Sample records for machupo virus macv

  1. Rescue of a recombinant Machupo virus from cloned cDNAs and in vivo characterization in interferon (αβ/γ) receptor double knockout mice.

    PubMed

    Patterson, Michael; Seregin, Alexey; Huang, Cheng; Kolokoltsova, Olga; Smith, Jennifer; Miller, Milagros; Smith, Jeanon; Yun, Nadezhda; Poussard, Allison; Grant, Ashley; Tigabu, Bersabeh; Walker, Aida; Paessler, Slobodan

    2014-02-01

    Machupo virus (MACV) is the etiological agent of Bolivian hemorrhagic fever (BHF), a reemerging and neglected tropical disease associated with high mortality. The prototypical strain of MACV, Carvallo, was isolated from a human patient in 1963, but minimal in vitro and in vivo characterization has been reported. To this end, we utilized reverse genetics to rescue a pathogenic MACV from cloned cDNAs. The recombinant MACV (rMACV) had in vitro growth properties similar to those of the parental MACV. Both viruses caused similar disease development in alpha/beta and gamma interferon receptor knockout mice, including neurological disease development and high mortality. In addition, we have identified a novel murine model with mortality and neurological disease similar to BHF disease reported in humans and nonhuman primates.

  2. A substitution in the transmembrane region of the glycoprotein leads to an unstable attenuation of Machupo virus.

    PubMed

    Patterson, Michael; Koma, Takaaki; Seregin, Alexey; Huang, Cheng; Miller, Milagros; Smith, Jennifer; Yun, Nadezhda; Smith, Jeanon; Paessler, Slobodan

    2014-09-01

    Machupo virus (MACV) is the etiologic agent of Bolivian hemorrhagic fever (BHF). Utilizing a reverse-genetics system recently developed, we report the rescue of a rationally modified recombinant MACV containing a single mutation in the transmembrane region of the glycoprotein. Following challenge of susceptible mice, we identified a significant reduction in virulence in the novel virus. We also identified an instability leading to reversion of the single mutation to a wild-type genotype. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. The Ectodomain of Glycoprotein from the Candid#1 Vaccine Strain of Junin Virus Rendered Machupo Virus Partially Attenuated in Mice Lacking IFN-αβ/γ Receptor

    PubMed Central

    Koma, Takaaki; Huang, Cheng; Aronson, Judith F.; Walker, Aida G.; Miller, Milagros; Smith, Jeanon N.; Patterson, Michael; Paessler, Slobodan

    2016-01-01

    Machupo virus (MACV), a New World arenavirus, is the etiological agent of Bolivian hemorrhagic fever (BHF). Junin virus (JUNV), a close relative, causes Argentine hemorrhagic fever (AHF). Previously, we reported that a recombinant, chimeric MACV (rMACV/Cd#1-GPC) expressing glycoprotein from the Candid#1 (Cd#1) vaccine strain of JUNV is completely attenuated in a murine model and protects animals from lethal challenge with MACV. A rMACV with a single F438I substitution in the transmembrane domain (TMD) of GPC, which is equivalent to the F427I attenuating mutation in Cd#1 GPC, was attenuated in a murine model but genetically unstable. In addition, the TMD mutation alone was not sufficient to fully attenuate JUNV, indicating that other domains of the GPC may also contribute to the attenuation. To investigate the requirement of different domains of Cd#1 GPC for successful attenuation of MACV, we rescued several rMACVs expressing the ectodomain of GPC from Cd#1 either alone (MCg1), along with the TMD F438I substitution (MCg2), or with the TMD of Cd#1 (MCg3). All rMACVs exhibited similar growth curves in cultured cells. In mice, the MCg1 displayed significant reduction in lethality as compared with rMACV. The MCg1 was detected in brains and spleens of MCg1-infected mice and the infection was associated with tissue inflammation. On the other hand, all animals survived MCg2 and MCg3 infection without detectable levels of virus in various organs while producing neutralizing antibody against Cd#1. Overall our data suggest the indispensable role of each GPC domain in the full attenuation and immunogenicity of rMACV/Cd#1 GPC. PMID:27580122

  4. Differences in Glycoprotein Complex Receptor Binding Site Accessibility Prompt Poor Cross-Reactivity of Neutralizing Antibodies between Closely Related Arenaviruses

    PubMed Central

    Brouillette, Rachel B.; Phillips, Elisabeth K.; Ayithan, Natarajan

    2017-01-01

    ABSTRACT The glycoprotein complex (GPC) of arenaviruses, composed of stable signal peptide, GP1, and GP2, is the only antigen correlated with antibody-mediated neutralization. However, despite strong cross-reactivity of convalescent antisera between related arenavirus species, weak or no cross-neutralization occurs. Two closely related clade B viruses, Machupo virus (MACV) and Junín virus (JUNV), have nearly identical overall GPC architecture and share a host receptor, transferrin receptor 1 (TfR1). Given structural and functional similarities of the GP1 receptor binding site (RBS) of these viruses and the recent demonstration that the RBS is an important target for neutralizing antibodies, it is not clear how these viruses avoid cross-neutralization. To address this, MACV/JUNV chimeric GPCs were assessed for interaction with a group of α-JUNV GPC monoclonal antibodies (MAbs) and mouse antisera against JUNV or MACV GPC. All six MAbs targeted GP1, with those that neutralized JUNV GPC-pseudovirions competing with each other for RBS binding. However, these MAbs were unable to bind to a chimeric GPC composed of JUNV GP1 containing a small disulfide bonded loop (loop 10) unique to MACV GPC, suggesting that this loop may block MAbs interaction with the GP1 RBS. Consistent with this loop causing interference, mouse anti-JUNV GPC antisera that solely neutralized pseudovirions bearing autologous GP1 provided enhanced neutralization of MACV GPC when this loop was removed. Our studies provide evidence that loop 10, which is unique to MACV GP1, is an important impediment to binding of neutralizing antibodies and contributes to the poor cross-neutralization of α-JUNV antisera against MACV. IMPORTANCE Multiple New World arenaviruses can cause severe disease in humans, and some geographic overlap exists among these viruses. A vaccine that protects against a broad range of New World arenaviruses is desirable for purposes of simplicity, cost, and broad protection against multiple National Institute of Allergy and Infectious Disease-assigned category A priority pathogens. In this study, we sought to better understand how closely related arenaviruses elude cross-species neutralization by investigating the structural bases of antibody binding and avoidance. In our studies, we found that neutralizing antibodies against two New World arenaviruses, Machupo virus (MACV) and Junín virus (JUNV), bound to the envelope glycoprotein 1 (GP1) with JUNV monoclonal antibodies targeting the receptor binding site (RBS). We further show that altered structures surrounding the RBS pocket in MACV GP1 impede access of JUNV-elicited antibodies. PMID:28100617

  5. Differences in Glycoprotein Complex Receptor Binding Site Accessibility Prompt Poor Cross-Reactivity of Neutralizing Antibodies between Closely Related Arenaviruses.

    PubMed

    Brouillette, Rachel B; Phillips, Elisabeth K; Ayithan, Natarajan; Maury, Wendy

    2017-04-01

    The glycoprotein complex (GPC) of arenaviruses, composed of stable signal peptide, GP1, and GP2, is the only antigen correlated with antibody-mediated neutralization. However, despite strong cross-reactivity of convalescent antisera between related arenavirus species, weak or no cross-neutralization occurs. Two closely related clade B viruses, Machupo virus (MACV) and Junín virus (JUNV), have nearly identical overall GPC architecture and share a host receptor, transferrin receptor 1 (TfR1). Given structural and functional similarities of the GP1 receptor binding site (RBS) of these viruses and the recent demonstration that the RBS is an important target for neutralizing antibodies, it is not clear how these viruses avoid cross-neutralization. To address this, MACV/JUNV chimeric GPCs were assessed for interaction with a group of α-JUNV GPC monoclonal antibodies (MAbs) and mouse antisera against JUNV or MACV GPC. All six MAbs targeted GP1, with those that neutralized JUNV GPC-pseudovirions competing with each other for RBS binding. However, these MAbs were unable to bind to a chimeric GPC composed of JUNV GP1 containing a small disulfide bonded loop (loop 10) unique to MACV GPC, suggesting that this loop may block MAbs interaction with the GP1 RBS. Consistent with this loop causing interference, mouse anti-JUNV GPC antisera that solely neutralized pseudovirions bearing autologous GP1 provided enhanced neutralization of MACV GPC when this loop was removed. Our studies provide evidence that loop 10, which is unique to MACV GP1, is an important impediment to binding of neutralizing antibodies and contributes to the poor cross-neutralization of α-JUNV antisera against MACV. IMPORTANCE Multiple New World arenaviruses can cause severe disease in humans, and some geographic overlap exists among these viruses. A vaccine that protects against a broad range of New World arenaviruses is desirable for purposes of simplicity, cost, and broad protection against multiple National Institute of Allergy and Infectious Disease-assigned category A priority pathogens. In this study, we sought to better understand how closely related arenaviruses elude cross-species neutralization by investigating the structural bases of antibody binding and avoidance. In our studies, we found that neutralizing antibodies against two New World arenaviruses, Machupo virus (MACV) and Junín virus (JUNV), bound to the envelope glycoprotein 1 (GP1) with JUNV monoclonal antibodies targeting the receptor binding site (RBS). We further show that altered structures surrounding the RBS pocket in MACV GP1 impede access of JUNV-elicited antibodies. Copyright © 2017 American Society for Microbiology.

  6. Machupo Virus Glycoprotein Determinants for Human Transferrin Receptor 1 Binding and Cell Entry

    DTIC Science & Technology

    2011-07-01

    conserved residues mapping to the surface of the determined MACV GP1 crystal structure (DNAStar Lasergene Software ). We identified ten residues of...2010) http://www3.niaid.nih.gov/topics/ BiodefenseRelated/Biodefense/research/CatA.htm. 8. Peters CJ, Kuehne RW, Mercado RR, Le Bow RH, Spertzel RO, et

  7. Mission critical: mobilization of essential animal models for Ebola, Nipah, and Machupo virus infections.

    PubMed

    Zumbrun, E E

    2015-01-01

    The reports for Ebola virus Zaire (EBOV), Nipah virus, and Machupo virus (MACV) pathogenesis, in this issue of Veterinary Pathology, are timely considering recent events, both nationally and internationally. EBOV, Nipah virus, and MACV cause highly lethal infections for which no Food and Drug Administration (FDA) licensed vaccines or therapies exist. Not only are there concerns that these agents could be used by those with malicious intent, but shifts in ecological distribution of viral reservoirs due to climate change or globalization could lead to more frequent infections within remote regions than previously seen as well as outbreaks in more populous areas. The current EBOV epidemic shows no sign of abating across 3 West African nations (as of October 2014), including densely populated areas, far outpacing infection rates of previous outbreaks. A limited number of cases have also arisen in the United States and Europe. With few treatment options for these deadly viruses, development of animal models reflective of human disease is paramount to combat these diseases. As an example of this potential, a new treatment compound, ZMapp, that had demonstrated efficacy against EBOV infection in nonhuman primates (NHPs) received an emergency compassionate use exception from the FDA for the treatment of 2 American medical workers infected with EBOV, and they are currently virus free and recovering. © The Author(s) 2014.

  8. Epidemiology and Pathogenesis of Bolivian Hemorrhagic Fever

    PubMed Central

    Patterson, Michael; Grant, Ashley; Paessler, Slobodan

    2014-01-01

    The etiologic agent of Bolivian hemorrhagic fever (BHF), Machupo virus (MACV) is reported to have a mortality rate of 25 to 35%. First identified in 1959, BHF was the cause of a localized outbreak in San Joaquin until rodent population controls were implemented in 1964. The rodent Calomys collosus was identified as the primary vector and reservoir for the virus. Multiple animal models were considered during the 1970’s with the most human-like disease identified in Rhesus macaques but minimal characterization of the pathogenesis has been published since. A reemergence of reported BHF cases has been reported in recent years, which necessitates the further study and development of a vaccine to prevent future outbreaks. PMID:24636947

  9. Self-Association of Lymphocytic Choriomeningitis Virus Nucleoprotein Is Mediated by Its N-Terminal Region and Is Not Required for Its Anti-Interferon Function

    PubMed Central

    Ortiz-Riaño, Emilio; Cheng, Benson Yee Hin

    2012-01-01

    Arenaviruses have a bisegmented, negative-strand RNA genome. Both the large (L) and small (S) genome segments use an ambisense coding strategy to direct the synthesis of two viral proteins. The L segment encodes the virus polymerase (L protein) and the matrix Z protein, whereas the S segment encodes the nucleoprotein (NP) and the glycoprotein precursor (GPC). NPs are the most abundant viral protein in infected cells and virions and encapsidate genomic RNA species to form an NP-RNA complex that, together with the virus L polymerase, forms the virus ribonucleoprotein (RNP) core capable of directing both replication and transcription of the viral genome. RNP formation predicts a self-association property of NPs. Here we document self-association (homotypic interaction) of the NP of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV), as well as those of the hemorrhagic fever (HF) arenaviruses Lassa virus (LASV) and Machupo virus (MACV). We also show heterotypic interaction between NPs from both closely (LCMV and LASV) and distantly (LCMV and MACV) genetically related arenaviruses. LCMV NP self-association was dependent on the presence of single-stranded RNA and mediated by an N-terminal region of the NP that did not overlap with the previously described C-terminal NP domain involved in either counteracting the host type I interferon response or interacting with LCMV Z. PMID:22258244

  10. Epidemiology and pathogenesis of Bolivian hemorrhagic fever.

    PubMed

    Patterson, Michael; Grant, Ashley; Paessler, Slobodan

    2014-04-01

    The etiologic agent of Bolivian hemorrhagic fever (BHF), Machupo virus (MACV) is reported to have a mortality rate of 25-35%. First identified in 1959, BHF was the cause of a localized outbreak in San Joaquin until rodent population controls were implemented in 1964. The rodent Calomys collosus was identified as the primary vector and reservoir for the virus. Multiple animal models were considered during the 1970s with the most human-like disease identified in Rhesus macaques but minimal characterization of the pathogenesis has been published since. A reemergence of reported BHF cases has been reported in recent years, which necessitates the further study and development of a vaccine to prevent future outbreaks. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Glycoprotein-Specific Antibodies Produced by DNA Vaccination Protect Guinea Pigs from Lethal Argentine and Venezuelan Hemorrhagic Fever.

    PubMed

    Golden, Joseph W; Maes, Piet; Kwilas, Steven A; Ballantyne, John; Hooper, Jay W

    2016-01-20

    Several members of the Arenaviridae can cause acute febrile diseases in humans, often resulting in lethality. The use of convalescent-phase human plasma is an effective treatment in humans infected with arenaviruses, particularly species found in South America. Despite this, little work has focused on developing potent and defined immunotherapeutics against arenaviruses. In the present study, we produced arenavirus neutralizing antibodies by DNA vaccination of rabbits with plasmids encoding the full-length glycoprotein precursors of Junín virus (JUNV), Machupo virus (MACV), and Guanarito virus (GTOV). Geometric mean neutralizing antibody titers, as measured by the 50% plaque reduction neutralization test (PRNT(50)), exceeded 5,000 against homologous viruses. Antisera against each targeted virus exhibited limited cross-species binding and, to a lesser extent, cross-neutralization. Anti-JUNV glycoprotein rabbit antiserum protected Hartley guinea pigs from lethal intraperitoneal infection with JUNV strain Romero when the antiserum was administered 2 days after challenge and provided some protection (∼30%) when administered 4 days after challenge. Treatment starting on day 6 did not protect animals. We further formulated an IgG antibody cocktail by combining anti-JUNV, -MACV, and -GTOV antibodies produced in DNA-vaccinated rabbits. This cocktail protected 100% of guinea pigs against JUNV and GTOV lethal disease. We then expanded on this cocktail approach by simultaneously vaccinating rabbits with a combination of plasmids encoding glycoproteins from JUNV, MACV, GTOV, and Sabia virus (SABV). Sera collected from rabbits vaccinated with the combination vaccine neutralized all four targets. These findings support the concept of using a DNA vaccine approach to generate a potent pan-arenavirus immunotherapeutic. Arenaviruses are an important family of emerging viruses. In infected humans, convalescent-phase plasma containing neutralizing antibodies can mitigate the severity of disease caused by arenaviruses, particularly species found in South America. Because of variations in potency of the human-derived product, limited availability, and safety concerns, this treatment option has essentially been abandoned. Accordingly, despite this approach being an effective postinfection treatment option, research on novel approaches to produce potent polyclonal antibody-based therapies have been deficient. Here we show that DNA-based vaccine technology can be used to make potently neutralizing antibodies in rabbits that exclusively target the glycoproteins of several human-pathogenic arenaviruses found in South America, including JUNV, MACV, GTOV, and SABV. These antibodies protected guinea pigs from lethal disease when given post-virus challenge. We also generated a purified antibody cocktail with antibodies targeting three arenaviruses and demonstrated protective efficacy against all three targets. Our findings demonstrate that use of the DNA vaccine technology could be used to produce candidate antiarenavirus neutralizing antibody-based products. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Glycoprotein-Specific Antibodies Produced by DNA Vaccination Protect Guinea Pigs from Lethal Argentine and Venezuelan Hemorrhagic Fever

    PubMed Central

    Golden, Joseph W.; Maes, Piet; Kwilas, Steven A.; Ballantyne, John

    2016-01-01

    ABSTRACT Several members of the Arenaviridae can cause acute febrile diseases in humans, often resulting in lethality. The use of convalescent-phase human plasma is an effective treatment in humans infected with arenaviruses, particularly species found in South America. Despite this, little work has focused on developing potent and defined immunotherapeutics against arenaviruses. In the present study, we produced arenavirus neutralizing antibodies by DNA vaccination of rabbits with plasmids encoding the full-length glycoprotein precursors of Junín virus (JUNV), Machupo virus (MACV), and Guanarito virus (GTOV). Geometric mean neutralizing antibody titers, as measured by the 50% plaque reduction neutralization test (PRNT50), exceeded 5,000 against homologous viruses. Antisera against each targeted virus exhibited limited cross-species binding and, to a lesser extent, cross-neutralization. Anti-JUNV glycoprotein rabbit antiserum protected Hartley guinea pigs from lethal intraperitoneal infection with JUNV strain Romero when the antiserum was administered 2 days after challenge and provided some protection (∼30%) when administered 4 days after challenge. Treatment starting on day 6 did not protect animals. We further formulated an IgG antibody cocktail by combining anti-JUNV, -MACV, and -GTOV antibodies produced in DNA-vaccinated rabbits. This cocktail protected 100% of guinea pigs against JUNV and GTOV lethal disease. We then expanded on this cocktail approach by simultaneously vaccinating rabbits with a combination of plasmids encoding glycoproteins from JUNV, MACV, GTOV, and Sabia virus (SABV). Sera collected from rabbits vaccinated with the combination vaccine neutralized all four targets. These findings support the concept of using a DNA vaccine approach to generate a potent pan-arenavirus immunotherapeutic. IMPORTANCE Arenaviruses are an important family of emerging viruses. In infected humans, convalescent-phase plasma containing neutralizing antibodies can mitigate the severity of disease caused by arenaviruses, particularly species found in South America. Because of variations in potency of the human-derived product, limited availability, and safety concerns, this treatment option has essentially been abandoned. Accordingly, despite this approach being an effective postinfection treatment option, research on novel approaches to produce potent polyclonal antibody-based therapies have been deficient. Here we show that DNA-based vaccine technology can be used to make potently neutralizing antibodies in rabbits that exclusively target the glycoproteins of several human-pathogenic arenaviruses found in South America, including JUNV, MACV, GTOV, and SABV. These antibodies protected guinea pigs from lethal disease when given post-virus challenge. We also generated a purified antibody cocktail with antibodies targeting three arenaviruses and demonstrated protective efficacy against all three targets. Our findings demonstrate that use of the DNA vaccine technology could be used to produce candidate antiarenavirus neutralizing antibody-based products. PMID:26792737

  13. Analyzing machupo virus-receptor binding by molecular dynamics simulations.

    PubMed

    Meyer, Austin G; Sawyer, Sara L; Ellington, Andrew D; Wilke, Claus O

    2014-01-01

    In many biological applications, we would like to be able to computationally predict mutational effects on affinity in protein-protein interactions. However, many commonly used methods to predict these effects perform poorly in important test cases. In particular, the effects of multiple mutations, non alanine substitutions, and flexible loops are difficult to predict with available tools and protocols. We present here an existing method applied in a novel way to a new test case; we interrogate affinity differences resulting from mutations in a host-virus protein-protein interface. We use steered molecular dynamics (SMD) to computationally pull the machupo virus (MACV) spike glycoprotein (GP1) away from the human transferrin receptor (hTfR1). We then approximate affinity using the maximum applied force of separation and the area under the force-versus-distance curve. We find, even without the rigor and planning required for free energy calculations, that these quantities can provide novel biophysical insight into the GP1/hTfR1 interaction. First, with no prior knowledge of the system we can differentiate among wild type and mutant complexes. Moreover, we show that this simple SMD scheme correlates well with relative free energy differences computed via free energy perturbation. Second, although the static co-crystal structure shows two large hydrogen-bonding networks in the GP1/hTfR1 interface, our simulations indicate that one of them may not be important for tight binding. Third, one viral site known to be critical for infection may mark an important evolutionary suppressor site for infection-resistant hTfR1 mutants. Finally, our approach provides a framework to compare the effects of multiple mutations, individually and jointly, on protein-protein interactions.

  14. Analyzing machupo virus-receptor binding by molecular dynamics simulations

    PubMed Central

    Sawyer, Sara L.; Ellington, Andrew D.; Wilke, Claus O.

    2014-01-01

    In many biological applications, we would like to be able to computationally predict mutational effects on affinity in protein–protein interactions. However, many commonly used methods to predict these effects perform poorly in important test cases. In particular, the effects of multiple mutations, non alanine substitutions, and flexible loops are difficult to predict with available tools and protocols. We present here an existing method applied in a novel way to a new test case; we interrogate affinity differences resulting from mutations in a host–virus protein–protein interface. We use steered molecular dynamics (SMD) to computationally pull the machupo virus (MACV) spike glycoprotein (GP1) away from the human transferrin receptor (hTfR1). We then approximate affinity using the maximum applied force of separation and the area under the force-versus-distance curve. We find, even without the rigor and planning required for free energy calculations, that these quantities can provide novel biophysical insight into the GP1/hTfR1 interaction. First, with no prior knowledge of the system we can differentiate among wild type and mutant complexes. Moreover, we show that this simple SMD scheme correlates well with relative free energy differences computed via free energy perturbation. Second, although the static co-crystal structure shows two large hydrogen-bonding networks in the GP1/hTfR1 interface, our simulations indicate that one of them may not be important for tight binding. Third, one viral site known to be critical for infection may mark an important evolutionary suppressor site for infection-resistant hTfR1 mutants. Finally, our approach provides a framework to compare the effects of multiple mutations, individually and jointly, on protein–protein interactions. PMID:24624315

  15. Structural basis for receptor recognition by New World hemorrhagic fever arenaviruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, Jonathan; Corbett, Kevin D.; Farzan, Michael

    New World hemorrhagic fever arenaviruses are rodent-borne agents that cause severe human disease. The GP1 subunit of the surface glycoprotein mediates cell attachment through transferrin receptor 1 (TfR1). We report the structure of Machupo virus (MACV) GP1 bound with human TfR1. Atomic details of the GP1-TfR1 interface clarify the importance of TfR1 residues implicated in New World arenavirus host specificity. Analysis of sequence variation among New World arenavirus GP1s and their host-species receptors, in light of the molecular structure, indicates determinants of viral zoonotic transmission. Infectivities of pseudoviruses in cells expressing mutated TfR1 confirm that contacts at the tip ofmore » the TfR1 apical domain determine the capacity of human TfR1 to mediate infection by particular New World arenaviruses. We propose that New World arenaviruses that are pathogenic to humans fortuitously acquired affinity for human TfR1 during adaptation to TfR1 of their natural hosts.« less

  16. Pathology of experimental Machupo virus infection, Chicava strain, in cynomolgus macaques (Macaca fascicularis) by intramuscular and aerosol exposure.

    PubMed

    Bell, T M; Shaia, C I; Bunton, T E; Robinson, C G; Wilkinson, E R; Hensley, L E; Cashman, K A

    2015-01-01

    Machupo virus, the causative agent of Bolivian hemorrhagic fever (BHF), is a highly lethal viral hemorrhagic fever of which little is known and for which no Food and Drug Administration-approved vaccines or therapeutics are available. This study evaluated the cynomolgus macaque as an animal model using the Machupo virus, Chicava strain, via intramuscular and aerosol challenge. The incubation period was 6 to 10 days with initial signs of depression, anorexia, diarrhea, mild fever, and a petechial skin rash. These were often followed by neurologic signs and death within an average of 18 days. Complete blood counts revealed leukopenia as well as marked thrombocytopenia. Serum chemistry values identified a decrease in total protein, marked increases in alanine aminotransferase and aspartate aminotransferase, and moderate increases in alkaline phosphatase. Gross pathology findings included a macular rash extending across the axillary and inguinal regions beginning at approximately 10 days postexposure as well as enlarged lymph nodes and spleen, enlarged and friable liver, and sporadic hemorrhages along the gastrointestinal mucosa and serosa. Histologic lesions consisted of foci of degeneration and necrosis/apoptosis in the haired skin, liver, pancreas, adrenal glands, lymph nodes, tongue, esophagus, salivary glands, stomach, small intestine, and large intestine. Lymphohistiocytic interstitial pneumonia was also present. Inflammation within the central nervous system (nonsuppurative encephalitis) was histologically apparent approximately 16 days postexposure and was generally progressive. This study provides insight into the course of Machupo virus infection in cynomolgus macaques and supports the usefulness of cynomolgus macaques as a viable model of human Machupo virus infection. © The Author(s) 2014.

  17. Vaccine Platforms to Control Arenaviral Hemorrhagic Fevers.

    PubMed

    Carrion, Ricardo; Bredenbeek, Peter; Jiang, Xiaohong; Tretyakova, Irina; Pushko, Peter; Lukashevich, Igor S

    2012-11-20

    Arenaviruses are rodent-borne emerging human pathogens. Diseases caused by these viruses, e.g., Lassa fever (LF) in West Africa and South American hemorrhagic fevers (HFs), are serious public health problems in endemic areas. We have employed replication-competent and replication-deficient strategies to design vaccine candidates potentially targeting different groups "at risk". Our leader LF vaccine candidate, the live reassortant vaccine ML29, is safe and efficacious in all tested animal models including non-human primates. In this study we showed that treatment of fatally infected animals with ML29 two days after Lassa virus (LASV) challenge protected 80% of the treated animals. In endemic areas, where most of the target population is poor and many live far from health care facilities, a single-dose vaccination with ML29 would be ideal solution. Once there is an outbreak, a fast-acting vaccine or post-exposure prophylaxis would be best. The 2(nd) vaccine technology is based on Yellow Fever (YF) 17D vaccine. We designed YF17D-based recombinant viruses expressing LASV glycoproteins (GP) and showed protective efficacy of these recombinants. In the current study we developed a novel technology to clone LASV nucleocapsid within YF17D C gene. Low immunogenicity and stability of foreign inserts must be addressed to design successful LASV/YFV bivalent vaccines to control LF and YF in overlapping endemic areas of West Africa. The 3(rd) platform is based on the new generation of alphavirus replicon virus-like-particle vectors (VLPV). Using this technology we designed VLPV expressing LASV GP with enhanced immunogenicity and bivalent VLPV expressing cross-reactive GP of Junin virus (JUNV) and Machupo virus (MACV), causative agents of Argentinian and Bolivian HF, respectively. A prime-boost regimen required for VLPV immunization might be practical for medical providers, military, lab personnel, and visitors in endemic areas.

  18. [Use of guinea pigs to evaluate the efficacy of a heterological immunoglobulin against Bolivian hemorrhagic fever].

    PubMed

    Khmelev, A L; Borisevich, I V; Pantiukhov, V B; Pirozhkov, A P; Syromiatnikova, S I; Shatokhina, I V; Mel'nikov, S A; Shagarov, E E

    2009-01-01

    The use of guinea pigs as a laboratory model was proven to be appropriate in investigating the protective properties of a heterological immunoglobulin against Bolivian hemorrhagic fever at the preclinical stage of the study. A highly pathogenic Machupo virus strain that caused guinea pigs' death with respect with an agent's dose was cultivated. Injection of 1.0 ml of the immunoglobulin provided a 100% protective effect for the guinea pigs infected with the highly pathogenic Machupo virus strain in a dose of 10 LD50.

  19. Annual Progress Report--Fiscal Year 1979

    DTIC Science & Technology

    1979-10-01

    fever virus Ebola fever virus Korean hemorrhagic fever virus Rift Valley fever virus Bolivian hemorrhagic fever virus...Machupo) Argentinian hemorrhagic fever virus (Junin) Dengue fever virus Congo/Crimean hemorrhagic fever virus Sand fly fever virus Eastern encephalitis...virus Western encephalitis virus Venezuelan fever virus Japanese B fever virus Chikungunya virus Tacaribe virus Pichinde virus Yellow fever

  20. Status of arenavirus vaccines and their application

    PubMed Central

    Johnson, Karl M.

    1975-01-01

    A limited but definite need exists for vaccines against Lassa, Junin, and Machupo viruses. Medical and laboratory personnel, as well as defined high-risk population groups, require protection from these highly virulent agents. To date little work has been done on inactivated vaccines for these viruses. A live attenuated Junin vaccine has been tested successfully in more than 600 persons, and a high-passage Machupo virus strain has protected rhesus monkeys against lethal infection produced by a homologous field strain. Work has been initiated on possible heterologous protection induced by infection or antigenic stimulation with arenaviruses not pathogenic for man. Crucial for the eventual development of effective vaccines are the construction of more maximum security laboratories and the further elucidation of the experimental and natural biology of the agents in lower animals and man. PMID:182407

  1. Arenaviruses,

    DTIC Science & Technology

    characteristics. All arenaviruses establish chronic viremias in specific mammalian hosts (2), from which these viruses are routinely isolated (Table 1). The four...originally in 1959 from Argentina hemorrhagic fever (AHF) patients, followed by Machupo virus from Bolivian hemorrhagic fever (BHF) patients in 1963

  2. A STAT-1 Knockout Mouse Model for Machupo Virus Pathogenesis

    DTIC Science & Technology

    2011-06-14

    hemorrhagic fever viruses, including Ebola, Marburg, Junín, and Crimean - Congo Hemorrhagic Fever viruses [11-14...Akerstrom S, Klingstrom J, Mirazimi A: Crimean - Congo hemorrhagic fever virus infection is lethal for adult type I interferon receptor-knockout mice. J...Shieh WJ, Camus G, Stroher U, Zaki S, Jones SM: Pathogenesis and immune response of Crimean - Congo hemorrhagic fever virus in a STAT-1 knockout

  3. Pathogenesis of Bolivian Hemorrhagic Fever in Guinea Pigs.

    PubMed

    Bell, T M; Bunton, T E; Shaia, C I; Raymond, J W; Honnold, S P; Donnelly, G C; Shamblin, J D; Wilkinson, E R; Cashman, K A

    2016-01-01

    Machupo virus, the cause of Bolivian hemorrhagic fever, is a highly lethal viral hemorrhagic fever with no Food and Drug Administration-approved vaccines or therapeutics. This study evaluated the guinea pig as a model using the Machupo virus-Chicava strain administered via aerosol challenge. Guinea pigs (Cavia porcellus) were serially sampled to evaluate the temporal progression of infection, gross and histologic lesions, and sequential changes in serum chemistry and hematology. The incubation period was 5 to 12 days, and complete blood counts revealed leukopenia with lymphopenia and thrombocytopenia. Gross pathologic findings included congestion and hemorrhage of the gastrointestinal mucosa and serosa, noncollapsing lungs with fluid exudation, enlarged lymph nodes, and progressive pallor and friability of the liver. Histologic lesions consisted of foci of degeneration and cell death in the haired skin, liver, pancreas, adrenal glands, lymph nodes, tongue, esophagus, salivary glands, renal pelvis, small intestine, and large intestine. Lymphohistiocytic interstitial pneumonia was also present. Inflammation within the central nervous system, interpreted as nonsuppurative encephalitis, was histologically apparent approximately 16 days postexposure and was generally progressive. Macrophages in the tracheobronchial lymph node, on day 5 postexposure, were the first cells to demonstrate visible viral antigen. Viral antigen was detected throughout the lymphoid system by day 9 postexposure, followed by prominent spread within epithelial tissues and then brain. This study provides insight into the course of Machupo virus infection and supports the utility of guinea pigs as an additional animal model for vaccine and therapeutic development. © The Author(s) 2015.

  4. Emerging Infections and Bioterrorism

    DTIC Science & Technology

    2001-09-01

    bioterrorism. Some examples of unusual outbreaks that could have been mistaken for bioterrorism are given below: Event/ Disease Location Year Legionnaires ...Geminiviruses) 1 237 Table 2. Viral Hemorrhagic Fevers Family and/or genus Disease ( s ) Arenaviridae Lassa fever, Bolivian HF (Machupo virus), Argentine HF (Junin...bioterrorist agents: these are the organisms or toxins that cause the diseases anthrax, botulism, brucellosis, plague, Q fever, smallpox, staphylococcal

  5. Bacterial meningitis epidemiology and return of Neisseria meningitidis serogroup A cases in Burkina Faso in the five years following MenAfriVac mass vaccination campaign.

    PubMed

    Diallo, Alpha Oumar; Soeters, Heidi M; Yameogo, Issaka; Sawadogo, Guetawendé; Aké, Flavien; Lingani, Clément; Wang, Xin; Bita, Andre; Fall, Amadou; Sangaré, Lassana; Ouédraogo-Traoré, Rasmata; Medah, Isaïe; Bicaba, Brice; Novak, Ryan T

    2017-01-01

    Historically, Neisseria meningitidis serogroup A (NmA) caused large meningitis epidemics in sub-Saharan Africa. In 2010, Burkina Faso became the first country to implement a national meningococcal serogroup A conjugate vaccine (MACV) campaign. We analyzed nationwide meningitis surveillance data from Burkina Faso for the 5 years following MACV introduction. We examined Burkina Faso's aggregate reporting and national laboratory-confirmed case-based meningitis surveillance data from 2011-2015. We calculated incidence (cases per 100,000 persons), and described reported NmA cases. In 2011-2015, Burkina Faso reported 20,389 cases of suspected meningitis. A quarter (4,503) of suspected meningitis cases with cerebrospinal fluid specimens were laboratory-confirmed as either S. pneumoniae (57%), N. meningitidis (40%), or H. influenzae (2%). Average adjusted annual national incidence of meningococcal meningitis was 3.8 (range: 2.0-10.2 annually) and was highest among infants aged <1 year (8.4). N. meningitidis serogroup W caused the majority (64%) of meningococcal meningitis among all age groups. Only six confirmed NmA cases were reported in 2011-2015. Five cases were in children who were too young (n = 2) or otherwise not vaccinated (n = 3) during the 2010 MACV mass vaccination campaign; one case had documented MACV receipt, representing the first documented MACV failure. Meningococcal meningitis incidence in Burkina Faso remains relatively low following MACV introduction. However, a substantial burden remains and NmA transmission has persisted. MACV integration into routine childhood immunization programs is essential to ensure continued protection.

  6. Antibodies to the Glycoprotein GP2 Subunit Cross-React between Old and New World Arenaviruses.

    PubMed

    Amanat, Fatima; Duehr, James; Oestereich, Lisa; Hastie, Kathryn M; Ollmann Saphire, Erica; Krammer, Florian

    2018-01-01

    Arenaviruses pose a major public health threat and cause numerous infections in humans each year. Although most viruses belonging to this family do not cause disease in humans, some arenaviruses, such as Lassa virus and Machupo virus, are the etiological agents of lethal hemorrhagic fevers. The absence of a currently licensed vaccine and the highly pathogenic nature of these viruses both make the necessity of developing viable vaccines and therapeutics all the more urgent. Arenaviruses have a single glycoprotein on the surface of virions, the glycoprotein complex (GPC), and this protein can be used as a target for vaccine development. Here, we describe immunization strategies to generate monoclonal antibodies (MAbs) that cross-react between the glycoprotein complexes of both Old World and New World arenaviruses. Several monoclonal antibodies isolated from immunized mice were highly cross-reactive, binding a range of Old World arenavirus glycoproteins, including that of Lassa virus. One such monoclonal antibody, KL-AV-2A1, bound to GPCs of both New World and Old World viruses, including Lassa and Machupo viruses. These cross-reactive antibodies bound to epitopes present on the glycoprotein 2 subunit of the glycoprotein complex, which is relatively conserved among arenaviruses. Monoclonal antibodies binding to these epitopes, however, did not inhibit viral entry as they failed to neutralize a replication-competent vesicular stomatitis virus pseudotyped with the Lassa virus glycoprotein complex in vitro In addition, no protection from virus challenge was observed in in vivo mouse models. Even so, these monoclonal antibodies might still prove to be useful in the development of clinical and diagnostic assays. IMPORTANCE Several viruses in the Arenaviridae family infect humans and cause severe hemorrhagic fevers which lead to high case fatality rates. Due to their pathogenicity and geographic tropisms, these viruses remain very understudied. As a result, an effective vaccine or therapy is urgently needed. Here, we describe efforts to produce cross-reactive monoclonal antibodies that bind to both New and Old World arenaviruses. All of our MAbs seem to be nonneutralizing and nonprotective and target subunit 2 of the glycoprotein. Due to the lack of reagents such as recombinant glycoproteins and antibodies for rapid detection assays, our MAbs could be beneficial as analytic and diagnostic tools. Copyright © 2018 Amanat et al.

  7. Mammarenaviruses deleted from their Z gene are replicative and produce an infectious progeny in BHK-21 cells.

    PubMed

    Zaza, Amélie D; Herbreteau, Cécile H; Peyrefitte, Christophe N; Emonet, Sébastien F

    2018-05-01

    Mammarenaviruses bud out of infected cells via the recruitment of the endosomal sorting complex required for transport through late domain motifs localized into their Z protein. Here, we demonstrated that mammarenaviruses lacking this protein can be rescued and are replicative, despite a 3-log reduction in virion production, in BHK-21 cells, but not in five other cell lines. Mutations of putative late domain motifs identified into the viral nucleoprotein resulted in the almost complete abolition of infectious virion production by Z-deleted mammarenaviruses. This result strongly suggested that the nucleoprotein may compensate for the deletion of Z. These observations were primarily obtained using the Lymphocytic choriomeningitis virus, and further confirmed using the Old World Lassa and New World Machupo viruses, responsible of human hemorrhagic fevers. Z-deleted viruses should prove very useful tools to investigate the biology of Mammarenaviruses. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Vaccine-elicited receptor-binding site antibodies neutralize two New World hemorrhagic fever arenaviruses.

    PubMed

    Clark, Lars E; Mahmutovic, Selma; Raymond, Donald D; Dilanyan, Taleen; Koma, Takaaki; Manning, John T; Shankar, Sundaresh; Levis, Silvana C; Briggiler, Ana M; Enria, Delia A; Wucherpfennig, Kai W; Paessler, Slobodan; Abraham, Jonathan

    2018-05-14

    While five arenaviruses cause human hemorrhagic fevers in the Western Hemisphere, only Junin virus (JUNV) has a vaccine. The GP1 subunit of their envelope glycoprotein binds transferrin receptor 1 (TfR1) using a surface that substantially varies in sequence among the viruses. As such, receptor-mimicking antibodies described to date are type-specific and lack the usual breadth associated with this mode of neutralization. Here we isolate, from the blood of a recipient of the live attenuated JUNV vaccine, two antibodies that cross-neutralize Machupo virus with varying efficiency. Structures of GP1-Fab complexes explain the basis for efficient cross-neutralization, which involves avoiding receptor mimicry and targeting a conserved epitope within the receptor-binding site (RBS). The viral RBS, despite its extensive sequence diversity, is therefore a target for cross-reactive antibodies with activity against New World arenaviruses of public health concern.

  9. MACv2-SP: a parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for use in CMIP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Bjorn; Fiedler, Stephanie; Kinne, Stefan

    A simple plume implementation of the second version (v2) of the Max Planck Institute Aerosol Climatology, MACv2-SP, is described. MACv2-SP provides a prescription of anthropogenic aerosol optical properties and an associated Twomey effect. It was created to provide a harmonized description of post-1850 anthropogenic aerosol radiative forcing for climate modeling studies. MACv2-SP has been designed to be easy to implement, change and use, and thereby enable studies exploring the climatic effects of different patterns of aerosol radiative forcing, including a Twomey effect. MACv2-SP is formulated in terms of nine spatial plumes associated with different major anthropogenic source regions. The shapemore » of the plumes is fit to the Max Planck Institute Aerosol Climatology, version 2, whose present-day (2005) distribution is anchored by surface-based observations. Two types of plumes are considered: one predominantly associated with biomass burning, the other with industrial emissions. These differ in the prescription of their annual cycle and in their optical properties, thereby implicitly accounting for different contributions of absorbing aerosol to the different plumes. A Twomey effect for each plume is prescribed as a change in the host model's background cloud-droplet population density using relationships derived from satellite data. Year-to-year variations in the amplitude of the plumes over the historical period (1850–2016) are derived by scaling the plumes with associated national emission sources of SO 2 and NH 3. Experiments using MACv2-SP are performed with the Max Planck Institute Earth System Model. The globally and annually averaged instantaneous and effective aerosol radiative forcings are estimated to be -0.6 and -0.5 W m -2, respectively. Forcing from aerosol–cloud interactions (the Twomey effect) offsets the reduction of clear-sky forcing by clouds, so that the net effect of clouds on the aerosol forcing is small; hence, the clear-sky forcing, which is more readily measurable, provides a good estimate of the total aerosol forcing.« less

  10. MACv2-SP: a parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for use in CMIP6

    NASA Astrophysics Data System (ADS)

    Stevens, Bjorn; Fiedler, Stephanie; Kinne, Stefan; Peters, Karsten; Rast, Sebastian; Müsse, Jobst; Smith, Steven J.; Mauritsen, Thorsten

    2017-02-01

    A simple plume implementation of the second version (v2) of the Max Planck Institute Aerosol Climatology, MACv2-SP, is described. MACv2-SP provides a prescription of anthropogenic aerosol optical properties and an associated Twomey effect. It was created to provide a harmonized description of post-1850 anthropogenic aerosol radiative forcing for climate modeling studies. MACv2-SP has been designed to be easy to implement, change and use, and thereby enable studies exploring the climatic effects of different patterns of aerosol radiative forcing, including a Twomey effect. MACv2-SP is formulated in terms of nine spatial plumes associated with different major anthropogenic source regions. The shape of the plumes is fit to the Max Planck Institute Aerosol Climatology, version 2, whose present-day (2005) distribution is anchored by surface-based observations. Two types of plumes are considered: one predominantly associated with biomass burning, the other with industrial emissions. These differ in the prescription of their annual cycle and in their optical properties, thereby implicitly accounting for different contributions of absorbing aerosol to the different plumes. A Twomey effect for each plume is prescribed as a change in the host model's background cloud-droplet population density using relationships derived from satellite data. Year-to-year variations in the amplitude of the plumes over the historical period (1850-2016) are derived by scaling the plumes with associated national emission sources of SO2 and NH3. Experiments using MACv2-SP are performed with the Max Planck Institute Earth System Model. The globally and annually averaged instantaneous and effective aerosol radiative forcings are estimated to be -0.6 and -0.5 W m-2, respectively. Forcing from aerosol-cloud interactions (the Twomey effect) offsets the reduction of clear-sky forcing by clouds, so that the net effect of clouds on the aerosol forcing is small; hence, the clear-sky forcing, which is more readily measurable, provides a good estimate of the total aerosol forcing.

  11. Comprehensive Panel of Real-Time TaqMan™ Polymerase Chain Reaction Assays for Detection and Absolute Quantification of Filoviruses, Arenaviruses, and New World Hantaviruses

    PubMed Central

    Trombley, Adrienne R.; Wachter, Leslie; Garrison, Jeffrey; Buckley-Beason, Valerie A.; Jahrling, Jordan; Hensley, Lisa E.; Schoepp, Randal J.; Norwood, David A.; Goba, Augustine; Fair, Joseph N.; Kulesh, David A.

    2010-01-01

    Viral hemorrhagic fever is caused by a diverse group of single-stranded, negative-sense or positive-sense RNA viruses belonging to the families Filoviridae (Ebola and Marburg), Arenaviridae (Lassa, Junin, Machupo, Sabia, and Guanarito), and Bunyaviridae (hantavirus). Disease characteristics in these families mark each with the potential to be used as a biological threat agent. Because other diseases have similar clinical symptoms, specific laboratory diagnostic tests are necessary to provide the differential diagnosis during outbreaks and for instituting acceptable quarantine procedures. We designed 48 TaqMan™-based polymerase chain reaction (PCR) assays for specific and absolute quantitative detection of multiple hemorrhagic fever viruses. Forty-six assays were determined to be virus-specific, and two were designated as pan assays for Marburg virus. The limit of detection for the assays ranged from 10 to 0.001 plaque-forming units (PFU)/PCR. Although these real-time hemorrhagic fever virus assays are qualitative (presence of target), they are also quantitative (measure a single DNA/RNA target sequence in an unknown sample and express the final results as an absolute value (e.g., viral load, PFUs, or copies/mL) on the basis of concentration of standard samples and can be used in viral load, vaccine, and antiviral drug studies. PMID:20439981

  12. Evaluation of transmission risks associated with in vivo replication of several high containment pathogens in a biosafety level 4 laboratory

    PubMed Central

    Alimonti, Judie; Leung, Anders; Jones, Shane; Gren, Jason; Qiu, Xiangguo; Fernando, Lisa; Balcewich, Brittany; Wong, Gary; Ströher, Ute; Grolla, Allen; Strong, James; Kobinger, Gary

    2014-01-01

    Containment level 4 (CL4) laboratories studying biosafety level 4 viruses are under strict regulations to conduct nonhuman primate (NHP) studies in compliance of both animal welfare and biosafety requirements. NHPs housed in open-barred cages raise concerns about cross-contamination between animals, and accidental exposure of personnel to infectious materials. To address these concerns, two NHP experiments were performed. One examined the simultaneous infection of 6 groups of NHPs with 6 different viruses (Machupo, Junin, Rift Valley Fever, Crimean-Congo Hemorrhagic Fever, Nipah and Hendra viruses). Washing personnel between handling each NHP group, floor to ceiling biobubble with HEPA filter, and plexiglass between cages were employed for partial primary containment. The second experiment employed no primary containment around open barred cages with Ebola virus infected NHPs 0.3 meters from naïve NHPs. Viral antigen-specific ELISAs, qRT-PCR and TCID50 infectious assays were utilized to determine antibody levels and viral loads. No transmission of virus to neighbouring NHPs was observed suggesting limited containment protocols are sufficient for multi-viral CL4 experiments within one room. The results support the concept that Ebola virus infection is self-contained in NHPs infected intramuscularly, at least in the present experimental conditions, and is not transmitted to naïve NHPs via an airborne route. PMID:25059478

  13. Evaluation of transmission risks associated with in vivo replication of several high containment pathogens in a biosafety level 4 laboratory.

    PubMed

    Alimonti, Judie; Leung, Anders; Jones, Shane; Gren, Jason; Qiu, Xiangguo; Fernando, Lisa; Balcewich, Brittany; Wong, Gary; Ströher, Ute; Grolla, Allen; Strong, James; Kobinger, Gary

    2014-07-25

    Containment level 4 (CL4) laboratories studying biosafety level 4 viruses are under strict regulations to conduct nonhuman primate (NHP) studies in compliance of both animal welfare and biosafety requirements. NHPs housed in open-barred cages raise concerns about cross-contamination between animals, and accidental exposure of personnel to infectious materials. To address these concerns, two NHP experiments were performed. One examined the simultaneous infection of 6 groups of NHPs with 6 different viruses (Machupo, Junin, Rift Valley Fever, Crimean-Congo Hemorrhagic Fever, Nipah and Hendra viruses). Washing personnel between handling each NHP group, floor to ceiling biobubble with HEPA filter, and plexiglass between cages were employed for partial primary containment. The second experiment employed no primary containment around open barred cages with Ebola virus infected NHPs 0.3 meters from naïve NHPs. Viral antigen-specific ELISAs, qRT-PCR and TCID50 infectious assays were utilized to determine antibody levels and viral loads. No transmission of virus to neighbouring NHPs was observed suggesting limited containment protocols are sufficient for multi-viral CL4 experiments within one room. The results support the concept that Ebola virus infection is self-contained in NHPs infected intramuscularly, at least in the present experimental conditions, and is not transmitted to naïve NHPs via an airborne route.

  14. Virions at the gates: receptors and the host-virus arms race.

    PubMed

    Coffin, John M

    2013-01-01

    All viruses need to bind to specific receptor molecules on the surface of target cells to initiate infection. Virus-receptor binding is highly specific, and this specificity determines both the species and the cell type that can be infected by a given virus. In some well-studied cases, the virus-binding region on the receptor has been found to be unrelated to the receptor's normal cellular function. Resistance to virus infection can thus evolve by selection of mutations that alter amino acids in the binding region with minimal effect on normal function. This sort of positive selection can be used to infer the history of the host-virus "arms race" during their coevolution. In a new study, Demogines et al. use a combination of phylogenetic, structural, and virological analysis to infer the history and significance of positive selection on the transferrin receptor TfR1, a housekeeping protein required for iron uptake and the cell surface receptor for at least three different types of virus. The authors show that only two parts of the rodent TfR1 molecule have been subject to positive selection and that these correspond to the binding sites for two of these viruses-the mouse mammary tumor virus (a retrovirus) and Machupo virus (an arenavirus). They confirmed this result by introducing the inferred binding site mutations into the wild-type protein and testing for receptor function. Related arenaviruses are beginning to spread in human populations in South America as the cause of often fatal hemorrhagic fevers, and, although Demogines et al. could find no evidence of TfR1 mutations in this region that might have been selected as a consequence of human infection, the authors identified one such mutation in Asian populations that affects infection with these viruses.

  15. Serological assays based on recombinant viral proteins for the diagnosis of arenavirus hemorrhagic fevers.

    PubMed

    Fukushi, Shuetsu; Tani, Hideki; Yoshikawa, Tomoki; Saijo, Masayuki; Morikawa, Shigeru

    2012-10-12

    The family Arenaviridae, genus Arenavirus, consists of two phylogenetically independent groups: Old World (OW) and New World (NW) complexes. The Lassa and Lujo viruses in the OW complex and the Guanarito, Junin, Machupo, Sabia, and Chapare viruses in the NW complex cause viral hemorrhagic fever (VHF) in humans, leading to serious public health concerns. These viruses are also considered potential bioterrorism agents. Therefore, it is of great importance to detect these pathogens rapidly and specifically in order to minimize the risk and scale of arenavirus outbreaks. However, these arenaviruses are classified as BSL-4 pathogens, thus making it difficult to develop diagnostic techniques for these virus infections in institutes without BSL-4 facilities. To overcome these difficulties, antibody detection systems in the form of an enzyme-linked immunosorbent assay (ELISA) and an indirect immunofluorescence assay were developed using recombinant nucleoproteins (rNPs) derived from these viruses. Furthermore, several antigen-detection assays were developed. For example, novel monoclonal antibodies (mAbs) to the rNPs of Lassa and Junin viruses were generated. Sandwich antigen-capture (Ag-capture) ELISAs using these mAbs as capture antibodies were developed and confirmed to be sensitive and specific for detecting the respective arenavirus NPs. These rNP-based assays were proposed to be useful not only for an etiological diagnosis of VHFs, but also for seroepidemiological studies on VHFs. We recently developed arenavirus neutralization assays using vesicular stomatitis virus (VSV)-based pseudotypes bearing arenavirus recombinant glycoproteins. The goal of this article is to review the recent advances in developing laboratory diagnostic assays based on recombinant viral proteins for the diagnosis of VHFs and epidemiological studies on the VHFs caused by arenaviruses.

  16. 32 CFR 270.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to this part.) (d) Siblings by blood of an eligible person. Siblings related by blood to a deceased..., Studies and Observations Group (MACV/SOG), starting in 1964, which inserted commandos into North Vietnam...

  17. Detection of viruses in used ventilation filters from two large public buildings.

    PubMed

    Goyal, Sagar M; Anantharaman, Senthilvelan; Ramakrishnan, M A; Sajja, Suchitra; Kim, Seung Won; Stanley, Nicholas J; Farnsworth, James E; Kuehn, Thomas H; Raynor, Peter C

    2011-09-01

    Viral and bacterial pathogens may be present in the air after being released from infected individuals and animals. Filters are installed in the heating, ventilation, and air-conditioning (HVAC) systems of buildings to protect ventilation equipment and maintain healthy indoor air quality. These filters process enormous volumes of air. This study was undertaken to determine the utility of sampling used ventilation filters to assess the types and concentrations of virus aerosols present in buildings. The HVAC filters from 2 large public buildings in Minneapolis and Seattle were sampled to determine the presence of human respiratory viruses and viruses with bioterrorism potential. Four air-handling units were selected from each building, and a total of 64 prefilters and final filters were tested for the presence of influenza A, influenza B, respiratory syncytial, corona, parainfluenza 1-3, adeno, orthopox, entero, Ebola, Marburg, Lassa fever, Machupo, eastern equine encephalitis, western equine encephalitis, and Venezuelan equine encephalitis viruses. Representative pieces of each filter were cut and eluted with a buffer solution. Attempts were made to detect viruses by inoculation of these eluates in cell cultures (Vero, MDCK, and RK-13) and specific pathogen-free embryonated chicken eggs. Two passages of eluates in cell cultures or these eggs did not reveal the presence of any live virus. The eluates were also examined by polymerase chain reaction or reverse-transcription polymerase chain reaction to detect the presence of viral DNA or RNA, respectively. Nine of the 64 filters tested were positive for influenza A virus, 2 filters were positive for influenza B virus, and 1 filter was positive for parainfluenza virus 1. These findings indicate that existing building HVAC filters may be used as a method of detection for airborne viruses. As integrated long-term bioaerosol sampling devices, they may yield valuable information on the epidemiology and aerobiology of viruses in air that can inform the development of methods to prevent airborne transmission of viruses and possible deterrents against the spread of bioterrorism agents. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  18. National Airspace Review. Change 1.

    DTIC Science & Technology

    1985-01-01

    Horn Ausociation (NBAAI Regional Air)ine Association (RAAI Martin Macy Martin Macv Martin Macy Expenmental Aircraft Asao atlon (EAAI Andrew Procop ...Andrew Procop Andrew Procop Helicooter Association Internationl (HAl) Glenn Leister Vernice Robichaud Glenn Lester Air Traffic Control Association. Inc

  19. The Operational Narrative in Wars of Choice

    DTIC Science & Technology

    2016-05-26

    and diminished the role of the guerillas and political cadre, whom he called “ termites .”62 Even if he was right in changing the focus for MACV based...United States would act like the French and Chinese invaders and exploit Vietnam. The foreigners consider the Vietnamese “ termites .” The foreigners

  20. The Z Proteins of Pathogenic but Not Nonpathogenic Arenaviruses Inhibit RIG-i-Like Receptor-Dependent Interferon Production

    PubMed Central

    Xing, Junji; Ly, Hinh

    2014-01-01

    ABSTRACT Arenavirus pathogens cause a wide spectrum of diseases in humans ranging from central nervous system disease to lethal hemorrhagic fevers with few treatment options. The reason why some arenaviruses can cause severe human diseases while others cannot is unknown. We find that the Z proteins of all known pathogenic arenaviruses, lymphocytic choriomeningitis virus (LCMV) and Lassa, Junin, Machupo, Sabia, Guanarito, Chapare, Dandenong, and Lujo viruses, can inhibit retinoic acid-inducible gene 1 (RIG-i) and Melanoma Differentiation-Associated protein 5 (MDA5), in sharp contrast to those of 14 other nonpathogenic arenaviruses. Inhibition of the RIG-i-like receptors (RLRs) by pathogenic Z proteins is mediated by the protein-protein interactions of Z and RLRs, which lead to the disruption of the interactions between RLRs and mitochondrial antiviral signaling (MAVS). The Z-RLR interactive interfaces are located within the N-terminal domain (NTD) of the Z protein and the N-terminal CARD domains of RLRs. Swapping of the LCMV Z NTD into the nonpathogenic Pichinde virus (PICV) genome does not affect virus growth in Vero cells but significantly inhibits the type I interferon (IFN) responses and increases viral replication in human primary macrophages. In summary, our results show for the first time an innate immune-system-suppressive mechanism shared by the diverse pathogenic arenaviruses and thus shed important light on the pathogenic mechanism of human arenavirus pathogens. IMPORTANCE We show that all known human-pathogenic arenaviruses share an innate immune suppression mechanism that is based on viral Z protein-mediated RLR inhibition. Our report offers important insights into the potential mechanism of arenavirus pathogenesis, provides a convenient way to evaluate the pathogenic potential of known and/or emerging arenaviruses, and reveals a novel target for the development of broad-spectrum therapies to treat this group of diverse pathogens. More broadly, our report provides a better understanding of the mechanisms of viral immune suppression and host-pathogen interactions. PMID:25552708

  1. What is the impact of natural variability and aerosol-cloud interaction on the effective radiative forcing of anthropogenic aerosol?

    NASA Astrophysics Data System (ADS)

    Fiedler, S.; Stevens, B.; Mauritsen, T.

    2017-12-01

    State-of-the-art climate models have persistently shown a spread in estimates of the effective radiative forcing (ERF) associated with anthropogenic aerosol. Different reasons for the spread are known, but their relative importance is poorly understood. In this presentation we investigate the role of natural atmospheric variability, global patterns of aerosol radiative effects, and magnitudes of aerosol-cloud interaction in controlling the ERF of anthropogenic aerosol (Fiedler et al., 2017). We use the Earth system model MPI-ESM1.2 for conducting ensembles of atmosphere-only simulations and calculate the shortwave ERF of anthropogenic aerosol at the top of the atmosphere. The radiative effects are induced with the new parameterisation MACv2-SP (Stevens et al., 2017) that prescribes observationally constrained anthropogenic aerosol optical properties and an associated Twomey effect. Firstly, we compare the ERF of global patterns of anthropogenic aerosol from the mid-1970s and today. Our results suggest that such a substantial pattern difference has a negligible impact on the global mean ERF, when the natural variability of the atmosphere is considered. The clouds herein efficiently mask the clear-sky contributions to the forcing and reduce the detectability of significant anthropogenic aerosol radiative effects in all-sky conditions. Secondly, we strengthen the forcing magnitude through increasing the effect of aerosol-cloud interaction by prescribing an enhanced Twomey effect. In that case, the different spatial pattern of aerosol radiative effects from the mid-1970s and today causes a moderate change (15%) in the ERF of anthropogenic aerosol in our model. This finding lets us speculate that models with strong aerosol-cloud interactions would show a stronger ERF change with anthropogenic aerosol patterns. Testing whether the anthropogenic aerosol radiative forcing is model-dependent under prescribed aerosol conditions is currently ongoing work using MACv2-SP in comprehensive aerosol-climate models in the framework of the EU-funded project BACCHUS. In the future, MACv2-SP will be used in models participating in the Radiative Forcing Model Intercomparison Project (Pincus et al., 2016).

  2. Command History. 1969. Volume 3. Sanitized

    DTIC Science & Technology

    1969-01-01

    ground antiairc raft defenses. 11. Tactical specifics, such as altitudes, course, speeds, or angle of attack. (General de - scriptions such as "low and fast...correspondents, the MACV portion of the Daily Press Briefing was revised to consist of brief comment on more significant de - velopments, late additions, and a...focused attention on the fact that the US was attempting to de -escalate, negative , * publicity asserted the men had to stand and practice in the hot

  3. The Learning Curve: MACVs Grasp of Intelligence, PSYOP, and Their Coordination, 1965-1971

    DTIC Science & Technology

    2015-06-01

    demonstrations break out on a number of US college campuses 4 May 1970 - Four students fatally shot during protest at Kent State University...Operational Art and Science from the Air Command and Staff College , and a Master’s of Philosophy in Military Strategy from the School of Advanced...Turned a Tactical Victory into a Political Defeat”, (Ft. Belvoir: Defense Technical Information Center, 2009), www.dtic.mil/cgi-bin/GetTRDoc?AD

  4. Comparison between calculations of shortwave radiation with different aerosol datasets and measured data at the MSU MO (Russia)

    NASA Astrophysics Data System (ADS)

    Poliukhov, Aleksei; Chubarova, Natalia; Kinne, Stephan; Rivin, Gdaliy; Shatunova, Marina; Tarasova, Tatiana

    2017-02-01

    The radiation block of the COSMO non-hydrostatic mesoscale model of the atmosphere and soil active layer was tested against a relatively new effective CLIRAD(FC05)-SW radiation model and radiative measurements at the Moscow State University Meteorological Observatory (MSU MO, 55.7N, 37.5E) using different aerosol datasets in cloudless conditions. We used the data of shortwave radiation components from the Kipp&Zonen net radiometer CNR4. The model simulations were performed with the application of various aerosol climatologies including the new MACv2 climatology and the aerosol and water vapor dataset from CIMEL (AERONET) sun photometer measurements. The application of the new MACv2 climatology in the CLIRAD(FC05)-SW radiation model provides the annual average relative error of the total global radiation of -3% varying from 0.5% in May to -7.7% in December. The uncertainty of radiative calculations in the COSMO model according to preliminary estimates changes from 1.4% to 8.4%. against CLIRAD(FC05)-SW radiation model with the same parameters. We showed that in clear sky conditions the sensitivity of air temperature at 2 meters to shortwave net radiation changes is about 0.7-0.9°C per100 W/m2 due to the application of aerosol climatologies over Moscow.

  5. Unraveling CORDS: Lessons Learned from a Joint Inter-Agency Task Force (JIATF)

    DTIC Science & Technology

    2009-04-01

    well as IGOs and NGOs) should not be attempted using usual military command and control structures- which would resemble a Unity of Command/WoG...civil-military response.”50 In August 1966, based on his own in-country trips and analysis as well as the US Army’s PROVN study, Komer began staffing...time-period three. Before the HES, MAC-V and other American officials would make “gut-call” assessments on how well South Vietnam was being pacified

  6. Closing the Door Behind You: How the United States Army Conducts Logistical Withdrawals after Lengthy Operations

    DTIC Science & Technology

    2013-05-23

    great and MACV decided not to implement the program in total. 13 Lieutenant General Joseph M Heiser , Jr. served as the commander of the 1 st...13 Jeffery Clarke, Advice and Support: The Final Years 1965-1973 (Washington: Department of the Army, 1988), 427-429. 14 Joseph M. Heiser , Vietnam...focused on a redistribution of weapon systems. According to Heiser , The phasedown of U.S. operations in Southeast Asia permitted an accelerated delivery

  7. False Assumptions: Military Assistance Command Vietnam s (MACV) use of the Combined Strategic Objectives Plan, 1970 and its Operationalization at the Field Force Level

    DTIC Science & Technology

    2014-12-04

    26 Ibid., 606. 27 Timothy N. Castle, At War in the Shadow of Vietnam: US Military Aid to the Royal Lao Government 1955-1975 (New York...Because of the geographical limits placed on US operations, Laos and Cambodia became significant bases for the sustainment and direction of the...forces in the RVN as a closed struggle, but instead as a part of a regional conflict to include Laos and Cambodia. The communist forces also understood

  8. A Systems Analysis View of the Vietnam War 1965-1972. Volume 10. Pacification and Civil Affairs

    DTIC Science & Technology

    1975-02-18

    sending your products." (MACV-CORDS, 17 June 1968) "AS a-n a!id reader (and user) of the SEA Analysis Report, I see aS•7aIysis eprt, m~is.1 ~ need for...report does not meet an essential need of this headquarters;" nonetheless, it desired "to remain on distribution" for 7 copies. From 48 questionnaires...zecurity that would be needed . In fact, there is doubt that under present conditions it is feacible to provide the security needed if the railways are

  9. MAC-v1: A new global aerosol climatology for climate studies

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; O'Donnel, Declan; Stier, Philip; Kloster, Silvia; Zhang, Kai; Schmidt, Hauke; Rast, Sebastian; Giorgetta, Marco; Eck, Tom F.; Stevens, Bjorn

    2013-12-01

    The Max-Planck-Institute Aerosol Climatology version 1 (MAC-v1) is introduced. It describes the optical properties of tropospheric aerosols on monthly timescales and with global coverage at a spatial resolution of 1° in latitude and longitude. By providing aerosol radiative properties for any wavelength of the solar (or shortwave) and of the terrestrial (or longwave) radiation spectrum, as needed in radiative transfer applications, this MAC-v1 data set lends itself to simplified and computationally efficient representations of tropospheric aerosol in climate studies. Estimates of aerosol radiative properties are provided for both total and anthropogenic aerosol in annual time steps from preindustrial times (i.e., starting with year 1860) well into the future (until the year 2100). Central to the aerosol climatology is the merging of monthly statistics of aerosol optical properties for current (year 2000) conditions. Hereby locally sparse but trusted high-quality data by ground-based sun-photometer networks are merged onto complete background maps defined by central data from global modeling with complex aerosol modules. This merging yields 0.13 for the global annual midvisible aerosol optical depth (AOD), with 0.07 attributed to aerosol sizes larger than 1 µm in diameter and 0.06 of attributed to aerosol sizes smaller than 1 µm in diameter. Hereby larger particles are less absorbing with a single scattering albedo (SSA) of 0.98 compared to 0.93 for smaller sizes. Simulation results of a global model are applied to prescribe the vertical distribution and to estimate anthropogenic contributions to the smaller size AOD as a function of time, with a 0.037 value for current conditions. In a demonstration application, the associated aerosol direct radiative effects are determined. For current conditions, total aerosol is estimated to reduce the combined shortwave and longwave net-flux balance at the top of the atmosphere by about -1.6 W/m2 from which -0.5 W/m2 (with an uncertainty of ±0.2 W/m2) is attributed to anthropogenic activities. Based on past and projected aerosol emission data, the global anthropogenic direct aerosol impact (i.e., ToA cooling) is currently near the maximum and is projected to drop by 2100 to about -0.3 W/m2. The reported global averages are driven by considerable spatial and temporal variability. To better convey this diversity, regional and seasonal distributions of aerosol optical properties and their radiative effects are presented. On regional scales, the anthropogenic direct aerosol forcing can be an order of magnitude stronger than the global average and it can be of either sign. It is also shown that maximum anthropogenic impacts have shifted during the last 30 years from the U.S. and Europe to eastern and southern Asia.

  10. Radiative and temperature effects of aerosol simulated by the COSMO-Ru model for different atmospheric conditions and their testing against ground-based measurements and accurate RT simulations

    NASA Astrophysics Data System (ADS)

    Chubarova, Nataly; Poliukhov, Alexei; Shatunova, Marina; Rivin, Gdali; Becker, Ralf; Muskatel, Harel; Blahak, Ulrich; Kinne, Stefan; Tarasova, Tatiana

    2017-04-01

    We use the operational Russian COSMO-Ru weather forecast model (Ritter and and Geleyn, 1991) with different aerosol input data for the evaluation of radiative and temperature effects of aerosol in different atmospheric conditions. Various aerosol datasets were utilized including Tegen climatology (Tegen et al., 1997), updated Macv2 climatology (Kinne et al., 2013), Tanre climatology (Tanre et al., 1984) as well as the MACC data (Morcrette et al., 2009). For clear sky conditions we compare the radiative effects from the COSMO-Ru model over Moscow (55.7N, 37.5E) and Lindenberg/Falkenberg sites (52.2N, 14.1E) with the results obtained using long-term aerosol measurements. Additional tests of the COSMO RT code were performed against (FC05)-SW model (Tarasova T.A. and Fomin B.A., 2007). The overestimation of about 5-8% of COSMO RT code was obtained. The study of aerosol effect on temperature at 2 meters has revealed the sensitivity of about 0.7-1.1 degree C per 100 W/m2 change in shortwave net radiation due to aerosol variations. We also discuss the radiative impact of urban aerosol properties according to the long-term AERONET measurements in Moscow and Moscow suburb as well as long-term aerosol trends over Moscow from the measurements and Macv2 dataset. References: Kinne, S., O'Donnel D., Stier P., et al., J. Adv. Model. Earth Syst., 5, 704-740, 2013. Morcrette J.-J.,O. Boucher, L. Jones, eet al, J.GEOPHYS. RES.,VOL. 114, D06206, doi:10.1029/2008JD011235, 2009. Ritter, B. and Geleyn, J., Monthly Weather Review, 120, 303-325, 1992. Tanre, D., Geleyn, J., and Slingo, J., A. Deepak Publ., Hampton, Virginia, 133-177, 1984. Tarasova, T., and Fomin, B., Journal of Atmospheric and Oceanic Technology, 24, 1157-1162, 2007. Tegen, I., Hollrig, P., Chin, M., et al., Journal of Geophysical Research- Atmospheres, 102, 23895-23915, 1997.

  11. A generalized formulation for downscaling data based on Fourier Transform and inversion: Mathematical rationale and application to the Max-Planck-Institute aerosol climatology data

    NASA Astrophysics Data System (ADS)

    Zhang, Taiping; Stackhouse, Paul W.; Gupta, Shashi K.; Cox, Stephen J.; Mikovitz, J. Colleen

    2017-02-01

    Occasionally, a need arises to downscale a time series of data from a coarse temporal resolution to a finer one, a typical example being from monthly means to daily means. For this case, daily means derived as such are used as inputs of climatic or atmospheric models so that the model results may exhibit variance on the daily time scale and retain the monthly mean of the original data set without an abrupt change from the end of one month to the beginning of the next. Different methods have been developed which often need assumptions, free parameters and the solution of simultaneous equations. Here we derive a generalized formulation by means of Fourier transform and inversion so that it can be used to directly compute daily means from a series of an arbitrary number of monthly means. The formulation can be used to transform any coarse temporal resolution to a finer one. From the derived results, the original data can be recovered almost identically. As a real application, we use this method to derive the daily counterpart of the MAC-v1 aerosol climatology that provides monthly mean aerosol properties for 18 shortwave bands and 12 longwave bands for the years from 1860 to 2100. The derived daily means are to be used as inputs of the shortwave and longwave algorithms of the NASA GEWEX SRB project.

  12. On the ability of RegCM4 regional climate model to simulate surface solar radiation patterns over Europe: an assessment using satellite-based observations

    NASA Astrophysics Data System (ADS)

    Alexandri, G.; Georgoulias, A. K.; Zanis, P.; Katragkou, E.; Tsikerdekis, A.; Kourtidis, K.; Meleti, C.

    2015-07-01

    In this work, we assess the ability of RegCM4 regional climate model to simulate surface solar radiation (SSR) patterns over Europe. A decadal RegCM4 run (2000-2009) was implemented and evaluated against satellite-based observations from the Satellite Application Facility on Climate Monitoring (CM SAF) showing that the model simulates adequately the SSR patterns over the region. The bias between RegCM4 and CM SAF is +1.54 % for MFG (Meteosat First Generation) and +3.34 % for MSG (Meteosat Second Generation) observations. The relative contribution of parameters that determine the transmission of solar radiation within the atmosphere to the deviation appearing between RegCM4 and CM SAF SSR is also examined. Cloud macrophysical and microphysical properties such as cloud fractional cover (CFC), cloud optical thickness (COT) and cloud effective radius (Re) from RegCM4 are evaluated against data from CM SAF. The same procedure is repeated for aerosol optical properties such as aerosol optical depth (AOD), asymmetry factor (ASY) and single scattering albedo (SSA), as well as other parameters including surface broadband albedo (ALB) and water vapor amount (WV) using data from MACv1 aerosol climatology, from CERES satellite sensors and from ERA-Interim reanalysis. It is shown here that the good agreement between RegCM4 and satellite-based SSR observations can be partially attributed to counteracting effects among the above mentioned parameters. The contribution of each parameter to the RegCM4-CM SAF SSR deviations is estimated with the combined use of the aforementioned data and a radiative transfer model (SBDART). CFC, COT and AOD are the major determinants of these deviations; however, the other parameters also play an important role for specific regions and seasons.

  13. Impact of aerosol vertical distribution on aerosol direct radiative effect and heating rate in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Pappas, Vasileios; Hatzianastassiou, Nikolaos; Matsoukas, Christos; Koras Carracca, Mario; Kinne, Stefan; Vardavas, Ilias

    2015-04-01

    It is now well-established that aerosols cause an overall cooling effect at the surface and a warming effect within the atmosphere. At the top of the atmosphere (TOA), both positive and negative forcing can be found, depending on a number of other factors, such as surface albedo and relative position of clouds and aerosols. Whilst aerosol surface cooling is important due to its relation with surface temperature and other bio-environmental reasons, atmospheric heating is of special interest as well having significant impacts on atmospheric dynamics, such as formation of clouds and subsequent precipitation. The actual position of aerosols and their altitude relative to clouds is of major importance as certain types of aerosol, such as black carbon (BC) above clouds can have a significant impact on planetary albedo. The vertical distribution of aerosols and clouds has recently drawn the attention of the aerosol community, because partially can account for the differences between simulated aerosol radiative forcing with various models, and therefore decrease the level of our uncertainty regarding aerosol forcing, which is one of our priorities set by IPCC. The vertical profiles of aerosol optical and physical properties have been studied by various research groups around the world, following different methodologies and using various indices in order to present the impact of aerosols on radiation on different altitudes above the surface. However, there is still variability between the published results as to the actual effect of aerosols on shortwave radiation and on heating rate within the atmosphere. This study uses vertical information on aerosols from the Max Planck Aerosol Climatology (MAC-v1) global dataset, which is a combination of model output with quality ground-based measurements, in order to provide useful insight into the vertical profile of atmospheric heating for the Mediterranean region. MAC-v1 and the science behind this aerosol dataset have already been presented and its validity has been tested against satellite-based retrievals. A detailed spectral radiative transfer model (RTM), already used in a number of planetary and regional studies, has been used in the present study to calculate the vertically distributed aerosol direct radiative effects (DREs) and the associated aerosol heating/cooling profiles within the troposphere. Specific emphasis is given to assessment of the crucial issue of the differences between modeling the aerosol DREs using either columnar aerosol optical properties, as usually done, or vertically layered information on those properties, which is the state of the art and ideal practice. To address this problem, the following experiment has been performed: the same RTM has been used twice with the same meteorological conditions but in the first run (set1) columnar values for aerosol optical depth (AOD) have been used while using vertically distributed AOD in the second run (set2). In the second run vertically layered information for AOD is considered for 20 layers extending from the surface to 20 km a.m.s.l.. The vertical profile of AOD has been mainly based on ECHAM model. The aerosol DREs are computed at the Earth's surface, at TOA and at various levels in the atmosphere. Apart from AOD, the model also requires single-scattering albedo (SSA) and asymmetry parameter (ASY) in 18 different wavelengths, which are obtained by linear interpolation from the available wavelengths in HAC. The comparison between the obtained two sets of DRE (set1 and set2) reveal small, but notable differences which vary from one place to another. Within the atmosphere, the difference -averaged over the four seasons - ranges from -0.3 to 1.7 Wm-2 with a mean value of 0.32 Wm-2. Given the fact that the average column-integrated DREAtm values for the entire Mediterranean region based on columnar aerosol optical properties is 11.44 Wm-2, there is an average variance of 3.7 %, which locally could get to 14.9 %. Differences between the columnar and the vertically layered versions of the model also exist for DRE(TOA) and DRE(NetSurface) calculations.

  14. Disposal of Hospital Wastes Containing Pathogenic Organisms

    DTIC Science & Technology

    1979-09-01

    virus African swine fever virus Besnoitia besnoiti Borna disease virus Bovine infectious petechial fever virus Camel pox virus Ephemeral fever virus...Sindbis virus Tensaw virus Turlock virus Vaccinia virus Varicella virus Vole rickettsia Yellow fever virus, 17D vaccinL strain 163 Class 3 AlastruLn...Rickettsia - all species except Vole rickettsia when used for transmission or animal inoculation experiments Vesicular stomatitis virus Yellow fever virus

  15. Force Protection Technologies for the 2010-2020 Timeframe

    DTIC Science & Technology

    2003-11-01

    virus V12. Monkey pox virus Viruses V13. Rift Valley fever virus V14. Tick-borne encephalitis virus (Russian Spring-Summer... virus Viruses V20. Japanese encephalitis virus R1. Coxiella burnetti R2. Bartonella Quintana (Rochlimea quintana, Rickettsia quintana) R3...fever virus WV5. Oropouche virus WV6. Powassan virus WV7. Rocio virus Viruses (Warning List) WV8. St Louis encephalitis virus WB1.

  16. Evaluation of Animal and Plant Pathogens as Terrorism and Warfare Agents, Vectors and Pests

    DTIC Science & Technology

    2001-09-01

    fever virus Bluetongue virus African horse sickness virus Nipah swine encephalitis virus Lumpy skin disease virus Camel pox virus Bacteria Bacillus...anthracis Bulkholderia (Pseudomonas) mallei Brucella spp. Mycoplasmas Contagious bovine (pleuropneum.) (M. mycoides var. mycoides type SC) (CBPP...virus Newcastle disease virus Rinderpest virus Pest des petits ruminants virus Bluetongue virus Teschen disease virus (Porcine enterovirus type 1) Rift

  17. Blueberry (Vaccinium corymbosum)-Virus Diseases

    USDA-ARS?s Scientific Manuscript database

    At least six viruses have been found in highbush blueberry plantings in the Pacific Northwest: Blueberry mosaic virus, Blueberry red ringspot virus, Blueberry scorch virus, Blueberry shock virus, Tobacco ringspot virus, and Tomato ringspot virus. Six other virus and virus-like diseases of highbush b...

  18. Companion Animals as a Source of Viruses for Human Beings and Food Production Animals.

    PubMed

    Reperant, L A; Brown, I H; Haenen, O L; de Jong, M D; Osterhaus, A D M E; Papa, A; Rimstad, E; Valarcher, J-F; Kuiken, T

    2016-07-01

    Companion animals comprise a wide variety of species, including dogs, cats, horses, ferrets, guinea pigs, reptiles, birds and ornamental fish, as well as food production animal species, such as domestic pigs, kept as companion animals. Despite their prominent place in human society, little is known about the role of companion animals as sources of viruses for people and food production animals. Therefore, we reviewed the literature for accounts of infections of companion animals by zoonotic viruses and viruses of food production animals, and prioritized these viruses in terms of human health and economic importance. In total, 138 virus species reportedly capable of infecting companion animals were of concern for human and food production animal health: 59 of these viruses were infectious for human beings, 135 were infectious for food production mammals and birds, and 22 were infectious for food production fishes. Viruses of highest concern for human health included hantaviruses, Tahyna virus, rabies virus, West Nile virus, tick-borne encephalitis virus, Crimean-Congo haemorrhagic fever virus, Aichi virus, European bat lyssavirus, hepatitis E virus, cowpox virus, G5 rotavirus, influenza A virus and lymphocytic choriomeningitis virus. Viruses of highest concern for food production mammals and birds included bluetongue virus, African swine fever virus, foot-and-mouth disease virus, lumpy skin disease virus, Rift Valley fever virus, porcine circovirus, classical swine fever virus, equine herpesvirus 9, peste des petits ruminants virus and equine infectious anaemia virus. Viruses of highest concern for food production fishes included cyprinid herpesvirus 3 (koi herpesvirus), viral haemorrhagic septicaemia virus and infectious pancreatic necrosis virus. Of particular concern as sources of zoonotic or food production animal viruses were domestic carnivores, rodents and food production animals kept as companion animals. The current list of viruses provides an objective basis for more in-depth analysis of the risk of companion animals as sources of viruses for human and food production animal health. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...

  20. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...

  1. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...

  2. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...

  3. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...

  4. 9 CFR 121.4 - Overlap select agents and toxins.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; Hendra virus; Nipah virus; Rift Valley fever virus; Venezuelan equine encephalitis virus. (c) Genetic... melitensis, Hendra virus, Nipah virus, Rift Valley fever virus, and Venezuelan equine encephalitis virus...

  5. 76 FR 72417 - Public Health Service Guideline for Reducing Transmission of Human Immunodeficiency Virus (HIV...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... (HIV), Hepatitis B Virus (HBV), and Hepatitis C Virus (HCV) Through Solid Organ Transplantation AGENCY... Reducing Transmission of Human Immunodeficiency Virus (HIV), Hepatitis B Virus (HBV), and Hepatitis C Virus... Transmission of Human Immunodeficiency Virus (HIV), Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) through...

  6. Rapid detection of fifteen known soybean viruses by dot-immunobinding assay.

    PubMed

    Ali, Akhtar

    2017-11-01

    A dot-immunobinding assay (DIBA) was optimized and used successfully for the rapid detection of 15 known viruses [Alfalfa mosaic virus (AMV), Bean pod mottle virus (BPMV), Bean yellow mosaic virus (BYMV), Cowpea mild mottle virus (CPMMV), Cowpea severe mosaic virus (CPSMV), Cucumber mosaic virus (CMV), Peanut mottle virus (PeMoV), Peanut stunt virus (PSV), Southern bean mosaic virus (SBMV), Soybean dwarf virus (SbDV), Soybean mosaic virus (SMV), Soybean vein necrosis virus (SVNV), Tobacco ringspot virus (TRSV), Tomato ringspot virus (ToRSV), and Tobacco streak virus (TSV)] infecting soybean plants in Oklahoma. More than 1000 leaf samples were collected in approximately 100 commercial soybean fields in 24 counties of Oklahoma, during the 2012-2013 growing seasons. All samples were tested by DIBA using polyclonal antibodies of the above 15 plant viruses. Thirteen viruses were detected, and 8 of them were reported for the first time in soybean crops of Oklahoma. The highest average incidence was recorded for PeMoV (13.5%) followed by SVNV (6.9%), TSV (6.4%), BYMV, (4.5%), and TRSV (3.9%), while the remaining seven viruses were detected in less than 2% of the samples tested. The DIBA was quick, and economical to screen more than 1000 samples against 15 known plant viruses in a very short time. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Potential Military Chemical/Biological Agents and Compounds

    DTIC Science & Technology

    2005-01-01

    synonym: fowl plague) Bluetongue virus Fungi Foot and mouth disease virus Colletorichum coffeanum var Goat pox virus Cochiliobolus...Swine vesicular disease virus) Virus Rinderpest virus (synonym: Cattle plague Barley Yellow Dwarf Virus Sheep pox virus Teschen disease virus...2) Occurrence. Infection has been documented throughout the US, in Canada, western and central Mexico , Panama, Costa Rica, Colombia, Argentina

  8. A Study of Waste Management within the COL Florence A. Blanchfield Army Community Hospital, Fort Campbell, Kentucky.

    DTIC Science & Technology

    1981-08-01

    besnoiti Borna disease virus Bovine infectious petechial fever virus Camel pox virus Ephemeral fever virus Fowl plague virus Goat pox virus Hog...Varicella virus Vole rickettsia Yellow fever virus, 17D vaccine strain 69 Class 3 Alastrun, smallpox, monkeypox, and whitepox, when used in vitro Arbovirus...animal inoculation experiments Vesicular stomatitis virus Yellow fever virus - wild when used in vitro Class 4 Alastrun, smallpox, monkeypox, and

  9. [Multiplex real-time PCR method for rapid detection of Marburg virus and Ebola virus].

    PubMed

    Yang, Yu; Bai, Lin; Hu, Kong-Xin; Yang, Zhi-Hong; Hu, Jian-Ping; Wang, Jing

    2012-08-01

    Marburg virus and Ebola virus are acute infections with high case fatality rates. A rapid, sensitive detection method was established to detect Marburg virus and Ebola virus by multiplex real-time fluorescence quantitative PCR. Designing primers and Taqman probes from highly conserved sequences of Marburg virus and Ebola virus through whole genome sequences alignment, Taqman probes labeled by FAM and Texas Red, the sensitivity of the multiplex real-time quantitative PCR assay was optimized by evaluating the different concentrations of primers and Probes. We have developed a real-time PCR method with the sensitivity of 30.5 copies/microl for Marburg virus positive plasmid and 28.6 copies/microl for Ebola virus positive plasmids, Japanese encephalitis virus, Yellow fever virus, Dengue virus were using to examine the specificity. The Multiplex real-time PCR assays provide a sensitive, reliable and efficient method to detect Marburg virus and Ebola virus simultaneously.

  10. Prevalence of herpes simplex, Epstein Barr and human papilloma viruses in oral lichen planus.

    PubMed

    Yildirim, Benay; Sengüven, Burcu; Demir, Cem

    2011-03-01

    The aim of the present study was to assess the prevalence of Herpes Simplex virus, Epstein Barr virus and Human Papilloma virus -16 in oral lichen planus cases and to evaluate whether any clinical variant, histopathological or demographic feature correlates with these viruses. The study was conducted on 65 cases. Viruses were detected immunohistochemically. We evaluated the histopathological and demographic features and statistically analysed correlation of these features with Herpes Simplex virus, Epstein Barr virus and Human Papilloma virus-16 positivity. Herpes Simplex virus was positive in six (9%) cases and this was not statistically significant. The number of Epstein Barr virus positive cases was 23 (35%) and it was statistically significant. Human Papilloma virus positivity in 14 cases (21%) was statistically significant. Except basal cell degeneration in Herpes Simplex virus positive cases, we did not observe any significant correlation between virus positivity and demographic or histopathological features. However an increased risk of Epstein Barr virus and Human Papilloma virus infection was noted in oral lichen planus cases. Taking into account the oncogenic potential of both viruses, oral lichen planus cases should be detected for the presence of these viruses.

  11. 78 FR 77107 - Notice of Availability for Exclusive, Non-Exclusive, or Partially-Exclusive Licensing of an...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... Valley Fever Virus, Ebola Virus, Andes Virus and Vesicular Stomatitis Virus Infectivity, Compositions and...,966, entitled ``Therapeutic Peptides that Inhibit Rift Valley Fever Virus, Ebola Virus, Andes Virus and Vesicular Stomatitis Virus Infectivity, Compositions and Methods,'' filed on December 6, 2012. The...

  12. High-Dose Mannose-Binding Lectin Therapy for Ebola Virus Infection

    DTIC Science & Technology

    2010-06-01

    viruses . N-glycosylation of viral envelopes is an important such target shared between in- fluenza, HIV, HCV, West Nile virus , SARS-CoV, Hendra virus ...host cells. Therefore, MBL preferentially recognizes glycosylated viruses including influenza virus , human immunodeficiency virus , severe acute...respiratory syndrome coronovirus (SARS-CoV), Ebola virus , and Marburg virus . It also recognizes many glycosylated gram- positive and gram-negative bacteria [1

  13. Research in Drug Development against Viral Diseases of Military Importance (Biological Testing).

    DTIC Science & Technology

    HAMSTERS, HEMORRHAGIC FEVERS, KOREA, VIRUSES , SECONDARY, STRAINS(BIOLOGY), VESICULAR STOMATITIS, VIRUS DISEASES, JAPANESE ENCEPHALITIS VIRUSES , MICE...SANDFLY FEVER VIRUS INFECTION, SPECTRA, VACCINIA VIRUS , VENEZUELAN EQUINE ENCEPHALOMYELITIS VIRUS , YELLOW FEVER VIRUS .

  14. Persistent RNA virus infections: do PAMPS drive chronic disease?

    PubMed Central

    McCarthy, Mary K.; Morrison, Thomas E.

    2017-01-01

    Chronic disease associated with persistent RNA virus infections represents a key public health concern. While human immunodeficiency virus-1 and hepatitis C virus are perhaps the most well-known examples of persistent RNA viruses that cause chronic disease, evidence suggests that many other RNA viruses, including re-emerging viruses such as chikungunya virus, Ebola virus and Zika virus, establish persistent infections. The mechanisms by which RNA viruses drive chronic disease are poorly understood. Here, we discuss how the persistence of viral RNA may drive chronic disease manifestations via the activation of RNA sensing pathways. PMID:28214732

  15. Detection of sweet potato viruses in Yunnan and genetic diversity analysis of the common viruses

    USDA-ARS?s Scientific Manuscript database

    Two hundred seventy-nine samples with virus-like symptoms collected from 16 regions in Yunnan Province were tested by RT-PCR/PCR using virus-specific primers for 8 sweet potato viruses. Six viruses, Sweet potato chlorotic fleck virus (SPCFV), Sweet Potato feathery mottle virus (SPFMV), Sweet potato ...

  16. 76 FR 58517 - Public Health Service Guideline for Reducing Transmission of Human Immunodeficiency Virus (HIV...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... (HIV), Hepatitis B Virus (HBV), and Hepatitis C Virus (HCV) Through Solid Organ Transplantation AGENCY... Immunodeficiency Virus (HIV), Hepatitis B Virus (HBV), and Hepatitis C Virus (HCV) through Solid Organ...), Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) through Solid Organ Transplantation, Docket No. CDC-2011...

  17. A 24.5-Year Global Dataset of Direct Normal Irradiance: Result from the Application of a Global-to-Beam Model to the NASA GEWEX SRB Global Horizontal Irradiance

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Stackhouse, P. W.; Chandler, W.; Hoell, J. M., Jr.; Westberg, D. J.

    2015-12-01

    The DIRINDEX model has previously been applied to the NASA GEWEX SRB Release 3.0 global horizontal irradiances (GHIs) to derive 3-hourly, daily and monthly mean direct normal irradiances (DNIs) for the period from 2000 to 2005 (http://dx.doi.org/10.1016/j.solener.2014.09.006), though the model was originally designed to estimate hourly DNIs from hourly GHIs. Input to the DIRINDEX model comprised 1.) the 3-hourly all-sky and clear-sky GHIs from the GEWEX SRB dataset; 2.) the surface pressure and the atmospheric column water vapor from the GEOS4 dataset; and 3.) daily mean aerosol optical depth at 700 nm derived from the daily mean aerosol data from the Model of Atmospheric Transport and CHemistry (MATCH). The GEWEX SRB data is spatially available on a quasi-equal-area global grid system consisting of 44016 boxes ranging from 1 degree latitude by 1 degree longitude around the Equator to 1 degree latitude by 120 degree longitude next to the poles. The derived DNIs were on the same grid system. Due to the limited availability of the MATCH aerosol data, the model was applied to the years from 2000 to 2005 only. The results were compared with ground-based measurements from 39 sites of the Baseline Surface Radiation Network (BSRN). The comparison statistics show that the results were in better agreement with their BSRN counterparts than the current Surface meteorology and Solar Energy (SSE) Release 6.0 data (https://eosweb.larc.nasa.gov/sse/). In this paper, we present results from the model over the entire time span of the GEWEX SRB Release 3.0 data (July 1983 to December2007) in which the MERRA atmospheric data were substituted for the GEOS4 data, and the Max-Planck Aerosol Climatology Version 1 (MAC-v1) data for the MATCH data. As a consequence, we derived a 24.5-year DNI dataset of global coverage continuous from July 1983 to December 2007. Comparisons with the BSRN data show that the results are comparable in quality with that from the earlier application.

  18. The NASA POWER SSE: Deriving the Direct Normal Counterpart from the CERES SYN1deg Hourly Global Horizontal Irradiance during Early 2000 to Near Present

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Stackhouse, P. W., Jr.; Westberg, D. J.

    2017-12-01

    The NASA Prediction of Worldwide Energy Resource (POWER) Surface meteorology and Solar Energy (SSE) provides solar direct normal irradiance (DNI) data as well as a variety of other solar parameters. The currently available DNIs are monthly means on a quasi-equal-area grid system with grid boxes roughly equivalent to 1 degree longitude by 1 degree latitude around the equator from July 1983 to June 2005, and the data were derived from the GEWEX Surface Radiation Budget (SRB) monthly mean global horizontal irradiance (GHI, Release 3) and regression analysis of the Baseline Surface Radiation Network (BSRN) data. To improve the quality of the DNI data and push the temporal coverage of the data to near present, we have applied a modified version of the DIRINDEX global-to-beam model to the GEWEX SRB (Release 3) all-sky and clear-sky 3-hourly GHI data and derived their DNI counterparts for the period from July 1983 to December 2007. The results have been validated against the BSRN data. To further expand the data in time to near present, we are now applying the DIRINDEX model to the Clouds and the Earth's Radiant Energy System (CERES) data. The CERES SYN1deg (Edition 4A) offers hourly all-sky and clear-sky GHIs on a 1 degree longitude by 1 degree latitude grid system from March 2000 to October 2016 as of this writing. Comparisons of the GHIs with their BSRN counterparts show remarkable agreements. Besides the GHIs, the inputs will also include the atmospheric water vapor and surface pressure from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and the aerosol optical depth from the Max-Planck Institute Climatology (MAC-v1). Based on the performance of the DIRINDEX model with the GEWEX SRB GHI data, we expect at least equally good or even better results. In this paper, we will show the derived hourly, daily, and monthly mean DNIs from the CERES SYN1deg hourly GHIs from March 2000 to October 2016 and how they compare with the BSRN data.

  19. Long-term variability of UV irradiance over Northern Eurasia according to satellite measurements, ERA-INTERIM dataset and INM-RSHU chemical climate model

    NASA Astrophysics Data System (ADS)

    Chubarova, Nataly; Pastukhova, Anna; Zhdanova, Ekaterina; Khlestova, Julia; Poliukhov, Alexei; Smyshlyaev, Sergei; Galin, Vener

    2017-04-01

    We present the results of long-term erythemal UV irradiance (ERY) changes over the territory of Northern Eurasia according to the ERA-INTERIM reanalysis dataset, INM-RSHU chemical climate model (CCM), and TOMS and OMI satellite data with the correction on absorbing aerosol based on the new Macv2 climatology updated from Kinne et al. (2013) over the 1979-2015 period. We show the existence of the pronounced positive ERY trend due to ozone in spring and summer over Europe and over the central areas of Siberia (up 3% over the decade). The changes in cloud cover provide even more significant ERY increase (up to 6-8% per decade). However, over Arctic region there is a pronounced negative ERY trend probably due to the effects of melting ice on global circulation processes. The combination of ozone and cloud effects provides the enhanced increase of the overall ERY trend: up to 6-9% in spring and summer over Eastern Europe, some regions of Siberia and the Far East. In addition, based on the method described in (Chubarova, Zhdanova, 2013) we estimated changes in UV resources over Northern Eurasia since 1979. We show that for the first skin type there is a significant geographical shift of UV categories: the increase in the UV optimum area in winter, where the vitamin D generation is possible without risk of getting sunburn, and its reducing in other months due to decrease in ozone and clouds. We also analyze the long-term UV changes simulated according to different scenarios using the INM-RSHU CCM. There is a general agreement between CCM and observational datasets, however, ERY trends due to cloudiness do not correspond sometimes in space and are smaller. We show that the positive ERY trend due to ozone is determined by the anthropogenic emissions of halogens. The variations in natural factors (solar activity and ocean surface temperature, stratospheric aerosol) only provide the increase in ERY dispersion. References: Kinne, S., O'Donnel D., Stier P., et al., J. Adv. Model. Earth Syst., 5, 704-740, 2013. Chubarova N., Zhdanova Ye. Photochemistry and Photobiology. - 2013. - Vol. 127. - P. 38-51.

  20. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses.

    PubMed

    van Riel, Debby; den Bakker, Michael A; Leijten, Lonneke M E; Chutinimitkul, Salin; Munster, Vincent J; de Wit, Emmie; Rimmelzwaan, Guus F; Fouchier, Ron A M; Osterhaus, Albert D M E; Kuiken, Thijs

    2010-04-01

    Influenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by virus histochemistry of three human and three avian influenza viruses in human nasal septum, conchae, nasopharynx, paranasal sinuses, and larynx. We found that the human influenza viruses-two seasonal influenza viruses and pandemic H1N1 virus-attached abundantly to ciliated epithelial cells and goblet cells throughout the upper respiratory tract. In contrast, the avian influenza viruses, including the highly pathogenic H5N1 virus, attached only rarely to epithelial cells or goblet cells. Both human and avian viruses attached occasionally to cells of the submucosal glands. The pattern of virus attachment was similar among the different sites of the human upper respiratory tract for each virus tested. We conclude that influenza viruses that are transmitted efficiently among humans attach abundantly to human upper respiratory tract, whereas inefficiently transmitted influenza viruses attach rarely. These results suggest that the ability of an influenza virus to attach to human upper respiratory tract is a critical factor for efficient transmission in the human population.

  1. Possible interference between seasonal epidemics of influenza and other respiratory viruses in Hong Kong, 2014-2017.

    PubMed

    Zheng, Xueying; Song, Zhengyu; Li, Yapeng; Zhang, Juanjuan; Wang, Xi-Ling

    2017-12-16

    Unlike influenza viruses, little is known about the prevalence and seasonality of other respiratory viruses because laboratory surveillance for non-influenza respiratory viruses is not well developed or supported in China and other resource-limited countries. We studied the interference between seasonal epidemics of influenza viruses and five other common viruses that cause respiratory illnesses in Hong Kong from 2014 to 2017. The weekly laboratory-confirmed positive rates of each virus were analyzed from 2014 to 2017 in Hong Kong to describe the epidemiological trends and interference between influenza viruses, respiratory syncytial virus (RSV), parainfluenza virus (PIV), adenovirus, enterovirus and rhinovirus. A sinusoidal model was established to estimate the peak timing of each virus by phase angle parameters. Seasonal features of the influenza viruses, PIV, enterovirus and adenovirus were obvious, whereas annual peaks of RSV and rhinovirus were not observed. The incidence of the influenza viruses usually peaked in February and July, and the summer peaks in July were generally caused by the H3 subtype of influenza A alone. When influenza viruses were active, other viruses tended to have a low level of activity. The peaks of the influenza viruses were not synchronized. An epidemic of rhinovirus tended to shift the subsequent epidemics of the other viruses. The evidence from recent surveillance data in Hong Kong suggests that viral interference during the epidemics of influenza viruses and other common respiratory viruses might affect the timing and duration of subsequent epidemics of a certain or several viruses.

  2. 9 CFR 121.9 - Responsible official.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., facsimile, or email: African horse sickness virus, African swine fever virus, avian influenza virus (highly pathogenic), Bacillus anthracis, Burkholderia mallei, Burkholderia pseudomallei, classical swine fever virus, foot-and-mouth disease virus, virulent Newcastle disease virus, rinderpest virus, and swine vesicular...

  3. 9 CFR 121.9 - Responsible official.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., facsimile, or email: African horse sickness virus, African swine fever virus, avian influenza virus (highly pathogenic), Bacillus anthracis, Burkholderia mallei, Burkholderia pseudomallei, classical swine fever virus, foot-and-mouth disease virus, virulent Newcastle disease virus, rinderpest virus, and swine vesicular...

  4. Influenza A and B Virus Intertypic Reassortment through Compatible Viral Packaging Signals

    PubMed Central

    Baker, Steven F.; Nogales, Aitor; Finch, Courtney; Tuffy, Kevin M.; Domm, William; Perez, Daniel R.; Topham, David J.

    2014-01-01

    ABSTRACT Influenza A and B viruses cocirculate in humans and together cause disease and seasonal epidemics. These two types of influenza viruses are evolutionarily divergent, and exchange of genetic segments inside coinfected cells occurs frequently within types but never between influenza A and B viruses. Possible mechanisms inhibiting the intertypic reassortment of genetic segments could be due to incompatible protein functions of segment homologs, a lack of processing of heterotypic segments by influenza virus RNA-dependent RNA polymerase, an inhibitory effect of viral proteins on heterotypic virus function, or an inability to specifically incorporate heterotypic segments into budding virions. Here, we demonstrate that the full-length hemagglutinin (HA) of prototype influenza B viruses can complement the function of multiple influenza A viruses. We show that viral noncoding regions were sufficient to drive gene expression for either type A or B influenza virus with its cognate or heterotypic polymerase. The native influenza B virus HA segment could not be incorporated into influenza A virus virions. However, by adding the influenza A virus packaging signals to full-length influenza B virus glycoproteins, we rescued influenza A viruses that possessed HA, NA, or both HA and NA of influenza B virus. Furthermore, we show that, similar to single-cycle infectious influenza A virus, influenza B virus cannot incorporate heterotypic transgenes due to packaging signal incompatibilities. Altogether, these results demonstrate that the lack of influenza A and B virus reassortants can be attributed at least in part to incompatibilities in the virus-specific packaging signals required for effective segment incorporation into nascent virions. IMPORTANCE Reassortment of influenza A or B viruses provides an evolutionary strategy leading to unique genotypes, which can spawn influenza A viruses with pandemic potential. However, the mechanism preventing intertypic reassortment or gene exchange between influenza A and B viruses is not well understood. Nucleotides comprising the coding termini of each influenza A virus gene segment are required for specific segment incorporation during budding. Whether influenza B virus shares a similar selective packaging strategy or if packaging signals prevent intertypic reassortment remains unknown. Here, we provide evidence suggesting a similar mechanism of influenza B virus genome packaging. Furthermore, by appending influenza A virus packaging signals onto influenza B virus segments, we rescued recombinant influenza A/B viruses that could reassort in vitro with another influenza A virus. These findings suggest that the divergent evolution of packaging signals aids with the speciation of influenza A and B viruses and is in part responsible for the lack of intertypic viral reassortment. PMID:25008914

  5. World Reference Center for Arboviruses.

    DTIC Science & Technology

    1983-01-01

    fever virus for antibody detection Antigen- detection ELISA was applied to dengue, and in another study o eastern encephalitis and Highland J viruses for...relatedness of RNA viruses ............................................. 60 Detection of eastern equine encephalitis virus and Highland J virus antigens...narrow. This suggests that Palyam group viruses are genetically quite stable. Virus identification. New viruses were identified in the Kemerovo group

  6. Research on computer virus database management system

    NASA Astrophysics Data System (ADS)

    Qi, Guoquan

    2011-12-01

    The growing proliferation of computer viruses becomes the lethal threat and research focus of the security of network information. While new virus is emerging, the number of viruses is growing, virus classification increasing complex. Virus naming because of agencies' capture time differences can not be unified. Although each agency has its own virus database, the communication between each other lacks, or virus information is incomplete, or a small number of sample information. This paper introduces the current construction status of the virus database at home and abroad, analyzes how to standardize and complete description of virus characteristics, and then gives the information integrity, storage security and manageable computer virus database design scheme.

  7. Homologous interference mediated by defective interfering influenza virus derived from a temperature-sensitive mutant of influenza virus.

    PubMed Central

    Nayak, D P; Tobita, K; Janda, J M; Davis, A R; De, B K

    1978-01-01

    A temperature-sensitive group II mutant of influenza virus, ts-52, with a presumed defect in viral RNA synthesis, readily produced von Magnus-type defective interfering virus (DI virus) when passed serially (four times) at high multiplicity in MDBK cells. The defective virus (ts-52 DI virus) had a high hemagglutinin and a low infectivity titer, and strongly interfered with the replication of standard infectious viruses (both ts-52 and wild-type ts+) in co-infected cells. Progeny virus particles produced by co-infection of DI virus and infectious virus were also defective and also had low infectivity, high hemagglutinating activity, and a strong interfering property. Infectious viruses ts+ and ts-52 were indistinguishable from ts-52 DI viruses by sucrose velocity or density gradient analysis. Additionally, these viruses all possessed similar morphology. However, when the RNA of DI viruses was analyzed by use of polyacrylamide gels containing 6 M urea, there was a reduction in the amount of large RNA species (V1 to V4), and a number of new smaller RNA species (D1 to D6) with molecular weights ranging from 2.9 X 10(5) to 1.05 X 10(5) appeared. Since these smaller RNA species (D1 to D6) were absent in some clones of infectious viruses, but were consistently associated with DI viruses and increased during undiluted passages and during co-infection of ts-52 with DI virus, they appeared to be a characteristic of DI viruses. Additionally, the UV target size of interfering activity and infectivity of DI virus indicated that interfering activity was 40 times more resistant to UV irradiation than was infectivity, further implicating small RNA molecules in interference. Our data suggest that the loss of infectivity observed among DI viruses may be due to nonspecific loss of a viral RNA segment(s), and the interfering property of DI viruses may be due to interfering RNA segments (DIRNA, D1 to D6). ts-52 DI virus interfered with the replication of standard virus (ts+) at both permissive (34 degrees C) and nonpermissive temperatures. The infectivity of the progeny virus was reduced to 0.2% for ts+ and 0.05% for ts-52 virus without a reduction in hemagglutinin titer. Interference was dependent on the concentration of DI virus. A particle ratio of 1 between DI virus (0.001 PFU/cell) and infectious virus (1.0 PFU/cell) produced a maximal amount of interference. Infectious virus yield was reduced 99.9% without any reduction of the yield of DI viruses Interference was also dependent on the time of addition of DI virus. Interference was most effective within the first 3 h of infection by infectious virus, indicating interference with an early function during viral replication. Images PMID:702654

  8. Breast milk transmission of flaviviruses in the context of Zika virus: A systematic review.

    PubMed

    Mann, Taylor Z; Haddad, Lisa B; Williams, Tonya R; Hills, Susan L; Read, Jennifer S; Dee, Deborah L; Dziuban, Eric J; Pérez-Padilla, Janice; Jamieson, Denise J; Honein, Margaret A; Shapiro-Mendoza, Carrie K

    2018-06-08

    Since the Zika virus epidemic in the Americas began in 2015, Zika virus transmission has occurred throughout the Americas. However, limited information exists regarding possible risks of transmission of Zika virus and other flaviviruses through breast feeding and human milk. We conducted a systematic review of the evidence regarding flaviviruses detection in and transmission through milk, specifically regarding Zika virus, Japanese encephalitis virus, tick-borne encephalitis virus, Powassan virus, West Nile virus, dengue virus, and yellow fever virus. Medline, Embase, Global Health, CINAHL, Cochrane Library, Scopus, Popline, Virtual Health Library, and WorldCat were searched through June 2017. Two authors independently screened potential studies for inclusion and extracted data. Human and nonhuman (animal) studies describing: 1) confirmed or suspected cases of mother-to-child transmission through milk; or 2) the presence of flavivirus genomic material in milk. Seventeen studies were included, four animal models and thirteen observational studies. Dengue virus, West Nile virus, and Zika virus viral ribonucleic acid was detected in human milk, including infectious Zika virus and dengue virus viral particles. Human breast-feeding transmission was confirmed for only yellow fever virus. There was evidence of milk-related transmission of dengue virus, Powassan virus, and West Nile virus in animal studies. Because the health advantages of breast feeding are considered greater than the potential risk of transmission, the World Health Organization recommends that mothers with possible or confirmed Zika virus infection or exposure continue to breast feed. This review did not identify any data that might alter this recommendation. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  9. Genomic Characterization of the Genus Nairovirus (Family Bunyaviridae).

    PubMed

    Kuhn, Jens H; Wiley, Michael R; Rodriguez, Sergio E; Bào, Yīmíng; Prieto, Karla; Travassos da Rosa, Amelia P A; Guzman, Hilda; Savji, Nazir; Ladner, Jason T; Tesh, Robert B; Wada, Jiro; Jahrling, Peter B; Bente, Dennis A; Palacios, Gustavo

    2016-06-10

    Nairovirus, one of five bunyaviral genera, includes seven species. Genomic sequence information is limited for members of the Dera Ghazi Khan, Hughes, Qalyub, Sakhalin, and Thiafora nairovirus species. We used next-generation sequencing and historical virus-culture samples to determine 14 complete and nine coding-complete nairoviral genome sequences to further characterize these species. Previously unsequenced viruses include Abu Mina, Clo Mor, Great Saltee, Hughes, Raza, Sakhalin, Soldado, and Tillamook viruses. In addition, we present genomic sequence information on additional isolates of previously sequenced Avalon, Dugbe, Sapphire II, and Zirqa viruses. Finally, we identify Tunis virus, previously thought to be a phlebovirus, as an isolate of Abu Hammad virus. Phylogenetic analyses indicate the need for reassignment of Sapphire II virus to Dera Ghazi Khan nairovirus and reassignment of Hazara, Tofla, and Nairobi sheep disease viruses to novel species. We also propose new species for the Kasokero group (Kasokero, Leopards Hill, Yogue viruses), the Ketarah group (Gossas, Issyk-kul, Keterah/soft tick viruses) and the Burana group (Wēnzhōu tick virus, Huángpí tick virus 1, Tǎchéng tick virus 1). Our analyses emphasize the sister relationship of nairoviruses and arenaviruses, and indicate that several nairo-like viruses (Shāyáng spider virus 1, Xīnzhōu spider virus, Sānxiá water strider virus 1, South Bay virus, Wǔhàn millipede virus 2) require establishment of novel genera in a larger nairovirus-arenavirus supergroup.

  10. Control of Disease Recurrence by Tumor-Infiltrating T Cells in Ovarian Cancer

    DTIC Science & Technology

    2011-03-01

    Epstein – Barr Virus and Influenza Virus ) positive control peptide pool. These epitopes...Influenza virus NP (380–388) Influenza virus NP (383–391) Influenza virus matrix protein M1 (128–135) Epstein – Barr virus LMP2 (426–434) Epstein – Barr ... virus BMLF1 (280–288) Epstein – Barr virus latent NA3B (399–408) Epstein – Barr virus Rta protein (28–37) Epstein – Barr

  11. Systematic analysis of protein identity between Zika virus and other arthropod-borne viruses.

    PubMed

    Chang, Hsiao-Han; Huber, Roland G; Bond, Peter J; Grad, Yonatan H; Camerini, David; Maurer-Stroh, Sebastian; Lipsitch, Marc

    2017-07-01

    To analyse the proportions of protein identity between Zika virus and dengue, Japanese encephalitis, yellow fever, West Nile and chikungunya viruses as well as polymorphism between different Zika virus strains. We used published protein sequences for the Zika virus and obtained protein sequences for the other viruses from the National Center for Biotechnology Information (NCBI) protein database or the NCBI virus variation resource. We used BLASTP to find regions of identity between viruses. We quantified the identity between the Zika virus and each of the other viruses, as well as within-Zika virus polymorphism for all amino acid k -mers across the proteome, with k ranging from 6 to 100. We assessed accessibility of protein fragments by calculating the solvent accessible surface area for the envelope and nonstructural-1 (NS1) proteins. In total, we identified 294 Zika virus protein fragments with both low proportion of identity with other viruses and low levels of polymorphisms among Zika virus strains. The list includes protein fragments from all Zika virus proteins, except NS3. NS4A has the highest number (190 k -mers) of protein fragments on the list. We provide a candidate list of protein fragments that could be used when developing a sensitive and specific serological test to detect previous Zika virus infections.

  12. In vivo and in vitro infection dynamics of honey bee viruses.

    PubMed

    Carrillo-Tripp, Jimena; Dolezal, Adam G; Goblirsch, Michael J; Miller, W Allen; Toth, Amy L; Bonning, Bryony C

    2016-02-29

    The honey bee (Apis mellifera) is commonly infected by multiple viruses. We developed an experimental system for the study of such mixed viral infections in newly emerged honey bees and in the cell line AmE-711, derived from honey bee embryos. When inoculating a mixture of iflavirids [sacbrood bee virus (SBV), deformed wing virus (DWV)] and dicistrovirids [Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV)] in both live bee and cell culture assays, IAPV replicated to higher levels than other viruses despite the fact that SBV was the major component of the inoculum mixture. When a different virus mix composed mainly of the dicistrovirid Kashmir bee virus (KBV) was tested in cell culture, the outcome was a rapid increase in KBV but not IAPV. We also sequenced the complete genome of an isolate of DWV that covertly infects the AmE-711 cell line, and found that this virus does not prevent IAPV and KBV from accumulating to high levels and causing cytopathic effects. These results indicate that different mechanisms of virus-host interaction affect virus dynamics, including complex virus-virus interactions, superinfections, specific virus saturation limits in cells and virus specialization for different cell types.

  13. CRYOTHERAPY AS A METHOD FOR REDUCING THE VIRUS INFECTION OF APPLES (Malus sp.).

    PubMed

    Romadanova, Natalya V; Mishustina, Svetlana A; Gritsenko, D ilyara A; Omasheva, Madina Y; Galiakparov, Nurbol N; Reed, Barbara M; Kushnarenko, Svetlana V

    2016-01-01

    There is an urgent need in Kazakhstan for virus-free nursery stock to reinvigorate the industry and preserve historic cultivars. An in vitro collection of apples could be used for virus testing and elimination and to provide virus-free elite stock plants to nurseries. Malus sieversii Ledeb. M. Roem. and Malus domestica Borkh. accessions were initiated in vitro for virus identification and elimination. Reverse transcription and multiplex PCR were used to test for five viruses. PVS2 vitrification was used as a tool for cryotherapy. Four viruses, Apple chlorotic leaf spot virus (ACLSV), Apple stem pitting virus (ASPV), Apple stem grooving virus (ASGV) and Apple mosaic virus (ApMV) were detected in 17 accessions. Tomato ringspot virus (ToRSV) was not detected. ACLSV affected 53.8% of the accessions, ASPV 30.8%, ASGV 5.1%, and ApMV was found only in 'Aport Alexander'. Cryotherapy produced virus-free shoot tips for seven of nine cultivars tested. Six cultivars had 60-100% elimination of ACLSV. An in vitro collection of 59 accessions was established. Virus elimination using cryotherapy produced virus-free shoots for seven of nine cultivars and is a promising technique for developing a virus-free apple collection.

  14. Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential

    PubMed Central

    Watanabe, Tokiko; Zhong, Gongxun; Russell, Colin A.; Nakajima, Noriko; Hatta, Masato; Hanson, Anthony; McBride, Ryan; Burke, David F.; Takahashi, Kenta; Fukuyama, Satoshi; Tomita, Yuriko; Maher, Eileen A.; Watanabe, Shinji; Imai, Masaki; Neumann, Gabriele; Hasegawa, Hideki; Paulson, James C.; Smith, Derek J.; Kawaoka, Yoshihiro

    2014-01-01

    Summary Wild birds harbor a large gene pool of influenza A viruses that have the potential to cause influenza pandemics. Foreseeing and understanding this potential is important for effective surveillance. Our phylogenetic and geographic analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future. To assess this risk, we generated and characterized a virus composed of avian influenza viral segments with high homology to the 1918 virus. This virus exhibited higher pathogenicity in mice and ferrets than an authentic avian influenza virus. Further, acquisition of seven amino acid substitutions in the viral polymerases and the hemagglutinin surface glycoprotein conferred respiratory droplet transmission to the 1918-like avian virus in ferrets, demonstrating that contemporary avian influenza viruses with 1918 virus-like proteins may have pandemic potential. PMID:24922572

  15. Computer Viruses. Technology Update.

    ERIC Educational Resources Information Center

    Ponder, Tim, Comp.; Ropog, Marty, Comp.; Keating, Joseph, Comp.

    This document provides general information on computer viruses, how to help protect a computer network from them, measures to take if a computer becomes infected. Highlights include the origins of computer viruses; virus contraction; a description of some common virus types (File Virus, Boot Sector/Partition Table Viruses, Trojan Horses, and…

  16. Targeting Innate Immunity for Antiviral Therapy through Small Molecule Agonists of the RLR Pathway

    PubMed Central

    Pattabhi, Sowmya; Wilkins, Courtney R.; Dong, Ran; Knoll, Megan L.; Posakony, Jeffrey; Kaiser, Shari; Mire, Chad E.; Wang, Myra L.; Ireton, Renee C.; Geisbert, Thomas W.; Bedard, Kristin M.; Iadonato, Shawn P.

    2015-01-01

    ABSTRACT The cellular response to virus infection is initiated when pathogen recognition receptors (PRR) engage viral pathogen-associated molecular patterns (PAMPs). This process results in induction of downstream signaling pathways that activate the transcription factor interferon regulatory factor 3 (IRF3). IRF3 plays a critical role in antiviral immunity to drive the expression of innate immune response genes, including those encoding antiviral factors, type 1 interferon, and immune modulatory cytokines, that act in concert to restrict virus replication. Thus, small molecule agonists that can promote IRF3 activation and induce innate immune gene expression could serve as antivirals to induce tissue-wide innate immunity for effective control of virus infection. We identified small molecule compounds that activate IRF3 to differentially induce discrete subsets of antiviral genes. We tested a lead compound and derivatives for the ability to suppress infections caused by a broad range of RNA viruses. Compound administration significantly decreased the viral RNA load in cultured cells that were infected with viruses of the family Flaviviridae, including West Nile virus, dengue virus, and hepatitis C virus, as well as viruses of the families Filoviridae (Ebola virus), Orthomyxoviridae (influenza A virus), Arenaviridae (Lassa virus), and Paramyxoviridae (respiratory syncytial virus, Nipah virus) to suppress infectious virus production. Knockdown studies mapped this response to the RIG-I-like receptor pathway. This work identifies a novel class of host-directed immune modulatory molecules that activate IRF3 to promote host antiviral responses to broadly suppress infections caused by RNA viruses of distinct genera. IMPORTANCE Incidences of emerging and reemerging RNA viruses highlight a desperate need for broad-spectrum antiviral agents that can effectively control infections caused by viruses of distinct genera. We identified small molecule compounds that can selectively activate IRF3 for the purpose of identifying drug-like molecules that can be developed for the treatment of viral infections. Here, we report the discovery of a hydroxyquinoline family of small molecules that can activate IRF3 to promote cellular antiviral responses. These molecules can prophylactically or therapeutically control infection in cell culture by pathogenic RNA viruses, including West Nile virus, dengue virus, hepatitis C virus, influenza A virus, respiratory syncytial virus, Nipah virus, Lassa virus, and Ebola virus. Our study thus identifies a class of small molecules with a novel mechanism to enhance host immune responses for antiviral activity against a variety of RNA viruses that pose a significant health care burden and/or that are known to cause infections with high case fatality rates. PMID:26676770

  17. Mixing of M Segment DNA Vaccines to Hantaan Virus and Puumala Virus Reduces Their Immunogenicity in Hamsters

    DTIC Science & Technology

    2008-01-01

    vaccines for Rift Valley fever virus, tick- borne encephalitis virus, Hantaan virus, and Crimean Congo hemorrhagic fever virus. Vaccine 2006;24(May 22 (21)):4657–66. ...Valley fever virus, tick-borne encephalitis virus, TNV, and Crimean Congo hemorrhagic fever virus [19]. Thus, it s clearly possible to develop certain...online 25 April 2008 eywords: a b s t r a c t To determine if DNA vaccines for two hantaviruses causing hemorrhagic

  18. Lassa-Vesicular Stomatitis Chimeric Virus Safely Destroys Brain Tumors

    PubMed Central

    Wollmann, Guido; Drokhlyansky, Eugene; Davis, John N.; Cepko, Connie

    2015-01-01

    ABSTRACT High-grade tumors in the brain are among the deadliest of cancers. Here, we took a promising oncolytic virus, vesicular stomatitis virus (VSV), and tested the hypothesis that the neurotoxicity associated with the virus could be eliminated without blocking its oncolytic potential in the brain by replacing the neurotropic VSV glycoprotein with the glycoprotein from one of five different viruses, including Ebola virus, Marburg virus, lymphocytic choriomeningitis virus (LCMV), rabies virus, and Lassa virus. Based on in vitro infections of normal and tumor cells, we selected two viruses to test in vivo. Wild-type VSV was lethal when injected directly into the brain. In contrast, a novel chimeric virus (VSV-LASV-GPC) containing genes from both the Lassa virus glycoprotein precursor (GPC) and VSV showed no adverse actions within or outside the brain and targeted and completely destroyed brain cancer, including high-grade glioblastoma and melanoma, even in metastatic cancer models. When mice had two brain tumors, intratumoral VSV-LASV-GPC injection in one tumor (glioma or melanoma) led to complete tumor destruction; importantly, the virus moved contralaterally within the brain to selectively infect the second noninjected tumor. A chimeric virus combining VSV genes with the gene coding for the Ebola virus glycoprotein was safe in the brain and also selectively targeted brain tumors but was substantially less effective in destroying brain tumors and prolonging survival of tumor-bearing mice. A tropism for multiple cancer types combined with an exquisite tumor specificity opens a new door to widespread application of VSV-LASV-GPC as a safe and efficacious oncolytic chimeric virus within the brain. IMPORTANCE Many viruses have been tested for their ability to target and kill cancer cells. Vesicular stomatitis virus (VSV) has shown substantial promise, but a key problem is that if it enters the brain, it can generate adverse neurologic consequences, including death. We tested a series of chimeric viruses containing genes coding for VSV, together with a gene coding for the glycoprotein from other viruses, including Ebola virus, Lassa virus, LCMV, rabies virus, and Marburg virus, which was substituted for the VSV glycoprotein gene. Ebola and Lassa chimeric viruses were safe in the brain and targeted brain tumors. Lassa-VSV was particularly effective, showed no adverse side effects even when injected directly into the brain, and targeted and destroyed two different types of deadly brain cancer, including glioblastoma and melanoma. PMID:25878115

  19. Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations

    PubMed Central

    Kuhn, Jens H.; Becker, Stephan; Ebihara, Hideki; Geisbert, Thomas W.; Johnson, Karl M.; Kawaoka, Yoshihiro; Lipkin, W. Ian; Negredo, Ana I.; Netesov, Sergey V.; Nichol, Stuart T.; Palacios, Gustavo; Peters, Clarence J.; Tenorio, Antonio; Volchkov, Viktor E.; Jahrling, Peter B.

    2011-01-01

    The taxonomy of the family Filoviridae (marburgviruses and ebolaviruses) has changed several times since the discovery of its members, resulting in a plethora of species and virus names and abbreviations. The current taxonomy has only been partially accepted by most laboratory virologists. Confusion likely arose for several reasons: species names that consist of several words or which (should) contain diacritical marks, the current orthographic identity of species and virus names, and the similar pronunciation of several virus abbreviations in the absence of guidance for the correct use of vernacular names. To rectify this problem, we suggest (1) to retain the current species names Reston ebolavirus, Sudan ebolavirus, and Zaire ebolavirus, but to replace the name Cote d'Ivoire ebolavirus [sic] with Taï Forest ebolavirus and Lake Victoria marburgvirus with Marburg marburgvirus; (2) to revert the virus names of the type marburgviruses and ebolaviruses to those used for decades in the field (Marburg virus instead of Lake Victoria marburgvirus and Ebola virus instead of Zaire ebolavirus); (3) to introduce names for the remaining viruses reminiscent of jargon used by laboratory virologists but nevertheless different from species names (Reston virus, Sudan virus, Taï Forest virus), and (4) to introduce distinct abbreviations for the individual viruses (RESTV for Reston virus, SUDV for Sudan virus, and TAFV for Taï Forest virus), while retaining that for Marburg virus (MARV) and reintroducing that used over decades for Ebola virus (EBOV). Paying tribute to developments in the field, we propose (a) to create a new ebolavirus species (Bundibugyo ebolavirus) for one member virus (Bundibugyo virus, BDBV); (b) to assign a second virus to the species Marburg marburgvirus (Ravn virus, RAVV) for better reflection of now available high-resolution phylogeny; and (c) to create a new tentative genus (Cuevavirus) with one tentative species (Lloviu cuevavirus) for the recently discovered Lloviu virus (LLOV). Furthermore, we explain the etymological derivation of individual names, their pronunciation, and their correct use, and we elaborate on demarcation criteria for each taxon and virus. PMID:21046175

  20. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koonin, Eugene V., E-mail: koonin@ncbi.nlm.nih.gov; Dolja, Valerian V., E-mail: doljav@science.oregonstate.edu; Krupovic, Mart, E-mail: krupovic@pasteur.fr

    2015-05-15

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangiblemore » clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources along with additional acquisitions of diverse genes. - Highlights: • Eukaryotic virome dramatically differs from the viromes of bacteria and archaea. • Eukaryotic virome is dominated by RNA viruses and retroelements. • All classes of eukaryotic viruses evolved by gene module exchange. • Prokaryotic ancestry is traceable for core gene modules of most eukaryotic viruses. • Evolutionary histories of viruses and transposable elements are tightly linked.« less

  1. Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations.

    PubMed

    Kuhn, Jens H; Becker, Stephan; Ebihara, Hideki; Geisbert, Thomas W; Johnson, Karl M; Kawaoka, Yoshihiro; Lipkin, W Ian; Negredo, Ana I; Netesov, Sergey V; Nichol, Stuart T; Palacios, Gustavo; Peters, Clarence J; Tenorio, Antonio; Volchkov, Viktor E; Jahrling, Peter B

    2010-12-01

    The taxonomy of the family Filoviridae (marburgviruses and ebolaviruses) has changed several times since the discovery of its members, resulting in a plethora of species and virus names and abbreviations. The current taxonomy has only been partially accepted by most laboratory virologists. Confusion likely arose for several reasons: species names that consist of several words or which (should) contain diacritical marks, the current orthographic identity of species and virus names, and the similar pronunciation of several virus abbreviations in the absence of guidance for the correct use of vernacular names. To rectify this problem, we suggest (1) to retain the current species names Reston ebolavirus, Sudan ebolavirus, and Zaire ebolavirus, but to replace the name Cote d'Ivoire ebolavirus [sic] with Taï Forest ebolavirus and Lake Victoria marburgvirus with Marburg marburgvirus; (2) to revert the virus names of the type marburgviruses and ebolaviruses to those used for decades in the field (Marburg virus instead of Lake Victoria marburgvirus and Ebola virus instead of Zaire ebolavirus); (3) to introduce names for the remaining viruses reminiscent of jargon used by laboratory virologists but nevertheless different from species names (Reston virus, Sudan virus, Taï Forest virus), and (4) to introduce distinct abbreviations for the individual viruses (RESTV for Reston virus, SUDV for Sudan virus, and TAFV for Taï Forest virus), while retaining that for Marburg virus (MARV) and reintroducing that used over decades for Ebola virus (EBOV). Paying tribute to developments in the field, we propose (a) to create a new ebolavirus species (Bundibugyo ebolavirus) for one member virus (Bundibugyo virus, BDBV); (b) to assign a second virus to the species Marburg marburgvirus (Ravn virus, RAVV) for better reflection of now available high-resolution phylogeny; and (c) to create a new tentative genus (Cuevavirus) with one tentative species (Lloviu cuevavirus) for the recently discovered Lloviu virus (LLOV). Furthermore, we explain the etymological derivation of individual names, their pronunciation, and their correct use, and we elaborate on demarcation criteria for each taxon and virus.

  2. Protein Analysis of Purified Respiratory Syncytial Virus Particles Reveals an Important Role for Heat Shock Protein 90 in Virus Particle Assembly*

    PubMed Central

    Radhakrishnan, Anuradha; Yeo, Dawn; Brown, Gaie; Myaing, Myint Zu; Iyer, Laxmi Ravi; Fleck, Roland; Tan, Boon-Huan; Aitken, Jim; Sanmun, Duangmanee; Tang, Kai; Yarwood, Andy; Brink, Jacob; Sugrue, Richard J.

    2010-01-01

    In this study, we used imaging and proteomics to identify the presence of virus-associated cellular proteins that may play a role in respiratory syncytial virus (RSV) maturation. Fluorescence microscopy of virus-infected cells revealed the presence of virus-induced cytoplasmic inclusion bodies and mature virus particles, the latter appearing as virus filaments. In situ electron tomography suggested that the virus filaments were complex structures that were able to package multiple copies of the virus genome. The virus particles were purified, and the protein content was analyzed by one-dimensional nano-LC MS/MS. In addition to all the major virus structural proteins, 25 cellular proteins were also detected, including proteins associated with the cortical actin network, energy pathways, and heat shock proteins (HSP70, HSC70, and HSP90). Representative actin-associated proteins, HSC70, and HSP90 were selected for further biological validation. The presence of β-actin, filamin-1, cofilin-1, HSC70, and HSP90 in the virus preparation was confirmed by immunoblotting using relevant antibodies. Immunofluorescence microscopy of infected cells stained with antibodies against relevant virus and cellular proteins confirmed the presence of these cellular proteins in the virus filaments and inclusion bodies. The relevance of HSP90 to virus infection was examined using the specific inhibitors 17-N-Allylamino-17-demethoxygeldanamycin. Although virus protein expression was largely unaffected by these drugs, we noted that the formation of virus particles was inhibited, and virus transmission was impaired, suggesting an important role for HSP90 in virus maturation. This study highlights the utility of proteomics in facilitating both our understanding of the role that cellular proteins play during RSV maturation and, by extrapolation, the identification of new potential targets for antiviral therapy. PMID:20530633

  3. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus

    PubMed Central

    Das, Sanchita; Rundell, Mark S.; Mirza, Aashiq H.; Pingle, Maneesh R.; Shigyo, Kristi; Garrison, Aura R.; Paragas, Jason; Smith, Scott K.; Olson, Victoria A.; Larone, Davise H.; Spitzer, Eric D.; Barany, Francis; Golightly, Linnie M.

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus). PMID:26381398

  4. Inactivation of pathogenic viruses by plant-derived tannins: strong effects of extracts from persimmon (Diospyros kaki) on a broad range of viruses.

    PubMed

    Ueda, Kyoko; Kawabata, Ryoko; Irie, Takashi; Nakai, Yoshiaki; Tohya, Yukinobu; Sakaguchi, Takemasa

    2013-01-01

    Tannins, plant-derived polyphenols and other related compounds, have been utilized for a long time in many fields such as the food industry and manufacturing. In this study, we investigated the anti-viral effects of tannins on 12 different viruses including both enveloped viruses (influenza virus H3N2, H5N3, herpes simplex virus-1, vesicular stomatitis virus, Sendai virus and Newcastle disease virus) and non-enveloped viruses (poliovirus, coxsachievirus, adenovirus, rotavirus, feline calicivirus and mouse norovirus). We found that extracts from persimmon (Diospyros kaki), which contains ca. 22% of persimmon tannin, reduced viral infectivity in more than 4-log scale against all of the viruses tested, showing strong anti-viral effects against a broad range of viruses. Other tannins derived from green tea, acacia and gallnuts were effective for some of the viruses, while the coffee extracts were not effective for any of the virus. We then investigated the mechanism of the anti-viral effects of persimmon extracts by using mainly influenza virus. Persimmon extracts were effective within 30 seconds at a concentration of 0.25% and inhibited attachment of the virus to cells. Pretreatment of cells with the persimmon extracts before virus infection or post-treatment after virus infection did not inhibit virus replication. Protein aggregation seems to be a fundamental mechanism underlying the anti-viral effect of persimmon tannin, since viral proteins formed aggregates when purified virions were treated with the persimmon extracts and since the anti-viral effect was competitively inhibited by a non-specific protein, bovine serum albumin. Considering that persimmon tannin is a food supplement, it has a potential to be utilized as a safe and highly effective anti-viral reagent against pathogenic viruses.

  5. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    PubMed Central

    Koonin, Eugene V.; Dolja, Valerian V.; Krupovic, Mart

    2018-01-01

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources along with additional acquisitions of diverse genes. PMID:25771806

  6. Following Acute Encephalitis, Semliki Forest Virus is Undetectable in the Brain by Infectivity Assays but Functional Virus RNA Capable of Generating Infectious Virus Persists for Life.

    PubMed

    Fragkoudis, Rennos; Dixon-Ballany, Catherine M; Zagrajek, Adrian K; Kedzierski, Lukasz; Fazakerley, John K

    2018-05-18

    Alphaviruses are mosquito-transmitted RNA viruses which generally cause acute disease including mild febrile illness, rash, arthralgia, myalgia and more severely, encephalitis. In the mouse, peripheral infection with Semliki Forest virus (SFV) results in encephalitis. With non-virulent strains, infectious virus is detectable in the brain, by standard infectivity assays, for around ten days. As we have shown previously, in severe combined immunodeficient (SCID) mice, infectious virus is detectable for months in the brain. Here we show that in MHC-II -/- mice, with no functional CD4 T-cells, infectious virus is also detectable in the brain for long periods. In contrast, in the brains of CD8 -/- mice, virus RNA persists but infectious virus is not detectable. In SCID mice infected with SFV, repeated intraperitoneal administration of anti-SFV immune serum rapidly reduced the titer of infectious virus in the brain to undetectable, however virus RNA persisted. Repeated intraperitoneal passive transfer of immune serum resulted in maintenance of brain virus RNA, with no detectable infectious virus, for several weeks. When passive antibody transfer was stopped, antibody levels declined and infectious virus was again detectable in the brain. In aged immunocompetent mice, previously infected with SFV, immunosuppression of antibody responses many months after initial infection also resulted in renewed ability to detect infectious virus in the brain. In summary, antiviral antibodies control and determine whether infectious virus is detectable in the brain but immune responses cannot clear this infection from the brain. Functional virus RNA capable of generating infectious virus persists and if antibody levels decline, infectious virus is again detectable.

  7. Inactivation of Pathogenic Viruses by Plant-Derived Tannins: Strong Effects of Extracts from Persimmon (Diospyros kaki) on a Broad Range of Viruses

    PubMed Central

    Ueda, Kyoko; Kawabata, Ryoko; Irie, Takashi; Nakai, Yoshiaki; Tohya, Yukinobu; Sakaguchi, Takemasa

    2013-01-01

    Tannins, plant-derived polyphenols and other related compounds, have been utilized for a long time in many fields such as the food industry and manufacturing. In this study, we investigated the anti-viral effects of tannins on 12 different viruses including both enveloped viruses (influenza virus H3N2, H5N3, herpes simplex virus-1, vesicular stomatitis virus, Sendai virus and Newcastle disease virus) and non-enveloped viruses (poliovirus, coxsachievirus, adenovirus, rotavirus, feline calicivirus and mouse norovirus). We found that extracts from persimmon (Diospyros kaki), which contains ca. 22% of persimmon tannin, reduced viral infectivity in more than 4-log scale against all of the viruses tested, showing strong anti-viral effects against a broad range of viruses. Other tannins derived from green tea, acacia and gallnuts were effective for some of the viruses, while the coffee extracts were not effective for any of the virus. We then investigated the mechanism of the anti-viral effects of persimmon extracts by using mainly influenza virus. Persimmon extracts were effective within 30 seconds at a concentration of 0.25% and inhibited attachment of the virus to cells. Pretreatment of cells with the persimmon extracts before virus infection or post-treatment after virus infection did not inhibit virus replication. Protein aggregation seems to be a fundamental mechanism underlying the anti-viral effect of persimmon tannin, since viral proteins formed aggregates when purified virions were treated with the persimmon extracts and since the anti-viral effect was competitively inhibited by a non-specific protein, bovine serum albumin. Considering that persimmon tannin is a food supplement, it has a potential to be utilized as a safe and highly effective anti-viral reagent against pathogenic viruses. PMID:23372851

  8. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    PubMed

    Das, Sanchita; Rundell, Mark S; Mirza, Aashiq H; Pingle, Maneesh R; Shigyo, Kristi; Garrison, Aura R; Paragas, Jason; Smith, Scott K; Olson, Victoria A; Larone, Davise H; Spitzer, Eric D; Barany, Francis; Golightly, Linnie M

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus).

  9. Antigenic variation of European haemorrhagic fever with renal syndrome virus strains characterized using bank vole monoclonal antibodies.

    PubMed

    Lundkvist, A; Fatouros, A; Niklasson, B

    1991-09-01

    Monoclonal antibodies (MAbs) against Puumala (PUU) virus, the aetiological agent of nephropathia epidemica, were produced by fusing activated spleen cells from a bank vole (Clethrionomys glareolus) with the mouse myeloma cell line SP2/0. This novel approach, utilizing the natural vector of PUU virus for hybridoma production, proved to be highly efficient, and eight stable PUU virus-specific heterohybridomas were isolated and characterized. The bank vole MAbs were all specific for the nucleocapsid protein (N) of PUU virus, as determined by immunoprecipitation. When evaluated by additivity immunoassays, the MAbs were found to recognize several different, distinct or overlapping, epitopes on N. The MAbs were used in immunofluorescence assays to compare eight PUU-related virus isolates, and the prototype Hantaan, Urban rat and Prospect Hill viruses. The reactivity varied among the different MAbs and could be classified into five groups. One MAb reacted exclusively with PUU-related viruses; two MAbs reacted with all PUU-related virus strains tested, as well as Prospect Hill virus, but did not react with Urban rat virus and Hantaan virus; one MAb reacted with all PUU-related virus strains tested and weakly with Hantaan virus, but not with Urban rat and Prospect Hill viruses; two MAbs reacted with all the virus strains tested. Two virus strains, K-27 and CG-1820, isolated in the western U.S.S.R., were distinguished from the other PUU-related virus strains by two MAbs, suggesting that the large group of independently isolated PUU-related viruses may be more heterogeneous than previously believed.

  10. Neurological Consequences of Cytomegalovirus Infection

    MedlinePlus

    ... viruses that causes cold sores (herpes simplex virus), infectious mononucleosis (Epstein-Barr virus), and chickenpox/shingles (varicella zoster ... viruses that causes cold sores (herpes simplex virus), infectious mononucleosis (Epstein-Barr virus), and chickenpox/shingles (varicella zoster ...

  11. Characterization of Influenza Virus Pseudotyped with Ebolavirus Glycoprotein.

    PubMed

    Xiao, Julie Huiyuan; Rijal, Pramila; Schimanski, Lisa; Tharkeshwar, Arun Kumar; Wright, Edward; Annaert, Wim; Townsend, Alain

    2018-02-15

    We have produced a new Ebola virus pseudotype, E-S-FLU, that can be handled in biosafety level 1/2 containment for laboratory analysis. The E-S-FLU virus is a single-cycle influenza virus coated with Ebolavirus glycoprotein, and it encodes enhanced green fluorescence protein as a reporter that replaces the influenza virus hemagglutinin. MDCK-SIAT1 cells were transduced to express Ebolavirus glycoprotein as a stable transmembrane protein for E-S-FLU virus production. Infection of cells with the E-S-FLU virus was dependent on the Niemann-Pick C1 protein, which is the well-characterized receptor for Ebola virus entry at the late endosome/lysosome membrane. The E-S-FLU virus was neutralized specifically by an anti-Ebolavirus glycoprotein antibody and a variety of small drug molecules that are known to inhibit the entry of wild-type Ebola virus. To demonstrate the application of this new Ebola virus pseudotype, we show that a single laboratory batch was sufficient to screen a library (LOPAC 1280 ; Sigma) of 1,280 pharmacologically active compounds for inhibition of virus entry. A total of 215 compounds inhibited E-S-FLU virus infection, while only 22 inhibited the control H5-S-FLU virus coated in H5 hemagglutinin. These inhibitory compounds have very dispersed targets and mechanisms of action, e.g., calcium channel blockers, estrogen receptor antagonists, antihistamines, serotonin uptake inhibitors, etc., and this correlates with inhibitor screening results obtained with other pseudotypes or wild-type Ebola virus in the literature. The E-S-FLU virus is a new tool for Ebola virus cell entry studies and is easily applied to high-throughput screening assays for small-molecule inhibitors or antibodies. IMPORTANCE Ebola virus is in the Filoviridae family and is a biosafety level 4 pathogen. There are no FDA-approved therapeutics for Ebola virus. These characteristics warrant the development of surrogates for Ebola virus that can be handled in more convenient laboratory containment to study the biology of the virus and screen for inhibitors. Here we characterized a new surrogate, named E-S-FLU virus, that is based on a disabled influenza virus core coated with the Ebola virus surface protein but does not contain any genetic information from the Ebola virus itself. We show that E-S-FLU virus uses the same cell entry pathway as wild-type Ebola virus. As an example of the ease of use of E-S-FLU virus in biosafety level 1/2 containment, we showed that a single production batch could provide enough surrogate virus to screen a standard small-molecule library of 1,280 candidates for inhibitors of viral entry. © Crown copyright 2018.

  12. Characterization of Influenza Virus Pseudotyped with Ebolavirus Glycoprotein

    PubMed Central

    Xiao, Julie Huiyuan; Rijal, Pramila; Schimanski, Lisa; Tharkeshwar, Arun Kumar; Wright, Edward; Annaert, Wim

    2017-01-01

    ABSTRACT We have produced a new Ebola virus pseudotype, E-S-FLU, that can be handled in biosafety level 1/2 containment for laboratory analysis. The E-S-FLU virus is a single-cycle influenza virus coated with Ebolavirus glycoprotein, and it encodes enhanced green fluorescence protein as a reporter that replaces the influenza virus hemagglutinin. MDCK-SIAT1 cells were transduced to express Ebolavirus glycoprotein as a stable transmembrane protein for E-S-FLU virus production. Infection of cells with the E-S-FLU virus was dependent on the Niemann-Pick C1 protein, which is the well-characterized receptor for Ebola virus entry at the late endosome/lysosome membrane. The E-S-FLU virus was neutralized specifically by an anti-Ebolavirus glycoprotein antibody and a variety of small drug molecules that are known to inhibit the entry of wild-type Ebola virus. To demonstrate the application of this new Ebola virus pseudotype, we show that a single laboratory batch was sufficient to screen a library (LOPAC1280; Sigma) of 1,280 pharmacologically active compounds for inhibition of virus entry. A total of 215 compounds inhibited E-S-FLU virus infection, while only 22 inhibited the control H5-S-FLU virus coated in H5 hemagglutinin. These inhibitory compounds have very dispersed targets and mechanisms of action, e.g., calcium channel blockers, estrogen receptor antagonists, antihistamines, serotonin uptake inhibitors, etc., and this correlates with inhibitor screening results obtained with other pseudotypes or wild-type Ebola virus in the literature. The E-S-FLU virus is a new tool for Ebola virus cell entry studies and is easily applied to high-throughput screening assays for small-molecule inhibitors or antibodies. IMPORTANCE Ebola virus is in the Filoviridae family and is a biosafety level 4 pathogen. There are no FDA-approved therapeutics for Ebola virus. These characteristics warrant the development of surrogates for Ebola virus that can be handled in more convenient laboratory containment to study the biology of the virus and screen for inhibitors. Here we characterized a new surrogate, named E-S-FLU virus, that is based on a disabled influenza virus core coated with the Ebola virus surface protein but does not contain any genetic information from the Ebola virus itself. We show that E-S-FLU virus uses the same cell entry pathway as wild-type Ebola virus. As an example of the ease of use of E-S-FLU virus in biosafety level 1/2 containment, we showed that a single production batch could provide enough surrogate virus to screen a standard small-molecule library of 1,280 candidates for inhibitors of viral entry. PMID:29212933

  13. Potyviruses, novel and known, in cultivated and wild species of the family Apiaceae in Australia.

    PubMed

    Moran, J; van Rijswijk, B; Traicevski, V; Kitajima, E W; Mackenzie, A M; Gibbs, A J

    2002-10-01

    Three potyviruses were identified by gene sequencing and found to be widespread in species of Apiaceae in Australia. Only celery mosaic virus was found in celery crops and in one of 180 specimens of feral carrot ( Daucus carota). Another related but distinct novel potyvirus, carrot virus Y, was the only virus found in carrot crops and all except one feral carrot. A more distantly related novel potyvirus, apium virus Y, was found in plants of sea celery ( Apium prostratum), cultivated parsley ( Petroselinum crispum) and the immigrant weed species poison hemlock ( Conium maculatum). These three potyviruses, together with celery yellow mosaic virus of South America and the closely related carrot thin leaf virus and carrot virus B of North America, form a distinct subgenus of the Potyviridae most closely related to turnip mosaic virus and two potyviruses of yam; yam mosaic virus from the Ivory Coast and Japanese yam mosaic virus. Celery mosaic and carrot virus Y are probably recent migrants to Australia, but apium virus Y may have been endemic longer. In ELISA tests using polyclonal antibodies against virions of celery mosaic virus, some isolates of carrot virus Y were indistinguishable from celery mosaic virus, whereas others gave smaller absorbancy values, and those of apium virus Y did not react. This study shows the value of virus identification based on gene sequencing for planning control measures.

  14. Tick-borne viruses: a review from the perspective of therapeutic approaches.

    PubMed

    Lani, Rafidah; Moghaddam, Ehsan; Haghani, Amin; Chang, Li-Yen; AbuBakar, Sazaly; Zandi, Keivan

    2014-09-01

    Several important human diseases worldwide are caused by tick-borne viruses. These diseases have become important public health concerns in recent years. The tick-borne viruses that cause diseases in humans mainly belong to 3 families: Bunyaviridae, Flaviviridae, and Reoviridae. In this review, we focus on therapeutic approaches for several of the more important tick-borne viruses from these 3 families. These viruses are Crimean-Congo hemorrhagic fever virus (CCHF) and the newly discovered tick-borne phleboviruses, known as thrombocytopenia syndromevirus (SFTSV), Heartland virus and Bhanja virus from the family Bunyaviridae, tick-borne encephalitis virus (TBEV), Powassan virus (POWV), Louping-ill virus (LIV), Omsk hemorrhagic fever virus (OHFV), Kyasanur Forest disease virus (KFDV), and Alkhurma hemorrhagic fever virus (AHFV) from the Flaviviridae family. To date, there is no effective antiviral drug available against most of these tick-borne viruses. Although there is common usage of antiviral drugs such as ribavirin for CCHF treatment in some countries, there are concerns that ribavirin may not be as effective as once thought against CCHF. Herein, we discuss also the availability of vaccines for the control of these viral infections. The lack of treatment and prevention approaches for these viruses is highlighted, and we hope that this review may increase public health awareness with regard to the threat posed by this group of viruses. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Replication of Many Human Viruses Is Refractory to Inhibition by Endogenous Cellular MicroRNAs

    PubMed Central

    Bogerd, Hal P.; Skalsky, Rebecca L.; Kennedy, Edward M.; Furuse, Yuki; Whisnant, Adam W.; Flores, Omar; Schultz, Kimberly L. W.; Putnam, Nicole; Barrows, Nicholas J.; Sherry, Barbara; Scholle, Frank; Garcia-Blanco, Mariano A.; Griffin, Diane E.

    2014-01-01

    ABSTRACT The issue of whether viruses are subject to restriction by endogenous microRNAs (miRNAs) and/or by virus-induced small interfering RNAs (siRNAs) in infected human somatic cells has been controversial. Here, we address this question in two ways. First, using deep sequencing, we demonstrate that infection of human cells by the RNA virus dengue virus (DENV) or West Nile virus (WNV) does not result in the production of any virus-derived siRNAs or viral miRNAs. Second, to more globally assess the potential of small regulatory RNAs to inhibit virus replication, we used gene editing to derive human cell lines that lack a functional Dicer enzyme and that therefore are unable to produce miRNAs or siRNAs. Infection of these cells with a wide range of viruses, including DENV, WNV, yellow fever virus, Sindbis virus, Venezuelan equine encephalitis virus, measles virus, influenza A virus, reovirus, vesicular stomatitis virus, human immunodeficiency virus type 1, or herpes simplex virus 1 (HSV-1), failed to reveal any enhancement in the replication of any of these viruses, although HSV-1, which encodes at least eight Dicer-dependent viral miRNAs, did replicate somewhat more slowly in the absence of Dicer. We conclude that most, and perhaps all, human viruses have evolved to be resistant to inhibition by endogenous human miRNAs during productive replication and that dependence on a cellular miRNA, as seen with hepatitis C virus, is rare. How viruses have evolved to avoid inhibition by endogenous cellular miRNAs, which are generally highly conserved during metazoan evolution, remains to be determined. IMPORTANCE Eukaryotic cells express a wide range of small regulatory RNAs, including miRNAs, that have the potential to inhibit the expression of mRNAs that show sequence complementarity. Indeed, previous work has suggested that endogenous miRNAs have the potential to inhibit viral gene expression and replication. Here, we demonstrate that the replication of a wide range of pathogenic viruses is not enhanced in human cells engineered to be unable to produce miRNAs, indicating that viruses have evolved to be resistant to inhibition by miRNAs. This result is important, as it implies that manipulation of miRNA levels is not likely to prove useful in inhibiting virus replication. It also focuses attention on the question of how viruses have evolved to resist inhibition by miRNAs and whether virus mutants that have lost this resistance might prove useful, for example, in the development of attenuated virus vaccines. PMID:24807715

  16. A 2014 nationwide survey of the distribution of Soybean mosaic virus (SMV), Soybean yellow mottle mosaic virus (SYMMV) and Soybean yellow common mosaic virus (SYCMV) major viruses in South Korean soybean fields, and changes

    USDA-ARS?s Scientific Manuscript database

    In 2014 symptomatic soybean samples were collected throughout Korea, and were tested for the most important soybean viruses found in Korea, namely Soybean mosaic virus (SMV), Soybean yellow common mosaic virus (SYCMV), and Soybean yellow mottle mosaic virus (SYMMV). SYMMV was most commonly detected,...

  17. Development of high-yield influenza B virus vaccine viruses

    PubMed Central

    Ping, Jihui; Lopes, Tiago J. S.; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-01-01

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six “internal” influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production. PMID:27930325

  18. Development of high-yield influenza B virus vaccine viruses.

    PubMed

    Ping, Jihui; Lopes, Tiago J S; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-12-20

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six "internal" influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production.

  19. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein.

    PubMed

    Bertagnoli, S; Gelfi, J; Le Gall, G; Boilletot, E; Vautherot, J F; Rasschaert, D; Laurent, S; Petit, F; Boucraut-Baralon, C; Milon, A

    1996-08-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma virus-specific antibodies in rabbits after immunization. Inoculations by the intradermal route protected animals against virulent RHDV and myxoma virus challenges.

  20. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein.

    PubMed Central

    Bertagnoli, S; Gelfi, J; Le Gall, G; Boilletot, E; Vautherot, J F; Rasschaert, D; Laurent, S; Petit, F; Boucraut-Baralon, C; Milon, A

    1996-01-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma virus-specific antibodies in rabbits after immunization. Inoculations by the intradermal route protected animals against virulent RHDV and myxoma virus challenges. PMID:8764013

  1. STUDIES OF MOUSE POLYOMA VIRUS INFECTION

    PubMed Central

    Hartley, Janet W.; Rowe, Wallace P.; Chanock, Robert M.; Andrews, Basil E.

    1959-01-01

    Treatment of guinea pig erythrocytes with types A and B influenza viruses rendered them inagglutinable by polyoma virus; also, the inhibitory effect of ovomucin on polyoma virus hemagglutination was destroyed by pretreatment of the ovomucin with various myxoviruses. These results indicate that polyoma virus and myxovirus erythrocyte receptor sites are identical. However, no destruction by polyoma virus of its own or of myxovirus receptors or inhibitors was detected. No serologic relationship was detected between polyoma virus and members of the myxovirus group; differences in size and stability further indicate their distinctness. No evidence was found of biologic or serologic relationship of polyoma virus with encephalomyocarditis virus or mouse encephalomyelitis virus. PMID:13664870

  2. Genomic reassortants of pandemic A (H1N1) 2009 virus and endemic porcine H1 and H3 viruses in swine in Japan.

    PubMed

    Kirisawa, Rikio; Ogasawara, Yoshitaka; Yoshitake, Hayato; Koda, Asuka; Furuya, Tokujiro

    2014-11-01

    From 2010 to 2013 in Japan, we isolated 11 swine influenza viruses (SIVs) from pigs showing respiratory symptoms. Sequence and phylogenetic analyses showed that 6 H1N1 viruses originated from the pandemic (H1N1) 2009 (pdm 09) virus and the other 5 viruses were reassortants between SIVs and pdm 09 viruses, representing 4 genotypes. Two H1N2 viruses contained H1 and N2 genes originated from Japanese H1N2 SIV together with internal genes of pdm 09 viruses. Additionally, 1 H1N2 virus contained a further NP gene originating from Japanese H1N2 SIV. One H1N1 virus contained only the H1 gene originating from Japanese H1 SIV in a pdm 09 virus background. One H3N2 virus contained H3 and N2 genes originating from Japanese H3N2 SIV together with internal genes of pdm 09 virus. The results indicate that pdm 09 viruses are distributed widely in the Japanese swine population and that several reassortments with Japanese SIVs have occurred.

  3. Archaeal Viruses Multiply: Temporal Screening in a Solar Saltern

    PubMed Central

    Atanasova, Nina S.; Demina, Tatiana A.; Buivydas, Andrius; Bamford, Dennis H.; Oksanen, Hanna M.

    2015-01-01

    Hypersaline environments around the world are dominated by archaea and their viruses. To date, very little is known about these viruses and their interaction with the host strains when compared to bacterial and eukaryotic viruses. We performed the first culture-dependent temporal screening of haloarchaeal viruses and their hosts in the saltern of Samut Sakhon, Thailand, during two subsequent years (2009, 2010). Altogether we obtained 36 haloarchaeal virus isolates and 36 archaeal strains, significantly increasing the number of known archaeal virus isolates. Interestingly, the morphological distribution of our temporal isolates (head-tailed, pleomorphic, and icosahedral membrane-containing viruses) was similar to the outcome of our previous spatial survey supporting the observations of a global resemblance of halophilic microorganisms and their viruses. Myoviruses represented the most abundant virus morphotype with strikingly broad host ranges. The other viral morphotypes (siphoviruses, as well as pleomorphic and icosahedral internal membrane-containing viruses) were more host-specific. We also identified a group of Halorubrum strains highly susceptible to numerous different viruses (up to 26). This high virus sensitivity, the abundance of broad host range viruses, and the maintenance of infectivity over a period of one year suggest constant interplay of halophilic microorganisms and their viruses within an extreme environment. PMID:25866903

  4. Archaeal viruses multiply: temporal screening in a solar saltern.

    PubMed

    Atanasova, Nina S; Demina, Tatiana A; Buivydas, Andrius; Bamford, Dennis H; Oksanen, Hanna M

    2015-04-10

    Hypersaline environments around the world are dominated by archaea and their viruses. To date, very little is known about these viruses and their interaction with the host strains when compared to bacterial and eukaryotic viruses. We performed the first culture-dependent temporal screening of haloarchaeal viruses and their hosts in the saltern of Samut Sakhon, Thailand, during two subsequent years (2009, 2010). Altogether we obtained 36 haloarchaeal virus isolates and 36 archaeal strains, significantly increasing the number of known archaeal virus isolates. Interestingly, the morphological distribution of our temporal isolates (head-tailed, pleomorphic, and icosahedral membrane-containing viruses) was similar to the outcome of our previous spatial survey supporting the observations of a global resemblance of halophilic microorganisms and their viruses. Myoviruses represented the most abundant virus morphotype with strikingly broad host ranges. The other viral morphotypes (siphoviruses, as well as pleomorphic and icosahedral internal membrane-containing viruses) were more host-specific. We also identified a group of Halorubrum strains highly susceptible to numerous different viruses (up to 26). This high virus sensitivity, the abundance of broad host range viruses, and the maintenance of infectivity over a period of one year suggest constant interplay of halophilic microorganisms and their viruses within an extreme environment.

  5. Evolutionary ecology of virus emergence.

    PubMed

    Dennehy, John J

    2017-02-01

    The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment. © 2016 New York Academy of Sciences.

  6. Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd, Richard E., E-mail: rlloyd@bcm.edu

    Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizesmore » recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. - Highlights: • Nuclear shuttling host proteins are commonly hijacked by RNA viruses to support replication. • A limited group of ubiquitous RNA binding proteins are commonly hijacked by a broad range of viruses. • Key virus proteins alter roles of RNA binding proteins in different stages of virus replication.« less

  7. Smaller Fleas: Viruses of Microorganisms

    PubMed Central

    Hyman, Paul; Abedon, Stephen T.

    2012-01-01

    Life forms can be roughly differentiated into those that are microscopic versus those that are not as well as those that are multicellular and those that, instead, are unicellular. Cellular organisms seem generally able to host viruses, and this propensity carries over to those that are both microscopic and less than truly multicellular. These viruses of microorganisms, or VoMs, in fact exist as the world's most abundant somewhat autonomous genetic entities and include the viruses of domain Bacteria (bacteriophages), the viruses of domain Archaea (archaeal viruses), the viruses of protists, the viruses of microscopic fungi such as yeasts (mycoviruses), and even the viruses of other viruses (satellite viruses). In this paper we provide an introduction to the concept of viruses of microorganisms, a.k.a., viruses of microbes. We provide broad discussion particularly of VoM diversity. VoM diversity currently spans, in total, at least three-dozen virus families. This is roughly ten families per category—bacterial, archaeal, fungal, and protist—with some virus families infecting more than one of these microorganism major taxa. Such estimations, however, will vary with further discovery and taxon assignment and also are dependent upon what forms of life one includes among microorganisms. PMID:24278736

  8. 9 CFR 121.9 - Responsible official.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: African horse sickness virus, African swine fever virus, avian influenza virus (highly pathogenic), Bacillus anthracis, bovine spongiform encephalopathy agent, Brucella melitensis, classical swine fever... Valley fever virus, rinderpest virus, swine vesicular disease virus, and Venezuelan equine encephalitis...

  9. 9 CFR 121.9 - Responsible official.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: African horse sickness virus, African swine fever virus, avian influenza virus (highly pathogenic), Bacillus anthracis, bovine spongiform encephalopathy agent, Brucella melitensis, classical swine fever... Valley fever virus, rinderpest virus, swine vesicular disease virus, and Venezuelan equine encephalitis...

  10. Seroprevalence of Toxoplasma gondii and concurrent Bartonella spp., feline immunodeficiency virus, feline leukemia virus, and Dirofilaria immitis infections in Egyptian cats

    USDA-ARS?s Scientific Manuscript database

    Toxoplasma gondii and Bartonella spp. are zoonotic pathogens of cats. Feline Immunodeficiency Virus (FIV), and Feline Leukemia Virus (FeLv) are related to Human Immunodeficiency Virus, and Human Leukemia Virus, respectively, and these viruses are immunosuppressive. In the present study, the prevalen...

  11. Elimination of five sugarcane viruses from sugarcane using in vitro culture of axillary bud and apical meristem

    USDA-ARS?s Scientific Manuscript database

    Procedures were developed for the in vitro elimination of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), Sugarcane streak mosaic virus (SCSMV), Sugarcane yellow leaf virus (SCYLV) and Fiji disease virus (FDV) from infected sugarcane. In vitro shoot regeneration, elongation and virus el...

  12. Understanding viruses: Philosophical investigations.

    PubMed

    Pradeu, Thomas; Kostyrka, Gladys; Dupré, John

    2016-10-01

    Viruses have been virtually absent from philosophy of biology. In this editorial introduction, we explain why we think viruses are philosophically important. We focus on six issues (the definition of viruses, the individuality and diachronic identity of a virus, the possibility to classify viruses into species, the question of whether viruses are living, the question of whether viruses are organisms, and finally the biological roles of viruses in ecology and evolution), and we show how they relate to classic questions of philosophy of biology and even general philosophy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Guide to the Correct Use of Filoviral Nomenclature.

    PubMed

    Kuhn, Jens H

    2017-01-01

    The International Committee on Taxonomy of Viruses (ICTV) currently recognizes three genera and seven species as part of the mononegaviral family Filoviridae. Eight distinct filoviruses (Bundibugyo virus, Ebola virus, Lloviu virus, Marburg virus, Ravn virus, Reston virus, Sudan virus, and Taï Forest virus) have been assigned to these seven species. This chapter briefly summarizes the status quo of filovirus classification and focuses on the importance of differentiating between filoviral species and filoviruses and the correct use of taxonomic and vernacular filovirus names and abbreviations in written and oral discourse.

  14. Genetic characterization of novel putative rhabdovirus and dsRNA virus from Japanese persimmon.

    PubMed

    Ito, Takao; Suzaki, Koichi; Nakano, Masaaki

    2013-08-01

    Deep-sequencing analysis of nucleic acids from leaf tissue of Japanese persimmon trees exhibiting fruit apex disorder in some fruits detected two molecules that were graft transmitted to healthy seedlings. One of the complete genomes consisted of 13 467 nt and encoded six genes similar to those of plant rhabdoviruses. The virus formed a distinct cluster in the genus Cytorhabdovirus with lettuce necrotic yellows virus, lettuce yellow mottle virus and strawberry crinkle virus in a phylogenetic tree based on the L protein (RNA-dependent RNA polymerase, RdRp). The other consisted of 7475 nt and shared a genome organization similar to those of some insect and fungal viruses having dsRNA genomes. In a phylogenetic tree using the RdRp sequence of several unassigned dsRNA viruses, the virus formed a possible new genus cluster with two insect viruses, Circulifer tenellus virus 1 and Spissistilus festinus virus 1, and one plant virus, cucurbit yellows-associated virus.

  15. Emerging influenza viruses and the prospect of a universal influenza virus vaccine.

    PubMed

    Krammer, Florian

    2015-05-01

    Influenza viruses cause annual seasonal epidemics and pandemics at irregular intervals. Several cases of human infections with avian and swine influenza viruses have been detected recently, warranting enhanced surveillance and the development of more effective countermeasures to address the pandemic potential of these viruses. The most effective countermeasure against influenza virus infection is the use of prophylactic vaccines. However, vaccines that are currently in use for seasonal influenza viruses have to be re-formulated and re-administered in a cumbersome process every year due to the antigenic drift of the virus. Furthermore, current seasonal vaccines are ineffective against novel pandemic strains. This paper reviews zoonotic influenza viruses with pandemic potential and technological advances towards better vaccines that induce broad and long lasting protection from influenza virus infection. Recent efforts have focused on the development of broadly protective/universal influenza virus vaccines that can provide immunity against drifted seasonal influenza virus strains but also against potential pandemic viruses. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Virus Infections of Honeybees Apis Mellifera

    PubMed Central

    Tantillo, Giuseppina; Bottaro, Marilisa; Di Pinto, Angela; Martella, Vito; Di Pinto, Pietro

    2015-01-01

    The health and vigour of honeybee colonies are threatened by numerous parasites (such as Varroa destructor and Nosema spp.) and pathogens, including viruses, bacteria, protozoa. Among honeybee pathogens, viruses are one of the major threats to the health and well-being of honeybees and cause serious concern for researchers and beekeepers. To tone down the threats posed by these invasive organisms, a better understanding of bee viral infections will be of crucial importance in developing effective and environmentally benign disease control strategies. Here we summarize recent progress in the understanding of the morphology, genome organization, transmission, epidemiology and pathogenesis of eight honeybee viruses: Deformed wing virus (DWV) and Kakugo virus (KV); Sacbrood virus (SBV); Black Queen cell virus (BQCV); Acute bee paralysis virus (ABPV); Kashmir bee virus (KBV); Israeli Acute Paralysis Virus (IAPV); Chronic bee paralysis virus (CBPV). The review has been designed to provide researchers in the field with updated information about honeybee viruses and to serve as a starting point for future research. PMID:27800411

  17. Emerging intracellular receptors for hemorrhagic fever viruses.

    PubMed

    Jae, Lucas T; Brummelkamp, Thijn R

    2015-07-01

    Ebola virus and Lassa virus belong to different virus families that can cause viral hemorrhagic fever, a life-threatening disease in humans with limited treatment options. To infect a target cell, Ebola and Lassa viruses engage receptors at the cell surface and are subsequently shuttled into the endosomal compartment. Upon arrival in late endosomes/lysosomes, the viruses trigger membrane fusion to release their genome into the cytoplasm. Although contact sites at the cell surface were recognized for Ebola virus and Lassa virus, it was postulated that Ebola virus requires a critical receptor inside the cell. Recent screens for host factors identified such internal receptors for both viruses: Niemann-Pick disease type C1 protein (NPC1) for Ebola virus and lysosome-associated membrane protein 1 (LAMP1) for Lassa virus. A cellular trigger is needed to permit binding of the viral envelope protein to these intracellular receptors. This 'receptor switch' represents a previously unnoticed step in virus entry with implications for host-pathogen interactions and viral tropism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Genomic sequencing of deer tick virus and phylogeny of powassan-related viruses of North America.

    PubMed

    Kuno, G; Artsob, H; Karabatsos, N; Tsuchiya, K R; Chang, G J

    2001-11-01

    Powassan (POW) virus is responsible for central nervous system infection in humans in North America and the eastern parts of Russia. Recently, a new flavivirus, deer tick (DT) virus, related to POW virus was isolated in the United States, but neither its pathogenic potential in human nor the taxonomic relationship with POW virus has been elucidated. In this study, we obtained the near-full-length genomic sequence of the DT virus and complete sequences of 3 genomic regions of 15 strains of POW-related virus strains. The phylogeny revealed 2 lineages, one of which had the prototype POW virus and the other DT virus. Both lineages can cause central nervous system infection in humans. By use of the combination of molecular definition of virus species within the genus Flavivirus and serological distinction in a 2-way cross-neutralization test, the lineage of DT virus is classified as a distinct genotype of POW virus.

  19. Lack of Durable Cross-Neutralizing Antibodies Against Zika Virus from Dengue Virus Infection.

    PubMed

    Collins, Matthew H; McGowan, Eileen; Jadi, Ramesh; Young, Ellen; Lopez, Cesar A; Baric, Ralph S; Lazear, Helen M; de Silva, Aravinda M

    2017-05-01

    Cross-reactive antibodies elicited by dengue virus (DENV) infection might affect Zika virus infection and confound serologic tests. Recent data demonstrate neutralization of Zika virus by monoclonal antibodies or human serum collected early after DENV infection. Whether this finding is true in late DENV convalescence (>6 months after infection) is unknown. We studied late convalescent serum samples from persons with prior DENV or Zika virus exposure. Despite extensive cross-reactivity in IgG binding, Zika virus neutralization was not observed among primary DENV infections. We observed low-frequency (23%) Zika virus cross-neutralization in repeat DENV infections. DENV-immune persons who had Zika virus as a secondary infection had distinct populations of antibodies that neutralized DENVs and Zika virus, as shown by DENV-reactive antibody depletion experiments. These data suggest that most DENV infections do not induce durable, high-level Zika virus cross-neutralizing antibodies. Zika virus-specific antibody populations develop after Zika virus infection irrespective of prior DENV immunity.

  20. [Behavior of Orf virus in permissive and nonpermissive systems].

    PubMed

    Büttner, M; Czerny, C P; Schumm, M

    1995-04-01

    Dogs were immunized i.m. with attenuated poxvirus vaccines (vaccinia virus, Orf-virus) and a bovine herpesvirus-1 (BHV-1) vaccine. After intradermal (i.d.) application of the vaccine viruses a specific delayed type hypersensitivity (DTH) reaction of the skin occurred only with vaccinia virus. The i.d. application of Orf-virus caused a short-term, non-specific inflammatory reaction of the skin, even in dogs not immunized with Orf-virus. Out of 30 sera from Orf-virus immunized beagles (n = 4) only eight were found reactive to Orf-virus in a competition ELISA. Three sera from dogs not Orf-virus immunized but skin-tested with the virus contained low antibody titers. Using indirect immunofluorescence (IIF) in flow cytometry, the existence of Orf-virus antigens was examined on the surface and in the cytoplasm of permissive (BFK and Vero)- and questionable permissive MDCK cells. The canine kidney MDCK cell line was found to be non-permissive for Orf-virus replication; the occurrence of an Orf-(ecthyma contagiosum) like disease in dogs is unlikely.

  1. Multiple oncogenic viruses are present in human breast tissues before development of virus associated breast cancer.

    PubMed

    Lawson, James S; Glenn, Wendy K

    2017-01-01

    Multiple oncogenic viruses including, mouse mammary tumor virus, bovine leukemia virus, human papilloma virus, and Epstein Barr virus, have been identified as separate infectious pathogens in human breast cancer. Here we demonstrate that these four viruses may be present in normal and benign breast tissues 1 to 11 years before the development of same virus breast cancer in the same patients. We combined the data we developed during investigations of the individual four oncogenic viruses and breast cancer. Patients who had benign breast biopsies 1-11 years prior to developing breast cancer were identified by pathology reports from a large Australian pathology service (Douglas Hanly Moir Pathology). Archival formalin fixed specimens from these patients were collected. The same archival specimens were used for (i) investigations of mouse mammary tumour virus (also known as human mammary tumour virus) conducted at the Icahn School of Medicine at Mount Sinai, New York and at the University of Pisa, Italy, (ii) bovine leukemia virus conducted at the University of California at Berkeley,(iii) human papilloma virus and Epstein Barr virus conducted at the University of New South Wales, Sydney, Australia. Seventeen normal breast tissues from cosmetic breast surgery conducted on Australian patients were used as controls. These patients were younger than those with benign and later breast cancer. Standard and in situ polymerase chain reaction (PCR) methods were used to identify the four viruses. The detailed methods are outlined in the separate publications.: mouse mammary tumor virus, human papilloma virus and Epstein Barr virus (Infect Agent Cancer 12:1, 2017, PLoS One 12:e0179367, 2017, Front Oncol 5:277, 2015, PLoS One 7:e48788, 2012). Epstein Barr virus and human papilloma virus were identified in the same breast cancer cells by in situ PCR. Mouse mammary tumour virus was identified in 6 (24%) of 25 benign breast specimens and in 9 (36%) of 25 breast cancer specimens which subsequently developed in the same patients. Bovine leukemia virus was identified in 18 (78%) of 23 benign breast specimens and in 20 (91%) of 22 subsequent breast cancers in the same patients. High risk human papilloma viruses were identified in 13 (72%) of 17 benign breast specimens and in 13 (76%) of 17 subsequent breast cancers in the same patients. Epstein Barr virus was not identified in any benign breast specimens but was identified in 3 (25%) of 12 subsequent breast cancers in the same patients. Mouse mammary tumour virus 3 (18%), bovine leukemia virus 6 (35%), high risk human papilloma virus 3 (18%) and Epstein Barr virus 5 (29%) were identified in 17 normal control breast specimens. These findings add to the evidence that multiple oncogenic viruses have potential roles in human breast cancer. This is an important observation because evidence of prior infection before the development of disease is a key criterion when assessing causation.

  2. The Discovery, Distribution, and Evolution of Viruses Associated with Drosophila melanogaster

    PubMed Central

    Webster, Claire L.; Waldron, Fergal M.; Robertson, Shaun; Crowson, Daisy; Ferrari, Giada; Quintana, Juan F.; Brouqui, Jean-Michel; Bayne, Elizabeth H.; Longdon, Ben; Buck, Amy H.; Lazzaro, Brian P.; Akorli, Jewelna; Haddrill, Penelope R.; Obbard, Darren J.

    2015-01-01

    Drosophila melanogaster is a valuable invertebrate model for viral infection and antiviral immunity, and is a focus for studies of insect-virus coevolution. Here we use a metagenomic approach to identify more than 20 previously undetected RNA viruses and a DNA virus associated with wild D. melanogaster. These viruses not only include distant relatives of known insect pathogens but also novel groups of insect-infecting viruses. By sequencing virus-derived small RNAs, we show that the viruses represent active infections of Drosophila. We find that the RNA viruses differ in the number and properties of their small RNAs, and we detect both siRNAs and a novel miRNA from the DNA virus. Analysis of small RNAs also allows us to identify putative viral sequences that lack detectable sequence similarity to known viruses. By surveying >2,000 individually collected wild adult Drosophila we show that more than 30% of D. melanogaster carry a detectable virus, and more than 6% carry multiple viruses. However, despite a high prevalence of the Wolbachia endosymbiont—which is known to be protective against virus infections in Drosophila—we were unable to detect any relationship between the presence of Wolbachia and the presence of any virus. Using publicly available RNA-seq datasets, we show that the community of viruses in Drosophila laboratories is very different from that seen in the wild, but that some of the newly discovered viruses are nevertheless widespread in laboratory lines and are ubiquitous in cell culture. By sequencing viruses from individual wild-collected flies we show that some viruses are shared between D. melanogaster and D. simulans. Our results provide an essential evolutionary and ecological context for host–virus interaction in Drosophila, and the newly reported viral sequences will help develop D. melanogaster further as a model for molecular and evolutionary virus research. PMID:26172158

  3. Foodborne transmission of nipah virus in Syrian hamsters.

    PubMed

    de Wit, Emmie; Prescott, Joseph; Falzarano, Darryl; Bushmaker, Trenton; Scott, Dana; Feldmann, Heinz; Munster, Vincent J

    2014-03-01

    Since 2001, outbreaks of Nipah virus have occurred almost every year in Bangladesh with high case-fatality rates. Epidemiological data suggest that in Bangladesh, Nipah virus is transmitted from the natural reservoir, fruit bats, to humans via consumption of date palm sap contaminated by bats, with subsequent human-to-human transmission. To experimentally investigate this epidemiological association between drinking of date palm sap and human cases of Nipah virus infection, we determined the viability of Nipah virus (strain Bangladesh/200401066) in artificial palm sap. At 22°C virus titers remained stable for at least 7 days, thus potentially allowing food-borne transmission. Next, we modeled food-borne Nipah virus infection by supplying Syrian hamsters with artificial palm sap containing Nipah virus. Drinking of 5×10⁸ TCID₅₀ of Nipah virus resulted in neurological disease in 5 out of 8 hamsters, indicating that food-borne transmission of Nipah virus can indeed occur. In comparison, intranasal (i.n.) inoculation with the same dose of Nipah virus resulted in lethal respiratory disease in all animals. In animals infected with Nipah virus via drinking, virus was detected in respiratory tissues rather than in the intestinal tract. Using fluorescently labeled Nipah virus particles, we showed that during drinking, a substantial amount of virus is deposited in the lungs, explaining the replication of Nipah virus in the respiratory tract of these hamsters. Besides the ability of Nipah virus to infect hamsters via the drinking route, Syrian hamsters infected via that route transmitted the virus through direct contact with naïve hamsters in 2 out of 24 transmission pairs. Although these findings do not directly prove that date palm sap contaminated with Nipah virus by bats is the origin of Nipah virus outbreaks in Bangladesh, they provide the first experimental support for this hypothesis. Understanding the Nipah virus transmission cycle is essential for preventing and mitigating future outbreaks.

  4. Foodborne Transmission of Nipah Virus in Syrian Hamsters

    PubMed Central

    de Wit, Emmie; Prescott, Joseph; Falzarano, Darryl; Bushmaker, Trenton; Scott, Dana; Feldmann, Heinz; Munster, Vincent J.

    2014-01-01

    Since 2001, outbreaks of Nipah virus have occurred almost every year in Bangladesh with high case-fatality rates. Epidemiological data suggest that in Bangladesh, Nipah virus is transmitted from the natural reservoir, fruit bats, to humans via consumption of date palm sap contaminated by bats, with subsequent human-to-human transmission. To experimentally investigate this epidemiological association between drinking of date palm sap and human cases of Nipah virus infection, we determined the viability of Nipah virus (strain Bangladesh/200401066) in artificial palm sap. At 22°C virus titers remained stable for at least 7 days, thus potentially allowing food-borne transmission. Next, we modeled food-borne Nipah virus infection by supplying Syrian hamsters with artificial palm sap containing Nipah virus. Drinking of 5×108 TCID50 of Nipah virus resulted in neurological disease in 5 out of 8 hamsters, indicating that food-borne transmission of Nipah virus can indeed occur. In comparison, intranasal (i.n.) inoculation with the same dose of Nipah virus resulted in lethal respiratory disease in all animals. In animals infected with Nipah virus via drinking, virus was detected in respiratory tissues rather than in the intestinal tract. Using fluorescently labeled Nipah virus particles, we showed that during drinking, a substantial amount of virus is deposited in the lungs, explaining the replication of Nipah virus in the respiratory tract of these hamsters. Besides the ability of Nipah virus to infect hamsters via the drinking route, Syrian hamsters infected via that route transmitted the virus through direct contact with naïve hamsters in 2 out of 24 transmission pairs. Although these findings do not directly prove that date palm sap contaminated with Nipah virus by bats is the origin of Nipah virus outbreaks in Bangladesh, they provide the first experimental support for this hypothesis. Understanding the Nipah virus transmission cycle is essential for preventing and mitigating future outbreaks. PMID:24626480

  5. Teratology Studies of Lewisite and Sulfur Mustard Agents: Effects of Lewisite in Rats and Rabbits

    DTIC Science & Technology

    1987-12-31

    virus of mice (PCM), rat corona virus /sialodacryoadenitis virus (RCV/SDA), H-1 virus and Kilham rat virus (KRV) by Microbiological Associates...Pneumonia virus of mice RCV/SDA = Rat corona virus /sialodacryoadenitis virus RH = Relative humidity SC = Subcutaneous SD = Standard deviation SE = Standard... cat , rabbit and human but apparently did not cross the placental membranes readily. The accumulation of a sufficient quantity of arsenate to induce a

  6. Vertical transmission of honey bee viruses in a Belgian queen breeding program.

    PubMed

    Ravoet, Jorgen; De Smet, Lina; Wenseleers, Tom; de Graaf, Dirk C

    2015-03-14

    The Member States of European Union are encouraged to improve the general conditions for the production and marketing of apicultural products. In Belgium, programmes on the restocking of honey bee hives have run for many years. Overall, the success ratio of this queen breeding programme has been only around 50%. To tackle this low efficacy, we organized sanitary controls of the breeding queens in 2012 and 2014. We found a high quantity of viruses, with more than 75% of the egg samples being infected with at least one virus. The most abundant viruses were Deformed Wing Virus and Sacbrood Virus (≥40%), although Lake Sinai Virus and Acute Bee Paralysis Virus were also occasionally detected (between 10-30%). In addition, Aphid Lethal Paralysis Virus strain Brookings, Black Queen Cell Virus, Chronic Bee Paralysis Virus and Varroa destructor Macula-like Virus occurred at very low prevalences (≤5%). Remarkably, we found Apis mellifera carnica bees to be less infected with Deformed Wing Virus than Buckfast bees (p < 0.01), and also found them to have a lower average total number of infecting viruses (p < 0.001). This is a significant finding, given that Deformed Wing Virus has earlier been shown to be a contributory factor to winter mortality and Colony Collapse Disorder. Moreover, negative-strand detection of Sacbrood Virus in eggs was demonstrated for the first time. High pathogen loads were observed in this sanitary control program. We documented for the first time vertical transmission of some viruses, as well as significant differences between two honey bee races in being affected by Deformed Wing Virus. Nevertheless, we could not demonstrate a correlation between the presence of viruses and queen breeding efficacies.

  7. Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus

    PubMed Central

    Pappas, Claudia; Aguilar, Patricia V.; Basler, Christopher F.; Solórzano, Alicia; Zeng, Hui; Perrone, Lucy A.; Palese, Peter; García-Sastre, Adolfo; Katz, Jacqueline M.; Tumpey, Terrence M.

    2008-01-01

    The 1918 influenza pandemic was exceptionally severe, resulting in the death of up to 50 million people worldwide. Here, we show which virus genes contributed to the replication and virulence of the 1918 influenza virus. Recombinant viruses, in which genes of the 1918 virus were replaced with genes from a contemporary human H1N1 influenza virus, A/Texas/36/91 (Tx/91), were generated. The exchange of most 1918 influenza virus genes with seasonal influenza H1N1 virus genes did not alter the virulence of the 1918 virus; however, substitution of the hemagglutinin (HA), neuraminidase (NA), or polymerase subunit PB1 genes significantly affected the ability of this virus to cause severe disease in mice. The 1918 virus virulence observed in mice correlated with the ability of 1918 recombinant viruses to replicate efficiently in human airway cells. In a second series of experiments, eight 1918 1:7 recombinants were generated, in which each Tx/91 virus gene was individually replaced by a corresponding gene from 1918 virus. Replication capacity of the individual 1:7 reassortant viruses was assessed in mouse lungs and human airway cells. Increased virus titers were observed among 1:7 viruses containing individual 1918 HA, NA, and PB1 genes. In addition, the 1918 PB1:Tx/91 (1:7) virus showed a distinctly larger plaque size phenotype than the small plaque phenotype of the 1918 PA:Tx/91 and 1918 PB2:Tx/91 1:7 reassortants. These results highlight the importance of the 1918 HA, NA, and PB1 genes for optimal virus replication and virulence of this pandemic strain. PMID:18287069

  8. Reverse genetics studies on the filamentous morphology of influenza A virus.

    PubMed

    Bourmakina, Svetlana V; García-Sastre, Adolfo

    2003-03-01

    We have investigated the genetic determinants responsible for the filamentous morphology of influenza A viruses, a property characteristic of primary virus isolates. A plasmid-based reverse genetics system was used to transfer the M segment of influenza A/Udorn/72 (H3N2) virus into influenza A/WSN/33 (H1N1) virus. While WSN virions display spherical morphology, recombinant WSN-Mud virus acquired the ability of the parental Udorn strain to form filamentous virus particles. This was determined by immunofluorescence studies in infected MDCK cells and by electron microscopy of purified virus particles. To determine the gene product within the M segment responsible for filamentous virus morphology, we generated four recombinant viruses carrying different sets of M1 and M2 genes from WSN or Udorn strains in a WSN background. These studies revealed that the M1 gene of Udorn, independently of the origin of the M2 gene, conferred filamentous budding properties and filamentous virus morphology to the recombinant viruses. We also constructed two WSN viruses encoding chimeric M1 proteins containing the amino-terminal 1-162 amino acids or the carboxy-terminal 163-252 amino acids of the Udorn M1 protein. Neither of these two viruses acquired filamentous phenotypes, indicating that both amino- and carboxy-terminal domains of the M1 protein contribute to filamentous virus morphology. We next rescued seven mutant WSN-M1ud viruses containing Udorn M1 proteins carrying single amino acid substitutions corresponding to the seven amino acid differences with the M1 protein of WSN virus. Characterization of these recombinant viruses revealed that amino acid residues 95 and 204 are critical in determining filamentous virus particle formation.

  9. Unbiased RNA Shotgun Metagenomics in Social and Solitary Wild Bees Detects Associations with Eukaryote Parasites and New Viruses

    PubMed Central

    De Smet, Lina; Smagghe, Guy; Vierstraete, Andy; Braeckman, Bart P.; de Graaf, Dirk C.

    2016-01-01

    The diversity of eukaryote organisms and viruses associated with wild bees remains poorly characterized in contrast to the well-documented pathosphere of the western honey bee, Apis mellifera. Using a deliberate RNA shotgun metagenomic sequencing strategy in combination with a dedicated bioinformatics workflow, we identified the (micro-)organisms and viruses associated with two bumble bee hosts, Bombus terrestris and Bombus pascuorum, and two solitary bee hosts, Osmia cornuta and Andrena vaga. Ion Torrent semiconductor sequencing generated approximately 3.8 million high quality reads. The most significant eukaryote associations were two protozoan, Apicystis bombi and Crithidia bombi, and one nematode parasite Sphaerularia bombi in bumble bees. The trypanosome protozoan C. bombi was also found in the solitary bee O. cornuta. Next to the identification of three honey bee viruses Black queen cell virus, Sacbrood virus and Varroa destructor virus-1 and four plant viruses, we describe two novel RNA viruses Scaldis River bee virus (SRBV) and Ganda bee virus (GABV) based on their partial genomic sequences. The novel viruses belong to the class of negative-sense RNA viruses, SRBV is related to the order Mononegavirales whereas GABV is related to the family Bunyaviridae. The potential biological role of both viruses in bees is discussed in the context of recent advances in the field of arthropod viruses. Further, fragmentary sequence evidence for other undescribed viruses is presented, among which a nudivirus in O. cornuta and an unclassified virus related to Chronic bee paralysis virus in B. terrestris. Our findings extend the current knowledge of wild bee parasites in general and addsto the growing evidence of unexplored arthropod viruses in valuable insects. PMID:28006002

  10. Unbiased RNA Shotgun Metagenomics in Social and Solitary Wild Bees Detects Associations with Eukaryote Parasites and New Viruses.

    PubMed

    Schoonvaere, Karel; De Smet, Lina; Smagghe, Guy; Vierstraete, Andy; Braeckman, Bart P; de Graaf, Dirk C

    2016-01-01

    The diversity of eukaryote organisms and viruses associated with wild bees remains poorly characterized in contrast to the well-documented pathosphere of the western honey bee, Apis mellifera. Using a deliberate RNA shotgun metagenomic sequencing strategy in combination with a dedicated bioinformatics workflow, we identified the (micro-)organisms and viruses associated with two bumble bee hosts, Bombus terrestris and Bombus pascuorum, and two solitary bee hosts, Osmia cornuta and Andrena vaga. Ion Torrent semiconductor sequencing generated approximately 3.8 million high quality reads. The most significant eukaryote associations were two protozoan, Apicystis bombi and Crithidia bombi, and one nematode parasite Sphaerularia bombi in bumble bees. The trypanosome protozoan C. bombi was also found in the solitary bee O. cornuta. Next to the identification of three honey bee viruses Black queen cell virus, Sacbrood virus and Varroa destructor virus-1 and four plant viruses, we describe two novel RNA viruses Scaldis River bee virus (SRBV) and Ganda bee virus (GABV) based on their partial genomic sequences. The novel viruses belong to the class of negative-sense RNA viruses, SRBV is related to the order Mononegavirales whereas GABV is related to the family Bunyaviridae. The potential biological role of both viruses in bees is discussed in the context of recent advances in the field of arthropod viruses. Further, fragmentary sequence evidence for other undescribed viruses is presented, among which a nudivirus in O. cornuta and an unclassified virus related to Chronic bee paralysis virus in B. terrestris. Our findings extend the current knowledge of wild bee parasites in general and addsto the growing evidence of unexplored arthropod viruses in valuable insects.

  11. Comparative genome and evolutionary analysis of naturally occurring Beilong virus in brown and black rats.

    PubMed

    Woo, Patrick C Y; Wong, Annette Y P; Wong, Beatrice H L; Lam, Carol S F; Fan, Rachel Y Y; Lau, Susanna K P; Yuen, Kwok-Yung

    2016-11-01

    Recently, we reported the presence of Beilong virus in spleen and kidney samples of brown rats and black rats, suggesting that these rodents could be natural reservoirs of Beilong virus. In this study, four genomes of Beilong virus from brown rats and black rats were sequenced. Similar to the Beilong virus genome sequenced from kidney mesangial cell line culture, those of J-virus from house mouse and Tailam virus from Sikkim rats, these four genomes from naturally occurring Beilong virus also contain the eight genes (3'-N-P/V/C-M-F-SH-TM-G-L-5'). In these four genomes, the attachment glycoprotein encoded by the G gene consists of 1046 amino acids; but for the original Beilong virus genome sequenced from kidney mesangial cell line, the G CDS was predicted to be prematurely terminated at position 2205 (TGG→TAG), resulting in a 734-amino-acid truncated G protein. This phenomenon of a lack of nonsense mutation in naturally occurring Beilong viruses was confirmed by sequencing this region of 15 additional rodent samples. Phylogenetic analyses showed that the cell line and naturally occurring Beilong viruses were closely clustered, without separation into subgroups. In addition, these viruses were further clustered with J-virus and Tailam virus, with high bootstrap supports of >90%, forming a distinct group in Paramyxoviridae. Brown rats and black rats are natural reservoirs of Beilong virus. Our results also supports that the recently proposed genus, Jeilongvirus, should encompass Beilong virus, J-virus and Tailam virus as members. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. 174.514... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic...

  13. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. 174.514... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic...

  14. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. 174.514... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic...

  15. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. 174.514... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic...

  16. Smallpox Antiviral Drug

    DTIC Science & Technology

    2007-01-01

    viruses, herpes simplex virus (HSV), cytomegalovirus (CMV), varicella-zoster virus (VZV), influenza A and B viruses, and respiratory syncytial virus...Rouzioux C. 2004. Penetration of enfuvirtide, tenofovir, efavirenz, and protease inhibitors in the genital tract of HIV-1-infected men. Aids 18:1958...1968. Sensitivity of herpes simplex virus, vaccinia virus, and adenoviruses to deoxyribonucleic acid inhibitors and thiosemicarbazones in a plaque

  17. Syrian Hamster as an Animal Model for the Study of Human Influenza Virus Infection.

    PubMed

    Iwatsuki-Horimoto, Kiyoko; Nakajima, Noriko; Ichiko, Yurie; Sakai-Tagawa, Yuko; Noda, Takeshi; Hasegawa, Hideki; Kawaoka, Yoshihiro

    2018-02-15

    Ferrets and mice are frequently used as animal models for influenza research. However, ferrets are demanding in terms of housing space and handling, whereas mice are not naturally susceptible to infection with human influenza A or B viruses. Therefore, prior adaptation of human viruses is required for their use in mice. In addition, there are no mouse-adapted variants of the recent H3N2 viruses, because these viruses do not replicate well in mice. In this study, we investigated the susceptibility of Syrian hamsters to influenza viruses with a view to using the hamster model as an alternative to the mouse model. We found that hamsters are sensitive to influenza viruses, including the recent H3N2 viruses, without adaptation. Although the hamsters did not show weight loss or clinical signs of H3N2 virus infection, we observed pathogenic effects in the respiratory tracts of the infected animals. All of the H3N2 viruses tested replicated in the respiratory organs of the hamsters, and some of them were detected in the nasal washes of infected animals. Moreover, a 2009 pandemic (pdm09) virus and a seasonal H1N1 virus, as well as one of the two H3N2 viruses, but not a type B virus, were transmissible by the airborne route in these hamsters. Hamsters thus have the potential to be a small-animal model for the study of influenza virus infection, including studies of the pathogenicity of H3N2 viruses and other strains, as well as for use in H1N1 virus transmission studies. IMPORTANCE We found that Syrian hamsters are susceptible to human influenza viruses, including the recent H3N2 viruses, without adaptation. We also found that a pdm09 virus and a seasonal H1N1 virus, as well as one of the H3N2 viruses, but not a type B virus tested, are transmitted by the airborne route in these hamsters. Syrian hamsters thus have the potential to be used as a small-animal model for the study of human influenza viruses. Copyright © 2018 American Society for Microbiology.

  18. Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species

    PubMed Central

    Di Giallonardo, Francesca; Schlub, Timothy E.; Shi, Mang

    2017-01-01

    ABSTRACT Viruses use the cellular machinery of their hosts for replication. It has therefore been proposed that the nucleotide and dinucleotide compositions of viruses should match those of their host species. If this is upheld, it may then be possible to use dinucleotide composition to predict the true host species of viruses sampled in metagenomic surveys. However, it is also clear that different taxonomic groups of viruses tend to have distinctive patterns of dinucleotide composition that may be independent of host species. To determine the relative strength of the effect of host versus virus family in shaping dinucleotide composition, we performed a comparative analysis of 20 RNA virus families from 15 host groupings, spanning two animal phyla and more than 900 virus species. In particular, we determined the odds ratios for the 16 possible dinucleotides and performed a discriminant analysis to evaluate the capability of virus dinucleotide composition to predict the correct virus family or host taxon from which it was isolated. Notably, while 81% of the data analyzed here were predicted to the correct virus family, only 62% of these data were predicted to their correct subphylum/class host and a mere 32% to their correct mammalian order. Similarly, dinucleotide composition has a weak predictive power for different hosts within individual virus families. We therefore conclude that dinucleotide composition is generally uniform within a virus family but less well reflects that of its host species. This has obvious implications for attempts to accurately predict host species from virus genome sequences alone. IMPORTANCE Determining the processes that shape virus genomes is central to understanding virus evolution and emergence. One question of particular importance is why nucleotide and dinucleotide frequencies differ so markedly between viruses. In particular, it is currently unclear whether host species or virus family has the biggest impact on dinucleotide frequencies and whether dinucleotide composition can be used to accurately predict host species. Using a comparative analysis, we show that dinucleotide composition has a strong phylogenetic association across different RNA virus families, such that dinucleotide composition can predict the family from which a virus sequence has been isolated. Conversely, dinucleotide composition has a poorer predictive power for the different host species within a virus family and across different virus families, indicating that the host has a relatively small impact on the dinucleotide composition of a virus genome. PMID:28148785

  19. Unique Safety Issues Associated with Virus Vectored Vaccines: Potential for and Theoretical Consequences of Recombination with Wild Type Virus Strains

    PubMed Central

    Condit, Richard C.; Williamson, Anna-Lise; Sheets, Rebecca; Seligman, Stephen J.; Monath, Thomas P.; Excler, Jean-Louis; Gurwith, Marc; Bok, Karin; Robertson, James S.; Kim, Denny; Hendry, Michael; Singh, Vidisha; Mac, Lisa M.; Chen, Robert T.

    2016-01-01

    In 2003 and 2013, the World Health Organization convened informal consultations on characterization and quality aspects of vaccines based on live virus vectors. In the resulting reports, one of several issues raised for future study was the potential for recombination of virus-vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of this issue formulated by the Brighton Collaboration. To provide an appropriate context for understanding the potential for recombination of virus-vectored vaccines, we review briefly the current status of virus vectored vaccines, mechanisms of recombination between viruses, experience with recombination involving live attenuated vaccines in the field, and concerns raised previously in the literature regarding recombination of virus-vectored vaccines with wild type virus strains. We then present a discussion of the major variables that could influence recombination between a virus-vectored vaccine and circulating wild type virus and the consequences of such recombination, including intrinsic recombination properties of the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, pathogenesis and transmission; replication competency of vector in target host; mechanism of vector attenuation; additional factors potentially affecting virulence; and circulation of multiple recombinant vectors in the same target population. Finally, we present some guiding principles for vector design and testing intended to anticipate and mitigate the potential for and consequences of recombination of virus-vectored vaccines with wild type pathogenic virus strains. PMID:27346303

  20. Epidemiological and Epizootiological Investigations of Filoviruses in the Central African Republic

    DTIC Science & Technology

    1989-01-01

    CAR, due to Yellow fever and Rift Valley fever viruses . Congo-CHF virus and 2 members of the Arenavirus group are also present in the CAR. Further...detected are specific of Ebola or Marburg virus , or can neutralize these viruses , and to study the Filovirus epidemiology in the CAR by establishing a...besides yellow fever virus , several pathogenic viruses such as West-Nile, Chikungunya, or more recently Semliki-Forest viruses , and two viruses

  1. Studies on the serological relationships between avian pox, sheep pox, goat pox and vaccinia viruses

    PubMed Central

    Uppal, P. K.; Nilakantan, P. R.

    1970-01-01

    By using neutralization, complement fixation and immunogel-diffusion tests, it has been demonstrated that cross-reactions occur between various avian pox viruses and between sheep pox and goat pox viruses. No such reactions were demonstrated between avian pox viruses and vaccinia virus or between avian pox and sheep pox and goat pox viruses. Furthermore, no serological relationship was demonstrable between vaccinia virus and sheep pox and goat pox viruses. PMID:4989854

  2. A mini-review of Bunyaviruses recorded in India.

    PubMed

    Yadav, Pragya D; Chaubal, Gouri Y; Shete, Anita M; Mourya, Devendra T

    2017-05-01

    Newly emerging and re-emerging viral infections are of major public health concern. Bunyaviridae family of viruses comprises a large group of animal viruses. Clinical symptoms exhibited by persons infected by viruses belonging to this family vary from mild-to-severe diseases i.e., febrile illness, encephalitis, haemorrhagic fever and acute respiratory illness. Several arthropods-borne viruses have been discovered and classified at serological level in India in the past. Some of these are highly pathogenic as the recent emergence and spread of Crimean-Congo haemorrhagic fever virus and presence of antibodies against Hantavirus in humans in India have provided evidences that it may become one of the emerging diseases in this country. For many of the discovered viruses, we still need to study their relevance to human and animal health. Chittoor virus, a variant of Batai virus; Ganjam virus, an Asian variant of Nairobi sheep disease virus; tick-borne viruses such as Bhanja, Palma and mosquito-borne viruses such as Sathuperi, Thimiri, Umbre and Ingwavuma viruses have been identified as the members of this family. As Bunyaviruses are three segmented RNA viruses, they can reassort the segments into genetically distinct viruses in target cells. This ability is believed to play a major role in evolution, pathogenesis and epidemiology of the viruses. Here, we provide a comprehensive overview of discovery, emergence and distribution of Bunyaviruses in India.

  3. A mini-review of Bunyaviruses recorded in India

    PubMed Central

    Yadav, Pragya D.; Chaubal, Gouri Y.; Shete, Anita M.; Mourya, Devendra T.

    2017-01-01

    Newly emerging and re-emerging viral infections are of major public health concern. Bunyaviridae family of viruses comprises a large group of animal viruses. Clinical symptoms exhibited by persons infected by viruses belonging to this family vary from mild-to-severe diseases i.e., febrile illness, encephalitis, haemorrhagic fever and acute respiratory illness. Several arthropods-borne viruses have been discovered and classified at serological level in India in the past. Some of these are highly pathogenic as the recent emergence and spread of Crimean-Congo haemorrhagic fever virus and presence of antibodies against Hantavirus in humans in India have provided evidences that it may become one of the emerging diseases in this country. For many of the discovered viruses, we still need to study their relevance to human and animal health. Chittoor virus, a variant of Batai virus; Ganjam virus, an Asian variant of Nairobi sheep disease virus; tick-borne viruses such as Bhanja, Palma and mosquito-borne viruses such as Sathuperi, Thimiri, Umbre and Ingwavuma viruses have been identified as the members of this family. As Bunyaviruses are three segmented RNA viruses, they can reassort the segments into genetically distinct viruses in target cells. This ability is believed to play a major role in evolution, pathogenesis and epidemiology of the viruses. Here, we provide a comprehensive overview of discovery, emergence and distribution of Bunyaviruses in India. PMID:28948950

  4. Research in drug development against viral diseases of military importance (biological testing). Volume 2. Final report, 15 November 1985-31 January 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shannon, W.M.; Arnett, G.; Brazier, A.D.

    1991-03-01

    The purpose of this program is to evaluate the efficacy of candidate antiviral compounds against a spectrum of viruses of military importance. This program involves (a) primary testing of chemical compounds and natural products for antiviral efficacy in vitro using standard CPE-inhibition assays, (b) primary testing of compounds for antiviral efficacy in vivo in animal model systems, and (c) secondary evaluation of the active candidate antiviral compounds. The target viruses for in vitro testing are Vaccinia Virus (VV), Adenovirus (AD2), Vesicular Stomatitis Virus (VSV), Punta Toro Virus (PT), Sandfly fever Virus (SF), Yellow Fever Virus (YF), Venezuelan Equine Encephalomyelitis Virusmore » (VE), Japanese Encephalitis Virus, Pichinde Virus (PIC), Hantaan Virus (HTN), and Human Immunodeficiency Virus (HIV). The in vivo systems are Pichinde Virus infection of hamsters, Venezuelan Equine Encephalomyelitis Virus, Japanese Encephalitis Virus and Vaccinia virus infections of mice. Approximately 10,000 compounds have been received for in vitro evaluation and over 66,000 assays have been performed on this contract. Compounds have been identified in nearly all virus systems that have confirmed antiviral activity equal or exceeding that of the various positive control compounds (ribavirin, selenazofurin, carbocyclic-3-aza-adenosine, adenosine dialdehyde, Ara-A, ddC and AZT). Many of these compounds represent potent and selective new antiviral agents.« less

  5. Replication and Immunogenicity of Swine, Equine, and Avian H3 Subtype Influenza Viruses in Mice and Ferrets

    PubMed Central

    Baz, Mariana; Paskel, Myeisha; Matsuoka, Yumiko; Zengel, James; Cheng, Xing; Jin, Hong

    2013-01-01

    Since it is difficult to predict which influenza virus subtype will cause an influenza pandemic, it is important to prepare influenza virus vaccines against different subtypes and evaluate the safety and immunogenicity of candidate vaccines in preclinical and clinical studies prior to a pandemic. In addition to infecting humans, H3 influenza viruses commonly infect pigs, horses, and avian species. We selected 11 swine, equine, and avian H3 influenza viruses and evaluated their kinetics of replication and ability to induce a broadly cross-reactive antibody response in mice and ferrets. The swine and equine viruses replicated well in the upper respiratory tract of mice. With the exception of one avian virus that replicated poorly in the lower respiratory tract, all of the viruses replicated in mouse lungs. In ferrets, all of the viruses replicated well in the upper respiratory tract, but the equine viruses replicated poorly in the lungs. Extrapulmonary spread was not observed in either mice or ferrets. No single virus elicited antibodies that cross-reacted with viruses from all three animal sources. Avian and equine H3 viruses elicited broadly cross-reactive antibodies against heterologous viruses isolated from the same or other species, but the swine viruses did not. We selected an equine and an avian H3 influenza virus for further development as vaccines. PMID:23576512

  6. Contemporary avian influenza A virus subtype H1, H6, H7, H10, and H15 hemagglutinin genes encode a mammalian virulence factor similar to the 1918 pandemic virus H1 hemagglutinin.

    PubMed

    Qi, Li; Pujanauski, Lindsey M; Davis, A Sally; Schwartzman, Louis M; Chertow, Daniel S; Baxter, David; Scherler, Kelsey; Hartshorn, Kevan L; Slemons, Richard D; Walters, Kathie-Anne; Kash, John C; Taubenberger, Jeffery K

    2014-11-18

    Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backbone, differing only by hemagglutinin subtype expressed. Viruses expressing the avian H1, H6, H7, H10, and H15 subtypes were pathogenic in mice and cytopathic in normal human bronchial epithelial cells, in contrast to H2-, H3-, H5-, H9-, H11-, H13-, H14-, and H16-expressing viruses. Mouse pathogenicity was associated with pulmonary macrophage and neutrophil recruitment. These data suggest that avian influenza virus hemagglutinins H1, H6, H7, H10, and H15 contain inherent mammalian virulence factors and likely share a key virulence property of the 1918 virus. Consequently, zoonotic infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals. Influenza viruses from birds can cause outbreaks in humans and may contribute to the development of pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its main surface protein, an H1 subtype hemagglutinin, was identified as a key mammalian virulence factor. In a previous study, a 1918 virus expressing an avian H1 gene was as virulent in mice as the reconstructed 1918 virus. Here, a set of avian influenza viruses was constructed, differing only by hemagglutinin subtype. Viruses with the avian H1, H6, H7, H10, and H15 subtypes caused severe disease in mice and damaged human lung cells. Consequently, infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals, and therefore surveillance for human infections with these subtypes may be important in controlling future outbreaks. Copyright © 2014 Qi et al.

  7. Virus movement within grafted watermelon plants

    USDA-ARS?s Scientific Manuscript database

    Watermelon production in Florida is impacted by several viruses including whitefly-transmitted Squash vein yellowing virus (SqVYV), Cucurbit yellow stunting disorder virus and Cucurbit leaf crumple virus, and aphid-transmitted Papaya ringspot virus type W (PRSV-W). While germplasm resistant to some...

  8. GENETIC CHARACTERISATION OF RABIES VIRUS ISOLATES IN BOSNIA AND HERZEGOVINA

    PubMed Central

    Velić, Ramiz; Bajrović, Tarik; Zvizdić, Šukrija; Velić, Lejla; Hamzić, Sadeta

    2008-01-01

    Serotyping of five rabies virus isolates with monoclonal anti-nucleoprotein antibodies for classical rabies virus and rabies-related viruses and phylogenetic relationships among sequences indicate that viruses circulating in population of animals in Bosnia and Herzegovina belong to the sero-genotype 1 of classical rabies virus. Phylogenetic relationships among sequences of our viruses have shown the presence of two phylogenetic lines, one which is present in the northwestern part and other which is present in the northeastern part of the country. Our viruses are closely related to Westeuropean isolates of rabies virus. PMID:18816256

  9. Virus inactivation under the photodynamic effect of phthalocyanine zinc(II) complexes.

    PubMed

    Remichkova, Mimi; Mukova, Luchia; Nikolaeva-Glomb, Lubomira; Nikolova, Nadya; Doumanova, Lubka; Mantareva, Vanya; Angelov, Ivan; Kussovski, Veselin; Galabov, Angel S

    2017-03-01

    Various metal phthalocyanines have been studied for their capacity for photodynamic effects on viruses. Two newly synthesized water-soluble phthalocyanine Zn(II) complexes with different charges, cationic methylpyridyloxy-substituted Zn(II)- phthalocyanine (ZnPcMe) and anionic sulfophenoxy-substituted Zn(II)-phthalocyanine (ZnPcS), were used for photoinactivation of two DNA-containing enveloped viruses (herpes simplex virus type 1 and vaccinia virus), two RNA-containing enveloped viruses (bovine viral diarrhea virus and Newcastle disease virus) and two nude viruses (the enterovirus Coxsackie B1, a RNA-containing virus, and human adenovirus 5, a DNA virus). These two differently charged phthalocyanine complexes showed an identical marked virucidal effect against herpes simplex virus type 1, which was one and the same at an irradiation lasting 5 or 20 min (Δlog=3.0 and 4.0, respectively). Towards vaccinia virus this effect was lower, Δlog=1.8 under the effect of ZnPcMe and 2.0 for ZnPcS. Bovine viral diarrhea virus manifested a moderate sensitivity to ZnPcMe (Δlog=1.8) and a pronounced one to ZnPcS at 5- and 20-min irradiation (Δlog=5.8 and 5.3, respectively). The complexes were unable to inactivate Newcastle disease virus, Coxsackievirus B1 and human adenovirus type 5.

  10. High titer oncolytic measles virus production process by integration of dielectric spectroscopy as online monitoring system.

    PubMed

    Grein, Tanja A; Loewe, Daniel; Dieken, Hauke; Salzig, Denise; Weidner, Tobias; Czermak, Peter

    2018-05-01

    Oncolytic viruses offer new hope to millions of patients with incurable cancer. One promising class of oncolytic viruses is Measles virus, but its broad administration to cancer patients is currently hampered by the inability to produce the large amounts of virus needed for treatment (10 10 -10 12 virus particles per dose). Measles virus is unstable, leading to very low virus titers during production. The time of infection and time of harvest are therefore critical parameters in a Measles virus production process, and their optimization requires an accurate online monitoring system. We integrated a probe based on dielectric spectroscopy (DS) into a stirred tank reactor to characterize the Measles virus production process in adherent growing Vero cells. We found that DS could be used to monitor cell adhesion on the microcarrier and that the optimal virus harvest time correlated with the global maximum permittivity signal. In 16 independent bioreactor runs, the maximum Measles virus titer was achieved approximately 40 hr after the permittivity maximum. Compared to an uncontrolled Measles virus production process, the integration of DS increased the maximum virus concentration by more than three orders of magnitude. This was sufficient to achieve an active Measles virus concentration of > 10 10 TCID 50 ml -1 . © 2017 Wiley Periodicals, Inc.

  11. Viruses of invasive Argentine ants from the European Main supercolony: characterization, interactions and evolution.

    PubMed

    Viljakainen, Lumi; Holmberg, Ida; Abril, Sílvia; Jurvansuu, Jaana

    2018-06-25

    The Argentine ant (Linepithema humile) is a highly invasive pest, yet very little is known about its viruses. We analysed individual RNA-sequencing data from 48 Argentine ant queens to identify and characterisze their viruses. We discovered eight complete RNA virus genomes - all from different virus families - and one putative partial entomopoxvirus genome. Seven of the nine virus sequences were found from ant samples spanning 7 years, suggesting that these viruses may cause long-term infections within the super-colony. Although all nine viruses successfully infect Argentine ants, they have very different characteristics, such as genome organization, prevalence, loads, activation frequencies and rates of evolution. The eight RNA viruses constituted in total 23 different virus combinations which, based on statistical analysis, were non-random, suggesting that virus compatibility is a factor in infections. We also searched for virus sequences from New Zealand and Californian Argentine ant RNA-sequencing data and discovered that many of the viruses are found on different continents, yet some viruses are prevalent only in certain colonies. The viral loads described here most probably present a normal asymptomatic level of infection; nevertheless, detailed knowledge of Argentine ant viruses may enable the design of viral biocontrol methods against this pest.

  12. Usutu virus persistence and West Nile virus inactivity in the Emilia-Romagna region (Italy) in 2011.

    PubMed

    Calzolari, Mattia; Bonilauri, Paolo; Bellini, Romeo; Albieri, Alessandro; Defilippo, Francesco; Tamba, Marco; Tassinari, Massimo; Gelati, Antonio; Cordioli, Paolo; Angelini, Paola; Dottori, Michele

    2013-01-01

    The circulation of West Nile virus and Usutu virus was detected in the Emilia-Romagna region in 2008 and 2009. To evaluate the extent of circulation of both viruses, environmental surveillance, based on bird and mosquito testing, was conducted in 2008 and gradually improved over the years. In February-March 2009-2011, 5,993 hibernating mosquitoes were manually sampled, out of which 80.1% were Culex pipiens; none tested positive for the viruses. From 2008 to 2011, 946,213 mosquitoes, sampled between May and October, were tested; 86.5% were Cx. pipiens. West Nile virus was detected in 32 Cx. pipiens pools, and Usutu virus was detected in 229 mosquito pools (217 Cx. pipiens, 10 Aedes albopictus, one Anopheles maculipennis s.l., and one Aedes caspius). From 2009 to 2011, of 4,546 birds collected, 42 tested positive for West Nile virus and 48 for Usutu virus. West Nile virus and Usutu virus showed different patterns of activity during the 2008-2011 surveillance period. West Nile virus was detected in 2008, 2009, and 2010, but not in 2011. Usutu virus, however, was continuously active throughout 2009, 2010, and 2011. The data strongly suggest that both viruses overwinter in the surveyed area rather than being continually reintroduced every season. The lack of hibernating mosquitoes testing positive for the viruses and the presence of positive birds sampled early in the season support the hypothesis that the viruses overwinter in birds rather than in mosquitoes. Herd immunity in key bird species could explain the decline of West Nile virus observed in 2011, while the persistence of Usutu virus may be explained by not yet identified reservoirs. Reported results are comparable with a peri-Mediterranean circulation of the West Nile virus lineage 1 related strain, which became undetectable in the environment after two to three years of obvious circulation.

  13. Survival of viral pathogens in animal feed ingredients under transboundary shipping models

    PubMed Central

    Bauermann, Fernando V.; Niederwerder, Megan C.; Singrey, Aaron; Clement, Travis; de Lima, Marcelo; Long, Craig; Patterson, Gilbert; Sheahan, Maureen A.; Stoian, Ana M. M.; Petrovan, Vlad; Jones, Cassandra K.; De Jong, Jon; Ji, Ju; Spronk, Gordon D.; Minion, Luke; Christopher-Hennings, Jane; Zimmerman, Jeff J.; Rowland, Raymond R. R.; Nelson, Eric; Sundberg, Paul; Diel, Diego G.

    2018-01-01

    The goal of this study was to evaluate survival of important viral pathogens of livestock in animal feed ingredients imported daily into the United States under simulated transboundary conditions. Eleven viruses were selected based on global significance and impact to the livestock industry, including Foot and Mouth Disease Virus (FMDV), Classical Swine Fever Virus (CSFV), African Swine Fever Virus (ASFV), Influenza A Virus of Swine (IAV-S), Pseudorabies virus (PRV), Nipah Virus (NiV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), Swine Vesicular Disease Virus (SVDV), Vesicular Stomatitis Virus (VSV), Porcine Circovirus Type 2 (PCV2) and Vesicular Exanthema of Swine Virus (VESV). Surrogate viruses with similar genetic and physical properties were used for 6 viruses. Surrogates belonged to the same virus families as target pathogens, and included Senecavirus A (SVA) for FMDV, Bovine Viral Diarrhea Virus (BVDV) for CSFV, Bovine Herpesvirus Type 1 (BHV-1) for PRV, Canine Distemper Virus (CDV) for NiV, Porcine Sapelovirus (PSV) for SVDV and Feline Calicivirus (FCV) for VESV. For the remaining target viruses, actual pathogens were used. Virus survival was evaluated using Trans-Pacific or Trans-Atlantic transboundary models involving representative feed ingredients, transport times and environmental conditions, with samples tested by PCR, VI and/or swine bioassay. SVA (representing FMDV), FCV (representing VESV), BHV-1 (representing PRV), PRRSV, PSV (representing SVDV), ASFV and PCV2 maintained infectivity during transport, while BVDV (representing CSFV), VSV, CDV (representing NiV) and IAV-S did not. Notably, more viruses survived in conventional soybean meal, lysine hydrochloride, choline chloride, vitamin D and pork sausage casings. These results support published data on transboundary risk of PEDV in feed, demonstrate survival of certain viruses in specific feed ingredients (“high-risk combinations”) under conditions simulating transport between continents and provide further evidence that contaminated feed ingredients may represent a risk for transport of pathogens at domestic and global levels. PMID:29558524

  14. Use of embryonated chicken egg as a model to study the susceptibility of avian influenza H9N2 viruses to oseltamivir carboxylate.

    PubMed

    Tare, Deeksha S; Pawar, Shailesh D

    2015-11-01

    Avian influenza (AI) H9N2 viruses are endemic in many bird species, and human infections of H9N2 viruses have been reported. Oseltamivir phosphate (Tamiflu(®)) is the available antiviral drug for the treatment and prophylaxis of influenza. There are no reports of use of embryonated chicken egg as a model to study susceptibility of AI viruses to oseltamivir carboxylate (OC), the active metabolite. The present study was undertaken to explore the use of embryonated chicken eggs as a model for testing OC against the AI H9N2 viruses. A total of three AI H9N2 viruses, isolated in poultry in India, were used. Various virus dilutions were tested against 14μg/ml of OC. Three methods, namely (1) the in vitro virus-drug treatment, (2) drug delivery and virus challenge by allantoic route, and (3) drug delivery by albumen route and virus challenge by allantoic route were explored. The viruses were also tested using the fluorescence-based neuraminidase inhibitor (NAI) assay. There was significant inhibition (p<0.05) of the H9N2 viruses in presence of OC. The infectious virus titers as well as hemagglutination titers were significantly lower in presence of OC as compared to controls. The in vitro treatment of virus and drug; and drug and virus delivery at the same time by allantoic route showed significantly higher inhibition (p<0.05) of virus growth than that by the albumen route. In the NAI assay, the half maximal inhibitory concentration (IC50) values of the H9N2 viruses were within the standard range for known susceptible reference virus. In conclusion, the H9N2 viruses used in the study were susceptible to OC. Embryonated chicken egg could be used as a model to study susceptibility of AI viruses to antiviral drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. [The growth of attenuated strains of canine parvovirus, mink enteritis virus, feline panleukopenia virus, and rabies virus on various types of cell cultures].

    PubMed

    Zuffa, T

    1987-10-01

    The growth characteristics were studied in the attenuated strains of canine parvovirus CPVA-BN 80/82, mink enteritis virus MEVA-BN 63/82 and feline panleucopenia virus FPVA-BN 110/83 on the stable feline kidney cell line FE, and in the attenuated canine distemper virus CDV-F-BN 10/83 on chicken embryo cell cultures (KEB) and cultures of the stable cell line VERO. When the FE cultures were infected with different parvoviruses in cell suspension at MOI 2-4 TKID50 per cell, the first multiplication of the intracellular virus was recorded 20 hours p. i. In the canine parvovirus, the content of intracellular and extracellular virus continued increasing parallelly until the fourth day; then, from the fourth to the sixth day, the content of extracellular virus still increased whereas that of intracellular virus fell rapidly. In the case of the mink enteritis virus the release of the virus into the culture medium continued parallelly with the production of the cellular virus until the sixth day. In the case of the feline panleucopenia virus the values concerning free virus and virus bound to cells were lower, starting from the second day p. i. When KEB or VERO cultures were infected in cell suspension with the canine distemper virus at MOI about 0.004 per 1 cell, the replicated intracellular virus was first recorded in the KEB cultures five hours after infection but in the VERO cultures only 20 hours after infection, with a timely release of the virus into the culture medium in both kinds of tissue. In the KEB and VERO cultures the highest values of infection titres were recorded on the fourth day p. i., the course of virus multiplication on the cells being parallel with its release into the culture medium.

  16. Recombinant Vaccinia Virus: Immunization against Multiple Pathogens

    NASA Astrophysics Data System (ADS)

    Perkus, Marion E.; Piccini, Antonia; Lipinskas, Bernard R.; Paoletti, Enzo

    1985-09-01

    The coding sequences for the hepatitis B virus surface antigen, the herpes simplex virus glycoprotein D, and the influenza virus hemagglutinin were inserted into a single vaccinia virus genome. Rabbits inoculated intravenously or intradermally with this polyvalent vaccinia virus recombinant produced antibodies reactive to all three authentic foreign antigens. In addition, the feasibility of multiple rounds of vaccination with recombinant vaccinia virus was demonstrated.

  17. The complete nucleotide sequence of the Barley yellow dwarf virus-RMV genome reveals it to be a new Polerovirus distantly related to other yellow dwarf viruses

    USDA-ARS?s Scientific Manuscript database

    The yellow dwarf viruses (YDVs) of the Luteoviridae family represent the most widespread group of cereal viruses worldwide. They include the Barley yellow dwarf viruses (BYDVs) of genus Luteovirus, the Cereal yellow dwarf viruses (CYDVs) and Wheat yellow dwarf virus (WYDV) of genus Polerovirus. All ...

  18. Targeting CTCF to Control Virus Gene Expression: A Common Theme amongst Diverse DNA Viruses.

    PubMed

    Pentland, Ieisha; Parish, Joanna L

    2015-07-06

    All viruses target host cell factors for successful life cycle completion. Transcriptional control of DNA viruses by host cell factors is important in the temporal and spatial regulation of virus gene expression. Many of these factors are recruited to enhance virus gene expression and thereby increase virus production, but host cell factors can also restrict virus gene expression and productivity of infection. CCCTC binding factor (CTCF) is a host cell DNA binding protein important for the regulation of genomic chromatin boundaries, transcriptional control and enhancer element usage. CTCF also functions in RNA polymerase II regulation and in doing so can influence co-transcriptional splicing events. Several DNA viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and human papillomavirus (HPV) utilize CTCF to control virus gene expression and many studies have highlighted a role for CTCF in the persistence of these diverse oncogenic viruses. CTCF can both enhance and repress virus gene expression and in some cases CTCF increases the complexity of alternatively spliced transcripts. This review article will discuss the function of CTCF in the life cycle of DNA viruses in the context of known host cell CTCF functions.

  19. Tick-borne encephalitis.

    PubMed

    Gritsun, T S; Lashkevich, V A; Gould, E A

    2003-01-01

    Tick-borne encephalitis (TBE) is one of the most dangerous human infections occurring in Europe and many parts of Asia. The etiological agent Tick-borne encephalitis virus (TBEV), is a member of the virus genus Flavivirus, of the family Flaviviridae. TBEV is believed to cause at least 11,000 human cases of encephalitis in Russia and about 3000 cases in the rest of Europe annually. Related viruses within the same group, Louping ill virus (LIV), Langat virus (LGTV) and Powassan virus (POWV), also cause human encephalitis but rarely on an epidemic scale. Three other viruses within the same group, Omsk hemorrhagic fever virus (OHFV), Kyasanur Forest disease virus (KFDV) and Alkhurma virus (ALKV), are closely related to the TBEV complex viruses and tend to cause fatal hemorrhagic fevers rather than encephalitis. This review describes the clinical manifestations associated with TBEV infections, the main molecular-biological properties of these viruses, and the different factors that define the incidence and severity of disease. The role of ticks and their local hosts in the emergence of new virus variants with different pathogenic characteristics is also discussed. This review also contains a brief history of vaccination against TBE including trials with live attenuated vaccine and modern tendencies in developing of vaccine virus strains.

  20. Neglected filoviruses

    PubMed Central

    Burk, Robin; Bollinger, Laura; Johnson, Joshua C.; Wada, Jiro; Radoshitzky, Sheli R.; Palacios, Gustavo; Bavari, Sina; Jahrling, Peter B.; Kuhn, Jens H.

    2016-01-01

    Eight viruses are currently assigned to the family Filoviridae. Marburg virus, Sudan virus and, in particular, Ebola virus have received the most attention both by researchers and the public from 1967 to 2013. During this period, natural human filovirus disease outbreaks occurred sporadically in Equatorial Africa and, despite high case-fatality rates, never included more than several dozen to a few hundred infections per outbreak. Research emphasis shifted almost exclusively to Ebola virus in 2014, when this virus was identified as the cause of an outbreak that has thus far involved more than 28 646 people and caused more than 11 323 deaths in Western Africa. Consequently, major efforts are currently underway to develop licensed medical countermeasures against Ebola virus infection. However, the ecology of and mechanisms behind Ebola virus emergence are as little understood as they are for all other filoviruses. Consequently, the possibility of the future occurrence of a large disease outbreak caused by other less characterized filoviruses (i.e. Bundibugyo virus, Lloviu virus, Ravn virus, Reston virus and Taï Forest virus) is impossible to rule out. Yet, for many of these viruses, not even rudimentary research tools are available, let alone medical countermeasures. This review summarizes the current knowledge on these less well-characterized filoviruses. PMID:27268907

  1. Grapevine virus I, a putative new vitivirus detected in co-infection with grapevine virus G in New Zealand.

    PubMed

    Blouin, Arnaud G; Chooi, Kar Mun; Warren, Ben; Napier, Kathryn R; Barrero, Roberto A; MacDiarmid, Robin M

    2018-05-01

    A novel virus, with characteristics of viruses classified within the genus Vitivirus, was identified from a sample of Vitis vinifera cv. Chardonnay in New Zealand. The virus was detected with high throughput sequencing (small RNA and total RNA) and its sequence was confirmed by Sanger sequencing. Its genome is 7507 nt long (excluding the polyA tail) with an organisation similar to that described for other classifiable members of the genus Vitivirus. The closest relative of the virus is grapevine virus E (GVE) with 65% aa identity in ORF1 (65% nt identity) and 63% aa identity in the coat protein (66% nt identity). The relationship with GVE was confirmed with phylogenetic analysis, showing the new virus branching with GVE, Agave tequilina leaf virus and grapevine virus G (GVG). A limited survey revealed the presence of this virus in multiple plants from the same location where the newly described GVG was discovered, and in most cases both viruses were detected as co-infections. The genetic characteristics of this virus suggest it represents an isolate of a new species within the genus Vitivirus and following the current nomenclature, we propose the name "Grapevine virus I".

  2. Collection of Viable Aerosolized Influenza Virus and Other Respiratory Viruses in a Student Health Care Center through Water-Based Condensation Growth

    PubMed Central

    Pan, Maohua; Bonny, Tania S.; Loeb, Julia; Jiang, Xiao; Eiguren-Fernandez, Arantzazu; Hering, Susanne; Fan, Z. Hugh; Wu, Chang-Yu

    2017-01-01

    ABSTRACT The dynamics and significance of aerosol transmission of respiratory viruses are still controversial, for the major reasons that virus aerosols are inefficiently collected by commonly used air samplers and that the collected viruses are inactivated by the collection method. Without knowledge of virus viability, infection risk analyses lack accuracy. This pilot study was performed to (i) determine whether infectious (viable) respiratory viruses in aerosols could be collected from air in a real world environment by the viable virus aerosol sampler (VIVAS), (ii) compare and contrast the efficacy of the standard bioaerosol sampler, the BioSampler, with that of the VIVAS for the collection of airborne viruses in a real world environment, and (iii) gain insights for the use of the VIVAS for respiratory virus sampling. The VIVAS operates via a water vapor condensation process to enlarge aerosolized virus particles to facilitate their capture. A variety of viable human respiratory viruses, including influenza A H1N1 and H3N2 viruses and influenza B viruses, were collected by the VIVAS located at least 2 m from seated patients, during a late-onset 2016 influenza virus outbreak. Whereas the BioSampler when operated following our optimized parameters also collected virus aerosols, it was nevertheless overall less successful based on a lower frequency of virus isolation in most cases. This side-by-side comparison highlights some limitations of past studies based on impingement-based sampling, which may have generated false-negative results due to either poor collection efficiency and/or virus inactivation due to the collection process. IMPORTANCE The significance of virus aerosols in the natural transmission of respiratory diseases has been a contentious issue, primarily because it is difficult to collect or sample virus aerosols using currently available air sampling devices. We tested a new air sampler based on water vapor condensation for efficient sampling of viable airborne respiratory viruses in a student health care center as a model of a real world environment. The new sampler outperformed the industry standard device (the SKC BioSampler) in the collection of natural virus aerosols and in maintaining virus viability. These results using the VIVAS indicate that respiratory virus aerosols are more prevalent and potentially pose a greater inhalation biohazard than previously thought. The VIVAS thus appears to be a useful apparatus for microbiology air quality tests related to the detection of viable airborne viruses. PMID:29034325

  3. Operation, Maintenance and Performance Evaluation of the Potomac Estuary Experimental Water Treatment Plant. Appendix. Volume 1.

    DTIC Science & Technology

    1983-09-01

    Biochemical Screening A-i-12 Quantitative Determination of Viruses A-1-13 Virus Adsorption A-1-13 Elution A-1-13 Reconcentration A-1-13 Virus Assay A-I... VIRUSES VIRUS ADSORPTION " The virus concentration method was based on an adsorption/elution procedure described in the 14th edition of Standard...the replication process of one virus may be inhibited by another. If the inoculum contains few infective viruses , interference problems are of little

  4. The first comprehensive molecular detection of six honey bee viruses in Iran in 2015-2016.

    PubMed

    Ghorani, Mohammadreza; Madadgar, Omid; Langeroudi, Arash Ghalyanchi; Rezapanah, Mohammadreza; Nabian, Sedigheh; Akbarein, Hesameddin; Farahani, Reza Kh; Maghsoudloo, Hossein; Abdollahi, Hamed; Forsi, Mohammad

    2017-08-01

    At least 18 viruses have been reported in the honey bee (Apis mellifera L.). However, severe diseases in honey bees are mainly caused by six viruses, and these are the most important in beekeeping. These viruses include: deformed wing virus (DWV), acute bee paralysis virus (ABPV), chronic bee paralysis virus (CBPV), sacbrood virus (SBV), kashmir bee virus (KBV), and black queen cell virus (BQCV). In this study, we evaluated 89 Iranian honey bee apiaries (during the period 2015-2016) suffering from symptoms of depopulation, sudden collapse, paralysis, or dark coloring, by employing reverse transcription-PCR. Samples were collected from four regions (Mazandaran, Hormozgan, Kurdistan, and Khorasan Razavi) of Iran. Of the 89 apiaries examined, 16 (17.97%), three (3.37%), and three (3.37%) were infected by DWV, ABPV, and CBPV, respectively. The study results for the other viruses (SBV, KBV, and BQCV) were negative. The present study evaluated the presence of the six most important honey bee viruses in bee colonies with suspected infections, and identified remarkable differences in the distribution patterns of the viruses in different geographic regions of Iran.

  5. Plant Virus-Insect Vector Interactions: Current and Potential Future Research Directions.

    PubMed

    Dietzgen, Ralf G; Mann, Krin S; Johnson, Karyn N

    2016-11-09

    Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus-insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors.

  6. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria

    NASA Astrophysics Data System (ADS)

    Kauffman, Kathryn M.; Hussain, Fatima A.; Yang, Joy; Arevalo, Philip; Brown, Julia M.; Chang, William K.; Vaninsberghe, David; Elsherbini, Joseph; Sharma, Radhey S.; Cutler, Michael B.; Kelly, Libusha; Polz, Martin F.

    2018-02-01

    The most abundant viruses on Earth are thought to be double-stranded DNA (dsDNA) viruses that infect bacteria. However, tailed bacterial dsDNA viruses (Caudovirales), which dominate sequence and culture collections, are not representative of the environmental diversity of viruses. In fact, non-tailed viruses often dominate ocean samples numerically, raising the fundamental question of the nature of these viruses. Here we characterize a group of marine dsDNA non-tailed viruses with short 10-kb genomes isolated during a study that quantified the diversity of viruses infecting Vibrionaceae bacteria. These viruses, which we propose to name the Autolykiviridae, represent a novel family within the ancient lineage of double jelly roll (DJR) capsid viruses. Ecologically, members of the Autolykiviridae have a broad host range, killing on average 34 hosts in four Vibrio species, in contrast to tailed viruses which kill on average only two hosts in one species. Biochemical and physical characterization of autolykiviruses reveals multiple virion features that cause systematic loss of DJR viruses in sequencing and culture-based studies, and we describe simple procedural adjustments to recover them. We identify DJR viruses in the genomes of diverse major bacterial and archaeal phyla, and in marine water column and sediment metagenomes, and find that their diversity greatly exceeds the diversity that is currently captured by the three recognized families of such viruses. Overall, these data suggest that viruses of the non-tailed dsDNA DJR lineage are important but often overlooked predators of bacteria and archaea that impose fundamentally different predation and gene transfer regimes on microbial systems than on tailed viruses, which form the basis of all environmental models of bacteria-virus interactions.

  7. The matrix gene segment destabilizes the acid and thermal stability of the hemagglutinin of pandemic live attenuated influenza virus vaccines.

    PubMed

    O'Donnell, Christopher D; Vogel, Leatrice; Matsuoka, Yumiko; Jin, Hong; Subbarao, Kanta

    2014-11-01

    The threat of future influenza pandemics and their potential for rapid spread, morbidity, and mortality has led to the development of pandemic vaccines. We generated seven reassortant pandemic live attenuated influenza vaccines (pLAIVs) with the hemagglutinin (HA) and neuraminidase (NA) genes derived from animal influenza viruses on the backbone of the six internal protein gene segments of the temperature sensitive, cold-adapted (ca) A/Ann Arbor/60 (H2N2) virus (AA/60 ca) of the licensed seasonal LAIV. The pLAIV viruses were moderately to highly restricted in replication in seronegative adults; we sought to determine the biological basis for this restriction. Avian influenza viruses generally replicate at higher temperatures than human influenza viruses and, although they shared the same backbone, the pLAIV viruses had a lower shutoff temperature than seasonal LAIV viruses, suggesting that the HA and NA influence the degree of temperature sensitivity. The pH of HA activation of highly pathogenic avian influenza viruses was greater than human and low-pathogenicity avian influenza viruses, as reported by others. However, pLAIV viruses had a consistently higher pH of HA activation and reduced HA thermostability compared to the corresponding wild-type parental viruses. From studies with single-gene reassortant viruses bearing one gene segment from the AA/60 ca virus in recombinant H5N1 or pH1N1 viruses, we found that the lower HA thermal stability and increased pH of HA activation were associated with the AA/60 M gene. Together, the impaired HA acid and thermal stability and temperature sensitivity likely contributed to the restricted replication of the pLAIV viruses we observed in seronegative adults. There is increasing evidence that the HA stability of influenza viruses depends on the virus strain and host species and that HA stability can influence replication, virulence, and transmission of influenza A viruses in different species. We investigated the HA stability of pandemic live attenuated influenza vaccine (pLAIV) viruses and observed that the pLAIV viruses consistently had a less stable HA than the corresponding wild-type influenza viruses. The reduced HA stability and temperature sensitivity of the pLAIV viruses may account for their restricted replication in clinical trials. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. The Matrix Gene Segment Destabilizes the Acid and Thermal Stability of the Hemagglutinin of Pandemic Live Attenuated Influenza Virus Vaccines

    PubMed Central

    O'Donnell, Christopher D.; Vogel, Leatrice; Matsuoka, Yumiko; Jin, Hong

    2014-01-01

    ABSTRACT The threat of future influenza pandemics and their potential for rapid spread, morbidity, and mortality has led to the development of pandemic vaccines. We generated seven reassortant pandemic live attenuated influenza vaccines (pLAIVs) with the hemagglutinin (HA) and neuraminidase (NA) genes derived from animal influenza viruses on the backbone of the six internal protein gene segments of the temperature sensitive, cold-adapted (ca) A/Ann Arbor/60 (H2N2) virus (AA/60 ca) of the licensed seasonal LAIV. The pLAIV viruses were moderately to highly restricted in replication in seronegative adults; we sought to determine the biological basis for this restriction. Avian influenza viruses generally replicate at higher temperatures than human influenza viruses and, although they shared the same backbone, the pLAIV viruses had a lower shutoff temperature than seasonal LAIV viruses, suggesting that the HA and NA influence the degree of temperature sensitivity. The pH of HA activation of highly pathogenic avian influenza viruses was greater than human and low-pathogenicity avian influenza viruses, as reported by others. However, pLAIV viruses had a consistently higher pH of HA activation and reduced HA thermostability compared to the corresponding wild-type parental viruses. From studies with single-gene reassortant viruses bearing one gene segment from the AA/60 ca virus in recombinant H5N1 or pH1N1 viruses, we found that the lower HA thermal stability and increased pH of HA activation were associated with the AA/60 M gene. Together, the impaired HA acid and thermal stability and temperature sensitivity likely contributed to the restricted replication of the pLAIV viruses we observed in seronegative adults. IMPORTANCE There is increasing evidence that the HA stability of influenza viruses depends on the virus strain and host species and that HA stability can influence replication, virulence, and transmission of influenza A viruses in different species. We investigated the HA stability of pandemic live attenuated influenza vaccine (pLAIV) viruses and observed that the pLAIV viruses consistently had a less stable HA than the corresponding wild-type influenza viruses. The reduced HA stability and temperature sensitivity of the pLAIV viruses may account for their restricted replication in clinical trials. PMID:25122789

  9. Ross River virus and Barmah Forest virus infection. Commonly asked questions.

    PubMed

    Hills, S

    1996-12-01

    Ross River virus infection and Barmah Forest virus infection are two commonly reported arboviral diseases in Australia. Ross River virus has long been recognised as a cause of epidemic polyarthritis and polyarticular disease. Clinical disease as a result of Barmah Forest virus infection has only been identified since 1988 and Australia is the only country in which this virus has been detected. Severe and prolonged symptoms can occur as a result of infection with either virus and may result in significant distress to the patient. This article reviews some of the issues that patients raise in relation to both Ross River virus and Barmah Forest virus disease including the source of infection, the duration of symptoms and measures to prevent infection.

  10. The ability to cause infection in a pathogenic fungus uncovers a new biological feature of honey bee viruses.

    PubMed

    Li, Zhiguo; Su, Songkun; Hamilton, Michele; Yan, Limin; Chen, Yanping

    2014-07-01

    We demonstrated that honey bee viruses including Deformed wing virus (DWV), Black queen cell virus (BQCV) and Israeli acute paralysis virus (IAPV) could infect and replicate in the fungal pathogen Ascosphaera apis that causes honey bee chalkbrood disease, revealing a novel biological feature of honey bee viruses. The phylogenetic analysis show that viruses of fungal and honey bee origins form two clusters in the phylogenetic trees distinctly and that host range of honey bee viruses is dynamic. Further studies are warranted to investigate the impact of the viruses on the fitness of their fungal host and phenotypic effects the virus-fungus combination has on honey bee hosts. Published by Elsevier Inc.

  11. Recent progress in West Nile virus diagnosis and vaccination

    PubMed Central

    2012-01-01

    West Nile virus (WNV) is a positive-stranded RNA virus belonging to the Flaviviridae family, a large family with 3 main genera (flavivirus, hepacivirus and pestivirus). Among these viruses, there are several globally relevant human pathogens including the mosquito-borne dengue virus (DENV), yellow fever virus (YFV), Japanese encephalitis virus (JEV) and West Nile virus (WNV), as well as tick-borne viruses such as tick-borne encephalitis virus (TBEV). Since the mid-1990s, outbreaks of WN fever and encephalitis have occurred throughout the world and WNV is now endemic in Africa, Asia, Australia, the Middle East, Europe and the Unites States. This review describes the molecular virology, epidemiology, pathogenesis, and highlights recent progress regarding diagnosis and vaccination against WNV infections. PMID:22380523

  12. New frontiers in oncolytic viruses: optimizing and selecting for virus strains with improved efficacy

    PubMed Central

    2018-01-01

    Oncolytic viruses have demonstrated selective replication and killing of tumor cells. Different types of oncolytic viruses – adenoviruses, alphaviruses, herpes simplex viruses, Newcastle disease viruses, rhabdoviruses, Coxsackie viruses, and vaccinia viruses – have been applied as either naturally occurring or engineered vectors. Numerous studies in animal-tumor models have demonstrated substantial tumor regression and prolonged survival rates. Moreover, clinical trials have confirmed good safety profiles and therapeutic efficacy for oncolytic viruses. Most encouragingly, the first cancer gene-therapy drug – Gendicine, based on oncolytic adenovirus type 5 – was approved in China. Likewise, a second-generation oncolytic herpes simplex virus-based drug for the treatment of melanoma has been registered in the US and Europe as talimogene laherparepvec. PMID:29445265

  13. Reassortment between Avian H5N1 and human influenza viruses is mainly restricted to the matrix and neuraminidase gene segments.

    PubMed

    Schrauwen, Eefje J A; Bestebroer, Theo M; Rimmelzwaan, Guus F; Osterhaus, Albert D M E; Fouchier, Ron A M; Herfst, Sander

    2013-01-01

    Highly pathogenic avian influenza H5N1 viruses have devastated the poultry industry in many countries of the eastern hemisphere. Occasionally H5N1 viruses cross the species barrier and infect humans, sometimes with a severe clinical outcome. When this happens, there is a chance of reassortment between H5N1 and human influenza viruses. To assess the potential of H5N1 viruses to reassort with contemporary human influenza viruses (H1N1, H3N2 and pandemic H1N1), we used an in vitro selection method to generate reassortant viruses, that contained the H5 hemagglutinin gene, and that have a replication advantage in vitro. We found that the neuraminidase and matrix gene segments of human influenza viruses were preferentially selected by H5 viruses. However, these H5 reassortant viruses did not show a marked increase in replication in MDCK cells and human bronchial epithelial cells. In ferrets, inoculation with a mixture of H5N1-pandemic H1N1 reassortant viruses resulted in outgrowth of reassortant H5 viruses that had incorporated the neuraminidase and matrix gene segment of pandemic 2009 H1N1. This virus was not transmitted via aerosols or respiratory droplets to naïve recipient ferrets. Altogether, these data emphasize the potential of avian H5N1 viruses to reassort with contemporary human influenza viruses. The neuraminidase and matrix gene segments of human influenza viruses showed the highest genetic compatibility with HPAI H5N1 virus.

  14. Novel reassortant influenza viruses between pandemic (H1N1) 2009 and other influenza viruses pose a risk to public health.

    PubMed

    Kong, Weili; Wang, Feibing; Dong, Bin; Ou, Changbo; Meng, Demei; Liu, Jinhua; Fan, Zhen-Chuan

    2015-12-01

    Influenza A virus (IAV) is characterized by eight single-stranded, negative sense RNA segments, which allows for gene reassortment among different IAV subtypes when they co-infect a single host cell simultaneously. Genetic reassortment is an important way to favor the evolution of influenza virus. Novel reassortant virus may pose a pandemic among humans. In history, three human pandemic influenza viruses were caused by genetic reassortment between avian, human and swine influenza viruses. Since 2009, pandemic (H1N1) 2009 (pdm/09 H1N1) influenza virus composed of two swine influenza virus genes highlighted the genetic reassortment again. Due to wide host species and high transmission of the pdm/09 H1N1 influenza virus, many different avian, human or swine influenza virus subtypes may reassert with it to generate novel reassortant viruses, which may result in a next pandemic among humans. So, it is necessary to understand the potential threat of current reassortant viruses between the pdm/09 H1N1 and other influenza viruses to public health. This study summarized the status of the reassortant viruses between the pdm/09 H1N1 and other influenza viruses of different species origins in natural and experimental conditions. The aim of this summarization is to facilitate us to further understand the potential threats of novel reassortant influenza viruses to public health and to make effective prevention and control strategies for these pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Emaravirus: A Novel Genus of Multipartite, Negative Strand RNA Plant Viruses

    PubMed Central

    Mielke-Ehret, Nicole; Mühlbach, Hans-Peter

    2012-01-01

    Ringspot symptoms in European mountain ash (Sorbus aucuparia L.), fig mosaic, rose rosette, raspberry leaf blotch, pigeonpea sterility mosaic (Cajanus cajan) and High Plains disease of maize and wheat were found to be associated with viruses that share several characteristics. They all have single-stranded multipartite RNA genomes of negative orientation. In some cases, double membrane-bound virus-like particles of 80 to 200 nm in diameter were found in infected tissue. Furthermore, at least five of these viruses were shown to be vectored by eriophyid mites. Sequences of European mountain ash ringspot-associated virus (EMARaV), Fig mosaic virus (FMV), rose rosette virus (RRV), raspberry leaf blotch virus (RLBV), pigeonpea sterility mosaic virus and High Plains virus strongly support their potential phylogenetic relationship. Therefore, after characterization of EMARaV, the novel genus Emaravirus was established, and FMV was the second virus species assigned to this genus. The recently sequenced RRV and RLBV are supposed to be additional members of this new group of plant RNA viruses. PMID:23170170

  16. An infectious bat chimeric influenza virus harboring the entry machinery of a influenza A virus

    PubMed Central

    Juozapaitis, Mindaugas; Moreira, Étori Aguiar; Mena, Ignacio; Giese, Sebastian; Riegger, David; Pohlmann, Anne; Höper, Dirk; Zimmer, Gert; Beer, Martin; García-Sastre, Adolfo; Schwemmle, Martin

    2017-01-01

    In 2012 the complete genomic sequence of a new and potentially harmful influenza A-like virus from bats (H17N10) was identified. However, infectious influenza virus was neither isolated from infected bats nor reconstituted, impeding further characterization of this virus. Here we show the generation of an infectious chimeric virus containing six out of the eight bat virus genes, with the remaining two genes encoding the HA and NA proteins of a prototypic influenza A virus. This engineered virus replicates well in a broad range of mammalian cell cultures, human primary airway epithelial cells and mice, but poorly in avian cells and chicken embryos without further adaptation. Importantly, the bat chimeric virus is unable to reassort with other influenza A viruses. Although our data do not exclude the possibility of zoonotic transmission of bat influenza viruses into the human population, they indicate that multiple barriers exist that makes this an unlikely event. PMID:25055345

  17. Pretreatment to avoid positive RT-PCR results with inactivated viruses.

    PubMed

    Nuanualsuwan, Suphachai; Cliver, Dean O

    2002-07-01

    Enteric viruses that are important causes of human disease must often be detected by reverse transcription-polymerase chain reaction (RT-PCR), a method that commonly yields positive results with samples that contain only inactivated virus. This study was intended to develop a pretreatment for samples, so that inactivated viruses would not be detected by the RT-PCR procedure. Model viruses were human hepatitis A virus, vaccine poliovirus 1 and feline calicivirus as a surrogate for the Norwalk-like viruses. Each virus was inactivated (from an initial titer of approximately 10(3) PFU/ml) by ultraviolet light, hypochlorite or heating at 72 degrees C. Inactivated viruses, that were treated with proteinase K and ribonuclease for 30 min at 37 degrees C before RT-PCR, gave a negative result, which is to say that no amplicon was detected after the reaction was completed. This antecedent to the RT-PCR method may be applicable to other types of viruses, to viruses inactivated in other ways and to other molecular methods of virus detection.

  18. Construction of Poxviruses as Cloning Vectors: Insertion of the Thymidine Kinase Gene from Herpes Simplex Virus into the DNA of Infectious Vaccinia Virus

    NASA Astrophysics Data System (ADS)

    Panicali, Dennis; Paoletti, Enzo

    1982-08-01

    We have constructed recombinant vaccinia viruses containing the thymidine kinase gene from herpes simplex virus. The gene was inserted into the genome of a variant of vaccinia virus that had undergone spontaneous deletion as well as into the 120-megadalton genome of the large prototypic vaccinia variant. This was accomplished via in vivo recombination by contransfection of eukaryotic tissue culture cells with cloned BamHI-digested thymidine kinase gene from herpes simplex virus containing flanking vaccinia virus DNA sequences and infectious rescuing vaccinia virus. Pure populations of the recombinant viruses were obtained by replica filter techniques or by growth of the recombinant virus in biochemically selective medium. The herpes simplex virus thymidine kinase gene, as an insert in vaccinia virus, is transcribed in vivo and in vitro, and the fidelity of in vivo transcription into a functional gene product was detected by the phosphorylation of 5-[125I]iodo-2'-deoxycytidine.

  19. Lack of Durable Cross-Neutralizing Antibodies Against Zika Virus from Dengue Virus Infection

    PubMed Central

    McGowan, Eileen; Jadi, Ramesh; Young, Ellen; Lopez, Cesar A.; Baric, Ralph S.; Lazear, Helen M.

    2017-01-01

    Cross-reactive antibodies elicited by dengue virus (DENV) infection might affect Zika virus infection and confound serologic tests. Recent data demonstrate neutralization of Zika virus by monoclonal antibodies or human serum collected early after DENV infection. Whether this finding is true in late DENV convalescence (>6 months after infection) is unknown. We studied late convalescent serum samples from persons with prior DENV or Zika virus exposure. Despite extensive cross-reactivity in IgG binding, Zika virus neutralization was not observed among primary DENV infections. We observed low-frequency (23%) Zika virus cross-neutralization in repeat DENV infections. DENV-immune persons who had Zika virus as a secondary infection had distinct populations of antibodies that neutralized DENVs and Zika virus, as shown by DENV-reactive antibody depletion experiments. These data suggest that most DENV infections do not induce durable, high-level Zika virus cross-neutralizing antibodies. Zika virus–specific antibody populations develop after Zika virus infection irrespective of prior DENV immunity. PMID:28418292

  20. The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Claire Y.-H., E-mail: CHuang1@cdc.go; Butrapet, Siritorn; Moss, Kelly J.

    The flaviviral envelope (E) protein directs virus-mediated membrane fusion. To investigate membrane fusion as a requirement for virus growth, we introduced 27 unique mutations into the fusion peptide of an infectious cDNA clone of dengue 2 virus and recovered seven stable mutant viruses. The fusion efficiency of the mutants was impaired, demonstrating for the first time the requirement for specific FP AAs in optimal fusion. Mutant viruses exhibited different growth kinetics and/or genetic stabilities in different cell types and adult mosquitoes. Virus particles could be recovered following RNA transfection of cells with four lethal mutants; however, recovered viruses could notmore » re-infect cells. These viruses could enter cells, but internalized virus appeared to be retained in endosomal compartments of infected cells, thus suggesting a fusion blockade. Mutations of the FP also resulted in reduced virus reactivity with flavivirus group-reactive antibodies, confirming earlier reports using virus-like particles.« less

  1. An infectious bat-derived chimeric influenza virus harbouring the entry machinery of an influenza A virus.

    PubMed

    Juozapaitis, Mindaugas; Aguiar Moreira, Étori; Mena, Ignacio; Giese, Sebastian; Riegger, David; Pohlmann, Anne; Höper, Dirk; Zimmer, Gert; Beer, Martin; García-Sastre, Adolfo; Schwemmle, Martin

    2014-07-23

    In 2012, the complete genomic sequence of a new and potentially harmful influenza A-like virus from bats (H17N10) was identified. However, infectious influenza virus was neither isolated from infected bats nor reconstituted, impeding further characterization of this virus. Here we show the generation of an infectious chimeric virus containing six out of the eight bat virus genes, with the remaining two genes encoding the haemagglutinin and neuraminidase proteins of a prototypic influenza A virus. This engineered virus replicates well in a broad range of mammalian cell cultures, human primary airway epithelial cells and mice, but poorly in avian cells and chicken embryos without further adaptation. Importantly, the bat chimeric virus is unable to reassort with other influenza A viruses. Although our data do not exclude the possibility of zoonotic transmission of bat influenza viruses into the human population, they indicate that multiple barriers exist that makes this an unlikely event.

  2. Characterization of a siberian virus isolated from a patient with progressive chronic tick-borne encephalitis.

    PubMed

    Gritsun, T S; Frolova, T V; Zhankov, A I; Armesto, M; Turner, S L; Frolova, M P; Pogodina, V V; Lashkevich, V A; Gould, E A

    2003-01-01

    A strain of Tick-borne encephalitis virus designated Zausaev (Za) was isolated in Siberia from a patient who died of a progressive (2-year) form of tick-borne encephalitis 10 years after being bitten by a tick. The complete genomic sequence of this virus was determined, and an attempt was made to correlate the sequence with the biological characteristics of the virus. Phylogenetic analysis demonstrated that this virus belongs to the Siberian subtype of Tick-borne encephalitis virus. Comparison of Za virus with two related viruses, a Far Eastern isolate, Sofjin, and a Siberian isolate, Vasilchenko, revealed differences among the three viruses in pathogenicity for Syrian hamsters, cytopathogenicity for PS cells, plaque morphology, and the electrophoretic profiles of virus-specific nonstructural proteins. Comparative amino acid alignments revealed 10 individual amino acid substitutions in the Za virus polyprotein sequence that were different from those of other tick-borne flaviviruses. Notably, the dimeric form of the Za virus NS1 protein migrated in polyacrylamide gels as a heterogeneous group of molecules with a significantly higher electrophoretic mobility than those of the Sofjin and Vasilchenko viruses. Two amino acid substitutions, T(277)-->V and E(279)-->G, within the NS1 dimerization domain are probably responsible for the altered oligomerization of Za virus NS1. These studies suggest that the patient from whom Za virus was isolated died due to increased pathogenicity of the latent virus following spontaneous mutagenesis.

  3. H7N9 Influenza Virus Is More Virulent in Ferrets than 2009 Pandemic H1N1 Influenza Virus.

    PubMed

    Yum, Jung; Ku, Keun Bon; Kim, Hyun Soo; Seo, Sang Heui

    2015-12-01

    The novel H7N9 influenza virus has been infecting humans in China since February 2013 and with a mortality rate of about 40%. This study compared the pathogenicity of the H7N9 and 2009 pandemic H1N1 influenza viruses in a ferret model, which shows similar symptoms to those of humans infected with influenza viruses. The H7N9 influenza virus caused a more severe disease than did the 2009 pandemic H1N1 influenza virus. All of the ferrets infected with the H7N9 influenza virus had died by 6 days after infection, while none of those infected with the 2009 pandemic H1N1 influenza virus died. Ferrets infected with the H7N9 influenza virus had higher viral titers in their lungs than did those infected with the 2009 pandemic H1N1 influenza virus. Histological findings indicated that hemorrhagic pneumonia was caused by infection with the H7N9 influenza virus, but not with the 2009 pandemic H1N1 influenza virus. In addition, the lung tissues of ferrets infected with the H7N9 influenza virus contained higher levels of chemokines than did those of ferrets infected with the 2009 pandemic H1N1 influenza virus. This study suggests that close monitoring is needed to prevent human infection by the lethal H7N9 influenza virus.

  4. Isolation of a new herpes virus from human CD4 sup + T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frenkel, N.; Schirmer, E.C.; Wyatt, L.S.

    1990-01-01

    A new human herpes virus has been isolated from CD4{sup +} T cells purified from peripheral blood mononuclear cells of a healthy individual (RK), following incubation of the cells under conditions promoting T-cell activation. The virus could not be recovered from nonactivated cells. Cultures of lymphocytes infected with the RK virus exhibited a cytopathic effect, and electron microscopic analyses revealed a characteristic herpes virus structure. RK virus DNA did not hybridize with large probes derived from herpes simplex virus, Epstein-Barr virus, varicella-zoster virus, and human cytomegalovirus. The genetic relatedness of the RK virus to the recently identified T-lymphotropic human herpesmore » virus 6 (HHV-6) was investigated by restriction enzyme analyses using 21 different enzymes and by blot hydridization analyses using 11 probes derived from two strains of HHV-6 (Z29 and U1102). Whereas the two HHV-6 strains exhibited only limited restriction enzyme polymorphism, cleavage of the RK virus DNA yielded distinct patterns. Of the 11 HHV-6 DNA probes tested, only 6 cross-hybridized with DNA fragments derived from the RK virus. Taken together, the maximal homology amounted to 31 kilobases of the 75 kilobases tested. The authors conclude that the RK virus is distinct from previously characterized human herpesviruses. The authors propose to designate it as the prototype of a new herpes virus, the seventh human herpes virus identified to date.« less

  5. Characterization of a Siberian Virus Isolated from a Patient with Progressive Chronic Tick-Borne Encephalitis

    PubMed Central

    Gritsun, T. S.; Frolova, T. V.; Zhankov, A. I.; Armesto, M.; Turner, S. L.; Frolova, M. P.; Pogodina, V. V.; Lashkevich, V. A.; Gould, E. A.

    2003-01-01

    A strain of Tick-borne encephalitis virus designated Zausaev (Za) was isolated in Siberia from a patient who died of a progressive (2-year) form of tick-borne encephalitis 10 years after being bitten by a tick. The complete genomic sequence of this virus was determined, and an attempt was made to correlate the sequence with the biological characteristics of the virus. Phylogenetic analysis demonstrated that this virus belongs to the Siberian subtype of Tick-borne encephalitis virus. Comparison of Za virus with two related viruses, a Far Eastern isolate, Sofjin, and a Siberian isolate, Vasilchenko, revealed differences among the three viruses in pathogenicity for Syrian hamsters, cytopathogenicity for PS cells, plaque morphology, and the electrophoretic profiles of virus-specific nonstructural proteins. Comparative amino acid alignments revealed 10 individual amino acid substitutions in the Za virus polyprotein sequence that were different from those of other tick-borne flaviviruses. Notably, the dimeric form of the Za virus NS1 protein migrated in polyacrylamide gels as a heterogeneous group of molecules with a significantly higher electrophoretic mobility than those of the Sofjin and Vasilchenko viruses. Two amino acid substitutions, T277→V and E279→G, within the NS1 dimerization domain are probably responsible for the altered oligomerization of Za virus NS1. These studies suggest that the patient from whom Za virus was isolated died due to increased pathogenicity of the latent virus following spontaneous mutagenesis. PMID:12477807

  6. Protein Interactions during the Flavivirus and Hepacivirus Life Cycle*

    PubMed Central

    Bruening, Janina; Weigel, Bettina; Pietschmann, Thomas

    2017-01-01

    Protein–protein interactions govern biological functions in cells, in the extracellular milieu, and at the border between cells and extracellular space. Viruses are small intracellular parasites and thus rely on protein interactions to produce progeny inside host cells and to spread from cell to cell. Usage of host proteins by viruses can have severe consequences e.g. apoptosis, metabolic disequilibria, or altered cell proliferation and mobility. Understanding protein interactions during virus infection can thus educate us on viral infection and pathogenesis mechanisms. Moreover, it has led to important clinical translations, including the development of new therapeutic and vaccination strategies. Here, we will discuss protein interactions of members of the Flaviviridae family, which are small enveloped RNA viruses. Dengue virus, Zika virus and hepatitis C virus belong to the most prominent human pathogenic Flaviviridae. With a genome of roughly ten kilobases encoding only ten viral proteins, Flaviviridae display intricate mechanisms to engage the host cell machinery for their purpose. In this review, we will highlight how dengue virus, hepatitis C virus, Japanese encephalitis virus, tick-borne encephalitis virus, West Nile virus, yellow fever virus, and Zika virus proteins engage host proteins and how this knowledge helps elucidate Flaviviridae infection. We will specifically address the protein composition of the virus particle as well as the protein interactions during virus entry, replication, particle assembly, and release from the host cell. Finally, we will give a perspective on future challenges in Flaviviridae interaction proteomics and why we believe these challenges should be met. PMID:28077444

  7. Reassortant Eurasian Avian-Like Influenza A(H1N1) Virus from a Severely Ill Child, Hunan Province, China, 2015.

    PubMed

    Zhu, Wenfei; Zhang, Hong; Xiang, Xingyu; Zhong, Lili; Yang, Lei; Guo, Junfeng; Xie, Yiran; Li, Fangcai; Deng, Zhihong; Feng, Hong; Huang, Yiwei; Hu, Shixiong; Xu, Xin; Zou, Xiaohui; Li, Xiaodan; Bai, Tian; Chen, Yongkun; Li, Zi; Li, Junhua; Shu, Yuelong

    2016-11-01

    In 2015, a novel influenza A(H1N1) virus was isolated from a boy in China who had severe pneumonia. The virus was a genetic reassortant of Eurasian avian-like influenza A(H1N1) (EA-H1N1) virus. The hemagglutinin, neuraminidase, and matrix genes of the reassortant virus were highly similar to genes in EA-H1N1 swine influenza viruses, the polybasic 1 and 2, polymerase acidic, and nucleoprotein genes originated from influenza A(H1N1)pdm09 virus, and the nonstructural protein gene derived from classical swine influenza A(H1N1) (CS H1N1) virus. In a mouse model, the reassortant virus, termed influenza A/Hunan/42443/2015(H1N1) virus, showed higher infectivity and virulence than another human EA-H1N1 isolate, influenza A/Jiangsu/1/2011(H1N1) virus. In the respiratory tract of mice, virus replication by influenza A/Hunan/42443/2015(H1N1) virus was substantially higher than that by influenza A/Jiangsu/1/2011(H1N1) virus. Human-to-human transmission of influenza A/Hunan/42443/2015(H1N1) virus has not been detected; however, given the circulation of novel EA-H1N1 viruses in pigs, enhanced surveillance should be instituted among swine and humans.

  8. Reassortant Eurasian Avian-Like Influenza A(H1N1) Virus from a Severely Ill Child, Hunan Province, China, 2015

    PubMed Central

    Zhu, Wenfei; Zhang, Hong; Xiang, Xingyu; Zhong, Lili; Yang, Lei; Guo, Junfeng; Xie, Yiran; Li, Fangcai; Deng, Zhihong; Feng, Hong; Huang, Yiwei; Hu, Shixiong; Xu, Xin; Zou, Xiaohui; Li, Xiaodan; Bai, Tian; Chen, Yongkun; Li, Zi

    2016-01-01

    In 2015, a novel influenza A(H1N1) virus was isolated from a boy in China who had severe pneumonia. The virus was a genetic reassortant of Eurasian avian-like influenza A(H1N1) (EA-H1N1) virus. The hemagglutinin, neuraminidase, and matrix genes of the reassortant virus were highly similar to genes in EA-H1N1 swine influenza viruses, the polybasic 1 and 2, polymerase acidic, and nucleoprotein genes originated from influenza A(H1N1)pdm09 virus, and the nonstructural protein gene derived from classical swine influenza A(H1N1) (CS H1N1) virus. In a mouse model, the reassortant virus, termed influenza A/Hunan/42443/2015(H1N1) virus, showed higher infectivity and virulence than another human EA-H1N1 isolate, influenza A/Jiangsu/1/2011(H1N1) virus. In the respiratory tract of mice, virus replication by influenza A/Hunan/42443/2015(H1N1) virus was substantially higher than that by influenza A/Jiangsu/1/2011(H1N1) virus. Human-to-human transmission of influenza A/Hunan/42443/2015(H1N1) virus has not been detected; however, given the circulation of novel EA-H1N1 viruses in pigs, enhanced surveillance should be instituted among swine and humans. PMID:27767007

  9. Status of tobacco viruses in Serbia and molecular characterization of tomato spotted wilt virus isolates.

    PubMed

    Stanković, I; Bulajić, A; Vučurović, A; Ristić, D; Milojević, K; Berenji, J; Krstić, B

    2011-01-01

    In a four-year survey to determine the presence and distribution of viruses in tobacco crops at 17 localities of the Vojvodina Province and Central Serbia, 380 samples were collected and analyzed by DAS-ELISA. Out of the seven viruses tested, tomato spotted wilt virus (TSWV), potato virus Y (PVY), tobacco mosaic virus (TMV), cucumber mosaic virus (CMV), and alfalfa mosaic virus (AMV) were detected in 37.9, 33.4, 28.7, 23.9, and 15.5% of the total tested samples, respectively. TSWV was the most frequently found virus at the localities of Central Serbia, while PVY and CMV were the most frequent viruses in the Vojvodina Province. Single infections were prevalent in years 2005-2007 and the most frequent were those of PVY. A triple combination of those viruses was most frequent mixed infection type in 2008. The presence of all five detected viruses was confirmed in selected ELISA-positive samples by RT-PCR and sequencing. The comparisons of obtained virus isolate sequences with those available in NCBI, confirmed the authenticity of serologically detected viruses. Phylogenetic analysis based on partial nucleocapsid gene sequences revealed a joint clustering of Serbian, Bulgarian and Montenegrin TSWV isolates into one geographic subpopulation, which was distinct from the other subpopulation of TSWV isolates from the rest of the European countries. The high incidence of viruses in Serbian tobacco crops highlights the importance of enhancing farmers knowledge towards better implementation of control strategies for preventing serious losses.

  10. New Genotype of Dengue Type 3 Virus Circulating in Brazil and Colombia Showed a Close Relationship to Old Asian Viruses

    PubMed Central

    Aquino, Victor Hugo; Amarilla, Alberto Anastacio; Alfonso, Helda Liz; Batista, Weber Cheli; Figueiredo, Luiz Tadeu Moraes

    2009-01-01

    Dengue type 3 genotype V viruses have been recently detected in Brazil and Colombia. In this study, we described another Brazilian isolate belonging to this genotype. Phylogenetic analysis including dengue type 3 viruses isolated worldwide showed that Brazilian and Colombian viruses were closely related to viruses isolated in Asia more than two decades ago. The characteristic evolutionary pattern of dengue type 3 virus cannot explain the close similarity of new circulating viruses with old viruses. Further studies are needed to confirm the origin of the new dengue type III genotype circulating in Brazil and Colombia. PMID:19823677

  11. Isolation of thogoto virus (Orthomyxoviridae) from the banded mongoose, Mongos mungo (Herpestidae), in Uganda.

    PubMed

    Ogen-Odoi, A; Miller, B R; Happ, C M; Maupin, G O; Burkot, T R

    1999-03-01

    Small wild vertebrates were trapped during an investigation into possible vertebrate reservoirs of o'nyong-nyong (ONN) fever virus in Uganda in 1997. Antibody neutralization test results and virus isolation attempts were negative for ONN virus, confirming the work of earlier investigators, who also failed to find evidence for a nonhuman ONN virus reservoir. In the course of these ONN virus studies, Thogoto virus was isolated from one of eight banded mongooses (Mongos mungo). This is the first isolation of Thogoto virus from a wild vertebrate. Neutralizing antibodies to Thogoto virus were also found in two of the other mongooses.

  12. Vector Competence of New Zealand Mosquitoes for Selected Arboviruses

    PubMed Central

    Kramer, Laura D.; Chin, Pam; Cane, Rachel P.; Kauffman, Elizabeth B.; Mackereth, Graham

    2011-01-01

    New Zealand (NZ) historically has been free of arboviral activity with the exception of Whataroa virus (Togaviridae: Alphavirus), which is established in bird populations and is transmitted by local mosquitoes. This naive situation is threatened by global warming, invasive mosquitoes, and tourism. To determine the threat of selected medically important arboviruses to NZ, vector competence assays were conducted using field collected endemic and introduced mosquito species. Four alphaviruses (Togaviridae): Barmah Forest virus, Chikungunya virus, Ross River virus, and Sindbis virus, and five flaviviruses (Flaviviridae): Dengue virus 2, Japanese encephalitis virus, Murray Valley encephalitis virus, West Nile virus, and Yellow fever virus were evaluated. Results indicate some NZ mosquito species are highly competent vectors of selected arboviruses, particularly alphaviruses, and may pose a threat were one of these arboviruses introduced at a time when the vector was prevalent and the climatic conditions favorable for virus transmission. PMID:21734146

  13. Nuclear Proteins Hijacked by Mammalian Cytoplasmic Plus Strand RNA Viruses

    PubMed Central

    Lloyd, Richard E.

    2015-01-01

    Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizes recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. PMID:25818028

  14. Ledantevirus: A Proposed New Genus in the Rhabdoviridae Has A Strong Ecological Association with Bats

    PubMed Central

    Blasdell, Kim R.; Guzman, Hilda; Widen, Steven G.; Firth, Cadhla; Wood, Thomas G.; Holmes, Edward C.; Tesh, Robert B.; Vasilakis, Nikos; Walker, Peter J.

    2015-01-01

    The Le Dantec serogroup of rhabdoviruses comprises Le Dantec virus from a human with encephalitis and Keuriliba virus from rodents, each isolated in Senegal. The Kern Canyon serogroup comprises a loosely connected set of rhabdoviruses many of which have been isolated from bats, including Kern Canyon virus from California, Nkolbisson virus from Cameroon, Central African Republic, and Cote d'Ivoire, Kolente virus from Guinea, Mount Elgon bat and Fikirini viruses from Kenya, and Oita virus from Japan. Fukuoka virus isolated from mosquitoes, midges, and cattle in Japan, Barur virus from a rodent in India and Nishimuro virus from pigs in Japan have also been linked genetically or serologically to this group. Here, we analyze the genome sequences and phylogenetic relationships of this set of viruses. We show that they form three subgroups within a monophyletic group, which we propose should constitute the new genus Ledantevirus. PMID:25487727

  15. The history and epidemiology of Middle East respiratory syndrome corona virus.

    PubMed

    Al-Osail, Aisha M; Al-Wazzah, Marwan J

    2017-01-01

    Corona viruses cause common cold, and infections caused by corona viruses are generally self-resolving. During the last 4 years, corona viruses have become the most important viruses worldwide because of the occurrence of several recent deaths caused by corona viruses in Saudi Arabia. Spread of the infection occurred worldwide; however, most cases of mortality have occurred in the Middle East. Owing to the predominance of outbreaks in the Middle Eastern countries, the virus was renamed a Middle East respiratory syndrome corona virus (MERS-CoV) by the Corona virus Study Group. The Center for Diseases Control and Prevention and World Health Organization maintain a website that is updated frequently with new cases of MERS-CoV infection. In this review, we describe the history and epidemiology of this novel virus. Studies of the genetics and molecular mechanisms of this virus are expected to facilitate the development of vaccines in the future.

  16. Ocular Tropism of Respiratory Viruses

    PubMed Central

    Rota, Paul A.; Tumpey, Terrence M.

    2013-01-01

    SUMMARY Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism. PMID:23471620

  17. Chloroplast in Plant-Virus Interaction

    PubMed Central

    Zhao, Jinping; Zhang, Xian; Hong, Yiguo; Liu, Yule

    2016-01-01

    In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction. PMID:27757106

  18. Genetic mechanisms of Maize dwarf mosaic virus resistance in maize

    USDA-ARS?s Scientific Manuscript database

    Maize resistance to viruses has been well-characterized at the genetic level, and loci responsible for resistance to potyviruses including Maize dwarf mosaic virus (MDMV), Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and Johnsongrass mosaic virus (JGMV), have been mapped in several ge...

  19. Single-Reaction Multiplex Reverse Transcription PCR for Detection of Zika, Chikungunya, and Dengue Viruses

    PubMed Central

    Waggoner, Jesse J.; Gresh, Lionel; Mohamed-Hadley, Alisha; Ballesteros, Gabriela; Davila, Maria Jose Vargas; Tellez, Yolanda; Sahoo, Malaya K.; Balmaseda, Angel; Harris, Eva

    2016-01-01

    Clinical manifestations of Zika virus, chikungunya virus, and dengue virus infections can be similar. To improve virus detection, streamline molecular workflow, and decrease test costs, we developed and evaluated a multiplex real-time reverse transcription PCR for these viruses. PMID:27184629

  20. Spatial And Temporal Analysis Of Multiple Whitefly Transmitted Virus Infections In Watermelon

    USDA-ARS?s Scientific Manuscript database

    Squash vein yellowing virus (SqVYV), Cucurbit leaf crumple virus (CuLCrV), and Cucurbit yellow stunting disorder virus (CYSDV) are three whitefly-transmitted viruses recently introduced to Florida that induce visually distinguishable symptoms on watermelon. The epidemiology of these three viruses wa...

  1. Collection of Viable Aerosolized Influenza Virus and Other Respiratory Viruses in a Student Health Care Center through Water-Based Condensation Growth.

    PubMed

    Pan, Maohua; Bonny, Tania S; Loeb, Julia; Jiang, Xiao; Lednicky, John A; Eiguren-Fernandez, Arantzazu; Hering, Susanne; Fan, Z Hugh; Wu, Chang-Yu

    2017-01-01

    The dynamics and significance of aerosol transmission of respiratory viruses are still controversial, for the major reasons that virus aerosols are inefficiently collected by commonly used air samplers and that the collected viruses are inactivated by the collection method. Without knowledge of virus viability, infection risk analyses lack accuracy. This pilot study was performed to (i) determine whether infectious (viable) respiratory viruses in aerosols could be collected from air in a real world environment by the vi able v irus a erosol s ampler (VIVAS), (ii) compare and contrast the efficacy of the standard bioaerosol sampler, the BioSampler, with that of the VIVAS for the collection of airborne viruses in a real world environment, and (iii) gain insights for the use of the VIVAS for respiratory virus sampling. The VIVAS operates via a water vapor condensation process to enlarge aerosolized virus particles to facilitate their capture. A variety of viable human respiratory viruses, including influenza A H1N1 and H3N2 viruses and influenza B viruses, were collected by the VIVAS located at least 2 m from seated patients, during a late-onset 2016 influenza virus outbreak. Whereas the BioSampler when operated following our optimized parameters also collected virus aerosols, it was nevertheless overall less successful based on a lower frequency of virus isolation in most cases. This side-by-side comparison highlights some limitations of past studies based on impingement-based sampling, which may have generated false-negative results due to either poor collection efficiency and/or virus inactivation due to the collection process. IMPORTANCE The significance of virus aerosols in the natural transmission of respiratory diseases has been a contentious issue, primarily because it is difficult to collect or sample virus aerosols using currently available air sampling devices. We tested a new air sampler based on water vapor condensation for efficient sampling of viable airborne respiratory viruses in a student health care center as a model of a real world environment. The new sampler outperformed the industry standard device (the SKC BioSampler) in the collection of natural virus aerosols and in maintaining virus viability. These results using the VIVAS indicate that respiratory virus aerosols are more prevalent and potentially pose a greater inhalation biohazard than previously thought. The VIVAS thus appears to be a useful apparatus for microbiology air quality tests related to the detection of viable airborne viruses.

  2. Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species.

    PubMed

    Di Giallonardo, Francesca; Schlub, Timothy E; Shi, Mang; Holmes, Edward C

    2017-04-15

    Viruses use the cellular machinery of their hosts for replication. It has therefore been proposed that the nucleotide and dinucleotide compositions of viruses should match those of their host species. If this is upheld, it may then be possible to use dinucleotide composition to predict the true host species of viruses sampled in metagenomic surveys. However, it is also clear that different taxonomic groups of viruses tend to have distinctive patterns of dinucleotide composition that may be independent of host species. To determine the relative strength of the effect of host versus virus family in shaping dinucleotide composition, we performed a comparative analysis of 20 RNA virus families from 15 host groupings, spanning two animal phyla and more than 900 virus species. In particular, we determined the odds ratios for the 16 possible dinucleotides and performed a discriminant analysis to evaluate the capability of virus dinucleotide composition to predict the correct virus family or host taxon from which it was isolated. Notably, while 81% of the data analyzed here were predicted to the correct virus family, only 62% of these data were predicted to their correct subphylum/class host and a mere 32% to their correct mammalian order. Similarly, dinucleotide composition has a weak predictive power for different hosts within individual virus families. We therefore conclude that dinucleotide composition is generally uniform within a virus family but less well reflects that of its host species. This has obvious implications for attempts to accurately predict host species from virus genome sequences alone. IMPORTANCE Determining the processes that shape virus genomes is central to understanding virus evolution and emergence. One question of particular importance is why nucleotide and dinucleotide frequencies differ so markedly between viruses. In particular, it is currently unclear whether host species or virus family has the biggest impact on dinucleotide frequencies and whether dinucleotide composition can be used to accurately predict host species. Using a comparative analysis, we show that dinucleotide composition has a strong phylogenetic association across different RNA virus families, such that dinucleotide composition can predict the family from which a virus sequence has been isolated. Conversely, dinucleotide composition has a poorer predictive power for the different host species within a virus family and across different virus families, indicating that the host has a relatively small impact on the dinucleotide composition of a virus genome. Copyright © 2017 American Society for Microbiology.

  3. Novel RNA viruses within plant parasitic cyst nematodes

    PubMed Central

    Ruark, Casey L.; Gardner, Michael; Mitchum, Melissa G.; Davis, Eric L.

    2018-01-01

    The study of invertebrate–and particularly nematode–viruses is emerging with the advancement of transcriptome sequencing. Five single-stranded RNA viruses have now been confirmed within the economically important soybean cyst nematode (SCN; Heterodera glycines). From previous research, we know these viruses to be widespread in greenhouse and field populations of SCN. Several of the SCN viruses were also confirmed within clover (H. trifolii) and beet (H. schachtii) cyst nematodes. In the presented study, we sequenced the transcriptomes of several inbred SCN populations and identified two previously undiscovered viral-like genomes. Both of these proposed viruses are negative-sense RNA viruses and have been named SCN nyami-like virus (NLV) and SCN bunya-like virus (BLV). Finally, we analyzed publicly available transcriptome data of two potato cyst nematode (PCN) species, Globodera pallida and G. rostochiensis. From these data, a third potential virus was discovered and called PCN picorna-like virus (PLV). PCN PLV is a positive-sense RNA virus, and to the best of our knowledge, is the first virus described within PCN. The presence of these novel viruses was confirmed via qRT-PCR, endpoint PCR, and Sanger sequencing with the exception of PCN PLV due to quarantine restrictions on the nematode host. While much work needs to be done to understand the biological and evolutionary significance of these viruses, they offer insight into nematode ecology and the possibility of novel nematode management strategies. PMID:29509804

  4. Novel RNA viruses within plant parasitic cyst nematodes.

    PubMed

    Ruark, Casey L; Gardner, Michael; Mitchum, Melissa G; Davis, Eric L; Sit, Tim L

    2018-01-01

    The study of invertebrate-and particularly nematode-viruses is emerging with the advancement of transcriptome sequencing. Five single-stranded RNA viruses have now been confirmed within the economically important soybean cyst nematode (SCN; Heterodera glycines). From previous research, we know these viruses to be widespread in greenhouse and field populations of SCN. Several of the SCN viruses were also confirmed within clover (H. trifolii) and beet (H. schachtii) cyst nematodes. In the presented study, we sequenced the transcriptomes of several inbred SCN populations and identified two previously undiscovered viral-like genomes. Both of these proposed viruses are negative-sense RNA viruses and have been named SCN nyami-like virus (NLV) and SCN bunya-like virus (BLV). Finally, we analyzed publicly available transcriptome data of two potato cyst nematode (PCN) species, Globodera pallida and G. rostochiensis. From these data, a third potential virus was discovered and called PCN picorna-like virus (PLV). PCN PLV is a positive-sense RNA virus, and to the best of our knowledge, is the first virus described within PCN. The presence of these novel viruses was confirmed via qRT-PCR, endpoint PCR, and Sanger sequencing with the exception of PCN PLV due to quarantine restrictions on the nematode host. While much work needs to be done to understand the biological and evolutionary significance of these viruses, they offer insight into nematode ecology and the possibility of novel nematode management strategies.

  5. The Current Incidence of Viral Disease in Korean Sweet Potatoes and Development of Multiplex RT-PCR Assays for Simultaneous Detection of Eight Sweet Potato Viruses

    PubMed Central

    Kwak, Hae-Ryun; Kim, Mi-Kyeong; Shin, Jun-Chul; Lee, Ye-Ji; Seo, Jang-Kyun; Lee, Hyeong-Un; Jung, Mi-Nam; Kim, Sun-Hyung; Choi, Hong-Soo

    2014-01-01

    Sweet potato is grown extensively from tropical to temperate regions and is an important food crop worldwide. In this study, we established detection methods for 17 major sweet potato viruses using single and multiplex RT-PCR assays. To investigate the current incidence of viral diseases, we collected 154 samples of various sweet potato cultivars showing virus-like symptoms from 40 fields in 10 Korean regions, and analyzed them by RT-PCR using specific primers for each of the 17 viruses. Of the 17 possible viruses, we detected eight in our samples. Sweet potato feathery mottle virus (SPFMV) and sweet potato virus C (SPVC) were most commonly detected, infecting approximately 87% and 85% of samples, respectively. Furthermore, Sweet potato symptomless virus 1 (SPSMV-1), Sweet potato virus G (SPVG), Sweet potato leaf curl virus (SPLCV), Sweet potato virus 2 ( SPV2), Sweet potato chlorotic fleck virus (SPCFV), and Sweet potato latent virus (SPLV) were detected in 67%, 58%, 47%, 41%, 31%, and 20% of samples, respectively. This study presents the first documented occurrence of four viruses (SPVC, SPV2, SPCFV, and SPSMV-1) in Korea. Based on the results of our survey, we developed multiplex RT-PCR assays for simple and simultaneous detection of the eight sweet potato viruses we recorded. PMID:25506306

  6. In Vivo Antiviral Activity of 1,3-Bis(2-Chloroethyl)-1-Nitrosourea

    PubMed Central

    Sidwell, Robert W.; Dixon, Glen J.; Sellers, Sara M.; Schabel, Frank M.

    1965-01-01

    A prolongation in the lives of Swiss mice inoculated intracerebrally with lymphocytic choriomeningitis virus (LCM) was observed after treatment with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). A variety of treatment schedules, including therapy once or twice daily up to 17 days and single treatments at various times after virus inoculation, were employed. Virus titers ranging to greater than 104 were detected in the blood and brains of surviving drug-treated animals. In three comparative studies in which different treatment schedules were used, BCNU was shown to exert a protective effect approximately equal to that of methotrexate in LCM virus-infected mice. Tests were also carried out to investigate the activity of BCNU in mice experimentally infected with eastern equine encephalomyelitis (EEE) virus, western equine encephalomyelitis virus, Semliki Forest (SF) virus, herpes simplex virus, influenza virus strain PR8, vaccinia virus strain WR, Rous sarcoma virus, Friend leukemia virus (FLV), and poliovirus. Slight increases in life span were observed in the treated EEE, SF, and influenza PR8 virus-infected animals. Significant reduction in splenomegaly in FLV-infected animals treated with BCNU was demonstrated. The possible mechanisms of LCM virus inhibition by BCNU, on the basis of these and other studies, were postulated to be either specific antiviral activity or inhibition of “lethal” immune response to the LCM virus. Each of these postulates is discussed. PMID:14339266

  7. THE SURVIVAL OF POLIOMYELITIS AND COXSACKIE VIRUSES FOLLOWING THEIR INGESTION BY FLIES

    PubMed Central

    Melnick, Joseph L.; Penner, Lawrence R.

    1952-01-01

    Poliomyelitis virus and Coxsackie (or C) virus were quantitatively fed to blowflies, Phormia regina and Phaenicia sericata, and to houseflies, Musca domestica. Naturally infectious human stools were the source of virus. Poliomyelitis virus can be almost quantitatively recovered from flies and from their excreta collected over a period of several days following the feeding. C virus can also be recovered but in lesser yields. No conclusive evidence for virus multiplication in these laboratory-bred insects was obtained. Poliomyelitis virus from human sources could be detected in flies between the 5th and 17th day and in the excreta between the 4th and 10th day. Murine-adapted strains of poliomyelitis virus and murine encephalomyelitis virus could not be detected beyond the 5th day, even though comparable amounts of virus were fed. The persistence of C virus excretion (2 to 12 days) varied directly with the amount of virus fed. Poliomyelitis virus, as present in human stools, survived drying and storage at room temperature for at least 3 days and at 4° for 3 weeks. C virus from human stools under the same circumstances was detected for 15 days at room temperature (with marked drop in titer after the 3rd day) and for 21 days at 4° with little loss in titer. When stool samples were fed to flies and the dried excreta of the insects examined, it was found that (a) poliomyelitis virus persisted for at least 1 to 2 days at room temperature and for 3 to 4 days at 4°, and (b) C virus persisted for 1 day at room temperature and for 5 days at 4°. Poliomyelitis virus could be carried through only two serial passages in adult flies. Flies emerging from maggots fed virus were free from the agent. PMID:14955579

  8. 9 CFR 121.3 - VS select agents and toxins.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE, AND...-mouth disease virus; Goat pox virus; Japanese encephalitis virus; Lumpy skin disease virus; Malignant...

  9. 9 CFR 121.3 - VS select agents and toxins.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE, AND...-mouth disease virus; Goat pox virus; Japanese encephalitis virus; Lumpy skin disease virus; Malignant...

  10. Postmortem stability of Ebola virus.

    PubMed

    Prescott, Joseph; Bushmaker, Trenton; Fischer, Robert; Miazgowicz, Kerri; Judson, Seth; Munster, Vincent J

    2015-05-01

    The ongoing Ebola virus outbreak in West Africa has highlighted questions regarding stability of the virus and detection of RNA from corpses. We used Ebola virus-infected macaques to model humans who died of Ebola virus disease. Viable virus was isolated <7 days posteuthanasia; viral RNA was detectable for 10 weeks.

  11. The Computer Virus Threat and What You Can Do about It.

    ERIC Educational Resources Information Center

    Lateulere, John

    1992-01-01

    Discussion of computer viruses describes two types of viruses and how they work; suggests ways to prevent or minimize virus risk; and explains how to recognize a virus and limit damage once a virus attacks. A sidebar lists several antivirus software products. (two references) (NRP)

  12. 9 CFR 113.311 - Bovine Virus Diarrhea Vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Bovine Virus Diarrhea Vaccine. 113.311... Virus Vaccines § 113.311 Bovine Virus Diarrhea Vaccine. Bovine Virus Diarrhea Vaccine shall be prepared..., and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  13. 9 CFR 113.311 - Bovine Virus Diarrhea Vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Bovine Virus Diarrhea Vaccine. 113.311... Virus Vaccines § 113.311 Bovine Virus Diarrhea Vaccine. Bovine Virus Diarrhea Vaccine shall be prepared..., and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  14. 9 CFR 113.311 - Bovine Virus Diarrhea Vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Bovine Virus Diarrhea Vaccine. 113.311... Virus Vaccines § 113.311 Bovine Virus Diarrhea Vaccine. Bovine Virus Diarrhea Vaccine shall be prepared..., and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  15. 9 CFR 113.209 - Rabies Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Rabies Vaccine, Killed Virus. 113.209... Killed Virus Vaccines § 113.209 Rabies Vaccine, Killed Virus. Rabies Vaccine (Killed Virus) shall be..., safe, and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  16. 9 CFR 113.209 - Rabies Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Rabies Vaccine, Killed Virus. 113.209... Killed Virus Vaccines § 113.209 Rabies Vaccine, Killed Virus. Rabies Vaccine (Killed Virus) shall be..., safe, and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  17. 9 CFR 113.209 - Rabies Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Rabies Vaccine, Killed Virus. 113.209... Killed Virus Vaccines § 113.209 Rabies Vaccine, Killed Virus. Rabies Vaccine (Killed Virus) shall be..., safe, and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  18. 9 CFR 113.311 - Bovine Virus Diarrhea Vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Bovine Virus Diarrhea Vaccine. 113.311... Virus Vaccines § 113.311 Bovine Virus Diarrhea Vaccine. Bovine Virus Diarrhea Vaccine shall be prepared..., and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  19. 9 CFR 113.209 - Rabies Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Rabies Vaccine, Killed Virus. 113.209... Killed Virus Vaccines § 113.209 Rabies Vaccine, Killed Virus. Rabies Vaccine (Killed Virus) shall be..., safe, and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  20. Yellow fever vector live-virus vaccines: West Nile virus vaccine development.

    PubMed

    Arroyo, J; Miller, C A; Catalan, J; Monath, T P

    2001-08-01

    By combining molecular-biological techniques with our increased understanding of the effect of gene sequence modification on viral function, yellow fever 17D, a positive-strand RNA virus vaccine, has been manipulated to induce a protective immune response against viruses of the same family (e.g. Japanese encephalitis and dengue viruses). Triggered by the emergence of West Nile virus infections in the New World afflicting humans, horses and birds, the success of this recombinant technology has prompted the rapid development of a live-virus attenuated candidate vaccine against West Nile virus.

  1. Beet yellow stunt virus in cells of Sonchus oleraceus L. and its relation to host mitochondria.

    PubMed

    Esau, K

    1979-10-15

    In Sonchus oleraceus L. (Asteraceae) infected with the beet yellow stunt virus (BYSV) the virions are found in phloem cells, including the sieve elements. In parenchymatous phloem cells, the virus is present mainly in the cytoplasm. In some parenchymatous cells, containing massive accumulations of virus, the flexuous rodlike virus particles are found partly inserted into mitochondrial cristae. The mitochondrial envelope is absent where virus is present in the cristae. A similar relation between virus and host mitochondria apparently has not been recorded for any other plant virus.

  2. Evolution of Influenza A Virus by Mutation and Re-Assortment

    PubMed Central

    Shao, Wenhan; Li, Xinxin; Goraya, Mohsan Ullah; Wang, Song; Chen, Ji-Long

    2017-01-01

    Influenza A virus (IAV), a highly infectious respiratory pathogen, has continued to be a significant threat to global public health. To complete their life cycle, influenza viruses have evolved multiple strategies to interact with a host. A large number of studies have revealed that the evolution of influenza A virus is mainly mediated through the mutation of the virus itself and the re-assortment of viral genomes derived from various strains. The evolution of influenza A virus through these mechanisms causes worldwide annual epidemics and occasional pandemics. Importantly, influenza A virus can evolve from an animal infected pathogen to a human infected pathogen. The highly pathogenic influenza virus has resulted in stupendous economic losses due to its morbidity and mortality both in human and animals. Influenza viruses fall into a category of viruses that can cause zoonotic infection with stable adaptation to human, leading to sustained horizontal transmission. The rapid mutations of influenza A virus result in the loss of vaccine optimal efficacy, and challenge the complete eradication of the virus. In this review, we highlight the current understanding of influenza A virus evolution caused by the mutation and re-assortment of viral genomes. In addition, we discuss the specific mechanisms by which the virus evolves. PMID:28783091

  3. Reverse genetics in high throughput: rapid generation of complete negative strand RNA virus cDNA clones and recombinant viruses thereof.

    PubMed

    Nolden, T; Pfaff, F; Nemitz, S; Freuling, C M; Höper, D; Müller, T; Finke, Stefan

    2016-04-05

    Reverse genetics approaches are indispensable tools for proof of concepts in virus replication and pathogenesis. For negative strand RNA viruses (NSVs) the limited number of infectious cDNA clones represents a bottleneck as clones are often generated from cell culture adapted or attenuated viruses, with limited potential for pathogenesis research. We developed a system in which cDNA copies of complete NSV genomes were directly cloned into reverse genetics vectors by linear-to-linear RedE/T recombination. Rapid cloning of multiple rabies virus (RABV) full length genomes and identification of clones identical to field virus consensus sequence confirmed the approache's reliability. Recombinant viruses were recovered from field virus cDNA clones. Similar growth kinetics of parental and recombinant viruses, preservation of field virus characters in cell type specific replication and virulence in the mouse model were confirmed. Reduced titers after reporter gene insertion indicated that the low level of field virus replication is affected by gene insertions. The flexibility of the strategy was demonstrated by cloning multiple copies of an orthobunyavirus L genome segment. This important step in reverse genetics technology development opens novel avenues for the analysis of virus variability combined with phenotypical characterization of recombinant viruses at a clonal level.

  4. Electron microscopy and antigenic studies of uncharacterized viruses. I. Evidence suggesting the placement of viruses in families Arenaviridae, Paramyxoviridae, or Poxviridae.

    PubMed

    Zeller, H G; Karabatsos, N; Calisher, C H; Digoutte, J P; Murphy, F A; Shope, R E

    1989-01-01

    During approximately 35 years, investigators in various laboratories studying arbovirus ecology and epidemiology accumulated many virus isolates, more than 60 of which were not characterized or placed in taxa. By a combination of electron microscopic and antigenic studies we collected information sufficient to provisionally classify 60 isolates. Electron microscopic observations suggest that 20 are members of the virus family Bunyaviridae, 20 Rhabdoviridae, 14 Reoviridae, one Togaviridae, one Paramyxoviridae (Mapuera virus, from a bat), and one Poxviridae (Yoka virus, from mosquitoes). Serologic studies provided evidence sufficient to place some of these viruses in recognized antigenic groups, within families and genera, and to establish new antigenic groups and taxa for others. Three viruses were found to have morphologic and morphogenetic characteristics consistent with those of members of the family Arenaviridae: Quaranfil virus, a human pathogen, Johnston Atoll virus, isolated from birds and ticks, and Araguari virus, isolated from an opossum. This, the first in a series of three papers, described methods used for these investigations and also presents descriptions of viruses provisionally placed in the families Arenaviridae, Paramyxoviridae, or Poxviridae. Descriptions of viruses provisionally placed in families Bunyaviridae and Reoviridae are published in the second and third papers, respectively. Viruses of the family Rhabdoviridae have been described separately.

  5. Experimental Infection of Chickens with Intercontinental Reassortant H9N2 Influenza Viruses from Wild Birds.

    PubMed

    Lee, Dong-Hun; Kwon, Jung-Hoon; Park, Jae-Keun; Yuk, Seong-Su; Tseren-Ochir, Erdene-Ochir; Noh, Jin-Yong; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2016-06-01

    The H9N2 subtype of low pathogenic avian influenza (LPAI) virus is the most prevalent LPAI in domestic poultry. We previously reported the natural reassortant H9N2 viruses between North American and Eurasian lineages isolated from wild birds in Korea. These viruses were identified in China and Alaska, providing evidence of intercontinental dispersal. In this study, we evaluated the infectivity, transmissibility, and pathogenic potential of these H9N2 viruses and Eurasian H9N2 virus identified from wild birds using specific-pathogen-free chickens. Three-week-old chickens were infected intranasally. All of these reassortant H9N2 viruses could not be replicated and transmitted in chickens. On the other hand, three out of eight chickens inoculated with the Eurasian H9N2 virus shed detectable levels of virus and showed seroconversion but did not show contact transmission of the virus. Although all reassortant H9N2 viruses could not be replicated and transmitted in chickens, and although there are no reports on reassortant H9N2 virus infection in poultry farms until now, monitoring of reassortant H9N2 viruses should be continued to prepare for the advent and evolution of these viruses.

  6. GeneChip Resequencing of the Smallpox Virus Genome Can Identify Novel Strains: a Biodefense Application▿

    PubMed Central

    Sulaiman, Irshad M.; Tang, Kevin; Osborne, John; Sammons, Scott; Wohlhueter, Robert M.

    2007-01-01

    We developed a set of seven resequencing GeneChips, based on the complete genome sequences of 24 strains of smallpox virus (variola virus), for rapid characterization of this human-pathogenic virus. Each GeneChip was designed to analyze a divergent segment of approximately 30,000 bases of the smallpox virus genome. This study includes the hybridization results of 14 smallpox virus strains. Of the 14 smallpox virus strains hybridized, only 7 had sequence information included in the design of the smallpox virus resequencing GeneChips; similar information for the remaining strains was not tiled as a reference in these GeneChips. By use of variola virus-specific primers and long-range PCR, 22 overlapping amplicons were amplified to cover nearly the complete genome and hybridized with the smallpox virus resequencing GeneChip set. These GeneChips were successful in generating nucleotide sequences for all 14 of the smallpox virus strains hybridized. Analysis of the data indicated that the GeneChip resequencing by hybridization was fast and reproducible and that the smallpox virus resequencing GeneChips could differentiate the 14 smallpox virus strains characterized. This study also suggests that high-density resequencing GeneChips have potential biodefense applications and may be used as an alternate tool for rapid identification of smallpox virus in the future. PMID:17182757

  7. Virus reactivation: a panoramic view in human infections

    PubMed Central

    Traylen, Christopher M; Patel, Hersh R; Fondaw, Wylder; Mahatme, Sheran; Williams, John F; Walker, Lia R; Dyson, Ossie F; Arce, Sergio; Akula, Shaw M

    2011-01-01

    Viruses are obligate intracellular parasites, relying to a major extent on the host cell for replication. An active replication of the viral genome results in a lytic infection characterized by the release of new progeny virus particles, often upon the lysis of the host cell. Another mode of virus infection is the latent phase, where the virus is ‘quiescent’ (a state in which the virus is not replicating). A combination of these stages, where virus replication involves stages of both silent and productive infection without rapidly killing or even producing excessive damage to the host cells, falls under the umbrella of a persistent infection. Reactivation is the process by which a latent virus switches to a lytic phase of replication. Reactivation may be provoked by a combination of external and/or internal cellular stimuli. Understanding this mechanism is essential in developing future therapeutic agents against viral infection and subsequent disease. This article examines the published literature and current knowledge regarding the viral and cellular proteins that may play a role in viral reactivation. The focus of the article is on those viruses known to cause latent infections, which include herpes simplex virus, varicella zoster virus, Epstein–Barr virus, human cytomegalovirus, human herpesvirus 6, human herpesvirus 7, Kaposi’s sarcoma-associated herpesvirus, JC virus, BK virus, parvovirus and adenovirus. PMID:21799704

  8. Contemporary Avian Influenza A Virus Subtype H1, H6, H7, H10, and H15 Hemagglutinin Genes Encode a Mammalian Virulence Factor Similar to the 1918 Pandemic Virus H1 Hemagglutinin

    PubMed Central

    Qi, Li; Pujanauski, Lindsey M.; Davis, A. Sally; Schwartzman, Louis M.; Chertow, Daniel S.; Baxter, David; Scherler, Kelsey; Hartshorn, Kevan L.; Slemons, Richard D.; Walters, Kathie-Anne; Kash, John C.

    2014-01-01

    ABSTRACT Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backbone, differing only by hemagglutinin subtype expressed. Viruses expressing the avian H1, H6, H7, H10, and H15 subtypes were pathogenic in mice and cytopathic in normal human bronchial epithelial cells, in contrast to H2-, H3-, H5-, H9-, H11-, H13-, H14-, and H16-expressing viruses. Mouse pathogenicity was associated with pulmonary macrophage and neutrophil recruitment. These data suggest that avian influenza virus hemagglutinins H1, H6, H7, H10, and H15 contain inherent mammalian virulence factors and likely share a key virulence property of the 1918 virus. Consequently, zoonotic infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals. PMID:25406382

  9. Influenza A Virus Polymerase Is a Site for Adaptive Changes during Experimental Evolution in Bat Cells

    PubMed Central

    Poole, Daniel S.; Yú, Shuǐqìng; Caì, Yíngyún; Dinis, Jorge M.; Müller, Marcel A.; Jordan, Ingo; Friedrich, Thomas C.; Kuhn, Jens H.

    2014-01-01

    ABSTRACT The recent identification of highly divergent influenza A viruses in bats revealed a new, geographically dispersed viral reservoir. To investigate the molecular mechanisms of host-restricted viral tropism and the potential for transmission of viruses between humans and bats, we exposed a panel of cell lines from bats of diverse species to a prototypical human-origin influenza A virus. All of the tested bat cell lines were susceptible to influenza A virus infection. Experimental evolution of human and avian-like viruses in bat cells resulted in efficient replication and created highly cytopathic variants. Deep sequencing of adapted human influenza A virus revealed a mutation in the PA polymerase subunit not previously described, M285K. Recombinant virus with the PA M285K mutation completely phenocopied the adapted virus. Adaptation of an avian virus-like virus resulted in the canonical PB2 E627K mutation that is required for efficient replication in other mammals. None of the adaptive mutations occurred in the gene for viral hemagglutinin, a gene that frequently acquires changes to recognize host-specific variations in sialic acid receptors. We showed that human influenza A virus uses canonical sialic acid receptors to infect bat cells, even though bat influenza A viruses do not appear to use these receptors for virus entry. Our results demonstrate that bats are unique hosts that select for both a novel mutation and a well-known adaptive mutation in the viral polymerase to support replication. IMPORTANCE Bats constitute well-known reservoirs for viruses that may be transferred into human populations, sometimes with fatal consequences. Influenza A viruses have recently been identified in bats, dramatically expanding the known host range of this virus. Here we investigated the replication of human influenza A virus in bat cell lines and the barriers that the virus faces in this new host. Human influenza A and B viruses infected cells from geographically and evolutionarily diverse New and Old World bats. Viruses mutated during infections in bat cells, resulting in increased replication and cytopathic effects. These mutations were mapped to the viral polymerase and shown to be solely responsible for adaptation to bat cells. Our data suggest that replication of human influenza A viruses in a nonnative host drives the evolution of new variants and may be an important source of genetic diversity. PMID:25142579

  10. A novel sampling method to detect airborne influenza and other respiratory viruses in mechanically ventilated patients: a feasibility study.

    PubMed

    Mitchell, Alicia B; Tang, Benjamin; Shojaei, Maryam; Barnes, Lachlan S; Nalos, Marek; Oliver, Brian G; McLean, Anthony S

    2018-04-17

    Respiratory viruses circulate constantly in the ambient air. The risk of opportunistic infection from these viruses can be increased in mechanically ventilated patients. The present study evaluates the feasibility of detecting airborne respiratory viruses in mechanically ventilated patients using a novel sample collection method involving ventilator filters. We collected inspiratory and expiratory filters from the ventilator circuits of mechanically ventilated patients in an intensive care unit over a 14-month period. To evaluate whether we could detect respiratory viruses collected in these filters, we performed a reverse transcription polymerase chain reaction on the extracted filter membrane with primers specific for rhinovirus, respiratory syncytial virus, influenza virus A and B, parainfluenza virus (type 1, 2 and 3) and human metapneumovirus. For each patient, we also performed a full virology screen (virus particles, antibody titres and virus-induced biomarkers) on respiratory samples (nasopharyngeal swab, tracheal aspirate or bronchoalveolar fluid) and blood samples. Respiratory viruses were detected in the ventilator filters of nearly half the patients in the study cohort (n = 33/70). The most common virus detected was influenza A virus (n = 29). There were more viruses detected in the inspiratory filters (n = 18) than in the expiratory filters (n = 15). A third of the patients with a positive virus detection in the ventilator filters had a hospital laboratory confirmed viral infection. In the remaining cases, the detected viruses were different from viruses already identified in the same patient, suggesting that these additional viruses come from the ambient air or from cross-contamination (staff or visitors). In patients in whom new viruses were detected in the ventilator filters, there was no evidence of clinical signs of an active viral infection. Additionally, the levels of virus-induced biomarker in these patients were not statistically different from those of non-infected patients (p = 0.33). Respiratory viruses were present within the ventilator circuits of patients receiving mechanical ventilation. Although no adverse clinical effect was evident in these patients, further studies are warranted, given the small sample size of the study and the recognition that ventilated patients are potentially susceptible to opportunistic infection from airborne respiratory viruses.

  11. Pathogenicity and Transmission of H5 and H7 Highly Pathogenic Avian Influenza Viruses in Mallards

    PubMed Central

    Costa-Hurtado, Mar; Shepherd, Eric; DeJesus, Eric; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R.; Suarez, David L.; Stallknecht, David E.; Swayne, David E.

    2016-01-01

    ABSTRACT Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010, and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses. To better understand why Gs/GD H5 HPAI viruses infect and transmit more efficiently in waterfowl than other HPAI viruses, groups of mallard ducks were challenged with one of 14 different H5 and H7 HPAI viruses, including a Gs/GD lineage H5N1 (clade 2.2) virus from Mongolia, part of the 2005 dispersion, and the H5N8 and H5N2 index HPAI viruses (clade 2.3.4.4) from the United States, part of the 2014 dispersion. All virus-inoculated ducks and contact exposed ducks became infected and shed moderate to high titers of the viruses, with the exception that mallards were resistant to Ck/Pennsylvania/83 and Ck/Queretaro/95 H5N2 HPAI virus infection. Clinical signs were only observed in ducks challenged with the H5N1 2005 virus, which all died, and with the H5N8 and H5N2 2014 viruses, which had decreased weight gain and fever. These three viruses were also shed in higher titers by the ducks, which could facilitate virus transmission and spread. This study highlights the possible role of wild waterfowl in the spread of HPAI viruses. IMPORTANCE The spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the Gs/GD lineage by migratory waterfowl is a serious concern for animal and public health. H5 and H7 HPAI viruses are considered to be adapted to gallinaceous species (chickens, turkeys, quail, etc.) and less likely to infect and transmit in wild ducks. In order to understand why this is different with certain Gs/GD lineage H5 HPAI viruses, we compared the pathogenicity and transmission of several H5 and H7 HPAI viruses from previous poultry outbreaks to Gs/GD lineage H5 viruses, including H5N1 (clade 2.2), H5N8 and H5N2 (clade 2.3.4.4) viruses, in mallards as a representative wild duck species. Surprisingly, most HPAI viruses examined in this study replicated well and transmitted among mallards; however, the three Gs/GD lineage H5 HPAI viruses replicated to higher titers, which could explain the transmission of these viruses in susceptible wild duck populations. PMID:27558429

  12. Double-Stranded RNA Is Detected by Immunofluorescence Analysis in RNA and DNA Virus Infections, Including Those by Negative-Stranded RNA Viruses.

    PubMed

    Son, Kyung-No; Liang, Zhiguo; Lipton, Howard L

    2015-09-01

    Early biochemical studies of viral replication suggested that most viruses produce double-stranded RNA (dsRNA), which is essential for the induction of the host immune response. However, it was reported in 2006 that dsRNA could be detected by immunofluorescence antibody staining in double-stranded DNA and positive-strand RNA virus infections but not in negative-strand RNA virus infections. Other reports in the literature seemed to support these observations. This suggested that negative-strand RNA viruses produce little, if any, dsRNA or that more efficient viral countermeasures to mask dsRNA are mounted. Because of our interest in the use of dsRNA antibodies for virus discovery, particularly in pathological specimens, we wanted to determine how universal immunostaining for dsRNA might be in animal virus infections. We have detected the in situ formation of dsRNA in cells infected with vesicular stomatitis virus, measles virus, influenza A virus, and Nyamanini virus, which represent viruses from different negative-strand RNA virus families. dsRNA was also detected in cells infected with lymphocytic choriomeningitis virus, an ambisense RNA virus, and minute virus of mice (MVM), a single-stranded DNA (ssDNA) parvovirus, but not hepatitis B virus. Although dsRNA staining was primarily observed in the cytoplasm, it was also seen in the nucleus of cells infected with influenza A virus, Nyamanini virus, and MVM. Thus, it is likely that most animal virus infections produce dsRNA species that can be detected by immunofluorescence staining. The apoptosis induced in several uninfected cell lines failed to upregulate dsRNA formation. An effective antiviral host immune response depends on recognition of viral invasion and an intact innate immune system as a first line of defense. Double-stranded RNA (dsRNA) is a viral product essential for the induction of innate immunity, leading to the production of type I interferons (IFNs) and the activation of hundreds of IFN-stimulated genes. The present study demonstrates that infections, including those by ssDNA viruses and positive- and negative-strand RNA viruses, produce dsRNAs detectable by standard immunofluorescence staining. While dsRNA staining was primarily observed in the cytoplasm, nuclear staining was also present in some RNA and DNA virus infections. The nucleus is unlikely to have pathogen-associated molecular pattern (PAMP) receptors for dsRNA because of the presence of host dsRNA molecules. Thus, it is likely that most animal virus infections produce dsRNA species detectable by immunofluorescence staining, which may prove useful in viral discovery as well. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. 9 CFR 121.3 - VS select agents and toxins.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE, AND... fever virus; *Foot-and-mouth disease virus; Goat pox virus; Lumpy skin disease virus; Mycoplasma...

  14. 9 CFR 121.3 - VS select agents and toxins.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE, AND... fever virus; *Foot-and-mouth disease virus; Goat pox virus; Lumpy skin disease virus; Mycoplasma...

  15. 42 CFR 73.4 - Overlap select agents and toxins.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... pseudomallei (formerly Pseudomonas pseudomallei) Hendra virus Nipah virus Rift Valley fever virus Venezuelan... CDC or APHIS. (i) The seizure of Bacillus anthracis, Brucella melitensis, Hendra virus, Nipah virus...

  16. Characterization of uncultivable bat influenza virus using a replicative synthetic virus.

    PubMed

    Zhou, Bin; Ma, Jingjiao; Liu, Qinfang; Bawa, Bhupinder; Wang, Wei; Shabman, Reed S; Duff, Michael; Lee, Jinhwa; Lang, Yuekun; Cao, Nan; Nagy, Abdou; Lin, Xudong; Stockwell, Timothy B; Richt, Juergen A; Wentworth, David E; Ma, Wenjun

    2014-10-01

    Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses.

  17. Characterization of Uncultivable Bat Influenza Virus Using a Replicative Synthetic Virus

    PubMed Central

    Bawa, Bhupinder; Wang, Wei; Shabman, Reed S.; Duff, Michael; Lee, Jinhwa; Lang, Yuekun; Cao, Nan; Nagy, Abdou; Lin, Xudong; Stockwell, Timothy B.; Richt, Juergen A.; Wentworth, David E.; Ma, Wenjun

    2014-01-01

    Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses. PMID:25275541

  18. Viruses of parasites as actors in the parasite-host relationship: A "ménage à trois".

    PubMed

    Gómez-Arreaza, Amaranta; Haenni, Anne-Lise; Dunia, Irene; Avilán, Luisana

    2017-02-01

    The complex parasite-host relationship involves multiple mechanisms. Moreover, parasites infected by viruses modify this relationship adding more complexity to the system that now comprises three partners. Viruses infecting parasites were described several decades ago. However, until recently little was known about the viruses involved and their impact on the resulting disease caused to the hosts. To clarify this situation, we have concentrated on parasitic diseases caused to humans and on how virus-infected parasites could alter the symptoms inflicted on the human host. It is clear that the effect caused to the human host depends on the virus and on the parasite it has infected. Consequently, the review is divided as follows: Viruses with a possible effect on the virulence of the parasite. This section reviews pertinent articles showing that infection of parasites by viruses might increase the detrimental effect of the tandem virus-parasite on the human host (hypervirulence) or decrease virulence of the parasite (hypovirulence). Parasites as vectors affecting the transmission of viruses. In some cases, the virus-infected parasite might facilitate the transfer of the virus to the human host. Parasites harboring viruses with unidentified effects on their host. In spite of recently renewed interest in parasites in connection with their viruses, there still remains a number of cases in which the effect of the virus of a given parasite on the human host remains ambiguous. The triangular relationship between the virus, the parasite and the host, and the modulation of the pathogenicity and virulence of the parasites by viruses should be taken into account in the rationale of fighting against parasites. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Association of interferon lambda-1 with herpes simplex viruses-1 and -2, Epstein-Barr virus, and human cytomegalovirus in chronic periodontitis.

    PubMed

    Muzammil; Jayanthi, D; Faizuddin, Mohamed; Noor Ahamadi, H M

    2017-05-01

    Periodontal tissues facilitate the homing of herpes viruses that elicit the immune-inflammatory response releasing the interferons (IFN). IFN lambda-1 (λ1) can suppress the replication of viruses, and induces the antiviral mechanism. The aim of the present study was to evaluate the association between IFN-λ1 and periodontal herpes viruses in the immunoregulation of chronic periodontal disease. The cross-sectional study design included 30 chronic periodontitis patients with a mean age of 42.30 ± 8.63 years. Gingival crevicular fluid collected was assessed for IFN-λ1 using enzyme-linked immunosorbent assay and four herpes viruses were detected using multiplex polymerase chain reaction technique. IFN-λ1 levels were compared between virus-positive and -negative patients for individual and total viruses. Fifty per cent (n = 15) of patients were positive for the four herpes viruses together; 50% (n = 15), 30% (n = 9), 26.7% (n = 8), and 40% (n = 12) were positive for herpes simplex virus (HSV)-1, Epstein-Barr virus, HSV-2, and human cytomegalovirus, respectively. The mean concentrations of IFN-λ1 in virus-positive patients (14.38 ± 13.95) were lower than those of virus-negative patients (228.26 ± 215.35). INF-λ1 levels in individual virus groups were also lower in virus-positive patients compared to virus-negative patients, with P < 0.001. These results suggest that IFN-λ1 could have antiviral and therapeutic value against the viruses in the pathogenesis of chronic periodontitis. © 2015 Wiley Publishing Asia Pty Ltd.

  20. Optimization and validation of sample preparation for metagenomic sequencing of viruses in clinical samples.

    PubMed

    Lewandowska, Dagmara W; Zagordi, Osvaldo; Geissberger, Fabienne-Desirée; Kufner, Verena; Schmutz, Stefan; Böni, Jürg; Metzner, Karin J; Trkola, Alexandra; Huber, Michael

    2017-08-08

    Sequence-specific PCR is the most common approach for virus identification in diagnostic laboratories. However, as specific PCR only detects pre-defined targets, novel virus strains or viruses not included in routine test panels will be missed. Recently, advances in high-throughput sequencing allow for virus-sequence-independent identification of entire virus populations in clinical samples, yet standardized protocols are needed to allow broad application in clinical diagnostics. Here, we describe a comprehensive sample preparation protocol for high-throughput metagenomic virus sequencing using random amplification of total nucleic acids from clinical samples. In order to optimize metagenomic sequencing for application in virus diagnostics, we tested different enrichment and amplification procedures on plasma samples spiked with RNA and DNA viruses. A protocol including filtration, nuclease digestion, and random amplification of RNA and DNA in separate reactions provided the best results, allowing reliable recovery of viral genomes and a good correlation of the relative number of sequencing reads with the virus input. We further validated our method by sequencing a multiplexed viral pathogen reagent containing a range of human viruses from different virus families. Our method proved successful in detecting the majority of the included viruses with high read numbers and compared well to other protocols in the field validated against the same reference reagent. Our sequencing protocol does work not only with plasma but also with other clinical samples such as urine and throat swabs. The workflow for virus metagenomic sequencing that we established proved successful in detecting a variety of viruses in different clinical samples. Our protocol supplements existing virus-specific detection strategies providing opportunities to identify atypical and novel viruses commonly not accounted for in routine diagnostic panels.

  1. Influenza Virus Respiratory Infection and Transmission Following Ocular Inoculation in Ferrets

    PubMed Central

    Belser, Jessica A.; Gustin, Kortney M.; Maines, Taronna R.; Pantin-Jackwood, Mary J.; Katz, Jacqueline M.; Tumpey, Terrence M.

    2012-01-01

    While influenza viruses are a common respiratory pathogen, sporadic reports of conjunctivitis following human infection demonstrates the ability of this virus to cause disease outside of the respiratory tract. The ocular surface represents both a potential site of virus replication and a portal of entry for establishment of a respiratory infection. However, the properties which govern ocular tropism of influenza viruses, the mechanisms of virus spread from ocular to respiratory tissue, and the potential differences in respiratory disease initiated from different exposure routes are poorly understood. Here, we established a ferret model of ocular inoculation to explore the development of virus pathogenicity and transmissibility following influenza virus exposure by the ocular route. We found that multiple subtypes of human and avian influenza viruses mounted a productive virus infection in the upper respiratory tract of ferrets following ocular inoculation, and were additionally detected in ocular tissue during the acute phase of infection. H5N1 viruses maintained their ability for systemic spread and lethal infection following inoculation by the ocular route. Replication-independent deposition of virus inoculum from ocular to respiratory tissue was limited to the nares and upper trachea, unlike traditional intranasal inoculation which results in virus deposition in both upper and lower respiratory tract tissues. Despite high titers of replicating transmissible seasonal viruses in the upper respiratory tract of ferrets inoculated by the ocular route, virus transmissibility to naïve contacts by respiratory droplets was reduced following ocular inoculation. These data improve our understanding of the mechanisms of virus spread following ocular exposure and highlight differences in the establishment of respiratory disease and virus transmissibility following use of different inoculation volumes and routes. PMID:22396651

  2. Industry-Wide Surveillance of Marek's Disease Virus on Commercial Poultry Farms.

    PubMed

    Kennedy, David A; Cairns, Christopher; Jones, Matthew J; Bell, Andrew S; Salathé, Rahel M; Baigent, Susan J; Nair, Venugopal K; Dunn, Patricia A; Read, Andrew F

    2017-06-01

    Marek's disease virus is a herpesvirus of chickens that costs the worldwide poultry industry more than US$1 billion annually. Two generations of Marek's disease vaccines have shown reduced efficacy over the last half century due to evolution of the virus. Understanding where the virus is present may give insight into whether continued reductions in efficacy are likely. We conducted a 3-yr surveillance study to assess the prevalence of Marek's disease virus on commercial poultry farms, determine the effect of various factors on virus prevalence, and document virus dynamics in broiler chicken houses over short (weeks) and long (years) timescales. We extracted DNA from dust samples collected from commercial chicken and egg production facilities in Pennsylvania, USA. Quantitative PCR was used to assess wild-type virus detectability and concentration. Using data from 1018 dust samples with Bayesian generalized linear mixed effects models, we determined the factors that correlated with virus prevalence across farms. Maximum likelihood and autocorrelation function estimation on 3727 additional dust samples were used to document and characterize virus concentrations within houses over time. Overall, wild-type virus was detectable at least once on 36 of 104 farms at rates that varied substantially between farms. Virus was detected in one of three broiler-breeder operations (companies), four of five broiler operations, and three of five egg layer operations. Marek's disease virus detectability differed by production type, bird age, day of the year, operation (company), farm, house, flock, and sample. Operation (company) was the most important factor, accounting for between 12% and 63.4% of the variation in virus detectability. Within individual houses, virus concentration often dropped below detectable levels and reemerged later. These data characterize Marek's disease virus dynamics, which are potentially important to the evolution of the virus.

  3. Humans and ferrets with prior H1N1 influenza virus infections do not exhibit evidence of original antigenic sin after infection or vaccination with the 2009 pandemic H1N1 influenza virus.

    PubMed

    O'Donnell, Christopher D; Wright, Amber; Vogel, Leatrice; Boonnak, Kobporn; Treanor, John J; Subbarao, Kanta

    2014-05-01

    The hypothesis of original antigenic sin (OAS) states that the imprint established by an individual's first influenza virus infection governs the antibody response thereafter. Subsequent influenza virus infection results in an antibody response against the original infecting virus and an impaired immune response against the newer influenza virus. The purpose of our study was to seek evidence of OAS after infection or vaccination with the 2009 pandemic H1N1 (2009 pH1N1) virus in ferrets and humans previously infected with H1N1 viruses with various antigenic distances from the 2009 pH1N1 virus, including viruses from 1935 through 1999. In ferrets, seasonal H1N1 priming did not diminish the antibody response to infection or vaccination with the 2009 pH1N1 virus, nor did it diminish the T-cell response, indicating the absence of OAS in seasonal H1N1 virus-primed ferrets. Analysis of paired samples of human serum taken before and after vaccination with a monovalent inactivated 2009 pH1N1 vaccine showed a significantly greater-fold rise in the titer of antibody against the 2009 pH1N1 virus than against H1N1 viruses that circulated during the childhood of each subject. Thus, prior experience with H1N1 viruses did not result in an impairment of the antibody response against the 2009 pH1N1 vaccine. Our data from ferrets and humans suggest that prior exposure to H1N1 viruses did not impair the immune response against the 2009 pH1N1 virus.

  4. Fungal DNA virus infects a mycophagous insect and utilizes it as a transmission vector

    PubMed Central

    Liu, Si; Xie, Jiatao; Cheng, Jiasen; Li, Bo; Chen, Tao; Fu, Yanping; Li, Guoqing; Wang, Manqun; Jin, Huanan; Wan, Hu; Jiang, Daohong

    2016-01-01

    Mycoviruses are usually transmitted horizontally via hyphal anastomosis and vertically via sexual/asexual spores. Previously, we reported that a gemycircularvirus, Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), could infect its fungal host extracellularly. Here, we discovered that SsHADV-1 could infect a mycophagous insect, Lycoriella ingenua, and use it as a transmission vector. Virus acquired by larvae feeding on colonies of a virus-infected strain of S. sclerotiorum was replicated and retained in larvae, pupae, adults, and eggs. Virus could be transmitted to insect offspring when larvae were injected with virus particles and allowed to feed on a nonhost fungus. Virus replication in insect cells was further confirmed by inoculating Spodoptera frugiperda cells with virus particles and analyzing with RT-PCR, Northern blot, immunofluorescence, and flow cytometry assays. Larvae could transmit virus once they acquired virus by feeding on virus-infected fungal colony. Offspring larvae hatched from viruliferous eggs were virus carriers and could also successfully transmit virus. Virus transmission between insect and fungus also occurred on rapeseed plants. Virus-infected isolates produced less repellent volatile substances to attract adults of L. ingenua. Furthermore, L. ingenua was easily observed on Sclerotinia lesions in rapeseed fields, and viruliferous adults were captured from fields either sprayed with a virus-infected fungal strain or nonsprayed. Our findings may facilitate the exploration of mycoviruses for control of fungal diseases and enhance our understanding of the ecology of SsHADV-1 and other newly emerging SsHADV-1–like viruses, which were recently found to be widespread in various niches including human HIV-infected blood, human and animal feces, insects, plants, and even sewage. PMID:27791095

  5. Identifying Early Target Cells of Nipah Virus Infection in Syrian Hamsters.

    PubMed

    Baseler, Laura; Scott, Dana P; Saturday, Greg; Horne, Eva; Rosenke, Rebecca; Thomas, Tina; Meade-White, Kimberly; Haddock, Elaine; Feldmann, Heinz; de Wit, Emmie

    2016-11-01

    Nipah virus causes respiratory and neurologic disease with case fatality rates up to 100% in individual outbreaks. End stage lesions have been described in the respiratory and nervous systems, vasculature and often lymphoid organs in fatal human cases; however, the initial target organs of Nipah virus infection have not been identified. Here, we detected the initial target tissues and cells of Nipah virus and tracked virus dissemination during the early phase of infection in Syrian hamsters inoculated with a Nipah virus isolate from Malaysia (NiV-M) or Bangladesh (NiV-B). Syrian hamsters were euthanized between 4 and 48 hours post intranasal inoculation and tissues were collected and analyzed for the presence of viral RNA, viral antigen and infectious virus. Virus replication was first detected at 8 hours post inoculation (hpi). Nipah virus initially targeted type I pneumocytes, bronchiolar respiratory epithelium and alveolar macrophages in the lung and respiratory and olfactory epithelium lining the nasal turbinates. By 16 hpi, virus disseminated to epithelial cells lining the larynx and trachea. Although the pattern of viral dissemination was similar for both virus isolates, the rate of spread was slower for NiV-B. Infectious virus was not detected in the nervous system or blood and widespread vascular infection and lesions within lymphoid organs were not observed, even at 48 hpi. Nipah virus initially targets the respiratory system. Virus replication in the brain and infection of blood vessels in non-respiratory tissues does not occur during the early phase of infection. However, virus replicates early in olfactory epithelium and may serve as the first step towards nervous system dissemination, suggesting that development of vaccines that block virus dissemination or treatments that can access the brain and spinal cord and directly inhibit virus replication may be necessary for preventing central nervous system pathology.

  6. Humans and Ferrets with Prior H1N1 Influenza Virus Infections Do Not Exhibit Evidence of Original Antigenic Sin after Infection or Vaccination with the 2009 Pandemic H1N1 Influenza Virus

    PubMed Central

    O'Donnell, Christopher D.; Wright, Amber; Vogel, Leatrice; Boonnak, Kobporn; Treanor, John J.

    2014-01-01

    The hypothesis of original antigenic sin (OAS) states that the imprint established by an individual's first influenza virus infection governs the antibody response thereafter. Subsequent influenza virus infection results in an antibody response against the original infecting virus and an impaired immune response against the newer influenza virus. The purpose of our study was to seek evidence of OAS after infection or vaccination with the 2009 pandemic H1N1 (2009 pH1N1) virus in ferrets and humans previously infected with H1N1 viruses with various antigenic distances from the 2009 pH1N1 virus, including viruses from 1935 through 1999. In ferrets, seasonal H1N1 priming did not diminish the antibody response to infection or vaccination with the 2009 pH1N1 virus, nor did it diminish the T-cell response, indicating the absence of OAS in seasonal H1N1 virus-primed ferrets. Analysis of paired samples of human serum taken before and after vaccination with a monovalent inactivated 2009 pH1N1 vaccine showed a significantly greater-fold rise in the titer of antibody against the 2009 pH1N1 virus than against H1N1 viruses that circulated during the childhood of each subject. Thus, prior experience with H1N1 viruses did not result in an impairment of the antibody response against the 2009 pH1N1 vaccine. Our data from ferrets and humans suggest that prior exposure to H1N1 viruses did not impair the immune response against the 2009 pH1N1 virus. PMID:24648486

  7. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    PubMed

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails.

  8. Temperate Bacterial Viruses as Double-Edged Swords in Bacterial Warfare

    PubMed Central

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a “replicating toxin”. However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails. PMID:23536852

  9. Novel H7N2 and H5N6 Avian Influenza A Viruses in Sentinel Chickens: A Sentinel Chicken Surveillance Study.

    PubMed

    Zhao, Teng; Qian, Yan-Hua; Chen, Shan-Hui; Wang, Guo-Lin; Wu, Meng-Na; Huang, Yong; Ma, Guang-Yuan; Fang, Li-Qun; Gray, Gregory C; Lu, Bing; Tong, Yi-Gang; Ma, Mai-Juan; Cao, Wu-Chun

    2016-01-01

    In 2014, a sentinel chicken surveillance for avian influenza viruses was conducted in aquatic bird habitat near Wuxi City, Jiangsu Province, China. Two H7N2, one H5N6, and two H9N2 viruses were isolated. Sequence analysis revealed that the H7N2 virus is a novel reassortant of H7N9 and H9N2 viruses and H5N6 virus is a reassortant of H5N1 clade 2.3.4 and H6N6 viruses. Substitutions V186 and L226 (H3 numbering) in the hemagglutinin (HA) gene protein was found in two H7N2 viruses but not in the H5N6 virus. Two A138 and A160 mutations were identified in the HA gene protein of all three viruses but a P128 mutation was only observed in the H5N6 virus. A deletion of 3 and 11 amino acids in the neuraminidase stalk region was found in two H7N2 and H5N6 viruses, respectively. Moreover, a mutation of N31 in M2 protein was observed in both two H7N2 viruses. High similarity of these isolated viruses to viruses previously identified among poultry and humans, suggests that peridomestic aquatic birds may play a role in sustaining novel virus transmission. Therefore, continued surveillance is needed to monitor these avian influenza viruses in wild bird and domestic poultry that may pose a threat to poultry and human health.

  10. Animal Viruses Probe dataset (AVPDS) for microarray-based diagnosis and identification of viruses.

    PubMed

    Yadav, Brijesh S; Pokhriyal, Mayank; Vasishtha, Dinesh P; Sharma, Bhaskar

    2014-03-01

    AVPDS (Animal Viruses Probe dataset) is a dataset of virus-specific and conserve oligonucleotides for identification and diagnosis of viruses infecting animals. The current dataset contain 20,619 virus specific probes for 833 viruses and their subtypes and 3,988 conserved probes for 146 viral genera. Dataset of virus specific probe has been divided into two fields namely virus name and probe sequence. Similarly conserved probes for virus genera table have genus, and subgroup within genus name and probe sequence. The subgroup within genus is artificially divided subgroups with no taxonomic significance and contains probes which identifies viruses in that specific subgroup of the genus. Using this dataset we have successfully diagnosed the first case of Newcastle disease virus in sheep and reported a mixed infection of Bovine viral diarrhea and Bovine herpesvirus in cattle. These dataset also contains probes which cross reacts across species experimentally though computationally they meet specifications. These probes have been marked. We hope that this dataset will be useful in microarray-based detection of viruses. The dataset can be accessed through the link https://dl.dropboxusercontent.com/u/94060831/avpds/HOME.html.

  11. Tunable and label-free virus enrichment for ultrasensitive virus detection using carbon nanotube arrays

    PubMed Central

    Yeh, Yin-Ting; Tang, Yi; Sebastian, Aswathy; Dasgupta, Archi; Perea-Lopez, Nestor; Albert, Istvan; Lu, Huaguang; Terrones, Mauricio; Zheng, Si-Yang

    2016-01-01

    Viral infectious diseases can erupt unpredictably, spread rapidly, and ravage mass populations. Although established methods, such as polymerase chain reaction, virus isolation, and next-generation sequencing have been used to detect viruses, field samples with low virus count pose major challenges in virus surveillance and discovery. We report a unique carbon nanotube size-tunable enrichment microdevice (CNT-STEM) that efficiently enriches and concentrates viruses collected from field samples. The channel sidewall in the microdevice was made by growing arrays of vertically aligned nitrogen-doped multiwalled CNTs, where the intertubular distance between CNTs could be engineered in the range of 17 to 325 nm to accurately match the size of different viruses. The CNT-STEM significantly improves detection limits and virus isolation rates by at least 100 times. Using this device, we successfully identified an emerging avian influenza virus strain [A/duck/PA/02099/2012(H11N9)] and a novel virus strain (IBDV/turkey/PA/00924/14). Our unique method demonstrates the early detection of emerging viruses and the discovery of new viruses directly from field samples, thus creating a universal platform for effectively remediating viral infectious diseases. PMID:27730213

  12. Comparison of the structures of three circoviruses: chicken anemia virus, porcine circovirus type 2, and beak and feather disease virus.

    PubMed

    Crowther, R A; Berriman, J A; Curran, W L; Allan, G M; Todd, D

    2003-12-01

    Circoviruses are small, nonenveloped icosahedral animal viruses characterized by circular single-stranded DNA genomes. Their genomes are the smallest possessed by animal viruses. Infections with circoviruses, which can lead to economically important diseases, frequently result in virus-induced damage to lymphoid tissue and immunosuppression. Within the family Circoviridae, different genera are distinguished by differences in genomic organization. Thus, Chicken anemia virus is in the genus Gyrovirus, while porcine circoviruses and Beak and feather disease virus belong to the genus CIRCOVIRUS: Little is known about the structures of circoviruses. Accordingly, we investigated the structures of these three viruses with a view to determining whether they are related. Three-dimensional maps computed from electron micrographs showed that all three viruses have a T=1 organization with capsids formed from 60 subunits. Porcine circovirus type 2 and beak and feather disease virus show similar capsid structures with flat pentameric morphological units, whereas chicken anemia virus has stikingly different protruding pentagonal trumpet-shaped units. It thus appears that the structures of viruses in the same genus are related but that those of viruses in different genera are unrelated.

  13. Virus detection and quantification using electrical parameters

    NASA Astrophysics Data System (ADS)

    Ahmad, Mahmoud Al; Mustafa, Farah; Ali, Lizna M.; Rizvi, Tahir A.

    2014-10-01

    Here we identify and quantitate two similar viruses, human and feline immunodeficiency viruses (HIV and FIV), suspended in a liquid medium without labeling, using a semiconductor technique. The virus count was estimated by calculating the impurities inside a defined volume by observing the change in electrical parameters. Empirically, the virus count was similar to the absolute value of the ratio of the change of the virus suspension dopant concentration relative to the mock dopant over the change in virus suspension Debye volume relative to mock Debye volume. The virus type was identified by constructing a concentration-mobility relationship which is unique for each kind of virus, allowing for a fast (within minutes) and label-free virus quantification and identification. For validation, the HIV and FIV virus preparations were further quantified by a biochemical technique and the results obtained by both approaches corroborated well. We further demonstrate that the electrical technique could be applied to accurately measure and characterize silica nanoparticles that resemble the virus particles in size. Based on these results, we anticipate our present approach to be a starting point towards establishing the foundation for label-free electrical-based identification and quantification of an unlimited number of viruses and other nano-sized particles.

  14. Tick-Borne Encephalitis (TBE)

    MedlinePlus

    ... virus, Siberian tick-borne encephalitis virus, and Far eastern Tick-borne encephalitis virus (formerly known as Russian ... viruses are closely related to TBEV and Far-eastern TBE, and include Omsk hemorrhagic fever virus in ...

  15. Genesis and Dissemination of Highly Pathogenic H5N6 Avian Influenza Viruses

    PubMed Central

    Yang, Lei; Zhu, Wenfei; Li, Xiaodan; Bo, Hong; Zhang, Ye; Zou, Shumei; Gao, Rongbao; Dong, Jie; Zhao, Xiang; Chen, Wenbing; Dong, Libo; Zou, Xiaohui; Xing, Yongcai

    2016-01-01

    ABSTRACT Clade 2.3.4.4 highly pathogenic avian influenza viruses (H5Nx) have spread from Asia to other parts of the world. Since 2014, human infections with clade 2.3.4.4 highly pathogenic avian influenza H5N6 viruses have been continuously reported in China. To investigate the genesis of the virus, we analyzed 123 H5 or N6 environmental viruses sampled from live-poultry markets or farms from 2012 to 2015 in Mainland China. Our results indicated that clade 2.3.4.4 H5N2/N6/N8 viruses shared the same hemagglutinin gene as originated in early 2009. From 2012 to 2015, the genesis of highly pathogenic avian influenza H5N6 viruses occurred via two independent pathways. Three major reassortant H5N6 viruses (reassortants A, B, and C) were generated. Internal genes of reassortant A and B viruses and reassortant C viruses derived from clade 2.3.2.1c H5N1 and H9N2 viruses, respectively. Many mammalian adaption mutations and antigenic variations were detected among the three reassortant viruses. Considering their wide circulation and dynamic reassortment in poultry, we highly recommend close monitoring of the viruses in poultry and humans. IMPORTANCE Since 2014, clade 2.3.4.4 highly pathogenic avian influenza (H5Nx) viruses have caused many outbreaks in both wild and domestic birds globally. Severe human cases with novel H5N6 viruses in this group were also reported in China in 2014 and 2015. To investigate the genesis of the genetic diversity of these H5N6 viruses, we sequenced 123 H5 or N6 environmental viruses sampled from 2012 to 2015 in China. Sequence analysis indicated that three major reassortants of these H5N6 viruses had been generated by two independent evolutionary pathways. The H5N6 reassortant viruses had been detected in most provinces of southern China and neighboring countries. Considering the mammalian adaption mutations and antigenic variation detected, the spread of these viruses should be monitored carefully due to their pandemic potential. PMID:28003485

  16. Detection of new viruses in alfalfa, weeds and cultivated plants growing adjacent to alfalfa fields in Saudi Arabia.

    PubMed

    Al-Shahwan, I M; Abdalla, O A; Al-Saleh, M A; Amer, M A

    2017-09-01

    A total of 1368 symptomatic plant samples showing different virus-like symptoms such as mottling, chlorosis, mosaic, yellow mosaic, vein clearing and stunting were collected from alfalfa, weed and cultivated plant species growing in vicinity of alfalfa fields in five principal regions of alfalfa production in Saudi Arabia. DAS-ELISA test indicated occurrence of 11 different viruses in these samples, 10 of which were detected for the first time in Saudi Arabia. Eighty percent of the alfalfa samples and 97.5% of the weed and cultivated plants samples were found to be infected with one or more of these viruses. Nine weed plant species were found to harbor these viruses namely, Sonchus oleraceus, Chenopodium spp., Hibiscus spp., Cichorium intybus , Convolvulus arvensis , Malva parviflora , Rubus fruticosus , Hippuris vulgaris , and Flaveria trinervia . These viruses were also detected in seven cultivated crop plants growing adjacent to the alfalfa fields including Vigna unguiculata , Solanum tuberosum , Solanum melongena , Phaseolus vulgaris , Cucurbita maxima , Capsicum annuum , and Vicia faba . The newly reported viruses together with their respective percent of detection in alfalfa, and in both weeds and cultivated crop plant species together were as follows: Bean leaf roll virus (BLRV) {12.5 and 4.5%}, Lucerne transient streak virus (LTSV) {2.9 and 3.5%}, Bean yellow mosaic virus (BYMV) {1.4 and 4.5%}, Bean common mosaic virus (BCMV) {1.2 and 4.5%}, Red clover vein mosaic virus (RCVMV) {1.2 and 4%}, White clover mosaic virus (WCIMV) {1.0 and 5%}, Cucumber mosaic virus (CMV) {0.8 and 3%}, Pea streak virus (PeSV) {0.4 and 4.5%} and Tobacco streak virus (TSV) {0.3 and 2.5%}. Alfalfa mosaic virus (AMV), the previously reported virus in alfalfa, had the highest percentage of detection in alfalfa accounting for 58.4% and 62.8% in the weeds and cultivated plants. Peanut stunt virus (PSV) was also detected for the first time in Saudi Arabia with a 66.7% of infection in 90 alfalfa samples collected from the surveyed regions during the last visit that tested negative to all the previously detected viruses.

  17. Transmissible gastroenteritis virus: plaques and a plaque neutralization test.

    PubMed Central

    Thomas, F C; Dulac, G C

    1976-01-01

    A plaquing system and plaque neutralization test in porcine thyroid cells were used to study different transmissible gastroenteritis isolates and hemagglutinating encephalomyelitis virus. Among transmissible gastroenteritis virus isolates, plaque size varied considerably and mixed size ranges sometimes occurred. The most recently isolated viruses produced smaller plaques than the laboratory viruses or hemagglutinating encephalomyelitis virus. All transmissible gastroenteritis virus isolates reacted in the plaque neutralization test with a transmissible gastroenteritis virus antiserum which showed no activity against hemagglutinating encephalomyelitis virus. Plaque neutralization results both from experimentally infected pigs and following a field outbreak demonstrated the reliability of this test and its greater sensitivity than the conventional tube test. Images Fig. 1. PMID:187296

  18. Computer virus information update CIAC-2301

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orvis, W.J.

    1994-01-15

    While CIAC periodically issues bulletins about specific computer viruses, these bulletins do not cover all the computer viruses that affect desktop computers. The purpose of this document is to identify most of the known viruses for the MS-DOS and Macintosh platforms and give an overview of the effects of each virus. The authors also include information on some windows, Atari, and Amiga viruses. This document is revised periodically as new virus information becomes available. This document replaces all earlier versions of the CIAC Computer virus Information Update. The date on the front cover indicates date on which the information inmore » this document was extracted from CIAC`s Virus database.« less

  19. Protein Interactions during the Flavivirus and Hepacivirus Life Cycle.

    PubMed

    Gerold, Gisa; Bruening, Janina; Weigel, Bettina; Pietschmann, Thomas

    2017-04-01

    Protein-protein interactions govern biological functions in cells, in the extracellular milieu, and at the border between cells and extracellular space. Viruses are small intracellular parasites and thus rely on protein interactions to produce progeny inside host cells and to spread from cell to cell. Usage of host proteins by viruses can have severe consequences e.g. apoptosis, metabolic disequilibria, or altered cell proliferation and mobility. Understanding protein interactions during virus infection can thus educate us on viral infection and pathogenesis mechanisms. Moreover, it has led to important clinical translations, including the development of new therapeutic and vaccination strategies. Here, we will discuss protein interactions of members of the Flaviviridae family, which are small enveloped RNA viruses. Dengue virus, Zika virus and hepatitis C virus belong to the most prominent human pathogenic Flaviviridae With a genome of roughly ten kilobases encoding only ten viral proteins, Flaviviridae display intricate mechanisms to engage the host cell machinery for their purpose. In this review, we will highlight how dengue virus, hepatitis C virus, Japanese encephalitis virus, tick-borne encephalitis virus, West Nile virus, yellow fever virus, and Zika virus proteins engage host proteins and how this knowledge helps elucidate Flaviviridae infection. We will specifically address the protein composition of the virus particle as well as the protein interactions during virus entry, replication, particle assembly, and release from the host cell. Finally, we will give a perspective on future challenges in Flaviviridae interaction proteomics and why we believe these challenges should be met. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Quantitative estimation of Nipah virus replication kinetics in vitro

    PubMed Central

    Chang, Li-Yen; Ali, AR Mohd; Hassan, Sharifah Syed; AbuBakar, Sazaly

    2006-01-01

    Background Nipah virus is a zoonotic virus isolated from an outbreak in Malaysia in 1998. The virus causes infections in humans, pigs, and several other domestic animals. It has also been isolated from fruit bats. The pathogenesis of Nipah virus infection is still not well described. In the present study, Nipah virus replication kinetics were estimated from infection of African green monkey kidney cells (Vero) using the one-step SYBR® Green I-based quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) assay. Results The qRT-PCR had a dynamic range of at least seven orders of magnitude and can detect Nipah virus from as low as one PFU/μL. Following initiation of infection, it was estimated that Nipah virus RNA doubles at every ~40 minutes and attained peak intracellular virus RNA level of ~8.4 log PFU/μL at about 32 hours post-infection (PI). Significant extracellular Nipah virus RNA release occurred only after 8 hours PI and the level peaked at ~7.9 log PFU/μL at 64 hours PI. The estimated rate of Nipah virus RNA released into the cell culture medium was ~0.07 log PFU/μL per hour and less than 10% of the released Nipah virus RNA was infectious. Conclusion The SYBR® Green I-based qRT-PCR assay enabled quantitative assessment of Nipah virus RNA synthesis in Vero cells. A low rate of Nipah virus extracellular RNA release and low infectious virus yield together with extensive syncytial formation during the infection support a cell-to-cell spread mechanism for Nipah virus infection. PMID:16784519

  1. Complete sequence and diversity of a maize-associated Polerovirus in East Africa.

    PubMed

    Massawe, Deogracious P; Stewart, Lucy R; Kamatenesi, Jovia; Asiimwe, Theodore; Redinbaugh, Margaret G

    2018-06-01

    Since 2011-2012, Maize lethal necrosis (MLN) has emerged in East Africa, causing massive yield loss and propelling research to identify viruses and virus populations present in maize. As expected, next generation sequencing (NGS) has revealed diverse and abundant viruses from the family Potyviridae, primarily sugarcane mosaic virus (SCMV), and maize chlorotic mottle virus (MCMV) (Tombusviridae), which are known to cause MLN by synergistic co-infection. In addition to these expected viruses, we identified a virus in the genus Polerovirus (family Luteoviridae) in 104/172 samples selected for MLN or other potential virus symptoms from Kenya, Uganda, Rwanda, and Tanzania. This polerovirus (MF974579) nucleotide sequence is 97% identical to maize-associated viruses recently reported in China, termed 'maize yellow mosaic virus' (MaYMV) and maize yellow dwarf virus (MaYMV; KU291101, KU291107, MYDV-RMV2; KT992824); and 99% identical to MaYMV (KY684356) infecting sugarcane and itch grass in Nigeria; 83% identical to a barley-associated polerovirus recently identified in Korea (BVG; KT962089); and 79% identical to the U.S. maize-infecting polerovirus maize yellow dwarf virus (MYDV-RMV; KT992824). Nucleotide sequences from ORF0 of 20 individual East African isolates collected from Kenya, Uganda, Rwanda, and Tanzania shared 98% or higher identity, and were detected in 104/172 (60.5%) of samples collected for virus-like symptoms, indicating extensive prevalence but limited diversity of this virus in East Africa. We refer to this virus as "MYDV-like polerovirus" until symptoms of the virus in maize are known.

  2. Natural reservoirs for homologs of hepatitis C virus

    PubMed Central

    Pfaender, Stephanie; Brown, Richard JP; Pietschmann, Thomas; Steinmann, Eike

    2014-01-01

    Hepatitis C virus is considered a major public health problem, infecting 2%–3% of the human population. Hepatitis C virus infection causes acute and chronic liver disease, including chronic hepatitis, cirrhosis and hepatocellular carcinoma. In fact, hepatitis C virus infection is the most frequent indication for liver transplantation and a vaccine is not available. Hepatitis C virus displays a narrow host species tropism, naturally infecting only humans, although chimpanzees are also susceptible to experimental infection. To date, there is no evidence for an animal reservoir of viruses closely related to hepatitis C virus which may have crossed the species barrier to cause disease in humans and resulted in the current pandemic. In fact, due to this restricted host range, a robust immunocompetent small animal model is still lacking, hampering mechanistic analysis of virus pathogenesis, immune control and prophylactic vaccine development. Recently, several studies discovered new viruses related to hepatitis C virus, belonging to the hepaci- and pegivirus genera, in small wild mammals (rodents and bats) and domesticated animals which live in close contact with humans (dogs and horses). Genetic and biological characterization of these newly discovered hepatitis C virus-like viruses infecting different mammals will contribute to our understanding of the origins of hepatitis C virus in humans and enhance our ability to study pathogenesis and immune responses using tractable animal models. In this review article, we start with an introduction on the genetic diversity of hepatitis C virus and then focus on the newly discovered viruses closely related to hepatitis C virus. Finally, we discuss possible theories about the origin of this important viral human pathogen. PMID:26038514

  3. The first external quality assessment of isolation and identification of influenza viruses in cell culture in the Asia Pacific region, 2016.

    PubMed

    Reading, Patrick C; Leung, Vivian K; Buettner, Iwona; Gillespie, Leah; Deng, Yi-Mo; Shaw, Robert; Spirason, Natalie; Todd, Angela; Shah, Aparna Singh; Konings, Frank; Barr, Ian G

    2017-12-01

    The isolation and propagation of influenza viruses from clinical specimens are essential tools for comprehensive virologic surveillance. Influenza viruses must be amplified in cell culture for detailed antigenic analysis and for phenotypic assays assessing susceptibility to antiviral drugs or for other assays. To conduct an external quality assessment (EQA) of proficiency for isolation and identification of influenza viruses using cell culture techniques among National Influenza Centres (NICs) in the World Health Organisation (WHO) South East Asia and Western Pacific Regions. Twenty-one NICs performed routine influenza virus isolation and identification techniques on a proficiency testing panel comprising 16 samples, containing influenza A or B viruses and negative control samples. One sample was used exclusively to determine their capacity to measure hemagglutination titer and the other 15 samples were used for virus isolation and identification. All NICs performed influenza virus isolation using Madin Darby canine kidney (MDCK) or MDCK-SIAT-1 cells. If virus growth was detected, the type, subtype and/or lineage of virus present in isolates was determined using immunofluorescence, RT-PCR and/or hemagglutination inhibition (HI) assays. Most participating laboratories could detect influenza virus growth and could identify virus amplified from EQA samples. However, some laboratories failed to isolate and identify viruses from EQA samples that contained lower titres of virus, highlighting issues regarding the sensitivity of influenza virus isolation methods between laboratories. This first round of EQA was successfully conducted by NICs in the Asia Pacific Region, revealing good proficiency in influenza virus isolation and identification. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Wolbachia wStri Blocks Zika Virus Growth at Two Independent Stages of Viral Replication.

    PubMed

    Schultz, M J; Tan, A L; Gray, C N; Isern, S; Michael, S F; Frydman, H M; Connor, J H

    2018-05-22

    Mosquito-transmitted viruses are spread globally and present a great risk to human health. Among the many approaches investigated to limit the diseases caused by these viruses are attempts to make mosquitos resistant to virus infection. Coinfection of mosquitos with the bacterium Wolbachia pipientis from supergroup A is a recent strategy employed to reduce the capacity for major vectors in the Aedes mosquito genus to transmit viruses, including dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus (ZIKV). Recently, a supergroup B Wolbachia w Stri, isolated from Laodelphax striatellus , was shown to inhibit multiple lineages of ZIKV in Aedes albopictus cells. Here, we show that w Stri blocks the growth of positive-sense RNA viruses DENV, CHIKV, ZIKV, and yellow fever virus by greater than 99.9%. w Stri presence did not affect the growth of the negative-sense RNA viruses LaCrosse virus or vesicular stomatitis virus. Investigation of the stages of the ZIKV life cycle inhibited by w Stri identified two distinct blocks in viral replication. We found a reduction of ZIKV entry into w Stri-infected cells. This was partially rescued by the addition of a cholesterol-lipid supplement. Independent of entry, transfected viral genome was unable to replicate in Wolbachia -infected cells. RNA transfection and metabolic labeling studies suggested that this replication defect is at the level of RNA translation, where we saw a 66% reduction in mosquito protein synthesis in w Stri-infected cells. This study's findings increase the potential for application of w Stri to block additional arboviruses and also identify specific blocks in viral infection caused by Wolbachia coinfection. IMPORTANCE Dengue, Zika, and yellow fever viruses are mosquito-transmitted diseases that have spread throughout the world, causing millions of infections and thousands of deaths each year. Existing programs that seek to contain these diseases through elimination of the mosquito population have so far failed, making it crucial to explore new ways of limiting the spread of these viruses. Here, we show that introduction of an insect symbiont, Wolbachia w Stri, into mosquito cells is highly effective at reducing yellow fever virus, dengue virus, Zika virus, and Chikungunya virus production. Reduction of virus replication was attributable to decreases in entry and a strong block of virus gene expression at the translational level. These findings expand the potential use of Wolbachia w Stri to block viruses and identify two separate steps for limiting virus replication in mosquitos that could be targeted via microbes or other means as an antiviral strategy. Copyright © 2018 Schultz et al.

  5. Characterization of Clade 7.2 H5 Avian Influenza Viruses That Continue To Circulate in Chickens in China

    PubMed Central

    Liu, Liling; Zeng, Xianying; Chen, Pucheng; Deng, Guohua; Li, Yanbing; Shi, Jianzhong; Gu, Chunyang; Kong, Huihui; Suzuki, Yasuo; Jiang, Yongping; Tian, Guobin

    2016-01-01

    ABSTRACT The H5N1 avian influenza viruses emerged in Southeast Asia in the late 20th century and have evolved into multiple phylogenetic clades based on their hemagglutinin (HA)-encoding genes. The clade 7.2 viruses were first detected in chickens in northern China in 2006, and vaccines specifically targeted to the clade were developed and have been used in poultry in China since 2006. During routine surveillance and disease diagnosis, we isolated seven H5 viruses between 2011 and 2014 that bear the clade 7.2 HA genes. Here, we performed extensive studies to understand how the clade 7.2 H5 viruses have evolved in chickens in China. Full genome sequence analysis revealed that the seven viruses formed two subtypes (four H5N1 viruses and three H5N2 viruses) and four genotypes by deriving genes from other influenza viruses. All of the viruses had antigenically drifted from the clade 7.2 viruses that were isolated in 2006. Pathogenicity studies of four viruses, one from each genotype, revealed that all of the viruses are highly pathogenic in chickens, but none of them could replicate in ducks. The four viruses exclusively bound to avian-type receptors and replicated only in the turbinates and/or lungs of mice; none of them were lethal to mice at a dosage of 106 50% egg infective doses (EID50). Our study indicates that although the clade 7.2 viruses have not been eradicated from poultry through vaccination, they have not become more dangerous to other animals (e.g., ducks and mice) and humans. IMPORTANCE Animal influenza viruses can acquire the ability to infect and kill humans. The H5N1 viruses have been a concern in recent decades because of their clear pandemic potential. We sorted H5N1 influenza viruses into different phylogenetic clades based on their HA genes. The clade 7.2 viruses were detected in chickens in several provinces of northern China in 2006. Vaccines for these viruses were subsequently developed and have been used ever since to control infection of poultry. Here, we analyzed the genetic and biologic properties of seven clade 7.2 viruses that were isolated from chickens between 2011 and 2014. We found that after nearly 9 years of circulation in chickens, the clade 7.2 viruses still exclusively bind to avian-type receptors and are of low pathogenicity to mice, suggesting that these H5 viruses pose a low risk to human public health. PMID:27558424

  6. Characterization of Clade 7.2 H5 Avian Influenza Viruses That Continue To Circulate in Chickens in China.

    PubMed

    Liu, Liling; Zeng, Xianying; Chen, Pucheng; Deng, Guohua; Li, Yanbing; Shi, Jianzhong; Gu, Chunyang; Kong, Huihui; Suzuki, Yasuo; Jiang, Yongping; Tian, Guobin; Chen, Hualan

    2016-11-01

    The H5N1 avian influenza viruses emerged in Southeast Asia in the late 20th century and have evolved into multiple phylogenetic clades based on their hemagglutinin (HA)-encoding genes. The clade 7.2 viruses were first detected in chickens in northern China in 2006, and vaccines specifically targeted to the clade were developed and have been used in poultry in China since 2006. During routine surveillance and disease diagnosis, we isolated seven H5 viruses between 2011 and 2014 that bear the clade 7.2 HA genes. Here, we performed extensive studies to understand how the clade 7.2 H5 viruses have evolved in chickens in China. Full genome sequence analysis revealed that the seven viruses formed two subtypes (four H5N1 viruses and three H5N2 viruses) and four genotypes by deriving genes from other influenza viruses. All of the viruses had antigenically drifted from the clade 7.2 viruses that were isolated in 2006. Pathogenicity studies of four viruses, one from each genotype, revealed that all of the viruses are highly pathogenic in chickens, but none of them could replicate in ducks. The four viruses exclusively bound to avian-type receptors and replicated only in the turbinates and/or lungs of mice; none of them were lethal to mice at a dosage of 10 6 50% egg infective doses (EID 50 ). Our study indicates that although the clade 7.2 viruses have not been eradicated from poultry through vaccination, they have not become more dangerous to other animals (e.g., ducks and mice) and humans. Animal influenza viruses can acquire the ability to infect and kill humans. The H5N1 viruses have been a concern in recent decades because of their clear pandemic potential. We sorted H5N1 influenza viruses into different phylogenetic clades based on their HA genes. The clade 7.2 viruses were detected in chickens in several provinces of northern China in 2006. Vaccines for these viruses were subsequently developed and have been used ever since to control infection of poultry. Here, we analyzed the genetic and biologic properties of seven clade 7.2 viruses that were isolated from chickens between 2011 and 2014. We found that after nearly 9 years of circulation in chickens, the clade 7.2 viruses still exclusively bind to avian-type receptors and are of low pathogenicity to mice, suggesting that these H5 viruses pose a low risk to human public health. Copyright © 2016 Liu et al.

  7. Virulence Markers of Dengue Viruses

    DTIC Science & Technology

    1990-02-20

    of dengue viruses . We initially evaluated onocye-infectivity as a marker the for virulence of dengue-2 virus by testing 72 dengue-2 viral isolates...infectivity can be used as a virulence marker for dengue viruses . For this purpose, virulence is defined as the intrinsic ability of the virus to...but not dengue-1 and -3 viruses Table 5. Comparison of infectivity of dengue-2 virus in K-562 28 monocytes and viral monocyte infectivity index derived

  8. Norovirus Real Time RT-PCR Detection Technology Transition to the Joint Biological Identification and Diagnosis System (JBAIDS)

    DTIC Science & Technology

    2012-09-21

    virus and Southampton virus, and II (GII), which includes Bristol virus, Lordsdale virus, Toronto virus, Mexico virus, Hawaii virus and Snow Mountain...Shigella flexneriATCC12022 1 Negative Shigella sonnei ATCC25931 1 Negative Vibrio cholera (NAG) (Culture) 2 Negative Vibrio cholera (Ogawa...Culture) 1 Negative Vibrio cholera (Inaga) (Culture) 1 Negative Sapovivus (Known specimen extract) 2 Negative Rotavirus (Known specimen extract) 2

  9. Therapeutic Efficacy of the Small Molecule GS-5734 against Ebola virus in Rhesus Monkeys

    DTIC Science & Technology

    2016-03-02

    distribution to sanctuary sites for viral 46 replication including testes, eye , and brain. In a rhesus monkey model of EVD, once daily 47...including respiratory syncytial virus (RSV), Junin virus (JUNV), Lassa fever virus 121 (LASV) and Middle East respiratory syndrome virus (MERS), with...yellow fever virus, dengue virus type 2), parainfluenza type 3, and severe 124 acute respiratory syndrome (SARS) associated coronavirus but little or

  10. Occurrance in Korea of three major soybean viruses, Soybean mosaic virus (SMV), Soybean yellow mottle mosaic virus (SYCMV), and Soybean yellow common mosaic virus (SYCMV) revealed by a nationwide survey of soybean fields

    USDA-ARS?s Scientific Manuscript database

    Soybean yellow mottle mosaic virus (SYMMV) and soybean yellow common mosaic virus (SYCMV) were recently isolated in Korea, and it hasn’t been reported how these two viruses were dispersed in Korea. In 2012, we performed a nationwide survey of subsistence soybean farms in Korea. Leaves that appeared ...

  11. Cloning and Characterization of the Mouse Hepatitis Virus Receptor

    DTIC Science & Technology

    1991-02-11

    materials. Viruses may also adhere to cell surfaces non-specifically through electrostatic interactions (Tardieu et al., 1982). Virus particles might be... viruses can utilize more than one type of receptor and that specific virus receptors may be present in low numbers on the cell surface or may be labile...known example of this type of interaction is the enhancement of virus infection by antibodies, which has been demonstrated for several viruses

  12. Seroprevalence of Toxoplasma gondii and concurrent bartonella spp., feline immunodeficiency virus, and feline leukemia infections in cats from Grenada, West Indies

    USDA-ARS?s Scientific Manuscript database

    Toxoplasma gondii and Bartonella spp. are zoonotic pathogens of cats. Feline Immunodeficiency Virus (FIV), and Feline Leukemia Virus (FeLv) are related to Human Iimmunodeficiency Virus, and Human Leukemia Virus, respectively, and these viruses are immunosuppressive. In the present study, the prevale...

  13. 42 CFR 73.0 - Applicability and related requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and entities that possess SARS-CoV, Lujo virus, or Chapare virus must provide notice to CDC regarding their possession of SARS-CoV, Lujo virus, or Chapare virus on or before December 4, 2012. Currently registered individuals and entities possessing SARS-CoV, Lujo virus, or Chapare virus must meet all the...

  14. 42 CFR 73.0 - Applicability and related requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and entities that possess SARS-CoV, Lujo virus, or Chapare virus must provide notice to CDC regarding their possession of SARS-CoV, Lujo virus, or Chapare virus on or before December 4, 2012. Currently registered individuals and entities possessing SARS-CoV, Lujo virus, or Chapare virus must meet all the...

  15. 9 CFR 113.312 - Rabies Vaccine, Live Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Rabies Vaccine, Live Virus. 113.312... Virus Vaccines § 113.312 Rabies Vaccine, Live Virus. Rabies Vaccine shall be prepared from virus-bearing..., safe and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  16. 9 CFR 113.312 - Rabies Vaccine, Live Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Rabies Vaccine, Live Virus. 113.312... Virus Vaccines § 113.312 Rabies Vaccine, Live Virus. Rabies Vaccine shall be prepared from virus-bearing..., safe and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  17. 9 CFR 113.312 - Rabies Vaccine, Live Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Rabies Vaccine, Live Virus. 113.312... Virus Vaccines § 113.312 Rabies Vaccine, Live Virus. Rabies Vaccine shall be prepared from virus-bearing..., safe and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  18. 9 CFR 113.312 - Rabies Vaccine, Live Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Rabies Vaccine, Live Virus. 113.312... Virus Vaccines § 113.312 Rabies Vaccine, Live Virus. Rabies Vaccine shall be prepared from virus-bearing..., safe and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  19. Experimental Transmission of Karshi and Langat (Tick-Borne Encephalitis Virus Complex) Viruses by Ornithodoros Ticks (Acari: Argasidae)

    DTIC Science & Technology

    2004-01-01

    mosquitoes and Ornithodoros ticks were evaluated for their potential to transmit Karshi and Langat (tick-borne encephalitis virus complex) viruses in the...orally exposed to Langat virus, were able to transmit this virus after more than 3 years, the longest interval tested. Therefore, Ornithodoros spp

  20. Contribution of Neuraminidase of Influenza Viruses to the Sensitivity to Sera Inhibitors and Reassortment Efficiency

    PubMed Central

    Kiseleva, Irina; Larionova, Natalie; Fedorova, Ekaterina; Bazhenova, Ekaterina; Dubrovina, Irina; Isakova-Sivak, Irina; Rudenko, Larisa

    2014-01-01

    Live attenuated influenza vaccine (LAIV) represent reassortant viruses with hemagglutinin (HA) and neuraminidase (NA) gene segments inherited from circulating wild-type (WT) parental influenza viruses recommended for inclusion into seasonal vaccine formulation, and the 6 internal protein-encoding gene segments from cold-adapted attenuated master donor viruses (genome composition 6:2). In this study, we describe the obstacles in developing LAIV strains while taking into account the phenotypic peculiarities of WT viruses used for reassortment. Genomic composition analysis of 849 seasonal LAIV reassortants revealed that over 80% of reassortants based on inhibitor-resistant WT viruses inherited WT NA, compared to 26% of LAIV reassortants based on inhibitor-sensitive WT viruses. In addition, the highest percentage of LAIV genotype reassortants was achieved when WT parental viruses were resistant to non-specific serum inhibitors. We demonstrate that NA may play a role in influenza virus sensitivity to non-specific serum inhibitors. Replacing NA of inhibitor-sensitive WT virus with the NA of inhibitor-resistant master donor virus significantly decreased the sensitivity of the resulting reassortant virus to serum heat-stable inhibitors. PMID:25132869

  1. Systematic CpT (ApG) depletion and CpG excess are unique genomic signatures of large DNA viruses infecting invertebrates.

    PubMed

    Upadhyay, Mohita; Sharma, Neha; Vivekanandan, Perumal

    2014-01-01

    Differences in the relative abundance of dinucleotides, if any may provide important clues on host-driven evolution of viruses. We studied dinucleotide frequencies of large DNA viruses infecting vertebrates (n = 105; viruses infecting mammals = 99; viruses infecting aves = 6; viruses infecting reptiles = 1) and invertebrates (n = 88; viruses infecting insects = 84; viruses infecting crustaceans = 4). We have identified systematic depletion of CpT(ApG) dinucleotides and over-representation of CpG dinucleotides as the unique genomic signature of large DNA viruses infecting invertebrates. Detailed investigation of this unique genomic signature suggests the existence of invertebrate host-induced pressures specifically targeting CpT(ApG) and CpG dinucleotides. The depletion of CpT dinucleotides among large DNA viruses infecting invertebrates is at least in part, explained by non-canonical DNA methylation by the infected host. Our findings highlight the role of invertebrate host-related factors in shaping virus evolution and they also provide the necessary framework for future studies on evolution, epigenetics and molecular biology of viruses infecting this group of hosts.

  2. Hepatitis E virus and fulminant hepatitis--a virus or host-specific pathology?

    PubMed

    Smith, Donald B; Simmonds, Peter

    2015-04-01

    Fulminant hepatitis is a rare outcome of infection with hepatitis E virus. Several recent reports suggest that virus variation is an important determinant of disease progression. To critically examine the evidence that virus-specific factors underlie the development of fulminant hepatitis following hepatitis E virus infection. Published sequence information of hepatitis E virus isolates from patients with and without fulminant hepatitis was collected and analysed using statistical tests to identify associations between virus polymorphisms and disease outcome. Fulminant hepatitis has been reported following infection with all four hepatitis E virus genotypes that infect humans comprising multiple phylogenetic lineages within genotypes 1, 3 and 4. Analysis of virus sequences from individuals infected by a common source did not detect any common substitutions associated with progression to fulminant hepatitis. Re-analysis of previously reported associations between virus substitutions and fulminant hepatitis suggests that these were probably the result of sampling biases. Host-specific factors rather than virus genotype, variants or specific substitutions appear to be responsible for the development of fulminant hepatitis. © 2014 The Authors. Liver International Published by John Wiley & Sons Ltd.

  3. Evaluation of seasonal influenza vaccines for H1N1pdm09 and type B viruses based on a replication-incompetent PB2-KO virus.

    PubMed

    Ui, Hiroki; Yamayoshi, Seiya; Uraki, Ryuta; Kiso, Maki; Oishi, Kohei; Murakami, Shin; Mimori, Shigetaka; Kawaoka, Yoshihiro

    2017-04-04

    Vaccination is the first line of protection against influenza virus infection in humans. Although inactivated and live-attenuated vaccines are available, each vaccine has drawbacks in terms of immunogenicity and safety. To overcome these issues, our group has developed a replication-incompetent PB2-knockout (PB2-KO) influenza virus that replicates only in PB2-expressing cells. Here we generated PB2-KO viruses possessing the hemagglutinin (HA) and neuraminidase (NA) segments from H1N1pdm09 or type B viruses and tested their vaccine potential. The two PB2-KO viruses propagated efficiently in PB2-expressing cells, and expressed chimeric HA as expected. Virus-specific IgG and IgA antibodies were detected in mice immunized with the viruses, and the immunized mice showed milder clinical signs and/or lower virus replication levels in the respiratory tract upon virus challenge. Our results indicate that these PB2-KO viruses have potential as vaccine candidates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Paramyxovirus fusion: Real-time measurement of parainfluenza virus 5 virus-cell fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, Sarah A.; Lamb, Robert A.

    2006-11-25

    Although cell-cell fusion assays are useful surrogate methods for studying virus fusion, differences between cell-cell and virus-cell fusion exist. To examine paramyxovirus fusion in real time, we labeled viruses with fluorescent lipid probes and monitored virus-cell fusion by fluorimetry. Two parainfluenza virus 5 (PIV5) isolates (W3A and SER) and PIV5 containing mutations within the fusion protein (F) were studied. Fusion was specific and temperature-dependent. Compared to many low pH-dependent viruses, the kinetics of PIV5 fusion was slow, approaching completion within several minutes. As predicted from cell-cell fusion assays, virus containing an F protein with an extended cytoplasmic tail (rSV5 F551)more » had reduced fusion compared to wild-type virus (W3A). In contrast, virus-cell fusion for SER occurred at near wild-type levels, despite the fact that this isolate exhibits a severely reduced cell-cell fusion phenotype. These results support the notion that virus-cell and cell-cell fusion have significant differences.« less

  5. Arctic and Arctic-like rabies viruses: distribution, phylogeny and evolutionary history

    PubMed Central

    KUZMIN, I. V.; HUGHES, G. J.; BOTVINKIN, A. D.; GRIBENCHA, S. G.; RUPPRECHT, C. E.

    2008-01-01

    SUMMARY Forty-one newly sequenced isolates of Arctic and Arctic-like rabies viruses, were genetically compared to each other and to those available from GenBank. Four phylogenetic lineages of Arctic viruses were identified. Arctic-1 viruses circulate in Ontario, Arctic-2 viruses circulate in Siberia and Alaska, Arctic-3 viruses circulate circumpolarly, and a newly described lineage Arctic-4 circulates locally in Alaska. The oldest available isolates from Siberia (between 1950 and 1960) belong to the Arctic-2 and Arctic-3 lineages and share 98·6–99·2% N gene identity with contemporary viruses. Two lineages of Arctic-like viruses were identified in southern Asia and the Middle East (Arctic-like-1) and eastern Asia (Arctic-like-2). A time-scaled tree demonstrates that the time of the most recent common ancestor (TMRCA) of Arctic and Arctic-like viruses is dated between 1255 and 1786. Evolution of the Arctic viruses has occurred through a northerly spread. The Arctic-like-2 lineage diverged first, whereas Arctic viruses share a TMRCA with Arctic-like-1 viruses. PMID:17599781

  6. Viruses and Human Cancer: From Detection to Causality

    PubMed Central

    Sarid, Ronit; Gao, Shou-Jiang

    2010-01-01

    The study of cancer is incomplete without taking into consideration of tumorigenic viruses. Initially, searches for human cancer viruses were fruitless despite an expansion of our knowledge in the same period concerning acute-transforming retroviruses in animals. However, over the last 40 years, we have witnessed rapid progress in the tumor virology field. Currently, acknowledged human cancer viruses include Epstein-Barr virus, Hepatitis B virus, Hepatitis C virus, High-risk human papilloma viruses, Human T-cell lymphotropic virus type 1 and Kaposi’s sarcoma-associated herpesvirus. Extensive epidemiological and mechanistic studies have led to the development of novel preventive and therapeutic approaches for managing some of these infections and associated cancers. In addition, recent advances in molecular technologies have enabled the discovery of a new potential human tumor virus, Merkel cell polyomavirus, but its association with cancer remains to be validated. It is anticipated that in the next few decades many additional human cancer viruses will be discovered and the mechanisms underlying viral oncogenesis delineated. Thus, it can be expected that better tools for preventing and treating virus-associated cancer will be available in the near future. PMID:20971551

  7. Serodiagnosis for Tumor Viruses

    PubMed Central

    Morrison, Brian J.; Labo, Nazzarena; Miley, Wendell J.; Whitby, Denise

    2015-01-01

    The known human tumor viruses include the DNA viruses Epstein-Barr virus, Kaposi sarcoma herpesvirus, Merkel cell polyomavirus, human papillomavirus, and hepatitis B virus. RNA tumor viruses include Human T-cell lymphotrophic virus type-1 and hepatitis C virus. The serological identification of antigens/antibodies in plasma serum is a rapidly progressing field with utility for both scientists and clinicians. Serology is useful for conducting seroepidemiology studies and to inform on the pathogenesis and host immune response to a particular viral agent. Clinically, serology is useful for diagnosing current or past infection and for aiding in clinical management decisions. Serology is useful for screening blood donations for infectious agents and for monitoring the outcome of vaccination against these viruses. Serodiagnosis of human tumor viruses has improved in recent years with increased specificity and sensitivity of the assays, as well as reductions in cost and the ability to assess multiple antibody/antigens in single assays. Serodiagnosis of tumor viruses plays an important role in our understanding of the prevalence and transmission of these viruses and ultimately in the ability to develop treatments/preventions for these globally important diseases. PMID:25843726

  8. [Molecular analyses of human influenza viruses. Circulation of new variants since 1995/96].

    PubMed

    Biere, B; Schweiger, B

    2008-09-01

    The evolution of influenza viruses is increasingly pursued by molecular analyses that complement classical methods. The analyses focus on the two surface proteins hemagglutinin (HA) and neuraminidase (NA) which determine the viral antigenic profile. Influenza A(H3N2) viruses are exceptionally variable, so that usually at least two virus variants cocirculate at the same time. Together with influenza B viruses they caused approximately 90% of influenza virus infections in Germany during the last 12 seasons, while influenza A(H1N1) viruses only played a subordinate part. Unexpectedly, reassorted viruses of subtype A(H1N2) appeared during the seasons 2001/02 and 2002/03, but were isolated only rarely and gained no epidemiological significance. Furthermore, during the season 2001/02 influenza B viruses of the Victoria-lineage reappeared in Germany and other countries of the northern hemisphere after 10 years of absence. These viruses reassorted with the cocirculating Yamagata-like influenza B viruses, as could be seen by the appearance of viruses with a Victoria-like HA and a Yamagata-like NA.

  9. Arctic and Arctic-like rabies viruses: distribution, phylogeny and evolutionary history.

    PubMed

    Kuzmin, I V; Hughes, G J; Botvinkin, A D; Gribencha, S G; Rupprecht, C E

    2008-04-01

    Forty-one newly sequenced isolates of Arctic and Arctic-like rabies viruses, were genetically compared to each other and to those available from GenBank. Four phylogenetic lineages of Arctic viruses were identified. Arctic-1 viruses circulate in Ontario, Arctic-2 viruses circulate in Siberia and Alaska, Arctic-3 viruses circulate circumpolarly, and a newly described lineage Arctic-4 circulates locally in Alaska. The oldest available isolates from Siberia (between 1950 and 1960) belong to the Arctic-2 and Arctic-3 lineages and share 98.6-99.2% N gene identity with contemporary viruses. Two lineages of Arctic-like viruses were identified in southern Asia and the Middle East (Arctic-like-1) and eastern Asia (Arctic-like-2). A time-scaled tree demonstrates that the time of the most recent common ancestor (TMRCA) of Arctic and Arctic-like viruses is dated between 1255 and 1786. Evolution of the Arctic viruses has occurred through a northerly spread. The Arctic-like-2 lineage diverged first, whereas Arctic viruses share a TMRCA with Arctic-like-1 viruses.

  10. Immunogenicity of Newcastle Disease Virus Vectors Expressing Norwalk Virus Capsid Protein in the Presence or Absence of VP2 Protein

    PubMed Central

    Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y.; Samal, Siba K.

    2015-01-01

    Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirs-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans. PMID:26099695

  11. Mimivirus: leading the way in the discovery of giant viruses of amoebae.

    PubMed

    Colson, Philippe; La Scola, Bernard; Levasseur, Anthony; Caetano-Anollés, Gustavo; Raoult, Didier

    2017-04-01

    The accidental discovery of the giant virus of amoeba - Acanthamoeba polyphaga mimivirus (APMV; more commonly known as mimivirus) - in 2003 changed the field of virology. Viruses were previously defined by their submicroscopic size, which probably prevented the search for giant viruses, which are visible by light microscopy. Extended studies of giant viruses of amoebae revealed that they have genetic, proteomic and structural complexities that were not thought to exist among viruses and that are comparable to those of bacteria, archaea and small eukaryotes. The giant virus particles contain mRNA and more than 100 proteins, they have gene repertoires that are broader than those of other viruses and, notably, some encode translation components. The infection cycles of giant viruses of amoebae involve virus entry by amoebal phagocytosis and replication in viral factories. In addition, mimiviruses are infected by virophages, defend against them through the mimivirus virophage resistance element (MIMIVIRE) system and have a unique mobilome. Overall, giant viruses of amoebae, including mimiviruses, marseilleviruses, pandoraviruses, pithoviruses, faustoviruses and molliviruses, challenge the definition and classification of viruses, and have increasingly been detected in humans.

  12. Advances in plant virus evolution: translating evolutionary insights into better disease management.

    PubMed

    Acosta-Leal, R; Duffy, S; Xiong, Z; Hammond, R W; Elena, S F

    2011-10-01

    Recent studies in plant virus evolution are revealing that genetic structure and behavior of virus and viroid populations can explain important pathogenic properties of these agents, such as host resistance breakdown, disease severity, and host shifting, among others. Genetic variation is essential for the survival of organisms. The exploration of how these subcellular parasites generate and maintain a certain frequency of mutations at the intra- and inter-host levels is revealing novel molecular virus-plant interactions. They emphasize the role of host environment in the dynamic genetic composition of virus populations. Functional genomics has identified host factors that are transcriptionally altered after virus infections. The analyses of these data by means of systems biology approaches are uncovering critical plant genes specifically targeted by viruses during host adaptation. Also, a next-generation resequencing approach of a whole virus genome is opening new avenues to study virus recombination and the relationships between intra-host virus composition and pathogenesis. Altogether, the analyzed data indicate that systematic disruption of some specific parameters of evolving virus populations could lead to more efficient ways of disease prevention, eradication, or tolerable virus-plant coexistence.

  13. Twenty-Five New Viruses Associated with the Drosophilidae (Diptera)

    PubMed Central

    Webster, Claire L.; Longdon, Ben; Lewis, Samuel H.; Obbard, Darren J.

    2016-01-01

    Drosophila melanogaster is an important laboratory model for studies of antiviral immunity in invertebrates, and Drosophila species provide a valuable system to study virus host range and host switching. Here, we use metagenomic RNA sequencing of about 1600 adult flies to discover 25 new RNA viruses associated with six different drosophilid hosts in the wild. We also provide a comprehensive listing of viruses previously reported from the Drosophilidae. The new viruses include Iflaviruses, Rhabdoviruses, Nodaviruses, and Reoviruses, and members of unclassified lineages distantly related to Negeviruses, Sobemoviruses, Poleroviruses, Flaviviridae, and Tombusviridae. Among these are close relatives of Drosophila X virus and Flock House virus, which we find in association with wild Drosophila immigrans. These two viruses are widely used in experimental studies but have not been previously reported to naturally infect Drosophila. Although we detect no new DNA viruses, in D. immigrans and Drosophila obscura, we identify sequences very closely related to Armadillidium vulgare iridescent virus (Invertebrate iridescent virus 31), bringing the total number of DNA viruses found in the Drosophilidae to three. PMID:27375356

  14. Reverse genetics of measles virus and resulting multivalent recombinant vaccines: applications of recombinant measles viruses.

    PubMed

    Billeter, M A; Naim, H Y; Udem, S A

    2009-01-01

    An overview is given on the development of technologies to allow reverse genetics of RNA viruses, i.e., the rescue of viruses from cDNA, with emphasis on nonsegmented negative-strand RNA viruses (Mononegavirales), as exemplified for measles virus (MV). Primarily, these technologies allowed site-directed mutagenesis, enabling important insights into a variety of aspects of the biology of these viruses. Concomitantly, foreign coding sequences were inserted to (a) allow localization of virus replication in vivo through marker gene expression, (b) develop candidate multivalent vaccines against measles and other pathogens, and (c) create candidate oncolytic viruses. The vector use of these viruses was experimentally encouraged by the pronounced genetic stability of the recombinants unexpected for RNA viruses, and by the high load of insertable genetic material, in excess of 6 kb. The known assets, such as the small genome size of the vector in comparison to DNA viruses proposed as vectors, the extensive clinical experience of attenuated MV as vaccine with a proven record of high safety and efficacy, and the low production cost per vaccination dose are thus favorably complemented.

  15. Early Detection of Epstein-Barr Virus Related Disease.

    ClinicalTrials.gov

    2018-05-22

    Post-transplant Lymphoproliferative Disorder; Mononucleosis; Epstein-Barr Virus Infections; Epstein-Barr Virus Related Malignancy; Epstein-Barr Viraemia; Epstein-Barr Virus-Related Hodgkin Lymphoma; Epstein-Barr Virus-Related Non-Hodgkin Lymphoma; Hemophagocytic Lymphohistiocytoses; Hemophagocytosis

  16. Chiropteran influenza viruses: flu from bats or a relic from the past?

    PubMed

    Brunotte, Linda; Beer, Martin; Horie, Masayuki; Schwemmle, Martin

    2016-02-01

    The identification of influenza A-like genomic sequences in bats suggests the existence of distinct lineages of chiropteran influenza viruses in South and Central America. These viruses share similarities with conventional influenza A viruses but lack the canonical receptor-binding property and neuraminidase function. The inability to isolate infectious bat influenza viruses impeded further studies, however, reverse genetic analysis provided new insights into the molecular biology of these viruses. In this review, we highlight the recent developments in the field of the newly discovered bat-derived influenza A-like viruses. We also discuss whether bats are a neglected natural reservoir of influenza viruses, the risk associated with bat influenza viruses for humans and whether these viruses originate from the pool of avian IAV or vice versa. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Archaeal Viruses from High-Temperature Environments.

    PubMed

    Munson-McGee, Jacob H; Snyder, Jamie C; Young, Mark J

    2018-02-27

    Archaeal viruses are some of the most enigmatic viruses known, due to the small number that have been characterized to date. The number of known archaeal viruses lags behind known bacteriophages by over an order of magnitude. Despite this, the high levels of genetic and morphological diversity that archaeal viruses display has attracted researchers for over 45 years. Extreme natural environments, such as acidic hot springs, are almost exclusively populated by Archaea and their viruses, making these attractive environments for the discovery and characterization of new viruses. The archaeal viruses from these environments have provided insights into archaeal biology, gene function, and viral evolution. This review focuses on advances from over four decades of archaeal virology, with a particular focus on archaeal viruses from high temperature environments, the existing challenges in understanding archaeal virus gene function, and approaches being taken to overcome these limitations.

  18. PROFLAVINE INHIBITION OF VACCINIA VIRUS SYNTHESIS.

    PubMed

    BUBEL, H C; WOLFF, D A

    1965-04-01

    Bubel, H. Curt (University of Cincinnati College of Medicine, Cincinnati, Ohio), and David A. Wolff. Proflavine inhibition of vaccinia virus synthesis. J. Bacteriol. 89:977-983. 1965.-The synthesis of vaccinia virus, hemagglutinin, and blocking antigen, as well as the development of cytopathic effects, were inhibited by low concentrations of proflavine. This inhibitor did not exert a selective effect on any particular portion of the virus synthetic cycle. Proflavine added to infected KB cells during the eclipse period or later stages of virus maturation rapidly arrested further production of infectious virus and virus-related products. Suppression of virus synthesis was completely reversible, indicating that permanent damage to the virus synthetic mechanism did not result from a transient exposure to proflavine. Photosensitization of maturating vaccinia virus by subinhibiting concentrations of proflavine suggested an interaction of the inhibitor with viral nucleic acid.

  19. Proflavine Inhibition of Vaccinia Virus Synthesis

    PubMed Central

    Bubel, H. Curt; Wolff, David A.

    1965-01-01

    Bubel, H. Curt (University of Cincinnati College of Medicine, Cincinnati, Ohio), and David A. Wolff. Proflavine inhibition of vaccinia virus synthesis. J. Bacteriol. 89:977–983. 1965.—The synthesis of vaccinia virus, hemagglutinin, and blocking antigen, as well as the development of cytopathic effects, were inhibited by low concentrations of proflavine. This inhibitor did not exert a selective effect on any particular portion of the virus synthetic cycle. Proflavine added to infected KB cells during the eclipse period or later stages of virus maturation rapidly arrested further production of infectious virus and virus-related products. Suppression of virus synthesis was completely reversible, indicating that permanent damage to the virus synthetic mechanism did not result from a transient exposure to proflavine. Photosensitization of maturating vaccinia virus by subinhibiting concentrations of proflavine suggested an interaction of the inhibitor with viral nucleic acid. PMID:14276124

  20. Transmission of Influenza A Viruses

    PubMed Central

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to ‘novel’ viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  1. Analysis of Proteins of Mouse Sarcoma Pseudotype Viruses: Type-Specific Radioimmunoassays for Ecotropic Virus p30's

    PubMed Central

    Kennel, Stephen J.; Tennant, Raymond W.

    1979-01-01

    Murine sarcoma virus pseudotypes were prepared by infection of nonproducer cells (A1-2), which were transformed by the Gazdar strain of mouse sarcoma virus, with Gross (N-tropic), WN1802B (B-tropic), or Moloney (NB-tropic) viruses. The respective host range pseudotype sarcoma viruses were defined by the titration characteristics on cells with the appropriate Fv-1 genotype. Proteins from virus progeny were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Bands present in both the 65,000- and the 10,000- to 20,000- molecular-weight regions of the gel distinguished the pseudotype viruses from their respective helpers. Furthermore, two protein bands were noted in the p30 region of murine sarcoma virus (Gross), one corresponding to Gross virus p30, and another of slightly slower mobility. However, since the mobility of the putative sarcoma p30 is nearly indentical to that of WN1802B, its presence could not be established by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Type-specific radioimmunoassays for Gross virus p30 and for WN1802B p30 were applied for analysis of pseudotype preparations, and among several ecotropic viruses tested, only the homologous virus scored in the respective assay. By use of these assays, pseudotype viruses were found to contain only 8 to 48% helper-specific p30's; the remainder is presumably derived from the sarcoma virus. Images PMID:90164

  2. Prevalence of honey bee (Apis mellifera) viruses in temperate and subtropical regions from Argentina.

    PubMed

    Molineri, Ana I; Pacini, Adriana; Giacobino, Agostina; Bulacio-Cagnolo, Natalia; Aignasse, Andrea; Zago, Luis; Fondevila, Norberto; Ferrufino, Cecilia; Merke, Julieta; Orellano, Emanuel; Bertozzi, Ezequiel; Pietronave, Hernán; Signorini, Marcelo L

    In Argentina, bee virus studies are still incipient, and there are no studies regarding the climatic effect. The aim of this study was to assess and compare the presence of honeybee viruses in different climatic regions from Argentina. A total of 385 colonies distributed in five Argentinean eco-regions were examined to evaluate the percentage of infestation with Varroa destructor and the presence of seven virus species (Deformed wing virus, DWV; Acute bee paralysis virus, ABPV; Chronic bee paralysis virus, CBPV; Black queen cell virus, BQCV; Kashmer bee virus, KBV; Israeli acute bee paralysis virus, IAPV; and Sacbrood bee virus, SBV) after honey yield. Two viruses, KBV and IAPV, were not detected. The other five viruses were found in different prevalences: DWV (35%), ABPV (21.5%), BQCV (8.0%), CBPV (2.2%), and SBV (1.1%). We found double and triple viral associations in approximately 25% of the sampled colonies. The mean V. destructor infestation in the colonies prior to the acaricide treatment was 7.12%±8.7%. The knowledge of the prevalence of these viruses in the region and their relation with the mite and other possible influencing factors is important for preventing colony losses. Further studies are necessary to identify the risk factors associated with virus presence and its relationship with other pathogens such as V. destructor. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Promotion of Hendra Virus Replication by MicroRNA 146a

    PubMed Central

    Marsh, Glenn A.; Jenkins, Kristie A.; Gantier, Michael P.; Tizard, Mark L.; Middleton, Deborah; Lowenthal, John W.; Haining, Jessica; Izzard, Leonard; Gough, Tamara J.; Deffrasnes, Celine; Stambas, John; Robinson, Rachel; Heine, Hans G.; Pallister, Jackie A.; Foord, Adam J.; Bean, Andrew G.; Wang, Lin-Fa

    2013-01-01

    Hendra virus is a highly pathogenic zoonotic paramyxovirus in the genus Henipavirus. Thirty-nine outbreaks of Hendra virus have been reported since its initial identification in Queensland, Australia, resulting in seven human infections and four fatalities. Little is known about cellular host factors impacting Hendra virus replication. In this work, we demonstrate that Hendra virus makes use of a microRNA (miRNA) designated miR-146a, an NF-κB-responsive miRNA upregulated by several innate immune ligands, to favor its replication. miR-146a is elevated in the blood of ferrets and horses infected with Hendra virus and is upregulated by Hendra virus in human cells in vitro. Blocking miR-146a reduces Hendra virus replication in vitro, suggesting a role for this miRNA in Hendra virus replication. In silico analysis of miR-146a targets identified ring finger protein (RNF)11, a member of the A20 ubiquitin editing complex that negatively regulates NF-κB activity, as a novel component of Hendra virus replication. RNA interference-mediated silencing of RNF11 promotes Hendra virus replication in vitro, suggesting that increased NF-κB activity aids Hendra virus replication. Furthermore, overexpression of the IκB superrepressor inhibits Hendra virus replication. These studies are the first to demonstrate a host miRNA response to Hendra virus infection and suggest an important role for host miRNAs in Hendra virus disease. PMID:23345523

  4. Removal of viruses from sewage, effluents, and waters

    PubMed Central

    Berg, Gerald

    1973-01-01

    Because large variations occur in the concentrations of viruses that enter treatment plants from season to season and from place to place, and even during a 24-hour period, field studies on the removal of viruses by treatment processes require temporal coordination of sampling. Quantitative methods for concentrating viruses must be developed to measure accurately the efficiency of virus removal by treatment processes in field situations. Extended settling, and storage of sewage and raw waters, reduce virus levels and deserve further study. Oxidation ponds must be reevaluated with regard to temporal matching of influent and effluent samples and with special care to prevent short-circuiting. Conventional and modified activated sludge plants must be reassessed with temporal matching of samples. Coagulation of viruses with metal ions requires field evaluation, and virus removal by filtration through sand and other media, under constant salt and organic loadings, needs both laboratory and field evaluation. A comparative study of water disinfectants related to specific conditions is needed. The toxicity, carcinogenicity, and teratogenicity of products resulting from disinfection must also be assessed. Other matters for investigation are: methods for quantitatively detecting viruses adsorbed on solids, the virus-removal capability of soils, better virus indicators, virus concentration in shellfish, the frequency of infection in man brought about by swallowing small numbers of viruses in water, the epidemiology of virus infection in man by the water route, the effect of viruses of nonhuman origin on man, and the occurrence of tumour-inducing agents in water. PMID:4547291

  5. Sialic acid content in human saliva and anti-influenza activity against human and avian influenza viruses.

    PubMed

    Limsuwat, Nattavatchara; Suptawiwat, Ornpreya; Boonarkart, Chompunuch; Puthavathana, Pilaipan; Wiriyarat, Witthawat; Auewarakul, Prasert

    2016-03-01

    It was shown previously that human saliva has higher antiviral activity against human influenza viruses than against H5N1 highly pathogenic avian influenza viruses, and that the major anti-influenza activity was associated with sialic-acid-containing molecules. To further characterize the differential susceptibility to saliva among influenza viruses, seasonal influenza A and B virus, pandemic H1N1 virus, and 15 subtypes of avian influenza virus were tested for their susceptibility to human and chicken saliva. Human saliva showed higher hemagglutination inhibition (HI) and neutralization (NT) titers against seasonal influenza A virus and the pandemic H1N1 viruses than against influenza B virus and most avian influenza viruses, except for H9N2 and H12N9 avian influenza viruses, which showed high HI and NT titers. To understand the nature of sialic-acid-containing anti-influenza factors in human saliva, α2,3- and α2,6-linked sialic acid was measured in human saliva samples using a lectin binding and dot blot assay. α2,6-linked sialic acid was found to be more abundant than α2,3-linked sialic acid, and a seasonal H1N1 influenza virus bound more efficiently to human saliva than an H5N1 virus in a dot blot analysis. These data indicated that human saliva contains the sialic acid type corresponding to the binding preference of seasonal influenza viruses.

  6. Biology, etiology, and control of virus diseases of banana and plantain.

    PubMed

    Kumar, P Lava; Selvarajan, Ramasamy; Iskra-Caruana, Marie-Line; Chabannes, Matthieu; Hanna, Rachid

    2015-01-01

    Banana and plantain (Musa spp.), produced in 10.3 million ha in the tropics, are among the world's top 10 food crops. They are vegetatively propagated using suckers or tissue culture plants and grown almost as perennial plantations. These are prone to the accumulation of pests and pathogens, especially viruses which contribute to yield reduction and are also barriers to the international exchange of germplasm. The most economically important viruses of banana and plantain are Banana bunchy top virus (BBTV), a complex of banana streak viruses (BSVs) and Banana bract mosaic virus (BBrMV). BBTV is known to cause the most serious economic losses in the "Old World," contributing to a yield reduction of up to 100% and responsible for a dramatic reduction in cropping area. The BSVs exist as episomal and endogenous forms are known to be worldwide in distribution. In India and the Philippines, BBrMV is known to be economically important but recently the virus was discovered in Colombia and Costa Rica, thus signaling its spread into the "New World." Banana and plantain are also known to be susceptible to five other viruses of minor significance, such as Abaca mosaic virus, Abaca bunchy top virus, Banana mild mosaic virus, Banana virus X, and Cucumber mosaic virus. Studies over the past 100 years have contributed to important knowledge on disease biology, distribution, and spread. Research during the last 25 years have led to a better understanding of the virus-vector-host interactions, virus diversity, disease etiology, and epidemiology. In addition, new diagnostic tools were developed which were used for surveillance and the certification of planting material. Due to a lack of durable host resistance in the Musa spp., phytosanitary measures and the use of virus-free planting material are the major methods of virus control. The state of knowledge on BBTV, BBrMV, and BSVs, and other minor viruses, disease spread, and control are summarized in this review. © 2015 Elsevier Inc. All rights reserved.

  7. Eurasian-Origin Gene Segments Contribute to the Transmissibility, Aerosol Release, and Morphology of the 2009 Pandemic H1N1 Influenza Virus

    PubMed Central

    Lakdawala, Seema S.; Lamirande, Elaine W.; Suguitan, Amorsolo L.; Wang, Weijia; Santos, Celia P.; Vogel, Leatrice; Matsuoka, Yumiko; Lindsley, William G.; Jin, Hong; Subbarao, Kanta

    2011-01-01

    The epidemiological success of pandemic and epidemic influenza A viruses relies on the ability to transmit efficiently from person-to-person via respiratory droplets. Respiratory droplet (RD) transmission of influenza viruses requires efficient replication and release of infectious influenza particles into the air. The 2009 pandemic H1N1 (pH1N1) virus originated by reassortment of a North American triple reassortant swine (TRS) virus with a Eurasian swine virus that contributed the neuraminidase (NA) and M gene segments. Both the TRS and Eurasian swine viruses caused sporadic infections in humans, but failed to spread from person-to-person, unlike the pH1N1 virus. We evaluated the pH1N1 and its precursor viruses in a ferret model to determine the contribution of different viral gene segments on the release of influenza virus particles into the air and on the transmissibility of the pH1N1 virus. We found that the Eurasian-origin gene segments contributed to efficient RD transmission of the pH1N1 virus likely by modulating the release of influenza viral RNA-containing particles into the air. All viruses replicated well in the upper respiratory tract of infected ferrets, suggesting that factors other than viral replication are important for the release of influenza virus particles and transmission. Our studies demonstrate that the release of influenza viral RNA-containing particles into the air correlates with increased NA activity. Additionally, the pleomorphic phenotype of the pH1N1 virus is dependent upon the Eurasian-origin gene segments, suggesting a link between transmission and virus morphology. We have demonstrated that the viruses are released into exhaled air to varying degrees and a constellation of genes influences the transmissibility of the pH1N1 virus. PMID:22241979

  8. Insect-specific flaviviruses, a worldwide widespread group of viruses only detected in insects.

    PubMed

    Calzolari, Mattia; Zé-Zé, Líbia; Vázquez, Ana; Sánchez Seco, Mari Paz; Amaro, Fátima; Dottori, Michele

    2016-06-01

    Several flaviviruses are important pathogens for humans and animals (Dengue viruses, Japanese encephalitis virus, Yellow-fever virus, Tick-borne encephalitis virus, West Nile virus). In recent years, numerous novel and related flaviviruses without known pathogenic capacity have been isolated worldwide in the natural mosquito population. However, phylogenetic studies have shown that genomic sequences of these viruses diverge from other flaviviruses. Moreover, these viruses seem to be exclusive of insects (they do not seem to grow on vertebrate cell lines), and were already defined as mosquito-only flaviviruses or insect-specific flaviviruses. At least eleven of these viruses were isolated worldwide, and sequences ascribable to other eleven putative viruses were detected in several mosquito species. A large part of the cycle of these viruses is not well known, and their persistence in the environment is poorly understood. These viruses are detected in a wide variety of distinct mosquito species and also in sandflies and chironomids worldwide; a single virus, or the genetic material ascribable to a virus, was detected in several mosquito species in different countries, often in different continents. Furthermore, some of these viruses are carried by invasive mosquitoes, and do not seem to have a depressive action on their fitness. The global distribution and the continuous detection of new viruses in this group point out the likely underestimation of their number, and raise interesting issues about their possible interactions with the pathogenic flaviviruses, and their influence on the bionomics of arthropod hosts. Some enigmatic features, as their integration in the mosquito genome, the recognition of their genetic material in DNA forms in field-collected mosquitoes, or the detection of the same virus in both mosquitoes and sandflies, indicate that the cycle of these viruses has unknown characteristics that could be of use to reach a deeper understanding of the cycle of related pathogenic flaviviruses. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge

    PubMed Central

    Mooney, Alaina J.; Gabbard, Jon D.; Li, Zhuo; Dlugolenski, Daniel A.; Johnson, Scott K.

    2017-01-01

    ABSTRACT Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats. IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing awareness of the contribution of neuraminidase (NA) to influenza virus vaccine efficacy. Although NA is immunologically subdominant to HA, and clinical studies have shown variable NA responses to vaccination, in this study, we show that vaccination with a parainfluenza virus 5 recombinant vaccine candidate expressing NA (PIV5-NA) from a pandemic influenza (pdmH1N1) virus or highly pathogenic avian influenza (H5N1) virus elicits robust, cross-reactive protection from influenza virus infection in two animal models. New vaccination strategies incorporating NA, including PIV5-NA, could improve seasonal influenza virus vaccine efficacy and provide protection against emerging influenza viruses. PMID:28931689

  10. Trafficking of bluetongue virus visualized by recovery of tetracysteine-tagged virion particles.

    PubMed

    Du, Junzheng; Bhattacharya, Bishnupriya; Ward, Theresa H; Roy, Polly

    2014-11-01

    Bluetongue virus (BTV), a member of the Orbivirus genus in the Reoviridae family, is a double-capsid insect-borne virus enclosing a genome of 10 double-stranded RNA segments. Like those of other members of the family, BTV virions are nonenveloped particles containing two architecturally complex capsids. The two proteins of the outer capsid, VP2 and VP5, are involved in BTV entry and in the delivery of the transcriptionally active core to the cell cytoplasm. Although the importance of the endocytic pathway in BTV entry has been reported, detailed analyses of entry and the role of each protein in virus trafficking have not been possible due to the lack of availability of a tagged virus. Here, for the first time, we report on the successful manipulation of a segmented genome of a nonenveloped capsid virus by the introduction of tags that were subsequently fluorescently visualized in infected cells. The genetically engineered fluorescent BTV particles were observed to enter live cells immediately after virus adsorption. Further, we showed the separation of VP2 from VP5 during virus entry and confirmed that while VP2 is shed from virions in early endosomes, virus particles still consisting of VP5 were trafficked sequentially from early to late endosomes. Since BTV infects both mammalian and insect cells, the generation of tagged viruses will allow visualization of the trafficking of BTV farther downstream in different host cells. In addition, the tagging technology has potential for transferable application to other nonenveloped complex viruses. Live-virus trafficking in host cells has been highly informative on the interactions between virus and host cells. Although the insertion of fluorescent markers into viral genomes has made it possible to study the trafficking of enveloped viruses, the physical constraints of architecturally complex capsid viruses have imposed practical limitations. In this study, we have successfully genetically engineered the segmented RNA genome of bluetongue virus (BTV), a complex nonenveloped virus belonging to the Reoviridae family. The resulting fluorescent virus particles could be visualized in virus entry studies of both live and fixed cells. This is the first time a structurally complex capsid virus has been successfully genetically manipulated to generate virus particles that could be visualized in infected cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. The IFITMs Inhibit Zika Virus Replication.

    PubMed

    Savidis, George; Perreira, Jill M; Portmann, Jocelyn M; Meraner, Paul; Guo, Zhiru; Green, Sharone; Brass, Abraham L

    2016-06-14

    Zika virus has emerged as a severe health threat with a rapidly expanding range. The IFITM family of restriction factors inhibits the replication of a broad range of viruses, including the closely related flaviruses West Nile virus and dengue virus. Here, we show that IFITM1 and IFITM3 inhibit Zika virus infection early in the viral life cycle. Moreover, IFITM3 can prevent Zika-virus-induced cell death. These results suggest that strategies to boost the actions and/or levels of the IFITMs might be useful for inhibiting a broad range of emerging viruses. Copyright © 2016. Published by Elsevier Inc.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendall, Amy; McDonald, Michele; Bian, Wen

    Flexible filamentous viruses make up a large fraction of the known plant viruses, but in comparison with those of other viruses, very little is known about their structures. We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to determine the symmetry of a potyvirus, soybean mosaic virus; to confirm the symmetry of a potexvirus, potato virus X; and to determine the low-resolution structures of both viruses. We conclude that these viruses and, by implication, most or all flexible filamentous plant viruses share a common coat protein fold and helical symmetry, with slightly less than 9 subunits permore » helical turn.« less

  13. Differential MS2 Interaction with Food Contact Surfaces Determined by Atomic Force Microscopy and Virus Recovery.

    PubMed

    Shim, J; Stewart, D S; Nikolov, A D; Wasan, D T; Wang, R; Yan, R; Shieh, Y C

    2017-12-15

    Enteric viruses are recognized as major etiologies of U.S. foodborne infections. These viruses are easily transmitted via food contact surfaces. Understanding virus interactions with surfaces may facilitate the development of improved means for their removal, thus reducing transmission. Using MS2 coliphage as a virus surrogate, the strength of virus adhesion to common food processing and preparation surfaces of polyvinyl chloride (PVC) and glass was assessed by atomic force microscopy (AFM) and virus recovery assays. The interaction forces of MS2 with various surfaces were measured from adhesion peaks in force-distance curves registered using a spherical bead probe preconjugated with MS2 particles. MS2 in phosphate-buffered saline (PBS) demonstrated approximately 5 times less adhesion force to glass (0.54 nN) than to PVC (2.87 nN) ( P < 0.0001). This was consistent with the virus recovery data, which showed 1.4-fold fewer virus PFU recovered from PVC than from glass after identical inoculations and 24 h of cold storage. The difference in adhesion was ascribed to both intrinsic chemical characteristics and the substrate surface porosity (smooth glass versus porous PVC). Incorporating a surfactant micellar solution of sodium dodecyl sulfate (SDS) into the PBS reduced the adhesion force for PVC (∼0 nN) and consistently increased virus recovery by 19%. With direct and indirect evidence of virus adhesion, this study illustrated a two-way assessment of virus adhesion for the initial evaluation of potential means to mitigate virus adhesion to food contact surfaces. IMPORTANCE The spread of foodborne viruses is likely associated with their adhesive nature. Virus attachment on food contact surfaces has been evaluated by quantitating virus recoveries from inoculated surfaces. This study aimed to evaluate the microenvironment in which nanometer-sized viruses interact with food contact surfaces and to compare the virus adhesion differences using AFM. The virus surrogate MS2 demonstrated less adhesion force to glass than to PVC via AFM, with the force-contributing factors including the intrinsic nature and the topography of the contact surfaces. This adhesion finding is consistent with the virus recoveries, which were determined indirectly. Greater numbers of viruses were recovered from glass than from PVC, after application at the same levels. The stronger MS2 adhesion onto PVC could be interrupted by incorporating a surfactant during the interaction between the virus and the contact surface. This study increases our understanding of the virus adhesion microenvironment and indicates ways to mitigate virus adhesion onto contact surfaces. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  14. Emergence and evolution of avian H5N2 influenza viruses in chickens in Taiwan.

    PubMed

    Lee, Chang-Chun David; Zhu, Huachen; Huang, Pei-Yu; Peng, Liuxia; Chang, Yun-Cheng; Yip, Chun-Hung; Li, Yao-Tsun; Cheung, Chung-Lam; Compans, Richard; Yang, Chinglai; Smith, David K; Lam, Tommy Tsan-Yuk; King, Chwan-Chuen; Guan, Yi

    2014-05-01

    Sporadic activity by H5N2 influenza viruses has been observed in chickens in Taiwan from 2003 to 2012. The available information suggests that these viruses were generated by reassortment between a Mexican-like H5N2 virus and a local enzootic H6N1 virus. Yet the origin, prevalence, and pathogenicity of these H5N2 viruses have not been fully defined. Following the 2012 highly pathogenic avian influenza (HPAI) outbreaks, surveillance was conducted from December 2012 to July 2013 at a live-poultry wholesale market in Taipei. Our findings showed that H5N2 and H6N1 viruses cocirculated at low levels in chickens in Taiwan. Phylogenetic analyses revealed that all H5N2 viruses had hemagglutinin (HA) and neuraminidase (NA) genes derived from a 1994 Mexican-like virus, while their internal gene complexes were incorporated from the enzootic H6N1 virus lineage by multiple reassortment events. Pathogenicity studies demonstrated heterogeneous results even though all tested viruses had motifs (R-X-K/R-R) supportive of high pathogenicity. Serological surveys for common subtypes of avian viruses confirmed the prevalence of the H5N2 and H6N1 viruses in chickens and revealed an extraordinarily high seroconversion rate to an H9N2 virus, a subtype that is not found in Taiwan but is prevalent in mainland China. These findings suggest that reassortant H5N2 viruses, together with H6N1 viruses, have become established and enzootic in chickens throughout Taiwan and that a large-scale vaccination program might have been conducted locally that likely led to the introduction of the 1994 Mexican-like virus to Taiwan in 2003. H5N2 avian influenza viruses first appeared in chickens in Taiwan in 2003 and caused a series of outbreaks afterwards. Phylogenetic analyses show that the chicken H5N2 viruses have H5 and N2 genes that are closely related to those of a vaccine strain originating from Mexico in 1994, while the contemporary duck H5N2 viruses in Taiwan belong to the Eurasian gene pool. The unusually high similarity of the chicken H5N2 viruses to the Mexican vaccine strain suggests that these viruses might have been introduced to Taiwan by using inadequately inactivated or attenuated vaccines. These chicken H5N2 viruses are developing varying levels of pathogenicity that could lead to significant consequences for the local poultry industry. These findings emphasize the need for strict quality control and competent oversight in the manufacture and usage of avian influenza virus vaccines and indicate that alternatives to widespread vaccination may be desirable.

  15. Emergence and Evolution of Avian H5N2 Influenza Viruses in Chickens in Taiwan

    PubMed Central

    Lee, Chang-Chun David; Zhu, Huachen; Huang, Pei-Yu; Peng, Liuxia; Chang, Yun-Cheng; Yip, Chun-Hung; Li, Yao-Tsun; Cheung, Chung-Lam; Compans, Richard; Yang, Chinglai; Smith, David K.; Lam, Tommy Tsan-Yuk

    2014-01-01

    ABSTRACT Sporadic activity by H5N2 influenza viruses has been observed in chickens in Taiwan from 2003 to 2012. The available information suggests that these viruses were generated by reassortment between a Mexican-like H5N2 virus and a local enzootic H6N1 virus. Yet the origin, prevalence, and pathogenicity of these H5N2 viruses have not been fully defined. Following the 2012 highly pathogenic avian influenza (HPAI) outbreaks, surveillance was conducted from December 2012 to July 2013 at a live-poultry wholesale market in Taipei. Our findings showed that H5N2 and H6N1 viruses cocirculated at low levels in chickens in Taiwan. Phylogenetic analyses revealed that all H5N2 viruses had hemagglutinin (HA) and neuraminidase (NA) genes derived from a 1994 Mexican-like virus, while their internal gene complexes were incorporated from the enzootic H6N1 virus lineage by multiple reassortment events. Pathogenicity studies demonstrated heterogeneous results even though all tested viruses had motifs (R-X-K/R-R) supportive of high pathogenicity. Serological surveys for common subtypes of avian viruses confirmed the prevalence of the H5N2 and H6N1 viruses in chickens and revealed an extraordinarily high seroconversion rate to an H9N2 virus, a subtype that is not found in Taiwan but is prevalent in mainland China. These findings suggest that reassortant H5N2 viruses, together with H6N1 viruses, have become established and enzootic in chickens throughout Taiwan and that a large-scale vaccination program might have been conducted locally that likely led to the introduction of the 1994 Mexican-like virus to Taiwan in 2003. IMPORTANCE H5N2 avian influenza viruses first appeared in chickens in Taiwan in 2003 and caused a series of outbreaks afterwards. Phylogenetic analyses show that the chicken H5N2 viruses have H5 and N2 genes that are closely related to those of a vaccine strain originating from Mexico in 1994, while the contemporary duck H5N2 viruses in Taiwan belong to the Eurasian gene pool. The unusually high similarity of the chicken H5N2 viruses to the Mexican vaccine strain suggests that these viruses might have been introduced to Taiwan by using inadequately inactivated or attenuated vaccines. These chicken H5N2 viruses are developing varying levels of pathogenicity that could lead to significant consequences for the local poultry industry. These findings emphasize the need for strict quality control and competent oversight in the manufacture and usage of avian influenza virus vaccines and indicate that alternatives to widespread vaccination may be desirable. PMID:24623422

  16. Oncogenes and RNA splicing of human tumor viruses

    PubMed Central

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-01-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein–Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis. PMID:26038756

  17. Ledantevirus: a proposed new genus in the Rhabdoviridae has a strong ecological association with bats.

    PubMed

    Blasdell, Kim R; Guzman, Hilda; Widen, Steven G; Firth, Cadhla; Wood, Thomas G; Holmes, Edward C; Tesh, Robert B; Vasilakis, Nikos; Walker, Peter J

    2015-02-01

    The Le Dantec serogroup of rhabdoviruses comprises Le Dantec virus from a human with encephalitis and Keuriliba virus from rodents, each isolated in Senegal. The Kern Canyon serogroup comprises a loosely connected set of rhabdoviruses many of which have been isolated from bats, including Kern Canyon virus from California, Nkolbisson virus from Cameroon, Central African Republic, and Cote d'Ivoire, Kolente virus from Guinea, Mount Elgon bat and Fikirini viruses from Kenya, and Oita virus from Japan. Fukuoka virus isolated from mosquitoes, midges, and cattle in Japan, Barur virus from a rodent in India and Nishimuro virus from pigs in Japan have also been linked genetically or serologically to this group. Here, we analyze the genome sequences and phylogenetic relationships of this set of viruses. We show that they form three subgroups within a monophyletic group, which we propose should constitute the new genus Ledantevirus. © The American Society of Tropical Medicine and Hygiene.

  18. Genetic Characterization of the Tick-Borne Orbiviruses

    PubMed Central

    Belaganahalli, Manjunatha N.; Maan, Sushila; Maan, Narender S.; Brownlie, Joe; Tesh, Robert; Attoui, Houssam; Mertens, Peter P. C.

    2015-01-01

    The International Committee for Taxonomy of Viruses (ICTV) recognizes four species of tick-borne orbiviruses (TBOs): Chenuda virus, Chobar Gorge virus, Wad Medani virus and Great Island virus (genus Orbivirus, family Reoviridae). Nucleotide (nt) and amino acid (aa) sequence comparisons provide a basis for orbivirus detection and classification, however full genome sequence data were only available for the Great Island virus species. We report representative genome-sequences for the three other TBO species (virus isolates: Chenuda virus (CNUV); Chobar Gorge virus (CGV) and Wad Medani virus (WMV)). Phylogenetic comparisons show that TBOs cluster separately from insect-borne orbiviruses (IBOs). CNUV, CGV, WMV and GIV share low level aa/nt identities with other orbiviruses, in ‘conserved’ Pol, T2 and T13 proteins/genes, identifying them as four distinct virus-species. The TBO genome segment encoding cell attachment, outer capsid protein 1 (OC1), is approximately half the size of the equivalent segment from insect-borne orbiviruses, helping to explain why tick-borne orbiviruses have a ~1 kb smaller genome. PMID:25928203

  19. Genetic characterization of the tick-borne orbiviruses.

    PubMed

    Belaganahalli, Manjunatha N; Maan, Sushila; Maan, Narender S; Brownlie, Joe; Tesh, Robert; Attoui, Houssam; Mertens, Peter P C

    2015-04-28

    The International Committee for Taxonomy of Viruses (ICTV) recognizes four species of tick-borne orbiviruses (TBOs): Chenuda virus, Chobar Gorge virus, Wad Medani virus and Great Island virus (genus Orbivirus, family Reoviridae). Nucleotide (nt) and amino acid (aa) sequence comparisons provide a basis for orbivirus detection and classification, however full genome sequence data were only available for the Great Island virus species. We report representative genome-sequences for the three other TBO species (virus isolates: Chenuda virus (CNUV); Chobar Gorge virus (CGV) and Wad Medani virus (WMV)). Phylogenetic comparisons show that TBOs cluster separately from insect-borne orbiviruses (IBOs). CNUV, CGV, WMV and GIV share low level aa/nt identities with other orbiviruses, in 'conserved' Pol, T2 and T13 proteins/genes, identifying them as four distinct virus-species. The TBO genome segment encoding cell attachment, outer capsid protein 1 (OC1), is approximately half the size of the equivalent segment from insect-borne orbiviruses, helping to explain why tick-borne orbiviruses have a ~1 kb smaller genome.

  20. European bats as carriers of viruses with zoonotic potential.

    PubMed

    Kohl, Claudia; Kurth, Andreas

    2014-08-13

    Bats are being increasingly recognized as reservoir hosts of highly pathogenic and zoonotic emerging viruses (Marburg virus, Nipah virus, Hendra virus, Rabies virus, and coronaviruses). While numerous studies have focused on the mentioned highly human-pathogenic bat viruses in tropical regions, little is known on similar human-pathogenic viruses that may be present in European bats. Although novel viruses are being detected, their zoonotic potential remains unclear unless further studies are conducted. At present, it is assumed that the risk posed by bats to the general public is rather low. In this review, selected viruses detected and isolated in Europe are discussed from our point of view in regard to their human-pathogenic potential. All European bat species and their roosts are legally protected and some European species are even endangered. Nevertheless, the increasing public fear of bats and their viruses is an obstacle to their protection. Educating the public regarding bat lyssaviruses might result in reduced threats to both the public and the bats.

  1. Long-term evolution of viruses: A Janus-faced balance.

    PubMed

    Nasir, Arshan; Kim, Kyung Mo; Caetano-Anollés, Gustavo

    2017-08-01

    The popular textbook image of viruses as noxious and selfish genetic parasites greatly underestimates the beneficial contributions of viruses to the biosphere. Given the crucial dependency of viruses to reproduce in an intracellular environment, viruses that engage in excessive killing (lysis) can drive their cellular hosts to extinction and will not survive. The lytic mode of virus propagation must, therefore, be tempered and balanced by non-lytic modes of virus latency and symbiosis. Here, we review recent bioinformatics and metagenomic studies to argue that viral endogenization and domestication may be more frequent mechanisms of virus persistence than lysis. We use a triangle diagram to explain the three major virus persistence strategies that explain the global scope of virus-cell interactions including lysis, latency and virus-cell symbiosis. This paradigm can help identify novel directions in virology research where scientists could artificially gain control over switching lytic and beneficial viral lifestyles. Also see the Video Abstract: http://youtu.be/GwXWz4N8o8. © 2017 WILEY Periodicals, Inc.

  2. Presence of entomobirnaviruses in Chinese mosquitoes in the absence of Dengue virus co-infection.

    PubMed

    Huang, Yong; Mi, Zhiqiang; Zhuang, Lu; Ma, Maijuan; An, Xiaoping; Liu, Wei; Cao, Wuchun; Tong, Yigang

    2013-03-01

    Birnaviruses, including the genus Entomobirnavirus, are socio-economically important viruses. Currently, only Drosophila X virus has been formally assigned to the genus Entomobirnavirus, but two more viruses were recently isolated, Espirito Santo virus (ESV) and Culex Y virus. The host mosquito has been reported to carry many viruses, but seldom entomobirnaviruses. To discover potential pathogens in mosquitoes, we exploited small-RNAs high-throughput sequencing of three mosquito species caught in South China. A virus that genetically likes entomobirnavirus, Mosquito X virus (MXV), was identified from Anopheles sinensis and was 97% identical to ESV, which co-infects with Dengue virus (DENV). However, the absence of DENV in the A. sinensis suggested the independence of MXV infection from dengue co-infection. Our discovery complements prior research on entomobirnaviruses and proved that MXV may be widespread in mosquitoes on different continents. This work also highlights the applying of high-throughput sequencing of small RNAs to survey viruses carried by insect vectors.

  3. Avian influenza virus transmission to mammals.

    PubMed

    Herfst, S; Imai, M; Kawaoka, Y; Fouchier, R A M

    2014-01-01

    Influenza A viruses cause yearly epidemics and occasional pandemics. In addition, zoonotic influenza A viruses sporadically infect humans and may cause severe respiratory disease and fatalities. Fortunately, most of these viruses do not have the ability to be efficiently spread among humans via aerosols or respiratory droplets (airborne transmission) and to subsequently cause a pandemic. However, adaptation of these zoonotic viruses to humans by mutation or reassortment with human influenza A viruses may result in airborne transmissible viruses with pandemic potential. Although our knowledge of factors that affect mammalian adaptation and transmissibility of influenza viruses is still limited, we are beginning to understand some of the biological traits that drive airborne transmission of influenza viruses among mammals. Increased understanding of the determinants and mechanisms of airborne transmission may aid in assessing the risks posed by avian influenza viruses to human health, and preparedness for such risks. This chapter summarizes recent discoveries on the genetic and phenotypic traits required for avian influenza viruses to become airborne transmissible between mammals.

  4. Thymidine plaque autoradiography of thymidine kinase-positive and thymidine kinase-negative herpesviruses.

    PubMed Central

    Tenser, R B; Jones, J C; Ressel, S J; Fralish, F A

    1983-01-01

    Plaques formed by herpes simplex virus (HSV), pseudorabies virus, and varicella-zoster virus were studied by plaque autoradiography after [14C]thymidine labeling. Standard thymidine kinase-positive (TK+) viruses and TK- mutants of HSV types 1 and 2 and pseudorabies virus were studied, including cell cultured viruses and viruses isolated from animals. Autoradiography was performed with X-ray film with an exposure time of 5 days. After development of films, TK+ plaques showed dark rims due to isotope incorporation, whereas TK- plaques were minimally labeled. Plaque autoradiography of stock TK- viruses showed reversion frequencies to the TK+ phenotype of less than 10(-3). Autoradiography indicated that TK- virus retained the TK- phenotype after replication in vivo. In addition, it was shown that TK- HSV could be isolated from mouse trigeminal ganglion tissue after corneal inoculation of TK- HSV together with TK+ HSV. The plaque autoradiographic procedure was very useful to evaluate proportions of TK+ and TK- virus present in TK+-TK- virus mixtures. Images PMID:6826696

  5. High Infection Rates for Adult Macaques after Intravaginal or Intrarectal Inoculation with Zika Virus

    PubMed Central

    Nalca, Aysegul; Rossi, Franco D.; Miller, Lynn J.; Wiley, Michael R.; Perez-Sautu, Unai; Washington, Samuel C.; Norris, Sarah L.; Wollen-Roberts, Suzanne E.; Shamblin, Joshua D.; Kimmel, Adrienne E.; Bloomfield, Holly A.; Valdez, Stephanie M.; Sprague, Thomas R.; Principe, Lucia M.; Bellanca, Stephanie A.; Cinkovich, Stephanie S.; Lugo-Roman, Luis; Cazares, Lisa H.; Pratt, William D.; Palacios, Gustavo F.; Bavari, Sina; Pitt, M. Louise; Nasar, Farooq

    2017-01-01

    Unprotected sexual intercourse between persons residing in or traveling from regions with Zika virus transmission is a risk factor for infection. To model risk for infection after sexual intercourse, we inoculated rhesus and cynomolgus macaques with Zika virus by intravaginal or intrarectal routes. In macaques inoculated intravaginally, we detected viremia and virus RNA in 50% of macaques, followed by seroconversion. In macaques inoculated intrarectally, we detected viremia, virus RNA, or both, in 100% of both species, followed by seroconversion. The magnitude and duration of infectious virus in the blood of macaques suggest humans infected with Zika virus through sexual transmission will likely generate viremias sufficient to infect competent mosquito vectors. Our results indicate that transmission of Zika virus by sexual intercourse might serve as a virus maintenance mechanism in the absence of mosquito-to-human transmission and could increase the probability of establishment and spread of Zika virus in regions where this virus is not present. PMID:28548637

  6. Genetic characterization of H5N1 influenza viruses isolated from chickens in Indonesia in 2010.

    PubMed

    Nidom, Chairul A; Yamada, Shinya; Nidom, Reviany V; Rahmawati, Kadek; Alamudi, Muhamad Y; Kholik; Indrasari, Setyarina; Hayati, Ratnani S; Iwatsuki Horimoto, Kiyoko; Kawaoka, Yoshihiro

    2012-06-01

    Since 2003, highly pathogenic H5N1 avian influenza viruses have caused outbreaks among poultry in Indonesia every year, producing the highest number of human victims worldwide. However, little is known about the H5N1 influenza viruses that have been circulating there in recent years. We therefore conducted surveillance studies and isolated eight H5N1 viruses from chickens. Phylogenic analysis of their hemagglutinin and neuraminidase genes revealed that all eight viruses belonged to clade 2.1.3. However, on the basis of nucleotide differences, these viruses could be divided into two groups. Other viruses genetically closely related to these two groups of viruses were all Indonesian isolates, suggesting that these new isolates have been evolving within Indonesia. Among these viruses, two distinct viruses circulated in the Kalimantan islands during the same season in 2010. Our data reveal the continued evolution of H5N1 viruses in Indonesia.

  7. Mechanisms for RNA capture by ssDNA viruses: grand theft RNA.

    PubMed

    Stedman, Kenneth

    2013-06-01

    Viruses contain three common types of packaged genomes; double-stranded DNA (dsDNA), RNA (mostly single and occasionally double stranded) and single-stranded DNA (ssDNA). There are relatively straightforward explanations for the prevalence of viruses with dsDNA and RNA genomes, but the evolutionary basis for the apparent success of ssDNA viruses is less clear. The recent discovery of four ssDNA virus genomes that appear to have been formed by recombination between co-infecting RNA and ssDNA viruses, together with the high mutation rate of ssDNA viruses provide possible explanations. RNA-DNA recombination allows ssDNA viruses to access much broader sequence space than through nucleotide substitution and DNA-DNA recombination alone. Multiple non-exclusive mechanisms, all due to the unique replication of ssDNA viruses, are proposed for this unusual RNA capture. RNA capture provides an explanation for the evolutionary success of the ssDNA viruses and may help elucidate the mystery of integrated RNA viruses in viral and cellular DNA genomes.

  8. Lack of detection of feline leukemia and feline sarcoma viruses in diffuse iris melanomas of cats by immunohistochemistry and polymerase chain reaction.

    PubMed

    Cullen, Cheryl L; Haines, Deborah M; Jackson, Marion L; Grahn, Bruce H

    2002-07-01

    Diffuse iris melanoma was confirmed by light-microscopic examination in 10 formalin-fixed, paraffin-embedded globes from 10 cats. To determine if feline leukemia virus or a replication defective feline leukemia virus, feline sarcoma virus, was present in these anterior uveal melanomas, immunohistochemistry and polymerase chain reaction for feline leukemia virus were utilized. Immunohistochemical staining for feline leukemia virus glycoprotein 70 was performed on all 10 tumors using an avidin-biotin complex technique. The DNA was extracted from each specimen and a 166-base pair region of the feline leukemia virus long terminal repeat was targeted by polymerase chain reaction. Immunohistochemical staining for feline leukemia virus glycoprotein 70 and polymerase chain reaction amplification of a feline leukemia virus long terminal repeat region were negative in all cases. Feline leukemia virus/feline sarcoma virus was not detected in any neoplasms and therefore was unlikely to play a role in the tumorigenesis of these feline diffuse iris melanomas.

  9. High Infection Rates for Adult Macaques after Intravaginal or Intrarectal Inoculation with Zika Virus.

    PubMed

    Haddow, Andrew D; Nalca, Aysegul; Rossi, Franco D; Miller, Lynn J; Wiley, Michael R; Perez-Sautu, Unai; Washington, Samuel C; Norris, Sarah L; Wollen-Roberts, Suzanne E; Shamblin, Joshua D; Kimmel, Adrienne E; Bloomfield, Holly A; Valdez, Stephanie M; Sprague, Thomas R; Principe, Lucia M; Bellanca, Stephanie A; Cinkovich, Stephanie S; Lugo-Roman, Luis; Cazares, Lisa H; Pratt, William D; Palacios, Gustavo F; Bavari, Sina; Pitt, M Louise; Nasar, Farooq

    2017-08-01

    Unprotected sexual intercourse between persons residing in or traveling from regions with Zika virus transmission is a risk factor for infection. To model risk for infection after sexual intercourse, we inoculated rhesus and cynomolgus macaques with Zika virus by intravaginal or intrarectal routes. In macaques inoculated intravaginally, we detected viremia and virus RNA in 50% of macaques, followed by seroconversion. In macaques inoculated intrarectally, we detected viremia, virus RNA, or both, in 100% of both species, followed by seroconversion. The magnitude and duration of infectious virus in the blood of macaques suggest humans infected with Zika virus through sexual transmission will likely generate viremias sufficient to infect competent mosquito vectors. Our results indicate that transmission of Zika virus by sexual intercourse might serve as a virus maintenance mechanism in the absence of mosquito-to-human transmission and could increase the probability of establishment and spread of Zika virus in regions where this virus is not present.

  10. Evaluation of Hepatitis B Virus Photoinactivation in Serum and Cellular Blood Components by the Polymerase Chain Reaction.

    DTIC Science & Technology

    1992-08-01

    and there is no test for the disease that has yet to be discovered. This situation occurred with the human immunodeficiency virus (HIV). This virus...antibodies to human immunodeficiency virus I (anti-HIV-1), antibodies to hepatitis C virus (anti-HCV), antibodies to hepatitis B core (anti-HBc) and a...photoinactivation have used model virus systems to measure the effectiveness of the inactivation procedure. These viruses include feline leukemia

  11. Evolutionary history of Ebola virus.

    PubMed

    Li, Y H; Chen, S P

    2014-06-01

    Since Ebola virus was discovered in 1970s, the virus has persisted in Africa and sporadic fatal outbreaks in humans and non-human primates have been reported. However, the evolutionary history of Ebola virus remains unclear. In this study, 27 Ebola virus strains with complete glycoprotein genes, including five species (Zaire, Sudan, Reston, Tai Forest, Bundibugyo), were analysed. Here, we propose a hypothesis of the evolutionary history of Ebola virus which will be helpful to investigate the molecular evolution of these viruses.

  12. The reversibility of virus attachment to mineral surfaces

    USGS Publications Warehouse

    Loveland, J.P.; Ryan, J.N.; Amy, G.L.; Harvey, R.W.

    1996-01-01

    Virus transport through groundwater is limited by attachment to mineral surfaces and inactivation. Current virus transport models do not consider the implications of the reversibility of virus attachment to minerals. To explore the reversibility of virus attachment to mineral surfaces, we attached PRD1, a bacteriophage considered to be a good model of enteric viruses, to quartz and ferric oxyhydroxide-coated quartz surfaces over a range of pH values in equilibrium 'static columns'. Following attachment, we detached the viruses by replacing the pore solution with solutions of equal and higher pH. The extent of virus attachment followed an attachment 'edge' that occurred at a pH value about 2.5-3.5 pH units above the pH(IEP) of the mineral surfaces. Viruses attached below this edge were irreversibly attached until the pH of the detachment solution exceeded the pH value of the attachment edge. Viruses attached above this edge were reversibly attached. Derjaguin-Landau-Verwey-Overbeek (DEVO) potential energy calculations showed that the attachment edge occurred at the pH at which the potential energy of the primary minimum was near zero, implying that the position of the primary minimum (attractive or repulsive) controlled the equilibrium distribution of the viruses. The results suggest that the reversibility of virus attachment must be considered in virus transport models for accurate predictions of virus travel time.

  13. Reduction of Norwalk Virus, Poliovirus 1, and Bacteriophage MS2 by Ozone Disinfection of Water

    PubMed Central

    Shin, Gwy-Am; Sobsey, Mark D.

    2003-01-01

    Norwalk virus and other human caliciviruses (noroviruses) are major agents of gastroenteritis, and water is a major route of their transmission. In an effort to control Norwalk virus in drinking water, Norwalk virus reduction by bench-scale ozone disinfection was determined using quantitative reverse transcription (RT)-PCR for virus assays. Two other enteric viruses, poliovirus 1 and coliphage MS2, were included for comparison, and their reductions were assayed by infectivity assays as well as by RT-PCR. Virus reductions by ozone were determined using a dose of 0.37 mg of ozone/liter at pH 7 and 5°C for up to 5 min. Based on two RT-PCR assays, the reductions of Norwalk virus were >3 log10 within a contact time of 10 s, and these were similar to the reductions of the other two viruses determined by the same assay methods. Also, the virus reductions detected by RT-PCR assays were similar to those detected by infectivity assays, indicating that the RT-PCR assay is a reliable surrogate assay for both culturable and nonculturable viruses disinfected with ozone. Overall, the results of this study indicate that Norwalk virus as well as other enteric viruses can be reduced rapidly and extensively by ozone disinfection and that RT-PCR is a useful surrogate assay for both culturable and nonculturable viruses disinfected with ozone. PMID:12839770

  14. Development of a Reverse Transcription Loop-Mediated Isothermal Amplification Method for the Rapid Detection of Subtype H7N9 Avian Influenza Virus

    PubMed Central

    Bao, Hongmei; Zhao, Yuhui; Wang, Yunhe; Xu, Xiaolong; Shi, Jianzhong; Zeng, Xianying; Wang, Xiurong; Chen, Hualan

    2014-01-01

    A novel influenza A (H7N9) virus has emerged in China. To rapidly detect this virus from clinical samples, we developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the detection of the H7N9 virus. The minimum detection limit of the RT-LAMP assay was 0.01 PFU H7N9 virus, making this method 100-fold more sensitive to the detection of the H7N9 virus than conventional RT-PCR. The H7N9 virus RT-LAMP assays can efficiently detect different sources of H7N9 influenza virus RNA (from chickens, pigeons, the environment, and humans). No cross-reactive amplification with the RNA of other subtype influenza viruses or of other avian respiratory viruses was observed. The assays can effectively detect H7N9 influenza virus RNA in drinking water, soil, cloacal swab, and tracheal swab samples that were collected from live poultry markets, as well as human H7N9 virus, in less than 30 min. These results suggest that the H7N9 virus RT-LAMP assays were efficient, practical, and rapid diagnostic methods for the epidemiological surveillance and diagnosis of influenza A (H7N9) virus from different resource samples. PMID:24689044

  15. Mapping of herpes simplex virus-1 neurovirulence to. gamma. sub 1 34. 5, a gene nonessential for growth in culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, J.; Roizman, B.; Kern, E.R.

    1990-11-30

    The gene designated {gamma}{sub 1}34.5 maps in the inverted repeats flanking the long unique sequence of herpes simplex virus-1 (HSV-1) DNA, and therefore it is present in two copies per genome. This gene is not essential for viral growth in cell culture. Four recombinant viruses were genetically engineered to test the function of this gene. These were (i) a virus from which both copies of the gene were deleted, (ii) a virus containing a stop codon in both copies of the gene, (iii) a virus containing after the first codon an insert encoding a 16-amino acid epitope known to reactmore » with a specific monoclonal antibody, and (iv) a virus in which the deleted sequences were restored. The viruses from which the gene was deleted or which carried stop codons were avirulent on intracerebral inoculation of mice. The virus with the gene tagged by the sequence encoding the epitope was moderately virulent, whereas the restored virus reacquired the phenotype of the parent virus. Significant amounts of virus were recovered only from brains of animals inoculated with virulent viruses. Inasmuch as the product of the {gamma}{sub 1}34.5 gene extended the host range of the virus by enabling it to replicate and destroy brain cells, it is a viral neurovirulence factor.« less

  16. Reduction of Norwalk virus, poliovirus 1, and bacteriophage MS2 by ozone disinfection of water.

    PubMed

    Shin, Gwy-Am; Sobsey, Mark D

    2003-07-01

    Norwalk virus and other human caliciviruses (noroviruses) are major agents of gastroenteritis, and water is a major route of their transmission. In an effort to control Norwalk virus in drinking water, Norwalk virus reduction by bench-scale ozone disinfection was determined using quantitative reverse transcription (RT)-PCR for virus assays. Two other enteric viruses, poliovirus 1 and coliphage MS2, were included for comparison, and their reductions were assayed by infectivity assays as well as by RT-PCR. Virus reductions by ozone were determined using a dose of 0.37 mg of ozone/liter at pH 7 and 5 degrees C for up to 5 min. Based on two RT-PCR assays, the reductions of Norwalk virus were >3 log(10) within a contact time of 10 s, and these were similar to the reductions of the other two viruses determined by the same assay methods. Also, the virus reductions detected by RT-PCR assays were similar to those detected by infectivity assays, indicating that the RT-PCR assay is a reliable surrogate assay for both culturable and nonculturable viruses disinfected with ozone. Overall, the results of this study indicate that Norwalk virus as well as other enteric viruses can be reduced rapidly and extensively by ozone disinfection and that RT-PCR is a useful surrogate assay for both culturable and nonculturable viruses disinfected with ozone.

  17. Genetic characteristics of highly pathogenic H5N8 avian influenza viruses isolated from migratory wild birds in South Korea during 2014-2015.

    PubMed

    Si, Young-Jae; Choi, Won Suk; Kim, Young-Il; Lee, In-Won; Kwon, Hyeok-Il; Park, Su-Jin; Kim, Eun-Ha; Kim, Se Mi; Kwon, Jin-Jung; Song, Min-Suk; Kim, Chul-Joong; Choi, Young-Ki

    2016-10-01

    The continuous worldwide spread of highly pathogenic avian influenza (HPAI) H5N8 viruses among wild birds and poultry is a potential threat to public health. In the present study, we investigated the genetic characteristics of recent H5N8 viruses continuously isolated from migratory birds over two winters (2013-2014 and 2014-2015) in South Korea. Genetic and phylogenetic analysis demonstrated that the 2014-2015 HPAI H5N8 viruses are closely related to the 2013-2014 viruses, including virulence markers; however, all eight gene segments of 2014-2015 H5N8 viruses clustered in different phylogenetic branches from 2013-2014 H5N8 viruses, except the A/Em/Korea/W492/2015 virus. The H5N8 viruses of Europe and North America belong to sublineages of the 2013-2014 Korean H5N8 viruses but differ from the 2014-2015 Korean H5N8 viruses. Further hemagglutination inhibition (HI) assay results showed that there were 2-to-4 fold differences in HI titer between 2013-2014 and 2014-2015 H5N8 viruses. Taken together, our results suggested that the 2014-2015 Korean H5N8 viruses were genetically and serologically different from those of 2013-2014 winter season H5N8 viruses, including those from Europe and North America.

  18. The origin of the PB1 segment of swine influenza A virus subtype H1N2 determines viral pathogenicity in mice.

    PubMed

    Metreveli, Giorgi; Gao, Qinshan; Mena, Ignacio; Schmolke, Mirco; Berg, Mikael; Albrecht, Randy A; García-Sastre, Adolfo

    2014-08-08

    Swine appear to be a key species in the generation of novel human influenza pandemics. Previous pandemic viruses are postulated to have evolved in swine by reassortment of avian, human, and swine influenza viruses. The human pandemic influenza viruses that emerged in 1957 and 1968 as well as swine viruses circulating since 1998 encode PB1 segments derived from avian influenza viruses. Here we investigate the possible role in viral replication and virulence of the PB1 gene segments present in two swine H1N2 influenza A viruses, A/swine/Sweden/1021/2009(H1N2) (sw 1021) and A/swine/Sweden/9706/2010(H1N2) (sw 9706), where the sw 1021 virus has shown to be more pathogenic in mice. By using reverse genetics, we swapped the PB1 genes of these two viruses. Similar to the sw 9706 virus, chimeric sw 1021 virus carrying the sw 9706 PB1 gene was not virulent in mice. In contrast, replacement of the PB1 gene of the sw 9706 virus by that from sw 1021 virus resulted in increased pathogenicity. Our study demonstrated that differences in virulence of swine influenza virus subtype H1N2 are attributed at least in part to the PB1 segment. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The origin of the PB1 segment of swine influenza A virus subtype H1N2 determines viral pathogenicity in mice

    PubMed Central

    Metreveli, Giorgi; Gao, Qinshan; Mena, Nacho; Schmolke, Mirco; Berg, Mikael; Albrecht, Randy A.; García-Sastre, Adolfo

    2017-01-01

    Swine appear to be a key species in the generation of novel human influenza pandemics. Previous pandemic viruses are postulated to have evolved in swine by reassortment of avian, human, and swine influenza viruses. The human pandemic influenza viruses that emerged in 1957 and 1968 as well as swine viruses circulating since 1998 encode PB1 segments derived from avian influenza viruses. Here we investigate the possible role in viral replication and virulence of the PB1 gene segments present in two swine H1N2 influenza A viruses, A/swine/Sweden/1021/2009(H1N2) (sw 1021) and A/swine/Sweden/9706/2010(H1N2) (sw 9706), where the sw 1021 virus has shown to be more pathogenic in mice. By using reverse genetics, we swapped the PB1 genes of these two viruses. Similar to the sw 9706 virus, chimeric sw 1021 virus carrying the sw 9706 PB1 gene was not virulent in mice. In contrast, replacement of the PB1 gene of the sw 9706 virus by that from sw 1021 virus resulted in increased pathogenicity. Our study demonstrated that differences in virulence of swine influenza virus subtype H1N2 are attributed at least in part to the PB1 segment. PMID:24726997

  20. Viruses and viruslike particles of eukaryotic algae.

    PubMed Central

    Van Etten, J L; Lane, L C; Meints, R H

    1991-01-01

    Until recently there was little interest or information on viruses and viruslike particles of eukaryotic algae. However, this situation is changing. In the past decade many large double-stranded DNA-containing viruses that infect two culturable, unicellular, eukaryotic green algae have been discovered. These viruses can be produced in large quantities, assayed by plaque formation, and analyzed by standard bacteriophage techniques. The viruses are structurally similar to animal iridoviruses, their genomes are similar to but larger (greater than 300 kbp) than that of poxviruses, and their infection process resembles that of bacteriophages. Some of the viruses have DNAs with low levels of methylated bases, whereas others have DNAs with high concentrations of 5-methylcytosine and N6-methyladenine. Virus-encoded DNA methyltransferases are associated with the methylation and are accompanied by virus-encoded DNA site-specific (restriction) endonucleases. Some of these enzymes have sequence specificities identical to those of known bacterial enzymes, and others have previously unrecognized specificities. A separate rod-shaped RNA-containing algal virus has structural and nucleotide sequence affinities to higher plant viruses. Quite recently, viruses have been associated with rapid changes in marine algal populations. In the next decade we envision the discovery of new algal viruses, clarification of their role in various ecosystems, discovery of commercially useful genes in these viruses, and exploitation of algal virus genetic elements in plant and algal biotechnology. Images PMID:1779928

  1. Real-Time Evolution of Zika Virus Disease Outbreak, Roatán, Honduras.

    PubMed

    Brooks, Trevor; Roy-Burman, Arup; Tuholske, Cascade; Busch, Michael P; Bakkour, Sonia; Stone, Mars; Linnen, Jeffrey M; Gao, Kui; Coleman, Jayleen; Bloch, Evan M

    2017-08-01

    A Zika virus disease outbreak occurred in Roatán, Honduras, during September 2015-July 2016. Blood samples and clinical information were obtained from 183 patients given a clinical diagnosis of suspected dengue virus infection. A total of 79 patients were positive for Zika virus, 13 for chikungunya virus, and 6 for dengue virus.

  2. Co-infection and disease severity of Ohio Maize dwarf mosaic virus and Maize chlorotic dwarf virus strains

    USDA-ARS?s Scientific Manuscript database

    Two major maize viruses have been reported in the United States: Maize dwarf mosaic virus (MDMV) and Maize chlorotic dwarf virus (MCDV). These viruses co-occur in regions where maize is grown such that co-infections are likely. Co-infection of different strains of MCDV is also observed frequently...

  3. Viral Vectors for Use in the Development of Biodefense Vaccines

    DTIC Science & Technology

    2005-06-17

    vaccinia virus, and Venezuelan equine encephalitis virus, as vaccine vectors has enabled researchers to develop effective means for countering the...biowarfare. The use of viruses, for example adenovirus, vaccinia virus, and Venezuelan equine encephalitis virus, as vaccine -vectors has enabled researchers to... vaccines . . . . . . . . . . . . . . . . . . . 1298 2.1.3. Vaccinia virus-vectored Venezuelan equine encephalitis vaccines

  4. Coping with Computer Viruses: General Discussion and Review of Symantec Anti-Virus for the Macintosh.

    ERIC Educational Resources Information Center

    Primich, Tracy

    1992-01-01

    Discusses computer viruses that attack the Macintosh and describes Symantec AntiVirus for Macintosh (SAM), a commercial program designed to detect and eliminate viruses; sample screen displays are included. SAM is recommended for use in library settings as well as two public domain virus protection programs. (four references) (MES)

  5. Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy

    PubMed Central

    Kim, Se Mi; Kim, Young-Il; Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-il; Si, Young-Jae; Lee, In-Won; Song, Min-Suk

    2017-01-01

    ABSTRACT In order to produce a dually effective vaccine against H9 and H5 avian influenza viruses that aligns with the DIVA (differentiating infected from vaccinated animals) strategy, we generated a chimeric H9/H5N2 recombinant vaccine that expressed the whole HA1 region of A/CK/Korea/04163/04 (H9N2) and the HA2 region of recent highly pathogenic avian influenza (HPAI) A/MD/Korea/W452/14 (H5N8) viruses. The chimeric H9/H5N2 virus showed in vitro and in vivo growth properties and virulence that were similar to those of the low-pathogenic avian influenza (LPAI) H9 virus. An inactivated vaccine based on this chimeric virus induced serum neutralizing (SN) antibodies against both H9 and H5 viruses but induced cross-reactive hemagglutination inhibition (HI) antibody only against H9 viruses. Thus, this suggests its compatibility for use in the DIVA strategy against H5 strains. Furthermore, the chimeric H9/H5N2 recombinant vaccine protected immunized chickens against lethal challenge by HPAI H5N8 viruses and significantly attenuated virus shedding after infection by both H9N2 and HPAI H5N8 viruses. In mice, serological analyses confirmed that HA1- and HA2 stalk-specific antibody responses were induced by vaccination and that the DIVA principle could be employed through the use of an HI assay against H5 viruses. Furthermore, each HA1- and HA2 stalk-specific antibody response was sufficient to inhibit viral replication and protect the chimeric virus-immunized mice from lethal challenge with both mouse-adapted H9N2 and wild-type HPAI H5N1 viruses, although differences in vaccine efficacy against a homologous H9 virus (HA1 head domain immune-mediated protection) and a heterosubtypic H5 virus (HA2 stalk domain immune-mediated protection) were observed. Taken together, these results demonstrate that the novel chimeric H9/H5N2 recombinant virus is a low-pathogenic virus, and this chimeric vaccine is suitable for a DIVA vaccine with broad-spectrum neutralizing antibody against H5 avian influenza viruses. IMPORTANCE Current influenza virus killed vaccines predominantly induce antihemagglutinin (anti-HA) antibodies that are commonly strain specific in that the antibodies have potent neutralizing activity against homologous strains but do not cross-react with HAs of other influenza virus subtypes. In contrast, the HA2 stalk domain is relatively well conserved among subtypes, and recently, broadly neutralizing antibodies against this domain have been isolated. Therefore, in light of the need for a vaccine strain that applies the DIVA strategy utilizing an HI assay and induces broad cross-protection against H5N1 and H9N2 viruses, we generated a novel chimeric H9/H5N1 virus that expresses the entire HA1 portion from the H9N2 virus and the HA2 region of the heterosubtypic H5N8 virus. The chimeric H9/H5N2 recombinant vaccine protected immunized hosts against lethal challenge with H9N2 and HPAI H5N1 viruses with significantly attenuated virus shedding in immunized hosts. Therefore, this chimeric vaccine is suitable as a DIVA vaccine against H5 avian influenza viruses. PMID:28077631

  6. Evaluation of the Immune Responses to and Cross-Protective Efficacy of Eurasian H7 Avian Influenza Viruses

    PubMed Central

    Kwon, Hyeok-Il; Kim, Young-Il; Park, Su-Jin; Song, Min-Suk; Kim, Eun-Ha; Kim, Se Mi; Si, Young-Jae; Lee, In-Won; Song, Byung-Min; Lee, Youn-Jeong; Yun, Seok Joong; Kim, Wun-Jae

    2017-01-01

    ABSTRACT Due to increasing concerns about human infection by various H7 influenza viruses, including recent H7N9 viruses, we evaluated the genetic relationships and cross-protective efficacies of three different Eurasian H7 avian influenza viruses. Phylogenic and molecular analyses revealed that recent Eurasian H7 viruses can be separated into two different lineages, with relatively high amino acid identities within groups (94.8 to 98.8%) and low amino acid identities between groups (90.3 to 92.6%). In vivo immunization with representatives of each group revealed that while group-specific cross-reactivity was induced, cross-reactive hemagglutination inhibition (HI) titers were approximately 4-fold lower against heterologous group viruses than against homologous group viruses. Moreover, the group I (RgW109/06) vaccine protected 100% of immunized mice from various group I viruses, while only 20 to 40% of immunized mice survived lethal challenge with heterologous group II viruses and exhibited high viral titers in the lung. Moreover, while the group II (RgW478/14) vaccine also protected mice from lethal challenge with group II viruses, it failed to elicit cross-protection against group I viruses. However, it is noteworthy that vaccination with RgAnhui1/13, a virus of a sublineage of group I, cross-protected immunized mice against lethal challenge with both group I and II viruses and significantly attenuated lung viral titers. Interestingly, immune sera from RgAnhui1/13-vaccinated mice showed a broad neutralizing spectrum rather than the group-specific pattern observed with the other viruses. These results suggest that the recent human-infective H7N9 strain may be a candidate broad cross-protective vaccine for Eurasian H7 viruses. IMPORTANCE Genetic and phylogenic analyses have demonstrated that the Eurasian H7 viruses can be separated into at least two different lineages, both of which contain human-infective fatal H7 viruses, including the recent novel H7N9 viruses isolated in China since 2013. Due to the increasing concerns regarding the global public health risk posed by H7 viruses, we evaluated the genetic relationships between Eurasian H7 avian influenza viruses and the cross-protective efficacies of three different H7 viruses: W109/06 (group I), W478/14 (group II), and Anhui1/13 (a sublineage of group I). While each vaccine induced group-specific antibody responses and cross-protective efficacy, only Anhui1/13 was able to cross-protect immunized hosts against lethal challenge across groups. In fact, the Anhui1/13 virus induced not only cross-protection but also broad serum neutralizing antibody responses against both groups of viruses. This suggests that Anhui1/13-like H7N9 viruses may be viable vaccine candidates for broad protection against Eurasian H7 viruses. PMID:28331080

  7. Evaluation of the Immune Responses to and Cross-Protective Efficacy of Eurasian H7 Avian Influenza Viruses.

    PubMed

    Kwon, Hyeok-Il; Kim, Young-Il; Park, Su-Jin; Song, Min-Suk; Kim, Eun-Ha; Kim, Se Mi; Si, Young-Jae; Lee, In-Won; Song, Byung-Min; Lee, Youn-Jeong; Yun, Seok Joong; Kim, Wun-Jae; Choi, Young Ki

    2017-06-01

    Due to increasing concerns about human infection by various H7 influenza viruses, including recent H7N9 viruses, we evaluated the genetic relationships and cross-protective efficacies of three different Eurasian H7 avian influenza viruses. Phylogenic and molecular analyses revealed that recent Eurasian H7 viruses can be separated into two different lineages, with relatively high amino acid identities within groups (94.8 to 98.8%) and low amino acid identities between groups (90.3 to 92.6%). In vivo immunization with representatives of each group revealed that while group-specific cross-reactivity was induced, cross-reactive hemagglutination inhibition (HI) titers were approximately 4-fold lower against heterologous group viruses than against homologous group viruses. Moreover, the group I (RgW109/06) vaccine protected 100% of immunized mice from various group I viruses, while only 20 to 40% of immunized mice survived lethal challenge with heterologous group II viruses and exhibited high viral titers in the lung. Moreover, while the group II (RgW478/14) vaccine also protected mice from lethal challenge with group II viruses, it failed to elicit cross-protection against group I viruses. However, it is noteworthy that vaccination with RgAnhui1/13, a virus of a sublineage of group I, cross-protected immunized mice against lethal challenge with both group I and II viruses and significantly attenuated lung viral titers. Interestingly, immune sera from RgAnhui1/13-vaccinated mice showed a broad neutralizing spectrum rather than the group-specific pattern observed with the other viruses. These results suggest that the recent human-infective H7N9 strain may be a candidate broad cross-protective vaccine for Eurasian H7 viruses. IMPORTANCE Genetic and phylogenic analyses have demonstrated that the Eurasian H7 viruses can be separated into at least two different lineages, both of which contain human-infective fatal H7 viruses, including the recent novel H7N9 viruses isolated in China since 2013. Due to the increasing concerns regarding the global public health risk posed by H7 viruses, we evaluated the genetic relationships between Eurasian H7 avian influenza viruses and the cross-protective efficacies of three different H7 viruses: W109/06 (group I), W478/14 (group II), and Anhui1/13 (a sublineage of group I). While each vaccine induced group-specific antibody responses and cross-protective efficacy, only Anhui1/13 was able to cross-protect immunized hosts against lethal challenge across groups. In fact, the Anhui1/13 virus induced not only cross-protection but also broad serum neutralizing antibody responses against both groups of viruses. This suggests that Anhui1/13-like H7N9 viruses may be viable vaccine candidates for broad protection against Eurasian H7 viruses. Copyright © 2017 American Society for Microbiology.

  8. Mammalian Pathogenesis and Transmission of H7N9 Influenza Viruses from Three Waves, 2013-2015

    PubMed Central

    Belser, Jessica A.; Creager, Hannah M.; Sun, Xiangjie; Gustin, Kortney M.; Jones, Tara; Shieh, Wun-Ju; Maines, Taronna R.

    2016-01-01

    ABSTRACT Three waves of human infection with H7N9 influenza viruses have concluded to date, but only viruses within the first wave (isolated between March and September 2013) have been extensively studied in mammalian models. While second- and third-wave viruses remain closely linked phylogenetically and antigenically, even subtle molecular changes can impart critical shifts in mammalian virulence. To determine if H7N9 viruses isolated from humans during 2013 to 2015 have maintained the phenotype first identified among 2013 isolates, we assessed the ability of first-, second-, and third-wave H7N9 viruses isolated from humans to cause disease in mice and ferrets and to transmit among ferrets. Similar to first-wave viruses, H7N9 viruses from 2013 to 2015 were highly infectious in mice, with lethality comparable to that of the well-studied A/Anhui/1/2013 virus. Second- and third-wave viruses caused moderate disease in ferrets, transmitted efficiently to cohoused, naive contact animals, and demonstrated limited transmissibility by respiratory droplets. All H7N9 viruses replicated efficiently in human bronchial epithelial cells, with subtle changes in pH fusion threshold identified between H7N9 viruses examined. Our results indicate that despite increased genetic diversity and geographical distribution since their initial detection in 2013, H7N9 viruses have maintained a pathogenic phenotype in mammals and continue to represent an immediate threat to public health. IMPORTANCE H7N9 influenza viruses, first isolated in 2013, continue to cause human infection and represent an ongoing public health threat. Now entering the fourth wave of human infection, H7N9 viruses continue to exhibit genetic diversity in avian hosts, necessitating continuous efforts to monitor their pandemic potential. However, viruses isolated post-2013 have not been extensively studied, limiting our understanding of potential changes in virus-host adaptation. In order to ensure that current research with first-wave H7N9 viruses still pertains to more recently isolated strains, we compared the relative virulence and transmissibility of H7N9 viruses isolated during the second and third waves, through 2015, in the mouse and ferret models. Our finding that second- and third-wave viruses generally exhibit disease in mammals comparable to that of first-wave viruses strengthens our ability to extrapolate research from the 2013 viruses to current public health efforts. These data further contribute to our understanding of molecular determinants of pathogenicity, transmissibility, and tropism. PMID:26912620

  9. Diversity, Distribution, and Evolution of Tomato Viruses in China Uncovered by Small RNA Sequencing.

    PubMed

    Xu, Chenxi; Sun, Xuepeng; Taylor, Angela; Jiao, Chen; Xu, Yimin; Cai, Xiaofeng; Wang, Xiaoli; Ge, Chenhui; Pan, Guanghui; Wang, Quanxi; Fei, Zhangjun; Wang, Quanhua

    2017-06-01

    Tomato is a major vegetable crop that has tremendous popularity. However, viral disease is still a major factor limiting tomato production. Here, we report the tomato virome identified through sequencing small RNAs of 170 field-grown samples collected in China. A total of 22 viruses were identified, including both well-documented and newly detected viruses. The tomato viral community is dominated by a few species, and they exhibit polymorphisms and recombination in the genomes with cold spots and hot spots. Most samples were coinfected by multiple viruses, and the majority of identified viruses are positive-sense single-stranded RNA viruses. Evolutionary analysis of one of the most dominant tomato viruses, Tomato yellow leaf curl virus (TYLCV), predicts its origin and the time back to its most recent common ancestor. The broadly sampled data have enabled us to identify several unreported viruses in tomato, including a completely new virus, which has a genome of ∼13.4 kb and groups with aphid-transmitted viruses in the genus Cytorhabdovirus Although both DNA and RNA viruses can trigger the biogenesis of virus-derived small interfering RNAs (vsiRNAs), we show that features such as length distribution, paired distance, and base selection bias of vsiRNA sequences reflect different plant Dicer-like proteins and Argonautes involved in vsiRNA biogenesis. Collectively, this study offers insights into host-virus interaction in tomato and provides valuable information to facilitate the management of viral diseases. IMPORTANCE Tomato is an important source of micronutrients in the human diet and is extensively consumed around the world. Virus is among the major constraints on tomato production. Categorizing virus species that are capable of infecting tomato and understanding their diversity and evolution are challenging due to difficulties in detecting such fast-evolving biological entities. Here, we report the landscape of the tomato virome in China, the leading country in tomato production. We identified dozens of viruses present in tomato, including both well-documented and completely new viruses. Some newly emerged viruses in tomato were found to spread fast, and therefore, prompt attention is needed to control them. Moreover, we show that the virus genomes exhibit considerable degree of polymorphisms and recombination, and the virus-derived small interfering RNA (vsiRNA) sequences indicate distinct vsiRNA biogenesis mechanisms for different viruses. The Chinese tomato virome that we developed provides valuable information to facilitate the management of tomato viral diseases. Copyright © 2017 American Society for Microbiology.

  10. Infectivity and Transmissibility of Avian H9N2 Influenza Viruses in Pigs

    PubMed Central

    Wang, Jia; Wu, Maocai; Hong, Wenshan; Fan, Xiaohui; Chen, Rirong; Zheng, Zuoyi; Zeng, Yu; Huang, Ren; Zhang, Yu; Lam, Tommy Tsan-Yuk; Smith, David K.

    2016-01-01

    ABSTRACT The H9N2 influenza viruses that are enzootic in terrestrial poultry in China pose a persistent pandemic threat to humans. To investigate whether the continuous circulation and adaptation of these viruses in terrestrial poultry increased their infectivity to pigs, we conducted a serological survey in pig herds with H9N2 viruses selected from the aquatic avian gene pool (Y439 lineage) and the enzootic terrestrial poultry viruses (G1 and Y280 lineages). We also compared the infectivity and transmissibility of these viruses in pigs. It was found that more than 15% of the pigs sampled from 2010 to 2012 in southern China were seropositive to either G1 or Y280 lineage viruses, but none of the sera were positive to the H9 viruses from the Y439 lineage. Viruses of the G1 and Y280 lineages were able to infect experimental pigs, with detectable nasal shedding of the viruses and seroconversion, whereas viruses of the Y439 lineage did not cause a productive infection in pigs. Thus, adaptation and prevalence in terrestrial poultry could lead to interspecies transmission of H9N2 viruses from birds to pigs. Although H9N2 viruses do not appear to be continuously transmissible among pigs, repeated introductions of H9 viruses to pigs naturally increase the risk of generating mammalian-adapted or reassorted variants that are potentially infectious to humans. This study highlights the importance of monitoring the activity of H9N2 viruses in terrestrial poultry and pigs. IMPORTANCE H9N2 subtype of influenza viruses has repeatedly been introduced into mammalian hosts, including humans and pigs, so awareness of their activity and evolution is important for influenza pandemic preparedness. However, since H9N2 viruses usually cause mild or even asymptomatic infections in mammalian hosts, they may be overlooked in influenza surveillance. Here, we found that the H9N2 viruses established in terrestrial poultry had higher infectivity in pigs than those from aquatic birds, which suggests that adaptation of the H9N2 viruses in terrestrial poultry might have increased the infectivity of the virus to mammals. Therefore, monitoring the prevalence and evolution of H9 viruses prevalent in terrestrial birds and conducting risk assessment of their threat to mammals are critical for evaluating the pandemic potential of this virus. PMID:26764002

  11. Infectivity and Transmissibility of Avian H9N2 Influenza Viruses in Pigs.

    PubMed

    Wang, Jia; Wu, Maocai; Hong, Wenshan; Fan, Xiaohui; Chen, Rirong; Zheng, Zuoyi; Zeng, Yu; Huang, Ren; Zhang, Yu; Lam, Tommy Tsan-Yuk; Smith, David K; Zhu, Huachen; Guan, Yi

    2016-01-13

    The H9N2 influenza viruses that are enzootic in terrestrial poultry in China pose a persistent pandemic threat to humans. To investigate whether the continuous circulation and adaptation of these viruses in terrestrial poultry increased their infectivity to pigs, we conducted a serological survey in pig herds with H9N2 viruses selected from the aquatic avian gene pool (Y439 lineage) and the enzootic terrestrial poultry viruses (G1 and Y280 lineages). We also compared the infectivity and transmissibility of these viruses in pigs. It was found that more than 15% of the pigs sampled from 2010 to 2012 in southern China were seropositive to either G1 or Y280 lineage viruses, but none of the sera were positive to the H9 viruses from the Y439 lineage. Viruses of the G1 and Y280 lineages were able to infect experimental pigs, with detectable nasal shedding of the viruses and seroconversion, whereas viruses of the Y439 lineage did not cause a productive infection in pigs. Thus, adaptation and prevalence in terrestrial poultry could lead to interspecies transmission of H9N2 viruses from birds to pigs. Although H9N2 viruses do not appear to be continuously transmissible among pigs, repeated introductions of H9 viruses to pigs naturally increase the risk of generating mammalian-adapted or reassorted variants that are potentially infectious to humans. This study highlights the importance of monitoring the activity of H9N2 viruses in terrestrial poultry and pigs. H9N2 subtype of influenza viruses has repeatedly been introduced into mammalian hosts, including humans and pigs, so awareness of their activity and evolution is important for influenza pandemic preparedness. However, since H9N2 viruses usually cause mild or even asymptomatic infections in mammalian hosts, they may be overlooked in influenza surveillance. Here, we found that the H9N2 viruses established in terrestrial poultry had higher infectivity in pigs than those from aquatic birds, which suggests that adaptation of the H9N2 viruses in terrestrial poultry might have increased the infectivity of the virus to mammals. Therefore, monitoring the prevalence and evolution of H9 viruses prevalent in terrestrial birds and conducting risk assessment of their threat to mammals are critical for evaluating the pandemic potential of this virus. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Diversity, Distribution, and Evolution of Tomato Viruses in China Uncovered by Small RNA Sequencing

    PubMed Central

    Xu, Chenxi; Taylor, Angela; Jiao, Chen; Xu, Yimin; Cai, Xiaofeng; Wang, Xiaoli; Ge, Chenhui; Pan, Guanghui; Wang, Quanxi

    2017-01-01

    ABSTRACT Tomato is a major vegetable crop that has tremendous popularity. However, viral disease is still a major factor limiting tomato production. Here, we report the tomato virome identified through sequencing small RNAs of 170 field-grown samples collected in China. A total of 22 viruses were identified, including both well-documented and newly detected viruses. The tomato viral community is dominated by a few species, and they exhibit polymorphisms and recombination in the genomes with cold spots and hot spots. Most samples were coinfected by multiple viruses, and the majority of identified viruses are positive-sense single-stranded RNA viruses. Evolutionary analysis of one of the most dominant tomato viruses, Tomato yellow leaf curl virus (TYLCV), predicts its origin and the time back to its most recent common ancestor. The broadly sampled data have enabled us to identify several unreported viruses in tomato, including a completely new virus, which has a genome of ∼13.4 kb and groups with aphid-transmitted viruses in the genus Cytorhabdovirus. Although both DNA and RNA viruses can trigger the biogenesis of virus-derived small interfering RNAs (vsiRNAs), we show that features such as length distribution, paired distance, and base selection bias of vsiRNA sequences reflect different plant Dicer-like proteins and Argonautes involved in vsiRNA biogenesis. Collectively, this study offers insights into host-virus interaction in tomato and provides valuable information to facilitate the management of viral diseases. IMPORTANCE Tomato is an important source of micronutrients in the human diet and is extensively consumed around the world. Virus is among the major constraints on tomato production. Categorizing virus species that are capable of infecting tomato and understanding their diversity and evolution are challenging due to difficulties in detecting such fast-evolving biological entities. Here, we report the landscape of the tomato virome in China, the leading country in tomato production. We identified dozens of viruses present in tomato, including both well-documented and completely new viruses. Some newly emerged viruses in tomato were found to spread fast, and therefore, prompt attention is needed to control them. Moreover, we show that the virus genomes exhibit considerable degree of polymorphisms and recombination, and the virus-derived small interfering RNA (vsiRNA) sequences indicate distinct vsiRNA biogenesis mechanisms for different viruses. The Chinese tomato virome that we developed provides valuable information to facilitate the management of tomato viral diseases. PMID:28331089

  13. Emergence and evolution of H10 subtype influenza viruses in poultry in China.

    PubMed

    Ma, Chi; Lam, Tommy Tsan-Yuk; Chai, Yujuan; Wang, Jia; Fan, Xiaohui; Hong, Wenshan; Zhang, Yu; Li, Lifeng; Liu, Yongmei; Smith, David K; Webby, Richard J; Peiris, Joseph S M; Zhu, Huachen; Guan, Yi

    2015-04-01

    The cases of human infections with H10N8 viruses identified in late 2013 and early 2014 in Jiangxi, China, have raised concerns over the origin, prevalence, and development of these viruses in this region. Our long-term influenza surveillance of poultry and migratory birds in southern China in the past 12 years showed that H10 influenza viruses have been introduced from migratory to domestic ducks over several winter seasons at sentinel duck farms at Poyang Lake, where domestic ducks share their water body with overwintering migratory birds. H10 viruses were never detected in terrestrial poultry in our survey areas until August 2013, when they were identified at live-poultry markets in Jiangxi. Since then, we have isolated 124 H10N8 or H10N6 viruses from chickens at local markets, revealing an ongoing outbreak. Phylogenetic analysis of H10 and related viruses showed that the chicken H10N8 viruses were generated through multiple reassortments between H10 and N8 viruses from domestic ducks and the enzootic chicken H9N2 viruses. These chicken reassortant viruses were highly similar to the human isolate, indicating that market chickens were the source of human infection. Recently, the H10 viruses further reassorted, apparently with H5N6 viruses, and generated an H10N6 variant. The emergence and prevalence of H10 viruses in chickens and the occurrence of human infections provide direct evidence of the threat from the current influenza ecosystem in China. After the outbreak of avian-origin H7N9 influenza viruses in China, fatal human infections with a novel H10N8 virus were reported. Utilizing data from 12 years of influenza surveillance in southern China, we showed that H10 viruses were regularly introduced by migratory ducks to domestic ducks on Poyang Lake, a major aggregative site of migratory birds in Asia. The H10 viruses were maintained and amplified in domestic ducks and then transmitted to chickens and reassorted with enzootic H9N2 viruses, leading to an outbreak and human infections at live-poultry markets. The emergence of the H10N8 virus, following a pathway similar to that of the recent H7N9 virus, highlights the role of domestic ducks and the current influenza ecosystem in China that facilitates influenza viruses moving from their reservoir hosts through the live-poultry system to cause severe consequences for public health. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Effect of the Deletion of Genes Encoding Proteins of the Extracellular Virion Form of Vaccinia Virus on Vaccine Immunogenicity and Protective Effectiveness in the Mouse Model

    PubMed Central

    Meseda, Clement A.; Campbell, Joseph; Kumar, Arunima; Garcia, Alonzo D.; Merchlinsky, Michael; Weir, Jerry P.

    2013-01-01

    Antibodies to both infectious forms of vaccinia virus, the mature virion (MV) and the enveloped virion (EV), as well as cell-mediated immune response appear to be important for protection against smallpox. EV virus particles, although more labile and less numerous than MV, are important for dissemination and spread of virus in infected hosts and thus important in virus pathogenesis. The importance of the EV A33 and B5 proteins for vaccine induced immunity and protection in a murine intranasal challenge model was evaluated by deletion of both the A33R and B5R genes in a vaccine-derived strain of vaccinia virus. Deletion of either A33R or B5R resulted in viruses with a small plaque phenotype and reduced virus yields, as reported previously, whereas deletion of both EV protein-encoding genes resulted in a virus that formed small infection foci that were detectable and quantifiable only by immunostaining and an even more dramatic decrease in total virus yield in cell culture. Deletion of B5R, either as a single gene knockout or in the double EV gene knockout virus, resulted in a loss of EV neutralizing activity, but all EV gene knockout viruses still induced a robust neutralizing activity against the vaccinia MV form of the virus. The effect of elimination of A33 and/or B5 on the protection afforded by vaccination was evaluated by intranasal challenge with a lethal dose of either vaccinia virus WR or IHD-J, a strain of vaccinia virus that produces relatively higher amounts of EV virus. The results from multiple experiments, using a range of vaccination doses and virus challenge doses, and using mortality, morbidity, and virus dissemination as endpoints, indicate that the absence of A33 and B5 have little effect on the ability of a vaccinia vaccine virus to provide protection against a lethal intranasal challenge in a mouse model. PMID:23785523

  15. Bipartite Network Analysis of the Archaeal Virosphere: Evolutionary Connections between Viruses and Capsidless Mobile Elements

    PubMed Central

    Prangishvili, David

    2016-01-01

    ABSTRACT Archaea and particularly hyperthermophilic crenarchaea are hosts to many unusual viruses with diverse virion shapes and distinct gene compositions. As is typical of viruses in general, there are no universal genes in the archaeal virosphere. Therefore, to obtain a comprehensive picture of the evolutionary relationships between viruses, network analysis methods are more productive than traditional phylogenetic approaches. Here we present a comprehensive comparative analysis of genomes and proteomes from all currently known taxonomically classified and unclassified, cultivated and uncultivated archaeal viruses. We constructed a bipartite network of archaeal viruses that includes two classes of nodes, the genomes and gene families that connect them. Dissection of this network using formal community detection methods reveals strong modularity, with 10 distinct modules and 3 putative supermodules. However, compared to similar previously analyzed networks of eukaryotic and bacterial viruses, the archaeal virus network is sparsely connected. With the exception of the tailed viruses related to bacteriophages of the order Caudovirales and the families Turriviridae and Sphaerolipoviridae that are linked to a distinct supermodule of eukaryotic and bacterial viruses, there are few connector genes shared by different archaeal virus modules. In contrast, most of these modules include, in addition to viruses, capsidless mobile elements, emphasizing tight evolutionary connections between the two types of entities in archaea. The relative contributions of distinct evolutionary origins, in particular from nonviral elements, and insufficient sampling to the sparsity of the archaeal virus network remain to be determined by further exploration of the archaeal virosphere. IMPORTANCE Viruses infecting archaea are among the most mysterious denizens of the virosphere. Many of these viruses display no genetic or even morphological relationship to viruses of bacteria and eukaryotes, raising questions regarding their origins and position in the global virosphere. Analysis of 5,740 protein sequences from 116 genomes allowed dissection of the archaeal virus network and showed that most groups of archaeal viruses are evolutionarily connected to capsidless mobile genetic elements, including various plasmids and transposons. This finding could reflect actual independent origins of the distinct groups of archaeal viruses from different nonviral elements, providing important insights into the emergence and evolution of the archaeal virome. PMID:27681128

  16. North American triple reassortant and Eurasian H1N1 swine influenza viruses do not readily reassort to generate a 2009 pandemic H1N1-like virus.

    PubMed

    Ma, Wenjun; Liu, Qinfang; Qiao, Chuanling; del Real, Gustavo; García-Sastre, Adolfo; Webby, Richard J; Richt, Jürgen A

    2014-03-11

    The 2009 pandemic H1N1 virus (pH1N1) was derived through reassortment of North American triple reassortant and Eurasian avian-like swine influenza viruses (SIVs). To date, when, how and where the pH1N1 arose is not understood. To investigate viral reassortment, we coinfected cell cultures and a group of pigs with or without preexisting immunity with a Eurasian H1N1 virus, A/Swine/Spain/53207/2004 (SP04), and a North American triple reassortant H1N1 virus, A/Swine/Kansas/77778/2007 (KS07). The infected pigs were cohoused with one or two groups of contact animals to investigate viral transmission. In coinfected MDCK or PK15 continuous cell lines with KS07 and SP04 viruses, more than 20 different reassortant viruses were found. In pigs without or with preexisting immunity (immunized with commercial inactivated swine influenza vaccines) and coinfected with both viruses, six or seven reassortant viruses, as well as the parental viruses, were identified in bronchoalveolar lavage fluid samples from the lungs. Interestingly, only one or two viruses transmitted to and were detected in contact animals. No reassortant containing a gene constellation similar to that of pH1N1 virus was found in either coinfected cells or pigs, indicating that the reassortment event that resulted in the generation of this virus is a rare event that likely involved specific viral strains and/or a favorable, not-yet-understood environment. IMPORTANCE The 2009 pandemic-like H1N1 virus could not be reproduced either in cell cultures or in pigs coinfected with North American triple reassortant H1N1 and Eurasian H1N1 swine influenza viruses. This finding suggests that the generation of the 2009 pandemic H1N1 virus by reassortment was a rare event that likely involved specific viral strains and unknown factors. Different reassortant viruses were detected in coinfected pigs with and without preexisting immunity, indicating that host immunity plays a relevant role in driving viral reassortment of influenza A virus.

  17. [Genetic diversity and evolution of the influenza C virus].

    PubMed

    Speranskaia, A S; Mel'nikova, N V; Belenkin, M S; Dmitriev, A A; Oparina, N Iu; Kudriavtseva, A V

    2012-07-01

    The influenza C virus is spread worldwide and causes diseases of the upper and (less frequently) lower respiratory tract in human. The virus is not pandemic, but it circulates together with pandemic influenza A and B viruses during winter months and has quite similar clinical manifestations. The influenza C virus is also encountered in animals (pigs and dogs) and is known to override the interspecific barriers oftransmssion. The immune system of mammals often fails to recognize new antigenic variants of influenza C virus, which invariably arise in nature, resulting in outbreaks of diseases, although the structure of antigens in influenza C virus in general is much more stable than those of influenza viruses A and B. Variability of genetic information in natural isolates of viruses is determined by mutations, reassortment, and recombination. However, recombination events very rarely occur in genomes of negative-strand RNA viruses, including those of influenza, and virtually have no effect on their evolution. Unambiguous explanations for this phenomenon have thus far not been proposed. There is no proof of recombination processes in the influenza C virus genome. On the contrary, reassortant viruses derived from different strains of influenza C virus frequently appear in vitro and are likely to be common in nature. The genome of influenza C virus comprises seven segments. Based on the comparison of sequences in one of its genes (HEF), six genetic or antigenic lineages of this virus can be distinguished (Yamagata/26/81, Aichi/1/81, Mississippi/80, Taylor/1233/47, Sao Paulo/378/82, and Kanagawa/1/76). However, the available genetic data show that all the seven segments of the influenza C virus genome evolve independently.

  18. Antibodies induced by the HA2 glycopolypeptide of influenza virus haemagglutinin improve recovery from influenza A virus infection.

    PubMed

    Gocník, M; Fislová, T; Mucha, V; Sládková, T; Russ, G; Kostolansky, F; Varecková, E

    2008-04-01

    The haemagglutinin (HA) of influenza A virus consists of two glycopolypeptides designated HA1 and HA2. Antibodies recognizing HA1 inhibit virus haemagglutination, neutralize virus infectivity and provide good protection against infection, but do not cross-react with the HA of other subtypes. Little is known regarding the biological activities of antibodies against HA2. To study the role of antibodies directed against HA2 during influenza virus infection, two vaccinia virus recombinants (rVVs) were used expressing chimeric molecules of HA, in which HA1 and HA2 were derived from different HA subtypes. The KG-11 recombinant expressed HA1 from A/PR/8/34 (H1N1) virus and HA2 from A/NT/60 (H3N2) virus, whilst KG-12 recombinant expressed HA1 from A/NT/60 virus and HA2 from A/PR/8/34 virus. Immunization of BALB/c mice with rVV expressing HA2 of the HA subtype homologous to the challenge virus [A/PR/8/34 (H1N1) or A/Mississippi/1/85 (H3N2)] did not prevent virus infection, but nevertheless resulted in an increase in mice survival and faster elimination of virus from the lungs. Passive immunization with antibodies purified from mice immunized with rVVs confirmed that antibodies against HA2 were responsible for the described effect on virus infection. Based on the facts that HA2 is a rather conserved part of the HA and that antibodies against HA2, as shown here, may moderate virus infection, future vaccine design should deal with the problem of how to increase the HA2 antibody response.

  19. Detection of viruses and atypical bacteria associated with acute respiratory infection of children in Hubei, China.

    PubMed

    Wu, Zegang; Li, Yan; Gu, Jian; Zheng, Hongyun; Tong, Yongqing; Wu, Qing

    2014-02-01

    Acute respiratory infection is the major cause of disease and death in children, particularly in developing countries. However, the spectrum of pathogenic viruses and atypical bacteria that exist in many of these countries remains incompletely characterized. The aim of this study was to examine the spectrum of pathogenic viruses and atypical bacteria associated with acute respiratory infection in children under the age of 16. A total of 10 435 serum sera specimens were collected from hospitalized children presenting with acute respiratory infection symptoms. Indirect immunofluorescence assays were performed to detect immunoglobulin M antibodies against nine common pathogens: mycoplasma pneumonia, influenza virus B, respiratory syncytial virus, parainfluenza virus, adenovirus, influenza virus A, legionella pneumophila, coxiella burnetii and chamydophila pneumonia. Of the 10 435 specimens examined, 7046 tested positive for at least one pathogen. Among all of the tested pathogens, mycoplasma pneumonia had the highest detection rate (56.9%). Influenza virus A and influenza virus B epidemics occurred during both winter and summer. The detection rate of respiratory syncytial virus and adenovirus was higher in spring. Cases of mixed infection were more complex: 4136 specimens (39.6%) tested positive for ≥2 pathogens. There were statistically significant difference in detection rates of mycoplasma pneumonia, influenza virus B, respiratory syncytial virus, parainfluenza virus, adenovirus, influenza virus A, legionella pneumophila and chamydophila pneumonia among different age groups (P < 0.05). The most common pathogens causing acute respiratory infection among children in Hubei of China were mycoplasma pneumonia, influenza virus B and respiratory syncytial virus. The detection rates for each pathogen displayed specific seasonal and age group variations. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  20. Optimisations and Challenges Involved in the Creation of Various Bioluminescent and Fluorescent Influenza A Virus Strains for In Vitro and In Vivo Applications

    PubMed Central

    Herfst, Sander; Bestebroer, Theo M.; Vaes, Vincent P.; van der Hoeven, Barbara; Koster, Abraham J.; Kremers, Gert-Jan; Scott, Dana P.; Gultyaev, Alexander P.; Sorell, Erin M.; de Graaf, Miranda; Bárcena, Montserrat; Rimmelzwaan, Guus F.; Fouchier, Ron A.

    2015-01-01

    Bioluminescent and fluorescent influenza A viruses offer new opportunities to study influenza virus replication, tropism and pathogenesis. To date, several influenza A reporter viruses have been described. These strategies typically focused on a single reporter gene (either bioluminescent or fluorescent) in a single virus backbone. However, whilst bioluminescence is suited to in vivo imaging, fluorescent viruses are more appropriate for microscopy. Therefore, the idea l reporter virus varies depending on the experiment in question, and it is important that any reporter virus strategy can be adapted accordingly. Herein, a strategy was developed to create five different reporter viruses in a single virus backbone. Specifically, enhanced green fluorescent protein (eGFP), far-red fluorescent protein (fRFP), near-infrared fluorescent protein (iRFP), Gaussia luciferase (gLUC) and firefly luciferase (fLUC) were inserted into the PA gene segment of A/PR/8/34 (H1N1). This study provides a comprehensive characterisation of the effects of different reporter genes on influenza virus replication and reporter activity. In vivo reporter gene expression, in lung tissues, was only detected for eGFP, fRFP and gLUC expressing viruses. In vitro, the eGFP-expressing virus displayed the best reporter stability and could be used for correlative light electron microscopy (CLEM). This strategy was then used to create eGFP-expressing viruses consisting entirely of pandemic H1N1, highly pathogenic avian influenza (HPAI) H5N1 and H7N9. The HPAI H5N1 eGFP-expressing virus infected mice and reporter gene expression was detected, in lung tissues, in vivo. Thus, this study provides new tools and insights for the creation of bioluminescent and fluorescent influenza A reporter viruses. PMID:26241861

  1. Isolation and Characterization of Metallosphaera turreted icosahedral virus (MTIV), a founding member of a new family of archaeal viruses.

    PubMed

    Wagner, Cassia; Reddy, Vijay; Asturias, Francisco; Khoshouei, Maryam; Johnson, John E; Manrique, Pilar; Munson-McGee, Jacob; Baumeister, Wolfgang; Lawrence, C Martin; Young, Mark J

    2017-08-02

    Our understanding of archaeal virus diversity and structure is just beginning to emerge. Here we describe a new archaeal virus, tentatively named Metallosphaera turreted icosahedral virus (MTIV), that was isolated from an acidic hot spring in Yellowstone National Park, USA. Two strains of the virus were identified and found to replicate in an archaeal host species closely related to Metallosphaera yellowstonensis Each strain encodes for a 9.8-9.9 kb, linear dsDNA genome with large inverted terminal repeats. Each genome encodes for 21 ORFs. Between the strains the ORFs display high homology, but they are quite distinct from other known viral genes. The 70-nm diameter virion is built upon on a T=28 icosahedral lattice. Both single particle cryo-electron microscopy and cryo-tomography reconstructions reveal an unusual structure that has 42 turret-like projections: 12 from each of the 5-fold axes and 30 hexameric units positioned on icosahedral 2-fold axes. Both the virion structural properties and genome content support MTIV as the founding member of a new family of archaeal viruses. Importance: Many archaeal viruses are quite different than viruses infecting bacteria and eukaryotes. Initial characterization of MTIV reveals a virus distinct from other known bacterial, eukaryotic, and archaeal viruses; this finding suggests that viruses infecting Archaea are still an understudied group of viruses. As the first known virus infecting the Metallosphaera , MTIV provides a new system for exploring archaeal virology by examining host-virus interactions and the unique features of MTIV structure-function relationships. These studies will likely expand our understanding of virus ecology and evolution. Copyright © 2017 American Society for Microbiology.

  2. Initial HIV-1 Antigen-Specific CD8+ T Cells in Acute HIV-1 Infection Inhibit Transmitted/Founder Virus Replication

    PubMed Central

    Freel, Stephanie A.; Picking, Ralph A.; Ferrari, Guido; Ding, Haitao; Ochsenbauer, Christina; Kappes, John C.; Kirchherr, Jennifer L.; Soderberg, Kelly A.; Weinhold, Kent J.; Cunningham, Coleen K.; Denny, Thomas N.; Crump, John A.; Cohen, Myron S.; McMichael, Andrew J.; Haynes, Barton F.

    2012-01-01

    CD8-mediated virus inhibition can be detected in HIV-1-positive subjects who naturally control virus replication. Characterizing the inhibitory function of CD8+ T cells during acute HIV-1 infection (AHI) can elucidate the nature of the CD8+ responses that can be rapidly elicited and that contribute to virus control. We examined the timing and HIV-1 antigen specificity of antiviral CD8+ T cells during AHI. Autologous and heterologous CD8+ T cell antiviral functions were assessed longitudinally during AHI in five donors from the CHAVI 001 cohort using a CD8+ T cell-mediated virus inhibition assay (CD8 VIA) and transmitted/founder (T/F) viruses. Potent CD8+ antiviral responses against heterologous T/F viruses appeared during AHI at the first time point sampled in each of the 5 donors (Fiebig stages 1/2 to 5). Inhibition of an autologous T/F virus was durable to 48 weeks; however, inhibition of heterologous responses declined concurrent with the resolution of viremia. HIV-1 viruses from 6 months postinfection were more resistant to CD8+-mediated virus inhibition than cognate T/F viruses, demonstrating that the virus escapes early from CD8+ T cell-mediated inhibition of virus replication. CD8+ T cell antigen-specific subsets mediated inhibition of T/F virus replication via soluble components, and these soluble responses were stimulated by peptide pools that include epitopes that were shown to drive HIV-1 escape during AHI. These data provide insights into the mechanisms of CD8-mediated virus inhibition and suggest that functional analyses will be important for determining whether similar antigen-specific virus inhibition can be induced by T cell-directed vaccine strategies. PMID:22514337

  3. Swine influenza virus: zoonotic potential and vaccination strategies for the control of avian and swine influenzas.

    PubMed

    Thacker, Eileen; Janke, Bruce

    2008-02-15

    Influenza viruses are able to infect humans, swine, and avian species, and swine have long been considered a potential source of new influenza viruses that can infect humans. Swine have receptors to which both avian and mammalian influenza viruses bind, which increases the potential for viruses to exchange genetic sequences and produce new reassortant viruses in swine. A number of genetically diverse viruses are circulating in swine herds throughout the world and are a major cause of concern to the swine industry. Control of swine influenza is primarily through the vaccination of sows, to protect young pigs through maternally derived antibodies. However, influenza viruses continue to circulate in pigs after the decay of maternal antibodies, providing a continuing source of virus on a herd basis. Measures to control avian influenza in commercial poultry operations are dictated by the virulence of the virus. Detection of a highly pathogenic avian influenza (HPAI) virus results in immediate elimination of the flock. Low-pathogenic avian influenza viruses are controlled through vaccination, which is done primarily in turkey flocks. Maintenance of the current HPAI virus-free status of poultry in the United States is through constant surveillance of poultry flocks. Although current influenza vaccines for poultry and swine are inactivated and adjuvanted, ongoing research into the development of newer vaccines, such as DNA, live-virus, or vectored vaccines, is being done. Control of influenza virus infection in poultry and swine is critical to the reduction of potential cross-species adaptation and spread of influenza viruses, which will minimize the risk of animals being the source of the next pandemic.

  4. Altered virulence of Highly Pathogenic Avian Influenza (HPAI) H5N8 reassortant viruses in mammalian models.

    PubMed

    Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-Il; Song, Min-Suk; Kim, Se Mi; Kim, Young-Il; Si, Young-Jae; Lee, In-Won; Nguyen, Hiep Dinh; Shin, Ok Sarah; Kim, Chul-Joong; Choi, Young Ki

    2018-01-01

    Recently identified highly pathogenic avian influenza (HPAI) H5N8 viruses (clade 2.3.4.4) are relatively low to moderately pathogenic in mammalian hosts compared with HPAI H5N1 viruses. In this study, we generated reassortant viruses comprised of A/MD/Korea/W452/2014(H5N8) with substitution of individual genes from A/EM/Korea/W149/2006(H5N1) to understand the contribution of each viral gene to virulence in mammals. Substituting the PB2 gene segment or the NA gene segment of the H5N8 virus by that from the H5N1 virus resulted in significantly enhanced pathogenicity compared with the parental H5N8 virus in mice. Of note, substitution of the PB2 gene segment of the H5N8 virus by that from the H5N1 virus resulted in a 1000-fold increase in virulence for mice compared with the parental virus (MLD 50 decreased from 10 5.8 to 10 2.5 EID 50 ). Further, the W452 W149PB2 virus also induced the highest virus titers in lungs at all time points and the highest levels of inflammatory cytokine responses among all viruses tested. This high virulence phenotype was also confirmed by high viral titers in the respiratory tracts of infected ferrets. Further, a mini-genome assay revealed that W452 W149PB2 has significantly increased polymerase activity (p < 0.001). Taken together, our study demonstrates that a single gene substitution from other avian influenza viruses can alter the pathogenicity of recent H5N8 viruses, and therefore emphasizes the need for intensive monitoring of reassortment events among co-circulating avian and mammalian viruses.

  5. The Oryctes virus: its detection, identification, and implementation in biological control of the coconut palm rhinoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae).

    PubMed

    Huger, Alois M

    2005-05-01

    In view of the increasing and devastating damage by rhinoceros beetle (Oryctes rhinoceros) to coconut palms in the middle of last century, many efforts were made to find an efficient natural control factor against this pest, which could not be controlled by pesticides. The basic procedures of these monitoring programmes are outlined together with the final detection of a virus disease in oil palm estates in Malaysia in 1963. In extensive laboratory studies, the virus was isolated and identified as the first non-occluded, rod-shaped insect virus, morphologically resembling the baculoviruses. Infection experiments clarified the pathology, histopathology, and virulence of the virus and demonstrated that the virus was extremely virulent to larvae after peroral application. These findings encouraged the first pilot release of virus in 1967 in coconut plantations of Western Samoa where breeding sites were contaminated with virus. Surprisingly, the virus became established in the Samoan rhinoceros beetle populations and spread autonomously throughout the Western Samoan islands. As a consequence, there was a drastic decline of the beetle populations followed by a conspicuous recovery of the badly damaged coconut stands. This unexpected phenomenon could only be explained after it was shown that the adult beetle itself is a very active virus vector and thus was responsible for the efficient autodissemination of the virus. The functioning of the beetle as a 'flying virus factory' is due to the unique cytopathic process developing in the midgut after peroral virus infection. Pathological details of this process are presented. Because of the long-term persistence of the virus in the populations, rhinoceros beetle control is maintained. Incorporation of virus into integrated control measures and successful virus releases in many other countries are recorded.

  6. Virus movement in soil columns flooded with secondary sewage effluent.

    PubMed Central

    Lance, J C; Gerba, C P; Melnick, J L

    1976-01-01

    Secondary sewage effluent containing about 3 X 10(4) plaque-forming units of polio virus type 1 (LSc) per ml was passed through columns 250 cm in length packed with calcareous sand from an area in the Salt River bed used for ground-water recharge of secondary sewage effluent. Viruses were not detected in 1-ml samples extracted from the columns below the 160-cm level. However, viruses were detected in 5 of 43 100-ml samples of the column drainage water. Most of the viruses were adsorbed in the top 5 cm of soil. Virus removal was not affected by the infiltration rate, which varied between 15 and 55 cm/day. Flooding a column continuosly for 27 days with the sewage water virus mixture did not saturate the top few centimeters of soil with viruses and did not seem to affect virus movement. Flooding with deionized water caused virus desorption from the soil and increased their movement through the columns. Adding CaCl2 to the deionized water prevented most of the virus desorption. Adding a pulse of deionized water followed by sewage water started a virus front moving through the columns, but the viruses were readsorbed and none was detected in outflow samples. Drying the soil for 1 day between applying the virus and flooding with deionized water greatly reduced desorption, and drying for 5 days prevented desorption. Large reductions (99.99% or more) of virus would be expected after passage of secondary sewage effluent through 250 cm of the calcareous sand similar to that used in our laboratory columns unless heavy rains fell within 1 day after the application of sewage stopped. Such virus movement could be minimized by the proper management of flooding and drying cycles. PMID:185960

  7. Altered virulence of Highly Pathogenic Avian Influenza (HPAI) H5N8 reassortant viruses in mammalian models

    PubMed Central

    Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-Il; Song, Min-Suk; Kim, Se Mi; Kim, Young-Il; Si, Young-Jae; Lee, In-Won; Nguyen, Hiep Dinh; Shin, Ok Sarah; Kim, Chul-Joong; Choi, Young Ki

    2018-01-01

    ABSTRACT Recently identified highly pathogenic avian influenza (HPAI) H5N8 viruses (clade 2.3.4.4) are relatively low to moderately pathogenic in mammalian hosts compared with HPAI H5N1 viruses. In this study, we generated reassortant viruses comprised of A/MD/Korea/W452/2014(H5N8) with substitution of individual genes from A/EM/Korea/W149/2006(H5N1) to understand the contribution of each viral gene to virulence in mammals. Substituting the PB2 gene segment or the NA gene segment of the H5N8 virus by that from the H5N1 virus resulted in significantly enhanced pathogenicity compared with the parental H5N8 virus in mice. Of note, substitution of the PB2 gene segment of the H5N8 virus by that from the H5N1 virus resulted in a 1000-fold increase in virulence for mice compared with the parental virus (MLD50 decreased from 105.8 to 102.5 EID50). Further, the W452W149PB2 virus also induced the highest virus titers in lungs at all time points and the highest levels of inflammatory cytokine responses among all viruses tested. This high virulence phenotype was also confirmed by high viral titers in the respiratory tracts of infected ferrets. Further, a mini-genome assay revealed that W452W149PB2 has significantly increased polymerase activity (p < 0.001). Taken together, our study demonstrates that a single gene substitution from other avian influenza viruses can alter the pathogenicity of recent H5N8 viruses, and therefore emphasizes the need for intensive monitoring of reassortment events among co-circulating avian and mammalian viruses. PMID:28873012

  8. Characterization of low-pathogenicity H5N1 avian influenza viruses from North America

    USGS Publications Warehouse

    Spackman, Erica; Swayne, David E.; Suarez, David L.; Senne, Dennis A.; Pedersen, Janice C.; Killian, Mary Lea; Pasick, John; Handel, Katherine; Somanathan Pillai, Smitha; Lee, Chang-Won; Stallknecht, David; Slemons, Richard; Ip, Hon S.; Deliberto, Tom

    2007-01-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 105.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage.

  9. Isolation and genetic characterization of H5N2 influenza viruses from pigs in Korea.

    PubMed

    Lee, Jun Han; Pascua, Philippe Noriel Q; Song, Min-Suk; Baek, Yun Hee; Kim, Chul-Joong; Choi, Hwan-Woon; Sung, Moon-Hee; Webby, Richard J; Webster, Robert G; Poo, Haryoung; Choi, Young Ki

    2009-05-01

    Due to dual susceptibility to both human and avian influenza A viruses, pigs are believed to be effective intermediate hosts for the spread and production of new viruses with pandemic potential. In early 2008, two swine H5N2 viruses were isolated from our routine swine surveillance in Korea. The sequencing and phylogenetic analysis of surface proteins revealed that the Sw/Korea/C12/08 and Sw/Korea/C13/08 viruses were derived from avian influenza viruses of the Eurasian lineage. However, although the Sw/Korea/C12/08 isolate is an entirely avian-like virus, the Sw/Korea/C13/08 isolate is an avian-swine-like reassortant with the PB2, PA, NP, and M genes coming from a 2006 Korean swine H3N1-like virus. The molecular characterization of the two viruses indicated an absence of significant mutations that could be associated with virulence or binding affinity. However, animal experiments showed that the reassortant Sw/Korea/C13/08 virus was more adapted and was more readily transmitted than the purely avian-like virus in a swine experimental model but not in ferrets. Furthermore, seroprevalence in swine sera from 2006 to 2008 suggested that avian H5 viruses have been infecting swine since 2006. Although there are no known potential clinical implications of the avian-swine reassortant virus for pathogenicity in pigs or other species, including humans, at present, the efficient transmissibility of the swine-adapted H5N2 virus could facilitate virus spread and could be a potential model for pandemic, highly pathogenic avian influenza (e.g., H5N1 and H7N7) virus outbreaks or a pandemic strain itself.

  10. Ilarviruses of Prunus spp.: a continued concern for fruit trees.

    PubMed

    Pallas, V; Aparicio, F; Herranz, M C; Amari, K; Sanchez-Pina, M A; Myrta, A; Sanchez-Navarro, J A

    2012-12-01

    Prunus spp. are affected by a large number of viruses, causing significant economic losses through either direct or indirect damage, which results in reduced yield and fruit quality. Among these viruses, members of the genus Ilarvirus (isometric labile ringspot viruses) occupy a significant position due to their distribution worldwide. Although symptoms caused by these types of viruses were reported early in the last century, their molecular characterization was not achieved until the 1990s, much later than for other agronomically relevant viruses. This was mainly due to the characteristic liability of virus particles in tissue extracts. In addition, ilarviruses, together with Alfalfa mosaic virus, are unique among plant viruses in that they require a few molecules of the coat protein in the inoculum in order to be infectious, a phenomenon known as genome activation. Another factor that has made the study of this group of viruses difficult is that infectious clones have been obtained only for the type member of the genus, Tobacco streak virus. Four ilarviruses, Prunus necrotic ringspot virus, Prune dwarf virus, Apple mosaic virus, and American plum line pattern virus, are pathogens of the main cultivated fruit trees. As stated in the 9th Report of the International Committee on Taxonomy of Viruses, virions of this genus are "unpromising subjects for the raising of good antisera." With the advent of molecular approaches for their detection and characterization, it has been possible to get a more precise view of their prevalence and genome organization. This review updates our knowledge on the incidence, genome organization and expression, genetic diversity, modes of transmission, and diagnosis, as well as control of this peculiar group of viruses affecting fruit trees.

  11. [Stimulation of mouse encephalomyocarditis virus reproduction by non-multiplying poliomyelitis virus in several transplantable tissue culture lines].

    PubMed

    Maslova, S V; Shirman, G A; Gavrilovskaia, I N

    1977-01-01

    Reproduction of mouse encephalomyocarditis virus (EMC) was studied in 5 continuous primate cell lines: HeLa, Fl, Detroit-6, P/7, and MIO inoculated with guanidine-dependent variant of poliomyelitis virus in the absence of guanidine. Poliomyelitis virus stimulated EMC virus reproduction in all cell lines under study. This stimulation effect was studied at length in HeLa and MIO cells. In HeLa cells, stimulation was observed at a low and moderate multiplicity of infection of EMC virus but not at a high (100 PEU/cell) multiplicity. Also, when EMC virus reproduction was stimulated, a shortening of the latent period of its multiplication cycle, an increase in the number of antigen-containing cells and the number of infectious centers were observed. In MIO cells, stimulation was found to occur both with low and high doses of EMC virus but not to be accompanied by a shortening in the latent period of EMC reproduction cycle, or any increase in the antigen-containing cells or number of infectious centers. In both cell types upon mixed infection the synthesis of virus-specific RNA's of EMC virus was enhanced. It is suggested that the stimulating effect of poliomyelitis virus is realized in HeLa and MIO cells at different stages of EMC virus reproduction.

  12. Mouse Elberfeld (ME) virus determines the cell surface alterations when mixedly infecting poliovirus-infected cells.

    PubMed

    Zeichhardt, H; Schlehofer, J R; Wetz, K; Hampl, H; Habermehl, K O

    1982-02-01

    The surface alterations of HEp-2 cells induced by mixed infection with two different picornaviruses (poliovirus and ME virus) were compared by scanning electron microscopic and transmission electron microscopic studies and by 51Cr-release assay. The contribution of each of the viruses to the resulting surface changes was discernible, as investigations on the chronology of the cytopathic alterations demonstrated that the changes were distinct for either virus. The surface of ME virus-infected cells was characterized by large membranous structures ('sheets' and blebs) representing huge vacuoles. These sheets were not seen in poliovirus-infected cells. Poliovirus induced more prominent cell pycnosis, elongation of filopodia and condensation of collapsed microvilli on the cell surface than ME virus. Mixed infection with these two viruses led to surface alterations typical for ME virus. These ME virus-specific changes occurred irrespective of poliovirus reproduction or its inhibition by guanidine. ME virus-specific alterations also predominated in cytolytic membrane damage as expressed by 51Cr-release from infected cells. 51Cr-release was more pronounced from ME virus than from poliovirus-infected cells, even when ME virus reproduction was suppressed by interfering poliovirus. However, alteration of the internal structures of the infected cells was only dominated by ME virus when the reproduction of poliovirus was suppressed.

  13. Comparison of variable region 3 sequences of human immunodeficiency virus type 1 from infected children with the RNA and DNA sequences of the virus populations of their mothers.

    PubMed Central

    Scarlatti, G; Leitner, T; Halapi, E; Wahlberg, J; Marchisio, P; Clerici-Schoeller, M A; Wigzell, H; Fenyö, E M; Albert, J; Uhlén, M

    1993-01-01

    We have compared the variable region 3 sequences from 10 human immunodeficiency virus type 1 (HIV-1)-infected infants to virus sequences from the corresponding mothers. The sequences were derived from DNA of uncultured peripheral blood mononuclear cells (PBMC), DNA of cultured PBMC, and RNA from serum collected at or shortly after delivery. The infected infants, in contrast to the mothers, harbored homogeneous virus populations. Comparison of sequences from the children and clones derived from DNA of the corresponding mothers showed that the transmitted virus represented either a minor or a major virus population of the mother. In contrast to an earlier study, we found no evidence of selection of minor virus variants during transmission. Furthermore, the transmitted virus variant did not show any characteristic molecular features. In some cases the transmitted virus was more related to the virus RNA population of the mother and in other cases it was more related to the virus DNA population. This suggests that either cell-free or cell-associated virus may be transmitted. These data will help AIDS researchers to understand the mechanism of transmission and to plan strategies for prevention of transmission. PMID:8446584

  14. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China.

    PubMed

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and homology of the nucleotide sequence, the virus was confirmed to be a novel triple-reassortant H1N2 virus containing genes from classical swine (PB2, PB1, HA, NP, and NS genes), triple-reassortant swine (PA and M genes), and recent human (NA gene) lineages. It indicated that the novel reassortment virus among human and swine influenza viruses occurred in pigs in southern China. The isolation of the novel reassortant H1N2 influenza viruses provides further evidence that pigs are "mixing vessels," and swine influenza virus surveillance in southern China will provide important information about genetic evaluation and antigenic variation of swine influenza virus to formulate the prevention and control measures for the viruses.

  15. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China

    PubMed Central

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and homology of the nucleotide sequence, the virus was confirmed to be a novel triple-reassortant H1N2 virus containing genes from classical swine (PB2, PB1, HA, NP, and NS genes), triple-reassortant swine (PA and M genes), and recent human (NA gene) lineages. It indicated that the novel reassortment virus among human and swine influenza viruses occurred in pigs in southern China. The isolation of the novel reassortant H1N2 influenza viruses provides further evidence that pigs are “mixing vessels,” and swine influenza virus surveillance in southern China will provide important information about genetic evaluation and antigenic variation of swine influenza virus to formulate the prevention and control measures for the viruses. PMID:27458456

  16. Ecological dynamics of emerging bat virus spillover

    PubMed Central

    Plowright, Raina K.; Eby, Peggy; Hudson, Peter J.; Smith, Ina L.; Westcott, David; Bryden, Wayne L.; Middleton, Deborah; Reid, Peter A.; McFarlane, Rosemary A.; Martin, Gerardo; Tabor, Gary M.; Skerratt, Lee F.; Anderson, Dale L.; Crameri, Gary; Quammen, David; Jordan, David; Freeman, Paul; Wang, Lin-Fa; Epstein, Jonathan H.; Marsh, Glenn A.; Kung, Nina Y.; McCallum, Hamish

    2015-01-01

    Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility. PMID:25392474

  17. A method combining immunocapture and PCR amplification in a microtiter plate for the detection of plant viruses and subviral pathogens.

    PubMed

    Nolasco, G; de Blas, C; Torres, V; Ponz, F

    1993-12-15

    A method for the detection of RNA viral and subviral plant pathogens was developed that combines pathogen partial purification by solid-phase adsorbed antibodies, reverse transcriptional-polymerase chain reaction (RT-PCR) and quantitation of the amplified products by fluorescence. The reverse transcription of the RNA is performed directly on the retained material without any previous thermal or chemical disruption of the virus particles. The whole procedure can be carried out in a microtiter plate. Its validity has been successfully confirmed for the detection of bean yellow mosaic virus, cherry leafroll virus, cucumber mosaic virus, citrus tristeza virus, grapevine fanleaf virus, potato leafroll virus, pepper mild mottle virus, and tomato spotted wilt virus, as well as the satellite RNA of cucumber mosaic virus and potato spindle tuber viroid. In this procedure virus-specific antibodies can be replaced by monoclonal antibodies against double-stranded RNA, thus offering the possibility of detection when no specific virus antibodies are available, or immunological methods are difficult to use (i.e., subviral pathogens like satellite-RNAs or viroids). The method described has the typical sensitivity of assays based on the polymerase chain reaction, it is not more laborious than ELISA, and an equivalent degree of automation is possible.

  18. Viruses Infecting Reptiles

    PubMed Central

    Marschang, Rachel E.

    2011-01-01

    A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch’s postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions. PMID:22163336

  19. A new cryptic virus belonging to the family Partitiviridae was found in watermelon co-infected with Melon necrotic spot virus.

    PubMed

    Sela, Noa; Lachman, Oded; Reingold, Victoria; Dombrovsky, Aviv

    2013-10-01

    A novel virus was detected in watermelon plants (Citrullus lanatus Thunb.) infected with Melon necrotic spot virus (MNSV) using SOLiD next-generation sequence analysis. In addition to the expected MSNV genome, two double-stranded RNA (dsRNA) segments of 1,312 and 1,118 bp were also identified and sequenced from the purified virus preparations. These two dsRNA segments encode two putative partitivirus-related proteins, an RNA-dependent RNA polymerase (RdRP) and a capsid protein, which were sequenced. Genomic-sequence analysis and analysis of phylogenetic relationships indicate that these two dsRNAs together make up the genome of a novel Partitivirus. This virus was found to be closely related to the Pepper cryptic virus 1 and Raphanus sativus cryptic virus. It is suggested that this novel virus putatively named Citrullus lanatus cryptic virus be considered as a new member of the family Partitiviridae.

  20. Generation of influenza A viruses as live but replication-incompetent virus vaccines.

    PubMed

    Si, Longlong; Xu, Huan; Zhou, Xueying; Zhang, Ziwei; Tian, Zhenyu; Wang, Yan; Wu, Yiming; Zhang, Bo; Niu, Zhenlan; Zhang, Chuanling; Fu, Ge; Xiao, Sulong; Xia, Qing; Zhang, Lihe; Zhou, Demin

    2016-12-02

    The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus. Copyright © 2016, American Association for the Advancement of Science.

  1. The enigmatic archaeal virosphere.

    PubMed

    Prangishvili, David; Bamford, Dennis H; Forterre, Patrick; Iranzo, Jaime; Koonin, Eugene V; Krupovic, Mart

    2017-11-10

    One of the most prominent features of archaea is the extraordinary diversity of their DNA viruses. Many archaeal viruses differ substantially in morphology from bacterial and eukaryotic viruses and represent unique virus families. The distinct nature of archaeal viruses also extends to the gene composition and architectures of their genomes and the properties of the proteins that they encode. Environmental research has revealed prominent roles of archaeal viruses in influencing microbial communities in ocean ecosystems, and recent metagenomic studies have uncovered new groups of archaeal viruses that infect extremophiles and mesophiles in diverse habitats. In this Review, we summarize recent advances in our understanding of the genomic and morphological diversity of archaeal viruses and the molecular biology of their life cycles and virus-host interactions, including interactions with archaeal CRISPR-Cas systems. We also examine the potential origins and evolution of archaeal viruses and discuss their place in the global virosphere.

  2. Seroprevalence of West Nile Virus in Wild Birds in Far Eastern Russia Using a Focus Reduction Neutralization Test

    PubMed Central

    Murata, Ryo; Hashiguchi, Kazuaki; Yoshii, Kentaro; Kariwa, Hiroaki; Nakajima, Kensuke; Ivanov, Leonid I.; Leonova, Galina N.; Takashima, Ikuo

    2011-01-01

    West Nile (WN) virus has been spreading geographically to non-endemic areas in various parts of the world. However, little is known about the extent of WN virus infection in Russia. Japanese encephalitis (JE) virus, which is closely related to WN virus, is prevalent throughout East Asia. We evaluated the effectiveness of a focus reduction neutralization test in young chicks inoculated with JE and WN viruses, and conducted a survey of WN infection among wild birds in Far Eastern Russia. Following single virus infection, only neutralizing antibodies specific to the homologous virus were detected in chicks. The neutralization test was then applied to serum samples from 145 wild birds for WN and JE virus. Twenty-one samples were positive for neutralizing antibodies to WN. These results suggest that WN virus is prevalent among wild birds in the Far Eastern region of Russia. PMID:21363987

  3. Preparation of herpes simplex virus-infected primary neurons for transmission electron microscopy.

    PubMed

    Miranda-Saksena, Monica; Boadle, Ross; Cunningham, Anthony L

    2014-01-01

    Transmission electron microscopy (TEM) provides the resolution necessary to identify both viruses and subcellular components of cells infected with many types of viruses, including herpes simplex virus. Recognized as a powerful tool in both diagnostic and research-based virology laboratories, TEM has made possible the identification of new viruses and has contributed to the elucidation of virus life cycle and virus-host cell interaction. Whilst there are many sample preparation techniques for TEM, conventional processing using chemical fixation and resin embedding remains a useful technique, available in virtually all EM laboratories, for studying virus/cell ultrastructure. In this chapter, we describe the preparation of herpes simplex virus-infected primary neurons, grown on plastic cover slips, to allow sectioning of neurons and axons in their growth plane. This technique allows TEM examination of cell bodies, axons, growth cones, and varicosities, providing powerful insights into virus-cell interaction.

  4. Viral Activation of Cellular Metabolism

    PubMed Central

    Sanchez, Erica L.; Lagunoff, Michael

    2015-01-01

    To ensure optimal environments for their replication and spread, viruses have evolved to alter many host cell pathways. In the last decade, metabolomic studies have shown that eukaryotic viruses induce large-scale alterations in host cellular metabolism. Most viruses examined to date induce aerobic glycolysis also known as the Warburg effect. Many viruses tested also induce fatty acid synthesis as well as glutaminolysis. These modifications of carbon source utilization by infected cells can increase available energy for virus replication and virion production, provide specific cellular substrates for virus particles and create viral replication niches while increasing infected cell survival. Each virus species also likely requires unique metabolic changes for successful spread and recent research has identified additional virus-specific metabolic changes induced by many virus species. A better understanding of the metabolic alterations required for each virus may lead to novel therapeutic approaches through targeted inhibition of specific cellular metabolic pathways. PMID:25812764

  5. Viruses infecting reptiles.

    PubMed

    Marschang, Rachel E

    2011-11-01

    A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch's postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions.

  6. Determinants of virulence of influenza A virus

    PubMed Central

    Schrauwen, Eefje J.A.; de Graaf, Miranda; Herfst, Sander; Rimmelzwaan, Guus F.; Osterhaus, Albert D.M.E.; Fouchier, Ron A.M.

    2013-01-01

    Influenza A viruses cause yearly seasonal epidemics and occasional global pandemics in humans. In the last century, four human influenza A virus pandemics have occured. Ocasionally, influenza A viruses that circulate in other species, cross the species barrier and infect humans. Virus re-assortment (i.e. mixing of gene segments of multiple viruses) and the accumulation of mutations contribute to the emergence of new influenza A virus variants. Fortunately, most of these variants do not have the ability to spread among humans and subsequently cause a pandemic. In this review we focus on the threat of animal influenza A viruses which have shown the ability to infect humans. In addition, genetic factors which could alter the virulence of influenza A viruses are discussed. Identification and characterization of these factors may provide insights into genetic traits which change virulence and help us to understand which genetic determinants are of importance for the pandemic potential of animal influenza A viruses. PMID:24078062

  7. Giant Viruses of Amoebae: A Journey Through Innovative Research and Paradigm Changes.

    PubMed

    Colson, Philippe; La Scola, Bernard; Raoult, Didier

    2017-09-29

    Giant viruses of amoebae were discovered serendipitously in 2003; they are visible via optical microscopy, making them bona fide microbes. Their lifestyle, structure, and genomes break the mold of classical viruses. Giant viruses of amoebae are complex microorganisms. Their genomes harbor between 444 and 2,544 genes, including many that are unique to viruses, and encode translation components; their virions contain >100 proteins as well as mRNAs. Mimiviruses have a specific mobilome, including virophages, provirophages, and transpovirons, and can resist virophages through a system known as MIMIVIRE (mimivirus virophage resistance element). Giant viruses of amoebae bring upheaval to the definition of viruses and tend to separate the current virosphere into two categories: very simple viruses and viruses with complexity similar to that of other microbes. This new paradigm is propitious for enhanced detection and characterization of giant viruses of amoebae, and a particular focus on their role in humans is warranted.

  8. Recombinase polymerase amplification applied to plant virus detection and potential implications.

    PubMed

    Babu, Binoy; Ochoa-Corona, Francisco M; Paret, Mathews L

    2018-04-01

    Several isothermal techniques for the detection of plant pathogens have been developed with the advent of molecular techniques. Among them, Recombinase Polymerase Amplification (RPA) is becoming an important technique for the rapid, sensitive and cost-effective detection of plant viruses. The RPA technology has the advantage to be implemented in field-based scenarios because the method requires a minimal sample preparation, and is performed at constant low temperature (37-42 °C). The RPA technique is rapidly becoming a promising tool for use in rapid detection and further diagnostics in plant clinics and monitoring quarantine services. This paper presents a review of studies conducted using RPA for detection/diagnosis of plant viruses with either DNA genomes (Banana bunchy top virus, Bean golden yellow mosaic virus, Tomato mottle virus, Tomato yellow leaf curl virus) or RNA genomes (Little Cherry virus 2, Plum pox virus and Rose rosette virus). Copyright © 2018 Elsevier Inc. All rights reserved.

  9. [Research progress of the molecule mechanisms of Ebola virus infection of cells].

    PubMed

    Shi, Ming; Shen, Yu-Qing

    2013-01-01

    Ebola virus can cause severe Ebola hemorrhagic fever. The mortality rate is 90 percent. Up till now, there is no effective vaccine or treatment of Ebola virus infection. Relaed researches on Ebola virus have become a hot topic in virology. The understanding of molecular mechanisms of Ebola virus infection of cells are important for the development of vaccine and anti-virus drugs. Therefore, this review summarized the recent research progress on the mechanisms of Ebola virus infection.

  10. Tomato chocolàte virus: a new plant virus infecting tomato and a proposed member of the genus Torradovirus.

    PubMed

    Verbeek, Martin; Dullemans, Annette; van den Heuvel, Hans; Maris, Paul; van der Vlugt, René

    2010-05-01

    A new virus was isolated from a tomato plant from Guatemala showing necrotic spots on the bases of the leaves and chocolate-brown patches on the fruits. Structural and molecular analysis showed the virus to be clearly related to but distinct from the recently described Tomato torrado virus (ToTV) and Tomato marchitez virus (ToMarV), both members of the genus Torradovirus. The name tomato chocolàte virus is proposed for this new torradovirus.

  11. Factors Influencing Virulence and Plaque Properties of Attenuated Venezuelan Equine Encephalomyelitis Virus Populations

    PubMed Central

    Hearn, Henry J.; Seliokas, Zenonas V.; Andersen, Arthur A.

    1969-01-01

    A minority of stable large-plaque virus increased proportionally in stored unstable attenuated (9t) Venezuelan equine encephalomyelitis virus populations. L-cell-grown progeny (9t2) of stored 9t showed large amounts of large-plaque virus and increased virulence. Small-plaque virus inhibited large-plaque virus but not the reverse. Serial passage of small-plaque virus from 9t2 yielded a strain (20t) that was more attenuated than 9t. PMID:5823235

  12. Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X.

    PubMed

    Choi, Hoseong; Jo, Yeonhwa; Lian, Sen; Jo, Kyoung-Min; Chu, Hyosub; Yoon, Ju-Yeon; Choi, Seung-Kook; Kim, Kook-Hyung; Cho, Won Kyong

    2015-06-01

    The chrysanthemum is one of popular flowers in the world and a host for several viruses. So far, molecular interaction studies between the chrysanthemum and viruses are limited. In this study, we carried out a transcriptome analysis of chrysanthemum in response to three different viruses including Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV) and Potato virus X (PVX). A chrysanthemum 135K microarray derived from expressed sequence tags was successfully applied for the expression profiles of the chrysanthemum at early stage of virus infection. Finally, we identified a total of 125, 70 and 124 differentially expressed genes (DEGs) for CMV, TSWV and PVX, respectively. Many DEGs were virus specific; however, 33 DEGs were commonly regulated by three viruses. Gene ontology (GO) enrichment analysis identified a total of 132 GO terms, and of them, six GO terms related stress response and MCM complex were commonly identified for three viruses. Several genes functioning in stress response such as chitin response and ethylene mediated signaling pathway were up-regulated indicating their involvement in establishment of host immune system. In particular, TSWV infection significantly down-regulated genes related to DNA metabolic process including DNA replication, chromatin organization, histone modification and cytokinesis, and they are mostly targeted to nucleosome and MCM complex. Taken together, our comparative transcriptome analysis revealed several genes related to hormone mediated viral stress response and DNA modification. The identified chrysanthemums genes could be good candidates for further functional study associated with resistant to various plant viruses.

  13. Response of dairy calves to vaccinia viruses that express foreign genes.

    PubMed Central

    Gillespie, J H; Geissinger, C; Scott, F W; Higgins, W P; Holmes, D F; Perkus, M; Mercer, S; Paoletti, E

    1986-01-01

    Repeated intradermal inoculations of calves with wild-type vaccinia virus and recombinant vaccinia viruses expressing human hepatitis B virus surface antigen and herpes simplex virus, type 1, glycoprotein D produced characteristic pox lesions at each site of injection. In some instances, calves were inoculated as many as five times at intervals from 4 to 7 weeks. The lesions invariably were more severe after the second inoculation. Subsequent inoculations produced a less severe area of redness, swelling, necrosis, and scab formation. No other signs of illness, such as an elevation in temperature, were noted in the calves. Vaccinia virus was isolated in low titers from scabs taken at various times after inoculation. No lesions were formed at the sites injected with tissue culture fluid and cellular debris at the same time that virus inoculations were made. Calf contact controls remained normal through the 8-week exposure in isolation units with calves inoculated twice with vaccinia virus. No neutralizing antibody to vaccinia virus was detected in the contact controls. In contrast, the virus-inoculated calves developed neutralizing antibody to vaccinia virus and to herpes simplex virus glycoprotein D in serum. In all cattle, a second inoculation significantly enhanced the neutralizing antibody response within 1 week, suggesting that an anamnestic response had occurred. No antibody to hepatitis B virus surface antigen was elicited in calves after repeated inoculations with vaccinia recombinants that express hepatitis B virus surface antigen and are known to elicit in rabbits antibodies reactive with hepatitis B virus surface antigen. Images PMID:3700615

  14. Mechanism of attenuation of a chimeric influenza A/B transfectant virus.

    PubMed

    Luo, G; Bergmann, M; Garcia-Sastre, A; Palese, P

    1992-08-01

    The ribonucleoprotein transfection system for influenza virus allowed us to construct an influenza A virus containing a chimeric neuraminidase (NA) gene in which the noncoding sequence is derived from the NS gene of influenza B virus (T. Muster, E. K. Subbarao, M. Enami, B. P. Murphy, and P. Palese, Proc. Natl. Acad. Sci. USA 88:5177-5181, 1991). This transfectant virus is attenuated in mice and grows to lower titers in tissue culture than wild-type virus. Since such a virus has characteristics desirable for a live attenuated vaccine strain, attempts were made to characterize this virus at the molecular level. Our analysis suggests that the attenuation of the virus is due to changes in the cis signal sequences, which resulted in a reduction of transcription and replication of the chimeric NA gene. The major finding concerns a sixfold reduction in NA-specific viral RNA in the virion, causing a reduction in the ratio of infectious particles to physical particles compared with the ratio in wild-type virus. Although the NA-specific mRNA level is also reduced in transfectant virus-infected cells, it does not appear to contribute to the attenuation characteristics of the virus. The levels of the other RNAs and their expression appear to be unchanged for the transfectant virus. It is suggested that downregulation of the synthesis of one viral RNA segment leads to the generation of defective viruses during each replication cycle. We believe that this represents a general principle for attenuation which may be applied to other segmented viruses containing either single-stranded or double-stranded RNA.

  15. Effective tolerance based on resource reallocation is a virus-specific defence in Arabidopsis thaliana.

    PubMed

    Shukla, Aayushi; Pagán, Israel; García-Arenal, Fernando

    2018-06-01

    Plant viruses often harm their hosts, which have developed mechanisms to prevent or minimize the effects of virus infection. Resistance and tolerance are the two main plant defences to pathogens. Although resistance to plant viruses has been studied extensively, tolerance has received much less attention. Theory predicts that tolerance to low-virulent parasites would be achieved through resource reallocation from growth to reproduction, whereas tolerance to high-virulent parasites would be attained through shortening of the pre-reproductive period. We have shown previously that the tolerance of Arabidopsis thaliana to Cucumber mosaic virus (CMV), a relatively low-virulent virus in this host, accords to these predictions. However, whether other viruses trigger the same response, and how A. thaliana copes with highly virulent virus infections remains unexplored. To address these questions, we challenged six A. thaliana wild genotypes with five viruses with different genomic structures, life histories and transmission modes. In these plants, we quantified virus multiplication, virulence, and the effects of infection on plant growth and reproduction, and on the developmental schedule. Our results indicate that virus multiplication varies according to the virus × host genotype interaction. Conversely, effective tolerance is observed only on CMV infection, and is associated with resource reallocation from growth to reproduction. Tolerance to the other viruses is observed only in specific host-virus combinations and, at odds with theoretical predictions, is linked to longer pre-reproductive periods. These findings only partially agree with theoretical predictions, and contribute to a better understanding of pathogenic processes in plant-virus interactions. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  16. Subgenomic Reporter RNA System for Detection of Alphavirus Infection in Mosquitoes

    PubMed Central

    Steel, J. Jordan; Franz, Alexander W. E.; Sanchez-Vargas, Irma; Olson, Ken E.; Geiss, Brian J.

    2013-01-01

    Current methods for detecting real-time alphavirus (Family Togaviridae) infection in mosquitoes require the use of recombinant viruses engineered to express a visibly detectable reporter protein. These altered viruses expressing fluorescent proteins, usually from a duplicated viral subgenomic reporter, are effective at marking infection but tend to be attenuated due to the modification of the genome. Additionally, field strains of viruses cannot be visualized using this approach unless infectious clones can be developed to insert a reporter protein. To circumvent these issues, we have developed an insect cell-based system for detecting wild-type sindbis virus infection that uses a virus inducible promoter to express a fluorescent reporter gene only upon active virus infection. We have developed an insect expression system that produces sindbis virus minigenomes containing a subgenomic promoter sequence, which produces a translatable RNA species only when infectious virus is present and providing viral replication proteins. This subgenomic reporter RNA system is able to detect wild-type Sindbis infection in cultured mosquito cells. The detection system is relatively species specific and only detects closely related viruses, but can detect low levels of alphavirus specific replication early during infection. A chikungunya virus detection system was also developed that specifically detects chikungunya virus infection. Transgenic Aedes aegypti mosquito families were established that constitutively express the sindbis virus reporter RNA and were found to only express fluorescent proteins during virus infection. This virus inducible reporter system demonstrates a novel approach for detecting non-recombinant virus infection in mosquito cell culture and in live transgenic mosquitoes. PMID:24367703

  17. Isolation and genetic characterization of avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China.

    PubMed

    Yu, Hai; Zhang, Peng-Chao; Zhou, Yan-Jun; Li, Guo-Xin; Pan, Jie; Yan, Li-Ping; Shi, Xiao-Xiao; Liu, Hui-Li; Tong, Guang-Zhi

    2009-08-21

    As pigs are susceptible to both human and avian influenza viruses, they have been proposed to be intermediate hosts or mixing vessels for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we reported avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Homology and phylogenetic analyses showed that the H1N1 virus (A/swine/Zhejiang/1/07) was closely to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses, which was for the first time reported in China; and the two H1N2 viruses (A/swine/Shanghai/1/07 and A/swine/Guangxi/13/06) were novel ressortant H1N2 influenza viruses containing genes from the classical swine (HA, NP, M and NS), human (NA and PB1) and avian (PB2 and PA) lineages, which indicted that the reassortment among human, avian, and swine influenza viruses had taken place in pigs in China and resulted in the generation of new viruses. The isolation of avian-like H1N1 influenza virus originated from the European swine H1N1 viruses, especially the emergence of two novel ressortant H1N2 influenza viruses provides further evidence that pigs serve as intermediate hosts or "mixing vessels", and swine influenza virus surveillance in China should be given a high priority.

  18. Recombinant Newcastle Disease Virus Expressing H9 HA Protects Chickens against Heterologous Avian Influenza H9N2 Virus Challenge

    PubMed Central

    Nagy, Abdou; Lee, Jinhwa; Mena, Ignacio; Henningson, Jamie; Li, Yuhao; Ma, Jingjiao; Duff, Michael; Li, Yonghai; Lang, Yuekun; Yang, Jianmei; Abdallah, Fatma; Richt, Juergen; Ali, Ahmed; García-Sastre, Adolfo; Ma, Wenjun

    2017-01-01

    In order to produce an efficient poultry H9 avian influenza vaccine that provides cross-protection against multiple H9 lineages, two Newcastle Disease Virus (NDV) LaSota vaccine strain recombinant viruses were generated using reverse genetics. The recombinant NDV-H9Con virus expresses a consensus-H9 hemagglutinin (HA) that is designed based on available H9N2 sequences from Chinese and Middle Eastern isolates. The recombinant NDV-H9Chi virus expresses a chimeric-H9 HA in which the H9 ectodomain of A/Guinea Fowl/Hong Kong/WF10/99 was fused with the cytoplasmic and transmembrane domain of the fusion protein (F) of NDV. Both recombinant viruses expressed the inserted HA stably and grew to high titers. An efficacy study in chickens showed that both recombinant viruses were able to provide protection against challenge with a heterologous H9N2 virus. In contrast to the NDV-H9Chi virus, the NDV-H9Con virus induced a higher hemagglutination inhibition titer against both NDV and H9 viruses in immunized birds, and efficiently inhibited virus shedding through the respiratory route. Moreover, sera collected from birds immunized with either NDV-H9Con or NDV-H9Chi were able to cross-neutralize two different lineages of H9N2 viruses, indicating that NDV-H9Con and NDV-H9Chi are promising vaccine candidates that could provide cross-protection among different H9N2 lineage viruses. PMID:27102817

  19. Virologic Differences Do Not Fully Explain the Diversification of Swine Influenza Viruses in the United States

    PubMed Central

    Sun, Yilun; Yoon, Sun-Woo; Jeevan, Trushar; Dlugolenski, Daniel; Tripp, Ralph A.; Tang, Li

    2016-01-01

    ABSTRACT Influenza A(H1N1) viruses entered the U.S. swine population following the 1918 pandemic and remained genetically stable for roughly 80 years. In 1998, there was an outbreak of influenza-like illness among swine that was caused by A(H3N2) viruses containing the triple reassortant internal gene (TRIG) cassette. Following the TRIG cassette emergence, numerous reassortant viruses were isolated in nature, suggesting that the TRIG virus had an enhanced ability to reassort compared to the classical swine virus. The present study was designed to quantify the relative reassortment capacities of classical and TRIG swine viruses. Reverse genetic viruses were generated from the classical H1N1 virus A/swine/MN/37866/1999 (MN/99), the TRIG virus A/swine/NC/18161/2002 (NC/02), and a seasonal human H3N2 virus, A/TX/6/1996 (TX/96), to measure in vitro reassortment and growth potentials. After coinfection with NC/02 or MN/99 plus TX/96, H1/H3 double-positive cells were identified. Delayed TX/96 infection was fully excluded by both swine viruses. We then analyzed reassortant H3 viruses. Seventy-seven of 81 (95.1%) TX/96-NC/02 reassortants contained at least one polymerase gene segment from NC/02, whereas only 34 of 61 (55.7%) MN/99-TX/96 reassortants contained at least one polymerase gene segment from MN/99. Additionally, 38 of 81 (46.9%) NC/02-TX/96 reassortants contained all NC/02 polymerase gene segments, while none of the MN/99-TX/96 reassortants contained all MN/99 polymerase genes. There were 21 H3 reassortants between MN/99 and TX/96, compared to only 17 H3 reassortants between NC/02 and TX/96. Overall, the results indicate that there are no distinct differences in the ability of the TRIG to reassort with a human virus compared to the classical swine virus. IMPORTANCE There appear to be no differences in the abilities of classical swine and TRIG swine viruses to exclude a second virus, suggesting that under the right circumstances both viruses have similar opportunities to reassort. The increased percentage of TRIG polymerase gene segments in reassortant H3 viruses indicates that these viruses may be more compatible with gene segments from other viruses; however, this needs to be investigated further. Nevertheless, the classical swine virus also showed the ability to reassort, suggesting that factors other than reassortment capacity alone are responsible for the different epidemiologies of TRIG and classical swine viruses. The post-TRIG diversity was likely driven by increased intensive farming practices rather than virologic properties. Our results indicate that host ecology can be a significant factor in viral evolution. PMID:27581984

  20. Genesis and Spread of Newly Emerged Highly Pathogenic H7N9 Avian Viruses in Mainland China

    PubMed Central

    Yang, Lei; Zhu, Wenfei; Li, Xiyan; Chen, Minmei; Wu, Jie; Yu, Pengbo; Qi, Shunxiang; Huang, Yiwei; Shi, Weixian; Dong, Jie; Zhao, Xiang; Huang, Weijuan; Li, Zi; Zeng, Xiaoxu; Bo, Hong; Chen, Tao; Chen, Wenbing; Liu, Jia; Zhang, Ye; Liang, Zhenli; Shi, Wei

    2017-01-01

    ABSTRACT The novel low-pathogenic avian influenza A H7N9 viruses (LPAI H7N9 viruses) have been a threat to public health since their emergence in 2013 because of the high rates of mortality and morbidity that they cause. Recently, highly pathogenic variants of these avian influenza A H7N9 viruses (HPAI H7N9 viruses) have emerged and caused human infections and outbreaks among poultry in mainland China. However, it is still unclear how the HPAI H7N9 virus was generated and how it evolved and spread in China. Here, we show that the ancestor virus of the HPAI H7N9 viruses originated in the Yangtze River Delta region and spread southward to the Pearl River Delta region, possibly through live poultry trade. After introduction into the Pearl River Delta region, the origin LPAI H7N9 virus acquired four amino acid insertions in the hemagglutinin (HA) protein cleavage site and mutated into the HPAI H7N9 virus in late May 2016. Afterward, the HPAI H7N9 viruses further reassorted with LPAI H7N9 or H9N2 viruses locally and generated multiple different genotypes. As of 14 July 2017, the HPAI H7N9 viruses had spread from Guangdong Province to at least 12 other provinces. The rapid geographical expansion and genetic evolution of the HPAI H7N9 viruses pose a great challenge not only to public health but also to poultry production. Effective control measures, including enhanced surveillance, are therefore urgently needed. IMPORTANCE The LPAI H7N9 virus has caused five outbreak waves in humans and was recently reported to have mutated into highly pathogenic variants. It is unknown how the HPAI H7N9 virus originated, evolved, and disseminated in China. In this study, we comprehensively analyzed the sequences of HPAI H7N9 viruses from 28 human and 21 environmental samples covering eight provinces in China that were taken from November 2016 to June 2017. The results show that the ancestor virus of the HPAI H7N9 viruses originated in the Yangtze River Delta region. However, the insertion of four amino acids into the HA protein cleavage site of an LPAI H7N9 virus occurred in late May 2016 in the Pearl River Delta region. The mutated HPAI H7N9 virus further reassorted with LPAI H7N9 or H9N2 viruses that were cocirculating in poultry. Considering the rapid geographical expansion of the HPAI H7N9 viruses, effective control measures are urgently needed. PMID:28956760

  1. The Tobacco Mosaic Virus.

    ERIC Educational Resources Information Center

    Sulzinski, Michael A.

    1992-01-01

    Explains how the tobacco mosaic virus can be used to study virology. Presents facts about the virus, procedures to handle the virus in the laboratory, and four laboratory exercises involving the viruses' survival under inactivating conditions, dilution end point, filterability, and microscopy. (MDH)

  2. Real-Time Evolution of Zika Virus Disease Outbreak, Roatán, Honduras

    PubMed Central

    Roy-Burman, Arup; Tuholske, Cascade; Busch, Michael P.; Bakkour, Sonia; Stone, Mars; Linnen, Jeffrey M.; Gao, Kui; Coleman, Jayleen; Bloch, Evan M.

    2017-01-01

    A Zika virus disease outbreak occurred in Roatán, Honduras, during September 2015–July 2016. Blood samples and clinical information were obtained from 183 patients given a clinical diagnosis of suspected dengue virus infection. A total of 79 patients were positive for Zika virus, 13 for chikungunya virus, and 6 for dengue virus. PMID:28514227

  3. World Reference Center for Arboviruses.

    DTIC Science & Technology

    1985-01-01

    CharacterizatioSnP{ viruses in mosquito cell cultures.,.......12 PACE analy. iof recent Mono Lake like virus isolates ...... _17 --wRENAvIRIDA ..... o...33 Sequence relatedness of Palyam virus genes to cognates of the Palyam serogroup viruses by RNA-RNA blot hybridization.38 Stability and use of...Immunofluorescence test relationship of Orungo and JKT-8132 viruses .................................................... 15 7. Growth of NT-192 virus in Culex

  4. World Reference Center for Arboviruses.

    DTIC Science & Technology

    1997-07-01

    reagent bank, to identify emerging viruses by antigenic and genetic methods, and (d) ordering and cataloguing the virus collection into a computer...encephalitis viruses in mosquitoes collected in Rhode Island and Connecticut. Eastern equine encephalitis (EKE) virus was isolated from 93 of 1800...Results of ri state mosquito- virus isolation studies Viruses identified Date of first isolation Number of isolations Date of last isolation Other

  5. World Reference Center for Arboviruses

    DTIC Science & Technology

    1991-05-08

    Japanese encephalitis virus and acted as sentinels. By molecular hniques it was shown that the dengue-2 viruses in Venezuela and Brazil are very...12 A. Molecular epidemiology of dengue viruses ................... 12 B. Vaccinia virus recombinants expressing Japanese...of Kagoshima virus (strain KC-05Y84) to the Palyam group. Plaque reduction neutralization tests were done with eight viruses of the Palyam serogroup

  6. World Reference Center for Arboviruses and Retroviruses

    DTIC Science & Technology

    1988-05-01

    Reference Center for Arboviruses and Retroviruses identified viruses from Thailand, Nepal, Egypt, Colombia, and Panama. Cache Valley virus from a recruit...ARBOVIRUSES . . 13 A. Study of viruses from Thailand and Nepal . . . . 13 B. Isolation of Sicilian sandfly fever virus from Egyptian phlebotomines...dengue viruses ..... . 30 VII. LOW PASSAGE VIRUS COLLECTION .... ............. 32 VIII. ARBOVIRUS BULLETIN BOARD, REFERENCE, AND DATA ACCESS . 32 IX

  7. Refining the Mechanisms of Heniparvirus-Mediated Membrane Fusion Through Mutagenesis of Hendra virus Envelope Glycoproteins

    DTIC Science & Technology

    2007-09-06

    receptors are Measles virus (MeV), Rinderpest virus, and Canine Distemper virus (CDV) (reviewed in (91, 92)). There is currently no solved structure...parainfluenza virus-1 (hPIV-1) and hPIV-3, and the H glycoprotein of MeV and Canine Distemper Virus. An amino acid sequence alignment of the stalk region

  8. ACQUISITION OF ANTIBODIES TO VARIOUS COXSACKIE AND ECHO VIRUSES AND HEPATITIS A VIRUS IN AGRICULTURAL COMMUNAL SETTLEMENTS IN ISRAEL

    EPA Science Inventory

    A seroepidemiological study was conducted to measure the antibody prevalence for eight different enteric viruses. These include seven 'classical' enteroviruses, ie, Coxsackie virus types A9, B1, B3, B4 and three ECHO virus types 4,7, and 9, as well as hepatitis A virus (HAV), rec...

  9. 75 FR 22814 - Guidance for Industry: Nucleic Acid Testing (NAT) for Human Immunodeficiency Virus Type 1 (HIV-1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... Immunodeficiency Virus Type 1 (HIV-1) and Hepatitis C Virus (HCV): Testing, Product Disposition, and Donor Deferral... Industry: Nucleic Acid Testing (NAT) for Human Immunodeficiency Virus Type 1 (HIV-1) and Hepatitis C Virus... Acid Test (NAT) and Hepatitis C Virus (HCV) NAT, on testing individual samples or pooled samples from...

  10. Physicochemical studies of equine infectious anemia virus: V. Effect of ultraviolet irradiation on virus infectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, H.; Mizuno, Y.; Yasuda, K.

    1973-03-01

    The effect of ultraviolet radiation on the infectivity of equine infectious anemia (EIA) virus is described using influenza virus and Rous sarcoma (RSV) virus as controls. Virus preparations were placed in Petri dishes and uv- irradiated by a 15 watt germicidal lamp. At intervals up to 30 min samples were taken to determine the infectivity in surviving fractions. The infectivity of the influenza virus was reduced by four orders about 2 min after irradiation; the EIA virus infectivity was reduced to the same extent in 20 min, and the RSV infectivity was reduced to the same extent in 30 min.

  11. Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus

    PubMed Central

    Messaoudi, Ilhem; Amarasinghe, Gaya K.; Basler, Christopher F.

    2016-01-01

    Ebola viruses and Marburg viruses, members of the filovirus family, are zoonotic pathogens that cause severe disease in people. The Ebola virus epidemic in West Africa, which was first recognized in early 2014, highlights the threat posed by these deadly viruses. Filovirus disease is characterized by uncontrolled virus replication and the activation of damaging host pathways. Underlying these phenomena is the potent suppression of host innate antiviral responses, particularly the type I interferon (IFN) response, which allows high levels of replication. Here we review the mechanisms deployed by filoviruses to block host innate immunity and discuss aspects of virus replication that promote disease. PMID:26439085

  12. Viral hepatitis and primates: historical and molecular analysis of human and nonhuman primate hepatitis A, B, and the GB-related viruses.

    PubMed

    Robertson, B H

    2001-07-01

    The hepatitis viruses have long been assumed to be highly host-specific, with infection of other nonhuman primates occurring due to inoculation with, or exposure to, human viruses. This paradigm has slowly changed over the last 10 years, as mounting data has revealed nonhuman primate equivalents of hepatitis A virus, hepatitis B virus, and the hepatitis C-related viruses GBV-C and GBV-A. This review summarizes the historical and molecular information for each of these groups and highlights the impact of these nonhuman primate hepatitis viruses on our understanding of the evolution of each of these viruses.

  13. H5N1 influenza viruses: outbreaks and biological properties

    PubMed Central

    Neumann, Gabriele; Chen, Hualan; Gao, George F; Shu, Yuelong; Kawaoka, Yoshihiro

    2010-01-01

    All known subtypes of influenza A viruses are maintained in wild waterfowl, the natural reservoir of these viruses. Influenza A viruses are isolated from a variety of animal species with varying morbidity and mortality rates. More importantly, influenza A viruses cause respiratory disease in humans with potentially fatal outcome. Local or global outbreaks in humans are typically characterized by excess hospitalizations and deaths. In 1997, highly pathogenic avian influenza viruses of the H5N1 subtype emerged in Hong Kong that transmitted to humans, resulting in the first documented cases of human death by avian influenza virus infection. A new outbreak started in July 2003 in poultry in Vietnam, Indonesia, and Thailand, and highly pathogenic avian H5N1 influenza viruses have since spread throughout Asia and into Europe and Africa. These viruses continue to infect humans with a high mortality rate and cause worldwide concern of a looming pandemic. Moreover, H5N1 virus outbreaks have had devastating effects on the poultry industries throughout Asia. Since H5N1 virus outbreaks appear to originate from Southern China, we here examine H5N1 influenza viruses in China, with an emphasis on their biological properties. PMID:19884910

  14. Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlehofer, J.R.; Ehrbar, M.; zur Hausen, H.

    1986-07-15

    The SV40-transformed human kidney cell line, NB-E, amplifies integrated as well as episomal SV40 DNA upon treatment with chemical (DMBA) or physical (uv irradiation) carcinogens (initiators) as well as after infection with herpes simplex virus (HSV) type 1 or with vaccinia virus. In addition it is shown that vaccinia virus induces SV40 DNA amplification also in the SV40-transformed Chinese hamster embryo cell line, CO631. These findings demonstrate that human cells similar to Chinese hamster cells amplify integrated DNA sequences after treatment with carcinogens or infection with specific viruses. Furthermore, a poxvirus--vaccinia virus--similar to herpes group viruses induces DNA amplification. Asmore » reported for other systems, the vaccinia virus-induced DNA amplification in NB-E cells is inhibited by coinfection with adeno-associated virus (AAV) type 5. This is in line with previous studies on inhibition of carcinogen- or HSV-induced DNA amplification in CO631 cells. The experiments also demonstrate that vaccinia virus, in addition to herpes and adenoviruses acts as a helper virus for replication and structural antigen synthesis of AAV-5 in NB-E cells.« less

  15. Ganjam virus/Nairobi sheep disease virus induces a pro-inflammatory response in infected sheep

    PubMed Central

    2012-01-01

    Partly due to climate change, and partly due to changes of human habitat occupation, the impact of tick-borne viruses is increasing. Nairobi sheep disease virus (NSDV) and Ganjam virus (GV) are two names for the same virus, which causes disease in sheep and goats and is currently known to be circulating in India and East Africa. The virus is transmitted by ixodid ticks and causes a severe hemorrhagic disease. We have developed a real-time PCR assay for the virus genome and validated it in a pilot study of the pathogenicity induced by two different isolates of NSDV/GV. One isolate was highly adapted to tissue culture, grew in most cell lines tested, and was essentially apathogenic in sheep. The second isolate appeared to be poorly adapted to cell culture and retained pathogenicity in sheep. The real-time PCR assay for virus easily detected 4 copies or less of the viral genome, and allowed a quantitative measure of the virus in whole blood. Measurement of the changes in cytokine mRNAs showed similar changes to those observed in humans infected by the closely related virus Crimean Congo hemorrhagic fever virus. PMID:23083136

  16. Ganjam virus/Nairobi sheep disease virus induces a pro-inflammatory response in infected sheep.

    PubMed

    Bin Tarif, Abid; Lasecka, Lidia; Holzer, Barbara; Baron, Michael D

    2012-10-19

    Partly due to climate change, and partly due to changes of human habitat occupation, the impact of tick-borne viruses is increasing. Nairobi sheep disease virus (NSDV) and Ganjam virus (GV) are two names for the same virus, which causes disease in sheep and goats and is currently known to be circulating in India and East Africa. The virus is transmitted by ixodid ticks and causes a severe hemorrhagic disease. We have developed a real-time PCR assay for the virus genome and validated it in a pilot study of the pathogenicity induced by two different isolates of NSDV/GV. One isolate was highly adapted to tissue culture, grew in most cell lines tested, and was essentially apathogenic in sheep. The second isolate appeared to be poorly adapted to cell culture and retained pathogenicity in sheep. The real-time PCR assay for virus easily detected 4 copies or less of the viral genome, and allowed a quantitative measure of the virus in whole blood. Measurement of the changes in cytokine mRNAs showed similar changes to those observed in humans infected by the closely related virus Crimean Congo hemorrhagic fever virus.

  17. Changes in adaptation of H5N2 highly pathogenic avian influenza H5 clade 2.3.4.4 viruses in chickens and mallards

    PubMed Central

    DeJesus, Eric; Costa-Hurtado, Mar; Smith, Diane; Lee, Dong-Hun; Spackman, Erica; Kapczynski, Darrell R.; Torchetti, Mia Kim; Killian, Mary Lea; Suarez, David L.; Swayne, David E.; Pantin-Jackwood, Mary J.

    2016-01-01

    H5N2 highly pathogenic avian influenza (HPAI) viruses caused a severe poultry outbreak in the United States (U.S.) during 2015. In order to examine changes in adaptation of this viral lineage, the infectivity, pathogenesis and transmission of poultry H5N2 viruses were investigated in chickens and mallards in comparison to the wild duck 2014 U.S. index H5N2 virus. The four poultry isolates examined had a lower mean bird infectious dose than the index virus but still transmitted poorly to direct contacts. In mallards, two of the H5N2 poultry isolates had similar high infectivity and transmissibility as the index H5N2 virus, the H5N8 U.S. index virus, and a 2005 H5N1 clade 2.2 virus. Mortality occurred with the H5N1 virus and, interestingly, with one of two poultry H5N2 isolates. Increased virus adaptation to chickens was observed with the poultry H5N2 viruses; however these viruses retained high adaptation to mallards but pathogenicity was differently affected. PMID:27632565

  18. Single-dose live-attenuated vesicular stomatitis virus-based vaccine protects African green monkeys from Nipah virus disease.

    PubMed

    Prescott, Joseph; DeBuysscher, Blair L; Feldmann, Friederike; Gardner, Donald J; Haddock, Elaine; Martellaro, Cynthia; Scott, Dana; Feldmann, Heinz

    2015-06-04

    Nipah virus is a zoonotic paramyxovirus that causes severe respiratory and/or encephalitic disease in humans, often resulting in death. It is transmitted from pteropus fruit bats, which serve as the natural reservoir of the virus, and outbreaks occur on an almost annual basis in Bangladesh or India. Outbreaks are small and sporadic, and several cases of human-to-human transmission have been documented as an important feature of the epidemiology of Nipah virus disease. There are no approved countermeasures to combat infection and medical intervention is supportive. We recently generated a recombinant replication-competent vesicular stomatitis virus-based vaccine that encodes a Nipah virus glycoprotein as an antigen and is highly efficacious in the hamster model of Nipah virus disease. Herein, we show that this vaccine protects African green monkeys, a well-characterized model of Nipah virus disease, from disease one month after a single intramuscular administration of the vaccine. Vaccination resulted in a rapid and strong virus-specific immune response which inhibited virus shedding and replication. This vaccine platform provides a rapid means to afford protection from Nipah virus in an outbreak situation. Published by Elsevier Ltd.

  19. Simultaneous detection of wheat dwarf virus, northern cereal mosaic virus, barley yellow striate mosaic virus and rice black-streaked dwarf virus in wheat by multiplex RT-PCR.

    PubMed

    Zhang, Peipei; Liu, Yan; Liu, Wenwen; Massart, Sebastien; Wang, Xifeng

    2017-11-01

    Wheat dwarf virus (WDV), barley yellow striate mosaic virus (BYSMV), rice black-streaked dwarf virus (RBSDV) and northern cereal mosaic virus (NCMV) are four viruses infecting wheat and causing similar symptoms. In this paper, a multiplex reverse transcription polymerase chain reaction (m-RT-PCR) method has been developed for the simultaneous detection and discrimination of these viruses. The protocol uses specific primer set for each virus and produces four distinct fragments (273, 565, 783 and 1296bp), detecting the presence of RBSDV, BYSMV, WDV and NCMV, respectively. Annealing temperature, concentrations of dNTP, Taq polymerase and Mg 2+ were optimized for the m-RT-PCR. The detection limit of the assay was up to 10 -2 dilution. The amplification specificity of these primers was tested against a range of field samples from different regions of China, where RBSDV, BYSMV, WDV have been detected. This study fulfills the need for a rapid and specific wheat virus detection that also has the potential for investigating the epidemiology of these new viral diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Analysis of complete genomes of the rubella virus genotypes 1E and 2B which circulated in China, 2000–2013

    PubMed Central

    Zhu, Zhen; Chen, Min-hsin; Abernathy, Emily; Icenogle, Joseph; Zhou, Shujie; Wang, Changyin; Zhao, Chunfang; Wang, Yan; Chen, Haiyun; Si, Yuan; Xu, Wenbo

    2016-01-01

    Rubella viruses of genotypes 1E and 2B are currently the most frequently detected wild-type viruses in the world. Genotype 1E viruses from China have been genetically distinct from genotype 1E viruses found elsewhere, while genotype 2B viruses found in China are not distinguishable from genotype 2B viruses from other areas. Genetic clusters of viruses of both genotypes were defined previously using sequences of the 739-nt genotyping window. Here we report phylogenic analysis using whole genomic sequences from seven genotype 1E and three genotype 2B viruses which were isolated in China between 2000 and 2013 and confirm the subgrouping of current circulating genotypes 1E and 2B viruses. In addition, the whole genomic characterization of Chinese rubella viruses was clarified. The results indicated that the Chinese rubella viruses were highly conserved at the genomic level, and no predicted amino acid variations were found at positions where functional domains of the proteins were identified. Therefore, it gives us the idea that the rubella control and elimination goal should be achieved if vaccine immunization coverage continues maintaining at the high level. PMID:27959338

  1. Systematic CpT (ApG) Depletion and CpG Excess Are Unique Genomic Signatures of Large DNA Viruses Infecting Invertebrates

    PubMed Central

    Upadhyay, Mohita; Sharma, Neha; Vivekanandan, Perumal

    2014-01-01

    Differences in the relative abundance of dinucleotides, if any may provide important clues on host-driven evolution of viruses. We studied dinucleotide frequencies of large DNA viruses infecting vertebrates (n = 105; viruses infecting mammals = 99; viruses infecting aves = 6; viruses infecting reptiles = 1) and invertebrates (n = 88; viruses infecting insects = 84; viruses infecting crustaceans = 4). We have identified systematic depletion of CpT(ApG) dinucleotides and over-representation of CpG dinucleotides as the unique genomic signature of large DNA viruses infecting invertebrates. Detailed investigation of this unique genomic signature suggests the existence of invertebrate host-induced pressures specifically targeting CpT(ApG) and CpG dinucleotides. The depletion of CpT dinucleotides among large DNA viruses infecting invertebrates is at least in part, explained by non-canonical DNA methylation by the infected host. Our findings highlight the role of invertebrate host-related factors in shaping virus evolution and they also provide the necessary framework for future studies on evolution, epigenetics and molecular biology of viruses infecting this group of hosts. PMID:25369195

  2. Efficient replication and strong induction of innate immune responses by H9N2 avian influenza virus in human dendritic cells.

    PubMed

    Westenius, Veera; Mäkelä, Sanna M; Ziegler, Thedi; Julkunen, Ilkka; Österlund, Pamela

    2014-12-01

    Avian influenza A (H9N2) viruses have occasionally been identified in humans with upper respiratory tract infections. The novel H7N9/2013 virus identified in China shows that a low pathogenic avian influenza (LPAI) virus can be highly pathogenic in humans. Therefore, it is important to understand virus-host cell interactions and immune responses triggered by LPAI viruses in humans. We found that LPAI A/Hong Kong/1073/99 (H9N2) virus replicated efficiently in human dendritic cells (DCs). The H9N2 virus induced strong IFN gene expression although with different kinetics than seasonal influenza A/Beijing/353/89 (H3N2) virus. IFN inducible antiviral proteins were produced in H9N2 virus-infected cells at the same level as in H3N2 infection. The H9N2 virus was extremely sensitive to the antiviral actions of type I IFNs. These results indicate that the avian influenza H9N2 virus is inducing a strong antiviral IFN response in human DCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Single-dose Live-attenuated Vesicular Stomatitis Virus-based Vaccine Protects African Green Monkeys from Nipah Virus Disease

    PubMed Central

    Prescott, Joseph; DeBuysscher, Blair L.; Feldmann, Friederike; Gardner, Donald J.; Haddock, Elaine; Martellaro, Cynthia; Scott, Dana; Feldmann, Heinz

    2015-01-01

    Nipah virus is a zoonotic paramyxovirus that causes severe respiratory and/or encephalitic disease in humans, often resulting in death. It is transmitted from pteropus fruit bats, which serve as the natural reservoir of the virus, and outbreaks occur on an almost annual basis in Bangladesh or India. Outbreaks are small and sporadic, and several cases of human-to-human transmission have been documented as an important feature of the epidemiology of Nipah virus disease. There are no approved countermeasures to combat infection and medical intervention is supportive. We recently generated a recombinant replication-competent vesicular stomatitis virus-based vaccine that encodes a Nipah virus glycoprotein as an antigen and is highly efficacious in the hamster model of Nipah virus disease. Herein, we show that this vaccine protects African green monkeys, a well-characterized model of Nipah virus disease, from disease one month after a single intramuscular administration of the vaccine. Vaccination resulted in a rapid and strong virus-specific immune response which inhibited virus shedding and replication. This vaccine platform provides a rapid means to afford protection from Nipah virus in an outbreak situation. PMID:25865472

  4. RNA-Seq reveals virus–virus and virus–plant interactions in nature

    PubMed Central

    Kamitani, Mari; Nagano, Atsushi J.; Honjo, Mie N.; Kudoh, Hiroshi

    2016-01-01

    Abstract As research on plant viruses has focused mainly on crop diseases, little is known about these viruses in natural environments. To understand the ecology of viruses in natural systems, comprehensive information on virus–virus and virus–host interactions is required. We applied RNA-Seq to plants from a natural population of Arabidopsis halleri subsp. gemmifera to simultaneously determine the presence/absence of all sequence-reported viruses, identify novel viruses and quantify the host transcriptome. By introducing the criteria of read number and genome coverage, we detected infections by Turnip mosaic virus (TuMV), Cucumber mosaic virus and Brassica yellows virus. Active TuMV replication was observed by ultramicroscopy. De novo assembly further identified a novel partitivirus, Arabidopsis halleri partitivirus 1. Interestingly, virus reads reached a maximum level that was equivalent to that of the host's total mRNA, although asymptomatic infection was common. AhgAGO2, a key gene in host defence systems, was upregulated in TuMV-infected plants. Multiple infection was frequent in TuMV-infected leaves, suggesting that TuMV facilitates multiple infection, probably by suppressing host RNA silencing. Revealing hidden plant–virus interactions in nature can enhance our understanding of biological interactions and may have agricultural applications. PMID:27549115

  5. Novel reassortant of swine influenza H1N2 virus in Germany.

    PubMed

    Zell, Roland; Motzke, Susann; Krumbholz, Andi; Wutzler, Peter; Herwig, Volker; Dürrwald, Ralf

    2008-01-01

    European porcine H1N2 influenza viruses arose after multiple reassortment steps involving a porcine influenza virus with avian-influenza-like internal segments and human H1N1 and H3N2 viruses in 1994. In Germany, H1N2 swine influenza viruses first appeared in 2000. Two German H1N2 swine influenza virus strains isolated from pigs with clinical symptoms of influenza are described. They were characterized by the neutralization test, haemagglutination inhibition (HI) test and complete sequencing of the viral genomes. The data demonstrate that these viruses represent a novel H1N2 reassortant. The viruses showed limited neutralization by sera raised against heterologous A/sw/Bakum/1,832/00-like H1N2 viruses. Sera pools from recovered pigs showed a considerably lower HI reaction, indicative of diagnostic difficulties in using the HI test to detect these viruses with A/sw/Bakum/1,832/00-like H1N2 antigens. Genome sequencing revealed the novel combination of the human-like HAH1 gene of European porcine H1N2 influenza viruses and the NAN2 gene of European porcine H3N2 viruses.

  6. Virus-Vectored Influenza Virus Vaccines

    PubMed Central

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  7. The CD8 T Cell Response to Respiratory Virus Infections.

    PubMed

    Schmidt, Megan E; Varga, Steven M

    2018-01-01

    Humans are highly susceptible to infection with respiratory viruses including respiratory syncytial virus (RSV), influenza virus, human metapneumovirus, rhinovirus, coronavirus, and parainfluenza virus. While some viruses simply cause symptoms of the common cold, many respiratory viruses induce severe bronchiolitis, pneumonia, and even death following infection. Despite the immense clinical burden, the majority of the most common pulmonary viruses lack long-lasting efficacious vaccines. Nearly all current vaccination strategies are designed to elicit broadly neutralizing antibodies, which prevent severe disease following a subsequent infection. However, the mucosal antibody response to many respiratory viruses is not long-lasting and declines with age. CD8 T cells are critical for mediating clearance following many acute viral infections in the lung. In addition, memory CD8 T cells are capable of providing protection against secondary infections. Therefore, the combined induction of virus-specific CD8 T cells and antibodies may provide optimal protective immunity. Herein, we review the current literature on CD8 T cell responses induced by respiratory virus infections. Additionally, we explore how this knowledge could be utilized in the development of future vaccines against respiratory viruses, with a special emphasis on RSV vaccination.

  8. Source and transport of human enteric viruses in deep municipal water supply wells

    USGS Publications Warehouse

    Bradbury, Kenneth R.; Borchardt, Mark A.; Gotkowitz, Madeline; Spencer, Susan K.; Zhu, Jun; Hunt, Randall J.

    2013-01-01

    Until recently, few water utilities or researchers were aware of possible virus presence in deep aquifers and wells. During 2008 and 2009 we collected a time series of virus samples from six deep municipal water-supply wells. The wells range in depth from approximately 220 to 300 m and draw water from a sandstone aquifer. Three of these wells draw water from beneath a regional aquitard, and three draw water from both above and below the aquitard. We also sampled a local lake and untreated sewage as potential virus sources. Viruses were detected up to 61% of the time in each well sampled, and many groundwater samples were positive for virus infectivity. Lake samples contained viruses over 75% of the time. Virus concentrations and serotypes observed varied markedly with time in all samples. Sewage samples were all extremely high in virus concentration. Virus serotypes detected in sewage and groundwater were temporally correlated, suggesting very rapid virus transport, on the order of weeks, from the source(s) to wells. Adenovirus and enterovirus levels in the wells were associated with precipitation events. The most likely source of the viruses in the wells was leakage of untreated sewage from sanitary sewer pipes.

  9. Viruses and human cancer: from detection to causality.

    PubMed

    Sarid, Ronit; Gao, Shou-Jiang

    2011-06-28

    The study of cancer is incomplete without taking into consideration of tumorigenic viruses. Initially, searches for human cancer viruses were fruitless despite an expansion of our knowledge in the same period concerning acute-transforming retroviruses in animals. However, over the last 40 years, we have witnessed rapid progress in the tumor virology field. Currently, acknowledged human cancer viruses include Epstein-Barr virus, hepatitis B virus, hepatitis C virus, high-risk human papilloma viruses, human T-cell lymphotropic virus type 1 and Kaposi's sarcoma-associated herpesvirus. Extensive epidemiological and mechanistic studies have led to the development of novel preventive and therapeutic approaches for managing some of these infections and associated cancers. In addition, recent advances in molecular technologies have enabled the discovery of a new potential human tumor virus, Merkel cell polyomavirus, but its association with cancer remains to be validated. It is anticipated that in the next few decades many additional human cancer viruses will be discovered and the mechanisms underlying viral oncogenesis delineated. Thus, it can be expected that better tools for preventing and treating virus-associated cancer will be available in the near future. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Immunogenicity of Newcastle disease virus vectors expressing Norwalk virus capsid protein in the presence or absence of VP2 protein.

    PubMed

    Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y; Samal, Siba K

    2015-10-01

    Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirus-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. VERSE: a novel approach to detect virus integration in host genomes through reference genome customization.

    PubMed

    Wang, Qingguo; Jia, Peilin; Zhao, Zhongming

    2015-01-01

    Fueled by widespread applications of high-throughput next generation sequencing (NGS) technologies and urgent need to counter threats of pathogenic viruses, large-scale studies were conducted recently to investigate virus integration in host genomes (for example, human tumor genomes) that may cause carcinogenesis or other diseases. A limiting factor in these studies, however, is rapid virus evolution and resulting polymorphisms, which prevent reads from aligning readily to commonly used virus reference genomes, and, accordingly, make virus integration sites difficult to detect. Another confounding factor is host genomic instability as a result of virus insertions. To tackle these challenges and improve our capability to identify cryptic virus-host fusions, we present a new approach that detects Virus intEgration sites through iterative Reference SEquence customization (VERSE). To the best of our knowledge, VERSE is the first approach to improve detection through customizing reference genomes. Using 19 human tumors and cancer cell lines as test data, we demonstrated that VERSE substantially enhanced the sensitivity of virus integration site detection. VERSE is implemented in the open source package VirusFinder 2 that is available at http://bioinfo.mc.vanderbilt.edu/VirusFinder/.

  12. Variation at Extra-epitopic Amino Acid Residues Influences Suppression of Influenza Virus Replication by M158-66 Epitope-Specific CD8+ T Lymphocytes.

    PubMed

    van de Sandt, Carolien E; Pronk, Mark R; van Baalen, Carel A; Fouchier, Ron A M; Rimmelzwaan, Guus F

    2018-06-01

    Influenza virus-specific CD8 + T lymphocytes (CTLs) contribute to clearance of influenza virus infections and reduce disease severity. Variation at amino acid residues located in or outside CTL epitopes has been shown to affect viral recognition by virus-specific CTLs. In the present study, we investigated the effect of naturally occurring variation at residues outside the conserved immunodominant and HLA*0201-restricted M1 58-66 epitope, located in the influenza virus M1 protein, on the extent of virus replication in the presence of CTLs specific for the epitope. To this end, we used isogenic viruses with an M1 gene segment derived from either an avian or a human influenza virus, HLA-transgenic human epithelial cells, human T cell clones specific for the M1 58-66 epitope or a control epitope, and a novel, purposely developed in vitro system to coculture influenza virus-infected cells with T cells. We found that the M gene segment of a human influenza A/H3N2 virus afforded the virus the capacity to replicate better in the presence of M1 58-66 -specific CTLs than the M gene segment of avian viruses. These findings are in concordance with previously observed differential CTL activation, caused by variation at extra-epitopic residues, and may reflect an immune adaptation strategy of human influenza viruses that allows them to cope with potent CTL immunity to the M1 58-66 epitope in HLA-A*0201-positive individuals, resulting in increased virus replication and shedding and possibly increasing disease severity. IMPORTANCE Influenza viruses are among the leading causes of acute respiratory tract infections. CD8 + T lymphocytes display a high degree of cross-reactivity with influenza A viruses of various subtypes and are considered an important correlate of protection. Unraveling viral immune evasion strategies and identifying signs of immune adaptation are important for defining the role of CD8 + T lymphocytes in affording protection more accurately. Improving our insight into the interaction between influenza viruses and virus-specific CD8 + T lymphocyte immunity may help to advance our understanding of influenza virus epidemiology, aid in risk assessment of potentially pandemic influenza virus strains, and benefit the design of vaccines that induce more broadly protective immunity. Copyright © 2018 American Society for Microbiology.

  13. [Susceptibility of human influenza A (H3N2) viruses to neuraminidase inhibitors isolated during 2011-2012 in China].

    PubMed

    Huang, Weijuan; Tan, Minju; Zhao, Xiang; Cheng, Yanhui; Li, Xiyan; Guo, Junfeng; Wei, Hejiang; Xiao, Ning; Wang, Zhao; Wang, Dayan; Shu, Yuelong

    2015-06-01

    To analyze the susceptibility of influenza A (H3N2) viruses to neuraminidase inhibitors during 2011-2012 in Mainland China. All the tested viruses were obtained from the Chinese National Influenza Surveillance Network, which covers 31 provinces in mainland China, including 408 network laboratories and 554 sentinel hospitals. In total 1 903 viruses were selected with isolation date from January 1, 2011 to December 31, 2012 in Mainland China, among these viruses, 721 were confirmed to be influenza A (H3N2) virus by Chinese National Influenza Center and tested for the susceptibility to oseltamivir and zanamivir using chemiluminescence-based assay. The neuraminidase inhibitor sensitive reference virus A/Washington/01/2007 (119E) and oseltamivir resistant virus A/Texas/12/2007 (E119V) were used as control in this study. The t -test was used to compare the difference of NAI susceptibility of viruses isolated from different years. The half maximal inhibitory concentration (IC₅₀) of A/Washington/01/2007 for oseltamivir and zanamivir was (0.10 ± 0.02) and (0.30 ± 0.05) nmol/L, respectively. The IC₅₀ of A/Texas/12/2007 for oseltamivir and zanamivir was (4.27 ± 1.60) and (0.20 ± 0.03) nmol/L, respectively. Among the 721 influenza A (H3N2) viruses, 132 influenza A (H3N2) viruses were isolated in 2011 and 589 influenza A (H3N2) viruses were isolated in 2012. The IC50 for oseltamivir ranged from 0.04 to 0.62 nmol/L for viruses isolated in 2011 and ranged from 0.02 to 0.95 nmol/L for viruses in 2012, and the IC₅₀ of all the viruses tested was within 10-fold IC₅₀ (1.0 nmol/L) of the neuraminidase inhibitor sensitive reference virus A/Washington/01/2007. The IC50 of zanamivir ranged from 0.12 to 0.80 nmol/L for viruses in 2011 and ranged from 0.04 to 0.72 nmol/L for viruses in 2012, and was within 10-fold IC₅₀ (3.0 nmol/L) of the neuraminidase inhibitor sensitive reference virus A/Washington/01/2007. The influenza A(H3N2) viruses isolated during 2011-2012 in Mainland China were tested to be sensitive to oseltamivir and zanamivir.

  14. Infection of mice with a human influenza A/H3N2 virus induces protective immunity against lethal infection with influenza A/H5N1 virus.

    PubMed

    Kreijtz, J H C M; Bodewes, R; van den Brand, J M A; de Mutsert, G; Baas, C; van Amerongen, G; Fouchier, R A M; Osterhaus, A D M E; Rimmelzwaan, G F

    2009-08-06

    The transmission of highly pathogenic avian influenza (HPAI) A viruses of the H5N1 subtype from poultry to man and the high case fatality rate fuels the fear for a pandemic outbreak caused by these viruses. However, prior infections with seasonal influenza A/H1N1 and A/H3N2 viruses induce heterosubtypic immunity that could afford a certain degree of protection against infection with the HPAI A/H5N1 viruses, which are distantly related to the human influenza A viruses. To assess the protective efficacy of such heterosubtypic immunity mice were infected with human influenza virus A/Hong Kong/2/68 (H3N2) 4 weeks prior to a lethal infection with HPAI virus A/Indonesia/5/05 (H5N1). Prior infection with influenza virus A/Hong Kong/2/68 reduced clinical signs, body weight loss, mortality and virus replication in the lungs as compared to naive mice infected with HPAI virus A/Indonesia/5/05. Priming by infection with respiratory syncytial virus, a non-related virus did not have a beneficial effect on the outcome of A/H5N1 infections, indicating that adaptive immune responses were responsible for the protective effect. In mice primed by infection with influenza A/H3N2 virus cytotoxic T lymphocytes (CTL) specific for NP(366-374) epitope ASNENMDAM and PA(224-232) SCLENFRAYV were observed. A small proportion of these CTL was cross-reactive with the peptide variant derived from the influenza A/H5N1 virus (ASNENMEVM and SSLENFRAYV respectively) and upon challenge infection with the influenza A/H5N1 virus cross-reactive CTL were selectively expanded. These CTL, in addition to those directed to conserved epitopes, shared by the influenza A/H3N2 and A/H5N1 viruses, most likely contributed to accelerated clearance of the influenza A/H5N1 virus infection. Although also other arms of the adaptive immune response may contribute to heterosubtypic immunity, the induction of virus-specific CTL may be an attractive target for development of broad protective vaccines. Furthermore the existence of pre-existing heterosubtypic immunity may dampen the impact a future influenza pandemic may have.

  15. Theories about evolutionary origins of human hepatitis B virus in primates and humans.

    PubMed

    Souza, Breno Frederico de Carvalho Dominguez; Drexler, Jan Felix; Lima, Renato Santos de; Rosário, Mila de Oliveira Hughes Veiga do; Netto, Eduardo Martins

    2014-01-01

    The human hepatitis B virus causes acute and chronic hepatitis and is considered one of the most serious human health issues by the World Health Organization, causing thousands of deaths per year. There are similar viruses belonging to the Hepadnaviridae family that infect non-human primates and other mammals as well as some birds. The majority of non-human primate virus isolates were phylogenetically close to the human hepatitis B virus, but like the human genotypes, the origins of these viruses remain controversial. However, there is a possibility that human hepatitis B virus originated in primates. Knowing whether these viruses might be common to humans and primates is crucial in order to reduce the risk to humans. To review the existing knowledge about the evolutionary origins of viruses of the Hepadnaviridae family in primates. This review was done by reading several articles that provide information about the Hepadnaviridae virus family in non-human primates and humans and the possible origins and evolution of these viruses. The evolutionary origin of viruses of the Hepadnaviridae family in primates has been dated back to several thousand years; however, recent analyses of genomic fossils of avihepadnaviruses integrated into the genomes of several avian species have suggested a much older origin of this genus. Some hypotheses about the evolutionary origins of human hepatitis B virus have been debated since the '90s. One theory suggested a New World origin because of the phylogenetic co-segregation between some New World human hepatitis B virus genotypes F and H and woolly monkey human hepatitis B virus in basal sister-relationship to the Old World non-human primates and human hepatitis B virus variants. Another theory suggests an Old World origin of human hepatitis B virus, and that it would have been spread following prehistoric human migrations over 100,000 years ago. A third theory suggests a co-speciation of human hepatitis B virus in non-human primate hosts because of the proximity between the phylogeny of Old and New World non-human primate and their human hepatitis B virus variants. The importance of further research, related to the subject in South American wild fauna, is paramount and highly relevant for understanding the origin of human hepatitis B virus. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  16. RNA Viruses in Hymenopteran Pollinators: Evidence of Inter-Taxa Virus Transmission via Pollen and Potential Impact on Non-Apis Hymenopteran Species

    PubMed Central

    Rajotte, Edwin G.; Holmes, Edward C.; Ostiguy, Nancy; vanEngelsdorp, Dennis; Lipkin, W. Ian; dePamphilis, Claude W.; Toth, Amy L.; Cox-Foster, Diana L.

    2010-01-01

    Although overall pollinator populations have declined over the last couple of decades, the honey bee (Apis mellifera) malady, colony collapse disorder (CCD), has caused major concern in the agricultural community. Among honey bee pathogens, RNA viruses are emerging as a serious threat and are suspected as major contributors to CCD. Recent detection of these viral species in bumble bees suggests a possible wider environmental spread of these viruses with potential broader impact. It is therefore vital to study the ecology and epidemiology of these viruses in the hymenopteran pollinator community as a whole. We studied the viral distribution in honey bees, in their pollen loads, and in other non-Apis hymenopteran pollinators collected from flowering plants in Pennsylvania, New York, and Illinois in the United States. Viruses in the samples were detected using reverse transcriptase-PCR and confirmed by sequencing. For the first time, we report the molecular detection of picorna-like RNA viruses (deformed wing virus, sacbrood virus and black queen cell virus) in pollen pellets collected directly from forager bees. Pollen pellets from several uninfected forager bees were detected with virus, indicating that pollen itself may harbor viruses. The viruses in the pollen and honey stored in the hive were demonstrated to be infective, with the queen becoming infected and laying infected eggs after these virus-contaminated foods were given to virus-free colonies. These viruses were detected in eleven other non-Apis hymenopteran species, ranging from many solitary bees to bumble bees and wasps. This finding further expands the viral host range and implies a possible deeper impact on the health of our ecosystem. Phylogenetic analyses support that these viruses are disseminating freely among the pollinators via the flower pollen itself. Notably, in cases where honey bee apiaries affected by CCD harbored honey bees with Israeli Acute Paralysis virus (IAPV), nearby non-Apis hymenopteran pollinators also had IAPV, while those near apiaries without IAPV did not. In containment greenhouse experiments, IAPV moved from infected honey bees to bumble bees and from infected bumble bees to honey bees within a week, demonstrating that the viruses could be transmitted from one species to another. This study adds to our present understanding of virus epidemiology and may help explain bee disease patterns and pollinator population decline in general. PMID:21203504

  17. Effect of serial pig passages on the adaptation of an avian H9N2 influenza virus to swine.

    PubMed

    Mancera Gracia, Jose Carlos; Van den Hoecke, Silvie; Saelens, Xavier; Van Reeth, Kristien

    2017-01-01

    H9N2 avian influenza viruses are endemic in poultry in Asia and the Middle East. These viruses sporadically cause dead-end infections in pigs and humans raising concerns about their potential to adapt to mammals or reassort with human or swine influenza viruses. We performed ten serial passages with an avian H9N2 virus (A/quail/Hong Kong/G1/1997) in influenza naïve pigs to assess the potential of this virus to adapt to swine. Virus replication in the entire respiratory tract and nasal virus excretion were examined after each passage and we deep sequenced viral genomic RNA of the parental and passage four H9N2 virus isolated from the nasal mucosa and lung. The parental H9N2 virus caused a productive infection in pigs with a predominant tropism for the nasal mucosa, whereas only 50% lung samples were virus-positive. In contrast, inoculation of pigs with passage four virus resulted in viral replication in the entire respiratory tract. Subsequent passages were associated with reduced virus replication in the lungs and infectious virus was no longer detectable in the upper and lower respiratory tract of inoculated pigs at passage ten. The broader tissue tropism after four passages was associated with an amino acid residue substitution at position 225, within the receptor-binding site of the hemagglutinin. We also compared the parental H9N2, passage four H9N2 and the 2009 pandemic H1N1 (pH1N1) virus in a direct contact transmission experiment. Whereas only one out of six contact pigs showed nasal virus excretion of the wild-type H9N2 for more than four days, all six contact animals shed the passage four H9N2 virus. Nevertheless, the amount of excreted virus was significantly lower when compared to that of the pH1N1, which readily transmitted and replicated in all six contact animals. Our data demonstrate that serial passaging of H9N2 virus in pigs enhances its replication and transmissibility. However, full adaptation of an avian H9N2 virus to pigs likely requires an extensive set of mutations.

  18. Effect of serial pig passages on the adaptation of an avian H9N2 influenza virus to swine

    PubMed Central

    Van den Hoecke, Silvie; Saelens, Xavier; Van Reeth, Kristien

    2017-01-01

    H9N2 avian influenza viruses are endemic in poultry in Asia and the Middle East. These viruses sporadically cause dead-end infections in pigs and humans raising concerns about their potential to adapt to mammals or reassort with human or swine influenza viruses. We performed ten serial passages with an avian H9N2 virus (A/quail/Hong Kong/G1/1997) in influenza naïve pigs to assess the potential of this virus to adapt to swine. Virus replication in the entire respiratory tract and nasal virus excretion were examined after each passage and we deep sequenced viral genomic RNA of the parental and passage four H9N2 virus isolated from the nasal mucosa and lung. The parental H9N2 virus caused a productive infection in pigs with a predominant tropism for the nasal mucosa, whereas only 50% lung samples were virus-positive. In contrast, inoculation of pigs with passage four virus resulted in viral replication in the entire respiratory tract. Subsequent passages were associated with reduced virus replication in the lungs and infectious virus was no longer detectable in the upper and lower respiratory tract of inoculated pigs at passage ten. The broader tissue tropism after four passages was associated with an amino acid residue substitution at position 225, within the receptor-binding site of the hemagglutinin. We also compared the parental H9N2, passage four H9N2 and the 2009 pandemic H1N1 (pH1N1) virus in a direct contact transmission experiment. Whereas only one out of six contact pigs showed nasal virus excretion of the wild-type H9N2 for more than four days, all six contact animals shed the passage four H9N2 virus. Nevertheless, the amount of excreted virus was significantly lower when compared to that of the pH1N1, which readily transmitted and replicated in all six contact animals. Our data demonstrate that serial passaging of H9N2 virus in pigs enhances its replication and transmissibility. However, full adaptation of an avian H9N2 virus to pigs likely requires an extensive set of mutations. PMID:28384328

  19. Infection and Transmission of Rift Valley Fever Viruses Lacking the NSs and/or NSm Genes in Mosquitoes: Potential Role for NSm in Mosquito Infection

    PubMed Central

    Crabtree, Mary B.; Kent Crockett, Rebekah J.; Bird, Brian H.; Nichol, Stuart T.; Erickson, Bobbie Rae; Biggerstaff, Brad J.; Horiuchi, Kalanthe; Miller, Barry R.

    2012-01-01

    Background Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. Methodology and Principal Findings Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. Conclusions/Significance In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes. PMID:22563517

  20. A Small Molecule Inhibits Virion Attachment to Heparan Sulfate- or Sialic Acid-Containing Glycans

    PubMed Central

    Colpitts, Che C.

    2014-01-01

    ABSTRACT Primary attachment to cellular glycans is a critical entry step for most human viruses. Some viruses, such as herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV), bind to heparan sulfate, whereas others, such as influenza A virus (IAV), bind to sialic acid. Receptor mimetics that interfere with these interactions are active against viruses that bind to either heparan sulfate or to sialic acid. However, no molecule that inhibits the attachment of viruses in both groups has yet been identified. Epigallocatechin gallate (EGCG), a green tea catechin, is active against many unrelated viruses, including several that bind to heparan sulfate or to sialic acid. We sought to identify the basis for the broad-spectrum activity of EGCG. Here, we show that EGCG inhibits the infectivity of a diverse group of enveloped and nonenveloped human viruses. EGCG acts directly on the virions, without affecting the fluidity or integrity of the virion envelopes. Instead, EGCG interacts with virion surface proteins to inhibit the attachment of HSV-1, HCV, IAV, vaccinia virus, adenovirus, reovirus, and vesicular stomatitis virus (VSV) virions. We further show that EGCG competes with heparan sulfate for binding of HSV-1 and HCV virions and with sialic acid for binding of IAV virions. Therefore, EGCG inhibits unrelated viruses by a common mechanism. Most importantly, we have identified EGCG as the first broad-spectrum attachment inhibitor. Our results open the possibility for the development of small molecule broad-spectrum antivirals targeting virion attachment. IMPORTANCE This study shows that it is possible to develop a small molecule antiviral or microbicide active against the two largest groups of human viruses: those that bind to glycosaminoglycans and those that bind to sialoglycans. This group includes the vast majority of human viruses, including herpes simplex viruses, cytomegalovirus, influenza virus, poxvirus, hepatitis C virus, HIV, and many others. PMID:24789779

  1. Infection and transmission of Rift Valley fever viruses lacking the NSs and/or NSm genes in mosquitoes: potential role for NSm in mosquito infection.

    PubMed

    Crabtree, Mary B; Kent Crockett, Rebekah J; Bird, Brian H; Nichol, Stuart T; Erickson, Bobbie Rae; Biggerstaff, Brad J; Horiuchi, Kalanthe; Miller, Barry R

    2012-01-01

    Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.

  2. Neuraminidase inhibitor susceptibility profile of human influenza viruses during the 2016-2017 influenza season in Mainland China.

    PubMed

    Huang, Weijuan; Cheng, Yanhui; Li, Xiyan; Tan, Minju; Wei, Hejiang; Zhao, Xiang; Xiao, Ning; Dong, Jie; Wang, Dayan

    2018-06-01

    To understand the current situation of antiviral-resistance of influenza viruses to neuraminidase inhibitors (NAIs) in Mainland China, The antiviral-resistant surveillance data of the circulating influenza viruses in Mainland China during the 2016-2017 influenza season were analyzed. The total 3215 influenza viruses were studied to determine 50% inhibitory concentration (IC 50 ) for oseltamivir and zanamivir using a fluorescence-based assay. Approximately 0.3% (n = 10) of viruses showed either highly reduced inhibition (HRI) or reduced inhibition (RI) against at least one NAI. The most common neuraminidase (NA) amino acid substitution was H275Y in A (H1N1)pdm09 virus, which confers HRI by oseltamivir. Two A (H1N1)pdm09 viruses contained a new NA amino acid substitution respectively, S110F and D151E, which confers RI by oseltamivir or/and zanamivir. Two B/Victoria-lineage viruses harbored a new NA amino acid substitution respectively, H134Q and S246P, which confers RI by zanamivir. One B/Victoria-lineage virus contained dual amino acid substitution NA P124T and V422I, which confers HRI by zanamivir. One B/Yamagata-lineage virus was a reassortant virus that haemagglutinin (HA) from B/Yamagata-lineage virus and NA from B/Victoria-lineage virus, defined as B/Yamagata-lineage virus confers RI by oseltamivir, but as B/Victoria-lineage virus confers normal inhibition by oseltamivir. All new substitutions that have not been reported before, the correlation of these substitutions and observed changes in IC 50 should be further assessed. During the 2016-2017 influenza season in Mainland China the majority tested viruses were susceptible to oseltamivir and zanamivir. Hence, NAIs remain the recommended antiviral for treatment and prophylaxis of influenza virus infections. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  3. Evaluation of the suitability of a plant virus, pepper mild mottle virus, as a surrogate of human enteric viruses for assessment of the efficacy of coagulation-rapid sand filtration to remove those viruses.

    PubMed

    Shirasaki, N; Matsushita, T; Matsui, Y; Yamashita, R

    2018-02-01

    Here, we evaluated the removal of three representative human enteric viruses - adenovirus (AdV) type 40, coxsackievirus (CV) B5, and hepatitis A virus (HAV) IB - and one surrogate of human caliciviruses - murine norovirus (MNV) type 1 - by coagulation-rapid sand filtration, using water samples from eight water sources for drinking water treatment plants in Japan. The removal ratios of a plant virus (pepper mild mottle virus; PMMoV) and two bacteriophages (MS2 and φX174) were compared with the removal ratios of human enteric viruses to assess the suitability of PMMoV, MS2, and φX174 as surrogates for human enteric viruses. The removal ratios of AdV, CV, HAV, and MNV, evaluated via the real-time polymerase chain reaction (PCR) method, were 0.8-2.5-log 10 when commercially available polyaluminum chloride (PACl, basicity 1.5) and virgin silica sand were used as the coagulant and filter medium, respectively. The type of coagulant affected the virus removal efficiency, but the age of silica sand used in the rapid sand filtration did not. Coagulation-rapid sand filtration with non-sulfated, high-basicity PACls (basicity 2.1 or 2.5) removed viruses more efficiently than the other aluminum-based coagulants. The removal ratios of MS2 were sometimes higher than those of the three human enteric viruses and MNV, whereas the removal ratios of φX174 tended to be smaller than those of the three human enteric viruses and MNV. In contrast, the removal ratios of PMMoV were similar to and strongly correlated with those of the three human enteric viruses and MNV. Thus, PMMoV appears to be a suitable surrogate for human enteric viruses for the assessment of the efficacy of coagulation-rapid sand filtration to remove viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Modified vaccinia virus Ankara expressing the hemagglutinin of pandemic (H1N1) 2009 virus induces cross-protective immunity against Eurasian 'avian-like' H1N1 swine viruses in mice.

    PubMed

    Castrucci, Maria R; Facchini, Marzia; Di Mario, Giuseppina; Garulli, Bruno; Sciaraffia, Ester; Meola, Monica; Fabiani, Concetta; De Marco, Maria A; Cordioli, Paolo; Siccardi, Antonio; Kawaoka, Yoshihiro; Donatelli, Isabella

    2014-05-01

    To examine cross-reactivity between hemagglutinin (HA) derived from A/California/7/09 (CA/09) virus and that derived from representative Eurasian "avian-like" (EA) H1N1 swine viruses isolated in Italy between 1999 and 2008 during virological surveillance in pigs. Modified vaccinia virus Ankara (MVA) expressing the HA gene of CA/09 virus (MVA-HA-CA/09) was used as a vaccine to investigate cross-protective immunity against H1N1 swine viruses in mice. Two classical swine H1N1 (CS) viruses and four representative EA-like H1N1 swine viruses previously isolated during outbreaks of respiratory disease in pigs on farms in Northern Italy were used in this study. Female C57BL/6 mice were vaccinated with MVA/HA/CA/09 and then challenged intranasally with H1N1 swine viruses. Cross-reactive antibody responses were determined by hemagglutination- inhibition (HI) and virus microneutralizing (MN) assays of sera from MVA-vaccinated mice. The extent of protective immunity against infection with H1N1 swine viruses was determined by measuring lung viral load on days 2 and 4 post-challenge. Systemic immunization of mice with CA/09-derived HA, vectored by MVA, elicited cross-protective immunity against recent EA-like swine viruses. This immune protection was related to the levels of cross-reactive HI antibodies in the sera of the immunized mice and was dependent on the similarity of the antigenic site Sa of H1 HAs. Our findings suggest that the herd immunity elicited in humans by the pandemic (H1N1) 2009 virus could limit the transmission of recent EA-like swine HA genes into the influenza A virus gene pool in humans. © 2013 The Authors Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  5. Effects of egg-adaptation on receptor-binding and antigenic properties of recent influenza A (H3N2) vaccine viruses.

    PubMed

    Parker, Lauren; Wharton, Stephen A; Martin, Stephen R; Cross, Karen; Lin, Yipu; Liu, Yan; Feizi, Ten; Daniels, Rodney S; McCauley, John W

    2016-06-01

    Influenza A virus (subtype H3N2) causes seasonal human influenza and is included as a component of influenza vaccines. The majority of vaccine viruses are isolated and propagated in eggs, which commonly results in amino acid substitutions in the haemagglutinin (HA) glycoprotein. These substitutions can affect virus receptor-binding and alter virus antigenicity, thereby, obfuscating the choice of egg-propagated viruses for development into candidate vaccine viruses. To evaluate the effects of egg-adaptive substitutions seen in H3N2 vaccine viruses on sialic acid receptor-binding, we carried out quantitative measurement of virus receptor-binding using surface biolayer interferometry with haemagglutination inhibition (HI) assays to correlate changes in receptor avidity with antigenic properties. Included in these studies was a panel of H3N2 viruses generated by reverse genetics containing substitutions seen in recent egg-propagated vaccine viruses and corresponding cell culture-propagated wild-type viruses. These assays provide a quantitative approach to investigating the importance of individual amino acid substitutions in influenza receptor-binding. Results show that viruses with egg-adaptive HA substitutions R156Q, S219Y, and I226N, have increased binding avidity to α2,3-linked receptor-analogues and decreased binding avidity to α2,6-linked receptor-analogues. No measurable binding was detected for the viruses with amino acid substitution combination 156Q+219Y and receptor-binding increased in viruses where egg-adaptation mutations were introduced into cell culture-propagated virus. Substitutions at positions 156 and 190 appeared to be primarily responsible for low reactivity in HI assays with post-infection ferret antisera raised against 2012-2013 season H3N2 viruses. Egg-adaptive substitutions at position 186 caused substantial differences in binding avidity with an insignificant effect on antigenicity.

  6. Plant and Insect Viruses in Managed and Natural Environments: Novel and Neglected Transmission Pathways.

    PubMed

    Jones, Roger A C

    2018-01-01

    The capacity to spread by diverse transmission pathways enhances a virus' ability to spread effectively and survive when circumstances change. This review aims to improve understanding of how plant and insect viruses spread through natural and managed environments by drawing attention to 12 novel or neglected virus transmission pathways whose contribution is underestimated. For plant viruses, the pathways reviewed are vertical and horizontal transmission via pollen, and horizontal transmission by parasitic plants, natural root grafts, wind-mediated contact, chewing insects, and contaminated water or soil. For insect viruses, they are transmission by plants serving as passive "vectors," arthropod vectors, and contamination of pollen and nectar. Based on current understanding of the spatiotemporal dynamics of virus spread, the likely roles of each pathway in creating new primary infection foci, enlarging previously existing infection foci, and promoting generalized virus spread are estimated. All pathways except transmission via parasitic plants, root grafts, and wind-mediated contact transmission are likely to produce new primary infection foci. All 12 pathways have the capability to enlarge existing infection foci, but only to a limited extent when spread occurs via virus-contaminated soil or vertical pollen transmission. All pathways except those via parasitic plant, root graft, contaminated soil, and vertical pollen transmission likely contribute to generalized virus spread, but to different extents. For worst-case scenarios, where mixed populations of host species occur under optimal virus spread conditions, the risk that host species jumps or virus emergence events will arise is estimated to be "high" for all four insect virus pathways considered, and, "very high" or "moderate" for plant viruses transmitted by parasitic plant and root graft pathways, respectively. To establish full understanding of virus spread and thereby optimize effective virus disease management, it is important to examine all transmission pathways potentially involved, regardless of whether the virus' ecology is already presumed to be well understood or otherwise. © 2018 Elsevier Inc. All rights reserved.

  7. Identification of Novel 5,6-Dimethoxyindan-1-one Derivatives as Antiviral Agents.

    PubMed

    Patil, Siddappa A; Patil, Vikrant; Patil, Renukadevi; Beaman, Kenneth; Patil, Shivaputra A

    2017-01-01

    Discovery of novel antiviral agents is essential because viral infection continues to threaten human life globally. Various heterocyclic small molecules have been developed as antiviral agents. The 5,6-dimethoxyindan-1-on nucleus is of considerable interest as this ring is the key constituent in a range of bioactive compounds, both naturally occurring and synthetic, and often of considerable complexity. The main purpose of this research was to discover and develop small molecule heterocycles as broad-spectrum of antiviral agents. A focused small set of 5,6-dimethoxyindan-1-one analogs (6-8) along with a thiopene derivative (9) was screened for selected viruses (Vaccinia virus - VACA, Human papillomavirus - HPV, Zika virus - ZIKV, Dengue virus - DENV, Measles virus - MV, Poliovirus 3 - PV, Rift Valley fever virus - RVFV, Tacaribe virus - TCRV, Venezuelan equine encephalitis virus - VEEV, Herpes simplex virus 1 -HSV-1 and Human cytomegalovirus - HCMV) using the National Institute of Allergy and Infectious Diseases (NIAID)'s Division of Microbiology and Infectious Diseases (DMID) antiviral screening program. These molecules demonstrated moderate to excellent antiviral activity towards variety of viruses. The 5,6-dimethoxyindan-1-one analog (7) demonstrated high efficacy towards vaccinia virus (EC50: <0.05 µM) and was nearly 232 times more potent than the standard drug Cidofovir (EC50: 11.59 µM) in primary assay whereas it demonstrated moderate activity (EC50: >30.00 µM) in secondary plaque reduction assay. The thiophene analog (9) has shown very good viral inhibition towards several viruses such as Human papillomavirus, Measles virus, Rift Valley fever virus, Tacaribe virus and Herpes simplex virus 1. Our research identified a novel 5,6-dimethoxyindan-1-one analog (compound 7), as a potent antiviral agent for vaccinia virus, and heterocyclic chalcone analog (compound 9) as a broad spectrum antiviral agent. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Performance characteristics of qualified cell lines for isolation and propagation of influenza viruses for vaccine manufacturing

    PubMed Central

    Donis, Ruben O.; Chen, i-Mei; Davis, C Todd; Foust, Angie; Hossain, M. Jaber; Johnson, Adam; Klimov, Alexander; Loughlin, Rosette; Xu, Xiyan; Tsai, Theodore; Blayer, Simone; Trusheim, Heidi; Colegate, Tony; Fox, John; Taylor, Beverly; Hussain, Althaf; Barr, Ian; Baas, Chantal; Louwerens, Jaap; Geuns, Ed; Lee, Min-Shi; Venhuizen, odewijk; Neumeier, Elisabeth; Ziegler, Thedi

    2018-01-01

    Cell culture is now available as a method for the production of influenza vaccines in addition to eggs. In accordance with currently accepted practice, viruses recommended as candidates for vaccine manufacture are isolated and propagated exclusively in hens' eggs prior to distribution to manufacturers. Candidate vaccine viruses isolated in cell culture are not available to support vaccine manufacturing in mammalian cell bioreactors so egg-derived viruses have to be used. Recently influenza A (H3N2) viruses have been difficult to isolate directly in eggs. As mitigation against this difficulty, and the possibility of no suitable egg-isolated candidate viruses being available, it is proposed to consider using mammalian cell lines for primary isolation of influenza viruses as candidates for vaccine production in egg and cell platforms. To investigate this possibility, we tested the antigenic stability of viruses isolated and propagated in cell lines qualified for influenza vaccine manufacture and subsequently investigated antigen yields of such viruses in these cell lines at pilot-scale. Twenty influenza A and B-positive, original clinical specimens were inoculated in three MDCK cell lines. The antigenicity of recovered viruses was tested by hemagglutination inhibition using ferret sera against contemporary vaccine viruses and the amino acid sequences of the hemagglutinin and neuraminidase were determined. MDCK cell lines proved to be highly sensitive for virus isolation. Compared to the virus sequenced from the original specimen, viruses passaged three times in the MDCK lines showed up to 2 amino acid changes in the hemagglutinin. Antigenic stability was also established by hemagglutination inhibition titers comparable to those of the corresponding reference virus. Viruses isolated in any of the three MDCK lines grew reasonably well but variably in three MDCK cells and in VERO cells at pilot-scale. These results indicate that influenza viruses isolated in vaccine certified cell lines may well qualify for use in vaccine production. PMID:24975811

  9. Identifying Early Target Cells of Nipah Virus Infection in Syrian Hamsters

    PubMed Central

    Baseler, Laura; Scott, Dana P.; Saturday, Greg; Horne, Eva; Rosenke, Rebecca; Thomas, Tina; Meade-White, Kimberly; Haddock, Elaine; Feldmann, Heinz

    2016-01-01

    Background Nipah virus causes respiratory and neurologic disease with case fatality rates up to 100% in individual outbreaks. End stage lesions have been described in the respiratory and nervous systems, vasculature and often lymphoid organs in fatal human cases; however, the initial target organs of Nipah virus infection have not been identified. Here, we detected the initial target tissues and cells of Nipah virus and tracked virus dissemination during the early phase of infection in Syrian hamsters inoculated with a Nipah virus isolate from Malaysia (NiV-M) or Bangladesh (NiV-B). Methodology/Principal Findings Syrian hamsters were euthanized between 4 and 48 hours post intranasal inoculation and tissues were collected and analyzed for the presence of viral RNA, viral antigen and infectious virus. Virus replication was first detected at 8 hours post inoculation (hpi). Nipah virus initially targeted type I pneumocytes, bronchiolar respiratory epithelium and alveolar macrophages in the lung and respiratory and olfactory epithelium lining the nasal turbinates. By 16 hpi, virus disseminated to epithelial cells lining the larynx and trachea. Although the pattern of viral dissemination was similar for both virus isolates, the rate of spread was slower for NiV-B. Infectious virus was not detected in the nervous system or blood and widespread vascular infection and lesions within lymphoid organs were not observed, even at 48 hpi. Conclusions/Significance Nipah virus initially targets the respiratory system. Virus replication in the brain and infection of blood vessels in non-respiratory tissues does not occur during the early phase of infection. However, virus replicates early in olfactory epithelium and may serve as the first step towards nervous system dissemination, suggesting that development of vaccines that block virus dissemination or treatments that can access the brain and spinal cord and directly inhibit virus replication may be necessary for preventing central nervous system pathology. PMID:27812087

  10. Performance characteristics of qualified cell lines for isolation and propagation of influenza viruses for vaccine manufacturing.

    PubMed

    Donis, Ruben O; Davis, C Todd; Foust, Angie; Hossain, M Jaber; Johnson, Adam; Klimov, Alexander; Loughlin, Rosette; Xu, Xiyan; Tsai, Theodore; Blayer, Simone; Trusheim, Heidi; Colegate, Tony; Fox, John; Taylor, Beverly; Hussain, Althaf; Barr, Ian; Baas, Chantal; Louwerens, Jaap; Geuns, Ed; Lee, Min-Shi; Venhuizen, Odewijk; Neumeier, Elisabeth; Ziegler, Thedi

    2014-11-12

    Cell culture is now available as a method for the production of influenza vaccines in addition to eggs. In accordance with currently accepted practice, viruses recommended as candidates for vaccine manufacture are isolated and propagated exclusively in hens' eggs prior to distribution to manufacturers. Candidate vaccine viruses isolated in cell culture are not available to support vaccine manufacturing in mammalian cell bioreactors so egg-derived viruses have to be used. Recently influenza A (H3N2) viruses have been difficult to isolate directly in eggs. As mitigation against this difficulty, and the possibility of no suitable egg-isolated candidate viruses being available, it is proposed to consider using mammalian cell lines for primary isolation of influenza viruses as candidates for vaccine production in egg and cell platforms. To investigate this possibility, we tested the antigenic stability of viruses isolated and propagated in cell lines qualified for influenza vaccine manufacture and subsequently investigated antigen yields of such viruses in these cell lines at pilot-scale. Twenty influenza A and B-positive, original clinical specimens were inoculated in three MDCK cell lines. The antigenicity of recovered viruses was tested by hemagglutination inhibition using ferret sera against contemporary vaccine viruses and the amino acid sequences of the hemagglutinin and neuraminidase were determined. MDCK cell lines proved to be highly sensitive for virus isolation. Compared to the virus sequenced from the original specimen, viruses passaged three times in the MDCK lines showed up to 2 amino acid changes in the hemagglutinin. Antigenic stability was also established by hemagglutination inhibition titers comparable to those of the corresponding reference virus. Viruses isolated in any of the three MDCK lines grew reasonably well but variably in three MDCK cells and in VERO cells at pilot-scale. These results indicate that influenza viruses isolated in vaccine certified cell lines may well qualify for use in vaccine production. Published by Elsevier Ltd.

  11. Effects of Introduced and Indigenous Viruses on Native Plants: Exploring Their Disease Causing Potential at the Agro-Ecological Interface

    PubMed Central

    Vincent, Stuart J.; Coutts, Brenda A.; Jones, Roger A. C.

    2014-01-01

    The ever increasing movement of viruses around the world poses a major threat to plants growing in cultivated and natural ecosystems. Both generalist and specialist viruses move via trade in plants and plant products. Their potential to damage cultivated plants is well understood, but little attention has been given to the threat such viruses pose to plant biodiversity. To address this, we studied their impact, and that of indigenous viruses, on native plants from a global biodiversity hot spot in an isolated region where agriculture is very recent (<185 years), making it possible to distinguish between introduced and indigenous viruses readily. To establish their potential to cause severe or mild systemic symptoms in different native plant species, we used introduced generalist and specialist viruses, and indigenous viruses, to inoculate plants of 15 native species belonging to eight families. We also measured resulting losses in biomass and reproductive ability for some host–virus combinations. In addition, we sampled native plants growing over a wide area to increase knowledge of natural infection with introduced viruses. The results suggest that generalist introduced viruses and indigenous viruses from other hosts pose a greater potential threat than introduced specialist viruses to populations of native plants encountered for the first time. Some introduced generalist viruses infected plants in more families than others and so pose a greater potential threat to biodiversity. The indigenous viruses tested were often surprisingly virulent when they infected native plant species they were not adapted to. These results are relevant to managing virus disease in new encounter scenarios at the agro-ecological interface between managed and natural vegetation, and within other disturbed natural vegetation situations. They are also relevant for establishing conservation policies for endangered plant species and avoiding spread of damaging viruses to undisturbed natural vegetation beyond the agro-ecological interface. PMID:24621926

  12. Viral carcinogenesis: revelation of molecular mechanisms and etiology of human disease

    NASA Technical Reports Server (NTRS)

    Butel, J. S.

    2000-01-01

    The RNA and DNA tumor viruses have made fundamental contributions to two major areas of cancer research. Viruses were vital, first, to the discovery and analysis of cellular growth control pathways and the synthesis of current concepts of cancer biology and, second, to the recognition of the etiology of some human cancers. Transforming retroviruses carry oncogenes derived from cellular genes that are involved in mitogenic signalling and growth control. DNA tumor viruses encode oncogenes of viral origin that are essential for viral replication and cell transformation; viral oncoproteins complex with cellular proteins to stimulate cell cycle progression and led to the discovery of tumor suppressors. Viral systems support the concept that cancer development occurs by the accumulation of multiple cooperating events. Viruses are now accepted as bona fide etiologic factors of human cancer; these include hepatitis B virus, Epstein-Barr virus, human papillomaviruses, human T-cell leukemia virus type I and hepatitis C virus, plus several candidate human cancer viruses. It is estimated that 15% of all human tumors worldwide are caused by viruses. The infectious nature of viruses distinguishes them from all other cancer-causing factors; tumor viruses establish long-term persistent infections in humans, with cancer an accidental side effect of viral replication strategies. Viruses are usually not complete carcinogens, and the known human cancer viruses display different roles in transformation. Many years may pass between initial infection and tumor appearance and most infected individuals do not develop cancer, although immunocompromised individuals are at elevated risk of viral-associated cancers. Variable factors that influence viral carcinogenesis are reviewed, including possible synergy between viruses and environmental cofactors. The difficulties in establishing an etiologic role for a virus in human cancer are discussed, as well as the different approaches that proved viral links to cancer. Future directions for tumor virus studies are considered.

  13. Multiple versus single virus respiratory infections: viral load and clinical disease severity in hospitalized children

    PubMed Central

    Martin, Emily T.; Kuypers, Jane; Wald, Anna; Englund, Janet A.

    2011-01-01

    Please cite this paper as: Martin et al. (2012) Multiple versus single virus respiratory infections: viral load and clinical disease severity in hospitalized children. Influenza and Other Respiratory Viruses 6(1), 71–77. Background  Molecular testing for viral pathogens has resulted in increasing detection of multiple viruses in respiratory secretions of ill children. The clinical impact of multiple virus infections on clinical presentation and outcome is unclear. Objectives  To compare clinical characteristics and viral load between children with multiple virus versus single virus illnesses. Patients/methods  Eight hundred and ninety‐three residual nasal wash samples from children treated for respiratory illness at Children’s Hospital, Seattle, from September 2003 to September 2004 were evaluated by quantitative PCR for respiratory syncytial virus (RSV), human metapneumovirus (hMPV), influenza (Flu), parainfluenza, adenoviruses, and coronaviruses (CoV). Illness severity and patient characteristics were abstracted from medical charts. Results  Coinfections were identified in 103 (18%) of 566 virus‐positive samples. Adenovirus was most commonly detected in coinfections (52%), followed by CoV (50%). Illnesses with a single virus had increased risk of oxygen requirement (P = 0·02), extended hospital stays (P = 0·002), and admissions to the inpatient (P = 0·02) or intensive care units (P = 0·04). For Adv and PIV‐1, multiple virus illnesses had a significantly lower viral load (log10 copies/ml) than single virus illnesses (4·2 versus 5·6, P = 0·007 and 4·2 versus 6·9, P < 0·001, respectively). RSV, Flu‐A, PIV‐3, and hMPV viral loads were consistently high whether or not another virus was detected. Conclusions  Illnesses with multiple virus detections were correlated with less severe disease. The relationship between viral load and multiple virus infections was virus specific, and this may serve as a way to differentiate viruses in multiple virus infections. PMID:21668660

  14. Upolu virus and Aransas Bay virus, Two Presumptive Bunyaviruses, Are Novel Members of the Family Orthomyxoviridae

    PubMed Central

    Chowdhary, Rashmi; Travassos da Rosa, Amelia; Hutchison, Stephen K.; Popov, Vsevolod; Street, Craig; Tesh, Robert B.; Lipkin, W. Ian

    2014-01-01

    ABSTRACT Emerging and zoonotic pathogens pose continuing threats to human health and ongoing challenges to diagnostics. As nucleic acid tests are playing increasingly prominent roles in diagnostics, the genetic characterization of molecularly uncharacterized agents is expected to significantly enhance detection and surveillance capabilities. We report the identification of two previously unrecognized members of the family Orthomyxoviridae, which includes the influenza viruses and the tick-transmitted Thogoto and Dhori viruses. We provide morphological, serologic, and genetic evidence that Upolu virus (UPOV) from Australia and Aransas Bay virus (ABV) from North America, both previously considered potential bunyaviruses based on electron microscopy and physicochemical features, are orthomyxoviruses instead. Their genomes show up to 68% nucleotide sequence identity to Thogoto virus (segment 2; ∼74% at the amino acid level) and a more distant relationship to Dhori virus, the two prototype viruses of the recognized species of the genus Thogotovirus. Despite sequence similarity, the coding potentials of UPOV and ABV differed from that of Thogoto virus, instead being like that of Dhori virus. Our findings suggest that the tick-transmitted viruses UPOV and ABV represent geographically distinct viruses in the genus Thogotovirus of the family Orthomyxoviridae that do not fit in the two currently recognized species of this genus. IMPORTANCE Upolu virus (UPOV) and Aransas Bay virus (ABV) are shown to be orthomyxoviruses instead of bunyaviruses, as previously thought. Genetic characterization and adequate classification of agents are paramount in this molecular age to devise appropriate surveillance and diagnostics. Although more closely related to Thogoto virus by sequence, UPOV and ABV differ in their coding potentials by lacking a proposed pathogenicity factor. In this respect, they are similar to Dhori virus, which, despite the lack of a pathogenicity factor, can cause disease. These findings enable further studies into the evolution and pathogenicity of orthomyxoviruses. PMID:24574415

  15. Small-RNA Deep Sequencing Reveals Arctium tomentosum as a Natural Host of Alstroemeria virus X and a New Putative Emaravirus

    PubMed Central

    Bi, Yaqi; Tugume, Arthur K.; Valkonen, Jari P. T.

    2012-01-01

    Background Arctium species (Asteraceae) are distributed worldwide and are used as food and rich sources of secondary metabolites for the pharmaceutical industry, e.g., against avian influenza virus. RNA silencing is an antiviral defense mechanism that detects and destroys virus-derived double-stranded RNA, resulting in accumulation of virus-derived small RNAs (21–24 nucleotides) that can be used for generic detection of viruses by small-RNA deep sequencing (SRDS). Methodology/Principal Findings SRDS was used to detect viruses in the biennial wild plant species Arctium tomentosum (woolly burdock; family Asteraceae) displaying virus-like symptoms of vein yellowing and leaf mosaic in southern Finland. Assembly of the small-RNA reads resulted in contigs homologous to Alstroemeria virus X (AlsVX), a positive/single-stranded RNA virus of genus Potexvirus (family Alphaflexiviridae), or related to negative/single-stranded RNA viruses of the genus Emaravirus. The coat protein gene of AlsVX was 81% and 89% identical to the two AlsVX isolates from Japan and Norway, respectively. The deduced, partial nucleocapsid protein amino acid sequence of the emara-like virus was only 78% or less identical to reported emaraviruses and showed no variability among the virus isolates characterized. This virus—tentatively named as Woolly burdock yellow vein virus—was exclusively associated with yellow vein and leaf mosaic symptoms in woolly burdock, whereas AlsVX was detected in only one of the 52 plants tested. Conclusions/Significance These results provide novel information about natural virus infections in Acrtium species and reveal woolly burdock as the first natural host of AlsVX besides Alstroemeria (family Alstroemeriaceae). Results also revealed a new virus related to the recently emerged Emaravirus genus and demonstrated applicability of SRDS to detect negative-strand RNA viruses. SRDS potentiates virus surveys of wild plants, a research area underrepresented in plant virology, and helps reveal natural reservoirs of viruses that cause yield losses in cultivated plants. PMID:22912734

  16. [Ribonucleic acids and proteins of influenza A/USSR/90/77 viruses].

    PubMed

    Vorkunova, G K; Dotsenko, G N; Bukrinskaia, A G; Zhdanov, V M

    1979-01-01

    The "return" of influenza A (HINI) virus after 20 years of absence raised the question of the sources and mechanisms of emergence of epidemic influenza viruses and, particularly, of a new HINI virus (A/USSR/90/77). Two alternative hypotheses answer this question differently: the new HINI virus is the progeny of old HINI viruses retained in the human population or is a newly arising recombinant between numerous human and animal influenza viruses circulation in the biosphere. For the acceptance of one or the other hypothesis further accumulation of facts is required and, first of all, comparative investigations of RNAs and proteins of various influenza viruses. This paper presents the results of comparative studies of RNAs and proteins of old and new influenza A (HINI) viruses.

  17. Venezuelan encephalitis virus infection in neotropical bats. III. Experimental studies on virus excretion and non-arthropod transmission.

    PubMed

    Seymour, C; Dickerman, R W

    1978-03-01

    A total of 80 Neotropical bats of five species was inoculated with one of four strains of Venezuelan encephalitis (VE) virus. Virus was detected in the oropharynges of 56% of bats, and most regularly in Artibeus jamaicensis (75%). Titers of virus in oropharyngeal secretions were occasionally very high (8.5 log10 SMicLD50/ml in one A. jamaicensis). Only 2 of 123 urine samples from 50 bats and 2 of 86 fecal samples from 46 bats yielded VE virus. No contact or aerosol virus transmission from bat to bat was detected. VE virus passed transplacentally from two infected mothers to their fetuses, which were aborted. Virus did not pass from one infected mother to her nursing young.

  18. [Progress in research of occult hepatitis B virus infection].

    PubMed

    Huang, X Y; Shi, Q F; Huang, T

    2017-05-10

    Occult hepatitis B virus infection is a worldwide public health problem, which seriously affects the clinical diagnosis of hepatitis B and threatens the safety of blood transfusion. The concept of occult hepatitis B virus infection, the pathogenesis of occult hepatitis B virus infection, the prevalence of occult hepatitis B virus infection in different groups, including healthy population and different patients, and the possibility of transmission were summarized. The prevalence of occult hepatitis B virus infection was found in healthy population and different patients, and there is possibility of occult hepatitis B virus infection to be transmitted through blood transfusion. The paper provides a comprehensive introduction of the pathogenesis and prevalence of occult hepatitis B virus infection. More attention should be paid to occult hepatitis B virus infection.

  19. Efficient production of infectious viruses requires enzymatic activity of Epstein-Barr virus protein kinase.

    PubMed

    Murata, Takayuki; Isomura, Hiroki; Yamashita, Yoriko; Toyama, Shigenori; Sato, Yoshitaka; Nakayama, Sanae; Kudoh, Ayumi; Iwahori, Satoko; Kanda, Teru; Tsurumi, Tatsuya

    2009-06-20

    The Epstein-Barr virus (EBV) BGLF4 gene product is the only protein kinase encoded by the virus genome. In order to elucidate its physiological roles in viral productive replication, we here established a BGLF4-knockout mutant and a revertant virus. While the levels of viral DNA replication of the deficient mutant were equivalent to those of the wild-type and the revertant, virus production was significantly impaired. Expression of the BGLF4 protein in trans fully complemented the low yield of the mutant virus, while expression of a kinase-dead (K102I) form of the protein failed to restore the virus titer. These results demonstrate that BGLF4 plays a significant role in production of infectious viruses and that the kinase activity is crucial.

  20. Virus Assembly and Maturation

    NASA Astrophysics Data System (ADS)

    Johnson, John E.

    2004-03-01

    We use two techniques to look at three-dimensional virus structure: electron cryomicroscopy (cryoEM) and X-ray crystallography. Figure 1 is a gallery of virus particles whose structures Timothy Baker, one of my former colleagues at Purdue University, used cryoEM to determine. It illustrates the variety of sizes of icosahedral virus particles. The largest virus particle on this slide is the Herpes simplex virus, around 1200Å in diameter; the smallest we examined was around 250Å in diameter. Viruses bear their genomic information either as positive-sense DNA and RNA, double-strand DNA, double-strand RNA, or negative-strand RNA. Viruses utilize the various structure and function "tactics" seen throughout cell biology to replicate at high levels. Many of the biological principles that we consider general were in fact discovered in the context of viruses ...

  1. Predicting “Airborne” Influenza Viruses: (Trans-) mission Impossible?

    PubMed Central

    Sorrell, E.M.; Schrauwen, E.J.A.; Linster, M.; De Graaf, M.; Herfst, S.; Fouchier, R.A.M.

    2011-01-01

    Repeated transmission of animal influenza viruses to humans has prompted investigation of the viral, host, and environmental factors responsible for transmission via aerosols or respiratory droplets. How do we determine – out of thousands of influenza virus isolates collected in animal surveillance studies each year – which viruses have the potential to become “airborne”, and hence pose a pandemic threat? Here, using knowledge from pandemic, zoonotic and epidemic viruses, we postulate that the minimal requirements for efficient transmission of an animal influenza virus between humans are: efficient virus attachment to (upper) respiratory tissues, replication to high titers in these tissues, and release and aerosolization of single virus particles. Investigating “airborne” transmission of influenza viruses is key to understand – and predict – influenza pandemics. PMID:22440921

  2. Presence of infectious RD-114 virus in a proportion of canine parvovirus isolates.

    PubMed

    Yoshikawa, Rokusuke; Sato, Eiji; Miyazawa, Takayuki

    2012-03-01

    We recently found that certain canine live attenuated vaccines produced using `non-feline' cell lines were contaminated with an infectious feline endogenous retrovirus, termed RD-114 virus. We suspected that RD-114 virus may have contaminated the seed stock of canine parvovirus (CPV) during the production of the contaminated vaccines. In this study, we collected stock viruses of CPVs propagated in a feline cell line, and checked the presence of infectious RD-114 virus. Consequently, we found that RD-114 viral RNA was present in all stock viruses, and 7 out of 18 stock viruses were contaminated with infectious RD-114 virus. We also found that RD-114 virus was stable physically and is capable of retaining its infectivity for a long period at -80°C.

  3. Emergence and development of H7N9 influenza viruses in China.

    PubMed

    Zhu, Huachen; Lam, Tommy Tsan-Yuk; Smith, David Keith; Guan, Yi

    2016-02-01

    The occurrence of human infections with avian H7N9 viruses since 2013 demonstrates the continuing pandemic threat posed by the current influenza ecosystem in China. Influenza surveillance and phylogenetic analyses showed that these viruses were generated by multiple interspecies transmissions and reassortments among the viruses resident in domestic ducks and the H9N2 viruses enzootic in chickens. A large population of domestic ducks hosting diverse influenza viruses provided the precondition for these events to occur, while acquiring internal genes from enzootic H9N2 influenza viruses in chickens promoted the spread of these viruses. Human infections effectively act as sentinels, reflecting the intensity of the activity of these viruses in poultry. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Limits in virus filtration capability? Impact of virus quality and spike level on virus removal with xenotropic murine leukemia virus.

    PubMed

    Roush, David J; Myrold, Adam; Burnham, Michael S; And, Joseph V; Hughes, Joseph V

    2015-01-01

    Virus filtration (VF) is a key step in an overall viral clearance process since it has been demonstrated to effectively clear a wide range of mammalian viruses with a log reduction value (LRV) > 4. The potential to achieve higher LRV from virus retentive filters has historically been examined using bacteriophage surrogates, which commonly demonstrated a potential of > 9 LRV when using high titer spikes (e.g. 10(10) PFU/mL). However, as the filter loading increases, one typically experiences significant decreases in performance and LRV. The 9 LRV value is markedly higher than the current expected range of 4-5 LRV when utilizing mammalian retroviruses on virus removal filters (Miesegaes et al., Dev Biol (Basel) 2010;133:3-101). Recent values have been reported in the literature (Stuckey et al., Biotech Progr 2014;30:79-85) of LRV in excess of 6 for PPV and XMuLV although this result appears to be atypical. LRV for VF with therapeutic proteins could be limited by several factors including process limits (flux decay, load matrix), virus spike level and the analytical methods used for virus detection (i.e. the Limits of Quantitation), as well as the virus spike quality. Research was conducted using the Xenotropic-Murine Leukemia Virus (XMuLV) for its direct relevance to the most commonly cited document, the International Conference of Harmonization (ICH) Q5A (International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, Switzerland, 1999) for viral safety evaluations. A unique aspect of this work is the independent evaluation of the impact of retrovirus quality and virus spike level on VF performance and LRV. The VF studies used XMuLV preparations purified by either ultracentrifugation (Ultra 1) or by chromatographic processes that yielded a more highly purified virus stock (Ultra 2). Two monoclonal antibodies (Mabs) with markedly different filtration characteristics and with similar levels of aggregate (<1.5%) were evaluated with the Ultra 1 and Ultra 2 virus preparations utilizing the Planova 20 N, a small virus removal filter. Impurities in the virus preparation ultimately limited filter loading as measured by determining the volumetric loading condition where 75% flux decay is observed versus initial conditions (V75). This observation occurred with both Mabs with the difference in virus purity more pronounced when very high spike levels were used (>5 vol/vol %). Significant differences were seen for the process performance over a number of lots of the less-pure Ultra 1 virus preparations. Experiments utilizing a developmental lot of the chromatographic purified XMuLV (Ultra 2 Development lot) that had elevated levels of host cell residuals (vs. the final Ultra 2 preparations) suggest that these contaminant residuals can impact virus filter fouling, even if the virus prep is essentially monodisperse. Process studies utilizing an Ultra 2 virus with substantially less host cell residuals and highly monodispersed virus particles demonstrated superior performance and an LRV in excess of 7.7 log10 . A model was constructed demonstrating the linear dependence of filtration flux versus filter loading which can be used to predict the V75 for a range of virus spike levels conditions using this highly purified virus. Fine tuning the virus spike level with this model can ultimately maximize the LRV for the virus filter step, essentially adding the LRV equivalent of another process step (i.e. protein A or CEX chromatography). © 2014 American Institute of Chemical Engineers.

  5. Co-circulation of a novel phlebovirus and Massilia virus in sandflies, Portugal.

    PubMed

    Amaro, Fátima; Zé-Zé, Líbia; Alves, Maria J; Börstler, Jessica; Clos, Joachim; Lorenzen, Stephan; Becker, Stefanie Christine; Schmidt-Chanasit, Jonas; Cadar, Daniel

    2015-10-24

    In Portugal, entomological surveys to detect phleboviruses in their natural vectors have not been performed so far. Thus, the aims of the present study were to detect, isolate and characterize phleboviruses in sandfly populations of Portugal. From May to October 2007-2008, 896 female sandflies were trapped in Arrábida region, located on the southwest coast of Portugal. Phlebovirus RNA was detected by using a pan-phlebovirus RT-PCR in 4 out of 34 Phlebotomus perniciosus pools. Direct sequencing of the amplicons showed that 2 samples exhibited 72 % nucleotide identity with Arbia virus, and two showed 96 % nucleotide identity with Massilia virus. The Arbia-like virus (named Alcube virus) was isolated in cell culture and complete genomic sequences of one Alcube and two Massila viruses were determined using next-generation sequencing technology. Phylogenetic analysis demonstrated that Alcube virus clustered with members of the Salehabad virus species complex. Within this clade, Alcube virus forms a monophyletic lineage with the Arbia, Salehabad and Adana viruses sharing a common ancestor. Arbia virus has been identified as the most closely related virus with 20-28 % nucleotide and 10-27 % amino acid divergences depending on the analysed segment. We have provided genetic evidence for the circulation of a novel phlebovirus species named Alcube virus in Ph. perniciosus and co-circulation of Massilia virus, in Arrábida region, southwest of Portugal. Further epidemiological investigations and surveillance for sandfly-borne phleboviruses in Portugal are needed to elucidate their medical importance.

  6. How much reduction of virus is needed for recycled water: A continuous changing need for assessment?

    PubMed

    Gerba, Charles P; Betancourt, Walter Q; Kitajima, Masaaki

    2017-01-01

    To ensure the safety of wastewater reuse for irrigation of food crops and drinking water pathogenic viruses must be reduced to levels that pose no significant risk. To achieve this goal minimum reduction of viruses by treatment trains have been suggested. For use of edible crops a 6-log reduction and for production of potable drinking water a 12-log reduction has been suggested. These reductions were based on assuming infective virus concentrations of 10 5 to 10 6 per liter. Recent application of molecular methods suggests that some pathogenic viruses may be occurring in concentrations of 10 7 to 10 9 per liter. Factors influencing these levels include the development of molecular methods for virus detection, emergence of newly recognized viruses, decrease in per capita water use due to conservation measures, and outbreaks. Since neither cell culture nor molecular methods can assess all the potentially infectious virus in wastewater conservative estimates should be used to assess the virus load in untreated wastewater. This review indicates that an additional 2- to 3-log reduction of viruses above current recommendations may be needed to ensure the safety of recycled water. Information is needed on peak loading of viruses. In addition, more virus groups need to be quantified using better methods of virus quantification, including more accurate methods for measuring viral infectivity in order to better quantify risks from viruses in recycled water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Antiviral Decoction of Isatidis Radix (板藍根 bǎn lán gēn) Inhibited Influenza Virus Adsorption on MDCK Cells by Cytoprotective Activity

    PubMed Central

    Ke, Lijing; Wen, Teng; Bradshaw, Jeremy P; Zhou, Jianwu; Rao, Pingfan

    2012-01-01

    The aim of this study is to elucidate how the Isatidis Radix (板藍根 bǎn lán gēn) tonic, as an aqueous mixture of hundreds of compositions, interrupts the infection of influenza viruses to their host cells. The efficacy of the tonic was evaluated and expressed as cell proliferation rate and plaque reduction rate in Madin-Darby Canine Kidney (MDCK) cells, against 3 strains of influenza A and B viruses. This boiling water (at 100°C) extract of Isatidis Radix (RIE) showed antiviral activity against influenza virus A and B. The concentration for 50% inhibition of influenza virus A replication (IC50) in MDCK cell was 12.6 mg/mL with a therapeutic index >8. When cells were incubated with RIE prior to virus adsorption, the numbers of viable cell were at least doubled compared to the numbers of virus control, RIE incubation after virus adsorption and RIE incubation with virus prior to adsorption, in both influenza virus A and B. Moreover, much less virus particles were spotted by scanning electron microscope (SEM) in the RIE pre-treated cells than the cells without RIE treatment. These results indicate the antiviral activity of RIE is mainly attributed to its host cell protection effect but not actions on virus or post-virus-adsorption interruption. Cell, but not virus, is more likely to be the action target of RIE. PMID:24716114

  8. Genome-wide analysis of Epstein-Barr virus identifies variants and genes associated with gastric carcinoma and population structure.

    PubMed

    Yao, Youyuan; Xu, Miao; Liang, Liming; Zhang, Haojiong; Xu, Ruihua; Feng, Qisheng; Feng, Lin; Luo, Bing; Zeng, Yi-Xin

    2017-10-01

    Epstein-Barr virus is a ubiquitous virus and is associated with several human malignances, including the significant subset of gastric carcinoma, Epstein-Barr virus-associated gastric carcinoma. Some Epstein-Barr virus-associated diseases are uniquely prevalent in populations with different geographic origins. However, the features of the disease and geographically associated Epstein-Barr virus genetic variation as well as the roles that the variation plays in carcinogenesis and evolution remain unclear. Therefore, in this study, we sequenced 95 geographically distinct Epstein-Barr virus isolates from Epstein-Barr virus-associated gastric carcinoma biopsies and saliva of healthy donors to detect variants and genes associated with gastric carcinoma and population structure from a genome-wide spectrum. We demonstrated that Epstein-Barr virus revealed the population structure between North China and South China. In addition, we observed population stratification between Epstein-Barr virus strains from gastric carcinoma and healthy controls, indicating that certain Epstein-Barr virus subtypes are associated with different gastric carcinoma risks. We identified that the BRLF1, BBRF3, and BBLF2/BBLF3 genes had significant associations with gastric carcinoma. LMP1 and BNLF2a genes were strongly geographically associated genes in Epstein-Barr virus. Our study provides insights into the genetic basis of oncogenic Epstein-Barr virus for gastric carcinoma, and the genetic variants associated with gastric carcinoma can serve as biomarkers for oncogenic Epstein-Barr virus.

  9. Non-classical phase diagram for virus bacterial coevolution mediated by clustered regularly interspaced short palindromic repeats.

    PubMed

    Han, Pu; Deem, Michael W

    2017-02-01

    CRISPR is a newly discovered prokaryotic immune system. Bacteria and archaea with this system incorporate genetic material from invading viruses into their genomes, providing protection against future infection by similar viruses. The condition for coexistence of prokaryots and viruses is an interesting problem in evolutionary biology. In this work, we show an intriguing phase diagram of the virus extinction probability, which is more complex than that of the classical predator-prey model. As the CRISPR incorporates genetic material, viruses are under pressure to evolve to escape recognition by CRISPR. When bacteria have a small rate of deleting spacers, a new parameter region in which bacteria and viruses can coexist arises, and it leads to a more complex coexistence patten for bacteria and viruses. For example, when the virus mutation rate is low, the virus extinction probability changes non-montonically with the bacterial exposure rate. The virus and bacteria coevolution not only alters the virus extinction probability, but also changes the bacterial population structure. Additionally, we show that recombination is a successful strategy for viruses to escape from CRISPR recognition when viruses have multiple proto-spacers, providing support for a recombination-mediated escape mechanism suggested experimentally. Finally, we suggest that the re-entrant phase diagram, in which phages can progress through three phases of extinction and two phases of abundance at low spacer deletion rates as a function of exposure rate to bacteria, is an experimentally testable phenomenon. © 2017 The Author(s).

  10. Sensitivity of Small RNA-Based Detection of Plant Viruses.

    PubMed

    Santala, Johanna; Valkonen, Jari P T

    2018-01-01

    Plants recognize unrelated viruses by the antiviral defense system called RNA interference (RNAi). RNAi processes double-stranded viral RNA into small RNAs (sRNAs) of 21-24 nucleotides, the reassembly of which into longer strands in silico allows virus identification by comparison with the sequences available in databases. The aim of this study was to compare the virus detection sensitivity of sRNA-based virus diagnosis with the established virus species-specific polymerase chain reaction (PCR) approach. Viruses propagated in tobacco plants included three engineered, infectious clones of Potato virus A (PVA), each carrying a different marker gene, and an infectious clone of Potato virus Y (PVY). Total RNA (containing sRNA) was isolated and subjected to reverse-transcription real-time PCR (RT-RT-PCR) and sRNA deep-sequencing at different concentrations. RNA extracted from various crop plants was included in the reactions to normalize RNA concentrations. Targeted detection of selected viruses showed a similar threshold for the sRNA and reverse-transcription quantitative PCR (RT-qPCR) analyses. The detection limit for PVY and PVA by RT-qPCR in this study was 3 and 1.5 fg of viral RNA, respectively, in 50 ng of total RNA per PCR reaction. When knowledge was available about the viruses likely present in the samples, sRNA-based virus detection was 10 times more sensitive than RT-RT-PCR. The advantage of sRNA analysis is the detection of all tested viruses without the need for virus-specific primers or probes.

  11. Arthropods as a source of new RNA viruses.

    PubMed

    Bichaud, L; de Lamballerie, X; Alkan, C; Izri, A; Gould, E A; Charrel, R N

    2014-12-01

    The discovery and development of methods for isolation, characterisation and taxonomy of viruses represents an important milestone in the study, treatment and control of virus diseases during the 20th century. Indeed, by the late-1950s, it was becoming common belief that most human and veterinary pathogenic viruses had been discovered. However, at that time, knowledge of the impact of improved commercial transportation, urbanisation and deforestation, on disease emergence, was in its infancy. From the late 1960s onwards viruses, such as hepatitis virus (A, B and C) hantavirus, HIV, Marburg virus, Ebola virus and many others began to emerge and it became apparent that the world was changing, at least in terms of virus epidemiology, largely due to the influence of anthropological activities. Subsequently, with the improvement of molecular biotechnologies, for amplification of viral RNA, genome sequencing and proteomic analysis the arsenal of available tools for virus discovery and genetic characterization opened up new and exciting possibilities for virological discovery. Many recently identified but "unclassified" viruses are now being allocated to existing genera or families based on whole genome sequencing, bioinformatic and phylogenetic analysis. New species, genera and families are also being created following the guidelines of the International Committee for the Taxonomy of Viruses. Many of these newly discovered viruses are vectored by arthropods (arboviruses) and possess an RNA genome. This brief review will focus largely on the discovery of new arthropod-borne viruses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Protease-deficient herpes simplex virus protects mice from lethal herpesvirus infection.

    PubMed Central

    Hippenmeyer, P J; Rankin, A M; Luckow, V A; Neises, G R

    1997-01-01

    Null mutants and attenuated mutants of herpes simplex virus (HSV) have been shown to induce immunity against challenge from wild-type virus. Null viruses with a defect in late gene products would be expected to express more viral genes than viruses with defects in essential early gene products and thus induce a better immune response. Herpesviruses encode a late gene product (serine protease) that is autocatalytic and cleaves the capsid assembly protein during viral replication. To determine whether a virus with a mutation in this gene could induce immunity, we constructed a recombinant virus containing the gusA reporter gene in the protease domain of the HSV type 1 UL26 open reading frame (ORF). Consistent with previous results (M. Gao, L. Matusick-Kumar, W. Hurlburt, S. F. DiTusa, W. W. Newcomb, J. C. Brown, P. J. McCann, I. Deckman, and R. J. Colonno, J. Virol. 68:3702-3712, 1994), recombinant virus could be isolated only from helper cell lines expressing the product of the UL26 ORF. Mice inoculated with the recombinant virus were unaffected by doses of virus that were lethal to mice infected with wild-type virus. Mice which were previously inoculated with the recombinant virus were also protected by a subsequent challenge with wild-type virus in a dose-dependent manner. These results indicate that recombinant viruses lacking the protease gene are avirulent but render protection from subsequent challenge. PMID:8995617

  13. [The lysate and recombinant antigens in ELISA-test-systems for diagnostic of herpes simplex].

    PubMed

    Ganova, L A; Kovtoniuk, G V; Korshun, L N; Kiseleva, E K; Tereshchenko, M I; Vudmaska, M I; Moĭsa, L N; Shevchuk, V A; Spivak, N Ia

    2014-08-01

    The lysate and recombinant antigens of various production included informula of ELISA-test-systems were analyzed. The ELISA-test-systems are used for detection of IgG to Herpes simplex virus type I and II. For testing the panel of serums PTH 201 (BBI Inc.) were used. The samples of this panel contain antibodies to Herpes simplex virus type I and II in mixed titers. The 69 serums of donors were used too (17 samples had IgG to Herpes simplex virus type I, 23 samples to Herpes simplex virus type II and 29 samples had no antibodies to Herpes simplex virus). The diagnostic capacity of mixture of recombinant antigens gG1 Herpes simplex virus type I and gG2 Herpes simplex virus type II (The research-and-production complex "DiaprofMed") was comparable with mixture of lysate antigen Herpes simplex virus type I and II (Membrane) EIE Antigen ("Virion Ltd."). In the test-systems for differentiation of IgG to Herpes simplex virus type I the recombinant antigen gG1 Herpes simplex virus type I proved to be comparable with commercial analogue Herpes simplex virus-1 gG1M ("Viral Therapeutics Inc."'). At the same time, capacity to detect IgG to Herpes simplex virus type II in recombinant protein gG2 Herpes simplex virus type II is significantly higher than in its analogue Herpes simplex virus-2 gG2c ("Viral Therapeutics Inc.").

  14. [Oligonucleotide microarray for subtyping avian influenza virus].

    PubMed

    Xueqing, Han; Xiangmei, Lin; Yihong, Hou; Shaoqiang, Wu; Jian, Liu; Lin, Mei; Guangle, Jia; Zexiao, Yang

    2008-09-01

    Avian influenza viruses are important human and animal respiratory pathogens and rapid diagnosis of novel emerging avian influenza viruses is vital for effective global influenza surveillance. We developed an oligonucleotide microarray-based method for subtyping all avian influenza virus (16 HA and 9 NA subtypes). In total 25 pairs of primers specific for different subtypes and 1 pair of universal primers were carefully designed based on the genomic sequences of influenza A viruses retrieved from GenBank database. Several multiplex RT-PCR methods were then developed, and the target cDNAs of 25 subtype viruses were amplified by RT-PCR or overlapping PCR for evaluating the microarray. Further 52 oligonucleotide probes specific for all 25 subtype viruses were designed according to published gene sequences of avian influenza viruses in amplified target cDNAs domains, and a microarray for subtyping influenza A virus was developed. Then its specificity and sensitivity were validated by using different subtype strains and 2653 samples from 49 different areas. The results showed that all the subtypes of influenza virus could be identified simultaneously on this microarray with high sensitivity, which could reach to 2.47 pfu/mL virus or 2.5 ng target DNA. Furthermore, there was no cross reaction with other avian respiratory virus. An oligonucleotide microarray-based strategy for detection of avian influenza viruses has been developed. Such a diagnostic microarray will be useful in discovering and identifying all subtypes of avian influenza virus.

  15. Emergence of Influenza A Virus Variants after Prolonged Shedding from Pheasants▿

    PubMed Central

    Humberd, Jennifer; Boyd, Kelli; Webster, Robert G.

    2007-01-01

    We previously demonstrated the susceptibility of pheasants to infection with influenza A viruses of 15 hemagglutinin (HA) subtypes: 13/23 viruses tested were isolated for ≥14 days, all in the presence of serum-neutralizing antibodies; one virus (H10) was shed for 45 days postinfection. Here we confirmed that 20% of pheasants shed low-pathogenic influenza viruses for prolonged periods. We aimed to determine why the antibody response did not clear the virus in the usual 3 to 10 days, because pheasants serve as a long-term source of influenza viruses in poultry markets. We found evidence of virus replication and histological changes in the large intestine, bursa of Fabricius, and cecal tonsil. The virus isolated 41 days postinfection was antigenically distinct from the parental H10 virus, with corresponding changes in the HA and neuraminidase. Ten amino acid differences were found between the parental H10 and the pheasant H10 virus; four were in potential antigenic sites of the HA molecule. Prolonged shedding of virus by pheasants results from a complex interplay between the diversity of virus variants and the host response. It is often argued that vaccination pressure is a mechanism that contributes to the generation of antigenic-drift variants in poultry. This study provided evidence that drift variants can occur naturally in pheasants after prolonged shedding of virus, thus strengthening our argument for the removal of pheasants from live-bird retail markets. PMID:17267493

  16. Could JC virus provoke metastasis in colon cancer?

    PubMed Central

    Sinagra, Emanuele; Raimondo, Dario; Gallo, Elena; Stella, Mario; Cottone, Mario; Orlando, Ambrogio; Rossi, Francesca; Orlando, Emanuele; Messina, Marco; Tomasello, Giovanni; Lo Monte, Attilio Ignazio; La Rocca, Ennio; Rizzo, Aroldo Gabriele

    2014-01-01

    AIM: To evaluate the prevalence of John Cunningham virus (JC virus) in a small cohort of patients with colon cancer and to assess its presence in hepatic metastasis. METHODS: Nineteen consecutive patients with histologically diagnosed colon cancer were included in our study, together with ten subjects affected by histologically and serologically diagnosed hepatitis C virus infection. In the patients included in the colon cancer group, JC virus was searched for in the surgical specimen; in the control group, JC virus was searched for in the hepatic biopsy. The difference in the prevalence of JC virus in the hepatic biopsy between the two groups was assessed through the χ2 test. RESULTS: Four out of 19 patients with colon cancer had a positive polymerase chain reaction (PCR) test for JC virus, and four had liver metastasis. Among the patients with liver metastasis, three out of four had a positive PCR test for JC virus in the surgical specimen and in the liver biopsy; the only patient with liver metastasis with a negative test for JC virus also presented a negative test for JC virus in the surgical specimen. In the control group of patients with hepatitis C infection, none of the ten patients presented JC virus infection in the hepatic biopsy. The difference between the two groups regarding JC virus infection was statistically significant (χ2 = 9.55, P = 0.002). CONCLUSION: JC virus may play a broader role than previously thought, and may be mechanistically involved in the late stages of these tumors. PMID:25400458

  17. New reassortant and enzootic European swine influenza viruses transmit efficiently through direct contact in the ferret model.

    PubMed

    Fobian, Kristina; Fabrizio, Thomas P; Yoon, Sun-Woo; Hansen, Mette Sif; Webby, Richard J; Larsen, Lars E

    2015-07-01

    The reverse zoonotic events that introduced the 2009 pandemic influenza virus into pigs have drastically increased the diversity of swine influenza viruses in Europe. The pandemic potential of these novel reassortments is still unclear, necessitating enhanced surveillance of European pigs with additional focus on risk assessment of these new viruses. In this study, four European swine influenza viruses were assessed for their zoonotic potential. Two of the four viruses were enzootic viruses of subtype H1N2 (with avian-like H1) and H3N2, and two were new reassortants, one with avian-like H1 and human-like N2 and one with 2009 pandemic H1 and swine-like N2. All viruses replicated to high titres in nasal wash and nasal turbinate samples from inoculated ferrets and transmitted efficiently by direct contact. Only the H3N2 virus transmitted to naïve ferrets via the airborne route. Growth kinetics using a differentiated human bronchial epithelial cell line showed that all four viruses were able to replicate to high titres. Further, the viruses revealed preferential binding to the 2,6-α-silalylated glycans and investigation of the antiviral susceptibility of the viruses revealed that all were sensitive to neuraminidase inhibitors. These findings suggested that these viruses have the potential to infect humans and further underline the need for continued surveillance as well as biological characterization of new influenza A viruses.

  18. Bacilliform DNA-containing plant viruses in the tropics: commonalities within a genetically diverse group.

    PubMed

    Borah, Basanta K; Sharma, Shweta; Kant, Ravi; Johnson, A M Anthony; Saigopal, Divi Venkata Ramana; Dasgupta, Indranil

    2013-10-01

    Plant viruses, possessing a bacilliform shape and containing double-stranded DNA, are emerging as important pathogens in a number of agricultural and horticultural crops in the tropics. They have been reported from a large number of countries in African and Asian continents, as well as from islands from the Pacific region. The viruses, belonging to two genera, Badnavirus and Tungrovirus, within the family Caulimoviridae, have genomes displaying a common plan, yet are highly variable, sometimes even between isolates of the same virus. In this article, we summarize the current knowledge with a view to revealing the common features embedded within the genetic diversity of this group of viruses. Virus; order Unassigned; family Caulimoviridae; genera Badnavirus and Tungrovirus; species Banana streak viruses, Bougainvillea spectabilis chlorotic vein banding virus, Cacao swollen shoot virus, Citrus yellow mosaic badnavirus, Dioscorea bacilliform viruses, Rice tungro bacilliform virus, Sugarcane bacilliform viruses and Taro bacilliform virus. Bacilliform in shape; length, 60-900 nm; width, 35-50 nm; circular double-stranded DNA of approximately 7.5 kbp with one or more single-stranded discontinuities. Each virus generally limited to its own host, including banana, bougainvillea, black pepper, cacao, citrus species, Dioscorea alata, rice, sugarcane and taro. Foliar streaking in banana and sugarcane, swelling of shoots in cacao, yellow mosaic in leaves and stems in citrus, brown spot in the tubers in yam and yellow-orange discoloration and stunting in rice. http://www.dpvweb.net. 2013 BSPP and JOHN WILEY & SONS LTD

  19. A Novel A(H7N2) Influenza Virus Isolated from a Veterinarian Caring for Cats in a New York City Animal Shelter Causes Mild Disease and Transmits Poorly in the Ferret Model.

    PubMed

    Belser, Jessica A; Pulit-Penaloza, Joanna A; Sun, Xiangjie; Brock, Nicole; Pappas, Claudia; Creager, Hannah M; Zeng, Hui; Tumpey, Terrence M; Maines, Taronna R

    2017-08-01

    In December 2016, a low-pathogenic avian influenza (LPAI) A(H7N2) virus was identified to be the causative source of an outbreak in a cat shelter in New York City, which subsequently spread to multiple shelters in the states of New York and Pennsylvania. One person with occupational exposure to infected cats became infected with the virus, representing the first LPAI H7N2 virus infection in a human in North America since 2003. Considering the close contact that frequently occurs between companion animals and humans, it was critical to assess the relative risk of this novel virus to public health. The virus isolated from the human case, A/New York/108/2016 (NY/108), caused mild and transient illness in ferrets and mice but did not transmit to naive cohoused ferrets following traditional or aerosol-based inoculation methods. The environmental persistence of NY/108 virus was generally comparable to that of other LPAI H7N2 viruses. However, NY/108 virus replicated in human bronchial epithelial cells with an increased efficiency compared with that of previously isolated H7N2 viruses. Furthermore, the novel H7N2 virus was found to utilize a relatively lower pH for hemagglutinin activation, similar to human influenza viruses. Our data suggest that the LPAI H7N2 virus requires further adaptation before representing a substantial threat to public health. However, the reemergence of an LPAI H7N2 virus in the northeastern United States underscores the need for continuous surveillance of emerging zoonotic influenza viruses inclusive of mammalian species, such as domestic felines, that are not commonly considered intermediate hosts for avian influenza viruses. IMPORTANCE Avian influenza viruses are capable of crossing the species barrier to infect mammals, an event of public health concern due to the potential acquisition of a pandemic phenotype. In December 2016, an H7N2 virus caused an outbreak in cats in multiple animal shelters in New York State. This was the first detection of this virus in the northeastern United States in over a decade and the first documented infection of a felid with an H7N2 virus. A veterinarian became infected following occupational exposure to H7N2 virus-infected cats, necessitating the evaluation of this virus for its capacity to cause disease in mammals. While the H7N2 virus was associated with mild illness in mice and ferrets and did not spread well between ferrets, it nonetheless possessed several markers of virulence for mammals. These data highlight the promiscuity of influenza viruses and the need for diligent surveillance across multiple species to quickly identify an emerging strain with pandemic potential. Copyright © 2017 American Society for Microbiology.

  20. Pathogenesis and Transmission Assessments of Two H7N8 Influenza A Viruses Recently Isolated from Turkey Farms in Indiana Using Mouse and Ferret Models.

    PubMed

    Sun, Xiangjie; Belser, Jessica A; Pulit-Penaloza, Joanna A; Zeng, Hui; Lewis, Amanda; Shieh, Wun-Ju; Tumpey, Terrence M; Maines, Taronna R

    2016-12-01

    Avian influenza A H7 viruses have caused multiple outbreaks in domestic poultry throughout North America, resulting in occasional infections of humans in close contact with affected birds. In early 2016, the presence of H7N8 highly pathogenic avian influenza (HPAI) viruses and closely related H7N8 low-pathogenic avian influenza (LPAI) viruses was confirmed in commercial turkey farms in Indiana. These H7N8 viruses represent the first isolation of this subtype in domestic poultry in North America, and their virulence in mammalian hosts and the potential risk for human infection are largely unknown. In this study, we assessed the ability of H7N8 HPAI and LPAI viruses to replicate in vitro in human airway cells and in vivo in mouse and ferret models. Both H7N8 viruses replicated efficiently in vitro and in vivo, but they exhibited substantial differences in disease severity in mammals. In mice, while the H7N8 LPAI virus largely remained avirulent, the H7N8 HPAI virus exhibited greater infectivity, virulence, and lethality. Both H7N8 viruses replicated similarly in ferrets, but only the H7N8 HPAI virus caused moderate weight loss, lethargy, and mortality. The H7N8 LPAI virus displayed limited transmissibility in ferrets placed in direct contact with an inoculated animal, while no transmission of H7N8 HPAI virus was detected. Our results indicate that the H7N8 avian influenza viruses from Indiana are able to replicate in mammals and cause severe disease but with limited transmission. The recent appearance of H7N8 viruses in domestic poultry highlights the need for continued influenza surveillance in wild birds and close monitoring of the potential risk to human health. H7 influenza viruses circulate in wild birds in the United States, but when the virus emerges in domestic poultry populations, the frequency of human exposure and the potential for human infections increases. An H7N8 highly pathogenic avian influenza (HPAI) virus and an H7N8 low-pathogenic avian influenza (LPAI) virus were recently isolated from commercial turkey farms in Indiana. To determine the risk that these influenza viruses pose to humans, we assessed their pathogenesis and transmission in vitro and in mammalian models. We found that the H7N8 HPAI virus exhibited enhanced virulence, and although transmission was only observed with the H7N8 LPAI virus, the ability of this H7 virus to transmit in a mammalian host and quickly evolve to a more virulent strain is cause for concern. Our findings offer important insight into the potential for emerging H7 avian influenza viruses to acquire the ability to cause disease and transmit among mammals. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

Top