to reduce metal release caused by taper fretting and corrosion at the head bore-stem cone modular interface in THAs.
NASA Technical Reports Server (NTRS)
Stoms, R. M.
1984-01-01
Numerically-controlled 5-axis machine tool uses transformer and meter to determine and indicate whether tool is in home position, but lacks built-in test mode to check them. Tester makes possible test, and repair of components at machine rather then replace them when operation seems suspect.
Robotic edge machining using elastic abrasive tool
NASA Astrophysics Data System (ADS)
Sidorova, A. V.; Semyonov, E. N.; Belomestnykh, A. S.
2018-03-01
The article describes a robotic center designed for automation of finishing operations, and analyzes technological aspects of an elastic abrasive tool applied for edge machining. Based on the experimental studies, practical recommendations on the application of the robotic center for finishing operations were developed.
2011-06-01
character skills correspond to real- world player skills (transfer). In games such as World of Warcraft , "grinding" behaviors are popular (boring...reflecting on a recent emphasis on self-directed learning using game-based simulations and virtual worlds , the authors considered key challenges in...transforming serious games and virtual worlds into adaptive training tools. This article reflects specifically on the challenges and potential of cognitive
Oceanic Chemistry and Biology Group (ONR Code 422CB) Program Science Report, FY 81,
1982-03-01
instruments to provide the tools needed by the marine chemical conmunity to address small scale length features and rapidly f evolving phenomena. Underway...Through a combined application of field and laboratory studies an attempt is being made to identify the marine abiotic processes which are potentially...Biodeterioration Dissolved Organics Particulate Matter Bioluminescence HEBBLE Sediment Traps Bioturbation Marine Biology STIE Boring Organisms Marine Chemistry
Apprentice Machine Theory Outline.
ERIC Educational Resources Information Center
Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.
This volume contains outlines for 16 courses in machine theory that are designed for machine tool apprentices. Addressed in the individual course outlines are the following topics: basic concepts; lathes; milling machines; drills, saws, and shapers; heat treatment and metallurgy; grinders; quality control; hydraulics and pneumatics;…
Caggiano, Alessandra
2018-03-09
Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features ( k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear ( VB max ) was achieved, with predicted values very close to the measured tool wear values.
2018-01-01
Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features (k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear (VBmax) was achieved, with predicted values very close to the measured tool wear values. PMID:29522443
NASA Astrophysics Data System (ADS)
Liu, Shuang; Liu, Fei; Hu, Shaohua; Yin, Zhenbiao
The major power information of the main transmission system in machine tools (MTSMT) during machining process includes effective output power (i.e. cutting power), input power and power loss from the mechanical transmission system, and the main motor power loss. These information are easy to obtain in the lab but difficult to evaluate in a manufacturing process. To solve this problem, a separation method is proposed here to extract the MTSMT power information during machining process. In this method, the energy flow and the mathematical models of major power information of MTSMT during the machining process are set up first. Based on the mathematical models and the basic data tables obtained from experiments, the above mentioned power information during machining process can be separated just by measuring the real time total input power of the spindle motor. The operation program of this method is also given.
Vending machine assessment methodology. A systematic review.
Matthews, Melissa A; Horacek, Tanya M
2015-07-01
The nutritional quality of food and beverage products sold in vending machines has been implicated as a contributing factor to the development of an obesogenic food environment. How comprehensive, reliable, and valid are the current assessment tools for vending machines to support or refute these claims? A systematic review was conducted to summarize, compare, and evaluate the current methodologies and available tools for vending machine assessment. A total of 24 relevant research studies published between 1981 and 2013 met inclusion criteria for this review. The methodological variables reviewed in this study include assessment tool type, study location, machine accessibility, product availability, healthfulness criteria, portion size, price, product promotion, and quality of scientific practice. There were wide variations in the depth of the assessment methodologies and product healthfulness criteria utilized among the reviewed studies. Of the reviewed studies, 39% evaluated machine accessibility, 91% evaluated product availability, 96% established healthfulness criteria, 70% evaluated portion size, 48% evaluated price, 52% evaluated product promotion, and 22% evaluated the quality of scientific practice. Of all reviewed articles, 87% reached conclusions that provided insight into the healthfulness of vended products and/or vending environment. Product healthfulness criteria and complexity for snack and beverage products was also found to be variable between the reviewed studies. These findings make it difficult to compare results between studies. A universal, valid, and reliable vending machine assessment tool that is comprehensive yet user-friendly is recommended. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Luo, Xichun; Tong, Zhen; Liang, Yingchun
2014-12-01
In this article, the shape transferability of using nanoscale multi-tip diamond tools in the diamond turning for scale-up manufacturing of nanostructures has been demonstrated. Atomistic multi-tip diamond tool models were built with different tool geometries in terms of the difference in the tip cross-sectional shape, tip angle, and the feature of tool tip configuration, to determine their effect on the applied forces and the machined nano-groove geometries. The quality of machined nanostructures was characterized by the thickness of the deformed layers and the dimensional accuracy achieved. Simulation results show that diamond turning using nanoscale multi-tip tools offers tremendous shape transferability in machining nanostructures. Both periodic and non-periodic nano-grooves with different cross-sectional shapes can be successfully fabricated using the multi-tip tools. A hypothesis of minimum designed ratio of tool tip distance to tip base width (L/Wf) of the nanoscale multi-tip diamond tool for the high precision machining of nanostructures was proposed based on the analytical study of the quality of the nanostructures fabricated using different types of the multi-tip tools. Nanometric cutting trials using nanoscale multi-tip diamond tools (different in L/Wf) fabricated by focused ion beam (FIB) were then conducted to verify the hypothesis. The investigations done in this work imply the potential of using the nanoscale multi-tip diamond tool for the deterministic fabrication of period and non-periodic nanostructures, which opens up the feasibility of using the process as a versatile manufacturing technique in nanotechnology.
Metric Use in the Tool Industry. A Status Report and a Test of Assessment Methodology.
1982-04-20
Weights and Measures) CIM - Computer-Integrated Manufacturing CNC - Computer Numerical Control DOD - Department of Defense DODISS - DOD Index of...numerically-controlled ( CNC ) machines that have an inch-millimeter selection switch and a corresponding dual readout scale. S -4- The use of both metric...satisfactorily met the demands of both domestic and foreign customers for metric machine tools by providing either metric- capable machines or NC and CNC
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Ferrous metal borings, shavings, turnings, or cuttings... Requirements for Certain Material § 148.04-13 Ferrous metal borings, shavings, turnings, or cuttings (excluding... described as ferrous metal borings, shavings, turnings, or cuttings on board vessels (excluding stainless...
Effect of micro-scale texturing on the cutting tool performance
NASA Astrophysics Data System (ADS)
Vasumathy, D.; Meena, Anil
2018-05-01
The present study is mainly focused on the cutting performance of the micro-scale textured carbide tools while turning AISI 304 austenitic stainless steel under dry cutting environment. The texture on the rake face of the carbide tools was fabricated by laser machining. The cutting performance of the textured tools was further compared with conventional tools in terms of cutting forces, tool wear, machined surface quality and chip curl radius. SEM and EDS analyses have been also performed to better understand the tool surface characteristics. Results show that the grooves help in breaking the tool-chip contact leading to a lesser tool-chip contact area which results in reduced iron (Fe) adhesion to the tool.
A new view of particle physics
NASA Astrophysics Data System (ADS)
Medeiros, João
2008-11-01
Long before C P Snow's two cultures, there was only one. Its supreme embodiment was the great Renaissance master Leonardo da Vinci. Da Vinci saw no barriers between art and science (or what was known as natural philosophy back in the 16th century). His journals were filled with sketches, ideas and observations that testify to the polymath nature of Da Vinci's ingenuity. Da Vinci used artistic inspiration as a path to his inventions, and the observation of the natural world as an intrinsically artistic undertaking. He made thousands of blueprints outlining some of the most impressive inventions ever conceptualized - flying machines, bridges, calculators, tanks, solar-power cells. Most were impractical, few every saw the light of day, but all bore the mark of the master's infinite inventive powers.
Higgs, Nicholas D; Glover, Adrian G; Dahlgren, Thomas G; Little, Crispin T S
2011-12-01
Osedax worms possess unique "root" tissues that they use to bore into bones on the seafloor, but details of the boring pattern and processes are poorly understood. Here we use X-ray micro-computed tomography to investigate the borings of Osedax mucofloris in bones of the minke whale (Balaenoptera acutorostrata), quantitatively detailing their morphological characteristics for the first time. Comparative thin-sections of the borings reveal how the bone is eroded at the sub-millimeter level. On the basis of these results we hypothesize a model of boring that is dependent on the density and microstructure of the bone. We also present evidence of acidic mucopolysaccharides in the mucus of the root tissue, and hypothesize that this plays an important role in the boring mechanism. We discuss the utility of these new data in evaluating Osedax trace fossils and their relevance for O. mucofloris ecology. Measured rates of bone erosion (6% per year) and evidence of enhanced sulfide release from the borings indicate that Osedax worms are important habitat modifiers in whale-fall communities.
Machinability of IPS Empress 2 framework ceramic.
Schmidt, C; Weigl, P
2000-01-01
Using ceramic materials for an automatic production of ceramic dentures by CAD/CAM is a challenge, because many technological, medical, and optical demands must be considered. The IPS Empress 2 framework ceramic meets most of them. This study shows the possibilities for machining this ceramic with economical parameters. The long life-time requirement for ceramic dentures requires a ductile machined surface to avoid the well-known subsurface damages of brittle materials caused by machining. Slow and rapid damage propagation begins at break outs and cracks, and limits life-time significantly. Therefore, ductile machined surfaces are an important demand for machine dental ceramics. The machining tests were performed with various parameters such as tool grain size and feed speed. Denture ceramics were machined by jig grinding on a 5-axis CNC milling machine (Maho HGF 500) with a high-speed spindle up to 120,000 rpm. The results of the wear test indicate low tool wear. With one tool, you can machine eight occlusal surfaces including roughing and finishing. One occlusal surface takes about 60 min machining time. Recommended parameters for roughing are middle diamond grain size (D107), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 1000 mm/min, depth of cut a(e) = 0.06 mm, width of contact a(p) = 0.8 mm, and for finishing ultra fine diamond grain size (D46), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 100 mm/min, depth of cut a(e) = 0.02 mm, width of contact a(p) = 0.8 mm. The results of the machining tests give a reference for using IPS Empress(R) 2 framework ceramic in CAD/CAM systems. Copyright 2000 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Smyth, Miriam J.
1989-12-01
Organisms boring into fifty nine species of gastropod shells on reefs around Guam were the bryozoan Penetrantia clionoides; the acrothoracian barnacles Cryptophialus coronorphorus, Cryptophialus zulloi and Lithoglyptis mitis; the foraminifer Cymbaloporella tabellaeformis, the polydorid Polydora sp. and seven species of clionid sponge. Evidence that crustose coralline algae interfere with settlement of larvae of acrothoracian barnacles, clionid sponges, and boring polychaetes came from two sources: (1) low intensity of boring in limpet shells, a potentially penetrable substrate that remains largely free of borings by virtue of becoming fully covered with coralline algae at a young age and (2) the extremely low levels of boring in the algal ridge, a massive area of carbonate almost entirely covered by a layer of living crustose corallines. There was a strong negative correlation between microstructural hardness and infestation by acrothoracian barnacles and no correlation in the case of the other borers. It is suggested that this points to a mechanical rather than a chemical method of boring by the barnacles. The periostracum, a layer of organic material reputedly a natural inhibitor of boring organisms, was bored by acrothoracican barnacles and by the bryozoan. The intensity of acrothoracican borings is shown to have no correlation with the length of the gastropod shell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunshah, R.F.; Shabaik, A.H.
The process of Activated Reactive Evaporation is used to synthesize superhard materials like carbides, oxides, nitrides and ultrafine grain cermets. The deposits are characterized by hardness, microstructure, microprobe analysis for chemistry and lattice parameter measurements. The synthesis and characterization of TiC-Ni cermets and Al/sub 2/O/sub 3/ are given. High speed steel tool coated with TiC, TiC-Ni and TaC are tested for machining performance at different speeds and feeds. The machining evaluation and the selection of coatings is based on the rate of deterioration of the coating tool temperature, and cutting forces. Tool life tests show coated high speed steel toolsmore » having 150 to 300% improvement in tool life compared to uncoated tools. Variability in the quality of the ground edge on high speed steel inserts produce a great scatter in the machining evaluation data.« less
Rotary distributor type fuel injection pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klopfer, K.H.; Dordjevic, I.; Higgins, M.C.
1993-07-20
In a fuel injection pump having a pump body and distributor rotor in coaxial alignment, the pump body is described having a pumping chamber provided by an annular arrangement of pumping plunger bores with axes extending generally radially outwardly from the axis of the distributor rotor, a pumping plunger mounted in each plunger bore for reciprocation, annular cam means surrounding the annular arrangement of plunger bores for reciprocating the pumping plungers to provide alternating intake and pumping strokes thereof for respectively supplying intake charges of fuel to the pumping chamber and delivering high pressure charges of fuel from the pumpingmore » chamber for fuel injection, a distributor head with a plurality of distributor outlets, the distributor rotor being rotatably mounted in the distributor head for distributing the high pressure charges of fuel to the distributor outlets; the improvement wherein the pump body and distributor rotor have a central coaxial bore extending there through and providing a valve bore intersecting the annular arrangement of plunger bores, the pump body providing an annular valve seat around the central bore between one end thereof away from the distributor rotor and the intersection of the valve bore and annular arrangement of plunger bores, an elongated valve member mounted in the valve bore having a sealing head at one end thereof engageable with the annular valve seat and extending from the sealing head toward the other end of the central bore, a fuel supply chamber connected to the one end of the central bore for supplying fuel to the pumping chamber, valve actuating means comprising an electromagnet at the other end of the valve member from the sealing head and operable when energized to shift the valve member in one axial direction thereof to one of its the positions, and means for shifting the valve member in the opposite axial direction thereof to its other position when the electromagnet is deenergized.« less
Research Amplitudo Vibration On Holder Due To The Process Of Lathe Nozzle Rocket RX 450
NASA Astrophysics Data System (ADS)
Ediwan; Budi Djatmiko, Agus; Dody Arisandi, EfFendy; Purnomo, Heri; Ibadi, Mahfud
2018-04-01
The main function of the rocket nozzle is to convert the enthalpy efficiency from combustion gas to kinetic energy and also to make high velocity out of the gas. The rocket nozzle usually consists of a converging and diverging part. With a smaller area on the neck and enlarged at the exit area. The velocity flow through the nozzle enlarges into the speed of sound through the neck and then becomes super sonic in the divergent part. Nozzle making or machining using conventional lathes, first performed is drilling on a massive metal that is bonded to the veneer, then after a sufficient gap is done deep-boring. At the time of the process of lathe in the nozzle RX 450 there is an obstacle that is vibrating tool holder chisel or holder so it is worried about not precision of the process of lathe. This should not happen because it can cause failure in the latter for it needs to be studied and studied further so that the lathe process goes accordingly. The holder material of ST 60 with a modulus of elasticity 200 GPa and a nozzle material of AISI 4340 alloy steel with σyield = 470 MPa, Shear Modulus G = 80 GPa. The purpose of this research is to observe the amplitude of vibration on the holder due to RX- 450 nozzle lathe processing for the purpose of amplitude that occurs in accordance with the desired so that the nozzle structure is no damage process. The result of the research was obtained holder with length (L) 80cm, profile width (B) 5 cm, height of profile (H) 10 cm, turning machine ω = 8.98 rad / sec and natural holder frequency ωn = 89.8 rad / second, Amplitude of vibration of δ = 1.21 mm, while the amplitude of the design X = 1.22 mm From the results of this study it can be said that the holder of a chisel or holder can be used as a tool at the time of RX nozzle retrieval process and is quite safe because it works under the condition ω/ω n <0 3 (Plans and Specifications of A Suborbital Rocket Payload "AKPV Engineering University of Wyoming 2009 )
Positional reference system for ultraprecision machining
Arnold, Jones B.; Burleson, Robert R.; Pardue, Robert M.
1982-01-01
A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of position interferometers and part contour description data inputs to calculate error components for each axis of movement and output them to corresponding axis drives with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.
Positional reference system for ultraprecision machining
Arnold, J.B.; Burleson, R.R.; Pardue, R.M.
1980-09-12
A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of positions interferometers and part contour description data input to calculate error components for each axis of movement and output them to corresponding axis driven with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.
Detection of Cutting Tool Wear using Statistical Analysis and Regression Model
NASA Astrophysics Data System (ADS)
Ghani, Jaharah A.; Rizal, Muhammad; Nuawi, Mohd Zaki; Haron, Che Hassan Che; Ramli, Rizauddin
2010-10-01
This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals. A statistical-based method called Integrated Kurtosis-based Algorithm for Z-Filter technique, called I-kaz was used for developing a regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out using a CNC turning machine Colchester Master Tornado T4 in dry cutting condition. A Kistler 9255B dynamometer was used to measure the cutting force signals, which were transmitted, analyzed, and displayed in the DasyLab software. Various force signals from machining operation were analyzed, and each has its own I-kaz 3D coefficient. This coefficient was examined and its relationship with flank wear lands (VB) was determined. A regression model was developed due to this relationship, and results of the regression model shows that the I-kaz 3D coefficient value decreases as tool wear increases. The result then is used for real time tool wear monitoring.
4. Credit JPL. Original 4" x 5" black and white ...
4. Credit JPL. Original 4" x 5" black and white negative housed in the JPL Archives, Pasadena, California. This interior view displays the machine shop in the Administration/Shops Building (the compass angle of the view is undetermined). Looking clockwise from the lower left, the machine tools in view are a power hacksaw, a heat-treatment oven (with white gloves on top), a large hydraulic press with a tool grinder at its immediate right; along the wall in the back of the view are various unidentified machine tool attachments and a vertical milling machine. In the background, a machinist is operating a radial drilling machine, to the right of which is a small drill press. To the lower right, another machinist is operating a Pratt & Whitney engine lathe; behind the operator stand a workbench and vertical bandsaw (JPL negative no. 384-10939, 29 July 1975). - Jet Propulsion Laboratory Edwards Facility, Administration & Shops Building, Edwards Air Force Base, Boron, Kern County, CA
Modelling of teeth of a gear transmission for modern manufacturing technologies
NASA Astrophysics Data System (ADS)
Monica, Z.; Banaś, W.; Ćwikla, G.; Topolska, S.
2017-08-01
The technological process of manufacturing of gear wheels is influenced by many factors. It is designated depending on the type of material from which the gear is to be produced, its heat treatment parameters, the required accuracy, the geometrical form and the modifications of the tooth. Therefor the parameters selection process is not easy and moreover it is unambiguous. Another important stage of the technological process is the selection of appropriate tools to properly machine teeth in the operations of both roughing and finishing. In the presented work the focus is put first of all on modern production methods of gears using technologically advanced instruments in comparison with conventional tools. Conventional processing tools such as gear hobbing cutters or Fellows gear-shaper cutters are used from the beginning of the machines for the production of gear wheels. With the development of technology and the creation of CNC machines designated for machining of gears wheel it was also developed the manufacturing technology as well as the design knowledge concerning the technological tools. Leading manufacturers of cutting tools extended the range of tools designated for machining of gears on the so-called hobbing cutters with inserted cemented carbide tips. The same have be introduced to Fellows gear-shaper cutters. The results of tests show that is advantaged to use hobbing cutters with inserted cemented carbide tips for milling gear wheels with a high number of teeth, where the time gains are very high, in relation to the use of conventional milling cutters.
Extreme-UV electrical discharge source
Fornaciari, Neal R.; Nygren, Richard E.; Ulrickson, Michael A.
2002-01-01
An extreme ultraviolet and soft x-ray radiation electric capillary discharge source that includes a boron nitride housing defining a capillary bore that is positioned between two electrodes one of which is connected to a source of electric potential can generate a high EUV and soft x-ray radiation flux from the capillary bore outlet with minimal debris. The electrode that is positioned adjacent the capillary bore outlet is typically grounded. Pyrolytic boron nitride, highly oriented pyrolytic boron nitride, and cubic boron nitride are particularly suited. The boron nitride capillary bore can be configured as an insert that is encased in an exterior housing that is constructed of a thermally conductive material. Positioning the ground electrode sufficiently close to the capillary bore outlet also reduces bore erosion.
Technical Report on Occupations in Numerically Controlled Metal-Cutting Machining.
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC. U.S. Employment Service.
At the present time, only 5 percent of the short-run metal-cutting machining in the United States is done by numerically controlled machined tools, but within the next decade it is expected to increase by 50 percent. Numerically controlled machines use taped data which is changed into instructions and directs the machine to do certain steps…
Sine-Bar Attachment For Machine Tools
NASA Technical Reports Server (NTRS)
Mann, Franklin D.
1988-01-01
Sine-bar attachment for collets, spindles, and chucks helps machinists set up quickly for precise angular cuts that require greater precision than provided by graduations of machine tools. Machinist uses attachment to index head, carriage of milling machine or lathe relative to table or turning axis of tool. Attachment accurate to 1 minute or arc depending on length of sine bar and precision of gauge blocks in setup. Attachment installs quickly and easily on almost any type of lathe or mill. Requires no special clamps or fixtures, and eliminates many trial-and-error measurements. More stable than improvised setups and not jarred out of position readily.
Paques, Joseph-Jean; Gauthier, François; Perez, Alejandro
2007-01-01
To assess and plan future risk-analysis research projects, 275 documents describing methods and tools for assessing the risks associated with industrial machines or with other sectors such as the military, and the nuclear and aeronautics industries, etc., were collected. These documents were in the format of published books or papers, standards, technical guides and company procedures collected throughout industry. From the collected documents, 112 documents were selected for analysis; 108 methods applied or potentially applicable for assessing the risks associated with industrial machines were analyzed and classified. This paper presents the main quantitative results of the analysis of the methods and tools.
Williams, R.R.
1980-09-03
The present invention is directed to a method and device for determining the location of a cutting tool with respect to the rotational axis of a spindle-mounted workpiece. A vacuum cup supporting a machinable sacrificial pin is secured to the workpiece at a location where the pin will project along and encompass the rotational axis of the workpiece. The pin is then machined into a cylinder. The position of the surface of the cutting tool contacting the machine cylinder is spaced from the rotational axis of the workpiece a distance equal to the radius of the cylinder.
Williams, Richard R.
1982-01-01
The present invention is directed to a method and device for determining the location of a cutting tool with respect to the rotational axis of a spindle-mounted workpiece. A vacuum cup supporting a machinable sacrifical pin is secured to the workpiece at a location where the pin will project along and encompass the rotational axis of the workpiece. The pin is then machined into a cylinder. The position of the surface of the cutting tool contacting the machine cylinder is spaced from the rotational aixs of the workpiece a distance equal to the radius of the cylinder.
Investigation of approximate models of experimental temperature characteristics of machines
NASA Astrophysics Data System (ADS)
Parfenov, I. V.; Polyakov, A. N.
2018-05-01
This work is devoted to the investigation of various approaches to the approximation of experimental data and the creation of simulation mathematical models of thermal processes in machines with the aim of finding ways to reduce the time of their field tests and reducing the temperature error of the treatments. The main methods of research which the authors used in this work are: the full-scale thermal testing of machines; realization of various approaches at approximation of experimental temperature characteristics of machine tools by polynomial models; analysis and evaluation of modelling results (model quality) of the temperature characteristics of machines and their derivatives up to the third order in time. As a result of the performed researches, rational methods, type, parameters and complexity of simulation mathematical models of thermal processes in machine tools are proposed.
High performance cutting using micro-textured tools and low pressure jet coolant
NASA Astrophysics Data System (ADS)
Obikawa, Toshiyuki; Nakatsukasa, Ryuta; Hayashi, Mamoru; Ohno, Tatsumi
2018-05-01
Tool inserts with different kinds of microtexture on the flank face were fabricated by laser irradiation for promoting the heat transfer from the tool face to the coolant. In addition to the micro-textured tools, jet coolant was applied to the tool tip from the side of the flank face, but under low-pressure conditions, to make Reynolds number of coolant as high as possible in the wedge shape zone between the tool flank and machined surface. First, the effect of jet coolant on the flank wear evolution was investigated using a tool without microtexture. The jet coolant showed an excellent improvement of the tool life in machining stainless steel SUS304 at higher cutting speeds. It was found that both the flow rate and velocity of jet coolant were indispensable to high performance cutting. Next, the effect of microtexture on the flank wear evolution was investigated using jet coolant. Three types of micro grooves extended tool life largely compared to the tool without microtexture. It was found that the depth of groove was one of important parameters affecting the tool life extension. As a result, the tool life was extended by more than l00 % using the microtextured tools and jet coolant compared to machining using flood coolant and a tool without microtexture.
Multisensor systems today and tomorrow: Machine control, diagnosis and thermal compensation
NASA Astrophysics Data System (ADS)
Nunzio, D'Addea
2000-05-01
Multisensor techniques that deal with control of tribology test rig and with diagnosis and thermal error compensation of machine tools are the starting point for some consideration about the use of these techniques as in fuzzy and neural net systems. The author comes to conclusion that anticipatory systems and multisensor techniques will have in the next future a great improvement and a great development mainly in the thermal error compensation of machine tools.
NASA Astrophysics Data System (ADS)
Anderson, R. B.; Finch, N.; Clegg, S. M.; Graff, T.; Morris, R. V.; Laura, J.
2018-04-01
The PySAT point spectra tool provides a flexible graphical interface, enabling scientists to apply a wide variety of preprocessing and machine learning methods to point spectral data, with an emphasis on multivariate regression.
NASA Astrophysics Data System (ADS)
Shprits, Y.; Zhelavskaya, I. S.; Kellerman, A. C.; Spasojevic, M.; Kondrashov, D. A.; Ghil, M.; Aseev, N.; Castillo Tibocha, A. M.; Cervantes Villa, J. S.; Kletzing, C.; Kurth, W. S.
2017-12-01
Increasing volume of satellite measurements requires deployment of new tools that can utilize such vast amount of data. Satellite measurements are usually limited to a single location in space, which complicates the data analysis geared towards reproducing the global state of the space environment. In this study we show how measurements can be combined by means of data assimilation and how machine learning can help analyze large amounts of data and can help develop global models that are trained on single point measurement. Data Assimilation: Manual analysis of the satellite measurements is a challenging task, while automated analysis is complicated by the fact that measurements are given at various locations in space, have different instrumental errors, and often vary by orders of magnitude. We show results of the long term reanalysis of radiation belt measurements along with fully operational real-time predictions using data assimilative VERB code. Machine Learning: We present application of the machine learning tools for the analysis of NASA Van Allen Probes upper-hybrid frequency measurements. Using the obtained data set we train a new global predictive neural network. The results for the Van Allen Probes based neural network are compared with historical IMAGE satellite observations. We also show examples of predictions of geomagnetic indices using neural networks. Combination of machine learning and data assimilation: We discuss how data assimilation tools and machine learning tools can be combine so that physics-based insight into the dynamics of the particular system can be combined with empirical knowledge of it's non-linear behavior.
Yoo, Tae Keun; Kim, Sung Kean; Kim, Deok Won; Choi, Joon Yul; Lee, Wan Hyung; Oh, Ein; Park, Eun-Cheol
2013-11-01
A number of clinical decision tools for osteoporosis risk assessment have been developed to select postmenopausal women for the measurement of bone mineral density. We developed and validated machine learning models with the aim of more accurately identifying the risk of osteoporosis in postmenopausal women compared to the ability of conventional clinical decision tools. We collected medical records from Korean postmenopausal women based on the Korea National Health and Nutrition Examination Surveys. The training data set was used to construct models based on popular machine learning algorithms such as support vector machines (SVM), random forests, artificial neural networks (ANN), and logistic regression (LR) based on simple surveys. The machine learning models were compared to four conventional clinical decision tools: osteoporosis self-assessment tool (OST), osteoporosis risk assessment instrument (ORAI), simple calculated osteoporosis risk estimation (SCORE), and osteoporosis index of risk (OSIRIS). SVM had significantly better area under the curve (AUC) of the receiver operating characteristic than ANN, LR, OST, ORAI, SCORE, and OSIRIS for the training set. SVM predicted osteoporosis risk with an AUC of 0.827, accuracy of 76.7%, sensitivity of 77.8%, and specificity of 76.0% at total hip, femoral neck, or lumbar spine for the testing set. The significant factors selected by SVM were age, height, weight, body mass index, duration of menopause, duration of breast feeding, estrogen therapy, hyperlipidemia, hypertension, osteoarthritis, and diabetes mellitus. Considering various predictors associated with low bone density, the machine learning methods may be effective tools for identifying postmenopausal women at high risk for osteoporosis.
Machining of Fibre Reinforced Plastic Composite Materials.
Caggiano, Alessandra
2018-03-18
Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented.
Machining of Fibre Reinforced Plastic Composite Materials
2018-01-01
Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented. PMID:29562635
NASA Astrophysics Data System (ADS)
Adesta, Erry Yulian T.; Riza, Muhammad; Avicena
2018-03-01
Tool wear prediction plays a significant role in machining industry for proper planning and control machining parameters and optimization of cutting conditions. This paper aims to investigate the effect of tool path strategies that are contour-in and zigzag tool path strategies applied on tool wear during pocket milling process. The experiments were carried out on CNC vertical machining centre by involving PVD coated carbide inserts. Cutting speed, feed rate and depth of cut were set to vary. In an experiment with three factors at three levels, Response Surface Method (RSM) design of experiment with a standard called Central Composite Design (CCD) was employed. Results obtained indicate that tool wear increases significantly at higher range of feed per tooth compared to cutting speed and depth of cut. This result of this experimental work is then proven statistically by developing empirical model. The prediction model for the response variable of tool wear for contour-in strategy developed in this research shows a good agreement with experimental work.
Device for temporarily closing duct-formers in well completion apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zandmer, H.M.; Zandmer, S.M.
A duct-forming device is disclosed for use in a well completion apparatus of the kind, wherein a bore hole casing is positioned in a bore hole and duct-forming devices of alkali- and acid resistant metal-such as steel-are secured at spaced levels to the casing in alignment with holes machined in the casing wall. In accordance with the invention, a closure device is arranged within the duct-forming device which permits flow of predetermined amounts of liquid, such as acid, from the interior of the casing through the duct-forming device and into the producing formation, while gradually being moved by the liquidmore » into a position in which such fluid flow is prevented. After the fluid flow has been stopped by the closure device and when the formation pressure exceeds the pressure within the duct-forming device and the casing, fluid from the formation then forces the closure device toward and into the casing space to permit thereafter free flow of formation fluid into the duct-forming device and the casing or of pressurized treatment liquid from the casing into the formation. The inventive arrangement permits inter alia the establishment of a sufficient and substantially uniform feeding rate of treatment liquid, such as acid, from the casing into the producing formation through all the duct-formers in preparation for subsequent acidification or other treatments, such as sand fracking.« less
48 CFR 52.236-4 - Physical Data.
Code of Federal Regulations, 2014 CFR
2014-10-01
... fixed-price construction contract is contemplated and physical data (e.g., test borings, hydrographic..., such as surveys, auger borings, core borings, test pits, probings, test tunnels]. (b) Weather...
48 CFR 52.236-4 - Physical Data.
Code of Federal Regulations, 2013 CFR
2013-10-01
... fixed-price construction contract is contemplated and physical data (e.g., test borings, hydrographic..., such as surveys, auger borings, core borings, test pits, probings, test tunnels]. (b) Weather...
48 CFR 52.236-4 - Physical Data.
Code of Federal Regulations, 2012 CFR
2012-10-01
... fixed-price construction contract is contemplated and physical data (e.g., test borings, hydrographic..., such as surveys, auger borings, core borings, test pits, probings, test tunnels]. (b) Weather...
48 CFR 52.236-4 - Physical Data.
Code of Federal Regulations, 2011 CFR
2011-10-01
... fixed-price construction contract is contemplated and physical data (e.g., test borings, hydrographic..., such as surveys, auger borings, core borings, test pits, probings, test tunnels]. (b) Weather...
48 CFR 52.236-4 - Physical Data.
Code of Federal Regulations, 2010 CFR
2010-10-01
... fixed-price construction contract is contemplated and physical data (e.g., test borings, hydrographic..., such as surveys, auger borings, core borings, test pits, probings, test tunnels]. (b) Weather...
Toolpath strategy for cutter life improvement in plunge milling of AISI H13 tool steel
NASA Astrophysics Data System (ADS)
Adesta, E. Y. T.; Avicenna; hilmy, I.; Daud, M. R. H. C.
2018-01-01
Machinability of AISI H13 tool steel is a prominent issue since the material has the characteristics of high hardenability, excellent wear resistance, and hot toughness. A method of improving cutter life of AISI H13 tool steel plunge milling by alternating the toolpath and cutting conditions is proposed. Taguchi orthogonal array with L9 (3^4) resolution will be employed with one categorical factor of toolpath strategy (TS) and three numeric factors of cutting speed (Vc), radial depth of cut (ae ), and chip load (fz ). It is expected that there are significant differences for each application of toolpath strategy and each cutting condition factor toward the cutting force and tool wear mechanism of the machining process, and medial axis transform toolpath could provide a better tool life improvement by a reduction of cutting force during machining.
West, Phillip B.; Haefner, Daryl
2004-08-17
Methods and apparatus for attenuating waves in a bore hole, and seismic surveying systems incorporating the same. In one embodiment, an attenuating device includes a soft compliant bladder coupled to a pressurized gas source. A pressure regulating system reduces the pressure of the gas from the gas source prior to entering the bladder and operates in conjunction with the hydrostatic pressure of the fluid in a bore hole to maintain the pressure of the bladder at a specified pressure relative to the surrounding bore hole pressure. Once the hydrostatic pressure of the bore hole fluid exceeds that of the gas source, bore hole fluid may be admitted into a vessel of the gas source to further compress and displace the gas contained therein. In another embodiment, a water-reactive material may be used to provide gas to the bladder wherein the amount of gas generated by the water-reactive material may depend on the hydrostatic pressure of the bore hole fluid.
West, Phillip B.; Haefner, Daryl
2005-12-13
Methods and apparatus for attenuating waves in a bore hole, and seismic surveying systems incorporating the same. In one embodiment, an attenuating device includes a soft compliant bladder coupled to a pressurized gas source. A pressure regulating system reduces the pressure of the gas from the gas source prior to entering the bladder and operates in conjunction with the hydrostatic pressure of the fluid in a bore hole to maintain the pressure of the bladder at a specified pressure relative to the surrounding bore hole pressure. Once the hydrostatic pressure of the bore hole fluid exceeds that of the gas source, bore hole fluid may be admitted into a vessel of the gas source to further compress and displace the gas contained therein. In another embodiment, a water-reactive material may be used to provide gas to the bladder wherein the amount of gas generated by the water-reactive material may depend on the hydrostatic pressure of the bore hole fluid.
Depth indicator and stop aid machining to precise tolerances
NASA Technical Reports Server (NTRS)
Laverty, J. L.
1966-01-01
Attachment for machine tools provides a visual indication of the depth of cut and a positive stop to prevent overcutting. This attachment is used with drill presses, vertical milling machines, and jig borers.
Barker, Stacey G [Idaho Falls, ID
2010-01-05
A tire deflation device includes (1) a component having a plurality of bores, (2) a plurality of spikes removably insertable into the plurality of bores and (3) a keeper within each among the plurality of bores, the keeper being configured to contact a sidewall surface of a spike among the plurality of spikes and to exert force upon the sidewall surface. In an embodiment, the tire deflation device includes (a) a component including a bore in a material, the bore including a receiving region, a sidewall surface and a base surface, (b) a channel extending from the sidewall surface into the material, (c) a keeper having a first section housed within the channel and a second section which extends past the sidewall surface into the receiving region, and (d) a spike removably insertable into the bore.
Machine Tool Operation, Course Description.
ERIC Educational Resources Information Center
Denny, Walter E.; Anderson, Floyd L.
Prepared by an instructor and curriculum specialists, this course of study was designed to meet the individual needs of the dropout and/or hard-core unemployed youth by providing them skill training, related information, and supportive services knowledge in machine tool operation. The achievement level of each student is determined at entry, and…
5 CFR 532.217 - Appropriated fund survey jobs.
Code of Federal Regulations, 2013 CFR
2013-01-01
... agency shall survey the following required jobs: Job title Job grade Janitor (Light) 1 Janitor (Heavy) 2... Equipment Operator 5 Truckdriver (Medium) 6 Truckdriver (Heavy) 7 Machine Tool Operator II 8 Machine Tool Operator I 9 Carpenter 9 Electrician 10 Automotive Mechanic 10 Sheet Metal Mechanic 10 Pipefitter 10 Welder...
DOT National Transportation Integrated Search
1982-08-01
This study summarizes extensive information collected over a two-year period (October 1978 to October 1980) on suppliers of parts and components, materials, and machine tools to the automotive industry in the United States. The objective of the study...
Fluid driven torsional dipole seismic source
Hardee, Harry C.
1991-01-01
A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murdoch, Larry; Moysey, Stephen; Germanovich, Leonid
Injecting CO 2 raises pore pressure and this causes subsurface formations to deform. The pattern and amount of deformation will reflect the distribution of pressure and formation properties in the subsurface, two quantities of interest during CO 2 storage. The hypothesis underlying this research is that the small deformation accompanying CO 2 storage can be measured and interpreted to improve the storage process.
Problem Solving and Training Guide for Shipyard Industrial Engineers
1986-06-01
Design Integration Tools Building 192 Room 128 9500 MacArthur Blvd Bethesda, MD 20817-5700 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...called upon to increase the knowledge about industrial engineering of some shipyard group. The Curriculum is seen especially as a tool to identify new...materials on all common machine shop tools . Data permits calculation of machining time. 085 Ostwald, Phillip F. AMERICAN MACHINIST MANUFACTURING COST
Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting.
Kus, Abdil; Isik, Yahya; Cakir, M Cemal; Coşkun, Salih; Özdemir, Kadir
2015-01-12
In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.