Sample records for mackenzie gewex study

  1. Interaction of the Global Energy and Water Cycle Experiment (GEWEX) Water Resources Applications Project (WRAP) and Coordinated Enhanced Observing Project (CEOP) in Support of Water Resource Management and Planning

    NASA Astrophysics Data System (ADS)

    Martz, L.

    2004-05-01

    The Water Resources Applications Project (WRAP) has been developed within the Global Energy and Water Cycle Experiment (GEWEX) to facilitate the testing of GEWEX products and their transfer to operational water managers. The WRAP activity builds upon projects within the GEWEX Continental Scale Experiments (CSEs), and facilitates dialogue between these CSEs and their local water management communities regarding their information needs and opportunities for GEWEX products to meet those needs. Participating Continental Scale Experiments are located in the United States, the Mackenzie River Basin in Canada, the Amazon River Basin in Brazil, the Baltic Sea drainage area, eastern Asia and the Murray-Darling Basin in Australia. In addition, the development of WRAP is facilitating the transfer of techniques and demonstration projects to other areas through collaboration with IAHS, UNESCO/WMO HELP, WMO Hydrology and WWAP. The initiation of CEOP presents a significant new opportunity for collaborations to support the application of global hydro-climatological scientific data and techniques to water resource management. Some important scientific and operational issues identified by water resource management professionals in earlier workshops will be reviewed, some scientific initiatives needed to address these issues will be presented, and some case study examples of the application of GEWEX knowledge to water resource problems will be presented. Against this background, the unique opportunities that CEOP provides to improve our use and management of water resources globally will be discussed.

  2. Variability and Predictability of Land-Atmosphere Interactions: Observational and Modeling Studies

    NASA Technical Reports Server (NTRS)

    Roads, John; Oglesby, Robert; Marshall, Susan; Robertson, Franklin R.

    2002-01-01

    The overall goal of this project is to increase our understanding of seasonal to interannual variability and predictability of atmosphere-land interactions. The project objectives are to: 1. Document the low frequency variability in land surface features and associated water and energy cycles from general circulation models (GCMs), observations and reanalysis products. 2. Determine what relatively wet and dry years have in common on a region-by-region basis and then examine the physical mechanisms that may account for a significant portion of the variability. 3. Develop GCM experiments to examine the hypothesis that better knowledge of the land surface enhances long range predictability. This investigation is aimed at evaluating and predicting seasonal to interannual variability for selected regions emphasizing the role of land-atmosphere interactions. Of particular interest are the relationships between large, regional and local scales and how they interact to account for seasonal and interannual variability, including extreme events such as droughts and floods. North and South America, including the Global Energy and Water Cycle Experiment Continental International Project (GEWEX GCIP), MacKenzie, and LBA basins, are currently being emphasized. We plan to ultimately generalize and synthesize to other land regions across the globe, especially those pertinent to other GEWEX projects.

  3. Sublimation From Snow in Northern Environments

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.

    2002-12-01

    Sublimation from snow is an often neglected component of water and energy balances. Research under the Mackenzie GEWEX Study has attempted to understand the snow and atmospheric processes controlling sublimation and to estimate the magnitude of sublimation in high latitude catchments. Eddy correlation units were used to measure vertical water vapour fluxes from a high latitude boreal forest, snow-covered tundra and shrub-covered tundra in Wolf Creek Research Basin, near Whitehorse Yukon, Territory Canada. Over Jan-Apr. water vapour fluxes from the forest canopy amounted to 18.3 mm, a significant loss from winter snowfall of 54 mm. Most of this loss occurred when the canopy was snow-covered. The weight of snow measured on a suspended, weighed tree indicates that this flux is dominated by sublimation of intercepted snow. In the melt period (April), water vapour fluxes were uniformly small ranging from 0.21 mm/day on the tundra slope, 0.23 mm/day for the forest and 0.27 mm/day for the shrub-tundra. During the melt period the forest and shrub canopies was snow-free and roots were frozen, so the primary source of water vapour from all sites was the surface snow.

  4. IAHS/WMO Working Group for GEWEX Progress Report

    NASA Astrophysics Data System (ADS)

    Schultz, Gert; Colenbrander, H.

    The International Council of Scientific Unions (ICSU) and the World Meteorological Organization (WMO) undertook the Global Energy and Water Cycle Experiment (GEWEX). In early 1989 in Pasadena, Calif., the Scientific Steering Group (SSG) for GEWEX of the Joint Scientific Committee (JSC) for the World Climate Research Program (WCRP) held its first meeting. GEWEX objectives were formulated and documented in the “Report of the First Session of the JSC-Scientific Steering Group for GEWEX,” published as WCRP-25, WMO/TD-No. 321.Vit Klemes, Victoria, B.C., Canada, who represented the International Association of Hydrological Sciences (IAHS) at the SSG meeting, stated the IAHS intention to play an active role in GEWEX. IAHS described GEWEX as “the development, validation and use of large-scale hydrological models, coupled with general circulation models, which make use of data from space observing systems.” IAHS then established the IAHS/WMO Working Group for GEWEX, which held its first meeting during the IAHS Third Scientific Assembly in Baltimore, May 19, 1989. Klemes was the first working group chairman, and passed the title to Gert A. Schultz, Ruhr University, Bochum, Germany, in the fall of 1989.

  5. GEWEX - The Global Energy and Water Cycle Experiment

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.

    1992-01-01

    GEWEX, which is part of the World Climate Research Program, has as its goal an order-of-magnitude improvement in the ability to model global precipitation and evaporation and furnish an accurate assessment of the sensitivity of atmospheric radiation and clouds. Attention will also be given to the response of the hydrological cycle and water resources to climate change. GEWEX employs a single program to coordinate all aspects of climatology from model development to the deployment and operation of observational systems. GEWEX will operate over the next two decades.

  6. GEWEX Continental-scale International Project (GCIP)

    NASA Technical Reports Server (NTRS)

    Try, Paul

    1993-01-01

    The Global Energy and Water Cycle Experiment (GEWEX) represents the World Climate Research Program activities on clouds, radiation, and land-surface processes. The goal of the program is to reproduce and predict, by means of suitable models, the variations of the global hydrological regime and its impact on atmospheric and oceanic dynamics. However, GEWEX is also concerned with variations in regional hydrological processes and water resources and their response to changes in the environment such as increasing greenhouse gases. In fact, GEWEX contains a major new international project called the GEWEX Continental-scale International Project (GCIP), which is designed to bridge the gap between the small scales represented by hydrological models and those scales that are practical for predicting the regional impacts of climate change. The development and use of coupled mesoscale-hydrological models for this purpose is a high priority in GCIP. The objectives of GCIP are presented.

  7. Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric

    2000-01-01

    The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction. The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.

  8. New SRB Data

    Atmospheric Science Data Center

    2013-08-06

    ... from the GEWEX Radiation Panel (now the GEWEX Data and Assessment Panel - GDAP) received at the 2011 meeting. The panel stressed the need for algorithm names to more accurately represent the parameterized ...

  9. Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems

    NASA Technical Reports Server (NTRS)

    Starr, David OC.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric; Khvorostyanov, Vitaly; hide

    2000-01-01

    The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction (Browning et al, 1994). The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.

  10. GEWEX: The Global Energy and Water Cycle Experiment

    NASA Technical Reports Server (NTRS)

    Chahine, M.; Vane, D.

    1994-01-01

    GEWEX is one of the world's largest global change research programs. Its purpose is to observe and understand the hydrological cycle and energy fluxes in the atmosphere, at land surfaces and in the upper oceans.

  11. GEWEX Radiative Flux Assessment

    Atmospheric Science Data Center

    2016-05-20

    ... The ultimate goal of the Global Energy and Water Cycle Experiment ( GEWEX ) global data analysis projects is to obtain observations of the elements of the global energy and water cycle with sufficient detail and accuracy to diagnose the causes of ...

  12. GEWEX Radiative Flux Assessment Available Data

    Atmospheric Science Data Center

    2016-05-31

    ... ERBE--ERBS-NOAA10_EdXXX ERBE/ERBS + NOAA 10 Scanner 2.5 degree monthly mean data from 02/87 to 05/89 ... GEWEX Radiative Flux Assessment data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. " In addition, ...

  13. GEWEX America Prediction Project (GAPP) Science and Implementation Plan

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The purpose of this Science and Implementation Plan is to describe GAPP science objectives and the activities required to meet these objectives, both specifically for the near-term and more generally for the longer-term. The GEWEX Americas Prediction Project (GAPP) is part of the Global Energy and Water Cycle Experiment (GEWEX) initiative that is aimed at observing, understanding and modeling the hydrological cycle and energy fluxes at various time and spatial scales. The mission of GAPP is to demonstrate skill in predicting changes in water resources over intraseasonal-to-interannual time scales, as an integral part of the climate system.

  14. ARM/GCSS/SPARC TWP-ICE CRM Intercomparison Study

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann; Ackerman, Andrew; Petch, Jon; Field, Paul; Hill, Adrian; McFarquhar, Greg; Xie, Shaocheng; Zhang, Minghua

    2010-01-01

    Specifications are provided for running a cloud-resolving model (CRM) and submitting results in a standardized format for inclusion in a n intercomparison study and archiving for public access. The simulated case study is based on measurements obtained during the 2006 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) led by the U. S. department of Energy Atmospheric Radiation Measurement (ARM) program. The modeling intercomparison study is based on objectives developed in concert with the Stratospheric Processes And their Role in Climate (SPARC) program and the GEWEX cloud system study (GCSS) program. The Global Energy and Water Cycle Experiment (GEWEX) is a core project of the World Climate Research PRogramme (WCRP).

  15. Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP)

    NASA Technical Reports Server (NTRS)

    Vane, Deborah

    1993-01-01

    A discussion of the objectives of the Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP) is presented in vugraph form. The objectives of GEWEX are as follows: determine the hydrological cycle by global measurements; model the global hydrological cycle; improve observations and data assimilation; and predict response to environmental change. The objectives of GCIP are as follows: determine the time/space variability of the hydrological cycle over a continental-scale region; develop macro-scale hydrologic models that are coupled to atmospheric models; develop information retrieval schemes; and support regional climate change impact assessment.

  16. Oxide Ceramic Fibers by the Sol-Gel Methods

    DTIC Science & Technology

    1989-02-10

    AFWAL-TR-88-4199 OXIDE CERAMIC FIBERS BY THE SOL-GEL METHOD J . D. Mackenzie If) K. Ono The Regents of the University of California (Los Angeles) V...METHOD 12. PERSONAL AUTHOR(S) J . D. MACKENZIE, K. ONO 13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year,Month, Day) 15. PAGE COUNT...to Mary Colby who performed, under the direction of J . D. Mackenzie, the bulk of the experimental studies and contributed extensively to the

  17. NASA/GEWEX Surface Radiation Budget: First Results From The Release 4 GEWEX Integrated Data Products

    NASA Astrophysics Data System (ADS)

    Stackhouse, Paul; Cox, Stephen; Gupta, Shashi; Mikovitz, J. Colleen; zhang, taiping

    2016-04-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number should help improve the RMS of the existing products and allow for future higher resolution SRB gridded product (e.g. 0.5 degree). In addition to the input data improvements, several important algorithm improvements have been made. Most notable has been the adaptation of Angular Distribution Models (ADMs) from CERES to improve the initial calculation of shortwave TOA fluxes, from which the surface flux calculations follow. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. As of the time of abstract submission, results from 2007 have been produced with ISCCP H availability the limiting factor. More SRB data will be produced as ISCCP reprocessing continues. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).

  18. Effective Selection: A Study of First-Line Supervisor Selection Processes in the Department of Homeland Security

    DTIC Science & Technology

    2011-03-01

    performance and the extensive studies connecting perceptive measures to actual performance (Bommer, Johnson, Rich, Podsakoff , & MacKenzie, 1995; Brewer, 2005...theory of modern politics. London: Polity. Bommer, W. H., Johnson, J. L., Rich, G., Podsakoff , P. M., & MacKenzie, S. B. (1995). On the

  19. GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems (WG2)

    NASA Technical Reports Server (NTRS)

    Starr, David

    2002-01-01

    Status, progress and plans will be given for current GCSS (GEWEX Cloud System Study) WG2 (Working Group on Cirrus Cloud Systems) projects, including: (a) the Idealized Cirrus Model Comparison Project, (b) the Cirrus Parcel Model Comparison Project (Phase 2), and (c) the developing Hurricane Nora extended outflow model case study project. Past results will be summarized and plans for the upcoming year described. Issues and strategies will be discussed. Prospects for developing improved cloud parameterizations derived from results of GCSS WG2 projects will be assessed. Plans for NASA's CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Layers - Florida Area Cirrus Experiment) potential opportunities for use of those data for WG2 model simulations (future projects) will be briefly described.

  20. The NASA/GEWEX Surface Radiation Budget: Integrated Data Product With Reprocessed Radiance, Cloud, and Meteorology Inputs

    NASA Astrophysics Data System (ADS)

    Stackhouse, P. W.; Gupta, S. K.; Cox, S. J.; Mikovitz, J. C.; Zhang, T.

    2015-12-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. At the time of abstract submission, results from the year 2007 have been produced. More years will be added as ISCCP reprocessing occurs. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. Improvements in GSW include an expansion of the number of wavelength bands from five to eighteen, and the inclusion of ice cloud vs. water cloud radiative transfer. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).

  1. Genetics, recruitment, and migration patterns of Arctic Cisco (Coregonus autumnalis) in the Colville River, Alaska and Mackenzie River, Canada

    USGS Publications Warehouse

    Zimmerman, Christian E.; Ramey, Andy M.; Turner, S.; Mueter, Franz J.; Murphy, S.; Nielsen, Jennifer L.

    2013-01-01

    Arctic cisco Coregonus autumnalis have a complex anadromous life history, many aspects of which remain poorly understood. Some life history traits of Arctic cisco from the Colville River, Alaska, and Mackenzie River basin, Canada, were investigated using molecular genetics, harvest data, and otolith microchemistry. The Mackenzie hypothesis, which suggests that Arctic cisco found in Alaskan waters originate from the Mackenzie River system, was tested using 11 microsatellite loci and a single mitochondrial DNA gene. No genetic differentiation was found among sample collections from the Colville River and the Mackenzie River system using molecular markers (P > 0.19 in all comparisons). Model-based clustering methods also supported genetic admixture between sample collections from the Colville River and Mackenzie River basin. A reanalysis of recruitment patterns to Alaska, which included data from recent warm periods and suspected changes in atmospheric circulation patterns, still finds that recruitment is correlated to wind conditions. Otolith microchemistry (Sr/Ca ratios) confirmed repeated, annual movements of Arctic cisco between low-salinity habitats in winter and marine waters in summer.

  2. Alkane, terpene and polycyclic aromatic hydrocarbon geochemistry of the Mackenzie River and Mackenzie shelf: Riverine contributions to Beaufort Sea coastal sediment

    NASA Astrophysics Data System (ADS)

    Yunker, Mark B.; Macdonald, Robie W.; Cretney, Walter J.; Fowler, Brian R.; McLaughlin, Fiona A.

    1993-07-01

    To study the largest source of river sediment to the Arctic Ocean, we have collected suspended particulates from the Mackenzie River in all seasons and sediments from the Mackenzie shelf between the river mouth and the shelf edge. These samples have been analyzed for alkanes, triterpenes and polycyclic aromatic hydrocarbons (PAHs). We found that naturally occurring hydrocarbons predominate in the river and on the shelf. These hydrocarbons include biogenic alkanes and triterpenes with a higher plant/peat origin, diagenetic PAHs from peat and plant detritus, petrogenic alkanes, triterpenes and PAHs from oil seeps and/or bitumens and combustion PAHs that are likely relict in peat deposits. Because these components vary independently, the season is found to strongly influence the concentration and composition of hydrocarbons in the Mackenzie River. While essentially the same pattern of alkanes, diagenetic hopanes and alkyl PAHs is observed in all river and most shelf sediment samples, alkane and triterpene concentration variations are strongly linked to the relative amount of higher plant/peat material. Polycyclic aromatic hydrocarbon molecular-mass profiles also appear to be tied primarily to varying proportions of peat, with an additional petrogenic component which is most likely associated with lithic material mobilized by the Mackenzie River at freshet. Consistent with the general lack of alkyl PAHs in peat, the higher PAHs found in the river are probably derived from forest and tundra fires. A few anthropogenic/pyrogenic compounds are manifest only at the shelf edge, probably due to a weakening of the river influence. We take this observation of pyrogenic PAHs and the pronounced source differences between two sediment samples collected at the shelf edge as evidence of a transition from dominance by the Mackenzie River to the geochemistry prevalent in Arctic regions far removed from major rivers.

  3. A Web-Based Validation Tool for GEWEX

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Gibson, S.; Heckert, E.; Minnis, P.; Sun-Mack, S.; Chen, Y.; Stubenrauch, C.; Kinne, S. A.; Ackerman, S. A.; Baum, B. A.; Chepfer, H.; Di Girolamo, L.; Heidinger, A. K.; Getzewich, B. J.; Guignard, A.; Maddux, B. C.; Menzel, W. P.; Platnick, S. E.; Poulsen, C.; Raschke, E. A.; Riedi, J.; Rossow, W. B.; Sayer, A. M.; Walther, A.; Winker, D. M.

    2011-12-01

    The Global Energy and Water Cycle Experiment (GEWEX) Cloud assessment was initiated by the GEWEX Radiation Panel (GRP) in 2005 to evaluate the variability of available, global, long-term cloud data products. Since then, eleven cloud data records have been established from various instruments, mostly onboard polar orbiting satellites. Cloud properties under study include cloud amount, cloud pressure, cloud temperature, cloud infrared (IR) emissivity and visible (VIS) optical thickness, cloud thermodynamic phase, as well as bulk microphysical properties. The volume of data and variations in parameters, spatial, and temporal resolution for the different datasets constitute a significant challenge for understanding the differences and the value of having more than one dataset. To address this issue, this paper presents a NASA Langley web-based tool to facilitate comparisons among the different cloud data sets. With this tool, the operator can choose to view numeric or graphic presentations to allow comparison between products. Multiple records are displayed in time series graphs, global maps, or zonal plots. The tool has been made flexible so that additional teams can easily add their data sets to the record selection list for use in their own analyses. This tool has possible applications to other climate and weather datasets.

  4. Application of a Global-to-Beam Irradiance Model to the NASA GEWEX SRB Dataset: An Extension of the NASA Surface Meteorology and Solar Energy Datasets

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Westberg, David J.

    2014-01-01

    The DIRINDEX model was designed to estimate hourly solar beam irradiances from hourly global horizontal irradiances. This model was applied to the NASA GEWEX SRB(Rel. 3.0) 3-hourly global horizontal irradiance data to derive3-hourly global maps of beam, or direct normal, irradiance for the period from January 2000 to December 2005 at the 1 deg. x 1 deg. resolution. The DIRINDEX model is a combination of the DIRINT model, a quasi-physical global-to-beam irradiance model based on regression of hourly observed data, and a broadband simplified version of the SOLIS clear-sky beam irradiance model. In this study, the input variables of the DIRINDEX model are 3-hourly global horizontal irradiance, solar zenith angle, dew-point temperature, surface elevation, surface pressure, sea-level pressure, aerosol optical depth at 700 nm, and column water vapor. The resulting values of the 3-hourly direct normal irradiance are then used to compute daily and monthly means. The results are validated against the ground-based BSRN data. The monthly means show better agreement with the BSRN data than the results from an earlier endeavor which empirically derived the monthly mean direct normal irradiance from the GEWEX SRB monthly mean global horizontal irradiance. To assimilate the observed information into the final results, the direct normal fluxes from the DIRINDEX model are adjusted according to the comparison statistics in the latitude-longitude-cosine of solar zenith angle phase space, in which the inverse-distance interpolation is used for the adjustment. Since the NASA Surface meteorology and Solar Energy derives its data from the GEWEX SRB datasets, the results discussed herein will serve to extend the former.

  5. NASA/GEWEX shortwave surface radiation budget: Integrated data product with reprocessed radiance, cloud, and meteorology inputs, and new surface albedo treatment

    NASA Astrophysics Data System (ADS)

    Cox, Stephen J.; Stackhouse, Paul W.; Gupta, Shashi K.; Mikovitz, J. Colleen; Zhang, Taiping

    2017-02-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current Release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. Other key input improvements include a detailed aerosol history using the Max Planck Institute Aerosol Climatology (MAC), and temperature and moisture profiles from nnHIRS.

  6. GEWEX Cloud Systems Study (GCSS)

    NASA Technical Reports Server (NTRS)

    Moncrieff, Mitch

    1993-01-01

    The Global Energy and Water Cycle Experiment (GEWEX) Cloud Systems Study (GCSS) program seeks to improve the physical understanding of sub-grid scale cloud processes and their representation in parameterization schemes. By improving the description and understanding of key cloud system processes, GCSS aims to develop the necessary parameterizations in climate and numerical weather prediction (NWP) models. GCSS will address these issues mainly through the development and use of cloud-resolving or cumulus ensemble models to generate realizations of a set of archetypal cloud systems. The focus of GCSS is on mesoscale cloud systems, including precipitating convectively-driven cloud systems like MCS's and boundary layer clouds, rather than individual clouds, and on their large-scale effects. Some of the key scientific issues confronting GCSS that particularly relate to research activities in the central U.S. are presented.

  7. The GEWEX Integrated Product - An Assessment of the Terrestrial Water Cycle from Satellite Observations and Reanalysis

    NASA Astrophysics Data System (ADS)

    Kummerow, C.; Brown, P.

    2017-12-01

    The GEWEX Data and Assessments Paned (GDAP) has been working on a set of consistent products describing the water and energy budgets as well as fluxes at high spatial (1°) and temporal (3hr) resolution. Unlike individual products, the GEWEX Integrated product is careful to make assumptions consistent among algorithms and use internally derived parameters from one product (e.g. clouds from the ISCCP) as input to all other products requiring cloud information. This product was developed with two goals in mind: The first was to validate individual assumptions by cross-checking them with other products within the water and energy budget and ultimately verifying closure of the water and energy budgets within the uncertainties of each algorithm. With the recent completion of the first version of the GEWEX Integrated product, this talk will offer a first look at the consistency among the products insofar as the terrestrial water budget is concerned. Satellite observations of evaporation and precipitation will be compared to atmospheric water vapor divergences from ERA-Interim for various regions, and time scales to assess consistency among the individual estimates. The second goal was to make a available to the community, an internally consistent product that could be used to better understand climate processes and feedback. The status of this will also be discussed.

  8. The NASA/GEWEX Surface Radiation Budget Release 4 Integrated Product: An Assessment of Improvements in Algorithms and Inputs

    NASA Astrophysics Data System (ADS)

    Stackhouse, P. W., Jr.; Cox, S. J.; Mikovitz, J. C.; Zhang, T.; Gupta, S. K.

    2016-12-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces, validates and analyzes shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. The current release 3.0/3.1 consists of 1x1 degree radiative fluxes (available at gewex-srb.larc.nasa.gov) and is produced using the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This ISCCP DX product is subsampled to 30 km. ISCCP is currently recalibrating and reprocessing their entire data series, to be released as the H product series, with its highest resolution at 10km pixel resolution. The nine-fold increase in number of pixels will allow SRB to produce a higher resolution gridded product (e.g. 0.5 degree or higher), as well as the production of pixel-level fluxes. Other key input improvements include a detailed aerosol history using the Max Planck Institute Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice maps. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data (for at least 5 years, 2005-2009), various other improved input data sets and incorporation of many additional internal SRB model improvements. We assess the radiative fluxes from new SRB products and contrast these at various resolutions. All these fluxes are compared to both surface measurements and to CERES SYN1Deg and EBAF data products for assessment of the effect of improvements. The SRB data produced will be released as part of the Release 4.0 Integrated Product that shares key input and output quantities with other GEWEX global products providing estimates of the Earth's global water and energy cycle (i.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).

  9. NASA/GEWEX Surface Radiation Budget: Integrated Data Product With Reprocessed Radiance, Cloud, and Meteorology Inputs, and New Surface Albedo Treatment

    NASA Technical Reports Server (NTRS)

    Cox, Stephen J.; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Mikovitz, J. Colleen; Zhang, Taiping

    2016-01-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. In addition to the input data improvements, several important algorithm improvements have been made. Most notable has been the adaptation of Angular Distribution Models (ADMs) from CERES to improve the initial calculation of shortwave TOA fluxes, from which the surface flux calculations follow. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. As of the time of abstract submission, results from 2007 have been produced with ISCCP H availability the limiting factor. More SRB data will be produced as ISCCP reprocessing continues. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).

  10. Effects of Mackenzie River Discharge and Bathymetry on Sea Ice in the Beaufort Sea

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Hall, D. K.; Rigor, I. G; Li, P.; Neumann, G.

    2014-01-01

    Mackenzie River discharge and bathymetry effects on sea ice in the Beaufort Sea are examined in 2012 when Arctic sea ice extent hit a record low. Satellite-derived sea surface temperature revealed warmer waters closer to river mouths. By 5 July 2012, Mackenzie warm waters occupied most of an open water area about 316,000 sq km. Surface temperature in a common open water area increased by 6.5 C between 14 June and 5 July 2012, before and after the river waters broke through a recurrent landfast ice barrier formed over the shallow seafloor offshore the Mackenzie Delta. In 2012, melting by warm river waters was especially effective when the strong Beaufort Gyre fragmented sea ice into unconsolidated floes. The Mackenzie and other large rivers can transport an enormous amount of heat across immense continental watersheds into the Arctic Ocean, constituting a stark contrast to the Antarctic that has no such rivers to affect sea ice.

  11. Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel

    NASA Technical Reports Server (NTRS)

    Stubenrauch, C. J.; Rossow, W. B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Getzewich, B.; Di Girolamo, L.; Guignard, A.; Heidinger, A.; hide

    2012-01-01

    Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the whole globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years in length. However, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provided the first coordinated intercomparison of publically available, standard global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multiangle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. A monthly, gridded database, in common format, facilitates further assessments, climate studies and the evaluation of climate models.

  12. GEWEX cloud assessment: A review

    NASA Astrophysics Data System (ADS)

    Stubenrauch, Claudia; Rossow, William B.; Kinne, Stefan; Ackerman, Steve; Cesana, Gregory; Chepfer, Hélène; Di Girolamo, Larry; Getzewich, Brian; Guignard, Anthony; Heidinger, Andy; Maddux, Brent; Menzel, Paul; Minnis, Patrick; Pearl, Cindy; Platnick, Steven; Poulsen, Caroline; Riedi, Jérôme; Sayer, Andrew; Sun-Mack, Sunny; Walther, Andi; Winker, Dave; Zeng, Shen; Zhao, Guangyu

    2013-05-01

    Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the entire globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years; however, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provides the first coordinated intercomparison of publicly available, global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multi-angle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. The monthly, gridded database presented here facilitates further assessments, climate studies, and the evaluation of climate models.

  13. The WCRP/GEWEX Surface Radiation Budget Project Release 2: An Assessment of Surface Fluxes at 1 Degree Resolution

    NASA Technical Reports Server (NTRS)

    Stackhouse, P. W., Jr.; Gupta, S. K.; Cox, S. J.; Chiacchio, M.; Mikovitz, J. C.

    2004-01-01

    The U.S. National Aeronautics and Space Administration (NASA) based Surface Radiation Budget (SRB) Project in association with the World Climate Research Programme Global Energy and Water Cycle Experiment (WCRP/GEWEX) is preparing a new 1 deg x 1 deg horizontal resolution product for distribution scheduled for release in early 2001. The new release contains several significant upgrades from the previous version. This paper summarizes the most significant upgrades and presents validation results as an assessment of the new data set.

  14. Crustal-scale geological and thermal models of the Beaufort-Mackenzie Basin, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Sippel, Judith; Scheck-Wenderoth, Magdalena; Kröger, Karsten; Lewerenz, Björn

    2010-05-01

    The Beaufort-Mackenzie Basin is a petroliferous province in northwest Arctic Canada and one of the best-known segments of the Arctic Ocean margin due to decades of exploration. Our study is part of the programme MOM (Methane On the Move), which aims to quantify the methane contribution from natural petroleum systems to the atmosphere over geological times. Models reflecting the potential of a sedimentary basin to release methane require well-assessed boundary conditions such as the crustal structure and large-scale temperature variation. We focus on the crustal-scale thermal field of the Beaufort-Mackenzie Basin. This Basin has formed on a post-rift, continental margin which, during the Late Cretaceous and Tertiary, developed into the foreland of the North American Cordilleran foldbelt providing space for the accumulation of up to 16 km of foreland deposits. We present a 3D geological model which integrates the present topography, depth maps of Upper Cretaceous and Tertiary horizons (Kroeger et al., 2008, 2009), tops of formations derived from interpreted 2D reflection seismic lines and 284 boreholes (released by the National Energy Board of Canada), and the sequence stratigraphic framework established by previous studies (e.g. Dixon et al., 1996). To determine the position and geometry of the crust-mantle boundary, an isostatic calculation (Airýs model) is applied to the geological model. We present different crustal-scale models combining isostatic modelling, published deep reflection and refraction seismic lines (e.g. Stephenson et al., 1994; O'Leary et al., 1995), and calculations of the 3D conductive thermal field. References: Dixon, J., 1996. Geological Atlas of the Beaufort-Mackenzie Area, Geological Survey of Canada Miscellaneous Report, 59, Ottawa, 173 pp. Kroeger, K.F., Ondrak, R., di Primio, R. and Horsfield, B., 2008. A three-dimensional insight into the Mackenzie Basin (Canada): Implications for the thermal history and hydrocarbon generation potential of Tertiary deltaic sequences, AAPG Bulletin, 92(2): 225-247. Kroeger, K.F., di Primio, R. and Horsfield, B., (2009). Hydrocarbon flow modeling in complex structures (Mackenzie Basin, Canada), AAPG Bulletin, 93(9): 1-25. O'Leary, D.M., Ellis, R.M., Stephenson, R.A., Lane, L.S. and Zelt, C.A., 1995. Crustal structure of the northern Yukon and Mackenzie Delta, northwestern Canada, Journal of Geophysical Research 100(B7): 9905-9920. Stephenson, R.A., Coflin, K.C., Lane, L.S. and Dietrich, J.R., 1994. Crustal structure and tectonics of the southeastern Beaufort Sea continental margin, Tectonics, 13(2): 389-400.

  15. Scenarios of Earth system change in western Canada: Conceptual understanding and process insights from the Changing Cold Regions Network

    NASA Astrophysics Data System (ADS)

    DeBeer, C. M.; Wheater, H. S.; Pomeroy, J. W.; Stewart, R. E.; Turetsky, M. R.; Baltzer, J. L.; Pietroniro, A.; Marsh, P.; Carey, S.; Howard, A.; Barr, A.; Elshamy, M.

    2017-12-01

    The interior of western Canada has been experiencing rapid, widespread, and severe hydroclimatic change in recent decades, and this is projected to continue in the future. To better assess future hydrological, cryospheric and ecological states and fluxes under future climates, a regional hydroclimate project was formed under the auspices of the Global Energy and Water Exchanges (GEWEX) project of the World Climate Research Programme; the Changing Cold Regions Network (CCRN; www.ccrnetwork.ca) aims to understand, diagnose, and predict interactions among the changing Earth system components at multiple spatial scales over the Mackenzie and Saskatchewan River basins of western Canada. A particular challenge is in applying land surface and hydrological models under future climates, as system changes and cold regions process interactions are not often straightforward, and model structures and parameterizations based on historical observations and understanding of contemporary system functioning may not adequately capture these complexities. To address this and provide guidance and direction to the modelling community, CCRN has drawn insights from a multi-disciplinary perspective on the process controls and system trajectories to develop a set of feasible scenarios of change for the 21st century across the region. This presentation will describe CCRN's efforts towards formalizing these insights and applying them in a large-scale modelling context. This will address what are seen as the most critical processes and key drivers affecting hydrological, cryospheric and ecological change, how these will most likely evolve in the coming decades, and how these are parameterized and incorporated as future scenarios for terrestrial ecology, hydrological functioning, permafrost state, glaciers, agriculture, and water management.

  16. A 24.5-Year Global Dataset of Direct Normal Irradiance: Result from the Application of a Global-to-Beam Model to the NASA GEWEX SRB Global Horizontal Irradiance

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Stackhouse, P. W.; Chandler, W.; Hoell, J. M., Jr.; Westberg, D. J.

    2015-12-01

    The DIRINDEX model has previously been applied to the NASA GEWEX SRB Release 3.0 global horizontal irradiances (GHIs) to derive 3-hourly, daily and monthly mean direct normal irradiances (DNIs) for the period from 2000 to 2005 (http://dx.doi.org/10.1016/j.solener.2014.09.006), though the model was originally designed to estimate hourly DNIs from hourly GHIs. Input to the DIRINDEX model comprised 1.) the 3-hourly all-sky and clear-sky GHIs from the GEWEX SRB dataset; 2.) the surface pressure and the atmospheric column water vapor from the GEOS4 dataset; and 3.) daily mean aerosol optical depth at 700 nm derived from the daily mean aerosol data from the Model of Atmospheric Transport and CHemistry (MATCH). The GEWEX SRB data is spatially available on a quasi-equal-area global grid system consisting of 44016 boxes ranging from 1 degree latitude by 1 degree longitude around the Equator to 1 degree latitude by 120 degree longitude next to the poles. The derived DNIs were on the same grid system. Due to the limited availability of the MATCH aerosol data, the model was applied to the years from 2000 to 2005 only. The results were compared with ground-based measurements from 39 sites of the Baseline Surface Radiation Network (BSRN). The comparison statistics show that the results were in better agreement with their BSRN counterparts than the current Surface meteorology and Solar Energy (SSE) Release 6.0 data (https://eosweb.larc.nasa.gov/sse/). In this paper, we present results from the model over the entire time span of the GEWEX SRB Release 3.0 data (July 1983 to December2007) in which the MERRA atmospheric data were substituted for the GEOS4 data, and the Max-Planck Aerosol Climatology Version 1 (MAC-v1) data for the MATCH data. As a consequence, we derived a 24.5-year DNI dataset of global coverage continuous from July 1983 to December 2007. Comparisons with the BSRN data show that the results are comparable in quality with that from the earlier application.

  17. Mackenzie River Delta, Canada

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Mackenzie River in the Northwest Territories, Canada, with its headstreams the Peace and Finley, is the longest river in North America at 4241 km, and drains an area of 1,805,000 square km. The large marshy delta provides habitat for migrating Snow Geese, Tundra Swans, Brant, and other waterfowl. The estuary is a calving area for Beluga whales. The Mackenzie (previously the Disappointment River) was named after Alexander Mackenzie who travelled the river while trying to reach the Pacific in 1789.

    The image was acquired on August 4, 2005, covers an area of 55.8 x 55.8 km, and is located at 68.6 degrees north latitude, 134.7 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  18. Integrated regional assessment of global climatic change: lessons from the Mackenzie Basin Impact Study (MBIS)

    NASA Astrophysics Data System (ADS)

    Cohen, Stewart J.

    1996-04-01

    This paper outlines the potential role integrated regional assessments of global climatic change scenarios could play in building better links between science and related policy concerns. The concept is illustrated through description of an ongoing case study from Canada—the Mackenzie Basin Impact Study (MBIS). As part of the Government of Canada's Green Plan, the Global Warming Science Program includes a study of regional impacts of global warming scenarios in the Mackenzie Basin, located in northwestern Canada. The MBIS is a six-year program focussing on potential climate-induced changes in the land and water resource base, and the implications of four scenarios of global climatic change on land use and economic policies in this region. These policy issues include interjurisdictional water management, sustainability of native lifestyles, economic development opportunities (agriculture, forestry, tourism, etc.), sustainability of ecosystems and infrastructure maintenance. MBIS is due to be completed in 1997. MBIS represents an attempt to address regional impacts by incorporating a "family of integrators" into the study framework, and by directly involving stakeholders in planning and research activities. The experience in organizing and carrying out this project may provide some lessons for others interested in organizing regional or country studies.

  19. Shear Wave Splitting Underneath Northwest Canada and Eastern Alaska from Transportable Array and Mackenzie Mountains Data

    NASA Astrophysics Data System (ADS)

    Schutt, D.; Witt, D. R.; Aster, R. C.; Freymueller, J.; Cubley, J. F.

    2017-12-01

    Shear wave splitting results from the Northern Cordillera and surroundings will be presented. This complex tectonic setting contains a subduction zone responding to the Yakutat Indenter, an oceanic plateau fragment, a slab window under the Yukon Territory, and the actively uplifting Mackenzie Mountains. A particular goal of this project is to understand whether asthenospheric tractions play a significant role in Mackenzie Mountain uplift. Using a new method for calculating station-averaged splitting parameters, we have analyzed stations that span a large part of the region and therefore can see the variation in splitting parameters from the dynamic NA-PA subduction zone to the stable Slave Craton. Like other shear wave splitting studies in the Northern Cordillera, we find abrupt changes in fast axis direction along the continental margin, while the continental interior displays more coherent splitting parameters. This study is also the first to look at data from a recent deployment through center of the Mackenzie Mountains. Northeast of the Tintina Fault, we find average fast axes directions that are very close to the absolute NA plate motion but our large deviations from event to event suggest that there is some crustal anisotropy and/or dipping structure present. This observation appears to support the idea of a lower crustal décollement that has been put forth by Mazzoti and Hyndman [2002]. These results serve as a broad regional overview of mantle anisotropy and may also shed light on frozen lithospheric deformation.

  20. How well do we understand the Earth's radiation budget and the role of clouds? Selected results of the GEWEX radiation flux assessment

    NASA Astrophysics Data System (ADS)

    Raschke, E.; Kinne, S.

    2013-05-01

    Multi-year average radiative flux maps of three satellite data-sets (CERES, ISSCP and GEWEX-SRB) are compared to each other and to typical values by global modeling (median values of results of 20 climate models of the 4th IPCC Assessment). Diversity assessments address radiative flux products and at the top of the atmosphere (TOA) and the surface, with particular attention to impacts by clouds. Involving both data from surface and TOA special attention is given to the vertical radiation flux divergence and on the infrared Greenhouse effect, which are rarely shown in literature.

  1. An overview of results from the GEWEX radiation flux assessment

    NASA Astrophysics Data System (ADS)

    Raschke, E.; Stackhouse, P.; Kinne, S.; Contributors from Europe; the USA

    2013-05-01

    Multi-annual radiative flux averages of the International Cloud Climatology Project (ISCCP), of the GEWEX - Surface Radiation Budget Project (SRB) and of the Clouds and Earth Radiative Energy System (CERES) are compared and analyzed to characterize the Earth's radiative budget, assess differences and identify possible causes. These satellite based data-sets are also compared to results of a median model, which represents 20 climate models, that participated in the 4th IPCC assessment. Consistent distribution patterns and seasonal variations among the satellite data-sets demonstrate their scientific value, which would further increase if the datasets would be reanalyzed with more accurate and consistent ancillary data.

  2. Response to Mackenzie

    ERIC Educational Resources Information Center

    Peers, Chris

    2014-01-01

    Chris Peers begins his response to Jim Mackenzie's article, "Peers on Socrates and Plato" by asking "What is the 'masculine imaginary?'" Peers defines the term "imaginary" as it is applied in his article, "Freud, Plato and Irigaray: A Morpho-Logic of Teaching and Learning" (2012) and draws…

  3. Investigation of Attitudinal Differences among Individuals of Different Employment Status

    DTIC Science & Technology

    2010-10-28

    be included in order to statistically control for common method variance (see Podsakoff , MacKenzie, Lee, & Podsakoff , 2003). Results Hypotheses 1...social identity theory. Social Psychology Quarterly, 58, 255-269. Podsakoff , P. M., MacKenzie, S. B., Lee, J., & Podsakoff , N. P. (2003). Common method

  4. Against "Ressentiment": Response to Mackenzie

    ERIC Educational Resources Information Center

    Dahlbeck, Johan

    2016-01-01

    Johan Dahlbeck works as senior lecturer at Malmo University. His research interest is in the philosophy of education, focusing especially on ethics and the pedagogical implications of Spinoza's philosophy. In this article, he responds to Jim Mackenzie's "Dahlbeck and Pure Ontology" (EJ1105980), which was written in reply to his…

  5. Confronting Models with Data: The GEWEX Cloud Systems Study

    NASA Technical Reports Server (NTRS)

    Randall, David; Curry, Judith; Duynkerke, Peter; Krueger, Steven; Moncrieff, Mitchell; Ryan, Brian; Starr, David OC.; Miller, Martin; Rossow, William; Tselioudis, George

    2002-01-01

    The GEWEX Cloud System Study (GCSS; GEWEX is the Global Energy and Water Cycle Experiment) was organized to promote development of improved parameterizations of cloud systems for use in climate and numerical weather prediction models, with an emphasis on the climate applications. The strategy of GCSS is to use two distinct kinds of models to analyze and understand observations of the behavior of several different types of clouds systems. Cloud-system-resolving models (CSRMs) have high enough spatial and temporal resolutions to represent individual cloud elements, but cover a wide enough range of space and time scales to permit statistical analysis of simulated cloud systems. Results from CSRMs are compared with detailed observations, representing specific cases based on field experiments, and also with statistical composites obtained from satellite and meteorological analyses. Single-column models (SCMs) are the surgically extracted column physics of atmospheric general circulation models. SCMs are used to test cloud parameterizations in an un-coupled mode, by comparison with field data and statistical composites. In the original GCSS strategy, data is collected in various field programs and provided to the CSRM Community, which uses the data to "certify" the CSRMs as reliable tools for the simulation of particular cloud regimes, and then uses the CSRMs to develop parameterizations, which are provided to the GCM Community. We report here the results of a re-thinking of the scientific strategy of GCSS, which takes into account the practical issues that arise in confronting models with data. The main elements of the proposed new strategy are a more active role for the large-scale modeling community, and an explicit recognition of the importance of data integration.

  6. Mineralogical, geochemical, and magnetic signatures of surface sediments from the Canadian Beaufort Shelf and Amundsen Gulf (Canadian Arctic)

    NASA Astrophysics Data System (ADS)

    Gamboa, Adriana; Montero-Serrano, Jean-Carlos; St-Onge, Guillaume; Rochon, André; Desiage, Pierre-Arnaud

    2017-02-01

    Mineralogical, geochemical, magnetic, and siliciclastic grain-size signatures of 34 surface sediment samples from the Mackenzie-Beaufort Sea Slope and Amundsen Gulf were studied in order to better constrain the redox status, detrital particle provenance, and sediment dynamics in the western Canadian Arctic. Redox-sensitive elements (Mn, Fe, V, Cr, Zn) indicate that modern sedimentary deposition within the Mackenzie-Beaufort Sea Slope and Amundsen Gulf took place under oxic bottom-water conditions, with more turbulent mixing conditions and thus a well-oxygenated water column prevailing within the Amundsen Gulf. The analytical data obtained, combined with multivariate statistical (notably, principal component and fuzzy c-means clustering analyses) and spatial analyses, allowed the division of the study area into four provinces with distinct sedimentary compositions: (1) the Mackenzie Trough-Canadian Beaufort Shelf with high phyllosilicate-Fe oxide-magnetite and Al-K-Ti-Fe-Cr-V-Zn-P contents; (2) Southwestern Banks Island, characterized by high dolomite-K-feldspar and Ca-Mg-LOI contents; (3) the Central Amundsen Gulf, a transitional zone typified by intermediate phyllosilicate-magnetite-K-feldspar-dolomite and Al-K-Ti-Fe-Mn-V-Zn-Sr-Ca-Mg-LOI contents; and (4) mud volcanoes on the Canadian Beaufort Shelf distinguished by poorly sorted coarse-silt with high quartz-plagioclase-authigenic carbonate and Si-Zr contents, as well as high magnetic susceptibility. Our results also confirm that the present-day sedimentary dynamics on the Canadian Beaufort Shelf is mainly controlled by sediment supply from the Mackenzie River. Overall, these insights provide a basis for future studies using mineralogical, geochemical, and magnetic signatures of Canadian Arctic sediments in order to reconstruct past variations in sediment inputs and transport pathways related to late Quaternary climate and oceanographic changes.

  7. Surface radiation budget in the Clouds and the Earth's Radiant Energy System (CERES) effort and in the Global Energy and Water Cycle Experiment (GEWEX)

    NASA Technical Reports Server (NTRS)

    Charlock, Thomas P.; Smith, G. L.; Rose, Fred G.

    1990-01-01

    The surface radiation budget (SRB) and the atmospheric radiative flux divergence (ARD) are vital components of the weather and climate system. The importance of radiation in a complex international scientific endeavor, the GEWEX of the World Climate Research Programme is explained. The radiative transfer techniques and satellite instrumentation that will be used to retrieve the SRB and ARD later in this decade with the CERES are discussed; CERES is a component of the Earth Observing System satellite program. Examples of consistent SRB and ARD retrievals made with Nimbus-7 and International Satellite Cloud Climatology Project data from July 1983 are presented.

  8. Early and abrupt retreat of the Laurentide Ice Sheet margin from the Mackenzie River valley, southern Northwest Territories

    NASA Astrophysics Data System (ADS)

    Margold, Martin; Froese, Duane G.; Gosse, John C.; Yang, Guang; McKenna, Jillian; Hidy, Alan J.

    2017-04-01

    The detachment of the Laurentide Ice Sheet margin from the Canadian Cordillera opened the present-day drainage route of the Mackenzie River to the Arctic Ocean and an ice-free corridor that allowed for migration of species between Beringia and the mid-latitudes of North America. The existing ice-margin chronology depicts the southern reach of the Mackenzie River between 61 and 63° N as glaciated until about 13 ka, representing the last portion of the Laurentide Ice Sheet margin abutting the eastern foot of the Cordillera. A substantial retreat of the ice sheet margin in this region has been suggested to have occurred during the subsequent Younger Dryas cold period, despite the fact that in many other regions ice masses stabilised or even re-grew at this time. However, until now, deglacial chronometry for this region and the western LIS margin is sparse and consists mostly of minimum-limiting macrofossil and bulk C-14 ages from organics materials overlying glacial sediment. With the aim to bring new data on the deglaciation history of the Mackenzie River valley, we collected samples for Be-10 exposure dating from glacial erratic boulders in the southern Franklin Mountains that bound the Mackenzie River valley from the east. The sampling elevations ranged between 1480 and 800 m a.s.l., however, the measured ages show only a weak correlation with elevation. Instead, 10 out of 12 measured samples cluster tightly around 15 ka, with the remaining two samples likely containing Be-10 inherited from previous periods of exposure. Our results thus indicate a pre-Younger Dryas rapid down-wasting of the ice sheet surface, which we infer was accompanied by an ice margin retreat to the southeast. The southern reach of the Mackenzie River valley at the eastern foot of the Cordillera was, according to our results, ice free shortly after 15 ka, with the prospect that the ice-free corridor might have opened significantly earlier than hitherto anticipated. Further research is required in the region south of our study area to establish a firm chronological control on the separation of the Cordilleran and Laurentide ice sheets and the opening of the ice free corridor.

  9. Mackenzie River Delta morphological change based on Landsat time series

    NASA Astrophysics Data System (ADS)

    Vesakoski, Jenni-Mari; Alho, Petteri; Gustafsson, David; Arheimer, Berit; Isberg, Kristina

    2015-04-01

    Arctic rivers are sensitive and yet quite unexplored river systems to which the climate change will impact on. Research has not focused in detail on the fluvial geomorphology of the Arctic rivers mainly due to the remoteness and wideness of the watersheds, problems with data availability and difficult accessibility. Nowadays wide collaborative spatial databases in hydrology as well as extensive remote sensing datasets over the Arctic are available and they enable improved investigation of the Arctic watersheds. Thereby, it is also important to develop and improve methods that enable detecting the fluvio-morphological processes based on the available data. Furthermore, it is essential to reconstruct and improve the understanding of the past fluvial processes in order to better understand prevailing and future fluvial processes. In this study we sum up the fluvial geomorphological change in the Mackenzie River Delta during the last ~30 years. The Mackenzie River Delta (~13 000 km2) is situated in the North Western Territories, Canada where the Mackenzie River enters to the Beaufort Sea, Arctic Ocean near the city of Inuvik. Mackenzie River Delta is lake-rich, productive ecosystem and ecologically sensitive environment. Research objective is achieved through two sub-objectives: 1) Interpretation of the deltaic river channel planform change by applying Landsat time series. 2) Definition of the variables that have impacted the most on detected changes by applying statistics and long hydrological time series derived from Arctic-HYPE model (HYdrologic Predictions for Environment) developed by Swedish Meteorological and Hydrological Institute. According to our satellite interpretation, field observations and statistical analyses, notable spatio-temporal changes have occurred in the morphology of the river channel and delta during the past 30 years. For example, the channels have been developing in braiding and sinuosity. In addition, various linkages between the studied explanatory variables, such as land cover, precipitation, evaporation, discharge, snow mass and temperature, were found. The significance of this research is emphasised by the growing population, increasing tourism, and economic actions in the Arctic mainly due to the ongoing climate change and technological development.

  10. Application of CCME Water Quality Index to monitor water quality: a case study of the Mackenzie River Basin, Canada.

    PubMed

    Lumb, Ashok; Halliwell, Doug; Sharma, Tribeni

    2006-02-01

    All six ecosystem initiatives evolved from many years of federal, provincial, First Nation, local government and community attention to the stresses on sensitive habitats and species, air and water quality, and the consequent threats to community livability. This paper assesses water quality aspect for the ecosystem initiatives and employs newly developed Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) which provides a convenient mean of summarizing complex water quality data that can be easily understood by the public, water distributors, planners, managers and policy makers. The CCME WQI incorporates three elements: Scope - the number of water quality parameters (variables) not meeting water quality objectives (F(1)); Frequency - the number of times the objectives are not met (F(2)); and Amplitude. the extent to which the objectives are not met (F(3)). The index produces a number between 0 (worst) to 100 (best) to reflect the water quality. This study evaluates water quality of the Mackenzie - Great Bear sub-basin by employing two modes of objective functions (threshold values): one based on the CCME water quality guidelines and the other based on site-specific values that were determined by the statistical analysis of the historical data base. Results suggest that the water quality of the Mackenzie-Great Bear sub-basin is impacted by high turbidity and total (mostly particulate) trace metals due to high suspended sediment loads during the open water season. Comments are also provided on water quality and human health issues in the Mackenzie basin based on the findings and the usefulness of CCME water quality guidelines and site specific values.

  11. Results of exploratory drilling at Point MacKenzie, Alaska, 1981

    USGS Publications Warehouse

    Patrick, Leslie

    1981-01-01

    The Matanuska-Susitna Borough anticipates industrial development near Point MacKenzie, Alaska. Because little hydrologic information is available for the area, the Borough contracted for the drilling of two test wells. It was found that: Both wells penetrated unconsolidated stratified clay, silt, sand, and gravel; each well penetrated a shallow unconfined and deeper confined aquifers; the water levels in the wells rise and fall with the tide; the chemical analyses indicate that the water quality meets the Alaska Drinking Water Standards, except for slightly high levels of manganese and pH; and the potential for saltwater intrusion should be evaluated as part of future studies. (USGS)

  12. Assessment of the global monthly mean surface insolation estimated from satellite measurements using global energy balance archive data

    NASA Technical Reports Server (NTRS)

    Li, Zhanqing; Whitlock, Charles H.; Charlock, Thomas P.

    1995-01-01

    Global sets of surface radiation budget (SRB) have been obtained from satellite programs. These satellite-based estimates need validation with ground-truth observations. This study validates the estimates of monthly mean surface insolation contained in two satellite-based SRB datasets with the surface measurements made at worldwide radiation stations from the Global Energy Balance Archive (GEBA). One dataset was developed from the Earth Radiation Budget Experiment (ERBE) using the algorithm of Li et al. (ERBE/SRB), and the other from the International Satellite Cloud Climatology Project (ISCCP) using the algorithm of Pinker and Laszlo and that of Staylor (GEWEX/SRB). Since the ERBE/SRB data contain the surface net solar radiation only, the values of surface insolation were derived by making use of the surface albedo data contained GEWEX/SRB product. The resulting surface insolation has a bias error near zero and a root-mean-square error (RMSE) between 8 and 28 W/sq m. The RMSE is mainly associated with poor representation of surface observations within a grid cell. When the number of surface observations are sufficient, the random error is estimated to be about 5 W/sq m with present satellite-based estimates. In addition to demonstrating the strength of the retrieving method, the small random error demonstrates how well the ERBE derives from the monthly mean fluxes at the top of the atmosphere (TOA). A larger scatter is found for the comparison of transmissivity than for that of insolation. Month to month comparison of insolation reveals a weak seasonal trend in bias error with an amplitude of about 3 W/sq m. As for the insolation data from the GEWEX/SRB, larger bias errors of 5-10 W/sq m are evident with stronger seasonal trends and almost identical RMSEs.

  13. The Validation of the GEWEX SRB Surface Shortwave Flux Data Products Using BSRN Measurements: A Systematic Quality Control, Production and Application Approach

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Cox, Stephen J.; Mikovitz, J. Colleen; Hinkelman, Laura M.

    2013-01-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project has produced a 24.5-year continuous record of global shortwave and longwave radiation fluxes at TOA and the Earth's surface from satellite measurements. The time span of the data is from July 1983 to December 2007, and the spatial resolution is 11 latitude11 longitude. The inputs of the latest version (Release 3.0) include the GEOS Version 4.0.3 meteorological information and cloud properties derived from ISCCP DX data. The SRB products are available on 3-hourly, 3-hourly-monthly, daily and monthly time scales. To assess the quality of the product, we extensively validated the SRB data against 5969 site-months of groundbased measurements from 52 Baseline Surface Radiation Network (BSRN) stations. This paper describes first the characteristics of the BSRN data and the GEWEX SRB data, the methodology for quality control and processing of the shortwave BSRN data, and then the systematic SRB-BSRN comparisons. It is found that, except for occasional extreme outliers as seen in scatter plots, the satellite-based surface radiation data generally agree very well with BSRN measurements. Specifically, the bias/RMS for the daily and monthly mean shortwave fluxes are, respectively, -3.6/35.5 and -5.2/23.3W1 m2 under all-sky conditions.

  14. Inorganic carbon fluxes on the Mackenzie Shelf of the Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Mol, Jacoba; Thomas, Helmuth; Myers, Paul G.; Hu, Xianmin; Mucci, Alfonso

    2018-02-01

    The Mackenzie Shelf in the southeastern Beaufort Sea is a region that has experienced large changes in the past several decades as warming, sea-ice loss, and increased river discharge have altered carbon cycling. Upwelling and downwelling events are common on the shelf, caused by strong, fluctuating along-shore winds, resulting in cross-shelf Ekman transport, and an alternating estuarine and anti-estuarine circulation. Downwelling carries dissolved inorganic carbon (DIC) and other remineralization products off the shelf and into the deep basin for possible long-term storage in the world's oceans. Upwelling carries DIC and nutrient-rich waters from the Pacific-origin upper halocline layer (UHL) onto the shelf. Profiles of DIC and total alkalinity (TA) taken in August and September of 2014 are used to investigate the cycling of carbon on the Mackenzie Shelf. The along-shore transport of water and the cross-shelf transport of DIC are quantified using velocity field output from a simulation of the Arctic and Northern Hemisphere Atlantic (ANHA4) configuration of the Nucleus of European Modelling of the Ocean (NEMO) framework. A strong upwelling event prior to sampling on the Mackenzie Shelf took place, bringing CO2-rich (elevated pCO2) water from the UHL onto the shelf bottom. The maximum on-shelf DIC flux was estimated at 16.9×103 mol C d-1 m-2 during the event. The maximum on-shelf transport of DIC through the upwelling event was found to be 65±15×10-3 Tg C d-1. TA and the oxygen isotope ratio of water (δ18O-H2O) are used to examine water-mass distributions in the study area and to investigate the influence of Pacific Water, Mackenzie River freshwater, and sea-ice melt on carbon dynamics and air-sea fluxes of carbon dioxide (CO2) in the surface mixed layer. Understanding carbon transfer in this seasonally dynamic environment is key to quantify the importance of Arctic shelf regions to the global carbon cycle and provide a basis for understanding how it will respond to the aforementioned climate-induced changes.

  15. GEWEX Water and Energy Budget Study

    NASA Technical Reports Server (NTRS)

    Roads, J.; Bainto, E.; Masuda, K.; Rodell, Matthew; Rossow, W. B.

    2008-01-01

    Closing the global water and energy budgets has been an elusive Global Energy and Water-cycle Experiment (GEWEX) goal. It has been difficult to gather many of the needed global water and energy variables and processes, although, because of GEWEX, we now have globally gridded observational estimates for precipitation and radiation and many other relevant variables such as clouds and aerosols. Still, constrained models are required to fill in many of the process and variable gaps. At least there are now several atmospheric reanalyses ranging from the early National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) and NCEP/Department of Energy (DOE) reanalyses to the more recent ERA40 and JRA-25 reanalyses. Atmospheric constraints include requirements that the models state variables remain close to in situ observations or observed satellite radiances. This is usually done by making short-term forecasts from an analyzed initial state; these short-term forecasts provide the next guess, which is corrected by comparison to available observations. While this analysis procedure is likely to result in useful global descriptions of atmospheric temperature, wind and humidity, there is no guarantee that relevant hydroclimate processes like precipitation, which we can observe and evaluate, and evaporation over land, which we cannot, have similar verisimilitude. Alternatively, the Global Land Data Assimilation System (GLDAS), drives uncoupled land surface models with precipitation, surface solar radiation, and surface meteorology (from bias-corrected reanalyses during the study period) to simulate terrestrial states and surface fluxes. Further constraints are made when a tuned water balance model is used to characterize the global runoff observational estimates. We use this disparate mix of observational estimates, reanalyses, GLDAS and calibrated water balance simulations to try to characterize and close global and terrestrial atmospheric and surface water and energy budgets to within 10-20% for long term (1986-1995), large-scale global to regional annual means.

  16. Trends and variability in the hydrological regime of the Mackenzie River Basin

    NASA Astrophysics Data System (ADS)

    Abdul Aziz, Omar I.; Burn, Donald H.

    2006-03-01

    Trends and variability in the hydrological regime were analyzed for the Mackenzie River Basin in northern Canada. The procedure utilized the Mann-Kendall non-parametric test to detect trends, the Trend Free Pre-Whitening (TFPW) approach for correcting time-series data for autocorrelation and a bootstrap resampling method to account for the cross-correlation structure of the data. A total of 19 hydrological and six meteorological variables were selected for the study. Analysis was conducted on hydrological data from a network of 54 hydrometric stations and meteorological data from a network of 10 stations. The results indicated that several hydrological variables exhibit a greater number of significant trends than are expected to occur by chance. Noteworthy were strong increasing trends over the winter month flows of December to April as well as in the annual minimum flow and weak decreasing trends in the early summer and late fall flows as well as in the annual mean flow. An earlier onset of the spring freshet is noted over the basin. The results are expected to assist water resources managers and policy makers in making better planning decisions in the Mackenzie River Basin.

  17. Production of long-term global water vapor and liquid water data set using ultra-fast methods to assimilate multi-satellite and radiosonde observations

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Reinke, Donald L.; Randel, David L.; Stephens, Graeme L.; Combs, Cynthia L.; Greenwald, Thomas J.; Ringerud, Mark A.; Wittmeyer, Ian L.

    1993-01-01

    During the next decade, many programs and experiments under the Global Energy and Water Cycle Experiment (GEWEX) will utilize present day and future data sets to improve our understanding of the role of moisture in climate, and its interaction with other variables such as clouds and radiation. An important element of GEWEX will be the GEWEX Water Vapor Project (GVaP), which will eventually initiate a routine, real-time assimilation of the highest quality, global water vapor data sets including information gained from future data collection systems, both ground and space based. The comprehensive global water vapor data set being produced by METSAT Inc. uses a combination of ground-based radiosonde data, and infrared and microwave satellite retrievals. This data is needed to provide the desired foundation from which future GEWEX-related research, such as GVaP, can build. The first year of this project was designed to use a combination of the best available atmospheric moisture data including: radiosonde (balloon/acft/rocket), HIRS/MSU (TOVS) retrievals, and SSM/I retrievals, to produce a one-year, global, high resolution data set of integrated column water vapor (precipitable water) with a horizontal resolution of 1 degree, and a temporal resolution of one day. The time period of this pilot product was to be det3ermined by the availability of all the input data sets. January 1988 through December 1988 were selected. In addition, a sample of vertically integrated liquid water content (LWC) was to be produced with the same temporal and spatial parameters. This sample was to be produced over ocean areas only. Three main steps are followed to produce a merged water vapor and liquid water product. Input data from Radiosondes, TOVS, and SSMI/I is quality checked in steps one and two. Processing is done in step two to generate individual total column water vapor and liquid water data sets. The third step, and final processing task, involves merging the individual output products to produce the integrated water vapor product. A final quality control is applied to the merged data sets.

  18. Morell Mackenzie's Contribution to the Description of Spasmodic Dysphonia.

    PubMed

    Lorch, Marjorie Perlman; Whurr, Renata

    2016-12-01

    Since the middle of the 20th century, most discussions of spasmodic dysphonia (SD) reference a paper by Ludwig Traube published in1871 as the first historical citation, crediting him with priority for this clinical syndrome. However, our recent research has determined that the original observation by Traube was published in 1864 and does not in fact describe what is currently recognized as SD. It appears that many clinics throughout Europe and North America were investigating and publishing observations on a range of voice disorders. The wider context of work on laryngeal disorders in the 1860s-1870s is considered. One of Traube's contemporaries, Morell Mackenzie, made significant contributions to the understanding of laryngeal movement disorder and its consequences for the voice. These will be examined to gain a clearer focus on the characterization of this disorder. The clinical descriptions published by Morrell Mackenzie in the 1860s provide details that conform quite closely to our current-day understanding of SD. The citation of Traube's "hysterical" patient links to mid 20th-century views of the functional nature of SD and the utility of psychiatric treatment. The description presented by Mackenzie is consistent with current views of SD as a movement disorder. © The Author(s) 2016.

  19. Influence of Organizational Culture on the Relationship Between Psychological Contracts and Organizational Citizenship Behavior

    DTIC Science & Technology

    2006-03-01

    Vroom, VV. H. (1964). Work and motivation. New York, NY: Wiley. Yeung, A., Brockbank , J.W., & Ulrich , D.O. (1991). Organizational culture and human...Podsakoff, Ahearne, & MacKenzie, 1997 ) that OCB is a critical area that must be researched, since these contributions may be essential to the...Ahearne & MacKenzie, 1997 ) have also found 18 organizational citizenship behavior to be essential to effective functioning of an organization. For

  20. Broad-scale lake expansion and flooding inundates essential wood bison habitat

    NASA Astrophysics Data System (ADS)

    Korosi, Jennifer B.; Thienpont, Joshua R.; Pisaric, Michael F. J.; Demontigny, Peter; Perreault, Joelle T.; McDonald, Jamylynn; Simpson, Myrna J.; Armstrong, Terry; Kokelj, Steven V.; Smol, John P.; Blais, Jules M.

    2017-02-01

    Understanding the interaction between the response of a complex ecosystem to climate change and the protection of vulnerable wildlife species is essential for conservation efforts. In the Northwest Territories (Canada), the recent movement of the Mackenzie wood bison herd (Bison bison athabascae) out of their designated territory has been postulated as a response to the loss of essential habitat following regional lake expansion. We show that the proportion of this landscape occupied by water doubled since 1986 and the timing of lake expansion corresponds to bison movements out of the Mackenzie Bison Sanctuary. Historical reconstructions using proxy data in dated sediment cores show that the scale of recent lake expansion is unmatched over at least the last several hundred years. We conclude that recent lake expansion represents a fundamental alteration of the structure and function of this ecosystem and its use by Mackenzie wood bison, in response to climate change.

  1. Broad-scale lake expansion and flooding inundates essential wood bison habitat

    PubMed Central

    Korosi, Jennifer B.; Thienpont, Joshua R.; Pisaric, Michael F. J.; deMontigny, Peter; Perreault, Joelle T.; McDonald, Jamylynn; Simpson, Myrna J.; Armstrong, Terry; Kokelj, Steven V.; Smol, John P.; Blais, Jules M.

    2017-01-01

    Understanding the interaction between the response of a complex ecosystem to climate change and the protection of vulnerable wildlife species is essential for conservation efforts. In the Northwest Territories (Canada), the recent movement of the Mackenzie wood bison herd (Bison bison athabascae) out of their designated territory has been postulated as a response to the loss of essential habitat following regional lake expansion. We show that the proportion of this landscape occupied by water doubled since 1986 and the timing of lake expansion corresponds to bison movements out of the Mackenzie Bison Sanctuary. Historical reconstructions using proxy data in dated sediment cores show that the scale of recent lake expansion is unmatched over at least the last several hundred years. We conclude that recent lake expansion represents a fundamental alteration of the structure and function of this ecosystem and its use by Mackenzie wood bison, in response to climate change. PMID:28230049

  2. GEWEX-RFA Land-Ocean Mask

    Atmospheric Science Data Center

    2017-05-25

    ... for the Radiative Flux Assessment. It can be used as a filter for creating global, regional, or zonal time series for land or ocean. ... where coastal pixels have at least 10% of both land and water. Download file . ...

  3. SSE Transition to POWER

    Atmospheric Science Data Center

    2018-06-13

    ... web portal at https://power.larc.nasa.gov with improved solar and meteorology data and greatly enhanced capabilities to facilitate ... Agroclimatology communities.    The surface solar energy parameters have been customized and validated from NASA/GEWEX Surface ...

  4. Nearshore Circulation and Storm Surge Along the Mackenzie Delta Coast

    NASA Astrophysics Data System (ADS)

    Perrie, W.; Mulligan, R. P.; Solomon, S. M.; Hoque, A.; Zhang, L.

    2008-12-01

    The Mackenzie Delta is a 150 km long section of coastline characterized by muddy sediments where the Mackenzie River outflow, dispersed over 20 distributary channels, discharges into the southern Beaufort Sea. The marine environment in this region is an important and integral part of the lives of Canadian Northerners. The area is also undergoing hydrocarbon exploration with potential development within the next decade. Changes to Arctic climate, such as increasing ice-free western Arctic Ocean and intensifying storm activity, may endanger the coastal settlements and marine environment in the Mackenzie Delta region. The low gradient of the delta and the adjacent inner shelf makes it very susceptible to flooding during storms. Field observations in the nearshore zone collected in August of 2007 and 2008 indicate strong gradients in temperature and salinity in shallow water of 2-6 m. The fluctuations are associated with the movements of warm and fresh river plumes and wind-driven upwelling of cold and saline water below the thermocline. The observations are in agreement with 3D model simulations of the nearshore delta region using Delft3D, which includes wind, tidal, storm surge, buoyancy and river forcing. The results validate the model and indicate that it can be used to hindcast the nearshore oceanographic conditions during severe Arctic storms. As a case study we present preliminary model results for an Arctic storm from late 1999 that caused extensive vegetation die-off in the outer delta. This cyclone was a mesoscale Arctic storm that developed over the NE Pacific and western Bering Sea, intensified explosively in the Gulf of Alaska and developed into a meteorological bomb. The storm made landfall at Cape Newenham, Alaska, crossed the Rocky Mountains to the Yukon and Northwest Territories and re-intensified over a zone of high sea surface temperature gradients in the southern Beaufort Sea. Using the Canadian Mesoscale Compressible Community (MC2) atmospheric model, simulations of the storm pattern, track and intensity are in very good agreement with the NCEP re-analysis. This is model coupled to the Princeton Ocean Model (POM) and Hibler Ice Model, which are used to provide basin-scale driver fields and define the boundary conditions of the nearshore Delft3D model for the Mackenzie Delta region. Coastal damage was predominately caused by storm surge, and the high salinity flood waters that flowed over the surface of the outer delta.

  5. What is SRB?

    Atmospheric Science Data Center

    2015-10-28

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces and archives global 3-hourly, daily, monthly/3-hourly, and monthly averages of surface and top-of-atmospheric (TOA) longwave and shortwave radiative parameters on a 1°x1° grid....

  6. Seismic velocities within the sedimentary succession of the Canada Basin and southern Alpha-Mendeleev Ridge, Arctic Ocean: evidence for accelerated porosity reduction?

    USGS Publications Warehouse

    Shimeld, John; Li, Qingmou; Chian, Deping; Lebedeva-Ivanova, Nina; Jackson, Ruth; Mosher, David; Hutchinson, Deborah R.

    2016-01-01

    The Canada Basin and the southern Alpha-Mendeleev ridge complex underlie a significant proportion of the Arctic Ocean, but the geology of this undrilled and mostly ice-covered frontier is poorly known. New information is encoded in seismic wide-angle reflections and refractions recorded with expendable sonobuoys between 2007 and 2011. Velocity–depth samples within the sedimentary succession are extracted from published analyses for 142 of these records obtained at irregularly spaced stations across an area of 1.9E + 06 km2. The samples are modelled at regional, subregional and station-specific scales using an exponential function of inverse velocity versus depth with regionally representative parameters determined through numerical regression. With this approach, smooth, non-oscillatory velocity–depth profiles can be generated for any desired location in the study area, even where the measurement density is low. Practical application is demonstrated with a map of sedimentary thickness, derived from seismic reflection horizons interpreted in the time domain and depth converted using the velocity–depth profiles for each seismic trace. A thickness of 12–13 km is present beneath both the upper Mackenzie fan and the middle slope off of Alaska, but the sedimentary prism thins more gradually outboard of the latter region. Mapping of the observed-to-predicted velocities reveals coherent geospatial trends associated with five subregions: the Mackenzie fan; the continental slopes beyond the Mackenzie fan; the abyssal plain; the southwestern Canada Basin; and, the Alpha-Mendeleev magnetic domain. Comparison of the subregional velocity–depth models with published borehole data, and interpretation of the station-specific best-fitting model parameters, suggests that sandstone is not a predominant lithology in any of the five subregions. However, the bulk sand-to-shale ratio likely increases towards the Mackenzie fan, and the model for this subregion compares favourably with borehole data for Miocene turbidites in the eastern Gulf of Mexico. The station-specific results also indicate that Quaternary sediments coarsen towards the Beaufort-Mackenzie and Banks Island margins in a manner that is consistent with the variable history of Laurentide Ice Sheet advance documented for these margins. Lithological factors do not fully account for the elevated velocity–depth trends that are associated with the southwestern Canada Basin and the Alpha-Mendeleev magnetic domain. Accelerated porosity reduction due to elevated palaeo-heat flow is inferred for these regions, which may be related to the underlying crustal types or possibly volcanic intrusion of the sedimentary succession. Beyond exploring the variation of an important physical property in the Arctic Ocean basin, this study provides comparative reference for global studies of seismic velocity, burial history, sedimentary compaction, seismic inversion and overpressure prediction, particularly in mudrock-dominated successions.

  7. Seismic velocities within the sedimentary succession of the Canada Basin and southern Alpha-Mendeleev Ridge, Arctic Ocean: evidence for accelerated porosity reduction?

    NASA Astrophysics Data System (ADS)

    Shimeld, John; Li, Qingmou; Chian, Deping; Lebedeva-Ivanova, Nina; Jackson, Ruth; Mosher, David; Hutchinson, Deborah

    2016-01-01

    The Canada Basin and the southern Alpha-Mendeleev ridge complex underlie a significant proportion of the Arctic Ocean, but the geology of this undrilled and mostly ice-covered frontier is poorly known. New information is encoded in seismic wide-angle reflections and refractions recorded with expendable sonobuoys between 2007 and 2011. Velocity-depth samples within the sedimentary succession are extracted from published analyses for 142 of these records obtained at irregularly spaced stations across an area of 1.9E + 06 km2. The samples are modelled at regional, subregional and station-specific scales using an exponential function of inverse velocity versus depth with regionally representative parameters determined through numerical regression. With this approach, smooth, non-oscillatory velocity-depth profiles can be generated for any desired location in the study area, even where the measurement density is low. Practical application is demonstrated with a map of sedimentary thickness, derived from seismic reflection horizons interpreted in the time domain and depth converted using the velocity-depth profiles for each seismic trace. A thickness of 12-13 km is present beneath both the upper Mackenzie fan and the middle slope off of Alaska, but the sedimentary prism thins more gradually outboard of the latter region. Mapping of the observed-to-predicted velocities reveals coherent geospatial trends associated with five subregions: the Mackenzie fan; the continental slopes beyond the Mackenzie fan; the abyssal plain; the southwestern Canada Basin; and, the Alpha-Mendeleev magnetic domain. Comparison of the subregional velocity-depth models with published borehole data, and interpretation of the station-specific best-fitting model parameters, suggests that sandstone is not a predominant lithology in any of the five subregions. However, the bulk sand-to-shale ratio likely increases towards the Mackenzie fan, and the model for this subregion compares favourably with borehole data for Miocene turbidites in the eastern Gulf of Mexico. The station-specific results also indicate that Quaternary sediments coarsen towards the Beaufort-Mackenzie and Banks Island margins in a manner that is consistent with the variable history of Laurentide Ice Sheet advance documented for these margins. Lithological factors do not fully account for the elevated velocity-depth trends that are associated with the southwestern Canada Basin and the Alpha-Mendeleev magnetic domain. Accelerated porosity reduction due to elevated palaeo-heat flow is inferred for these regions, which may be related to the underlying crustal types or possibly volcanic intrusion of the sedimentary succession. Beyond exploring the variation of an important physical property in the Arctic Ocean basin, this study provides comparative reference for global studies of seismic velocity, burial history, sedimentary compaction, seismic inversion and overpressure prediction, particularly in mudrock-dominated successions.

  8. The Aoraki Mackenzie International Dark Sky Reserve and light pollution issues in New Zealand

    NASA Astrophysics Data System (ADS)

    Hearnshaw, John

    2015-08-01

    I will discuss the Aoraki Mackenzie International Dark Sky Reserve, recognized by IDA in 2012, and how the reserve is managed and promoted to the public to make them aware of light pollution issues and in order to promote star-gazing and astro-tourism. AMIDSR is the world's largest Dark Sky Reserve recognized by IDA and has gold tier status. We will have a Starlight festival in October to promote the Reserve to the public.

  9. Mackenzie's puzzle--the cornerstone of teaching and research in general practice.

    PubMed Central

    Murdoch, J C

    1997-01-01

    The new-found popularity of generalism as a political force has emphasized the need to clarify the essential philosophy that underpins its practice, teaching, and research. Drawing on the example of Sir James Mackenzie, the author seeks to clarify certain essential issues that need to be emphasized if we are to promote and develop general practice as a distinct academic discipline. Dissatisfaction, uncertainty about our role, and continuing contact with real people seems to be essential to continuing creativity. PMID:9474833

  10. Derivation of Lake Areas and Elevations for the Mackenzie Basin Using Satellite Remote Sensing

    NASA Technical Reports Server (NTRS)

    Birkett, Charon; Kite, Geoff

    1997-01-01

    Modelling hydrological processes in large watersheds flowing to the Arctic ocean is one step towards larger-scale modelling of the global water and energy cycles. Models of the Mackenzie River Basin (Northern Canada) are currently available but omit explicit routing of river flows through the three main lakes - Athabasca, Great Slave Lake and Great Bear Lake (Kite et al, 1994). These lakes occupy an area of 65,000 sq km but little gauge information is available. The levels of the lakes are only measured at a few points on the circumferences and river flows are only measured downstream. The hydraulic relationships between level/discharge and level/area/volume are uncertain. It has been previously shown that satellite remote sensing can be utilised in providing measurements of both lake surface area using imaging techniques and lake level using radar altimetry (Birkett, 1994). Here, we explore the application of these techniques to derive the lake levels and areas for the Mackenzie Basin lakes.

  11. The Big Splat, or How Our Moon Came to Be

    NASA Astrophysics Data System (ADS)

    MacKenzie, Dana

    2003-03-01

    The first popular book to explain the dramatic theory behind the Moon's genesis This lively science history relates one of the great recent breakthroughs in planetary astronomy-a successful theory of the birth of the Moon. Science journalist Dana Mackenzie traces the evolution of this theory, one little known outside the scientific community: a Mars-sized object collided with Earth some four billion years ago, and the remains of this colossal explosion-the Big Splat-came together to form the Moon. Beginning with notions of the Moon in ancient cosmologies, Mackenzie relates the fascinating history of lunar speculation, moving from Galileo and Kepler to George Darwin (son of Charles) and the Apollo astronauts, whose trips to the lunar surface helped solve one of the most enigmatic mysteries of the night sky: who hung the Moon? Dana Mackenzie (Santa Cruz, CA) is a freelance science journalist. His articles have appeared in such magazines as Science, Discover, American Scientist, The Sciences, and New Scientist.

  12. Cathodic protection for pipelines crossing the Mackenzie River at Norman Wells, Northwest Territories, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiskel, B.J.; Wozniewski, A.

    This paper reports on an oil production facility at Norman Wells, N.W.T. The production is centered around the Mackenzie River with oil being produced from wells located on natural and artificial islands as well as from wells located on the mainland. Pipelines have been installed beneath the river to route production from the islands back to the central processing plant on the mainland. Cathodic protection was required for the pipelines crossing the Mackenzie River to prevent external corrosion in an environmentally sensitive area. Several difficulties were encountered in preparing an optimum cathodic design due to the unique production scheme, permafrostmore » and logistical problems associated with the northern location. An innovative approach was therefore required for the design, installation and testing of the cathodic protection system. This paper describes evolution of the cathodic protection system from a conventional one to a system utilizing a close groundbed concept and unique current return path.« less

  13. NASA Finds Sea Ice Driving Arctic Air Pollutants Northwest Territories

    NASA Image and Video Library

    2012-03-01

    JPL-led study shows bromine explosion on March 13, 2008 across the western Northwest Territories in Canada looking toward the Mackenzie Mountains at the horizon, which prevented the bromine from crossing over into Alaska.

  14. The effect of hydrate content on seismic attenuation: A case study for Mallik 2L-38 well data, Mackenzie delta, Canada

    NASA Astrophysics Data System (ADS)

    Chand, Shyam; Minshull, Tim A.

    2004-07-01

    Observations of velocities in sediments containing gas hydrates show that the strength of sediments increases with hydrate saturation. Hence it is expected that the attenuation of these sediments will decrease with increasing hydrate saturation. However, sonic log measurements in the Mallik 2L-38 well and cross hole tomography measurements in the Mallik field have shown that attenuation increases with hydrate saturation. We studied a range of mechanisms by which increasing hydrate saturation could cause increased attenuation. We found that a difference in permeability between the host sediment and the newly formed hydrate can produce the observed effect. We modelled attenuation in terms of Biot and squirt flow mechanisms in composite media. We have used our model to predict observed attenuations in the Mallik 2L-38 well, Mackenzie Delta, Canada.

  15. The Processes Producing the Actively Uplifting Mackenzie Mountains in the Yukon and Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Rasmussen, B.; Aster, R. C.; Schutt, D.

    2016-12-01

    The actively uplifting and seismically active Mackenzie Mountains in the Yukon and Northwest Territories of Canada exist nearly 800 km from the Pacific plate subduction zone. As such, it is clear that traditional subduction zone orogenic mechanics are not at play. This mountain range may present a model for uplift of other ranges distant from plate boundaries, such as the Rockies or Ancestral Rockies. Due to its remote location, this region's lithospheric structure is poorly constrained. However, two hypotheses have been developed recently. The first proposes that stress from the Yakutat Indentor as it subducts under North America at the Gulf of Alaska is transferred deep inland through the upper crust, and that the lower crust and mantle lithosphere are very weak. As this weak lithosphere meets the strong Canadian Craton, lateral translation turns into uplift, forming the Mackenzies (Mazzotti and Hyndman, 2002, Geology, v. 30, no.6). Alternatively, it may be that mantle flow from the north is deflected eastward by the Yakutat slab, producing large scale mantle flow and stress which propagates through the crust to uplift the Mackzenzie Mountains without an abnormally weak lithosphere (Finzel, 2015, Geophys. Res. Lett., 42, 4350-4358). Both cases imply distinct isotropic and anisotropic structure that will be constrained through Rayleigh wave tomography. Notably, we will take advantage of the recent deployment of several Earthscope Transportable Array stations nearby, and some preliminary data from the ongoing Mackenzie Mountains Earthscope Project.

  16. Monitoring ice break-up on the Mackenzie River using MODIS data

    NASA Astrophysics Data System (ADS)

    Muhammad, P.; Duguay, C.; Kang, K.-K.

    2016-03-01

    The aim of this study was to develop an approach for estimating ice break-up dates on the Mackenzie River (MR) using more than a decade of MODIS Level 3 500 m snow products (MOD/MYD10A1), complemented with 250 m Level 1B radiance products (MOD/MYD02QKM) from the Terra and Aqua satellite platforms. The analysis showed break-up began on average between days of year (DOYs) 115 and 125 and ended between DOYs 145 and 155 over 13 ice seasons (2001-2013), resulting in an average melt duration of ca. 30-40 days. Thermal processes were more important in driving ice break-up south of the MR confluence with the Liard River, while dynamically driven break-up was more important north of the Liard. A comparison of the timing of ice disappearance with snow disappearance from surrounding land areas of the MR with MODIS Level 3 snow products showed varying relationships along the river. Ice-off and snow-off timing were in sync north of the MR-Liard River confluence and over sections of the MR before it enters the Mackenzie Delta, but ice disappeared much later than snow on land in regions where thermal ice break-up processes dominated. MODIS observations revealed that channel morphology is a more important control of ice break-up patterns than previously believed with ice runs on the MR strongly influenced by channel morphology (islands and bars, confluences and channel constriction). Ice velocity estimates from feature tracking were able to be made in 2008 and 2010 and yielded 3-4-day average ice velocities of 1.21 and 1.84 m s-1 respectively, which is in agreement with estimates from previous studies. These preliminary results confirm the utility of daily MODIS data for monitoring ice break-up processes along the Mackenzie River. The addition of optical and synthetic aperture radar data from recent and upcoming satellite missions (e.g. Sentinel-1/2/3 and RADARSAT Constellation) would improve the monitoring of ice break-up in narrower sections of the MR.

  17. Optical Characterisation of Suspended Particles in the Mackenzie River Plume (Canadian Arctic Ocean) and Implications for Ocean Colour Remote Sensing

    NASA Technical Reports Server (NTRS)

    Doxaran, D.; Ehn, J.; Belanger, S.; Matsuoka, A.; Hooker, S.; Babin, M.

    2012-01-01

    Climate change significantly impacts Arctic shelf regions in terms of air temperature, ultraviolet radiation, melting of sea ice, precipitation, thawing of permafrost and coastal erosion. Direct consequences have been observed on the increasing Arctic river flow and a large amount of organic carbon sequestered in soils at high latitudes since the last glacial maximum can be expected to be delivered to the Arctic Ocean during the coming decade. Monitoring the fluxes and fate of this terrigenous organic carbon is problematic in such sparsely populated regions unless remote sensing techniques can be developed and proved to be operational. The main objective of this study is to develop an ocean colour algorithm to operationally monitor dynamics of suspended particulate matter (SPM) on the Mackenzie River continental shelf (Canadian Arctic Ocean) using satellite imagery. The water optical properties are documented across the study area and related to concentrations of SPM and particulate organic carbon (POC). Robust SPM and POC : SPM proxies are identified, such as the light backscattering and attenuation coefficients, and relationships are established between these optical and biogeochemical parameters. Following a semi-analytical approach, a regional SPM quantification relationship is obtained for the inversion of the water reflectance signal into SPM concentration. This relationship is reproduced based on independent field optical measurements. It is successfully applied to a selection of MODIS satellite data which allow estimating fluxes at the river mouth and monitoring the extension and dynamics of the Mackenzie River surface plume in 2009, 2010 and 2011. Good agreement is obtained with field observations representative of the whole water column in the river delta zone where terrigenous SPM is mainly constrained (out of short periods of maximum river outflow). Most of the seaward export of SPM is observed to occur within the west side of the river mouth. Future work will require the validation of the developed SPM regional algorithm based on match-ups with field measurements, then the routine application to ocean colour satellite data in order to better estimate the fluxes and fate of SPM and POC delivered by the Mackenzie River to the Arctic Ocean.

  18. Quantification of surface water volume changes in the Mackenzie Delta using satellite multi-mission data

    NASA Astrophysics Data System (ADS)

    Normandin, Cassandra; Frappart, Frédéric; Lubac, Bertrand; Bélanger, Simon; Marieu, Vincent; Blarel, Fabien; Robinet, Arthur; Guiastrennec-Faugas, Léa

    2018-02-01

    Quantification of surface water storage in extensive floodplains and their dynamics are crucial for a better understanding of global hydrological and biogeochemical cycles. In this study, we present estimates of both surface water extent and storage combining multi-mission remotely sensed observations and their temporal evolution over more than 15 years in the Mackenzie Delta. The Mackenzie Delta is located in the northwest of Canada and is the second largest delta in the Arctic Ocean. The delta is frozen from October to May and the recurrent ice break-up provokes an increase in the river's flows. Thus, this phenomenon causes intensive floods along the delta every year, with dramatic environmental impacts. In this study, the dynamics of surface water extent and volume are analysed from 2000 to 2015 by combining multi-satellite information from MODIS multispectral images at 500 m spatial resolution and river stages derived from ERS-2 (1995-2003), ENVISAT (2002-2010) and SARAL (since 2013) altimetry data. The surface water extent (permanent water and flooded area) peaked in June with an area of 9600 km2 (±200 km2) on average, representing approximately 70 % of the delta's total surface. Altimetry-based water levels exhibit annual amplitudes ranging from 4 m in the downstream part to more than 10 m in the upstream part of the Mackenzie Delta. A high overall correlation between the satellite-derived and in situ water heights (R > 0.84) is found for the three altimetry missions. Finally, using altimetry-based water levels and MODIS-derived surface water extents, maps of interpolated water heights over the surface water extents are produced. Results indicate a high variability of the water height magnitude that can reach 10 m compared to the lowest water height in the upstream part of the delta during the flood peak in June. Furthermore, the total surface water volume is estimated and shows an annual variation of approximately 8.5 km3 during the whole study period, with a maximum of 14.4 km3 observed in 2006. The good agreement between the total surface water volume retrievals and in situ river discharges (R = 0.66) allows for validation of this innovative multi-mission approach and highlights the high potential to study the surface water extent dynamics.

  19. Data Requirements for Ceiling and Visibility Products Development

    DTIC Science & Technology

    1994-04-13

    and Water - Cycle Experiment (GEWEX), STORM 1, and the Naval Research Laboratory’s Coastal Me- teorology Accelerated Research Initiative field... Water - Cycle Experiment HPCN High Plains Climate Network lOP Intensive Observation Period ICN Illinois Climate Network ITWS Integrated Terminal Weather

  20. Physics Parameterization for Seasonal Prediction

    DTIC Science & Technology

    2012-09-30

    comparison Project, a joint effort between the Year of Tropical Convection (YOTC) Program and the Global Energy and Water Cycle Experiment (GEWEX) Cloud...unified” representation of the water cycle in the model. One such area is the correspondence between diagnosed cloud cover and prognostic cloud

  1. Satellite Contributions to ACPC

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    2017-01-01

    The attached presentation was given at the Aerosols, Clouds, Precipitation and Climate (ACPC) Workshop sponsored by WCRP GEWEX and LEAPS, held April 2-6, 2017 in Bad Honnef, Germany. Organizers of the meeting would like to post the presentations online at http:www.igacproject.org ACPC.

  2. Maintenance Downtime June 2-9, 2014

    Atmospheric Science Data Center

    2014-06-02

    ... tools will be unavailable:   Down June 2nd – 4th:   ASDC Subsetters: CALIPSO, CERES, MOPITT, TES CD Rom & Video ... ordered data GEWEX HTML Order Tool Down June 4th: The Data Pool, MISR order and browse tools, Reverb, and AMAPS will ...

  3. Physics Parameterization for Seasonal Prediction

    DTIC Science & Technology

    2013-09-30

    particularly the Madden Julian Oscillation (MJO). We are continuing our participation in the project “Vertical Structure and Diabatic Processes of...Results are shown for: a) TRMM rainfall, b) NAVGEM 20-year run submitted for the YOTC/GEWEX project “Vertical Structure and Diabatic Processes of the MJO

  4. The role of water vapor in climate. A strategic research plan for the proposed GEWEX water vapor project (GVaP)

    NASA Technical Reports Server (NTRS)

    Starr, D. OC. (Editor); Melfi, S. Harvey (Editor)

    1991-01-01

    The proposed GEWEX Water Vapor Project (GVaP) addresses fundamental deficiencies in the present understanding of moist atmospheric processes and the role of water vapor in the global hydrologic cycle and climate. Inadequate knowledge of the distribution of atmospheric water vapor and its transport is a major impediment to progress in achieving a fuller understanding of various hydrologic processes and a capability for reliable assessment of potential climatic change on global and regional scales. GVap will promote significant improvements in knowledge of atmospheric water vapor and moist processes as well as in present capabilities to model these processes on global and regional scales. GVaP complements a number of ongoing and planned programs focused on various aspects of the hydrologic cycle. The goal of GVaP is to improve understanding of the role of water vapor in meteorological, hydrological, and climatological processes through improved knowledge of water vapor and its variability on all scales. A detailed description of the GVaP is presented.

  5. Hydrocarbon gases associated with permafrost in the Mackenzie Delta, Northwest Territories, Canada

    USGS Publications Warehouse

    Collett, T.S.; Dallimore, S.R.

    1999-01-01

    Molecular and isotopic analyses of core gas samples from 3 permafrost research core holes (92GSCTAGLU, 92GSCKUMAK, 92GSCUNIPKAT; sample core depths ranging from 0.36 to 413.82 m) in the Mackenzie Delta of the Northwest Territories of Canada reveal the presence of hydrocarbon gases from both microbial and thermogenic sources. Analyses of most headspace and blended gas samples from the ice-bonded permafrost portion of the core holes yielded C1/(C2 + C3) hydrocarbon gas ratios and CH4-C isotopic compositions (??13C CH4) indicative of microbially sourced CH4 gas. However, near the base of ice-bonded permafrost and into the underlying non-frozen stratigraphic section, an increase in ethane (C2) concentrations, decreases in C1/(C2 + C3) hydrocarbon gas ratios, and CH4-C isotopic (??13C CH4) data indicate the presence of hydrocarbon gases derived from a thermogenic source. The thermogenic gas below permafrost in the Mackenzie Delta likely migrated from deeper hydrocarbon accumulations and/or directly from thermally mature hydrocarbon source rocks.

  6. An ECOMAG-based Regional Hydrological Model for the Mackenzie River basin

    NASA Astrophysics Data System (ADS)

    Motovilov, Yury; Kalugin, Andrey; Gelfan, Alexander

    2017-04-01

    A physically-based distributed model of runoff generation has been developed for the Mackenzie River basin (the catchment area is 1 660 000 km2). The model is based on the ECOMAG (ECOlogical Model for Applied Geophysics) hydrological modeling platform and describes processes of interception of rainfall/snowfall by the canopy, snow accumulation and melt, soil freezing and thawing, water infiltration into unfrozen and frozen soil, evapotranspiration, thermal and water regime of soil, overland, subsurface and ground flow, flow routing through a channel network accounting for flow regulation by lakes and reservoirs. The governing model's equations are derived from integration of the basic hydro- and thermodynamics equations of water and heat vertical transfer in snowpack, frozen/unfrozen soil, horizontal water flow under and over catchment slopes, etc. The Mackenzie basin's schematization was performed on the basis of the global DEM data (1-km resolution) from the HYDRO1K database of the U.S. Geological Survey. Most of the model parameters are physically meaningful and derived through the global datasets of the basin characteristics: FAO/IIASA Harmonized World Soil Database, USGS EROS Global Land Cover Characteristics project, etc. The 0.5ox0.5o WATCH reanalysis daily precipitation, air temperature and air humidity data were used as the model input for the period of 1971-2002. The daily discharge data provided by the Water Survey of Canada for 10 streamflow gauges, which are located at the Mackenzie River and the main tributaries (Peel River, Great Bear River, Liard River, Slave River and Athabasca River), were used for calibration (1991-2001) and validation (1971-1990) of the model. The gauges' catchment areas vary from 70600 km2 (Peel River above Fort Mopherson) to 1 660 000 km2 (Mackenzie River at Arctic Red River). The model demonstrated satisfactory performance in terms of Nash-and Sutcliffe efficiency (NSE(daily)0.60 and NSE(monthly)0.70) and percent bias (PBIAS15%) for 8 gauges of 10. Weaker results were obtained for Great Bear River at outlet of Great Bear Lake and Peace River at Peace Point. Possibilities of a model approach for the construction of mean annual hydrological fields (maps) using meteorological data for the large river basins are shown. Spatial fields of the 32-year mean annual runoff and evaporation (1971-2002) for the Mackenzie River basin were simulated by the distributed model and the corresponding maps were compared with that provided by Hydrological Atlas of Canada (1972) for 30-year period (1941-1970). Analysis of fields conformity is made and possible sources of errors are discussed.

  7. Environmental Impact Assessment Under the Mackenzie Valley Resource Management Act: Deliberative Democracy in Canada's North?

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Patricia; Sinclair, A. John; Mitchell, Bruce

    2008-07-01

    We consider the extent to which the Mackenzie Valley Resource Management Act (MVRMA) provides an opportunity for deliberative democracy to emerge within the context of resource management in Canada’s North. The focus is on the extent to which the tenets of deliberative democracy are exercised in the environmental assessment (EA) of the Snap Lake diamonds project. Data collection included semi-structured interviews with assessment participants, and a review of documentation surrounding the EA process, and the case study. Results combined four principles of deliberative democracy: generality, autonomy, power neutrality, and ideal role taking. The EA conducted under the MVRMA can serve as a deliberative process, as illustrated by opportunities for dialogue, access to different perspectives, and learning outcomes. However, many of these positive results occurred through nonmandated technical sessions. The absence of participant funding also limits the deliberative potential of the MVRMA.

  8. The Benefits of Past and Current Regional Hydroclimate Projects to the Third Pole Environment (TPE) Water and Energy Exchanges Studies

    NASA Astrophysics Data System (ADS)

    Benedict, Sam; van Oevelen, Peter

    2014-05-01

    To improve understanding of the various processes at work on spatial and temporal scales from regional to global the Regional Hydroclimate Projects (RHP's) are established as part of the Global Energy and Water Exchanges (GEWEX)Project to link the regional observations and process understanding to the global scale. This is done through exchange of observations, data, modeling, transferability studies etc. In this presentation the series of RHP's that were underway over North and South America, Europe and Asia continuously from the early 1990's up to the present will be examined, the reasons they were established, how they evolved and how they are evolving or are likely to evolve in the future, with an emphasis on where they can and should benefit similar work proposed for the TPE. The results will be presented in the context of the World Climate Research Programme (WCRP) Grand Challenge related to the development of a water strategy that addresses the issue of past and future changes in Water, in general, and the GEWEX science question on global water resource systems, in particular. This material will address issues associated with how changes in land surface and hydrology influence past and future changes in water availability and security, how new observations lead to improvements in water management and how models become better in global and regional climate predictions and projections of precipitation and how these outcomes relate to the TPE Water and Energy Exchanges Studies.

  9. GEWEX-RFA Data File Format and File Naming Convention

    Atmospheric Science Data Center

    2016-05-20

    ... documentation, will be stored for each data product. Each time data is added to, removed from, or modified in the file set for a product, ... including 29 days in leap-year Februaries. Time series files containing 15-minute data should start at the top of an hour to ...

  10. Inference for occupancy and occupancy dynamics

    USGS Publications Warehouse

    O'Connell, Allan F.; Bailey, Larissa L.; O'Connell, Allan F.; Nichols, James D.; Karanth, K. Ullas

    2011-01-01

    This chapter deals with the estimation of occupancy as a state variable to assess the status of, and track changes in, species distributions when sampling with camera traps. Much of the recent interest in occupancy estimation and modeling originated from the models developed by MacKenzie et al. (2002, 2003), although similar methods were developed independently (Azuma et al. 1990; Bayley and Petersen 2001; Nichols and Karanth, 2002; Tyre et al. 2003), all of which deal with species occurrence information and imperfect detection. Less than a decade after these publications, the modeling and estimation of species occurrence and occupancy dynamics have increased significantly. Special features of scientific journals have explored innovative uses of detection–nondetection data with occupancy models (Vojta 2005), and an entire volume has synthesized the use and application of occupancy estimation methods (MacKenzie et al. 2006). Reviews of the topical concepts, philosophical considerations, and various sampling designs that can be used for occupancy estimation are now readily available for a range of audiences (MacKenzie and Royle 2005; MacKenzie et al. 2006; Bailey et al. 2007; Royle and Dorazio 2008; Conroy and Carroll 2009; Kendall and White 2009; Hines et al. 2010; Link and Barker 2010). As a result, it would be pointless here to recast all that these publications have so eloquently articulated, but that said, a review of any scientific topic requires sufficient context and relevant background information, especially when relatively new methodologies and techniques such as occupancy estimation and camera traps are involved. This is especially critical in a digital age where new information is published at warp speed, making it increasingly difficult to stay abreast of theoretical advances and research developments.

  11. UV/PAR radiation and DOM properties in surface coastal waters of the Canadian shelf of the Beaufort Sea during summer 2009

    NASA Astrophysics Data System (ADS)

    Para, J.; Charrière, B.; Matsuoka, A.; Miller, W. L.; Rontani, J. F.; Sempéré, R.

    2013-04-01

    Surface waters from the Beaufort Sea in the Arctic Ocean were evaluated for dissolved organic carbon (DOC), and optical characteristics including UV (ultraviolet) radiation and PAR (photosynthetically active radiation) diffuse attenuation (Kd), and chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) as part of the MALINA field campaign (30 July to 27 August). Spectral absorption coefficients (aCDOM (350 nm) (m-1)) were significantly correlated to both diffuse attenuation coefficients (Kd) in the UV-A and UV-B and to DOC concentrations. This indicates CDOM as the dominant attenuator of both UV and PAR solar radiation and suggests its use as an optical proxy for DOC concentrations in this region. While the Mackenzie input is the main driver of CDOM dynamics in low salinity waters, locally, primary production can create significant increases in CDOM. Extrapolating CDOM to DOC relationships, we estimate that ∼16% of the DOC in the Mackenzie River does not absorb radiation at 350 nm. The discharges of DOC and its chromophoric subset (CDOM) by the Mackenzie River during the MALINA cruise are estimated as ∼0.22 TgC and 0.18 TgC, respectively. Three dissolved fluorescent components (C1-C3) were identified by fluorescence excitation/emission matrix spectroscopy (EEMS) and parallel factor (PARAFAC) analysis. Our results showed an aquatic dissolved organic matter (DOM) component (C1), probably produced in the numerous lakes of the watershed, that co-dominated with a terrestrial humic-like component (C2) in the Mackenzie Delta Sector. This aquatic DOM could partially explain the high CDOM spectral slopes observed in the Beaufort Sea.

  12. Leveraging the MJO for Predicting Envelopes of Tropical Wave and Synoptic Activity at Multi-Week Lead Times

    DTIC Science & Technology

    2013-09-30

    GEWEX GASS MJO Diabatic Heating Experiment, 2) Intraseasonal Variability Hindcast Experiment (ISVHE) C. Conduct more comprehensive analysis on the...since her Ph.D. study. Key partners include M. Zhao (GFDL) and J. Ridout (NRL). Both Zhao and Ridout are contributors to the MJO multi-model diabatic ...a paper and submitted to the Journal of the Atmospheric Sciences (Guo et al. 2013). We have also begun acquiring model data from the MJO Diabatic

  13. Morell Mackenzie's The Hygiene of the Vocal Organs: a study in longevity or durability.

    PubMed

    Ruben, Robert J

    2014-02-01

    Morell Mackenzie's The Hygiene of the Vocal Organs: A Practical Handbook for Singers and Speakers (1886), is his only work that has been continually published into the 20th century. Why is this? The bibliographic history and details of all the editions from the first in 1886 until the ninth and last in 1928 were examined. Reviews and all other commentary about the book were ascertained though literature and library document searches. The book is still in use as the first edition is available online from the Cornell University library, and that hard copy was last taken out from that library on December 19, 1986, and returned with the fine paid on January 8, 1987. It was translated and published in Swedish, French, German, and Spanish. All of the editions are small, inexpensively bound, and printed on inexpensive paper so the cost was minimal in contradistinction to other works on the voice which are larger and expensive. To make it accessible for performers and practitioners, the contents of the earlier editions were modified by placing the technical, anatomical, and physiological information as an appendix. The book was in part criticized by Manuel Garcia in Felix Semon's German journal, Internationales Centralblatt fur Laryngologie, Rhinologie und verwandte Wissenchaften, McKenzie answered these critiques in the seventh edition and noted that Garcia did not know German and that the translator, Semon, was an antagonist. Mackenzie is emphatic in his advice to avoid singing when there's any sign of vocal difficulty. The medical advice was, on the whole, good common sense and provided substantial authority for a person to decline a performance-how grateful the singers must have been for that! The Hygiene of the Vocal Organs: A Practical Handbook for Singers and Speakers was, for the professional voice users-singers, actors, speakers, and for their teachers and physicians, a useful, concise, small, inexpensive, and authoritative book. With these virtues noted, we can well understand why it remained in circulation and use for a century. In terms of the dissemination of ideas, this heretofore neglected work may be Mackenzie's most long-lasting contribution to laryngology. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  14. GEWEX SRB Shortwave Release 4

    NASA Astrophysics Data System (ADS)

    Cox, S. J.; Stackhouse, P. W., Jr.; Mikovitz, J. C.; Zhang, T.

    2017-12-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The new Release 4 uses the newly processed ISCCP HXS product as its primary input for cloud and radiance data. The ninefold increase in pixel number compared to the previous ISCCP DX allows finer gradations in cloud fraction in each grid box. It will also allow higher spatial resolutions (0.5 degree) in future releases. In addition to the input data improvements, several important algorithm improvements have been made since Release 3. These include recalculated atmospheric transmissivities and reflectivities yielding a less transmissive atmosphere. The calculations also include variable aerosol composition, allowing for the use of a detailed aerosol history from the Max Planck Institut Aerosol Climatology (MAC). Ocean albedo and snow/ice albedo are also improved from Release 3. Total solar irradiance is now variable, averaging 1361 Wm-2. Water vapor is taken from ISCCP's nnHIRS product. Results from GSW Release 4 are presented and analyzed. Early comparison to surface measurements show improved agreement.

  15. Evaluation on newly developed high resolution of surface solar radiation from MTSAT observations for the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Niu, X.; Yang, K.; Tang, W.; Qin, J.

    2015-12-01

    Neither surface measurement nor existing remote sensing products of the Surface Solar Radiation (SSR) can meet the application requirements of hydrological and land process modeling in the Tibetan Plateau (TP). High resolution (hourly; 0.1⁰) of SSR estimates have been derived recently from the geostationary satellite observations - the Multi-functional Transport Satellite (MTSAT). This SSR estimation is based on updating an existing physical model, the UMD-SRB (University of Maryland Surface Radiation Budget) which is the basis of the well-known GEWEX-SRB model. In the updated framework introduced is the high-resolution Global Land Surface Broadband Albedo Product (GLASS) with spatial continuity. The developed SSR estimates are demonstrated at different temporal resolutions over the TP and are evaluated against ground observations and other satellite products from: (1) China Meteorological Administration (CMA) radiation stations in TP; (2) three TP radiation stations contributed from the Institute of Tibetan Plateau Research; (3) and the universal used satellite products (i.e. ISCCP-FD, GEWEX-SRB) in relatively low spatial resolution (0.5º-2.5º) and temporal resolution (3-hourly, daily, or monthly).

  16. Assessment of Satellite Surface Radiation Products in Highland Regions with Tibet Instrumental Data

    NASA Technical Reports Server (NTRS)

    Yang, Kun; Koike, Toshio; Stackhouse, Paul; Mikovitz, Colleen

    2006-01-01

    This study presents results of comparisons between instrumental radiation data in the elevated Tibetan Plateau and two global satellite products: the Global Energy and Water Cycle Experiment - Surface Radiation Budget (GEWEX-SRB) and International Satellite Cloud Climatology Project - Flux Data (ISCCP-FD). In general, shortwave radiation (SW) is estimated better by ISCCP-FD while longwave radiation (LW) is estimated better by GEWEX-SRB, but all the radiation components in both products are under-estimated. Severe and systematic errors were found in monthly-mean SRB SW (on plateau-average, -48 W/sq m for downward SW and -18 W/sq m for upward SW) and FD LW (on plateau-average, -37 W/sq m for downward LW and -62 W/sq m for upward LW) for radiation. Errors in monthly-mean diurnal variations are even larger than the monthly mean errors. Though the LW errors can be reduced about 10 W/sq m after a correction for altitude difference between the site and SRB and FD grids, these errors are still higher than that for other regions. The large errors in SRB SW was mainly due to a processing mistake for elevation effect, but the errors in SRB LW was mainly due to significant errors in input data. We suggest reprocessing satellite surface radiation budget data, at least for highland areas like Tibet.

  17. The B. C. Central Interior. Horizon Reprint.

    ERIC Educational Resources Information Center

    Moles, Garvin, Ed.; Thomas, Paul F. Ed.

    1986-01-01

    This set of materials meets the need created by the new social studies curriculum which requires teaching emphasis on British Columbia and Western Canada. The document includes a presentation of the geography of the Mackenzie Grease Trail, New Caledonia, and Prince George; examines some aspects of the history of the region; and discusses the most…

  18. Low and declining mercury in arctic Russian rivers.

    PubMed

    Castello, Leandro; Zhulidov, Alexander V; Gurtovaya, Tatiana Yu; Robarts, Richard D; Holmes, Robert M; Zhulidov, Daniel A; Lysenko, Vladimir S; Spencer, Robert G M

    2014-01-01

    Mercury (Hg) dynamics in the Arctic is receiving increasing attention, but further understanding is limited by a lack of studies in Russia, which encompasses the majority of the pan-Arctic watershed. This study reports Hg concentrations and trends in burbot (Lota lota) from the Lena and Mezen Rivers in the Russian Arctic, and assesses the extent to which they differ from those found in burbot in arctic rivers elsewhere. Mercury concentrations in burbot in the Lena and Mezen Rivers were found to be generally lower than in 23 other locations, most of which are in the Mackenzie River Basin (Canada). Mercury concentrations in burbot in the Lena and Mezen Rivers also were found to have been declining at an annual rate of 2.3% while they have been increasing in the Mackenzie River Basin at annual rates between 2.2 and 5.1% during roughly the same time period. These contrasting patterns in Hg in burbot across the pan-Arctic may be explained by geographic heterogeneity in controlling processes, including riverine particulate material loads, historically changing atmospheric inputs, postdepositional processes, and climate change impacts.

  19. Neural network analysis of crosshole tomographic images: The seismic signature of gas hydrate bearing sediments in the Mackenzie Delta (NW Canada)

    NASA Astrophysics Data System (ADS)

    Bauer, K.; Pratt, R. G.; Haberland, C.; Weber, M.

    2008-10-01

    Crosshole seismic experiments were conducted to study the in-situ properties of gas hydrate bearing sediments (GHBS) in the Mackenzie Delta (NW Canada). Seismic tomography provided images of P velocity, anisotropy, and attenuation. Self-organizing maps (SOM) are powerful neural network techniques to classify and interpret multi-attribute data sets. The coincident tomographic images are translated to a set of data vectors in order to train a Kohonen layer. The total gradient of the model vectors is determined for the trained SOM and a watershed segmentation algorithm is used to visualize and map the lithological clusters with well-defined seismic signatures. Application to the Mallik data reveals four major litho-types: (1) GHBS, (2) sands, (3) shale/coal interlayering, and (4) silt. The signature of seismic P wave characteristics distinguished for the GHBS (high velocities, strong anisotropy and attenuation) is new and can be used for new exploration strategies to map and quantify gas hydrates.

  20. Chapter 34: Geology and petroleum potential of the rifted margins of the Canada Basin

    USGS Publications Warehouse

    Houseknecht, D.W.; Bird, K.J.

    2011-01-01

    Three sides of the Canada Basin are bordered by high-standing, conjugate rift shoulders of the Chukchi Borderland, Alaska and Canada. The Alaska and Canada margins are mantled with thick, growth-faulted sediment prisms, and the Chukchi Borderland contains only a thin veneer of sediment. The rift-margin strata of Alaska and Canada reflect the tectonics and sediment dispersal systems of adjacent continental regions whereas the Chukchi Borderland was tectonically isolated from these sediment dispersal systems. Along the eastern Alaska-southern Canada margin, termed herein the 'Canning-Mackenzie deformed margin', the rifted margin is deformed by ongoing Brooks Range tectonism. Additional contractional structures occur in a gravity fold belt that may be present along the entire Alaska and Canada margins of the Canada Basin. Source-rock data inboard of the rift shoulders and regional palaeogeographic reconstructions suggest three potential source-rock intervals: Lower Cretaceous (Hauterivian-Albian), Upper Cretaceous (mostly Turonian) and Lower Palaeogene. Burial history modelling indicates favourable timing for generation from all three intervals beneath the Alaska and Canada passive margins, and an active petroleum system has been documented in the Canning-Mackenzie deformed margin. Assessment of undiscovered petroleum resources indicates the greatest potential in the Canning-Mackenzie deformed margin and significant potential in the Canada and Alaska passive margins. ?? 2011 The Geological Society of London.

  1. Interannual Variability in Surface LW Fluxes Over the Tropical Oceans As Seen in ISCCP-FD and GEWEX SRB Data Sets

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Lu, H.-I.

    2005-01-01

    One notable aspect of Earth s climate is that although the planet appears to be very close to radiative balance at top-of-atmosphere (TOA), the atmosphere itself and underlying surface are not. Profound exchanges of energy between the atmosphere and oceans, land and cryosphere occur over a range of time scales. Recent evidence from broadband satellite measurements suggests that even these TOA fluxes contain some detectable variations. Our ability to measure and reconstruct radiative fluxes at the surface and at the top of atmosphere is improving rapidly. In this work we will evaluate two recently released estimates of radiative fluxes, focusing primarily on surface estimates. The International Satellite Cloud Climatology Project FD radiative flux profiles are available from mid-1 983 to near present and have been constructed by driving the radiative transfer physics from the Goddard Institute for Space Studies (GISS) global model with ISCCP clouds and TOVS (TIROS Operational Vertical Sounder)thermodynamic profiles. Fu!l and clear sky SW and LW fluxes are produced. A similar product from the NASA/GEWEX Surface Radiation Budget Project using different radiative flux codes and thermodynamics from the NAS/Goddard Earth Observing System (GEOS-1) assimilation model makes a similar calculation of surface fluxes. However this data set currently extends only through 1995. Significant differences in both interannual variability as well as trends are found between among these data sets. For radiative fluxes these differences are traced to TOVS thermodynamic soundings used to drive the ISCCP-FD calculations. Errors in near surface temperature and precipitable water cascade into ISCCP upward and downward IR flux components, demonstrably affecting interannual variability. Revised estimates of clear-sky fluxes over ocean are made using statistical algorithms and water vapor from the (SSM/I) Special Sensor Microwave Imager. These calculations show strong near-surface water vapor feedback over the tropical oceans in association with SST changes. However, it is also shown that ISCCP longwave cloud forcing, common to both the ISCCP-FD and GEWEX SRB retrievals, is the main driver of a long-term decrease in net LW flux to the surface during the near-20 year period covered by these revised estimates.

  2. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean

    USGS Publications Warehouse

    Tank, Suzanne E.; Striegl, Robert G.; McClelland, James W.; Kokelj, Steven V.

    2016-01-01

    Riverine exports of organic and inorganic carbon (OC, IC) to oceans are intricately linked to processes occurring on land. Across high latitudes, thawing permafrost, alteration of hydrologic flow paths, and changes in vegetation may all affect this flux, with subsequent implications for regional and global carbon (C) budgets. Using a unique, multi-decadal dataset of continuous discharge coupled with water chemistry measurements for the Mackenzie River, we show major increases in dissolved OC (DOC) and IC (as alkalinity) fluxes since the early 1970s, for a watershed that covers 1.8 M km2 of northwestern Canada, and provides substantial inputs of freshwater and biogeochemical constituents to the Arctic Ocean. Over a 39-year period of record, DOC flux at the Mackenzie mouth increased by 39.3% (44.5 ± 22.6 Gmol), while alkalinity flux increased by 12.5% (61.5 ± 60.1 Gmol). Isotopic analyses and substantial increases in sulfate flux indicate that increases in alkalinity are driven by accelerating sulfide oxidation, a process that liberates IC from rock and soils in the absence of CO2 consumption. Seasonal and sub-catchment trends suggest that permafrost thaw plays an important role in the observed increases in DOC and alkalinity: sub-catchment increases for all constituents are confined to northern, permafrost-affected regions, while observed increases in autumn to winter are consistent with documented landscape-scale changes that have resulted from changing thaw dynamics. This increase in DOC and sulfide-derived alkalinity represents a substantial intensification of land-to-ocean C mobilization, at a level that is significant within the regional C budget. The change we observe, for example, is similar to current and projected future rates of CO2 consumption by weathering in the Mackenzie basin.

  3. UV/PAR radiations and DOM properties in surface coastal waters of the Canadian shelf of the Beaufort Sea during summer 2009

    NASA Astrophysics Data System (ADS)

    Para, J.; Charrière, B.; Matsuoka, A.; Miller, W. L.; Rontani, J. F.; Sempéré, R.

    2012-11-01

    Water masses from the Beaufort Sea in the Arctic Ocean were evaluated for dissolved organic carbon (DOC), and optical characteristics including UV and PAR diffuse attenuation (Kd), and chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) as part of the MALINA field campaign (30 July to 27 August). Even with relatively low mean daily solar radiation incident on the sea surface (0.12 ± 0.03, 8.46 ± 1.64 and 18.09 ± 4.20 kJ m-2 for UV-B (305 nm), UV-A (380 nm) and PAR, respectively), we report significant light penetration with 10% irradiance depths (Z10% (λ)) reaching 9.5 m for 340 nm (UV-A) radiation in the Eastern sector and 4.5 m in the Mackenzie River influenced area (Western sector). Spectral absorption coefficients (aCDOM (350 nm) (m-1)) were significantly correlated to both diffuse attenuation coefficients (Kd) in the UV-A and UV-B and to DOC concentrations. This indicates CDOM as the dominant attenuator of UV solar radiation and suggests its use as an optical proxy for DOC concentrations in this region. Extrapolating CDOM to DOC relationships, we estimate that ~ 16% of the DOC in the Mackenzie River does not absorb radiation at 350 nm. DOC and CDOM discharges by the Mackenzie River during the MALINA Cruise are estimated as ~ 0.22 TgC and 0.18 TgC, respectively. Three dissolved fluorescent components (C1-C3) were identified by fluorescence Excitation/Emission Matrix Spectroscopy (EEMS) and PARAFAC analysis. Our results showed an in-situ biological component (C1) that co-dominated with a terrestrial humic-like component (C2) in the Mackenzie Delta sector, whereas the protein-like (C3) component dominated in the saltiest waters of the North East sector.

  4. Photoproduction of ammonium in the southeastern Beaufort Sea and its biogeochemical implications

    NASA Astrophysics Data System (ADS)

    Xie, H.; Bélanger, S.; Song, G.; Benner, R.; Taalba, A.; Blais, M.; Tremblay, J.-É.; Babin, M.

    2012-08-01

    Photochemistry of dissolved organic matter (DOM) plays an important role in marine biogeochemical cycles, including the regeneration of inorganic nutrients. DOM photochemistry affects nitrogen cycling by converting bio-refractory dissolved organic nitrogen to labile inorganic nitrogen, mainly ammonium (NH4+). During the August 2009 Mackenzie Light and Carbon (MALINA) Program, the absorbed photon-based efficiency spectra of NH4+ photoproduction (i.e. photoammonification) were determined using water samples from the SE Beaufort Sea, including the Mackenzie River estuary, shelf, and Canada Basin. The photoammonification efficiency decreased with increasing wavelength across the ultraviolet and visible regimes and was higher in offshore waters than in shelf and estuarine waters. The efficiency was positively correlated with the molar nitrogen:carbon ratio of DOM and negatively correlated with the absorption coefficient of chromophoric DOM (CDOM). Combined with collateral measurements of CO2 and CO photoproduction, this study revealed a stoichiometry of DOM photochemistry with a CO2 : CO : NH4+ molar ratio of 165 : 11 : 1 in the estuary, 60 : 3 : 1 on the shelf, and 18 : 2 : 1 in the Canada Basin. The NH4+ efficiency spectra, along with solar photon fluxes, CDOM absorption coefficients and sea ice concentrations, were used to model the monthly surface and depth-integrated photoammonification rates in 2009. The summertime (June-August) rates at the surface reached 6.6 nmol l-1 d-1 on the Mackenzie Shelf and 3.7 nmol l-1 d-1 further offshore; the depth-integrated rates were correspondingly 8.8 μmol m-2 d-1 and 11.3 μmol m-2 d-1. The offshore depth-integrated rate in August (8.0 μmol m-2 d-1) was comparable to the missing dissolved inorganic nitrogen (DIN) source required to support the observed primary production in the upper 10-m layer of that area. The yearly NH4+ photoproduction in the entire study area was estimated to be 1.4 × 108 moles, with 85% of it being generated in summer when riverine DIN input is low. Photoammonification could mineralize 4% of the annual dissolved organic nitrogen (DON) exported from the Mackenzie River and provide a DIN source corresponding to 7% of the riverine DIN discharge and 1400 times the riverine NH4+ flux. Under a climate warming-induced ice-free scenario, these quantities could increase correspondingly to 6%, 11%, and 2100 times. Photoammonification is thus a significant nitrogen cycling term and may fuel previously unrecognized autotrophic and heterotrophic production pathways in the surface SE Beaufort Sea.

  5. Photoproduction of ammonium in the Southeastern Beaufort Sea and its biogeochemical implications

    NASA Astrophysics Data System (ADS)

    Xie, H.; Bélanger, S.; Song, G.; Benner, R.; Taalba, A.; Blais, M.; Lefouest, V.; Tremblay, J.-É.; Babin, M.

    2012-04-01

    Photochemistry of dissolved organic matter (DOM) plays an important role in marine biogeochemical cycles, including the regeneration of inorganic nutrients. DOM photochemistry affects nitrogen cycling by converting bio-refractory dissolved organic nitrogen to labile inorganic nitrogen, mainly ammonium (NH4+). During the August 2009 Mackenzie Light and Carbon (MALINA) Program, the absorbed photon-based efficiency spectra of NH4+ photoproduction (i.e. photoammonification) were determined using water samples from the SE Beaufort Sea, including the Mackenzie River estuary, shelf, and Canada Basin. The photoammonification efficiency decreased with increasing wavelength across the ultraviolet and visible regimes and was higher in offshore waters than in shelf and estuarine waters. The efficiency was positively correlated with the molar nitrogen : carbon ratio of DOM and negatively correlated with the absorption coefficient of chromophoric DOM (CDOM). Combined with collateral measurements of CO2 and CO photoproduction, this study revealed a stoichiometry of DOM photochemistry with a CO2:CO:NH4+ molar ratio of 165:11:1 in the estuary, 60:3:1 on the shelf, and 18:2:1 in the Canada Basin. The NH4+ efficiency spectra, along with solar photon fluxes, CDOM absorption coefficients and sea ice concentrations, were used to model the monthly surface and depth-integrated photoammonification rates in 2009. The summertime (June-August) rates at the surface reached 6.6 nmol l-1 d-1 on the Mackenzie Shelf and 3.7 nmol l-1 d-1 further offshore; the depth-integrated rates were correspondingly 8.8 μmol m-2 d-1 and 11.3 μmol m-2 d-1. The offshore depth-integrated rate in August (8.0 μmol m-2 d-1) was comparable to the missing dissolved inorganic nitrogen (DIN) source required to support the observed primary production in the upper 10-m layer of that area. The yearly NH4+ photoproduction in the entire study area was estimated to be 1.4 × 108 moles, with 85 % of it being generated in summer when riverine DIN input is low. Photoammonification could mineralize 4 % of the annual dissolved organic nitrogen (DON) exported from the Mackenzie River and provide a~DIN source corresponding to 7 % of the riverine DIN discharge and 1400 times the riverine NH4+ flux. Under a climate warming-induced ice-free scenario, these quantities would increase correspondingly to 6 %, 11 %, and 2100 times. Photoammonification is thus a significant nitrogen cycling term and may fuel previously unrecognized autotrophic and heterotrophic production pathways in the surface SE Beaufort Sea.

  6. Characterization of Underwater Sounds Produced by a Backhoe Dredge Excavating Rock and Gravel

    DTIC Science & Technology

    2012-12-01

    bathymetry, hydrodynamic conditions, prevalence of non-dredging ambient sounds), this study fills important knowledge gaps that contribute to better... Beaver Mackenzie, peak spectral levels were 122 dB at 190 m with a peak frequency of 120 Hz. Received levels in the 20- to 1000-Hz band were 133 dB

  7. The Influence of Terrestrial Matter in Marine Food Webs of the Beaufort Sea Shelf and Slope

    NASA Astrophysics Data System (ADS)

    Bell, L.; Iken, K.; Bluhm, B.

    2016-02-01

    Forecasted increases in terrestrial organic matter (OMterr) inputs to the Beaufort Sea necessitate a better understanding of the contribution of this organic matter food source to the trophic structure of marine communities. This study investigated the relative ecological importance of OMterr across the Beaufort Sea shelf and slope by examining differences in community trophic structure concurrent with variation in terrestrial versus marine organic matter influence. Interannual variability in organism trophic level was assessed to confirm the persistent impact of these large-scale patterns in food source distribution on marine consumers. Oxygen stable isotope ratios (δ18O) of surface water confirmed the widespread influence of Canada's Mackenzie River plume across the Beaufort Sea. Carbon stable isotope ratios (δ13C values) of pelagic particulate organic matter (pPOM) and marine consumers from locations ranging from 20 to 1000 m bottom depth revealed a strong isotopic imprint of OMterr in the eastern Beaufort Sea, which decreased westward from the Mackenzie River. Food web length, based on the nitrogen stable isotope ratios (δ15N values) of marine consumers, was greater closer to the Mackenzie River outflow both in shelf and slope locations due to relatively higher δ15N values of pelagic and benthic primary consumers. Strong microbial processing of OMterr in the eastern regions of the Beaufort Sea is inferred based on a trophic gap between sources and lower trophic consumers. A large proportion of epifaunal biomass occupying higher trophic levels suggests that OMterr as a basal food source can provide substantial energetic support for higher marine trophic levels. These findings support the concept that terrestrial matter is an important source in the Arctic marine food web, and compel a more specific understanding of energy transfer through the OMterr-associated microbial loop.

  8. Towards High Spa-Temporal Resolution Estimates of Surface Radiative Fluxes from Geostationary Satellite Observations for the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Niu, X.; Yang, K.; Tang, W.; Qin, J.

    2014-12-01

    Surface Solar Radiation (SSR) plays an important role of the hydrological and land process modeling, which particularly contributes more than 90% to the total melt energy for the Tibetan Plateau (TP) ice melting. Neither surface measurement nor existing remote sensing products can meet that requirement in TP. The well-known satellite products (i.e. ISCCP-FD and GEWEX-SRB) are in relatively low spatial resolution (0.5º-2.5º) and temporal resolution (3-hourly, daily, or monthly). The objective of this study is to develop capabilities to improved estimates of SSR in TP based on geostationary satellite observations from the Multi-functional Transport Satellite (MTSAT) with high spatial (0.05º) and temporal (hourly) resolution. An existing physical model, the UMD-SRB (University of Maryland Surface Radiation Budget) which is the basis of the GEWEX-SRB model, is re-visited to improve SSR estimates in TP. The UMD-SRB algorithm transforms TOA radiances into broadband albedos in order to infer atmospheric transmissivity which finally determines the SSR. Specifically, main updates introduced in this study are: implementation at 0.05º spatial resolution at hourly intervals integrated to daily and monthly time scales; and improvement of surface albedo model by introducing the most recently developed Global Land Surface Broadband Albedo Product (GLASS) based on MODIS data. This updated inference scheme will be evaluated against ground observations from China Meteorological Administration (CMA) radiation stations and three TP radiation stations contributed from the Institute of Tibetan Plateau Research.

  9. Spring-Summer Temperatures Since AD 1780 Reconstructed from Stable Oxygen Isotope Ratios in White Spruce Tree-Rings from the Mackenzie Delta, Northwestern Canada

    NASA Technical Reports Server (NTRS)

    Porter, Trevor J.; Pisaric, Michael F. J.; Field, Robert D.; Kokelj, Steven V.; Edwards, Thomas W. D.; deMontigny, Peter; Healy, Richard; LeGrande, Allegra N.

    2013-01-01

    High-latitude delta(exp 18)O archives deriving from meteoric water (e.g., tree-rings and ice-cores) can provide valuable information on past temperature variability, but stationarity of temperature signals in these archives depends on the stability of moisture source/trajectory and precipitation seasonality, both of which can be affected by atmospheric circulation changes. A tree-ring delta(exp 18)O record (AD 1780-2003) from the Mackenzie Delta is evaluated as a temperature proxy based on linear regression diagnostics. The primary source of moisture for this region is the North Pacific and, thus, North Pacific atmospheric circulation variability could potentially affect the tree-ring delta(exp 18)O-temperature signal. Over the instrumental period (AD 1892-2003), tree-ring delta(exp 18)O explained 29% of interannual variability in April-July minimum temperatures, and the explained variability increases substantially at lower-frequencies. A split-period calibration/verification analysis found the delta(exp 18)O-temperature relation was time-stable, which supported a temperature reconstruction back to AD 1780. The stability of the delta(exp 18)O-temperature signal indirectly implies the study region is insensitive to North Pacific circulation effects, since North Pacific circulation was not constant over the calibration period. Simulations from the NASA-GISS ModelE isotope-enabled general circulation model confirm that meteoric delta(exp 18)O and precipitation seasonality in the study region are likely insensitive to North Pacific circulation effects, highlighting the paleoclimatic value of tree-ring and possibly other delta(exp 18)O records from this region. Our delta(exp 18)O-based temperature reconstruction is the first of its kind in northwestern North America, and one of few worldwide, and provides a long-term context for evaluating recent climate warming in the Mackenzie Delta region.

  10. The NASA POWER SSE: Deriving the Direct Normal Counterpart from the CERES SYN1deg Hourly Global Horizontal Irradiance during Early 2000 to Near Present

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Stackhouse, P. W., Jr.; Westberg, D. J.

    2017-12-01

    The NASA Prediction of Worldwide Energy Resource (POWER) Surface meteorology and Solar Energy (SSE) provides solar direct normal irradiance (DNI) data as well as a variety of other solar parameters. The currently available DNIs are monthly means on a quasi-equal-area grid system with grid boxes roughly equivalent to 1 degree longitude by 1 degree latitude around the equator from July 1983 to June 2005, and the data were derived from the GEWEX Surface Radiation Budget (SRB) monthly mean global horizontal irradiance (GHI, Release 3) and regression analysis of the Baseline Surface Radiation Network (BSRN) data. To improve the quality of the DNI data and push the temporal coverage of the data to near present, we have applied a modified version of the DIRINDEX global-to-beam model to the GEWEX SRB (Release 3) all-sky and clear-sky 3-hourly GHI data and derived their DNI counterparts for the period from July 1983 to December 2007. The results have been validated against the BSRN data. To further expand the data in time to near present, we are now applying the DIRINDEX model to the Clouds and the Earth's Radiant Energy System (CERES) data. The CERES SYN1deg (Edition 4A) offers hourly all-sky and clear-sky GHIs on a 1 degree longitude by 1 degree latitude grid system from March 2000 to October 2016 as of this writing. Comparisons of the GHIs with their BSRN counterparts show remarkable agreements. Besides the GHIs, the inputs will also include the atmospheric water vapor and surface pressure from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and the aerosol optical depth from the Max-Planck Institute Climatology (MAC-v1). Based on the performance of the DIRINDEX model with the GEWEX SRB GHI data, we expect at least equally good or even better results. In this paper, we will show the derived hourly, daily, and monthly mean DNIs from the CERES SYN1deg hourly GHIs from March 2000 to October 2016 and how they compare with the BSRN data.

  11. 36 CFR 242.23 - Rural determinations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Salamatof, Kalifonsky, Kasilof, and Clam Gulch; (6) Ketchikan area—including all parts of the road system...—including Wasilla, Palmer, Sutton, Big Lake, Houston, Point MacKenzie, and Bodenburg Butte. (b) [Reserved...

  12. Sources and burial fluxes of soot black carbon in sediments on the Mackenzie, Chukchi, and Bering Shelves

    NASA Astrophysics Data System (ADS)

    Yang, Weifeng; Guo, Laodong

    2018-03-01

    Black carbon (BC) has been recognized as a climate forcing and a major component in the global carbon budget. However, studies on BC in the Arctic Ocean remain scarce. We report here variations in the abundance, sources and burial fluxes of sedimentary soot black carbon (soot-BC) in the western Arctic Ocean. The soot-BC contents averaged 1.6 ± 0.3, 0.46 ± 0.04 and 0.56 ± 0.10 mg-C g-1 on the Mackenzie, Chukchi and Bering Shelves, respectively, accounting for 16.6%, 10.2% and 10.4% of the total organic carbon in surface sediment. Temporally, contents of soot-BC remained fairly stable before 1910, but increased rapidly after the 1970s on the Mackenzie Shelf, indicating enhanced source input related to warming. Comparable δ13C signatures of soot-BC (- 24.95‰ to - 24.57‰) to C3 plants pointed to a major biomass source of soot-BC to the Beaufort Sea. Soot-BC showed similar temporal patterns with large fluctuations in the Chukchi/Bering shelf regions, implying the same source terms for soot-BC in these areas. Two events with elevated soot-BC corresponded to a simultaneous increase in biomass combustion and fossil fuel (coal and oil) consumption in Asia. The similar temporal variability in sedimentary soot-BC between the Arctic shelves and Asian lakes and the comparable δ13C values manifested that anthropogenic emission from East Asia was an important source of soot-BC in the western Arctic and subarctic regions. The burial fluxes of soot-BC, estimated from both 137Cs- and 210Pb-derived sedimentation rates, were 2.43 ± 0.42 g-C m-2 yr-1 on the Mackenzie Shelf, representing an efficient soot-BC sink. Soot-BC showed an increase in buried fluxes from 0.56 ± 0.02 g-C m-2 yr-1 during 1963-1986 to 0.88 ± 0.05 g-C m-2 yr-1 after 1986 on the Chukchi Shelf, and from 1.00 ± 0.18 g-C m-2 yr-1 to 2.58 ± 1.70 g-C m-2 yr-1 on the Bering Shelf, which were consistent with recent anthropogenically enhanced BC input observed especially in Asia. Overall, the three Arctic shelves could bury more than 3000 Gg soot-BC each year, attesting to an important role of the Arctic and subarctic shelves in global BC budget and carbon cycle.

  13. Geological carbon budget of the Mackenzie River Basin: New insight from the oxidation of rock-derived organic carbon

    NASA Astrophysics Data System (ADS)

    Horan, K.; Hilton, R. G.; Dellinger, M.; Galy, V.; Gaillardet, J.; Tipper, E.; Selby, D. S.; Ottley, C. J.; Burton, K. W.

    2016-12-01

    Erosion and weathering transfer carbon between the atmosphere and lithospheric storage, thereby operating to modify Earth's long-term climate. Over millions of years, atmospheric carbon dioxide (CO2) is sequestered during the weathering of silicate minerals by carbonic acid, coupled to carbonate formation, and following the erosion of biospheric organic carbon and its burial in sediments. However, erosion and weathering also act together to release CO2 from the lithosphere. Erosion enhances the rate of oxidative weathering of organic carbon in rocks (petrogenic OC, OCpetro), which is a major CO2 source over geological time. In addition, oxidation of sulfide minerals can produce sulfuric acid that weathers carbonate minerals and results in transient CO2 release. Although these sources and sinks of CO2 are well recognised, limited case studies exist where they have been measured alongside each other. Here we calculate the geological carbon budget during weathering and erosion in the Mackenzie River Basin, Canada. The silicate weathering rate, carbonate weathering rate by sulfuric acid and the sedimentary burial of biospheric organic carbon have been constrained by prior work. Closing the long-term CO2 budget therefore requires us to quantify the OCpetro oxidation rate. To do this, we use dissolved rhenium (Re) concentrations as a proxy for OCpetro weathering using samples collected from 2009 to 2013. We normalise dissolved river Re concentrations to the rock Re concentration ([Re]diss/[Re]rock) to assess the variability in oxidative weathering efficiency. We find [Re]diss/[Re]rock ratios are 2-4 times lower than those calculated for rapidly eroding mountain catchments (e.g. Taiwan), which is consistent with a lower physical erosion rate in the Mackenzie Basin. By making assumptions about the concurrent mobility of Re and CO2 during OCpetro weathering we quantify the OCpetro weathering rate and constrain the associated CO2 flux to be 0.3 tC km-2 yr-1. The transient CO2 release by sulfuric acid driven carbonate weathering is 0.8 tC km-2 yr-1. Therefore, these two CO2 sources counter CO2 drawdown by silicate weathering (0.4 tC km-2 yr-1). Nevertheless, OCpetro oxidation does not negate the large CO2 sink driven by biospheric organic carbon erosion (2 tC km-2 yr-1), so the Mackenzie Basin is presently a CO2 sink.

  14. Intercomparison of regional-scale hydrological models and climate change impacts projected for 12 large river basins worldwide—a synthesis

    NASA Astrophysics Data System (ADS)

    Krysanova, Valentina; Vetter, Tobias; Eisner, Stephanie; Huang, Shaochun; Pechlivanidis, Ilias; Strauch, Michael; Gelfan, Alexander; Kumar, Rohini; Aich, Valentin; Arheimer, Berit; Chamorro, Alejandro; van Griensven, Ann; Kundu, Dipangkar; Lobanova, Anastasia; Mishra, Vimal; Plötner, Stefan; Reinhardt, Julia; Seidou, Ousmane; Wang, Xiaoyan; Wortmann, Michel; Zeng, Xiaofan; Hattermann, Fred F.

    2017-10-01

    An intercomparison of climate change impacts projected by nine regional-scale hydrological models for 12 large river basins on all continents was performed, and sources of uncertainty were quantified in the framework of the ISIMIP project. The models ECOMAG, HBV, HYMOD, HYPE, mHM, SWAT, SWIM, VIC and WaterGAP3 were applied in the following basins: Rhine and Tagus in Europe, Niger and Blue Nile in Africa, Ganges, Lena, Upper Yellow and Upper Yangtze in Asia, Upper Mississippi, MacKenzie and Upper Amazon in America, and Darling in Australia. The model calibration and validation was done using WATCH climate data for the period 1971-2000. The results, evaluated with 14 criteria, are mostly satisfactory, except for the low flow. Climate change impacts were analyzed using projections from five global climate models under four representative concentration pathways. Trends in the period 2070-2099 in relation to the reference period 1975-2004 were evaluated for three variables: the long-term mean annual flow and high and low flow percentiles Q 10 and Q 90, as well as for flows in three months high- and low-flow periods denoted as HF and LF. For three river basins: the Lena, MacKenzie and Tagus strong trends in all five variables were found (except for Q 10 in the MacKenzie); trends with moderate certainty for three to five variables were confirmed for the Rhine, Ganges and Upper Mississippi; and increases in HF and LF were found for the Upper Amazon, Upper Yangtze and Upper Yellow. The analysis of projected streamflow seasonality demonstrated increasing streamflow volumes during the high-flow period in four basins influenced by monsoonal precipitation (Ganges, Upper Amazon, Upper Yangtze and Upper Yellow), an amplification of the snowmelt flood peaks in the Lena and MacKenzie, and a substantial decrease of discharge in the Tagus (all months). The overall average fractions of uncertainty for the annual mean flow projections in the multi-model ensemble applied for all basins were 57% for GCMs, 27% for RCPs, and 16% for hydrological models.

  15. Temporal deconvolution of vascular plant signatures delivered to coastal sediments

    NASA Astrophysics Data System (ADS)

    Vonk, J.; Drenzek, N. J.; Hughen, K. A.; Stanley, R.; Montluçon, D. B.; McIntyre, C.; Southon, J. R.; Santos, G.; Andersson, A.; Sköld, M.; Eglinton, T. I.

    2017-12-01

    Presently, relatively little is known about the amount of time that lapses between the photosynthetic fixation of carbon by vascular land plants and its incorporation into the marine sedimentary record. It is clear that there are multiple potential intermediate storage pools and transport trajectories that vascular plant carbon may experience, and the age of vascular plant carbon accumulating in marine sediments will reflect these different pre-depositional histories. Here we use molecular-level radiocarbon (14C) analysis to develop down-core 14C profiles for higher plant leaf wax-derived fatty acids isolated from sediments from three sites across a 60-degrees latitudinal gradient (Cariaco Basin, Saanich Inlet, and Mackenzie Delta). The sediment profiles were used as a direct measure of the storage and transport times experienced by these biomolecular tracer compounds. Residence times are evaluated by comparing these records to the 14C history of atmospheric CO2. Using a modeling framework, we conclude that there is, in addition to a variable "young" pool, a millennial pool of compounds that consists of 49-78 % of the fractional contribution of organic carbon (OC) that exhibits variable ages for the different depositional settings. For the Mackenzie Delta sediments, we find a mean age of the millennial pool of 28 ky, suggesting pre-aging in permafrost soils, whereas the millennial pool in Saanich Inlet and Cariaco Basin sediments is younger with 7.9 and 2.4-3.2 ky, respectively, suggesting limited storage in terrestrial reservoirs. The "young" pool, conditionally defined as < 50 years showed clear annual contributions for Saanich Inlet and Mackenzie Delta sediments (24% and 16% of young pool, respectively) that can likely be explained by transport of OC from steep hillside slopes near the Saanich Inlet and annual spring flood deposition in the Mackenzie Delta. These results show that a significant fraction of vascular plant C in deltaic and marine settings undergoes pre-aging in terrestrial reservoirs. The age distribution, reflecting storage and transport times, depends on landscape-specific factors such as local topography, hydrographic characteristics, and degree of soil build-up and preservation.

  16. Aerosol Concentration, Size, Hygroscopicity and MEE, Globally: What Do We Need to Know and How Can We Know It?

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    2017-01-01

    Organizers of the Symposium Clouds, their Properties, and their Climate Feedbacks - What Have We Learned in the Satellite Era, held at Columbia University, NASAGISS June 6-8, 2017 plan to post the presented talks to an online website. http:www.gewex.orgeventclouds-their-properties-and-their-climate-feedbacks-what-have-we-learned-in-the-satellite-era?instance_id293534

  17. Status and Plans for the WCRP/GEWEX Global Precipitation Climatology Project (GPCP)

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.

    2007-01-01

    The Global Precipitation Climatology Project (GPCP) is an international project under the auspices of the World Climate Research Program (WCRP) and GEWEX (Global Water and Energy Experiment). The GPCP group consists of scientists from agencies and universities in various countries that work together to produce a set of global precipitation analyses at time scales of monthly, pentad, and daily. The status of the current products will be briefly summarized, focusing on the monthly analysis. Global and large regional rainfall variations and possible long-term changes are examined using the 27-year (1 979-2005) monthly dataset. In addition to global patterns associated with phenomena such as ENSO, the data set is explored for evidence of long-term change. Although the global change of precipitation in the data set is near zero, the data set does indicate a small upward change in the Tropics (25s-25N) during the period,. especially over ocean. Techniques are derived to isolate and eliminate variations due to ENS0 and major volcanic eruptions and the significance of the linear change is examined. Plans for a GPCP reprocessing for a Version 3 of products, potentially including a fine-time resolution product will be discussed. Current and future links to IPWG will also be addressed.

  18. The brucellosis and tuberculosis status of wood bison in the Mackenzie Bison Sanctuary, Northwest Territories, Canada.

    PubMed Central

    Tessaro, S V; Gates, C C; Forbes, L B

    1993-01-01

    Postmortem examinations were done on 51 wood bison (Bison bison athabascae) killed as part of a multidisciplinary research project in the Mackenzie Bison Sanctuary, Northwest Territories, Canada, between 1986 and 1988. There was no gross, histological or bacteriological evidence of brucellosis or tuberculosis in these bison. Traumatic lesions were seen in one calf that had been attacked by wolves and a second calf that had been gored. Antibody titers to Brucella abortus were not found in sera from these 51 animals or an additional 112 wood bison that were chemically-immobilized or killed in the Sanctuary between 1986 and 1990. The combined prevalence of the diseases in the population could not have exceeded 5.95% for the necropsy survey to have missed finding at least one infected animal, and the prevalence of brucellosis in the population would have had to be less than 1.95% for the broader serological survey to have failed to find at least one reactor animal on the battery of tests. These results, and the cumulative epidemiological information on brucellosis and tuberculosis in bison, indicate that bovine brucellosis and tuberculosis are not enzootic in the wood bison population in and around the Mackenzie Bison Sanctuary, and suggest that the population is free of these diseases. However, this expanding population is at risk of contracting both diseases from the infected bison population in and around nearby Wood Buffalo National Park. PMID:8269360

  19. ANTHRAX IN THE MACKENZIE WOOD BISON (BISON BISON ATHABASCAE) POPULATION: 2012 ANTHRAX OUTBREAK AND HISTORICAL EXPOSURE IN NONOUTBREAK YEARS.

    PubMed

    New, Dallas; Elkin, Brett; Armstrong, Terry; Epp, Tasha

    2017-10-01

    Anthrax, caused by the spore-forming bacterium Bacillus anthracis, poses a threat to wood bison (Bison bison athabascae) conservation. We used descriptive epidemiology to characterize a large outbreak of anthrax in the Mackenzie bison population in the Northwest Territories, Canada, in 2012 and investigated historical serologic exposure of the bison to the bacterium in nonoutbreak years. Between late June and early August 2012, 451 bison carcasses were detected; mortality peaked from 13-19 July. A substantial number of calves, yearlings, and adult females died in the 2012 outbreak, unlike in two previous anthrax outbreaks in this population that killed mostly mature males. On the basis of the difference in estimates of population size prior to the outbreak (2012) and after the outbreak (2013), it is possible that not all dead bison were found during the outbreak. We assessed serologic history of exposure to B. anthracis by using samples from the Mackenzie wood bison population collected between 1986 and 2009. Overall, 87 of 278 samples were positive (31%). Seroprevalence was lower in females (18%, 10/55) than males (36%, 72/203). The highest proportion of positive submissions (90%) was from 1994, the year following the only anthrax outbreak within the historical data set. Both adult males and females had a higher likelihood of being seropositive than the younger age categories. There was a trend toward declining antibody levels between the 1993 and 2012 outbreak years.

  20. Warm Rivers Play Role in Arctic Sea Ice Melt

    NASA Image and Video Library

    2014-03-05

    Beaufort Sea surface temperatures where Canada Mackenzie River discharges into the Arctic Ocean, measured by NASA MODIS instrument; warm river waters had broken through a shoreline sea ice barrier to enhance sea ice melt.

  1. Distribution and diet of larval and juvenile Arctic cod ( Boreogadus saida) in the shallow Canadian Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Walkusz, Wojciech; Paulic, Joclyn E.; Williams, William J.; Kwasniewski, Slawomir; Papst, Michael H.

    2011-02-01

    The distribution and diet of larval and juvenile Arctic cod ( Boreogadus saida) were studied during summer 2005 in the coastal Canadian Beaufort Sea. A total of 275 individuals were captured and the highest abundance was observed at station depths of 20-30 m. This corresponds well with the location of the frontal zone where the Mackenzie River plume water and open sea water meet. Diet examinations were performed on 220 Arctic cod, which were found undamaged from sampling. We observed a gradual decrease in prey number per fish and increase in prey size as larvae grew which corresponded to a shift from Rotifera and nauplii towards larger copepodid stages. However, at all sizes, the larvae remain generalists and feed on a broad range of organisms. Environmental changes due to climate warming could have a two-fold impact on fish larvae feeding in the studied region. First, the potential for increased primary production may lead to increased zooplankton production that may impact the feeding and nutrition positively. On the other hand, greater discharge of turbid water from the Mackenzie River may reduce light penetration in the water column that may negatively influence the ability of visual predators to successively forage.

  2. Leadership profile: HealthAchieve 2013 Nursing Leadership Award Winner, Tiziana Rivera.

    PubMed

    Rivera, Tiziana

    2014-03-01

    Tiziana Rivera, the winner of the 2013 Nursing Leadership Award at the November HealthAchieve conference, is chief nursing executive and chief practice officer at Mackenzie Health. As such, she provides strategic leadership for the development and implementation of a shared vision for professional practice, nursing and all disciplines to promote innovative care and the development of care delivery models that will improve quality of care and population health.Prior to assuming her position at Mackenzie Health, Rivera provided strategic leadership for the Seniors' Health Program at Trillium Health Centre, where her role focused on the development of seniors' health services across the continuum of care. She has published numerous articles in refereed journals, conducted several research studies and presented her papers provincially, nationally and internationally. Rivera has a clinical appointment at the University of Toronto Faculty of Nursing, a faculty adviser position at Ryerson and an adjunct faculty position at the School of Health Sciences, York University and at the School of Health Sciences, Humber Institute of Technology and Advanced Learning.In the following Q and A, Rivera shares her thoughts on leadership in nursing and perspectives on several critical issues.

  3. Long-term increases in young-of-the-year growth of Arctic cisco Coregonus autumnalis and environmental influences

    USGS Publications Warehouse

    von Biela, Vanessa R.; Zimmerman, Christian E.; Moulton, L. L.

    2011-01-01

    Arctic cisco Coregonus autumnalis young-of-year (YOY) growth was used as a proxy to examine the long-term response of a high-latitude fish population to changing climate from 1978 to 2004. YOY growth increased over time (r2 = 0·29) and was correlated with monthly averages of the Arctic oscillation index, air temperature, east wind speed, sea-ice concentration and river discharge with and without time lags. Overall, the most prevalent correlates to YOY growth were sea-ice concentration lagged 1 year (significant correlations in 7 months; r2 = 0·14-0·31) and Mackenzie River discharge lagged 2 years (significant correlations in 8 months; r2 = 0·13-0·50). The results suggest that decreased sea-ice concentrations and increased river discharge fuel primary production and that life cycles of prey species linking increased primary production to fish growth are responsible for the time lag. Oceanographic studies also suggest that sea ice concentration and fluvial inputs from the Mackenzie River are key factors influencing productivity in the Beaufort Sea. Future research should assess the possible mechanism relating sea ice concentration and river discharge to productivity at upper trophic levels.

  4. Unique, icy gathering system will serve Norman Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, D.

    One of the more unique communities on the Mackenzie River is Norman Wells, ca 90 miles south of the Arctic Circle and 450 air miles south of the Beaufort Sea. For over 50 yr, Norman Wells has been a major supplier of petroleum products to the Mackenzie Valley. The most unique aspect of Norman Wells is that it is underlain by a large reservoir of oil. Fifty wells in the area produce over 3000 bbl of light crude daily, which is refined locally. Esso Resources Canada Ltd. now is developing the field and expanding production. New facilities will include 151more » new wells for producing oil and injecting water, 6 artificial islands in the 3-mile wide river to accommodate gathering points, and a new central processing facility. The crude oil to be produced will be transported by Interprovincial Pipeline (NW) Ltd. from Norman Wells to Zama, Alta.« less

  5. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean.

    PubMed

    Murton, Julian B; Bateman, Mark D; Dallimore, Scott R; Teller, James T; Yang, Zhirong

    2010-04-01

    The melting Laurentide Ice Sheet discharged thousands of cubic kilometres of fresh water each year into surrounding oceans, at times suppressing the Atlantic meridional overturning circulation and triggering abrupt climate change. Understanding the physical mechanisms leading to events such as the Younger Dryas cold interval requires identification of the paths and timing of the freshwater discharges. Although Broecker et al. hypothesized in 1989 that an outburst from glacial Lake Agassiz triggered the Younger Dryas, specific evidence has so far proved elusive, leading Broecker to conclude in 2006 that "our inability to identify the path taken by the flood is disconcerting". Here we identify the missing flood path-evident from gravels and a regional erosion surface-running through the Mackenzie River system in the Canadian Arctic Coastal Plain. Our modelling of the isostatically adjusted surface in the upstream Fort McMurray region, and a slight revision of the ice margin at this time, allows Lake Agassiz to spill into the Mackenzie drainage basin. From optically stimulated luminescence dating we have determined the approximate age of this Mackenzie River flood into the Arctic Ocean to be shortly after 13,000 years ago, near the start of the Younger Dryas. We attribute to this flood a boulder terrace near Fort McMurray with calibrated radiocarbon dates of over 11,500 years ago. A large flood into the Arctic Ocean at the start of the Younger Dryas leads us to reject the widespread view that Agassiz overflow at this time was solely eastward into the North Atlantic Ocean.

  6. Abundance and patterns of transparent exopolymer particles (TEP) in Arctic floodplain lakes of the Mackenzie River Delta

    NASA Astrophysics Data System (ADS)

    Chateauvert, C. Adam; Lesack, Lance F. W.; Bothwell, Max L.

    2012-12-01

    The Mackenzie River Delta is a lake-rich arctic floodplain that receives high inputs of dissolved organic matter (DOM) and suspended particulates from allochthonous and autochthonous sources, and may transfer carbon from dissolved to particulate phase via in situ formation of transparent exopolymer particles (TEP). TEP provides food for grazers, surfaces for bacteria, and increased potential for aggregation and sedimentation of organic matter. During open water 2006, we tracked TEP abundances in three Delta lakes representing gradients that include declining river-to-lake connection times, increasing levels of dissolved organic carbon (DOC), and declining chromophoric-DOM (CDOM). Unexpectedly, TEP abundances were highest immediately after the flood, when autochthonous autotrophic production was at a seasonal low and CDOM a seasonal high. Moreover, the lake with the strongest riverine influence and lowest levels of autochthonous autotrophic production had the highest mean TEP-carbon (TEP-C) concentrations among the lakes. The mean proportion of particulate organic carbon (POC) represented by TEP-C increased with increasing river connection time, and appears to represent a substantial proportion of POC in Mackenzie Delta Lakes. Unexpectedly, the TEP gradient was most strongly related to CDOM (river water source) rather than overall DOC. Variations in CDOM accounted for 53% of TEP-C variation among the lakes, indicating allochthonous matter was the most important source of TEP. DOC release from in situ macrophytes during periods of high photosynthesis may contribute to TEP formation in the lake with lowest riverine influence, but pH levels >9.5 driven by the high photosynthetic rates complicate the interpretation of results from this lake.

  7. Maydays and Murphies: A Study of the Effect of Organizational Design, Task, and Stress on Organizational Performance

    DTIC Science & Technology

    1992-07-29

    provide a series of hypotheses which we can test both with human experiments and by using real organizational data. Since human experiments are costly to...able to predict organizational performance (e.g., Mackenzie, 1978; Krackhardt, 1989). Rarely have they been tested and contrasted. The formal...also tested and contrasted the predictability of existing measures of organizational design. They found that no single measure predicted performance

  8. Global energy and water cycle experiment (GEWEX) continental-scale international project (GCIP); reference data sets CD-ROM

    USGS Publications Warehouse

    Rea, Alan; Cederstrand, Joel R.

    1994-01-01

    The data sets on this compact disc are a compilation of several geographic reference data sets of interest to the global-change research community. The data sets were chosen with input from the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project (GCIP) Data Committee and the GCIP Hydrometeorology and Atmospheric Subpanels. The data sets include: locations and periods of record for stream gages, reservoir gages, and meteorological stations; a 500-meter-resolution digital elevation model; grid-node locations for the Eta numerical weather-prediction model; and digital map data sets of geology, land use, streams, large reservoirs, average annual runoff, average annual precipitation, average annual temperature, average annual heating and cooling degree days, hydrologic units, and state and county boundaries. Also included are digital index maps for LANDSAT scenes, and for the U.S. Geological Survey 1:250,000, 1:100,000, and 1:24,000-scale map series. Most of the data sets cover the conterminous United States; the digital elevation model also includes part of southern Canada. The stream and reservoir gage and meteorological station files cover all states having area within the Mississippi River Basin plus that part of the Mississippi River Basin lying within Canada. Several data-base retrievals were processed by state, therefore many sites outside the Mississippi River Basin are included.

  9. Warm Rivers Play Role in Arctic Sea Ice Melt Animation

    NASA Image and Video Library

    2014-03-05

    This frame from a NASA MODIS animation depicts warming sea surface temperatures in the Arctic Beaufort Sea after warm waters from Canada Mackenzie River broke through a shoreline sea ice barrier in summer 2012, enhancing the melting of sea ice.

  10. The SeaFlux Turbulent Flux Dataset Version 1.0 Documentation

    NASA Technical Reports Server (NTRS)

    Clayson, Carol Anne; Roberts, J. Brent; Bogdanoff, Alec S.

    2012-01-01

    Under the auspices of the World Climate Research Programme (WCRP) Global Energy and Water cycle EXperiment (GEWEX) Data and Assessment Panel (GDAP), the SeaFlux Project was created to investigate producing a high-resolution satellite-based dataset of surface turbulent fluxes over the global oceans. The most current release of the SeaFlux product is Version 1.0; this represents the initial release of turbulent surface heat fluxes, associated near-surface variables including a diurnally varying sea surface temperature.

  11. Simulation of Water Sources and Precipitation Recycling for the MacKenzie, Mississippi and Amazon River Basins

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Chern, Jiun-Dar

    2005-01-01

    An atmospheric general circulation model simulation for 1948-1997 of the water budgets for the MacKenzie, Mississippi and Amazon River basins is presented. In addition to the water budget, we include passive tracers to identify the geographic sources of water for the basins, and the analysis focuses on the mechanisms contributing to precipitation recycling in each basin. While each basin s precipitation recycling has a strong dependency on evaporation during the mean annual cycle, the interannual variability of the recycling shows important relationships with the atmospheric circulation. The MacKenzie River basin has only a weak interannual dependency on evaporation, where the variations in zonal moisture transport from the Pacific Ocean can affect the basin water cycle. On the other hand, the Mississippi River basin has strong interannual dependencies on evaporation. While the precipitation recycling weakens with increased low level jet intensity, the evaporation variations exert stronger influence in providing water vapor for convective precipitation at the convective cloud base. High precipitation recycling is also found to be partly connected to warm SSTs in the tropical Pacific Ocean. The Amazon River basin evaporation exhibits small interannual variations, so that the interannual variations of precipitation recycling are related to atmospheric moisture transport from the tropical south Atlantic Ocean. Increasing SSTs over the 50-year period are causing increased easterly transport across the basin. As moisture transport increases, the Amazon precipitation recycling decreases (without real time varying vegetation changes). In addition, precipitation recycling from a bulk diagnostic method is compared to the passive tracer method used in the analysis. While the mean values are different, the interannual variations are comparable between each method. The methods also exhibit similar relationships to the terms of the basin scale water budgets.

  12. Long-term increases in young-of-the-year growth of Arctic cisco Coregonus autumnalis and environmental influences

    USGS Publications Warehouse

    Von Biela, V.R.; Zimmerman, C.E.; Moulton, L.L.

    2011-01-01

    Arctic cisco Coregonus autumnalis young-of-year (YOY) growth was used as a proxy to examine the long-term response of a high-latitude fish population to changing climate from 1978 to 2004. YOY growth increased over time (r2 = 0??29) and was correlated with monthly averages of the Arctic oscillation index, air temperature, east wind speed, sea-ice concentration and river discharge with and without time lags. Overall, the most prevalent correlates to YOY growth were sea-ice concentration lagged 1 year (significant correlations in 7 months; r2 = 0??14-0??31) and Mackenzie River discharge lagged 2 years (significant correlations in 8 months; r2 = 0??13-0??50). The results suggest that decreased sea-ice concentrations and increased river discharge fuel primary production and that life cycles of prey species linking increased primary production to fish growth are responsible for the time lag. Oceanographic studies also suggest that sea ice concentration and fluvial inputs from the Mackenzie River are key factors influencing productivity in the Beaufort Sea. Future research should assess the possible mechanism relating sea ice concentration and river discharge to productivity at upper trophic levels. Journal of Fish Biology ?? 2010 The Fisheries Society of the British Isles. No claim to original US government works.

  13. Acoustic Retrieval of Seafloor Geotechnics.

    DTIC Science & Technology

    1977-12-01

    from the seafloor and subbottom layer interfaces (e.g., Hastrup , 1969; Mackenzie , 1960; Bell and Porter , 1974). It is known that the physical...L. Inderbitzen , New York , Plenum Press, 1974 , pp 1-44. Hastrup , Ole (1969) “Digital analysis of acoustic reflectivity in the Tyrrhenia n A byssal

  14. Pipeline enhances Norman Wells potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Approval of an oil pipeline from halfway down Canada's MacKenzie River Valley at Norman Wells to N. Alberta has raised the potential for development of large reserves along with controversy over native claims. The project involves 2 closely related proposals. One, by Esso Resources, the exploration and production unit of Imperial Oil, will increase oil production from the Norman Wells field from 3000 bpd currently to 25,000 bpd. The other proposal, by Interprovincial Pipeline (N.W) Ltd., calls for construction of an underground pipeline to transport the additional production from Norman Wells to Alberta. The 560-mile, 12-in. pipeline will extend frommore » Norman Wells, which is 90 miles south of the Arctic Circle on the north shore of the Mackenzie River, south to the end of an existing line at Zama in N. Alberta. There will be 3 pumping stations en route. This work also discusses recovery, potential, drilling limitations, the processing plant, positive impact, and further development of the Norman Wells project.« less

  15. Effects of SnO2 on spectroscopic properties of borosilicate glasses before and after plasma treatment and its mechanical properties

    NASA Astrophysics Data System (ADS)

    Abdel Wahab, E. A.; Shaaban, Kh S.

    2018-02-01

    B2O3-SiO2-Na2O-Al2O3-TiO2 glasses modified by SnO2 have prepared and characterized by UV-spectroscopy before and after plasma treatment and by ultrasonic techniques. Makishima-Mackenzie Model has been applied to determine the elastic moduli of glasses. The density and the elastic moduli either determined from the ultrasonic or that computed according to the Makishima-Mackenzie model increase as the SnO2 concentration increases. The values of the optical band gap E g before and after plasma treatment, and refractive index have been determined. It was found that these parameters are sensitive to the increase of SnO2 content. The vibration temperature of nitrogen glow discharge has been calculated using Boltzmann plots of second positive system N2 (C3Πu) → (B3 Πg). The obtained results of vibration temperature decrease with increasing of gas pressure at different discharge currents.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Heng; Gustafson, William I.; Wang, Hailong

    Subgrid-scale interactions between turbulence and radiation are potentially important for accurately reproducing marine low clouds in climate models. To better understand the impact of these interactions, the Weather Research and Forecasting (WRF) model is configured for large eddy simulation (LES) to study the stratocumulus-to-trade cumulus (Sc-to-Cu) transition. Using the GEWEX Atmospheric System Studies (GASS) composite Lagrangian transition case and the Atlantic Trade Wind Experiment (ATEX) case, it is shown that the lack of subgrid-scale turbulence-radiation interaction, as is the case in current generation climate models, accelerates the Sc-to-Cu transition. Our analysis suggests that in cloud-topped boundary layers subgrid-scale turbulence-radiation interactionsmore » contribute to stronger production of temperature variance, which in turn leads to stronger buoyancy production of turbulent kinetic energy and helps to maintain the Sc cover.« less

  17. Investigating the spatial distribution of water levels in the Mackenzie Delta using airborne LiDAR

    USGS Publications Warehouse

    Hopkinson, C.; Crasto, N.; Marsh, P.; Forbes, D.; Lesack, L.

    2011-01-01

    Airborne light detection and ranging (LiDAR) data were used to map water level (WL) and hydraulic gradients (??H/??x) in the Mackenzie Delta. The LiDAR WL data were validated against eight independent hydrometric gauge measurements and demonstrated mean offsets from - 0??22 to + 0??04 m (??< 0??11). LiDAR-based WL gradients could be estimated with confidence over channel lengths exceeding 5-10 km where the WL change exceeded local noise levels in the LiDAR data. For the entire Delta, the LiDAR sample coverage indicated a rate of change in longitudinal gradient (??2H/??x) of 5??5 ?? 10-10 m m-2; therefore offering a potential means to estimate average flood stage hydraulic gradient for areas of the Delta not sampled or monitored. In the Outer Delta, within-channel and terrain gradient measurements all returned a consistent estimate of - 1 ?? 10-5 m m-1, suggesting that this is a typical hydraulic gradient for the downstream end of the Delta. For short reaches (<10 km) of the Peel and Middle Channels in the middle of the Delta, significant and consistent hydraulic gradient estimates of - 5 ?? 10-5 m m-1 were observed. Evidence that hydraulic gradients can vary over short distances, however, was observed in the Peel Channel immediately upstream of Aklavik. A positive elevation anomaly (bulge) of > 0??1 m was observed at a channel constriction entering a meander bend, suggesting a localized modification of the channel hydraulics. Furthermore, water levels in the anabranch channels of the Peel River were almost 1 m higher than in Middle Channel of the Mackenzie River. This suggests: (i) the channels are elevated and have shallower bank heights in this part of the delta, leading to increased cross-delta and along-channel hydraulic gradients; and/or (ii) a proportion of the Peel River flow is lost to Middle Channel due to drainage across the delta through anastamosing channels. This study has demonstrated that airborne LiDAR data contain valuable information describing Arctic river delta water surface and hydraulic attributes that would be challenging to acquire by other means. ?? 2011 John Wiley & Sons, Ltd.

  18. GCIP water and energy budget synthesis (WEBS)

    USGS Publications Warehouse

    Roads, J.; Lawford, R.; Bainto, E.; Berbery, E.; Chen, S.; Fekete, B.; Gallo, K.; Grundstein, A.; Higgins, W.; Kanamitsu, M.; Krajewski, W.; Lakshmi, V.; Leathers, D.; Lettenmaier, D.; Luo, L.; Maurer, E.; Meyers, T.; Miller, D.; Mitchell, Ken; Mote, T.; Pinker, R.; Reichler, T.; Robinson, D.; Robock, A.; Smith, J.; Srinivasan, G.; Verdin, K.; Vinnikov, K.; Vonder, Haar T.; Vorosmarty, C.; Williams, S.; Yarosh, E.

    2003-01-01

    As part of the World Climate Research Program's (WCRPs) Global Energy and Water-Cycle Experiment (GEWEX) Continental-scale International Project (GCIP), a preliminary water and energy budget synthesis (WEBS) was developed for the period 1996-1999 fromthe "best available" observations and models. Besides this summary paper, a companion CD-ROM with more extensive discussion, figures, tables, and raw data is available to the interested researcher from the GEWEX project office, the GAPP project office, or the first author. An updated online version of the CD-ROM is also available at http://ecpc.ucsd.edu/gcip/webs.htm/. Observations cannot adequately characterize or "close" budgets since too many fundamental processes are missing. Models that properly represent the many complicated atmospheric and near-surface interactions are also required. This preliminary synthesis therefore included a representative global general circulation model, regional climate model, and a macroscale hydrologic model as well as a global reanalysis and a regional analysis. By the qualitative agreement among the models and available observations, it did appear that we now qualitatively understand water and energy budgets of the Mississippi River Basin. However, there is still much quantitative uncertainty. In that regard, there did appear to be a clear advantage to using a regional analysis over a global analysis or a regional simulation over a global simulation to describe the Mississippi River Basin water and energy budgets. There also appeared to be some advantage to using a macroscale hydrologic model for at least the surface water budgets. Copyright 2003 by the American Geophysical Union.

  19. Remediation of Explosives Contaminated Groundwater With Zero-Valent Iron

    DTIC Science & Technology

    2011-10-01

    1947. Howson, P.E., Mackenzie, P.D. and Horney, D.P., 1996. Enhanced reactive metal wall for dehalogenation of hydrocarbons. Tertiary Enhanced...reactive metal wall for dehalogenation of hydrocarbons, United States. Hundal, L.S., Singh, J., Bier, E.L., Shea, P.J., Comfort, S.D. and Power, W.L

  20. Phosphate-based glasses: Prediction of acoustical properties

    NASA Astrophysics Data System (ADS)

    El-Moneim, Amin Abd

    2016-04-01

    In this work, a comprehensive study has been carried out to predict the composition dependence of bulk modulus and ultrasonic attenuation coefficient in the phosphate-based glass systems PbO-P2O5, Li2O-TeO2-B2O3-P2O5, TiO2-Na2O-CaO-P2O5 and Cr2O3-doped Na2O-ZnO-P2O5 at room temperature. The prediction is based on (i) Makishima-Mackenzie theory, which correlates the bulk modulus with packing density and dissociation energy per unit volume, and (ii) Our recently presented semi-empirical formulas, which correlate the ultrasonic attenuation coefficient with the oxygen density, mean atomic ring size, first-order stretching force constant and experimental bulk modulus. Results revealed that our recently presented semi-empirical formulas can be applied successfully to predict changes of ultrasonic attenuation coefficient in binary PbO-P2O5 glasses at 10 MHz frequency and in quaternary Li2O-TeO2-B2O3-P2O5, TiO2-Na2O-CaO-P2O5 and Cr2O3-Na2O-ZnO-P2O5 glasses at 5 MHz frequency. Also, Makishima-Mackenzie theory appears to be valid for the studied glasses if the effect of the basic structural units that present in the glass network is taken into account.

  1. Uncertainty in Analyzed Water and Energy Budgets at Continental Scales

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Robertson, F. R.; Mocko, D.; Chen, J.

    2011-01-01

    Operational analyses and retrospective-analyses provide all the physical terms of mater and energy budgets, guided by the assimilation of atmospheric observations. However, there is significant reliance on the numerical models, and so, uncertainty in the budget terms is always present. Here, we use a recently developed data set consisting of a mix of 10 analyses (both operational and retrospective) to quantify the uncertainty of analyzed water and energy budget terms for GEWEX continental-scale regions, following the evaluation of Dr. John Roads using individual reanalyses data sets.

  2. Meltwater routing and the Younger Dryas.

    PubMed

    Condron, Alan; Winsor, Peter

    2012-12-04

    The Younger Dryas--the last major cold episode on Earth--is generally considered to have been triggered by a meltwater flood into the North Atlantic. The prevailing hypothesis, proposed by Broecker et al. [1989 Nature 341:318-321] more than two decades ago, suggests that an abrupt rerouting of Lake Agassiz overflow through the Great Lakes and St. Lawrence Valley inhibited deep water formation in the subpolar North Atlantic and weakened the strength of the Atlantic Meridional Overturning Circulation (AMOC). More recently, Tarasov and Peltier [2005 Nature 435:662-665] showed that meltwater could have discharged into the Arctic Ocean via the Mackenzie Valley ~4,000 km northwest of the St. Lawrence outlet. Here we use a sophisticated, high-resolution, ocean sea-ice model to study the delivery of meltwater from the two drainage outlets to the deep water formation regions in the North Atlantic. Unlike the hypothesis of Broecker et al., freshwater from the St. Lawrence Valley advects into the subtropical gyre ~3,000 km south of the North Atlantic deep water formation regions and weakens the AMOC by <15%. In contrast, narrow coastal boundary currents efficiently deliver meltwater from the Mackenzie Valley to the deep water formation regions of the subpolar North Atlantic and weaken the AMOC by >30%. We conclude that meltwater discharge from the Arctic, rather than the St. Lawrence Valley, was more likely to have triggered the Younger Dryas cooling.

  3. Long-term increases in young-of-the-year growth of Arctic cisco Coregonus autumnalis and environmental influences.

    PubMed

    von Biela, V R; Zimmerman, C E; Moulton, L L

    2011-01-01

    Arctic cisco Coregonus autumnalis young-of-year (YOY) growth was used as a proxy to examine the long-term response of a high-latitude fish population to changing climate from 1978 to 2004. YOY growth increased over time (r² = 0·29) and was correlated with monthly averages of the Arctic oscillation index, air temperature, east wind speed, sea-ice concentration and river discharge with and without time lags. Overall, the most prevalent correlates to YOY growth were sea-ice concentration lagged 1 year (significant correlations in 7 months; r² = 0·14-0·31) and Mackenzie River discharge lagged 2 years (significant correlations in 8 months; r² = 0·13-0·50). The results suggest that decreased sea-ice concentrations and increased river discharge fuel primary production and that life cycles of prey species linking increased primary production to fish growth are responsible for the time lag. Oceanographic studies also suggest that sea ice concentration and fluvial inputs from the Mackenzie River are key factors influencing productivity in the Beaufort Sea. Future research should assess the possible mechanism relating sea ice concentration and river discharge to productivity at upper trophic levels. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles. No claim to original US government works.

  4. Estimating open population site occupancy from presence-absence data lacking the robust design.

    PubMed

    Dail, D; Madsen, L

    2013-03-01

    Many animal monitoring studies seek to estimate the proportion of a study area occupied by a target population. The study area is divided into spatially distinct sites where the detected presence or absence of the population is recorded, and this is repeated in time for multiple seasons. However, when occupied sites are detected with probability p < 1, the lack of a detection does not imply lack of occupancy. MacKenzie et al. (2003, Ecology 84, 2200-2207) developed a multiseason model for estimating seasonal site occupancy (ψt ) while accounting for unknown p. Their model performs well when observations are collected according to the robust design, where multiple sampling occasions occur during each season; the repeated sampling aids in the estimation p. However, their model does not perform as well when the robust design is lacking. In this paper, we propose an alternative likelihood model that yields improved seasonal estimates of p and Ψt in the absence of the robust design. We construct the marginal likelihood of the observed data by conditioning on, and summing out, the latent number of occupied sites during each season. A simulation study shows that in cases without the robust design, the proposed model estimates p with less bias than the MacKenzie et al. model and hence improves the estimates of Ψt . We apply both models to a data set consisting of repeated presence-absence observations of American robins (Turdus migratorius) with yearly survey periods. The two models are compared to a third estimator available when the repeated counts (from the same study) are considered, with the proposed model yielding estimates of Ψt closest to estimates from the point count model. Copyright © 2013, The International Biometric Society.

  5. Paradise Lost: Introducing Students to Climate Change through Story

    ERIC Educational Resources Information Center

    Bennon, Brady

    2013-01-01

    "This country has been the basis of my being. And when it's no longer there, you know, it's unthinkable." Ueantabo Mackenzie's haunting words in the PBS NOW documentary "Paradise Lost" shook the author. He knew he wanted to teach a unit on global warming, especially after participating in the Portland-area Rethinking Schools…

  6. "Look What Boot Camp's Done for Me:" Teaching and Learning at Lakeview Academy

    ERIC Educational Resources Information Center

    Kilgore, Deborah; Meade, Susan

    2004-01-01

    A boot camp is a military style correctional facility in which inmates are subject to a highly structured and challenging regimen of physical training, in addition to vocational, educational, and therapeutic programming (Cronin and Han, 1994; Austin, Jones, and Bolyard, 1993; Mackenzie and Souryal, 1991). Originally introduced to rehabilitate…

  7. Training and Qualifications (Teachers and Workers for the Deaf).

    ERIC Educational Resources Information Center

    World Federation of the Deaf, Rome (Italy).

    Three papers consider the training and qualifications of teachers and workers for the deaf. H. Okopinski describes "Training Teachers for Deaf Children's Schools in Poland" and A. F. Mackenzie defines "The Qualifications of Workers for the Adult Deaf" in the United Kingdom. E. S. Levine reports on New York University's…

  8. Michael Hand, Indoctrination and the Inculcation of Belief

    ERIC Educational Resources Information Center

    Tan, Charlene

    2004-01-01

    In 'Religious Upbringing Reconsidered,' Michael Hand revisits the debate on the right of parents to give their children a religious upbringing in a liberal context. According to him, the logical difficulty lies in the fact that parents cannot both impart religious beliefs and avoid indoctrination. While Peter Gardner and Jim Mackenzie have…

  9. 75 FR 14594 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... Forest, Mono County, CA and Lyon, Douglas, and Mineral Counties, NV, Wait Period Ends: 04/26/2010.../ 2010, Contact: Douglas Gober, 208-476-4541. EIS No. 20100089, Draft EIS, STB, AK, Port MacKenzie Rail..., Richland, Benton County, WA, Comment Period Ends: 05/03/2010, Contact: Mary Beth Burandi, 888-829- 6347...

  10. Measurements of Acoustic Backscatter of the Deep Sea Floor Using a Deeply Towed Vehicle.

    DTIC Science & Technology

    1985-12-01

    Mackenzie,1960; McKinney and Anderson,1964; Jones, et ai.,1964, Clay and Rona,1965; Hastrup ,1970). A second category was more interested in the implications...calibration. Application Note 205-2. Hastrup , O.L., 1970, Digital analysis of acoustical reflectivity in the Tyrrhenian abys- sal plain, Journal of the

  11. A troubled beginning: evolving concepts of an old arrhythmia.

    PubMed

    Hanon, Sam; Shapiro, Michael; Schweitzer, Paul

    2005-07-01

    The development of the sphygmograph in the nineteenth century marked the beginning of graphic registration of the arterial and venous pulse. Mackenzie, among other investigators, used this technique to study cardiac rhythm. In the early 20th century, Einthoven developed the electrocardiogram, which replaced the less sophisticated arterial and venous registrations of cardiac events and allowed for more detailed arrhythmia analysis. Interestingly, the early study of cardiac arrhythmias was obscured by misinterpretation. Specifically, atrial fibrillation stands out as a rhythm that was extensively studied though misconstrued in its early history. What follows is an in-depth consideration of the original investigations and evolving theories of this important arrhythmia.

  12. Technical Report Series on Global Modeling and Data Assimilation, Volume 41 : GDIS Workshop Report

    NASA Technical Reports Server (NTRS)

    Koster, Randal D. (Editor); Schubert, Siegfried; Pozzi, Will; Mo, Kingtse; Wood, Eric F.; Stahl, Kerstin; Hayes, Mike; Vogt, Juergen; Seneviratne, Sonia; Stewart, Ron; hide

    2015-01-01

    The workshop "An International Global Drought Information System Workshop: Next Steps" was held on 10-13 December 2014 in Pasadena, California. The more than 60 participants from 15 countries spanned the drought research community and included select representatives from applications communities as well as providers of regional and global drought information products. The workshop was sponsored and supported by the US National Integrated Drought Information System (NIDIS) program, the World Climate Research Program (WCRP: GEWEX, CLIVAR), the World Meteorological Organization (WMO), the Group on Earth Observations (GEO), the European Commission Joint Research Centre (JRC), the US Climate Variability and Predictability (CLIVAR) program, and the US National Oceanic and Atmospheric Administration (NOAA) programs on Modeling, Analysis, Predictions and Projections (MAPP) and Climate Variability & Predictability (CVP). NASA/JPL hosted the workshop with logistical support provided by the GEWEX program office. The goal of the workshop was to build on past Global Drought Information System (GDIS) progress toward developing an experimental global drought information system. Specific goals were threefold: (i) to review recent research results focused on understanding drought mechanisms and their predictability on a wide range of time scales and to identify gaps in understanding that could be addressed by coordinated research; (ii) to help ensure that WRCP research priorities mesh with efforts to build capacity to address drought at the regional level; and (iii) to produce an implementation plan for a short duration pilot project to demonstrate current GDIS capabilities. See http://www.wcrp-climate.org/gdis-wkshp-2014-objectives for more information.

  13. Numerical simulation of the geographical sources of water for Continental Scale Experiments (CSEs) Precipitation

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Sud, Yogesh; Schubert, Siegfried D.; Walker, Gregory K.

    2003-01-01

    There are several important research questions that the Global Energy and Water Cycle Experiment (GEWEX) is actively pursuing, namely: What is the intensity of the water cycle and how does it change? And what is the sustainability of water resources? Much of the research to address these questions is directed at understanding the atmospheric water cycle. In this paper, we have used a new diagnostic tool, called Water Vapor Tracers (WVTs), to quantify the how much precipitation originated as continental or oceanic evaporation. This shows how long water can remain in the atmosphere and how far it can travel. The model-simulated data are analyzed over regions of interest to the GEWEX community, specifically, their Continental Scale Experiments (CSEs) that are in place in the United States, Europe, Asia, Brazil, Africa and Canada. The paper presents quantitative data on how much each continent and ocean on Earth supplies water for each CSE. Furthermore, the analysis also shows the seasonal variation of the water sources. For example, in the United States, summertime precipitation is dominated by continental (land surface) sources of water, while wintertime precipitation is dominated by the Pacific Ocean sources of water. We also analyze the residence time of water in the atmosphere. The new diagnostic shows a longer residence time for water (9.2 days) than more traditional estimates (7.5 days). We emphasize that the results are based on model simulations and they depend on the model s veracity. However, there are many potential uses for the new diagnostic tool in understanding weather processes and large and small scales.

  14. Seabed Scattering from Low Frequency Reverberation Measurements

    DTIC Science & Technology

    2015-09-30

    in bottom reflection loss can be compensated for by increasing (decreasing) the angu - lar index of bottom scattering.5 That is, there is an uncer...Mackenzie-Lambert40 were extended to more general angu - lar dependence as follows.6–8 When a plane wave with an in- tensity of IiðhÞ is incident upon unit

  15. Neural Stem Cell Delivery of Therapeutic Antibodies to Treat Breast Cancer Brain Metastases

    DTIC Science & Technology

    2010-10-01

    Barry AM, MacKenzie LT, Mikulis DJ, Palmieri D, Bronder JL, Steeg PS, Yoneda T, MacDonald IC, Chambers AF, Rutt BK, Foster PJ: In vivo MRI of cancer...Fransisco, CA). Caspase-3 was immunoprecipitated from cell lysates in the presence of protease inhibitors (Roche complete Mini tablet , EDTA-free and 2

  16. Between Teacher & Parent

    ERIC Educational Resources Information Center

    Brodkin, Adele M.

    2007-01-01

    In this article, the author discusses how a new afterschool arrangement is upsetting a 4-year-old child named Mackenzie. Her babysitter left last week, just as her mom started a new job with longer hours. She is missing her former caregiver and mom a lot. Based on the stories from her teacher and her father, the author gives her assessment of…

  17. An Evaluation of the Harbor of Yokosuka, Japan as a Typhoon Haven

    DTIC Science & Technology

    1975-06-01

    following are some pertinent comments by various commands listed in Figure D-4. SHIP CARBONERO (SS337) MEDREGAL (SS480) CASTOR (AKSl) TOM GREEN...SOPA in USS Piedmont AD 17. SHIP BARBERO SSG317 BERING STRAIT WAVP382 BRUSH DD745 CARBONERO SS337 CASTOR AKSl GEORGE K MACKENZIE DD386 GURKE

  18. DOD Future Energy Resources. Proceedings of Workshops Held at the National Defense University

    DTIC Science & Technology

    2003-05-01

    successful project at the Mallik well in Canada and the current status of the U.S. market for natural gas. There was the so-called “gas bubble” during...partnership has been directed to drilling and tests at the Mallik well in the Mackenzie Delta of Canada. 45 Tomer concluded with high

  19. The Fighting Colonel: Ranald S. MacKenzie’s Leadership on the Texas Frontier

    DTIC Science & Technology

    2015-06-12

    warrior ways and settle on the reservation given to them by the benevolent US Government. Utley summed it up perfectly when he wrote, “high- minded ...food staple as well as a source of the raw materials the Comanche needed to make their tipis, utensils, and other tools. As the buffalo wandered , so...

  20. Closed and Open Systems: The Tavistock Group from a General System Perspective.

    ERIC Educational Resources Information Center

    Rugel, Robert P.

    1991-01-01

    Describes phases in the life of a Tavistock group composed of college students using concepts from Von Bertalanffy's general systems theory, MacKenzie's role theory, and Kantor's family theory. Discusses early, middle, and late phases of typical 16-session group as it moves from a closed to an open system. (Author/NB)

  1. Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie Delta, Canada

    USGS Publications Warehouse

    Moridis, G.J.; Collett, T.S.; Dallimore, S.R.; Satoh, T.; Hancock, S.; Weatherill, B.

    2004-01-01

    The Mallik site represents an onshore permafrost-associated gas hydrate accumulation in the Mackenzie Delta, Northwest Territories, Canada. A gas hydrate research well was drilled at the site in 1998. The objective of this study is the analysis of various gas production scenarios from five methane hydrate-bearing zones at the Mallik site. In Zone #1, numerical simulations using the EOSHYDR2 model indicated that gas production from hydrates at the Mallik site was possible by depressurizing a thin free gas zone at the base of the hydrate stability field. Horizontal wells appeared to have a slight advantage over vertical wells, while multiwell systems involving a combination of depressurization and thermal stimulation offered superior performance, especially when a hot noncondensible gas was injected. Zone #2, which involved a gas hydrate layer with an underlying aquifer, could yield significant amounts of gas originating entirely from gas hydrates, the volumes of which increased with the production rate. However, large amounts of water were also produced. Zones #3, #4 and #5 were lithologically isolated gas hydrate-bearing deposits with no underlying zones of mobile gas or water. In these zones, thermal stimulation by circulating hot water in the well was used to induce dissociation. Sensitivity studies indicated that the methane release from the hydrate accumulations increased with the gas hydrate saturation, the initial formation temperature, the temperature of the circulating water in the well, and the formation thermal conductivity. Methane production appears to be less sensitive to the specific heat of the rock and of the hydrate, and to the permeability of the formation. ?? 2004 Published by Elsevier B.V.

  2. Early Support of Intracranial Perfusion

    DTIC Science & Technology

    2013-10-01

    examine the Pulse Oximeter signal in more detail than is currently possible with infrastructure and equipment available under the current funding...predicts interventions. Sen A, Hu P, Mackenzie C, Jordan S, Dutton R. 18 Correlation between ECG heart rate and pulse oximeter heart rate in...rate and Pulse Oximeter Heart rate in Prehospital aeromedical trauma transfer Proceedings of the American Society of Anesthesiologists. 2008 . Hu

  3. A broader definition of occupancy: Comment on Hayes and Monfils

    Treesearch

    Quresh S. Latif; Martha M. Ellis; Courtney L. Amundson

    2016-01-01

    Occupancy models are widely used to analyze presence-absence data for a variety of taxa while accounting for observation error (MacKenzie et al. 2002, 2006; Tyre et al. 2003; Royle and Dorazio 2008). Hayes and Monfils (2015) question their use for analyzing avian point count data based on purported violations of model assumptions incurred by avian mobility....

  4. Southeast Asian Space Programs: Motives, Cooperation, and Competition

    DTIC Science & Technology

    2014-09-01

    LEO low Earth orbit MTCR Missile Technology Control Regime NAMRIA National Mapping and Resource Information Authority NASA National Aeronautics and...Technology’s role 27 Leo Marx and Merritt Roe Smith, “Introduction,” in Does Technology Drive History: The...Dilemma of Technological Determinism, ed. Merritt Roe Smith and Leo Marx (Cambridge, MA: The MIT Press, 1994), xii. 28 Donald MacKenzie and Judy

  5. Relationship of gas hydrate concentration to porosity and reflection amplitude in a research well, Mackenzie Delta, Canada

    USGS Publications Warehouse

    Jin, Y.K.; Lee, M.W.; Collett, T.S.

    2002-01-01

    Well logs acquired at the Mallik 2L-38 gas hydrate research well. Mackenzie Delta, Canada, reveal a distinct trend showing that the resistivity of gas-hydrate-bearing sediments increases with increases in density porosities. This trend, opposite to the general trend of decrease in resistivity with porosity, implies that gas hydrates are more concentrated in the higher porosity. Using the Mallik 2L-38 well data, a proportional gas hydrate concentration (PGHC) model, which states that the gas hydrate concentration in the sediment's pore space is linearly proportional to porosity, is proposed for the general habitat of gas hydrate in sediments. Anomalous data (less than 6% of the total data) outside the dominant observed trend can be explained by local geological characteristics. The anomalous data analysis indicates that highly concentrated gas-hydrate-bearing layers would be expected where sediments have high proportions of gravel and coarse sand. Using the parameters in the PGHC model determined from resistivity-porosity logs, it is possible to qualitatively predict the degree of reflection amplitude variations in seismic profiles. Moderate-to-strong reflections are expected for the Mallik 2L-38 well. ?? 2002 Elsevier Science Ltd. All rights reserved.

  6. An intercomparison and validation of satellite-based surface radiative energy flux estimates over the Arctic

    NASA Astrophysics Data System (ADS)

    Riihelä, Aku; Key, Jeffrey R.; Meirink, Jan Fokke; Kuipers Munneke, Peter; Palo, Timo; Karlsson, Karl-Göran

    2017-05-01

    Accurate determination of radiative energy fluxes over the Arctic is of crucial importance for understanding atmosphere-surface interactions, melt and refreezing cycles of the snow and ice cover, and the role of the Arctic in the global energy budget. Satellite-based estimates can provide comprehensive spatiotemporal coverage, but the accuracy and comparability of the existing data sets must be ascertained to facilitate their use. Here we compare radiative flux estimates from Clouds and the Earth's Radiant Energy System (CERES) Synoptic 1-degree (SYN1deg)/Energy Balanced and Filled, Global Energy and Water Cycle Experiment (GEWEX) surface energy budget, and our own experimental FluxNet / Satellite Application Facility on Climate Monitoring cLoud, Albedo and RAdiation (CLARA) data against in situ observations over Arctic sea ice and the Greenland Ice Sheet during summer of 2007. In general, CERES SYN1deg flux estimates agree best with in situ measurements, although with two particular limitations: (1) over sea ice the upwelling shortwave flux in CERES SYN1deg appears to be underestimated because of an underestimated surface albedo and (2) the CERES SYN1deg upwelling longwave flux over sea ice saturates during midsummer. The Advanced Very High Resolution Radiometer-based GEWEX and FluxNet-CLARA flux estimates generally show a larger range in retrieval errors relative to CERES, with contrasting tendencies relative to each other. The largest source of retrieval error in the FluxNet-CLARA downwelling shortwave flux is shown to be an overestimated cloud optical thickness. The results illustrate that satellite-based flux estimates over the Arctic are not yet homogeneous and that further efforts are necessary to investigate the differences in the surface and cloud properties which lead to disagreements in flux retrievals.

  7. Spatial variations in geochemical characteristics of the modern Mackenzie Delta sedimentary system

    NASA Astrophysics Data System (ADS)

    Vonk, Jorien E.; Giosan, Liviu; Blusztajn, Jerzy; Montlucon, Daniel; Graf Pannatier, Elisabeth; McIntyre, Cameron; Wacker, Lukas; Macdonald, Robie W.; Yunker, Mark B.; Eglinton, Timothy I.

    2015-12-01

    The Mackenzie River in Canada is by far the largest riverine source of sediment and organic carbon (OC) to the Arctic Ocean. Therefore the transport, degradation and burial of OC along the land-to-ocean continuum for this riverine system is important to study both regionally and as a dominant representative of Arctic rivers. Here, we apply sedimentological (grain size, mineral surface area), and organic and inorganic geochemical techniques (%OC, δ13C-OC and Δ14C-OC, 143Nd/144Nd, δ2H and δ18O, major and trace elements) on particulate, bank, channel and lake surface sediments from the Mackenzie Delta, as well as on surface sediments from the Mackenzie shelf in the Beaufort Sea. Our data show a hydrodynamic sorting effect resulting in the accumulation of finer-grained sediments in lake and shelf deposits. A general decrease in organic carbon (OC) to mineral surface area ratios from river-to-sea furthermore suggests a loss of mineral-bound terrestrial OC during transport through the delta and deposition on the shelf. The net isotopic value of the terrestrial OC that is lost en route, derived from relationships between δ13C, OC and surface area, is -28.5‰ for δ13C and -417‰ for Δ14C. We calculated that OC burial efficiencies are around 55%, which are higher (∼20%) than other large river systems such as the Amazon. Old sedimentary OC ages, up to 12 14C-ky, suggest the delivery of both a petrogenic OC source (with an estimated contribution of 19 ± 9%) as well as a pre-aged terrestrial OC source. We calculated the 14C-age of this pre-aged, biogenic, component to be about 6100 yrs, or -501‰, which illustrates that terrestrial OC in the watershed can reside for millennia in soils before being released into the river. Surface sediments in lakes across the delta (n = 20) showed large variability in %OC (0.92-5.7%) and δ13C (-30.7‰ to -23.5‰). High-closure lakes, flooding only at exceptionally high water levels, hold high sedimentary OC contents (>2.5%) and young biogenic OC with a terrestrial or an autochthonous source whereas no-closure lakes, permanently connected to a river channel, hold sediments with pre-aged, terrestrial OC. The intermediate low-closure lakes, flooding every year during peak discharge, display the largest variability in OC content, age and source, likely reflecting variability in for example the length of river-lake connections, the distance to sediment source and the number of intermediate settling basins. Bank, channel and suspended sediment show variable 143Nd/144Nd values, yet there is a gradual but distinct spatial transition in 143Nd/144Nd (nearly three ε units; from -11.4 to -13.9) in the detrital fraction of lake surface sediments from the western to the eastern delta. This reflects the input of younger Peel River catchment material in the west and input of older geological source material in the east, and suggests that lake sediments can be used to assess variability in source watershed patterns across the delta.

  8. Soil moisture needs in earth sciences

    NASA Technical Reports Server (NTRS)

    Engman, Edwin T.

    1992-01-01

    The author reviews the development of passive and active microwave techniques for measuring soil moisture with respect to how the data may be used. New science programs such as the EOS, the GEWEX Continental-Scale International Project (GCIP) and STORM, a mesoscale meteorology and hydrology project, will have to account for soil moisture either as a storage in water balance computations or as a state variable in-process modeling. The author discusses future soil moisture needs such as frequency of measurement, accuracy, depth, and spatial resolution, as well as the concomitant model development that must proceed concurrently if the development in microwave technology is to have a major impact in these areas.

  9. Development of Corrections for Biomass Burning Effects in Version 2 of GEWEX/SRB Algorithm

    NASA Technical Reports Server (NTRS)

    Pinker, Rachel T.; Laszlo, I.; Dicus, Dennis L. (Technical Monitor)

    1999-01-01

    The objectives of this project were: (1) To incorporate into an existing version of the University of Maryland Surface Radiation Budget (SRB) model, optical parameters of forest fire aerosols, using best available information, as well as optical properties of other aerosols, identified as significant. (2) To run the model on regional scales with the new parametrization and information on forest fire occurrence and plume advection, as available from NASA LARC, and test improvements in inferring surface fluxes against daily values of measured fluxes. (3) Develop strategy how to incorporate the new parametrization on global scale and how to transfer modified model to NASA LARC.

  10. Dynamic Network Change Detection

    DTIC Science & Technology

    2008-12-01

    Change Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...Fisher and Mackenzie, 1922). These methods are used in quality engineering to detect small changes in a process (Montgomery, 1991; Ryan , 2000). Larger...Social Network Modeling and Analysis: Workshop Summary and Papers, Ronald Breiger, Kathleen Carley, and Philippa Pattison, (Eds

  11. Early Support of Intracranial Perfusion

    DTIC Science & Technology

    2012-10-01

    products to be thawed or otherwise processed to supply coagulation factors such as plasma and platelets in near equivalence with red cells. 8 During...Can pre-hospital patient VS predict injury and intervention? Hu P, Mackenzie C, Dutton R, Sen A, Floccare D, Bochicchio G, Xiao Y, Spearman J...GV, Bochicchio K, Xiao Y, Spearman J, Scalea T. American Telemedicine Association Annual meeting, April, 2008 Challenges in developing real-time

  12. Collective Leadership Measurement for the U.S. Army

    DTIC Science & Technology

    2014-03-01

    methods employed were adapted from standard texts on survey research methods (e.g., Podsakoff, MacKenzie, Lee, & Podsakoff, 2003; Shadish, Cook...members of the research team, as well as procedures for interviews in standard research methods texts (e.g., Campion, Palmer, & Campion, 1997; Latham...critical incident protocol was based on procedures for critical incidents in standard research methods texts (e.g., Flanagan, 1954; Lowenberg, 1979

  13. Canada Basin revealed

    USGS Publications Warehouse

    Mosher, David C.; Shimeld, John; Hutchinson, Deborah R.; Chian, D; Lebedeva-Ivanova, Nina; Jackson, Ruth

    2012-01-01

    More than 15,000 line-km of new regional seismic reflection and refraction data in the western Arctic Ocean provide insights into the tectonic and sedimentologic history of Canada Basin, permitting development of new geologic understanding in one of Earth's last frontiers. These new data support a rotational opening model for southern Canada Basin. There is a central basement ridge possibly representing an extinct spreading center with oceanic crustal velocities and blocky basement morphology characteristic of spreading centre crust surrounding this ridge. Basement elevation is lower in the south, mostly due to sediment loading subsidence. The sedimentary succession is thickest in the southern Beaufort Sea region, reaching more than 15 km, and generally thins to the north and west. In the north, grabens and half-grabens are indicative of extension. Alpha-Mendeleev Ridge is a large igneous province in northern Amerasia Basin, presumably emplaced synchronously with basin formation. It overprints most of northern Canada Basin structure. The seafloor and sedimentary succession of Canada Basin is remarkably flat-lying in its central region, with little bathymetric change over most of its extent. Reflections that correlate over 100s of kms comprise most of the succession and on-lap bathymetric and basement highs. They are interpreted as representing deposits from unconfined turbidity current flows. Sediment distribution patterns reflect changing source directions during the basin’s history. Initially, probably late Cretaceous to Paleocene synrift sediments sourced from the Alaska and Mackenzie-Beaufort margins. This unit shows a progressive series of onlap unconformities with a younging trend towards Alpha and Northwind ridges, likely a response to contemporaneous subsidence. Sediment source direction appeared to shift to the Canadian Arctic Archipelago margin for the Eocene and Oligocene, likely due to uplift of Arctic islands during the Eurekan Orogeny. The final stage of sedimentation appears to be from the Mackenzie-Beaufort region for the Miocene and Pliocene when drainage patterns shifted in the Yukon and Alaska to the Mackenzie valley. Upturned reflections at onlap positions may indicate syn-depositional subsidence. There is little evidence, at least at a regional seismic data scale, of contemporaneous or post-depositional sediment reworking, suggesting little large-scale geostrophic or thermohaline-driven bottom current activity.

  14. Impact of Increased Thermokarst Activity on Polycyclic Aromatic Compound (PAC) Accumulation in Sediment of Lakes in the Hydrocarbon-Rich Uplands Adjacent to the Mackenzie Delta, NT, Canada

    NASA Astrophysics Data System (ADS)

    Eickmeyer, D.; Thienpont, J. R.; Blais, J. M.

    2017-12-01

    In ecologically sensitive, hydrocarbon-rich regions like the western Canadian Arctic, environmental monitoring of oil and gas development often focuses on both direct and unintentional consequences of increased exploration and extraction of hydrocarbon resources. However, proper assessments of impact from these activities could be confounded by natural petrogenic sources in permafrost-rich regions where increased thermokarst activity results in permafrost exposure and erosion of hydrocarbon-rich deposits. Using a paired-lake design in the tundra uplands adjacent to the Mackenzie Delta, NT, we examined 4 lakes with retrogressive thaw slump scars along their shores, and 4 nearby undisturbed reference lakes, focusing on polycyclic aromatic compound (PAC) deposition and composition in the sediment. Total organic carbon (TOC)-normalized concentrations for parent and alkylated PACs were higher in surface sediments of slump-affected lakes than the reference lakes. This followed the pattern previously observed for persistent organic pollutants in these lakes where presence of thaw slumps on the lake shore was associated with lower TOC content in the water column, resulting in a smaller pool of available organic carbon, leading to higher PAC concentrations. Diagnostic ratios of specific PACs also suggested the sediment of slump-affected lakes had greater influence from petroleum-based PAC sources than their reference counterparts. This interpretation was corroborated by a principle components analysis of the metal content in the sediment. Slump-affected lakes were enriched in metals related to shale-based, Quaternary deposits of the Mackenzie Basin (e.g. Ca, Sr, Mg) when compared to reference lakes where these surficial materials were not exposed by thermokarst activity. Higher PAC concentrations and composition indicative of petrogenic sources observed in sediment of slump-affected lakes were best explained as a combination of low TOC availability and increased inputs of previously bound hydrocarbons from the catchment due to permafrost erosion. These findings demonstrate that, to avoid misinterpreting the scale and nature of the impact of hydrocarbon development in northern landscapes, monitoring of sediment PACs must be assessed in the proper framework of these dynamic freshwater systems.

  15. CFD study of fluid flow changes with erosion

    NASA Astrophysics Data System (ADS)

    López, Alejandro; Stickland, Matthew T.; Dempster, William M.

    2018-06-01

    For the first time, a three dimensional mesh deformation algorithm is used to assess fluid flow changes with erosion. The validation case chosen is the Jet Impingement Test, which was thoroughly analysed in previous works by Hattori et al. (Kenichi Sugiyama and Harada, 2008), Gnanavelu et al. in (Gnanavelu et al., 2009, 2011), Lopez et al. in (Lopez et al., 2015) and Mackenzie et al. in (Mackenzie et al., 2015). Nguyen et al. (2014) showed the formation of a new stagnation area when the wear scar is deep enough by performing a three-dimensional scan of the wear scar after 30 min of jet impingement test. However, in the work developed here, this stagnation area was obtained solely by computational means. The procedure consisted of applying an erosion model in order to obtain a deformed geometry, which, due to the changes in the flow pattern lead to the formation of a new stagnation area. The results as well as the wear scar were compared to the results by Nguyen et al. (2014) showing the same trend. OpenFOAM® was the software chosen for the implementation of the deforming mesh algorithm as well as remeshing of the computational domain after deformation. Different techniques for mesh deformation and approaches to erosion modelling are discussed and a new methodology for erosion calculation including mesh deformation is developed. This new approach is independent of the erosion modelling approach, being applicable to both Eulerian and Lagrangian based equations for erosion calculation. Its different applications such as performance decay in machinery subjected to erosion as well as modelling of natural erosion processes are discussed here.

  16. Incorporation of UK Met Office's radiation scheme into CPTEC's global model

    NASA Astrophysics Data System (ADS)

    Chagas, Júlio C. S.; Barbosa, Henrique M. J.

    2009-03-01

    Current parameterization of radiation in the CPTEC's (Center for Weather Forecast and Climate Studies, Cachoeira Paulista, SP, Brazil) operational AGCM has its origins in the work of Harshvardhan et al. (1987) and uses the formulation of Ramaswamy and Freidenreich (1992) for the short-wave absorption by water vapor. The UK Met Office's radiation code (Edwards and Slingo, 1996) was incorporated into CPTEC's global model, initially for short-wave only, and some impacts of that were shown by Chagas and Barbosa (2006). Current paper presents some impacts of the complete incorporation (both short-wave and long-wave) of UK Met Office's scheme. Selected results from off-line comparisons with line-by-line benchmark calculations are shown. Impacts on the AGCM's climate are assessed by comparing output of climate runs of current and modified AGCM with products from GEWEX/SRB (Surface Radiation Budget) project.

  17. Mesoscale Convective Systems During SCSMEX: Simulations with a Regional Climate Model and a Cloud-Resolving Model

    NASA Technical Reports Server (NTRS)

    Tao, W. K.; Wang, Y.; Qian, J.; Shie, C. -L.; Lau, W. K. -M.; Kakar, R.; Starr, David O' C. (Technical Monitor)

    2002-01-01

    The South China Sea Monsoon Experiment (SCSMEX) was conducted in May-June 1998. One of its major objectives is to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China (Lau et al. 2000). Multiple observation platforms (e.g., soundings, Doppler radar, ships, wind seafarers, radiometers, etc.) during SCSMEX provided a first attempt at investigating the detailed characteristics of convection and circulation changes, associated with monsoons over the South China Sea region. SCSMEX also provided precipitation derived from atmospheric budgets (Johnson and Ciesielski 2002) and comparison to those obtained from the Tropical Rainfall Measuring Mission (TRMM). In this paper, a regional climate model and a cloud-resolving model are used to perform multi-day integrations to understand the precipitation processes associated with the summer monsoon over Southeast Asia and southern China. The regional climate model is used to understand the soil - precipitation interaction and feedback associated with a flood event that occurred in and around China's Atlantic River during SCSMEX. Sensitivity tests on various land surface models, cumulus parameterization schemes (CASE), sea surface temperature (SST) variations and midlatitude influences are also performed to understand the processes associated with the onset of the monsoon over the S. China Sea during SCSMEX. Cloud-resolving models (CRMs) use more sophisticated and physically realistic parameterizations of cloud microphysical processes with very fine spatial and temporal resolution. One of the major characteristics of CRMs is an explicit interaction between clouds, radiation and the land/ocean surface. It is for this reason that GEWEX (Global Energy and Water Cycle Experiment) has formed the GCSS (GEWEX Cloud System Study) expressly for the purpose of improving the representation of the moist processes in large-scale models using CRMs. The Goddard Cumulus Ensemble (GCE) model is a CRM and is used to simulate convective systems associated with the onset of the South China Sea monsoon in 1998. The BRUCE model includes the same land surface model, cloud physics, and radiation scheme used in the regional climate model. A comparison between the results from the GCE model and regional climate model is performed.

  18. Terrestrial Particulate Organic Matter Degradation in Estuarine and Coastal Areas: Coupling Lipid Tracers and Molecular Tools to Better Understand Deltaic Biogeochemical Cycles

    NASA Astrophysics Data System (ADS)

    Galeron, M. A.; Volkman, J. K.; Rontani, J. F.; Radakovitch, O.; Charriere, B.; Amiraux, R.

    2016-02-01

    Deltaic and coastal areas have been studied extensively worldwide, due to their high economic and ecosystemic value. It was long thought that terrestrial particulate organic matter (TPOM) degraded during river transport was refractory to further degradation upon its arrival at sea. But studies on coastal sediments and in the Mackenzie delta (Canada) showed that, on the contrary, TPOM was undergoing intense degradation upon reaching seawater. In order to generalize these results to worldwide river basins, we propose to trace degradation processes impacting TPOM during in-stream transport as well as coastal distribution. We selected the Rhône River (France) for its differences with the Mackenzie River (latitude, temperature, coastal salinity) and carefully researched lipid tracers to help us pinpoint both the origin of the POM and the degradative processes undergone. Betulin, α-/β-amyrins, dehydroabietic acid, sitosterol and their specific degradation products were selected. While the Rhône delta has been studied for decades, there is very little research on its in-stream processes, and how they can be linked with coastal cycles and fluxes. Coupling new specific lipid tracers especially selected for the monitoring of higher plant degradation and molecular biology tools, we were able to better trace the origin of TPOM transported along the Rhône River, as well as better understand its degradation state in the river, the delta, and upon its arrival at sea. We show here that autoxidation (free radical induced oxidation), long overlooked, is a major degradation process impacting TPOM transported along the Rhone River, and is even more intense upon the arrival of TPOM at sea. Salinity, metal ion desorption, bacterial and biochemical activity are amongst the factors studied as inducers of such an intense degradation. This understanding is crucial if we want a truly extensive knowledge of terrestrial particulate organic matter transport and deposition, as well as complete carbon fluxes and budgets that could be generalized to all river deltas.

  19. Assimilation of Terrestrial Water Storage from GRACE in a Snow-Dominated Basin

    NASA Technical Reports Server (NTRS)

    Forman, Barton A.; Reichle, R. H.; Rodell, M.

    2011-01-01

    Terrestrial water storage (TWS) information derived from Gravity Recovery and Climate Experiment (GRACE) measurements is assimilated into a land surface model over the Mackenzie River basin located in northwest Canada. Assimilation is conducted using an ensemble Kalman smoother (EnKS). Model estimates with and without assimilation are compared against independent observational data sets of snow water equivalent (SWE) and runoff. For SWE, modest improvements in mean difference (MD) and root mean squared difference (RMSD) are achieved as a result of the assimilation. No significant differences in temporal correlations of SWE resulted. Runoff statistics of MD remain relatively unchanged while RMSD statistics, in general, are improved in most of the sub-basins. Temporal correlations are degraded within the most upstream sub-basin, but are, in general, improved at the downstream locations, which are more representative of an integrated basin response. GRACE assimilation using an EnKS offers improvements in hydrologic state/flux estimation, though comparisons with observed runoff would be enhanced by the use of river routing and lake storage routines within the prognostic land surface model. Further, GRACE hydrology products would benefit from the inclusion of better constrained models of post-glacial rebound, which significantly affects GRACE estimates of interannual hydrologic variability in the Mackenzie River basin.

  20. Evaluation of Boreal Summer Monsoon Intraseasonal Variability in the GASS-YOTC Multi-Model Physical Processes Experiment

    NASA Astrophysics Data System (ADS)

    Mani, N. J.; Waliser, D. E.; Jiang, X.

    2014-12-01

    While the boreal summer monsoon intraseasonal variability (BSISV) exerts profound influence on the south Asian monsoon, the capability of present day dynamical models in simulating and predicting the BSISV is still limited. The global model evaluation project on vertical structure and diabatic processes of the Madden Julian Oscillations (MJO) is a joint venture, coordinated by the Working Group on Numerical Experimentation (WGNE) MJO Task Force and GEWEX Atmospheric System Study (GASS) program, for assessing the model deficiencies in simulating the ISV and for improving our understanding of the underlying processes. In this study the simulation of the northward propagating BSISV is investigated in 26 climate models with special focus on the vertical diabatic heating structure and clouds. Following parallel lines of inquiry as the MJO Task Force has done with the eastward propagating MJO, we utilize previously proposed and newly developed model performance metrics and process diagnostics and apply them to the global climate model simulations of BSISV.

  1. A wind energy benchmark for ABL modelling of a diurnal cycle with a nocturnal low-level jet: GABLS3 revisited

    DOE PAGES

    Rodrigo, J. Sanz; Churchfield, M.; Kosović, B.

    2016-10-03

    The third GEWEX Atmospheric Boundary Layer Studies (GABLS3) model intercomparison study, around the Cabauw met tower in the Netherlands, is revisited as a benchmark for wind energy atmospheric boundary layer (ABL) models. The case was originally developed by the boundary layer meteorology community, interested in analysing the performance of single-column and large-eddy simulation atmospheric models dealing with a diurnal cycle leading to the development of a nocturnal low-level jet. The case addresses fundamental questions related to the definition of the large-scale forcing, the interaction of the ABL with the surface and the evaluation of model results with observations. The characterizationmore » of mesoscale forcing for asynchronous microscale modelling of the ABL is discussed based on momentum budget analysis of WRF simulations. Then a single-column model is used to demonstrate the added value of incorporating different forcing mechanisms in microscale models. The simulations are evaluated in terms of wind energy quantities of interest.« less

  2. Origin of the Mackenzie large igneous province and sourcing of flood basalts from layered intrusions

    NASA Astrophysics Data System (ADS)

    Day, J. M.; Pearson, D.

    2013-12-01

    The 1.27 Ga Coppermine continental flood basalt (CFB) in northern Canada represents the extrusive manifestation of the Mackenzie large igneous province (LIP) that includes the Mackenzie dyke swarm and the Muskox layered intrusion. New Re-Os isotope and highly siderophile element (HSE: Re, Pd, Pt, Ru, Ir, Os) abundance data are reported together with whole-rock major- and trace-element abundances and Nd isotopes to examine the behaviour of the HSE during magmatic differentiation and to place constraints on the extent of crustal interaction with mantle-derived melts. Mineral-chemical data are also reported for an unusual andesite glass flow (4.9 wt.% MgO) found in proximity to newly recognised picrites (>20 wt.% MgO) in the lowermost stratigraphy of the Coppermine CFB. Compositions of mineral phases in the andesite are similar to equivalent phases found in Muskox Intrusion chromitites and the melt composition is identical to Muskox chromite melt inclusions. Elevated HSE contents (e.g., 3.8 ppb Os) and the mantle-like initial Os isotope composition of this andesitic glass contrast strongly with oxygen isotope and lithophile element evidence for extensive crustal contamination. These signatures implicate an origin for the glass as a magma mingling product formed within the Muskox Intrusion during chromitite genesis. The combination of crust and mantle signatures define roles for both these reservoirs in chromitite genesis, but the HSE appear to be dominantly mantle-sourced. Combined with Nd isotope data that places the feeder for lower Coppermine CFB picrites and basalts within the Muskox Intrusion, this provides the strongest evidence yet for direct processing of some CFB within upper-crustal magma chambers. Modeling of absolute and relative HSE abundances in CFB reveal that HSE concentrations decrease with increasing fractionation for melts with <8×1 wt.% MgO in the Coppermine CFB, with picrites (>13.5wt.% MgO) from CFB having higher Os abundances than ocean island basalt (OIB) equivalents. The differences between CFB and OIB picrite absolute Os abundances may result from higher degrees of partial melting to form CFB but may also reflect incorporation of trace sulphide in CFB picrites from magmas that reached S-saturation in shallow-level magma chambers. Significant inter-element fractionation between (Re+Pt+Pd)/(Os+Ir+Ru) are generated during magmatic differentiation in response to strongly contrasting partitioning of these two groups of elements into sulphides and/or HSE-rich alloys. Furthermore, fractional crystallization has a greater role on absolute and relative HSE abundances than crustal contamination under conditions of CFB petrogenesis due to the dilution effect of continental crust. The Coppermine CFB define a Re-Os isochron with an age of 1263 +16/-20 Ma and initial gamma Os = +2.2×0.8. Combined data for the basaltic and intrusive portions of the Mackenzie LIP indicate a mantle source broadly within the range of the primitive upper mantle. The majority of Archaean komatiites and Phanerozoic CFB also require mantle sources with primitive upper mantle to chondritic Re/Os evolution, with exceptions typically being from analyses of highly-fractionated MgO-poor basalts.

  3. A Global Perspective: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Whitlock, Charles H.

    2007-01-01

    The Prediction of the Worldwide Energy Resources (POWER) Project, initiated under the NASA Science Mission Directorate Applied Science Energy Management Program, synthesizes and analyzes data on a global scale that are invaluable to the renewable energy industries, especially to the solar and wind energy sectors. The POWER project derives its data primarily from NASA's World Climate Research Programme (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Version 2.9) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (Version 4). The latest development of the NASA POWER Project and its plans for the future are presented in this paper.

  4. Broadband Seismic Studies at the Mallik Gas Hydrate Research Well

    NASA Astrophysics Data System (ADS)

    Sun, L. F.; Huang, J.; Lyons-Thomas, P.; Qian, W.; Milkereit, B.; Schmitt, D. R.

    2005-12-01

    The JAPEX/JNOC/GSC et al. Mallik 3L-38, 4L-38 and 5L-38 scientific wells were drilled in the MacKenzie Delta, NWT, Canada in early 2002 primarily for carrying out initial tests of the feasibility of producing methane gas from the large gas hydrate deposits there [1]. As part of this study, high resolution seismic profiles, a pseudo-3D single fold seismic volume and broadband (8~180Hz) multi-offset vertical seismic profiles (VSP) were acquired at the Mallik site. Here, we provide details on the acquisition program, present the results of the 2D field profile, and discuss the potential implications of these observations for the structure of the permafrost and gas hydrate zones. These zones have long been problematic in seismic imaging due to the lateral heterogeneities. Conventional seismic data processing usually assume a stratified, weak-contrast elastic earth model. However, in permafrost and gas hydrate zones this approximation often becomes invalid. This leads to seismic wave scattering caused by multi-scale perturbation of elastic properties. A 3D viscoelastic finite difference modeling algorithm was employed to simulate wave propagation in a medium with strong contrast. Parameters in this modeling analysis are based on the borehole geophysical log data. In addition, an uncorrelated Vibroseis VSP data set was studied to investigate frequency-dependent absorption and velocity dispersion. Our results indicate that scattering and velocity dispersion are important for a better understanding of attenuation mechanisms in heterogeneous permafrost and gas hydrate zones. [1] Dallimore, S.R., Collett, T.S., Uchida, T., and Weber, M., 2005, Overview of the science program for the Mallik 2002 Gas Hydrate Production Research Well Program; in Scientific Results from Mallik 2002 Gas Hydrate production Research Well Program, MacKenzie Delta, Northwest Territories, Canada, (ed.) S.R. Dallimore and T.S. Collett; Geological Survey of Canada, Bulletin 585, in press.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulter, R.L.; Klazura, J.; Lesht, B.M.

    The Argonne Boundary Layer Experiments (ABLE) facility, located in south central Kansas, east of Wichita, is devoted primarily to investigations of and within the planetary boundary layer (PBL), including the dynamics of the mixed layer during both day and night; effects of varying land use and landform; the interactive role of precipitation, runoff, and soil moisture; storm development; and energy budgets on scales of 10 to 100 km. With an expected lifetime of 10--15 years, the facility is well situated to observe the effects of gradual urbanization on PBL dynamics and structure as the Wichita urban area expands to themore » east and several small municipalities located within the study area expand. Combining the continuous measurements of ABLE with (1) ancillary continuous measurements of, for example, the Atmospheric Radiation Measurement (ARM) program and the Global Energy Water Cycle Experiment (GEWEX) programs and with (2) shorter, more intensive studies within ABLE, such as the Cooperative Atmosphere Surface Exchange Studies (CASES) Program, allows hypothesized features of urbanization, including heat island effects, precipitation enhancement, and modification of the surface energy budget partitioning, to be studied.« less

  6. International Collaboration Program in Innovative Chemical Processing of Superior Electronic and Optical Materials

    DTIC Science & Technology

    1993-06-01

    Peyghambarian for X(3) measurements. 3. Research on Nonlinear Optical Materials based on Ultrafine Metal Clusters in ORMOSILS Another family of ultrafine ... particles which, when dispersed in a glassy matrix, has been show to have high X(3) involves metal clusters. Because of the importance of obtaining...NSG Workshop on: Science and Application of Photonic Materials II, Osaka, Japan, November (1992). Haixing, Z., and Mackenzie, J.D., " Ultrafine

  7. Improving Training and Performance of Navy Teams: A Design for a Research Program.

    DTIC Science & Technology

    1980-07-01

    might, for example, relate esprit de corps and skill level to performance under stress, performance under varying stress conditions to job satisfaction ...following: 1. Feedback should be as temporally proximal to performance as possible. 2. Positive feedback benefits performance and satisfaction ... Satisfaction , Tension, and Withdrawal," Organizational Behavior and Human Performance , Vol. 6, 1971, pp. 90-110. MacKenzie, K. D., "Measuring a Person’s

  8. A Simulation of High Latitude F-Layer Instabilities in the Presence of Magnetosphere-Ionosphere Coupling.

    DTIC Science & Technology

    1985-07-08

    Equatorial spread F: recent observations and a new intepretation , J. Geophys. Res., 77, 5625, 1972. Basu, S., S. Basu, E. MacKenzie, W.R. Coley, W.B. Hanson...HOPKINS ROAD LAUREL, MD 20810 DR. R. GREENWALD DR. C. MENG UNIVERSITY OF PITTSBURGH PITTSBURGH, PA 15213 DR. N. ZABUSKY DR. M. BIONDI DR. E. OVERMAN 26 FILMED 9-85 DTIC RJa. I - rlt -6 ,I, a~l O -3

  9. Solar modulation of cosmic ray intensity and solar flare events inferred from (14)C contents in dated tree rings

    NASA Technical Reports Server (NTRS)

    Fan, C. Y.; Chen, T. M.; Yun, S. X.; Dai, K. M.

    1985-01-01

    The delta 14C values in 42 rings of a white spruce grown in Mackenzie Delta was measured as a continuing effort of tracing the history of solar modulation of cosmic ray intensity. The delta 14C values in six rings were measured, in search of a 14C increase due to two large solar flares that occurred in 1942. The results are presented.

  10. The evolution of water property in the Mackenzie Bay polynya during Antarctic winter

    NASA Astrophysics Data System (ADS)

    Xu, Zhixin; Gao, Guoping; Xu, Jianping; Shi, Maochong

    2017-10-01

    Temperature and salinity profile data, collected by southern elephant seals equipped with autonomous CTD-Satellite Relay Data Loggers (CTD-SRDLs) during the Antarctic wintertime in 2011 and 2012, were used to study the evolution of water property and the resultant formation of the high density water in the Mackenzie Bay polynya (MBP) in front of the Amery Ice Shelf (AIS). In late March the upper 100-200 m layer is characterized by strong halocline and inversion thermocline. The mixed layer keeps deepening up to 250 m by mid-April with potential temperature remaining nearly the surface freezing point and sea surface salinity increasing from 34.00 to 34.21. From then on until mid-May, the whole water column stays isothermally at about -1.90℃ while the surface salinity increases by a further 0.23. Hereafter the temperature increases while salinity decreases along with the increasing depth both by 0.1 order of magnitude vertically. The upper ocean heat content ranging from 120.5 to 2.9 MJ m-2, heat flux with the values of 9.8-287.0 W m-2 loss and the sea ice growth rates of 4.3-11.7 cm d-1 were estimated by using simple 1-D heat and salt budget methods. The MBP exists throughout the whole Antarctic winter (March to October) due to the air-sea-ice interaction, with an average size of about 5.0×103 km2. It can be speculated that the decrease of the salinity of the upper ocean may occur after October each year. The recurring sea-ice production and the associated brine rejection process increase the salinity of the water column in the MBP progressively, resulting in, eventually, the formation of a large body of high density water.

  11. Magnetic Tracking of Gas Hydrate Deposits.

    NASA Astrophysics Data System (ADS)

    Lowe, C.; Enkin, R. J.; Judith, B.; Dallimore, S. R.

    2005-12-01

    Analysis of recovered core from the Mallik gas hydrate field in the Mackenzie Delta, Northwest Territories, Canada demonstrates that the magnetic properties of hydrate-bearing strata differ significantly from those strata lacking gas hydrate. The recovered core, which extends from just above (885 m) to just below (1152 m) observed gas hydrate occurrences (891-1107 m), comprises a series of six stratigraphic units that are either sand or silt dominated. Gas hydrate is preferentially concentrated in the higher porosity, sand-dominated units. Although the sediment source region for the Mackenzie Delta is sufficiently large that silts and sands have similar primary mineralogy, their magnetic properties are distinct. Magnetite, apparent in silt units with porosities too low to accommodate significant gas hydrate deposits, is reduced to iron sulphide in the gas hydrate-bearing sand horizons. The degree of the observed magnetic reduction increases with increasing gas hydrate concentration. Furthermore, silts retain their primary magnetism, whereas sands are remagnetized. Two independent investigations of marine gas hydrate occurrences (Blake Ridge, offshore eastern USA and Cascadia, offshore western Canada) demonstrate similar magnetic reduction within known gas hydrate fields, and an even larger depletion of magnetic minerals in vent zones where methane is actively fluxing to surface. Collectively, the findings from these three regions indicate that porosity and structure are fundamental controls on methane pathways. Investigations are presently underway to determine the precise triggers and chemical pathways of the observed magnetic reductions. However, findings to date indicate that magnetic studies of host sediments in gas hydrate systems provide a powerful lithologic correlation tool, a window into the processes associated with gas hydrate formation, and form the basis of quantitative analysis of magnetic surveys over gas hydrate deposits.

  12. Deep versus shallow controlling factors of the regional thermal field in the Beaufort-Mackenzie Basin (Arctic Canada)

    NASA Astrophysics Data System (ADS)

    Scheck-Wenderoth, M.; Sippel, J.; Lewerenz, B.

    2011-12-01

    The present-day temperature distribution of the Beaufort-Mackenzie Basin as observed in boreholes indicates large-scale thermal anomalies which have been related to specific tectonic domains and heat transported by convection along major discontinuities (Chen et al., 2008). We have integrated seismic and well data into a crust-scale 3D structural model of the basin, which we have additionally constrained by 3D gravity modelling. This structural model is composed of seven Mesozoic-Cenozoic tectonostratigraphic units which - as a result of a complex foreland depositional and erosional history - tend to be younger, less compacted, and thus less thermally conductive towards the north. The underlying continental crust comprises a low-density upper part (2720 kg/m3 ) and a moderately dense lower part (2850 kg/m3), and it thins considerably towards the north where it passes over to oceanic crust (2900 kg/m2 ). We use the structural model to calculate the 3D conductive thermal field of the basin based on a Finite-Element method, thereby taking one step further towards a quantification of heat transporting processes in this petroliferous region. For the validation of the modelling results, we make use of public domain temperature data from more than 230 wells reaching depths of up to 5000 m. Thermal conductivities are assigned to the different units according to available data sets including also the observed lithology-dependent relationship between conductivity and porosity in the region. The upper boundary condition for the thermal calculations is provided by the well-known depth distribution of the base of permafrost (0 °C isotherm). Assuming a constant heat flow of 30 mW/m2 at the Moho, we find that the modelled temperatures are widely consistent with the observed temperatures in most parts of the basin. Only where large tectonic discontinuities structure the margins of the basin, the misfits are considerable, thus indicating convective heat transport to be an important process. We discuss the predicted temperature variations with respect to the structure of the basin including stratigraphic and tectonic domains, the inferred depth of the lithosphere-asthenosphere boundary, and the distribution of permafrost. Chen, Z., Osadetz, K.G., Issler, D.R., Grasby, S.E., 2008. Hydrocarbon migration detected by regional temperature field variations, Beaufort-Mackenzie Basin, Canada. AAPG Bulletin, 92(12): 1639-1653.

  13. Sharing Remote and Local Information for Tracking Spring Breakup in the Mackenzie Delta and Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Forbes, D. L.; Whalen, D.; Fraser, P.

    2015-12-01

    The Mackenzie Delta is the second largest on the Arctic Ocean, covering 13 000 km2. The annual flood regime in the delta is dominated by the spring snowmelt freshet and associated ice breakup, as water from the south arrives in the ice-covered delta and spreads over bottomfast and adjacent floating sea ice at the delta front. The complex processes of water-ice interaction, flow partitioning, and overbank flooding to replenish waters in 43 000 delta lakes threaten community, transportation, subsistence, and energy infrastructure in the delta. The annual breakup season is a time of rejuvenation, excitement, and anxiety for delta residents and stakeholders. To track the progress of breakup and meet the need for knowledge dissemination to the local communities, a Mackenzie-Beaufort breakup newsletter has been produced by Natural Resources Canada on a quasi-daily basis during the May-June spring flood season for 10 years, and distributed to an e-mail list that grew to over 300 subscribers. This provides near real-time tracking of water levels and breakup using on-line gauges (Environment Canada), daily MODIS satellite imagery (NASA), Landsat imagery (USGS) and intermittent radar imagery (various sources). In earlier years, information was also supplied from field programs operating in the delta during breakup, but changing priorities and funding have reduced the number of outside researchers present during these critical weeks. Meanwhile the number of local contributors has grown, providing observations and photographs to share with the local, regional and global readership. In this way the newsletter evolved into a two-way communication tool and community portal. The newsletter is a chronicle of each breakup season and a key resource for territorial and municipal managers, subsistence organizations, and emergency response agencies, with routine requests for specific imagery in areas of concern. With the completion of 10 years under the present model, we are exploring alternative approaches to enable more direct involvement in the region. The new model will be supported by the Circumpolar Coastal Communities Observatory Network (CACCON), Future Earth Coasts, and ArcticNet, and co-designed and co-managed with regional users to share timely information on the transformative event of each spring season in the delta.

  14. Assessment of undiscovered petroleum resources of the Amerasia Basin Petroleum Province

    USGS Publications Warehouse

    Houseknecht, David W.; Bird, Kenneth J.; Garrity, Christopher P.

    2012-01-01

    The Amerasia Basin Petroleum Province encompasses the Canada Basin and the sediment prisms along the Alaska and Canada margins, outboard from basinward margins (hingelines) of the rift shoulders that formed during extensional opening of the Canada Basin. The province includes the Mackenzie delta and slope, the outer shelves and marine slopes along the Arctic margins of Alaska and Canada, and the deep Canada Basin. The province is divided into four assessment units (AUs): (1) The Canning-Mackenzie deformed margin AU is that part of the rifted margin where the Brooks Range orogenic belt has overridden the rift shoulder and is deforming the rifted-margin prism of sediment outboard of the hingeline. This is the only part of the Amerasia Basin Province that has been explored and—even though more than 3 billion barrels of oil equivalent (BBOE) of oil, gas, and condensate have been discovered—none has been commercially produced. (2) The Alaska passive margin AU is the rifted-margin prism of sediment lying beneath the Beaufort outer shelf and slope that has not been deformed by tectonism. (3) The Canada passive margin AU is the rifted-margin prism of sediment lying beneath the Arctic outer shelf and slope (also known as the polar margin) of Canada that has not been deformed by tectonism. (4) The Canada Basin AU includes the sediment wedge that lies beneath the deep Canada Basin, north of the marine slope developed along the Alaska and Canada margins. Mean estimates of risked, undiscovered, technically recoverable resources include more than 6 billion barrels of oil (BBO), more than 19 trillion cubic feet (TCF) of associated gas, and more than 16 TCF of nonassociated gas in the Canning-Mackenzie deformed margin AU; about 1 BBO, about 3 TCF of associated gas, and about 3 TCF of nonassociated gas in the Alaska passive margin AU; and more than 2 BBO, about 7 TCF of associated gas, and about 8 TCF of nonassociated gas in the Canada passive margin AU. Quantities of natural gas liquids also are assessed in each AU. The Canada Basin AU was not quantitatively assessed because it is judged to hold less than 10 percent probability of containing at least one accumulation of 50 million barrels of oil equivalent.

  15. Water Vapor Tacers as Diagnostics of the Regional Atmospheric Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding of the local and remote sources of water vapor can be a valuable diagnostic in understanding the regional atmospheric hydrologic cycle, especially in North America where moisture transport and local evaporation are important sources of water for precipitation. In the present study, we have implemented passive tracers as prognostic variables to follow water vapor evaporated in predetermined regions until the water tracer precipitates. All evaporative sources of water are accounted for by tracers, and the water vapor variable provides the validation of the tracer water and the formulation of the sources and sinks. The Geostationary Operational Environmental Satellites General Circulation Model (GEOS GCM) is used to simulate several summer periods to determine the source regions of precipitation for the United States and India. Using this methodology, a detailed analysis of the recycling of water, interannual variability of the sources of water and links to the Great Plains low-level jet and North American monsoon will be presented. Potential uses in GCM sensitivity studies, predictability studies and data assimilation especially regarding the North American monsoon and GEWEX America Prediction Project (GAPP) will be discussed.

  16. Determining Sea-Level Rise and Coastal Subsidence in the Canadian Arctic Using a Dense GPS Velocity Field for North America

    NASA Astrophysics Data System (ADS)

    Craymer, M.; Forbes, D.; Henton, J.; Lapelle, E.; Piraszewski, M.; Solomon, S.

    2005-12-01

    With observed climate warming in the western Canadian Arctic and potential increases in regional sea level, we anticipate expansion of the coastal region subject to rising relative sea level and increased flooding risk. This is a concern for coastal communities such as Tuktoyaktuk and Sachs Harbour and for the design and safety of hydrocarbon production facilities on the Mackenzie Delta. To provide a framework in which to monitor these changes, a consistent velocity field has been determined from GPS observations throughout North America, including the Canadian Arctic Archipelago and the Mackenzie Delta region. An expanded network of continuous GPS sites and multi-epoch (episodic) sites has enabled an increased density that enhances the application to geophysical studies including the discrimination of crustal motion, other components of coastal subsidence, and sea-level rise. To obtain a dense velocity field consistent at all scales, we have combined weekly solutions of continuous GPS sites from different agencies in Canada and the USA, together with the global reference frame under the North American Reference Frame initiative. Although there is already a high density of continuous GPS sites in the conterminous United States, there are many fewer such sites in Canada. To make up for this lack of density, we have incorporated high-accuracy episodic GPS observations on stable monuments distributed throughout Canada. By combining up to ten years of repeated, episodic GPS observations at such sites, together with weekly solutions from the continuous sites, we have obtained a highly consistent velocity field with a significantly increased spatial sampling of crustal deformation throughout Canada. This exhibits a spatially coherent pattern of uplift and subsidence in Canada that is consistent with the expected rates of glacial isostatic adjustment. To determine the contribution of vertical motion to sea-level rise under climate warming in the Canadian Arctic, we have established co-located tide gauges and continuous GPS at a number of sites across the Canadian Arctic, including Tuktoyaktuk on the eastern side of the Mackenzie Delta. We are also investigating additional sources of subsidence in the delta, including sediment loading, compaction of unfrozen and discontinuously ice-bonded sediments, and anticipated subsidence resulting from future natural gas production. Further densification of the velocity field, including the addition of new sites in the delta, and regular reoccupation of episodic sites will assist in determining local rates of motion. Strategies for discriminating the various components of subsidence in this large delta include episodic GPS on monuments and borehole casing penetrating to various depths and supporting InSAR analysis and geological data. Coastal flooding hazards will be evaluated using digital elevation models derived from real-time kinematic GPS, airborne LiDAR surveys, and synthetic aperture radar flood mapping.

  17. The Mackenzie River magnetic anomaly, Yukon and Northwest Territories, Canada-Evidence for Early Proterozoic magmatic arc crust at the edge of the North American craton

    USGS Publications Warehouse

    Pilkington, M.; Saltus, R.W.

    2009-01-01

    We characterize the nature of the source of the high-amplitude, long-wavelength, Mackenzie River magnetic anomaly (MRA), Yukon and Northwest Territories, Canada, based on magnetic field data collected at three different altitudes: 300??m, 3.5??km and 400??km. The MRA is the largest amplitude (13??nT) satellite magnetic anomaly over Canada. Within the extent of the MRA, source depth estimates (8-12??km) from Euler deconvolution of low-altitude aeromagnetic data show coincidence with basement depths interpreted from reflection seismic data. Inversion of high-altitude (3.5??km) aeromagnetic data produces an average magnetization of 2.5??A/m within a 15- to 35-km deep layer, a value typical of magmatic arc complexes. Early Proterozoic magmatic arc rocks have been sampled to the southeast of the MRA, within the Fort Simpson magnetic anomaly. The MRA is one of several broad-scale magnetic highs that occur along the inboard margin of the Cordillera in Canada and Alaska, which are coincident with geometric changes in the thrust front transition from the mobile belt to stable cratonic North America. The inferred early Proterozoic magmatic arc complex along the western edge of the North American craton likely influenced later tectonic evolution, by acting as a buttress along the inboard margin of the Cordilleran fold-and-thrust belt. Crown Copyright ?? 2008.

  18. Marine ARM GPCI Investigation of Clouds Bridge Display Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, R. Michael; Lewis, Ernie

    2016-09-01

    At the beginning of the U.S. Department of Energy (DOE) Marine Atmospheric Radiation Measurement (ARM) Climate Research Facility Global Energy and Water Experiment (GEWEX) Cloud System Study (GCSS) Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds (MAGIC) experiment, we recognized that the crew on the ship’s bridge would like to see a display of the meteorological data that was being collected. While a display on the bridge would be marginally useful to the science, it was decided to make a display for the bridge. A display was programmed in Lab View and a personal computer (PC) was set up in themore » bridge. This remained in operation until the ship went to dry dock for upgrades and service. Part of the upgrade was a new meteorological system for the ship. After this time there was no need for the ARM display and so it was not re-installed for the remainder of the program.« less

  19. GCSS/WGNE Pacific Cross-section Intercomparison: Tropical and Subtropical Cloud Transitions

    NASA Astrophysics Data System (ADS)

    Teixeira, J.

    2008-12-01

    In this presentation I will discuss the role of the GEWEX Cloud Systems Study (GCSS) working groups in paving the way for substantial improvements in cloud parameterization in weather and climate models. The GCSS/WGNE Pacific Cross-section Intercomparison (GPCI) is an extension of GCSS and is a different type of model evaluation where climate models are analyzed along a Pacific Ocean transect from California to the equator. This approach aims at complementing the more traditional efforts in GCSS by providing a simple framework for the evaluation of models that encompasses several fundamental cloud regimes such as stratocumulus, shallow cumulus and deep cumulus, as well as the transitions between them. Currently twenty four climate and weather prediction models are participating in GPCI. We will present results of the comparison between models and recent satellite data. In particular, we will explore in detail the potential of the Atmospheric Infrared Sounder (AIRS) and CloudSat data for the evaluation of the representation of clouds and convection in climate models.

  20. A new Starlight Reserve for the central South Island of New Zealand

    NASA Astrophysics Data System (ADS)

    Hearnshaw, John

    2015-03-01

    The Aoraki Mackenzie International Dark Sky Reserve is a new reserve created in 2012 by the International Dark-Sky Association in the central South Island of New Zealand, and covers over 4300 square kilometres around Mt John University Observatory. It is the first such reserve to be recognized at gold tier level and is the largest dark sky reserve in the world. Astro-tourism in the new reserve will be a prominent activity in the coming years.

  1. A History of the Rock Island District U.S. Army Corps of Engineers 1866-1983

    DTIC Science & Technology

    1984-01-01

    well. A similar expansion of duties in the Rock Island District occurred when Major Francis U. Farquhar 9 10 THE RIVER AND THE ROCK ISLAND... case with his immediate predecessor, Major Mackenzie made several attempts to move the Rock Island Office away from Rock Island. In 11 12 THE...District. He went on to become a Major General and Chief of Engineers (1904-1908). During World War I he came out of retirement to return to Rock Island

  2. Report of the Defense Science Board Task Force on Trends and Implications of Climate Change on National and International Security

    DTIC Science & Technology

    2011-10-01

    Propulsion Laboratory Dr. Diane Evans Jet Propulsion Laboratory CAPT Tim Gallaudet US Navy Task Force on Climate Change Mr. David Goldwyn State...Ashley Moran Strauss Center, University of Texas, Austin DOD’s (Minerva) Climate Change and African Political Stability Project CAPT Timothy ... Gallaudet Office of the Oceanographer of the Navy Navy’s Climate Change Task Force Dr. Sherri Goodman, Dr. Ralph Espach and Mr. Peter MacKenzie CNA

  3. Methods for Assessment of Species Richness and Occupancy Across Space, Time, Taxonomic Groups, and Ecoregions

    DTIC Science & Technology

    2017-03-26

    logistic constraints and associated travel time between points in the central and western Great Basin. The geographic and temporal breadth of our...surveys (MacKenzie and Royle 2005). In most cases, less time is spent traveling between sites on a given day when the single-day design is implemented...with the single-day design (110 hr). These estimates did not include return- travel time , which did not limit sampling effort. As a result, we could

  4. Solar Emissions From GHz to Sub-THz Frequencies

    DTIC Science & Technology

    2015-05-21

    Mackenzie Rua Consolacao 896 01302-907 Sao Paulo, SP Brazil 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND...Cassiano, M.M.; Marcon, R.; Cabezas, D.P.; Fernandes, L.O.T.; Hidalgo Ramirez , R.F.; Kaufmann, P.; Souza, R.V. “The new 30 THz solar telescope in São...13. Kaufmann, P.; White, S.M.; Marcon, R.; Kudaka, A.S.; Cabezas, D.P.; Cassiano, M.M.; Francile, C.; Fernandes, L.O.T.; Hidalgo Ramirez , R.F

  5. Exchangeable Phosphorus Pools and Equilibrium Characteristics for River Sediment as a Function of Particle Size

    DTIC Science & Technology

    2010-10-01

    Zea mays L .). Can J Soil Sci 75:361-367. Zhang, T. Q., A. F. MacKenzie, B. C. Liang, and C. F. Drury. 2004. Soil test phosphorus and phosphorus...particulate exchangeable P fractions (as a fractional percentage), respectively, Cs is the suspended sediment concentration (M L -3), and Kd is the...groundwater) amended with P to a concentration of 0.120 mg L -1 to maintain in situ P equilibrium conditions (reported in James and Larson 2008

  6. Decadal variability of surface solar radiation over China

    NASA Astrophysics Data System (ADS)

    Wang, K.

    2015-12-01

    Observations show that national average surface solar radiation (Rs) decreased by -8.0 W m-2 per decade from 1960 to 1990 and sharply increased from 1990 to 1993. However, none of the state-of-the-art climate models can reproduce such decrease/increase of Rs. This study shows that Rs observations over China have significant inhomogeneity. Before 1989, Rs was calculated as a sum of direct (Rsdir) and diffuse (Rsdif) solar radiation observations measured by pyrheliometers and shaded pyranometers separately. Due to technical limitations and irregular calibration, pyranometers before 1990 had a strong sensitivity drift problem, which introduced crucial spurious decreasing trends into Rsdif and Rs data. From 1990 to 1993, instruments and measurement methods were replaced and measuring stations were restructured in China, which resulted in an abrupt increase in the observed Rs. Rs calculated from Sunshine duration (SunDu) provide a reliable reference in assessing decadal variability of Rs. SunDu derived Rs have no sensitivity drift problem because of its daily changed recording material. SunDu-derived Rs averaged over China decreased by -2.9 W m-2 per decade from 1961 to 1990, and had a negligible trend afterward. During the period of 1994-2012 when Rs observations were free of inhomogeneity mentioned above, the observed and SunDu-derived Rs consistently show a negligible trend, being less than 0.1 W m-2 per decade. These trends can be reproduced by high-quality CMIP5 Earth System Models (ESM). This level of agreement is due to the incorporation of a near real emission inventory of atmospheric aerosols by CMIP5 ESMs. Rs from ERA-Interim has a good agreement with SunDu-derived Rs. However, ERA-interim does not allow aerosol loading to change annually. ERA-Interim Rs shows an unreliable increasing trend of 1.9 W m-2 per decade from 1990 to 2013 because it does not include the impact of recent increased atmospheric aerosols over China. GEWEX Rs calculated from ISCCP cloud products show a significant but erratic decreasing trend of -3.1 W m-2 per decade from 1983 to 2007 over China. The ISCCP cloud products aggregate cloud observations from polar orbit and geostationary satellites directly, which introduced to inhomogeneity to ISCCP cloud and GEWEX Rs products.

  7. Vapours, gargles, darts and bougies: Victorian ENT treatments.

    PubMed

    Montgomery, J; Robertson, A

    2012-11-01

    Sir Morell Mackenzie (1837-1892), the pre-eminent early laryngologist in the UK, is nowadays perhaps better remembered for his role in the management of the Crown Prince of Germany in 1887, than for his major contribution to the development of laryngology as a specialty. In this article we focus upon his text The Pharmacopoeia of the Hospital for Diseases of the Throat (fourth edition), and attempt a comparison of Victorian ENT treatments with today's management of ENT diseases. Some of these Victorian treatments bear a resemblance to modern day practices. Others have not withstood the test of time, in particular: silver nitrate sticks for syphilitic ulcers of the larynx (not epistaxis); nebulised sulphuric acid, which was used as a stimulant; nasal bougies, including scotch pine and lead acetate; chloroform vapour for the treatment of hay fever; 'London paste', a non-surgical treatment for the reduction of the tonsils, (which was perhaps the Victorian equivalent of coblation); and zinc chloride darts, which were plunged into intractable goitres. Some of these remedies bear no resemblance to today's evidence-based practices, while other treatments (such as silver nitrate) are still in common use. In Victorian times, however, Mackenzie's books were widely read throughout Europe and were the standard references for a specialty in its infancy. The Pharmacopoeia was published in 1872, and major advances in medicine have been made since then. We have no way of knowing which treatments in today's British National Formulary will still be in use in 140 years.

  8. Spatial and temporal assessment of mercury and organic matter in thermokarst affected lakes of the Mackenzie Delta uplands, NT, Canada.

    PubMed

    Deison, Ramin; Smol, John P; Kokelj, Steve V; Pisaric, Michael F J; Kimpe, Linda E; Poulain, Alexandre J; Sanei, Hamed; Thienpont, Joshua R; Blais, Jules M

    2012-08-21

    We examined dated sediment cores from 14 thermokarst affected lakes in the Mackenzie Delta uplands, NT, Arctic Canada, using a case-control analysis to determine how retrogressive thaw slump development from degrading permafrost affected the delivery of mercury (Hg) and organic carbon (OC) to lakes. We show that sediments from the lakes with retrogressive thaw slump development on their shorelines (slump-affected lakes) had higher sedimentation rates and lower total Hg (THg), methyl mercury (MeHg), and lower organic carbon concentrations compared to lakes where thaw slumps were absent (reference lakes). There was no difference in focus-corrected Hg flux to sediments between reference lakes and slump-affected lakes, indicating that the lower sediment Hg concentration in slump-affected lakes was due to dilution by rapid inorganic sedimentation in the slump-affected lakes. Sedimentation rates were inversely correlated with THg concentrations in sediments among the 14 lakes considered, and explained 68% of the variance in THg concentration in surface sediment, further supporting the dilution hypothesis. We observed higher S2 (algal-derived carbon) and particulate organic carbon (POC) concentrations in sediment profiles from reference lakes than in slump lakes, likely because of dilution by inorganic siliciclastic matter in cores from slump-affected lakes. We conclude that retrogressive thaw slump development increases inorganic sedimentation in lakes, and decreases concentrations of organic carbon and associated Hg and MeHg in sediments.

  9. Annual Cycle of Surface Longwave Radiation

    NASA Technical Reports Server (NTRS)

    Mlynczak, Pamela E.; Smith, G. Louis; Wilber, Anne C.; Stackhouse, Paul W.

    2011-01-01

    The annual cycles of upward and downward longwave fluxes at the Earth s surface are investigated by use of the NASA/GEWEX Surface Radiation Budget Data Set. Because of the immense difference between the heat capacity of land and ocean, the surface of Earth is partitioned into these two categories. Principal component analysis is used to quantify the annual cycles. Over land, the first principal component describes over 95% of the variance of the annual cycle of the upward and downward longwave fluxes. Over ocean the first term describes more than 87% of these annual cycles. Empirical orthogonal functions show the corresponding geographical distributions of these cycles. Phase plane diagrams of the annual cycles of upward longwave fluxes as a function of net shortwave flux show the thermal inertia of land and ocean.

  10. Bridging the Gap Between the iLEAPS and GEWEX Land-Surface Modeling Communities

    NASA Technical Reports Server (NTRS)

    Bonan, Gordon; Santanello, Joseph A., Jr.

    2013-01-01

    Models of Earth's weather and climate require fluxes of momentum, energy, and moisture across the land-atmosphere interface to solve the equations of atmospheric physics and dynamics. Just as atmospheric models can, and do, differ between weather and climate applications, mostly related to issues of scale, resolved or parameterised physics,and computational requirements, so too can the land models that provide the required surface fluxes differ between weather and climate models. Here, however, the issue is less one of scale-dependent parameterisations.Computational demands can influence other minor land model differences, especially with respect to initialisation, data assimilation, and forecast skill. However, the distinction among land models (and their development and application) is largely driven by the different science and research needs of the weather and climate communities.

  11. CLIVAR Asian-Australian Monsoon Panel Report to Scientific Steering Group-18

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperber, Ken R.; Hendon, Harry H.

    2011-05-04

    These are a set of slides on CLIVAR Asian-Australian Monsoon Panel Report to Scientific Steering Group-18. These are the major topics covered within: major activities over the past year, AAMP Monsoon Diagnostics/Metrics Task Team, Boreal Summer Asian Monsoon, Workshop on Modelling Monsoon Intraseasonal Variability, Workshop on Interdecadal Variability and Predictability of the Asian-Australian Monsoon, Evidence of Interdecadal Variability of the Asian-Australian Monsoon, Development of MJO metrics/process-oriented diagnostics/model evaluation/prediction with MJOTF and GCSS, YOTC MJOTF, GEWEX GCSS, AAMP MJO Diabatic Heating Experiment, Hindcast Experiment for Intraseasonal Prediction, Support and Coordination for CINDY2011/DYNAMO, Outreach to CORDEX, Interaction with FOCRAII, WWRP/WCRP Multi-Week Predictionmore » Project, Major Future Plans/Activities, Revised AAMP Terms of Reference, Issues and Challenges.« less

  12. Dealing with incomplete and variable detectability in multi-year, multi-site monitoring of ecological populations

    USGS Publications Warehouse

    Converse, Sarah J.; Royle, J. Andrew; Gitzen, Robert A.; Millspaugh, Joshua J.; Cooper, Andrew B.; Licht, Daniel S.

    2012-01-01

    An ecological monitoring program should be viewed as a component of a larger framework designed to advance science and/or management, rather than as a stand-alone activity. Monitoring targets (the ecological variables of interest; e.g. abundance or occurrence of a species) should be set based on the needs of that framework (Nichols and Williams 2006; e.g. Chapters 2–4). Once such monitoring targets are set, the subsequent step in monitoring design involves consideration of the field and analytical methods that will be used to measure monitoring targets with adequate accuracy and precision. Long-term monitoring programs will involve replication of measurements over time, and possibly over space; that is, one location or each of multiple locations will be monitored multiple times, producing a collection of site visits (replicates). Clearly this replication is important for addressing spatial and temporal variability in the ecological resources of interest (Chapters 7–10), but it is worth considering how this replication can further be exploited to increase the effectiveness of monitoring. In particular, defensible monitoring of the majority of animal, and to a lesser degree plant, populations and communities will generally require investigators to account for imperfect detection (Chapters 4, 18). Raw indices of population state variables, such as abundance or occupancy (sensu MacKenzie et al. 2002), are rarely defensible when detection probabilities are < 1, because in those cases detection may vary over time and space in unpredictable ways. Myriad authors have discussed the risks inherent in making inference from monitoring data while failing to correct for differences in detection, resulting in indices that have an unknown relationship to the parameters of interest (e.g. Nichols 1992, Anderson 2001, MacKenzie et al. 2002, Williams et al. 2002, Anderson 2003, White 2005, Kéry and Schmidt 2008). While others have argued that indices may be preferable in some cases due to the challenges associated with estimating detection probabilities (e.g. McKelvey and Pearson 2001, Johnson 2008), we do not attempt to resolve this debate here. Rather, we are more apt to agree with MacKenzie and Kendall (2002) that the burden of proof ought to be on the assertion that detection probabilities are constant. Furthermore, given the wide variety of field methods available for estimating detection probabilities and the inability for an investigator to know, a priori, if detection probabilities will be constant over time and space, we believe that development of monitoring programs ought to include field and analytical methods to account for the imperfect detection of organisms.

  13. A Holocene History of Permafrost Dynamics, Carbon Sequestration, and Hydrological Changes at Beretta Bog, Mackenzie River Basin

    NASA Astrophysics Data System (ADS)

    Von Ness, K.; Loisel, J.; Beilman, D. W.; Kaiser, K.

    2017-12-01

    The Mackenzie River Basin (MRB) is one of the world's largest permafrost peatland areas. This region contains dense soil carbon deposits and is home of the largest Canadian Arctic watershed. However, much remains to be known about the timing of permafrost initiation and the moisture changes that have affected soil development across this region throughout the Holocene. Peatland hydroclimatic conditions, which impact permafrost freezing and thawing as well as carbon sequestration rates, are relatively undocumented in peat-based paleoreconstructions. To provide further insight into the region's permafrost dynamics and the moisture changes associated with them, this study presents a permafrost initiation history and paleohydrological reconstruction of Beretta Bog, MRB that dates back to roughly 9000 cal BP. We explore the use of lichens as a bio-indicator of permafrost formation by quantifying the abundance of lichen-specific carbohydrates (mannose and galactose) in the peat profile. Testate amoebae, plant macrofossils, and carbon and oxygen isotopes (δ13C and δ18O) are also being analyzed at high resolution to reconstruct past changes in soil moisture and temperature. To our knowledge this study will constitute the first high-resolution paleohydrological reconstruction for this region. While carbohydrate analysis is underway, high C/N values from 6000 cal BP to present are temporarily used as an indicator for permafrost aggradation. Carbon accumulation rates of the core are highest prior to 6000 cal BP (during the Holocene Thermal Maximum) and relatively lower until around 1000 cal BP; we hypothesize this period of slow accumulation corresponds to permafrost aggradation. Preliminary results of our δ13C analysis corroborate testate assemblages as a proxy suitable for revealing moisture changes in permafrost peat. In the upper core, our analysis shows that more negative δ13C values, which reflect drier conditions, correlate to higher percentages of A. flavum and H. papilio, two moderate/dry taxa. Likewise, less negative δ13C values correlate with larger percentages of N. militaris, T. arcula, and H. elegans, three moderate/wet taxa. Overall, the multiple proxies used in this study will provide a detailed understanding of the permafrost dynamics and paleohydrological characteristics of Beretta Bog.

  14. On the linkages between the global carbon-nitrogen-phosphorus cycles

    NASA Astrophysics Data System (ADS)

    Tanaka, Katsumasa; Mackenzie, Fred; Bouchez, Julien; Knutti, Reto

    2013-04-01

    State-of-the-art earth system models used for long-term climate projections are becoming ever more complex in terms of not only spatial resolution but also the number of processes. Biogeochemical processes are beginning to be incorporated into these models. The motivation of this study is to quantify how climate projections are influenced by biogeochemical feedbacks. In the climate modeling community, it is virtually accepted that climate-Carbon (C) cycle feedbacks accelerate the future warming (Cox et al. 2000; Friedlingstein et al. 2006). It has been demonstrated that the Nitrogen (N) cycle suppresses climate-C cycle feedbacks (Thornton et al. 2009). On the contrary, biogeochemical studies show that the coupled C-N-Phosphorus (P) cycles are intimately interlinked via biosphere and the N-P cycles amplify C cycle feedbacks (Ver et al. 1999). The question as to whether the N-P cycles enhance or attenuate C cycle feedbacks is debated and has a significant implication for projections of future climate. We delve into this problem by using the Terrestrial-Ocean-aTmosphere Ecosystem Model 3 (TOTEM3), a globally-aggregated C-N-P cycle box model. TOTEM3 is a process-based model that describes the biogeochemical reactions and physical transports involving these elements in the four domains of the Earth system: land, atmosphere, coastal ocean, and open ocean. TOTEM3 is a successor of earlier TOTEM models (Ver et al. 1999; Mackenzie et al. 2011). In our presentation, we provide an overview of fundamental features and behaviors of TOTEM3 such as the mass balance at the steady state and the relaxation time scales to various types of perturbation. We also show preliminary results to investigate how the N-P cycles influence the behavior of the C cycle. References Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. Journal of Climate, 19, 3337-3353. Mackenzie FT, De Carlo EH, Lerman A (2011) Coupled C, N, P, and O biogeochemical cycling at the land-ocean interface. In: Wolanski E, McLusky DS (eds) Treatise on Estuarine and Coastal Science, vol 5. Academic Press, Waltham, pp 317-342. Thornton PE, Doney SC, Lindsay K, Moore JK, Mahowald N, Randerson JT, Fung I, Lamarque JF, Feddema JJ, Lee YH (2009) Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences, 6, 2099-2120. Ver LMB, Mackenzie FT, Lerman A (1999) Biogeochemical responses of the carbon cycle to natural and human perturbations: Past, present, and future. American Journal of Science, 299, 762-801.

  15. Ranald S. Mackenzie and the Fourth Cavalry Cross-Border Raid on the Mexican Kickapoo Indians near Remolino, Coahuila, 17-21 May 1873

    DTIC Science & Technology

    2014-05-22

    was shy and reserved growing up on the family farm near the Hudson River. Shyness and reticence, especially when around women, were traits that Ranald...diplomatic trip to Mexico and greeting Ranald at the front gate to the family farm in New York, Alexander’s new-life diplomatic endeavors ended abruptly...on Ranald’s upbringing, struggled mightily over the next few years to support four children by herself. Eventually, she sold the farm and moved the

  16. Test-retest reliability and factor structures of organizational citizenship behavior for Hong Kong workers.

    PubMed

    Lam, S S

    2001-02-01

    In 1990 Podsakoff, MacKenzie, Moorman, and Fetter developed a scale to measure the five dimensions of organizational citizenship behavior. Test-retest data over 15 weeks are reported for this scale for a sample of 82 female and 32 male Chinese tellers (ages 18 to 54 years) from a large international bank in Hong Kong. Stability was .83, and there was no significant change between Times 1 and 2. Analysis indicated the five-factor structure and showed it to be a reliable measure when used with a nonwestern sample.

  17. Sediment Equilibrium and Diffusive Fluxes in Relation to Phosphorus Dynamics in the Turbid Minnesota River

    DTIC Science & Technology

    2009-01-01

    extractable P and K in a sandy clay loam soil under continuous corn ( Zea mays L .). Can J Soil Sci 75:361-367. Zhang, T. Q., A. F. MacKenzie, B. C...diffusive P flux from deposited sediment stored in river channels may also play a role in soluble P control. Ranges in equilibrium partitioning between...largest plants in the State of Minnesota, discharge (average discharge = 1.8 m3 s-1) at effluent P concentrations of 1.5 mg L -1 or less. A 538-megawatt

  18. Sol-Gel Optics: Proceedings SPIE-The International Society for Optical Engineering Held in San Diego, California on 11-13 July 1990. Volume 1328

    DTIC Science & Technology

    1992-03-01

    are also grateful to the Air Force Office of Scientific Research, Directorate of Chemical and Atmospheric Sciences, for the travel support for some of...Mackenzie) is grateful to the Air Force Office of Scientific Research, Directorate of Chemical and Atmospheric Sciences for the continuing support...of the type Ba 2 Cu2 (O2 CCHMe 2 )8 that provide sufficient rheology to spin fibers. These oligomers, when heated in the appropriate atmosphere to 910

  19. Microwave Remote Sensing and the Cold Land Processes Field Experiment

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.; Cline, Don; Davis, Bert; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Cold Land Processes Field Experiment (CLPX) has been designed to advance our understanding of the terrestrial cryosphere. Developing a more complete understanding of fluxes, storage, and transformations of water and energy in cold land areas is a critical focus of the NASA Earth Science Enterprise Research Strategy, the NASA Global Water and Energy Cycle (GWEC) Initiative, the Global Energy and Water Cycle Experiment (GEWEX), and the GEWEX Americas Prediction Project (GAPP). The movement of water and energy through cold regions in turn plays a large role in ecological activity and biogeochemical cycles. Quantitative understanding of cold land processes over large areas will require synergistic advancements in 1) understanding how cold land processes, most comprehensively understood at local or hillslope scales, extend to larger scales, 2) improved representation of cold land processes in coupled and uncoupled land-surface models, and 3) a breakthrough in large-scale observation of hydrologic properties, including snow characteristics, soil moisture, the extent of frozen soils, and the transition between frozen and thawed soil conditions. The CLPX Plan has been developed through the efforts of over 60 interested scientists that have participated in the NASA Cold Land Processes Working Group (CLPWG). This group is charged with the task of assessing, planning and implementing the required background science, technology, and application infrastructure to support successful land surface hydrology remote sensing space missions. A major product of the experiment will be a comprehensive, legacy data set that will energize many aspects of cold land processes research. The CLPX will focus on developing the quantitative understanding, models, and measurements necessary to extend our local-scale understanding of water fluxes, storage, and transformations to regional and global scales. The experiment will particularly emphasize developing a strong synergism between process-oriented understanding, land surface models and microwave remote sensing. The experimental design is a multi-sensor, multi-scale (1-ha to 160,000 km ^ {2}) approach to providing the comprehensive data set necessary to address several experiment objectives. A description focusing on the microwave remote sensing components (ground, airborne, and spaceborne) of the experiment will be presented.

  20. Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion

    NASA Astrophysics Data System (ADS)

    Dellinger, Mathieu; Gaillardet, Jérôme; Bouchez, Julien; Calmels, Damien; Galy, Valier; Hilton, Robert G.; Louvat, Pascale; France-Lanord, Christian

    2014-09-01

    The erosion of major mountain ranges is thought to be largely cannibalistic, recycling sediments that were deposited in the ocean or on the continents prior to mountain uplift. Despite this recognition, it has not yet been possible to quantify the amount of recycled material that is presently transported by rivers to the ocean. Here, we have analyzed the Li content and isotope composition (δLi7) of suspended sediments sampled along river depth profiles and bed sands in three of the largest Earth's river systems (Amazon, Mackenzie and Ganga-Brahmaputra rivers). The δLi7 values of river-sediments transported by these rivers range from +5.3 to -3.6‰ and decrease with sediment grain size. We interpret these variations as reflecting a mixture of unweathered rock fragments (preferentially transported at depth in the coarse fraction) and present-day weathering products (preferentially transported at the surface in the finest fraction). Only the finest surface sediments contain the complementary reservoir of Li solubilized by water-rock interactions within the watersheds. Li isotopes also show that river bed sands can be interpreted as a mixture between unweathered fragments of igneous and sedimentary rocks. A mass budget approach, based on Li isotopes, Li/Al and Na/Al ratios, solved by an inverse method allows us to estimate that, for the large rivers analyzed here, the part of solid weathering products formed by present-day weathering reactions and transported to the ocean do not exceed 35%. Li isotopes also show that the sediments transported by the Amazon, Mackenzie and Ganga-Brahmaputra river systems are mostly sourced from sedimentary rocks (>60%) rather than igneous rocks. This study shows that Li isotopes in the river particulate load are a good proxy for quantifying both the erosional rock sources and the fingerprint of present-day weathering processes. Overall, Li isotopes in river sediments confirm the cannibalistic nature of erosion and weathering.

  1. Seismic Characterization and Continuity Analysis of Gas Hydrate Horizons Near the Mallik Research Wells, Mackenzie Delta, Canada

    NASA Astrophysics Data System (ADS)

    Bellefleur, G.; Riedel, M.; Brent, T.

    2005-12-01

    Gas hydrate deposits in arctic environment generally lack the BSR signature diagnostic of their presence in marine seismic data. The absence of the BSR signature complicates the estimation of the resources within or below the permafrost and the determination of their potential impact on future energy supplies, geohazard and climate change. We present results from a detailed seismic characterization of three gas hydrate horizons (A, B and C) intersected below the permafrost in five wells of the Mallik gas hydrate field located in the Mackenzie delta (Northwest Territories, Canada). The detailed seismic characterization included attribute analyses, synthetic modeling and acoustic impedance inversion and allowed estimation of the lateral continuity of the three horizons in the vicinity of the wells. Vertical Seismic Profiling (VSP) data, 3D and 2D industry seismic data and the 5L/2L-38 geophysical logs (density, P-wave sonic velocity) were used for this study. Synthetic modeling using the sonic and density logs reveals that the base of the lower gas hydrate horizons B and C can be identified on the industry 3D and 2D seismic sections as prominent isolated reflections. The uppermost gas hydrate occurrence (horizon A) and potentially other additional smaller-scale layers are identified only on the higher-resolution VSP data. The 3D industry seismic data set processed to preserve the relative true-amplitudes was used for attribute calculations and acoustic impedance inversion. The attribute maps defined areas of continuous reflectivity for horizons B and C and structural features disrupting them. Results from impedance inversion indicate that such continuous reflectivity around the wells is most likely attributable to gas hydrates. The middle gas hydrate occurrence (horizon B) covers an area of approximately 25 000m2. Horizon C, which marks the base of gas hydrate occurrence zone, extends over a larger area of approximately 120 000m2.

  2. The influence of the hydrologic cycle on the extent of sea ice with climatic implications

    NASA Technical Reports Server (NTRS)

    Dean, Ken; Gosink, Joan

    1991-01-01

    The role was analyzed of the hydrologic cycle on the distribution of sea ice, and its influence on forcings and fluxes between the marine environment and the atmosphere. River discharge plays a significant role in degrading the sea ice before any melting occurs elsewhere along the coast. The influence is considered of river discharge on the albedo, thermal balance, and distribution of sea ice. Quantitative atmospheric-hydrologic models are being developed to describe these processes in the coastal zone. Input for the models will come from satellite images, hydrologic data, and field observations. The resulting analysis provides a basis for the study of the significance of the hydrologic cycle throughout the Arctic Basin and its influence on the regional climate as a result of possible climatic scenarios. The area offshore from the Mackenzie River delta was selected as the study area.

  3. InSAR Monitoring of Landslides using RADARSAT and Alos

    NASA Astrophysics Data System (ADS)

    Singhroy, V.; Pierre-Jean, A.; Pavlic, G.

    2009-05-01

    We present the results of InSAR monitoring of several landslides using RADARDAT, and ALOS satellites. InSAR techniques are increasingly being used in slope stability assessment. Our research has shown that differential InSAR and coherent target monitoring techniques using field corner reflectors are useful to monitor landslide activity along strategic transportation and energy corridors. The Mackenzie Valley in northern Canada is experiencing one of the highest rates on mean annual air temperature for any region in Canada, thereby triggering melting in the permafrost, which results in active layer detachment slides. There are approximately 2000 landslides along the proposed Mackenzie Valley pipeline route. In addition, the Trans Canada Highway in the Canadian Rockies are affected by several rock avalanches and slow retrogressive slides. The ALOS PALSAR InSAR results show that we can observe deformation on both vegetated and exposed rock areas on the Little Smokey slide and the Frank Slide. RADARSAT-1 InSAR images indicate the different level of activity of the slopes (large and small) during different periods of the year. RADARSAT-2 is providing the high resolution rapid revisit capabilities needed to continuously monitor these active slopes along Canadian strategic energy and transportation corridors. The information produced by our InSAR activity maps on various landslides are used to realign the pipeline route in sensitive permafrost areas, and to install slope stability measures along the Trans-Canada and Provincial Highways. Using these different satellites we are able to develop guidelines for more reliable uses of these SAR missions Keywords: InSAR, landslides, RADARSAT, ALOS .

  4. Interactions of Polychlorinated Biphenyls and Organochlorine Pesticides with Sedimentary Organic Matter of Retrogressive Thaw Slump-Affected Lakes in the Tundra Uplands Adjacent to the Mackenzie Delta, NT, Canada

    NASA Astrophysics Data System (ADS)

    Eickmeyer, D.; Kimpe, L.; Kokelj, S.; Pisaric, M. F.; Smol, J. P.; Sanei, H.; Thienpont, J. R.; Blais, J. M.

    2016-12-01

    Increased incidences and severity of thermokarst activity, such as retrogressive thaw slumping, in the permafrost-rich western Canadian Arctic have been previously shown to influence basic water chemistry and sedimentation rates of affected lakes. Using a comparative spatial analysis of sediment cores from 8 lakes in tundra uplands adjacent to the Mackenzie Delta, NT, we examined how the presence of retrogressive thaw slumps on lake shores affected persistent organic pollutant (POPs, including polychlorinated biphenyls (PCB), hexa- and pentachlorobenzenes (CBz)and dichlorodiphenyltrichloroethane and metabolites (DDT)) accumulation in lake sediments. Sediments of slump-affected lakes contained higher total organic carbon (TOC)-normalized POP concentrations than nearby reference lakes that were unaffected by thaw slumps. PCB and DDT deposition rates to the sediment were not significantly different between reference and affected lakes; however, CBz flux to sediment was found to be higher in slump-affected lakes. Mean focus-corrected inorganic sedimentation rates were positively related to TOC-normalized contaminant concentrations, explaining 58 - 94% of the variation in POP concentrations in sediment, suggesting that reduced organic carbon in slump-affected lake water results in higher concentrations of POPs on sedimentary organic matter. This explanation was corroborated by an inverse relationship between sedimentary POP concentrations and TOC content of the lake water. Higher POP concentrations observed in sediment of slump-affected lakes are best explained by simple solvent switching processes of hydrophobic organic contaminants onto a smaller pool of available organic carbon when compared to neighboring lakes unaffected by thaw slump development.

  5. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate

    USGS Publications Warehouse

    Winters, W.J.; Pecher, I.A.; Waite, W.F.; Mason, D.H.

    2004-01-01

    This paper presents results of shear strength and acoustic velocity (p-wave) measurements performed on: (1) samples containing natural gas hydrate from the Mallik 2L-38 well, Mackenzie Delta, Northwest Territories; (2) reconstituted Ottawa sand samples containing methane gas hydrate formed in the laboratory; and (3) ice-bearing sands. These measurements show that hydrate increases shear strength and p-wave velocity in natural and reconstituted samples. The proportion of this increase depends on (1) the amount and distribution of hydrate present, (2) differences, in sediment properties, and (3) differences in test conditions. Stress-strain curves from the Mallik samples suggest that natural gas hydrate does not cement sediment grains. However, stress-strain curves from the Ottawa sand (containing laboratory-formed gas hydrate) do imply cementation is present. Acoustically, rock physics modeling shows that gas hydrate does not cement grains of natural Mackenzie Delta sediment. Natural gas hydrates are best modeled as part of the sediment frame. This finding is in contrast with direct observations and results of Ottawa sand containing laboratory-formed hydrate, which was found to cement grains (Waite et al. 2004). It therefore appears that the microscopic distribution of gas hydrates in sediment, and hence the effect of gas hydrate on sediment physical properties, differs between natural deposits and laboratory-formed samples. This difference may possibly be caused by the location of water molecules that are available to form hydrate. Models that use laboratory-derived properties to predict behavior of natural gas hydrate must account for these differences.

  6. Composite Study Of Aerosol Long-Range Transport Events From East Asia And North America

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Waliser, D. E.; Guan, B.; Xavier, P.; Petch, J.; Klingaman, N. P.; Woolnough, S.

    2011-12-01

    While the Madden-Julian Oscillation (MJO) exerts pronounced influences on global climate and weather systems, current general circulation models (GCMs) exhibit rather limited capability in representing this prominent tropical variability mode. Meanwhile, the fundamental physics of the MJO are still elusive. Given the central role of the diabatic heating for prevailing MJO theories and demands for reducing the model deficiencies in simulating the MJO, a global model inter-comparison project on diabatic processes and vertical heating structure associated with the MJO has been coordinated through a joint effort by the WCRP-WWRP/THORPEX YOTC MJO Task Force and GEWEX GASS Program. In this presentation, progress of this model inter-comparison project will be reported, with main focus on climate simulations from about 27 atmosphere-only and coupled GCMs. Vertical structures of heating and diabatic processes associated with the MJO based on multi-model simulations will be presented along with their reanalysis and satellite estimate counterparts. Key processes possibly responsible for a realistic simulation of the MJO, including moisture-convection interaction, gross moist stability, ocean coupling, and surface heat flux, will be discussed.

  7. Can we Observe and Assess Whether the Global Hydrological Cycle is "Intensifying"?

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Sheffield, J.

    2012-12-01

    There is controversy over whether the hydrological cycle is "intensifying" (or "accelerating"), and if so how and where? Resolving this critical question is a central goal of both national (e.g. NASA's Energy and Water cycle Study: NEWS) and international (WCRP Global Energy and Water cycle Experiment: GEWEX) programs. Its resolution has significant implications for understanding changes in hydroclimatic states and variability, and in future water security at regional to global scales. Over the last decade a number of papers have addressed trends and change in specific water cycle variables with results that can best be described as inconclusive, regardless of the conclusions of specific papers. In this presentation a number of recent studies will be reviewed for their consistency in assessing whether collectively one can make conclusions regarding how the hydrologic cycle is changing. The presentation will also demonstrate a pathway for analyzing where to observe for the detection of change based on a NASA-supported, global, 1983-2009, terrestrial water cycle Earth System Data Record project being led by the author. Initial results will be presented and a discussion presented on the extent that the proposed strategy can be used to detect change in the terrestrial hydrological cycle.

  8. The Goddard Cumulus Ensemble Model: Model Description and Its Application for Studying the TOGA COARE and GATE Convective Systems

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The Goddard Cumulus Ensemble (GCE) model was utilized in two and three dimensions in order to examine the behavior and response of simulated deep tropical cloud systems occurred in west Pacific warm pool region and Atlantic ocean. The periods chosen for simulation were convectively active period over the TOGA-COARE IFA (19-27 December 1992) and GATE (September 1 to 7, 1974). The TOGA COARE IFA period was also in the framework of the GEWEX Cloud System Study (GCSS) WG4 case 2. We will examine the differences between the microphysics (warm rain and ice processes, evaporation/sublimation and condensation/deposition), Q1 (Temperature) and Q2 (Water vapor) budgets between these two convective events occurred in different large-scale environments. The contribution of stratiform precipitation and its relationship to the vertical shear of the large-scale horizontal wind will also be examined. The results from GCSS model intercomparsion will be presented. The new improvements (i.e., microphysics, cloud radiation interaction, surface processes and numerical advection scheme) of the GCE model as well as their sensitivity to the model results will be discussed.

  9. THE EFFECT OF CLOUD FRACTION ON THE RADIATIVE ENERGY BUDGET: The Satellite-Based GEWEX-SRB Data vs. the Ground-Based BSRN Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Stackhouse, P. W.; Gupta, S. K.; Cox, S. J.; Mikovitz, J. C.; Nasa Gewex Srb

    2011-12-01

    The NASA GEWEX-SRB (Global Energy and Water cycle Experiment - Surface Radiation Budget) project produces and archives shortwave and longwave atmospheric radiation data at the top of the atmosphere (TOA) and the Earth's surface. The archive holds uninterrupted records of shortwave/longwave downward/upward radiative fluxes at 1 degree by 1 degree resolution for the entire globe. The latest version in the archive, Release 3.0, is available as 3-hourly, daily and monthly means, spanning 24.5 years from July 1983 to December 2007. Primary inputs to the models used to produce the data include: shortwave and longwave radiances from International Satellite Cloud Climatology Project (ISCCP) pixel-level (DX) data, cloud and surface properties derived therefrom, temperature and moisture profiles from GEOS-4 reanalysis product obtained from the NASA Global Modeling and Assimilation Office (GMAO), and column ozone amounts constituted from Total Ozone Mapping Spectrometer (TOMS), TIROS Operational Vertical Sounder (TOVS) archives, and Stratospheric Monitoring-group's Ozone Blended Analysis (SMOBA), an assimilation product from NOAA's Climate Prediction Center. The data in the archive have been validated systemically against ground-based measurements which include the Baseline Surface Radiation Network (BSRN) data, the World Radiation Data Centre (WRDC) data, and the Global Energy Balance Archive (GEBA) data, and generally good agreement has been achieved. In addition to all-sky radiative fluxes, the output data include clear-sky fluxes, cloud optical depth, cloud fraction and so on. The BSRN archive also includes observations that can be used to derive the cloud fraction, which provides a means for analyzing and explaining the SRB-BSRN flux differences. In this paper, we focus on the effect of cloud fraction on the surface shortwave flux and the level of agreement between the satellite-based SRB data and the ground-based BSRN data. The satellite and BSRN employ different measuring methodologies and thus result in data representing means on dramatically different spatial scales. Therefore, the satellite-based and ground-based measurements are not expected to agree all the time, especially under skies with clouds. The flux comparisons are made under different cloud fractions, and it is found that the SRB-BSRN radiative flux discrepancies can be explained to a certain extent by the SRB-BSRN cloud fraction discrepancies. Apparently, cloud fraction alone cannot completely define the role of clouds in radiation transfer. Further studies need to incorporate the classification of cloud types, altitudes, cloud optical depths and so on.

  10. High altitude environmental monitoring: the SHARE project and CEOP-HE

    NASA Astrophysics Data System (ADS)

    Tartari, G.

    2009-04-01

    Mountain areas above 2,500 m a.s.l. constitute about 25% of the Earth's surface and play a fundamental role in the global water balance, while influencing global climate and atmospheric circulation systems. Several millions, including lowlanders, are directly affected by the impacts of climate change on glaciers and water resource distribution. Mountains and high altitude plateaus are subject to the highest rate of temperature increase (e.g., Tibetan Plateau) and are recognized as particularly vulnerable to the effects of climate change. In spite of this, the number of permanent monitoring sites in the major environmental networks decreases with altitude. On a sample of two hundred high altitude automatic weather stations located above 2,500 m a.s.l., less than 20% are over 4,000 m, while there are only 24 stations in the world that could be considered "complete" high altitude observatories. Furthermore, entire mountain areas are left uncovered, creating significant data gaps which make reliable modelling and forecasting nearly impossible. In response to these problems, Ev-K2-CNR has developed the project SHARE (Stations at High Altitude for Research on the Environment) with the support of the Italian government and in collaboration with UNEP. This integrated environmental monitoring and research project aims to improve knowledge on the local, regional and global consequences of climate change in mountain regions and on the influence of high elevations on climate, atmospheric circulation and hydrology. SHARE today boasts a network of 13 permanent monitoring stations between 2,165 m and 8,000 m. Affiliated researchers have produced over 150 scientific publications in atmospheric sciences, meteorology and climate, glaciology, limnology and paleolimnology and geophysics. SHARE network data is also contributed to international programs (UNEP-ABC, WMO-GAW, WCRP-GEWEX-CEOP, NASA-AERONET, ILTER, EU-EUSAAR, EU-ACCENT). Within this context, the CEOP-High Elevations (CEOP-HE) element of regional focus was developed under the GEWEX CEOP programme to study multi-scale variability in water and energy cycles in high elevation areas, and to help improve observations, modelling and data management. Future plans include expansion of the SHARE network, addition of other key research areas including hydrology, and creation of mechanisms to favour exchange of data amongst high altitude networks. In coordination with other global research and monitoring projects (CliC, etc.), SHARE and CEOP-HE could provide a more organic and well-distributed interdisciplinary network, thus allowing governments and international agencies to better face impacts of climate change effects on energy and water budgets and elaborate appropriate adaptation strategies.

  11. Evaluation of Cirrus Cloud Simulations Using ARM Data - Development of a Case Study Data Set

    NASA Technical Reports Server (NTRS)

    O'C.Starr, David; Demoz, Belay; Lare, Andrew; Poellot, Michael; Sassen, Kenneth; Heymsfield, Andrew; Brown, Philip; Mace, Jay; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Cloud-resolving models (CRMs) provide an effective linkage in terms of parameters and scales between observations and the parametric treatments of clouds in global climate models (GCMs). They also represent the best understanding of the physical processes acting to determine cloud system lifecycle. The goal of this project is to improve state-of-the-art CRMs used for studies of cirrus clouds and to establish a relative calibration with GCMs through comparisons among CRMs, single column model (SCM) versions of the GCMs, and observations. This project will compare and evaluate a variety of CRMs and SCMs, under the auspices of the GEWEX Cloud Systems Study (GCSS) Working Group on Cirrus Cloud Systems (WG2), using ARM data acquired at the Southern Great Plains (SGP) site. This poster will report on progress in developing a suitable WG2 case study data set based on the September 26, 1996 ARM IOP case - the Hurricane Nora outflow case. The environmental data (input) will be described as well as the wealth of validating cloud observations. We plan to also show results of preliminary simulations. The science questions to be addressed derive significantly from results of the GCSS WG2 cloud model comparison projects, which will be briefly summarized.

  12. Diversity of gastrointestinal helminths in Dall's sheep and the negative association of the abomasal nematode, Marshallagia marshalli, with fitness indicators

    PubMed Central

    Ruckstuhl, Kathreen; Hoberg, Eric P.; Veitch, Alasdair; Kutz, Susan J.

    2018-01-01

    Gastrointestinal helminths can have a detrimental effect on the fitness of wild ungulates. Arctic and Subarctic ecosystems are ideal for the study of host-parasite interactions due to the comparatively simple ecological interactions and limited confounding factors. We used a unique dataset assembled in the early seventies to study the diversity of gastrointestinal helminths and their effect on fitness indicators of Dall’s sheep, Ovis dalli dalli, in the Mackenzie Mountains, Northwest Territories, Canada. Parasite diversity included nine species, among which the abomasal nematode Marshallagia marshalli occurred with the highest prevalence and infection intensity. The intensity of M. marshalli increased with age and was negatively associated with body condition and pregnancy status in Dall’s sheep across all the analyses performed. The intensity of the intestinal whipworm, Trichuris schumakovitschi, decreased with age. No other parasites were significantly associated with age, body condition, or pregnancy. Our study suggests that M. marshalli might negatively influence fitness of adult female Dall’s sheep. PMID:29538393

  13. Diversity of gastrointestinal helminths in Dall's sheep and the negative association of the abomasal nematode, Marshallagia marshalli, with fitness indicators.

    PubMed

    Aleuy, O Alejadro; Ruckstuhl, Kathreen; Hoberg, Eric P; Veitch, Alasdair; Simmons, Norman; Kutz, Susan J

    2018-01-01

    Gastrointestinal helminths can have a detrimental effect on the fitness of wild ungulates. Arctic and Subarctic ecosystems are ideal for the study of host-parasite interactions due to the comparatively simple ecological interactions and limited confounding factors. We used a unique dataset assembled in the early seventies to study the diversity of gastrointestinal helminths and their effect on fitness indicators of Dall's sheep, Ovis dalli dalli, in the Mackenzie Mountains, Northwest Territories, Canada. Parasite diversity included nine species, among which the abomasal nematode Marshallagia marshalli occurred with the highest prevalence and infection intensity. The intensity of M. marshalli increased with age and was negatively associated with body condition and pregnancy status in Dall's sheep across all the analyses performed. The intensity of the intestinal whipworm, Trichuris schumakovitschi, decreased with age. No other parasites were significantly associated with age, body condition, or pregnancy. Our study suggests that M. marshalli might negatively influence fitness of adult female Dall's sheep.

  14. Implications of GRACE Satellite Gravity Measurements for Diverse Hydrological Applications

    NASA Astrophysics Data System (ADS)

    Yirdaw-Zeleke, Sitotaw

    Soil moisture plays a major role in the hydrologic water balance and is the basis for most hydrological models. It influences the partitioning of energy and moisture inputs at the land surface. Because of its importance, it has been used as a key variable for many hydrological studies such as flood forecasting, drought studies and the determination of groundwater recharge. Therefore, spatially distributed soil moisture with reasonable temporal resolution is considered a valuable source of information for hydrological model parameterization and validation. Unfortunately, soil moisture is difficult to measure and remains essentially unmeasured over spatial and temporal scales needed for a number of hydrological model applications. In 2002, the Gravity Recovery And Climate Experiment (GRACE) satellite platform was launched to measure, among other things, the gravitational field of the earth. Over its life span, these orbiting satellites have produced time series of mass changes of the earth-atmosphere system. The subsequent outcome of this, after integration over a number of years, is a time series of highly refined images of the earth's mass distribution. In addition to quantifying the static distribution of mass, the month-to-month variation in the earth's gravitational field are indicative of the integrated value of the subsurface total water storage for specific catchments. Utilization of these natural changes in the earth's gravitational field entails the transformation of the derived GRACE geopotential spherical harmonic coefficients into spatially varying time series estimates of total water storage. These remotely sensed basin total water storage estimates can be routinely validated against independent estimates of total water storage from an atmospheric-based water balance approach or from well calibrated macroscale hydrologic models. The hydrological relevance and implications of remotely estimated GRACE total water storage over poorly gauged, wetland-dominated watershed as well as over a deltaic region underlain by a thick sand aquifer in Western Canada are the focus of this thesis. The domain of the first case study was the Mackenzie River Basin wherein the GRACE total water storage estimates were successfully inter-compared and validated with the atmospheric based water balance. These were then used to assess the WAT-CLASS hydrological model estimates of total water storage. The outcome of this inter-comparison revealed the potential application of the GRACE-based approach for the closure of the hydrological water balance of the Mackenzie River Basin as well as a dependable source of data for the calibration of traditional hydrological models. The Mackenzie River Basin result led to a second case study where the GRACE-based total water storage was validated using storage estimated from the atmospheric-based water balance P--E computations in conjunction with the measured streamflow records for the Saskatchewan River Basin at its Grand Rapids outlet in Manitoba. The fallout from this comparison was then applied to the characterization of the Prairie-wide 2002/2003 drought enabling the development of a new drought index now known as the Total Storage Deficit Index (TSDI). This study demonstrated the potential application of the GRACE-based technique as a tool for drought characterization in the Canadian Prairies. Finally, the hydroinformatic approach based on the artificial neural network (ANN) enabled the downscaling of the groundwater component from the total water storage estimate from the remote sensing satellite, GRACE. This was subsequently explored as an alternate source of calibration and validation for a hydrological modeling application over the Assiniboine Delta Aquifer in Manitoba. Interestingly, a high correlation exists between the simulated groundwater storage from the coupled hydrological model, CLM-PF and the downscaled groundwater time series storage from the remote sensing satellite GRACE over this 4,000 km2 deltaic basin in Canada.

  15. Towards Understanding the Contribution of Waterbodies to the Methane Emissions of a Permafrost Landscape on a Regional Scale - A Case Study from the Mackenzie Delta, Canada

    NASA Astrophysics Data System (ADS)

    Kohnert, K.; Juhls, B.; Muster, S.; Antonova, S.; Serafimovich, A.; Sachs, T.

    2017-12-01

    Waterbodies in the arctic permafrost zone are considered a major source of the greenhouse gas methane (CH4). However, the spatio-temporal variability of CH4 fluxes from waterbodies complicates spatial extrapolation of CH4 measurements at individual waterbodies. Therefore, the contribution of CH4 emissions from different waterbody types to the CH4 budget of the arctic permafrost zone has not yet been well constrained. To approach this problem, our study aimed i) at understanding if there are correlations between waterbodies and CH4 fluxes on a larger spatial extent containing several waterbodies and ii) at quantifying the influence of the spatial resolution of CH4 flux data on potential relations. Our two study areas of 1000 km² each are located in the northern and central part of the Mackenzie Delta, arctic Canada. We classified the waterbodies using maps from the circum-arctic Permafrost Region Pond and Lake Database (PeRL) based on TerraSAR-X data with a spatial resolution of 2.5 m x 2.5 m. We used the backscatter signals of Sentinel-1 data to determine whether or not waterbodies were freezing to the bottom to divide them into the two classes "deep" (> 2 m depth) and "shallow" (< 2 m depth). The CH4 flux map with a spatial resolution of 100 m x 100 m was calculated from data derived via the eddy-covariance technique from two aircraft campaigns in July 2012 and 2013. We coarsened the resolution of the CH4 flux map manually, to analyze if different spatial resolutions of CH4 flux data have an effect on the relation between waterbody characteristics (coverage, number, depth, size) and CH4 flux. We found that in both study areas, there was no correlation at any spatial resolution between the area fraction covered with water and the CH4 flux at a significance level of α = 0.05. We did not find consistent correlations or patterns between the number, size or depth of waterbodies and the CH4 flux in the two study areas. While there was no significant correlation in the central study area, in the northern study area a higher number of small or shallow waterbodies slightly increased the CH4 flux, whereas deep waterbodies decreased the CH4 flux. Our results indicate that waterbodies in permafrost landscapes do not necessarily act as significant CH4 emission hotspots on a regional scale containing both waterbodies and wetlands.

  16. The influence of the hydrologic cycle on the extent of sea ice with climatic implications

    NASA Technical Reports Server (NTRS)

    Dean, Kenneson G.; Stringer, William J.; Searcy, Craig

    1993-01-01

    Multi-temporal satellite images, field observations, and field measurements were used to investigate the mechanisms by which sea ice melts offshore from the Mackenzie River delta. Advanced Very High Resolution Radiometer (AVHRR) satellite data recorded in 1986 were analyzed. The satellite data were geometrically corrected and radiometrically calibrated so that albedo and temperature values could be extracted. The investigation revealed that sea ice melted approximately 2 weeks earlier offshore from the Mackenzie River delta than along coasts where river discharge is minimal or non-existent. There is significant intra-delta variability in the timing and patterns of ice melt. An estimation of energy flux indicates that 30 percent more of the visible wavelength energy and 25 percent more of the near-infrared wavelength energy is absorbed by water offshore of the delta compared to coastal areas with minimal river discharge. The analysis also revealed that the removal of sea ice involves the following: over-ice-flooding along the coast offshore from river delta channels; under-ice flow of 'warm' river water; melting and calving of the fast ice; and, the formation of a bight in the pack ice edge. Two stages in the melting of sea ice were identified: (1) an early stage where heat is supplied to overflows largely by solar radiation, and (2) a later stage where heat is supplied by river discharge in addition to solar radiation. A simple thermodynamic model of the thaw process in the fast ice zone was developed and parameterized based on events recorded by the satellite images. The model treats river discharge as the source of sensible heat at the base of the ice cover. The results of a series of sensitivity tests to assess the influence of river discharge on the near shore ice are presented.

  17. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink.

    PubMed

    Hilton, Robert G; Galy, Valier; Gaillardet, Jérôme; Dellinger, Mathieu; Bryant, Charlotte; O'Regan, Matt; Gröcke, Darren R; Coxall, Helen; Bouchez, Julien; Calmels, Damien

    2015-08-06

    Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO2) release. However, some of this soil organic carbon may be eroded and transferred to rivers. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean, and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 ± 800 years, much older than the POC in large tropical rivers. From the measured biospheric POC content and variability in annual sediment yield, we calculate a biospheric POC flux of 2.2(+1.3)(-0.9) teragrams of carbon per year from the Mackenzie River, which is three times the CO2 drawdown by silicate weathering in this basin. Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO2 sink.

  18. Occurrences of Intrapermafrost Gas Hydrates and Shallow Gas in the Mackenzie Delta area, N.W.T., Canada

    NASA Astrophysics Data System (ADS)

    Dallimore, S. R.; Wright, J. F.; Collett, T. S.; Schmitt, D.

    2005-12-01

    The thickness of permafrost (i.e. depth of the 0°C isotherm) in the Mackenzie Delta area, and the associated deep geothermal regime have been strongly influenced by ground surface temperature history during the past several million years. Important considerations include periods of glacial ice cover, duration of post-glacial terrestrial exposure and periods of marine incursions, all of which are known to vary considerably at both regional and local scales. Perhaps more than any area in the world, permafrost conditions are highly variable spatially, with areas having less than 50m of permafrost in close proximity to terrain having in excess of 700m of permafrost. Assuming normal pressure conditions, Structure I methane hydrate can be expected to be stable in locations where permafrost is greater than 250m in thickness. Conditions for the occurrence of intrapermafrost gas hydrate (gas hydrate within the permafrost interval) are therefore widespread throughout much of the coastal and offshore areas of the Beaufort Sea. Current research issues include the sensitivity of intrapermafrost gas hydrates to climate warming and their potential as a geohazard during exploration drilling and hydrocarbon production. This paper will review the intrapermafrost and sub-permafrost gas hydrate regime as well as the occurrence of shallow free gas within the gas hydrate pressure-temperature stability field. Evidence for the occurrence of intrapermafrost gas hydrate has been documented in laboratory tests of core samples recovered from a research well at the Taglu field and inferred from surface geophysical surveys, well log assessments, and anomalous gas shows during exploration drilling. Finally, data from constrained laboratory experiments will document the unique behavior of gas hydrate within sediment-gas hydrate-liquid water/ice systems.

  19. Fast carnivores and slow herbivores: differential foraging strategies among grizzly bears in the Canadian Arctic.

    PubMed

    Edwards, Mark A; Derocher, Andrew E; Hobson, Keith A; Branigan, Marsha; Nagy, John A

    2011-04-01

    Categorizing animal populations by diet can mask important intrapopulation variation, which is crucial to understanding a species' trophic niche width. To test hypotheses related to intrapopulation variation in foraging or the presence of diet specialization, we conducted stable isotope analysis (δ(13)C, δ(15)N) on hair and claw samples from 51 grizzly bears (Ursus arctos) collected from 2003 to 2006 in the Mackenzie Delta region of the Canadian Arctic. We examined within-population differences in the foraging patterns of males and females and the relationship between trophic position (derived from δ(15)N measurements) and individual movement. The range of δ(15)N values in hair and claw (2.0-11.0‰) suggested a wide niche width and cluster analyses indicated the presence of three foraging groups within the population, ranging from near-complete herbivory to near-complete carnivory. We found no linear relationship between home range size and trophic position when the data were continuous or when grouped by foraging behavior. However, the movement rate of females increased linearly with trophic position. We used multisource dual-isotope mixing models to determine the relative contributions of seven prey sources within each foraging group for both males and females. The mean bear dietary endpoint across all foraging groups for each sex fell toward the center of the mixing polygon, which suggested relatively well-mixed diets. The primary dietary difference across foraging groups was the proportional contribution of herbaceous foods, which decreased for both males and females from 42-76 to 0-27% and 62-81 to 0-44%, respectively. Grizzlies of the Mackenzie Delta live in extremely harsh conditions and identifying within-population diet specialization has improved our understanding of varying habitat requirements within the population.

  20. "The Bridge" from Earthscope to EarthsCAN to Maintain North American Geoscience Momentum

    NASA Astrophysics Data System (ADS)

    Boggs, K. J. E.; Hyndman, R. D.; Eaton, D. W. S.

    2016-12-01

    "The Bridge", of seismic instruments across the Yukon-western NWT from the USArray-Alaska extending from the Pacific Ocean to the Beaufort Sea, is a possible proof of concept for the new EarthsCAN research initiative. The proposal is to fill gaps between the USArray-Alaska seismic stations, the McKenzie Mtn Earthscope Project, seismic sites of the Geological Survey of Canada, the Yukon Geological Survey, the University of Ottawa and other industry/government consortia. Workshop results defined important northern Cordillera questions. The Yukon Stable Block (YSB) is underlain in part by the Paleoproterozoic Wernecke Supergroup (not exposed elsewhere in the Cordillera). Cretaceous-Tertiary structures are deflected around the YSB suggesting stronger internal crust in the YSB. New GPS observations (Alaska and NW Canada) indicate that as the Yakutat block is colliding with North America that the Elias block is rotating counterclockwise, and the Alaska panhandle rotating clockwise into North America. Seismic activity also extends 800 km from the plate boundary to current deformation in the Mackenzie and Richardson Mountains. A model to explain neotectonic deformation proposes a strong upper crust, decoupled from the underlying mantle due to elevated basal temperatures, which is pushed against the plate boundary and transmits stresses throughout the Cordillera. Resolving these questions requires high-resolution seismic velocity models of the crust and mantle, dense GPS velocity fields, as well as mapping active faults in the Mackenzie Mountains and across the Cordillera via Lidar images and paleoseismic trenching. The transition from the actively deforming northern Cordillera to the relatively aseismic northern Rockies across a lithospheric-scale transfer zone inherited from former passive margins, similar to the one bounding the YSB in the north, may be an important characteristic of modern Cordilleras that controls tectonic activity.

  1. Properties of samples containing natural gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, determined using Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI)

    USGS Publications Warehouse

    Winters, W.J.

    1999-01-01

    As part of an ongoing laboratory study, preliminary acoustic, strength, and hydraulic conductivity results are presented from a suite of tests conducted on four natural-gas-hydrate-containing samples from the Mackenzie Delta JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. The gas hydrate samples were preserved in pressure vessels during transport from the Northwest Territories to Woods Hole, Massachusetts, where multistep tests were performed using GHASTLI (Gas Hydrate And Sediment Test Laboratory Instrument), which recreates pressure and temperature conditions that are stable for gas hydrate. Properties and changes in sediment behaviour were measured before, during, and after controlled gas hydrate dissociation. Significant amounts of gas hydrate occupied the sample pores and substantially increased acoustic velocity and shear strength.

  2. Darwin's "strange inversion of reasoning".

    PubMed

    Dennett, Daniel

    2009-06-16

    Darwin's theory of evolution by natural selection unifies the world of physics with the world of meaning and purpose by proposing a deeply counterintuitive "inversion of reasoning" (according to a 19th century critic): "to make a perfect and beautiful machine, it is not requisite to know how to make it" [MacKenzie RB (1868) (Nisbet & Co., London)]. Turing proposed a similar inversion: to be a perfect and beautiful computing machine, it is not requisite to know what arithmetic is. Together, these ideas help to explain how we human intelligences came to be able to discern the reasons for all of the adaptations of life, including our own.

  3. KSC-07pd0872

    NASA Image and Video Library

    2007-04-11

    KENNEDY SPACE CENTER, FLA. -- White pelicans gather in the shallow water of a lake near Kennedy Space Center. The birds breed from British Columbia and Mackenzie south to western Ontario and California and Texas coast. They winter from Florida and southern California south to Panama. KSC shares a boundary with the Merritt Island Wildlife Nature Refuge. The refuge is a habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles. In addition, the Refuge supports 19 endangered or threatened wildlife species on Federal or State lists, more than any other single refuge in the U.S. Photo credit: NASA/Dimitri Gerondidakis

  4. Deviation pattern approach for optimizing perturbative terms of QCD renormalization group invariant observables

    NASA Astrophysics Data System (ADS)

    Khellat, M. R.; Mirjalili, A.

    2017-03-01

    We first consider the idea of renormalization group-induced estimates, in the context of optimization procedures, for the Brodsky-Lepage-Mackenzie approach to generate higher-order contributions to QCD perturbative series. Secondly, we develop the deviation pattern approach (DPA) in which through a series of comparisons between lowerorder RG-induced estimates and the corresponding analytical calculations, one could modify higher-order RG-induced estimates. Finally, using the normal estimation procedure and DPA, we get estimates of αs4 corrections for the Bjorken sum rule of polarized deep-inelastic scattering and for the non-singlet contribution to the Adler function.

  5. Overview of the science activities for the 2002 Mallik gas hydrate production research well program, Mackenzie Delta, N.W.T., Canada

    NASA Astrophysics Data System (ADS)

    Dallimore, S. R.; Collett, T. S.; Uchida, T.; Weber, M.

    2003-04-01

    With the completion of scientific studies undertaken as part of the 1998 Mallik 2L-38 gas hydrate research well, an international research site was established for the study of Arctic natural gas hydrates in the Mackenzie Delta of northwestern Canada. Quantitative well log analysis and core studies reveal multiple gas hydrate layers from 890 m to 1106 m depth, exceeding 110 m in total thickness. High gas hydrate saturation values, which in some cases exceed 80% of the pore volume, establish the Mallik gas hydrate field as one of the most concentrated gas hydrate reservoirs in the world. Beginning in December 2001 and continuing to the middle of March 2002, two 1188 m deep science observation wells were drilled and instrumented and a 1166 m deep production research well program was carried out. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. In addition the project has been accepted as part of the International Scientific Continental Drilling Program. The Geological Survey of Canada is coordinating the science program for the project and JAPEX Canada Ltd. acted as the designated operator for the fieldwork. Primary objectives of the research program are to advance fundamental geological, geophysical and geochemical studies of the Mallik gas hydrate field and to undertake advanced production testing of a concentrated gas hydrate reservoir. Full-scale field experiments in the production well monitored the physical behavior of the hydrate deposits in response to depressurization and thermal stimulation. The observation wells facilitated cross-hole tomography and vertical seismic profile experiments (before and after production) as well as the measurement of in situ formation conditions. A wide- ranging science and engineering research program included the collection of gas-hydrate-bearing core samples and downhole geophysical logging. Laboratory and modeling studies undertaken during the field program, and subsequently as part of a post-field research program, will document the sedimentology, physical/petrophysical properties, geochemistry, geophysics, reservoir characteristics and production behavior of the Mallik gas hydrate accumulation. The research team, including some 100 participant scientists from over 20 institutes in 7 countries, expects to publish the scientific results in 2004.

  6. Exploitation dynamics of small fish stocks like Arctic cisco

    USGS Publications Warehouse

    Nielsen, Jennifer L.

    2004-01-01

    Potential impacts to the Arctic cisco population fall into both demographic and behavioral categories. Possible demographic impacts include stock recruitment effects, limited escapement into marine habitats, and variable age-class reproductive success. Potential behavioral impacts involve migratory patterns, variable life histories, and strategies for seasonal feeding. Arctic cisco stocks are highly susceptible to over-exploitation due to our limited basic knowledge of the highly variable Arctic environment and the role they play in this dynamic ecosystem.Our knowledge of potential demographic changes is very limited, and it is necessary to determine the abundance and recruitment of the hypothesized Mackenzie River source population, the extent of the coastal migratory corridor, growth patterns, and coastal upwelling and mixing effects on population dynamics for this species. Information needed to answer some of the demographic questions includes basic evolutionary history and molecular genetics of Arctic cisco (for instance, are there contributions to the Arctic cisco stock from the Yukon?), what is the effective population size (i.e., breeding population size), and potential links to changes in climate. The basic behavioral questions include migratory and variable life history questions. For instance, the extent of movement back and forth between freshwater and the sea, age-specific differences in food web dynamics, and nearshore brackish and high salinity habitats are topics that should be studied. Life history data should be gathered to understand the variation in age at reproduction, salinity tolerance, scale and duration of the freshwater stage, survival, and adult migration. Both molecular and ecological tools should be integrated to manage the Arctic cisco stock(s), such as understanding global climate changes on patterns of harvest and recruitment, and the genetics of population structure and colonization. Perhaps other populations are contributing to the population within the Colville River other than only the Mackenzie River population. This needs further exploration. By examining otolith microchemistry, unique transitions from freshwater to sea can be identified for these stocks. This may shed light on why some fish arrive at the mouth of the Colville River, while others don’t.

  7. Importance of particle-associated bacterial heterotrophy in a coastal Arctic ecosystem

    NASA Astrophysics Data System (ADS)

    Garneau, Marie-Ève; Vincent, Warwick F.; Terrado, Ramon; Lovejoy, Connie

    2009-01-01

    The large quantities of particles delivered by the Mackenzie River to the coastal Beaufort Sea (Arctic Ocean) have implications for the spatial distribution, composition and productivity of its bacterial communities. Our objectives in this study were: (1) to assess the contribution of particle-associated bacteria (fraction ≥ 3 µm) to total bacterial production and their relationships with changing environmental conditions along a surface water transect; (2) to examine how particle-based heterotrophy changes over the annual cycle (Nov 2003-Aug 2004); and (3) to determine whether particle-associated bacterial assemblages differ in composition from the free-living communities (fraction < 3 µm). Our transect results showed that particle-associated bacteria contributed a variable percentage of leucine-based (BP-Leu) and thymidine-based (BP-TdR) bacterial production, with values up to 98% at the inshore, low salinity stations. The relative contribution of particle-associated bacteria to total BP-Leu was positively correlated with temperature and particulate organic material (POM) concentration. The annual dataset showed low activities of particle-associated bacteria during late fall and most of the winter, and a period of high particle-associated activity in spring and summer, likely related to the seasonal inputs of riverine POM. Results from catalyzed reporter deposition for fluorescence in situ hybridization (CARD-FISH) confirmed the dominance of Bacteria and presence of Archaea (43-84% and 0.2-5.5% of DAPI counts, respectively), which were evenly distributed throughout the Mackenzie Shelf, and not significantly related to environmental variables. Denaturing gradient gel electrophoresis (DGGE) revealed changes in the bacterial community structure among riverine, estuarine and marine stations, with separation according to temperature and salinity. There was evidence of differences between the particle-associated and free-living bacterial assemblages at the estuarine stations with highest POM content. Particle-associated bacteria are an important functional component of this Arctic ecosystem. Under a warmer climate, they are likely to play an increasing role in coastal biogeochemistry and carbon fluxes as a result of permafrost melting and increased particle transport from the tundra to coastal waters.

  8. Downward particle flux and carbon export in the Beaufort Sea, Arctic Ocean; the Malina experiment

    NASA Astrophysics Data System (ADS)

    Miquel, J.-C.; Gasser, B.; Martín, J.; Marec, C.; Babin, M.; Fortier, L.; Forest, A.

    2015-01-01

    As part of the international, multidisciplinary project Malina, downward particle fluxes were investigated by means of a drifting multi-sediment trap mooring deployed at three sites in the Canadian Beaufort Sea in late summer 2009. Mooring deployments lasted for 28-50 h and targeted the shelf-break and the slope along the Beaufort-Mackenzie continental margin, as well as the edge between the Mackenzie Shelf and the Amundsen Gulf. Besides analyses of C and N, the collected material was investigated for pigments, phyto- and microzooplankton, faecal pellets and swimmers. The measured fluxes were relatively low, in the range of 11-54 mg m-2 d-1 for the total mass, 1-15 mg C m-2 d-1 for organic carbon and 0.2-2.5 mg N m-2 d-1 for nitrogen. Comparison with a long-term trap dataset from the same sampling area showed that the short-term measurements were at the lower end of the high variability characterizing a rather high flux regime during the study period. The sinking material consisted of aggregates and particles that were characterized by the presence of hetero- and autotrophic microzooplankters and diatoms and by the corresponding pigment signatures. Faecal pellets contribution to sinking carbon flux was important, especially at depth where they represented up to 25% of the total carbon flux. The vertical distribution of different morphotypes of pellets showed a marked pattern with cylindrical faeces (produced by calanoid copepods) present mainly within the euphotic zone, whereas elliptical pellets (produced mainly by smaller copepods) were more abundant at mesopelagic depths. These features, together with the density of matter within the pellets, highlighted the role of the zooplankton community in the transformation of carbon issued from the primary production and the transition of that carbon from the productive surface zone to the Arctic Ocean's interior. Our data indicate that sinking carbon flux in this late summer period is primarily the result of a heterotrophic driven ecosystem as compared to the system driven by autotrophy earlier in the year.

  9. Downward particle flux and carbon export in the Beaufort Sea, Arctic Ocean; the role of zooplankton

    NASA Astrophysics Data System (ADS)

    Miquel, J.-C.; Gasser, B.; Martín, J.; Marec, C.; Babin, M.; Fortier, L.; Forest, A.

    2015-08-01

    As part of the international, multidisciplinary project Malina, downward particle fluxes were investigated by means of a drifting multi-sediment trap mooring deployed at three sites in the Canadian Beaufort Sea in late summer 2009. Mooring deployments lasted between 28 and 50 h and targeted the shelf-break and the slope along the Beaufort-Mackenzie continental margin, as well as the edge between the Mackenzie Shelf and the Amundsen Gulf. Besides analyses of C and N, the collected material was investigated for pigments, phyto- and microzooplankton, faecal pellets and swimmers. The measured fluxes were relatively low, in the range of 11-54 mg m-2 d-1 for the total mass, 1-15 mg C m-2 d-1 for organic carbon and 0.2-2.5 mg N m-2 d-1 for nitrogen. Comparison with a long-term trap data set from the same sampling area showed that the short-term measurements were at the lower end of the high variability characterizing a rather high flux regime during the study period. The sinking material consisted of aggregates and particles that were characterized by the presence of hetero- and autotrophic microzooplankters and diatoms and by the corresponding pigment signatures. Faecal pellets contribution to sinking carbon flux was important, especially at depths below 100 m, where they represented up to 25 % of the total carbon flux. The vertical distribution of different morphotypes of pellets showed a marked pattern with cylindrical faeces (produced by calanoid copepods) present mainly within the euphotic zone, whereas elliptical pellets (produced mainly by smaller copepods) were more abundant at mesopelagic depths. These features, together with the density of matter within the pellets, highlighted the role of the zooplankton community in the transformation of carbon issued from the primary production and the transition of that carbon from the productive surface zone to the Arctic Ocean's interior. Our data indicate that sinking carbon flux in this late summer period is primarily the result of a heterotrophic-driven ecosystem.

  10. A high resolution satellite view of surface solar radiation over the climatically sensitive region of Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Alexandri, G.; Georgoulias, A. K.; Meleti, C.; Balis, D.; Kourtidis, K. A.; Sanchez-Lorenzo, A.; Trentmann, J.; Zanis, P.

    2017-05-01

    In this work, the spatiotemporal variability of surface solar radiation (SSR) is examined over the Eastern Mediterranean region for a 31-year period (1983-2013). The CM SAF SARAH (Satellite Application Facility on Climate Monitoring Solar surfAce RAdiation Heliosat) satellite-based product was found to be homogeneous (based on relative Standard Normal Homogeneity Tests - SNHTs, 95% confidence level) as compared to ground-based observations, and hence appropriate for climatological studies. Specifically, the dataset shows good agreement with monthly observations from five quality assured stations in the region with a mean bias of 7.1 W/m2 or 3.8% and a strong correlation. This high resolution (0.05° × 0.05°) product is capable of revealing various local features. Over land, the SSR levels are highly dependent on the topography, while over the sea, they exhibit a smooth latitudinal variability. SSR varies significantly over the region on a seasonal basis being three times higher in summer (309.6 ± 26.5 W/m2) than in winter (100.2 ± 31.4 W/m2). The CM SAF SARAH product was compared against three satellite-based and one reanalysis products. The satellite-based data from CERES (Cloud and the Earth's Radiant Energy System), GEWEX (Global Energy and Water Cycle Experiment) and ISCCP (International Satellite Cloud Climatology Project) underestimate SSR while the reanalysis data from the ERA-Interim overestimate SSR compared to CM SAF SARAH. Using a radiative transfer model and a set of ancillary data, these biases are attributed to the atmospheric parameters that drive the transmission of solar radiation in the atmosphere, namely, clouds, aerosols and water vapor. It is shown that the bias between CERES and CM SAF SARAH SSR can be explained through the cloud fractional cover and aerosol optical depth biases between these datasets. The CM SAF SARAH SSR trend was found to be positive (brightening) and statistically significant at the 95% confidence level (0.2 ± 0.05 W/m2/year or 0.1 ± 0.02%/year) being almost the same over land and sea. The CM SAF SARAH SSR trends are closer to the ground-based ones than the CERES, GEWEX, ISCCP and ERA-Interim trends. The use of an aerosol climatology for the production of CM SAF SARAH, that neglects the trends of aerosol loads, leads to an underestimation of the SSR trends. It is suggested here, that the inclusion of changes of the aerosol load and composition within CM SAF SARAH would allow for a more accurate reproduction of the SSR trends.

  11. Exploring uncertainty in the radiative budget of the Antarctic atmospheric boundary layer at Dome C

    NASA Astrophysics Data System (ADS)

    Veron, D. E.; Schroth, A.; Genthon, C.; Vignon, E.

    2017-12-01

    In the past two decades, significant advances have been made in observing and modeling the atmospheric boundary layer processes over the Eastern Antarctic plateau. However, there are gaps in understanding related to the radiative and moisture budgets in the very bottom of the ABL. Since 2009, continuous meteorological observations have been made at 6 heights in the bottom 40-m of the atmosphere as part of the CALibration and VAlidation of meteorological and climate models and satellite retrievals (C ALVA) campaign to improve understanding of the atmospheric state over Dome C. A recent case study that is part of the GEWEX Atmospheric Boundary Layer Study, GABLS4, has also focused on the ability of models to simulate stable summertime boundary layers at the same location. As part of the intercomparison, a model derived summertime climatology based on 10-years of PolarWRF simulations over the Eastern Antarctic plateau was developed. Comparisons between these simulations and data from the CALVA campaign suggest that PolarWRF is not capturing the small-scale variations in the longwave heating rate profile near the surface, and so predicts biased surface temperatures relative to observations. Additional work suggests that modifications of the surface snow representations may also be needed. Studies of the sensitivity of these results to changes in the moisture budget are ongoing.

  12. Field Tests of the Magnetotelluric Method to Detect Gas Hydrates, Mallik, Mackenzie Delta, Canada

    NASA Astrophysics Data System (ADS)

    Craven, J. A.; Roberts, B.; Bellefleur, G.; Spratt, J.; Wright, F.; Dallimore, S. R.

    2008-12-01

    The magnetotelluric method is not generally utilized at extreme latitudes due primarily to difficulties in making the good electrical contact with the ground required to measure the electric field. As such, the magnetotelluric technique has not been previously investigated to direct detect gas hydrates in on-shore permafrost environments. We present the results of preliminary field tests at Mallik, Northwest Territories, Canada, that demonstrate good quality magnetotelluric data can be obtained in this environment using specialized electrodes and buffer amplifiers similar to those utilized by Wannamaker et al (2004). This result suggests that subsurface images from larger magnetotelluric surveys will be useful to complement other techniques to detect, quantify and characterize gas hydrates.

  13. Norman Wells: the oil center of northwest territories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bone, R.M.; Mahnic, R.J.

    In 1920, a drilling team funded by Imperial Oil discovered a petroleum deposit along the shore of the Mackenzie River north of the settlement of Fort Norman. This wilderness site later became the community of Norman Wells and its growth has been directly attributable to petroleum. The current expansion of production at Norman Wells is aimed at S. Canadian markets and a pipeline is being constructed from Norman Wells to existing pipelines in N. Alberta. As the focal point of this major resource expansion, the character, size, and functions of the community are changing. These changes are transforming Norman Wellsmore » into an important regional center. 20 references.« less

  14. Assessment of gridded observations used for climate model validation in the Mediterranean region: the HyMeX and MED-CORDEX framework

    NASA Astrophysics Data System (ADS)

    Flaounas, Emmanouil; Drobinski, Philippe; Borga, Marco; Calvet, Jean-Christophe; Delrieu, Guy; Morin, Efrat; Tartari, Gianni; Toffolon, Roberta

    2012-06-01

    This letter assesses the quality of temperature and rainfall daily retrievals of the European Climate Assessment and Dataset (ECA&D) with respect to measurements collected locally in various parts of the Euro-Mediterranean region in the framework of the Hydrological Cycle in the Mediterranean Experiment (HyMeX), endorsed by the Global Energy and Water Cycle Experiment (GEWEX) of the World Climate Research Program (WCRP). The ECA&D, among other gridded datasets, is very often used as a reference for model calibration and evaluation. This is for instance the case in the context of the WCRP Coordinated Regional Downscaling Experiment (CORDEX) and its Mediterranean declination MED-CORDEX. This letter quantifies ECA&D dataset uncertainties associated with temperature and precipitation intra-seasonal variability, seasonal distribution and extremes. Our motivation is to help the interpretation of the results when validating or calibrating downscaling models by the ECA&D dataset in the context of regional climate research in the Euro-Mediterranean region.

  15. Spatial variability of particle-attached and free-living bacterial diversity in surface waters from the Mackenzie River to the Beaufort Sea (Canadian Arctic)

    NASA Astrophysics Data System (ADS)

    Ortega-Retuerta, E.; Joux, F.; Jeffrey, W. H.; Ghiglione, J.-F.

    2012-12-01

    We explored the patterns of total and active bacterial community structure in a gradient covering surface waters from the Mackenzie River to the coastal Beaufort Sea, Canadian Arctic Ocean, with a particular focus on free-living vs. particle-attached communities. Capillary electrophoresis-single strand conformation polymorphism (CE-SSCP) showed significant differences when comparing river, coast and open sea bacterial community structures. In contrast to the river and coastal waters, total (16S rDNA-based) and active (16S rRNA-based) communities in the open sea samples were not significantly different, suggesting that most present bacterial groups were equally active in this area. Additionally, we observed significant differences between particle-attached (PA) and free-living (FL) bacterial communities in the open sea, but similar structure in the two fractions for coastal and river samples. Direct multivariate statistical analyses showed that total community structure was mainly driven by salinity (proxy of DOC and CDOM), suspended particles, amino acids and chlorophyll a. 16S rRNA genes pyrosequencing of selected samples confirmed these significant differences from river to sea and also between PA and FL fractions only in open sea samples, and PA samples generally showed higher diversity (Shannon, Simpson and Chao indices) than FL samples. At the class level, Opitutae was most abundant in the PA fraction of the sea sample, followed by Flavobacteria and Gammaproteobacteria, while the FL sea sample was dominated by Alphaproteobacteria. Finally, the coast and river samples, both PA and FL fractions, were dominated by Betaproteobacteria, Alphaproteobacteria and Actinobacteria. These results highlight the coexistence of particle specialists and generalists and the role of particle quality in structuring bacterial communities in the area. These results may also serve as a~basis to predict further changes in bacterial communities should climate change lead to further increases in river discharge and related particles load.

  16. Impact of river discharge, upwelling and vertical mixing on the nutrient loading and productivity of the Canadian Beaufort Shelf

    NASA Astrophysics Data System (ADS)

    Tremblay, J.-É.; Raimbault, P.; Garcia, N.; Lansard, B.; Babin, M.; Gagnon, J.

    2014-09-01

    The concentrations and elemental stoichiometry of particulate and dissolved pools of carbon (C), nitrogen (N), phosphorus (P) and silicon (Si) on the Canadian Beaufort Shelf during summer 2009 (MALINA program) were assessed and compared with those of surface waters provided by the Mackenzie river as well as by winter mixing and upwelling of upper halocline waters at the shelf break. Neritic surface waters showed a clear enrichment in dissolved and particulate organic carbon (DOC and POC, respectively), nitrate, total particulate nitrogen (TPN) and dissolved organic nitrogen (DON) originating from the river. Silicate as well as bulk DON and DOC declined in a near-conservative manner away from the delta's outlet, whereas nitrate dropped non-conservatively to very low background concentrations inside the brackish zone. By contrast, the excess of soluble reactive P (SRP) present in oceanic waters declined in a non-conservative manner toward the river outlet, where concentrations were very low and consistent with P shortage in the Mackenzie River. These opposite gradients imply that the admixture of Pacific-derived, SRP-rich water is necessary to allow phytoplankton to use river-derived nitrate and to a lesser extent DON. A coarse budget based on concurrent estimates of primary production shows that river N deliveries support a modest fraction of primary production when considering the entire shelf, due to the ability of phytoplankton to thrive in the subsurface chlorophyll maximum beneath the thin, nitrate-depleted river plume. Away from shallow coastal bays, local elevations in the concentration of primary production and dissolved organic constituents were consistent with upwelling at the shelf break. By contrast with shallow winter mixing, nutrient deliveries by North American rivers and upwelling relax surface communities from N limitation and permit a more extant utilization of the excess SRP entering through the Bering Strait. In this context, increased nitrogen supply by rivers and upwelling potentially alters the vertical distribution of the excess P exported into the North Atlantic.

  17. Mackenzie Bay, Antarctica

    NASA Image and Video Library

    2017-12-08

    Off the northeastern edge of Antarctica’s Amery Ice Shelf lies Mackenzie Bay, which was painted with a ghostly blue-green mass in early February 2012. Similarly colored tendrils also streamed northward across the ocean, their flow sometimes interrupted by icebergs. Multiple factors might account for the ghostly shapes, including low-lying clouds or katabatic winds—downslope winds blowing toward the coast, which can freeze the water at the ocean surface. But an intriguing and perhaps more likely explanation involves processes occurring below the ice shelf. An ice shelf is a thick slab of ice often fed by glaciers attached to the coastline. The shelf floats on the ocean surface, with seawater circulating underneath. Like most ice shelves, the Amery is very thick in the upstream area near the shore. It thins significantly as it stretches northward away from the continent. Water at depth is subject to much greater pressure than water at the surface, and one effect of this intense pressure is that it effectively lowers the freezing point. So water circulating at depth beneath the Amery Ice Shelf may be slightly below the temperature at which it would normally begin to freeze. As some that water wells up along the underbelly of the shelf, the pressure is reduced and the water begins to freeze even though the temperature may not change. As it freezes, this deep-ocean water forms needle-like crystals known as frazil. The crystals are only 3 to 4 millimeters (0.12 to 0.16 inches) wide, but a sufficient concentration of frazil can change the appearance of the water. A frazil-rich plume probably accounts for the blue-green waters off the Amery Ice Shelf in the image above. Modeling of ocean circulation beneath the shelf indicates just such a plume emerging in that location. Frazil-rich water explains the plume, and wind transport of the surface water explains the long streams extending northward. As the sub-iceshelf water mixes with surface water around the Antarctic coastline, the frazil is gradually melted and the streams disappear. The Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite captured this natural-color image of Mackenzie Bay and the ice shelf on February 12, 2012. NASA Earth Observatory image created by Jesse Allen and Robert Simmon, using EO-1 ALI data provided courtesy of the NASA EO-1 team. Caption by Michon Scott with information from Helen A. Fricker, Scripps Institution of Oceanography; Robert Massom, Australian Antarctic Division; Ben Galton-Fenzi, University of Tasmania, Australia; and Florence Fetterer, Walt Meier, and Ted Scambos, National Snow and Ice Data Center. Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram Instrument: EO-1 - ALI

  18. Exsolution lamellae as fast diffusion pathways in rutile: implications for U-Pb thermochronology and Zr thermometry

    NASA Astrophysics Data System (ADS)

    Smye, A.; Seman, S.; Roberts, N. M. W.; Condon, D. J.; Davis, B.

    2017-12-01

    Geophysical processes impart characteristic thermal signatures to the lithosphere. Near-continuous thermal histories can be obtained from inversion of intracrystalline U-Pb age profiles in rutile and apatite provided that it can be shown that profile formed in response to Fickian-type diffusion. Here, we present the results of a combined LA-ICPMS and ID-TIMS U-Pb study on rutile grains from two garnet-bearing granulite xenoliths from a kimberlite in the Archean Slave province. Interpreted using numerical models, we show that the rutile U-Pb isotope systematics are consistent with slow-cooling following crystallization at 1.2 Ga, contemporaneous with the Mackenzie dike swarm. However, inversion of rutile U-Pb age gradients is complicated by the ubiquitous presence of ilmenite exsolution lamellae. We show that these lamellae act as fast diffusion pathways for Pb and High Field Strength Elements, including Zr. This has important implications for the use of rutile as a U-Pb themochronometer and as a single-phase thermometer.

  19. On inclusion of water resource management in Earth system models - Part 1: Problem definition and representation of water demand

    NASA Astrophysics Data System (ADS)

    Nazemi, A.; Wheater, H. S.

    2015-01-01

    Human activities have caused various changes to the Earth system, and hence the interconnections between human activities and the Earth system should be recognized and reflected in models that simulate Earth system processes. One key anthropogenic activity is water resource management, which determines the dynamics of human-water interactions in time and space and controls human livelihoods and economy, including energy and food production. There are immediate needs to include water resource management in Earth system models. First, the extent of human water requirements is increasing rapidly at the global scale and it is crucial to analyze the possible imbalance between water demands and supply under various scenarios of climate change and across various temporal and spatial scales. Second, recent observations show that human-water interactions, manifested through water resource management, can substantially alter the terrestrial water cycle, affect land-atmospheric feedbacks and may further interact with climate and contribute to sea-level change. Due to the importance of water resource management in determining the future of the global water and climate cycles, the World Climate Research Program's Global Energy and Water Exchanges project (WRCP-GEWEX) has recently identified gaps in describing human-water interactions as one of the grand challenges in Earth system modeling (GEWEX, 2012). Here, we divide water resource management into two interdependent elements, related firstly to water demand and secondly to water supply and allocation. In this paper, we survey the current literature on how various components of water demand have been included in large-scale models, in particular land surface and global hydrological models. Issues of water supply and allocation are addressed in a companion paper. The available algorithms to represent the dominant demands are classified based on the demand type, mode of simulation and underlying modeling assumptions. We discuss the pros and cons of available algorithms, address various sources of uncertainty and highlight limitations in current applications. We conclude that current capability of large-scale models to represent human water demands is rather limited, particularly with respect to future projections and coupled land-atmospheric simulations. To fill these gaps, the available models, algorithms and data for representing various water demands should be systematically tested, intercompared and improved. In particular, human water demands should be considered in conjunction with water supply and allocation, particularly in the face of water scarcity and unknown future climate.

  20. Cirrus Parcel Model Comparison Project. Phase 1

    NASA Technical Reports Server (NTRS)

    Lin, Ruei-Fong; Starr, David O'C.; DeMott, Paul J.; Cotton, Richard; Jensen, Eric; Sassen, Kenneth

    2000-01-01

    The Cirrus Parcel Model Comparison (CPMC) is a project of the GEWEX Cloud System Study Working Group on Cirrus Cloud Systems (GCSS WG2). The primary goal of this project is to identify cirrus model sensitivities to the state of our knowledge of nucleation and microphysics. Furthermore, the common ground of the findings may provide guidelines for models with simpler cirrus microphysics modules. We focus on the nucleation regimes of the warm (parcel starting at -40 C and 340 hPa) and cold (-60 C and 170 hPa) cases studied in the GCSS WG2 Idealized Cirrus Model Comparison Project. Nucleation and ice crystal growth were forced through an externally imposed rate of lift and consequent adiabatic cooling. The background haze particles are assumed to be lognormally-distributed H2SO4 particles. Only the homogeneous nucleation mode is allowed to form ice crystals in the HN-ONLY runs; all nucleation modes are switched on in the ALL-MODE runs. Participants were asked to run the HN-lambda-fixed runs by setting lambda = 2 (lambda is further discussed in section 2) or tailoring the nucleation rate calculation in agreement with lambda = 2 (exp 1). The depth of parcel lift (800 m) was set to assure that parcels underwent complete transition through the nucleation regime to a stage of approximate equilibrium between ice mass growth and vapor supplied by the specified updrafts.

  1. Gas Hydrate Estimation Using Rock Physics Modeling and Seismic Inversion

    NASA Astrophysics Data System (ADS)

    Dai, J.; Dutta, N.; Xu, H.

    2006-05-01

    ABSTRACT We conducted a theoretical study of the effects of gas hydrate saturation on the acoustic properties (P- and S- wave velocities, and bulk density) of host rocks, using wireline log data from the Mallik wells in the Mackenzie Delta in Northern Canada. We evaluated a number of gas hydrate rock physics models that correspond to different rock textures. Our study shows that, among the existing rock physics models, the one that treats gas hydrate as part of the solid matrix best fits the measured data. This model was also tested on gas hydrate hole 995B of ODP leg 164 drilling at Blake Ridge, which shows adequate match. Based on the understanding of rock models of gas hydrates and properties of shallow sediments, we define a procedure that quantifies gas hydrate using rock physics modeling and seismic inversion. The method allows us to estimate gas hydrate directly from seismic information only. This paper will show examples of gas hydrates quantification from both 1D profile and 3D volume in the deepwater of Gulf of Mexico.

  2. Marine ARM GPCI Investigation of Clouds Psychrometer Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, R Michael; Lewis, Ernie

    2016-09-01

    One of the most critical measurements in the suite of meteorological measurements used for the calculation of evaporation and latent heat flux is the relative humidity (RH). In order to achieve an overall net flux uncertainty < 10 W/m 2 (Bradley and Fairall, 2006), the RH must be accurate to < 2 %RH. Anyone experienced in shipboard meteorological measurements will recognize that this is a tough specification. During the U.S. Department of Energy (DOE) Marine Atmospheric Radiation Measurement (ARM) Climate Research Facility Global Energy and Water Experiment (GEWEX) Cloud System Study (GCSS) Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds (MAGIC)more » experiment, the meteorological package used three different RH sensors. We found approximately 3-4 % differences between units. To arbitrate the differences and to track calibration drift over the months of exposure, we used a precision psychrometer. The Assmann Psychrometer, Model 430101 is a classic, mercury-in-glass instrument that gives a precise measure of the wet and dry bulb temperatures from which atmospheric humidity and RH are computed. On a regular basis, typically after each balloon launch, a technician took the psychrometer to an exposed location on the bridge roof. That was just below the instruments on the mast and high enough into the mixed layer that the difference is negligible.« less

  3. Variability and Extremes of Precipitation in the Global Climate as Determined by the 25-Year GEWEX/GPCP Data Set

    NASA Technical Reports Server (NTRS)

    Adler, R. F.; Gu, G.; Curtis, S.; Huffman, G. J.; Bolvin, D. T.; Nelkin, E. J.

    2005-01-01

    The Global Precipitation Climatology Project (GPCP) 25-year precipitation data set is used to evaluate the variability and extremes on global and regional scales. The variability of precipitation year-to-year is evaluated in relation to the overall lack of a significant global trend and to climate events such as ENSO and volcanic eruptions. The validity of conclusions and limitations of the data set are checked by comparison with independent data sets (e.g., TRMM). The GPCP data set necessarily has a heterogeneous time series of input data sources, so part of the assessment described above is to test the initial results for potential influence by major data boundaries in the record. Regional trends, or inter-decadal changes, are also analyzed to determine validity and correlation with other long-term data sets related to the hydrological cycle (e.g., clouds and ocean surface fluxes). Statistics of extremes (both wet and dry) are analyzed at the monthly time scale for the 25 years. A preliminary result of increasing frequency of extreme monthly values will be a focus to determine validity. Daily values for an eight-year are also examined for variation in extremes and compared to the longer monthly-based study.

  4. Review-Esso Resources Canada Ltd. , Norman Wells expansion project drilling program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, D.G.

    Esso Resources Canada Limited has embarked on a project to increase production from its Norman Wells Oil field located 145 km south of the Arctic Circle, from 475 m/sup 3//D to 4000 m/sup 3//D of crude oil. This paper provides details on the development drilling portion of the project which is comprised of 150 wells to be drilled in 3 years utilizing 2 drilling rigs from July 1982 through September 1985. The majority of the wells will be directionally drilled from multiwell land pads and artificial islands to shallow reservoir targets underlying the Mackenzie River, a major river intersecting themore » field boundaries. Experience from the initial 27 wells completed is provided.« less

  5. The GEWEX LandFlux project: Evaluation of model evaporation using tower-based and globally gridded forcing data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, M. F.; Ershadi, A.; Jimenez, C.

    Determining the spatial distribution and temporal development of evaporation at regional and global scales is required to improve our understanding of the coupled water and energy cycles and to better monitor any changes in observed trends and variability of linked hydrological processes. With recent international efforts guiding the development of long-term and globally distributed flux estimates, continued product assessments are required to inform upon the selection of suitable model structures and also to establish the appropriateness of these multi-model simulations for global application. In support of the objectives of the Global Energy and Water Cycle Exchanges (GEWEX) LandFlux project, fourmore » commonly used evaporation models are evaluated against data from tower-based eddy-covariance observations, distributed across a range of biomes and climate zones. The selected schemes include the Surface Energy Balance System (SEBS) approach, the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model, the Penman–Monteith-based Mu model (PM-Mu) and the Global Land Evaporation Amsterdam Model (GLEAM). Here we seek to examine the fidelity of global evaporation simulations by examining the multi-model response to varying sources of forcing data. To do this, we perform parallel and collocated model simulations using tower-based data together with a global-scale grid-based forcing product. Through quantifying the multi-model response to high-quality tower data, a better understanding of the subsequent model response to the coarse-scale globally gridded data that underlies the LandFlux product can be obtained, while also providing a relative evaluation and assessment of model performance. Using surface flux observations from 45 globally distributed eddy-covariance stations as independent metrics of performance, the tower-based analysis indicated that PT-JPL provided the highest overall statistical performance (0.72; 61 W m –2; 0.65), followed closely by GLEAM (0.68; 64 W m –2; 0.62), with values in parentheses representing the R 2, RMSD and Nash–Sutcliffe efficiency (NSE), respectively. PM-Mu (0.51; 78 W m –2; 0.45) tended to underestimate fluxes, while SEBS (0.72; 101 W m –2; 0.24) overestimated values relative to observations. A focused analysis across specific biome types and climate zones showed considerable variability in the performance of all models, with no single model consistently able to outperform any other. Results also indicated that the global gridded data tended to reduce the performance for all of the studied models when compared to the tower data, likely a response to scale mismatch and issues related to forcing quality. Rather than relying on any single model simulation, the spatial and temporal variability at both the tower- and grid-scale highlighted the potential benefits of developing an ensemble or blended evaporation product for global-scale LandFlux applications. Hence, challenges related to the robust assessment of the LandFlux product are also discussed.« less

  6. The GEWEX LandFlux project: Evaluation of model evaporation using tower-based and globally gridded forcing data

    DOE PAGES

    McCabe, M. F.; Ershadi, A.; Jimenez, C.; ...

    2016-01-26

    Determining the spatial distribution and temporal development of evaporation at regional and global scales is required to improve our understanding of the coupled water and energy cycles and to better monitor any changes in observed trends and variability of linked hydrological processes. With recent international efforts guiding the development of long-term and globally distributed flux estimates, continued product assessments are required to inform upon the selection of suitable model structures and also to establish the appropriateness of these multi-model simulations for global application. In support of the objectives of the Global Energy and Water Cycle Exchanges (GEWEX) LandFlux project, fourmore » commonly used evaporation models are evaluated against data from tower-based eddy-covariance observations, distributed across a range of biomes and climate zones. The selected schemes include the Surface Energy Balance System (SEBS) approach, the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model, the Penman–Monteith-based Mu model (PM-Mu) and the Global Land Evaporation Amsterdam Model (GLEAM). Here we seek to examine the fidelity of global evaporation simulations by examining the multi-model response to varying sources of forcing data. To do this, we perform parallel and collocated model simulations using tower-based data together with a global-scale grid-based forcing product. Through quantifying the multi-model response to high-quality tower data, a better understanding of the subsequent model response to the coarse-scale globally gridded data that underlies the LandFlux product can be obtained, while also providing a relative evaluation and assessment of model performance. Using surface flux observations from 45 globally distributed eddy-covariance stations as independent metrics of performance, the tower-based analysis indicated that PT-JPL provided the highest overall statistical performance (0.72; 61 W m –2; 0.65), followed closely by GLEAM (0.68; 64 W m –2; 0.62), with values in parentheses representing the R 2, RMSD and Nash–Sutcliffe efficiency (NSE), respectively. PM-Mu (0.51; 78 W m –2; 0.45) tended to underestimate fluxes, while SEBS (0.72; 101 W m –2; 0.24) overestimated values relative to observations. A focused analysis across specific biome types and climate zones showed considerable variability in the performance of all models, with no single model consistently able to outperform any other. Results also indicated that the global gridded data tended to reduce the performance for all of the studied models when compared to the tower data, likely a response to scale mismatch and issues related to forcing quality. Rather than relying on any single model simulation, the spatial and temporal variability at both the tower- and grid-scale highlighted the potential benefits of developing an ensemble or blended evaporation product for global-scale LandFlux applications. Hence, challenges related to the robust assessment of the LandFlux product are also discussed.« less

  7. Joint ARM/GCSS/SPARC TWP-ICE CRM Intercomparison Study: Description, Preliminary Results, and Invitation to Participate

    NASA Astrophysics Data System (ADS)

    Fridlind, A. M.; Ackerman, A. S.; Allen, G.; Beringer, J.; Comstock, J. M.; Field, P. R.; Gallagher, M.; Hacker, J. M.; Hume, T.; Jakob, C.; Liu, G.; Long, C. N.; Mather, J. H.; May, P. T.; McCoy, R. F.; McFarlane, S. A.; McFarquhar, G. M.; Minnis, P.; Petch, J. C.; Schumacher, C.; Turner, D. D.; Whiteway, J. A.; Williams, C. R.; Williams, P. I.; Xie, S.; Zhang, M.

    2008-12-01

    The 2006 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) is 'the first field program in the tropics that attempted to describe the evolution of tropical convection, including the large-scale heat, moisture, and momentum budgets at 3-hourly time resolution, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment' [May et al., 2008]. A cloud- resolving model (CRM) intercomparison based on TWP-ICE is now being undertaken by the Atmospheric Radiation Measurement (ARM), GEWEX Cloud Systems Study (GCSS), and Stratospheric Processes And their Role in Climate (SPARC) programs. We summarize the 16-day case study and the wealth of data being used to provide initial and boundary conditions, and evaluate some preliminary findings in the context of existing theories of moisture evolution in the tropical tropopause layer (TTL). Overall, simulated cloud fields evolve realistically by many measures. Budgets indicate that simulated convective flux convergence of water vapor is always positive or near zero at TTL elevations, except locally at lower levels during the driest suppressed monsoon conditions, while simulated water vapor deposition to hydrometeors always exceeds sublimation on average at all TTL elevations over 24-hour timescales. The next largest water vapor budget term is generally the nudging required to keep domain averages consistent with observations, which is at least partly attributable to large-scale forcing terms that cannot be derived from measurements. We discuss the primary uncertainties.

  8. Dihadron production at the LHC: full next-to-leading BFKL calculation

    NASA Astrophysics Data System (ADS)

    Celiberto, Francesco G.; Ivanov, Dmitry Yu.; Murdaca, Beatrice; Papa, Alessandro

    2017-06-01

    The study of the inclusive production of a pair of charged light hadrons (a "dihadron" system) featuring high transverse momenta and well separated in rapidity represents a clear channel for the test of the BFKL dynamics at the Large Hadron Collider (LHC). This process has much in common with the well-known Mueller-Navelet jet production; however, hadrons can be detected at much smaller values of the transverse momentum than jets, thus allowing to explore an additional kinematic range, supplementary to the one studied with Mueller-Navelet jets. Furthermore, it makes it possible to constrain not only the parton densities (PDFs) for the initial proton, but also the parton fragmentation functions (FFs) describing the detected hadron in the final state. Here, we present the first full NLA BFKL analysis for cross sections and azimuthal angle correlations for dihadrons produced in the LHC kinematic ranges. We make use of the Brodsky-Lapage-Mackenzie optimization method to set the values of the renormalization scale and study the effect of choosing different values for the factorization scale. We also gauge the uncertainty coming from the use of different PDF and FF parametrizations.

  9. Synoptic evaluation of carbon cycling in Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.

    2013-10-01

    The accelerated decline in Arctic sea ice combined with an ongoing trend toward a more dynamic atmosphere is modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air-sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air-sea CO2 exchange, with the aim of identifying indices of ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air-sea CO2 fluxes. The mean atmospheric forcing was a mild upwelling-favorable wind (~5 km h-1) blowing from the N-E and a decaying ice cover (<80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2 with a mean uptake rate of -2.0 ± 3.3 mmol C m-2d-1. We attribute this discrepancy to: (1) elevated PP rates (>600 mg C m-2d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (>10mmol C m-2d-1). Although generally <100 mg C m-2d-1, daily PP rates cumulated to a total PP of ~437.6 × 103 t C, which was roughly twice higher than the organic carbon delivery by river inputs (~241.2 × 103 t C). Subsurface PP represented 37.4% of total PP for the whole area and as much as ~72.0% seaward of the shelf break. In the upper 100 m, bacteria dominated (54%) total community respiration (~250 mg C m-2d-1), whereas protozoans, metazoans, and benthos, contributed to 24%, 10%, and 12%, respectively. The range of production-to-biomass ratios of bacteria was wide (1-27% d-1), while we estimated a narrower range for protozoans (6-11% d-1) and metazoans (1-3 % d-1). Over the shelf, benthic biomass was twice higher (~5.9 g C m-2) than the biomass of pelagic heterotrophs (~2.4 g C m-2), in accord with high vertical carbon fluxes on the shelf (956 ± 129 mg C m-2d-1). Threshold PP (PP at which NCP becomes positive) in the surface layer oscillated from 20-152 mg C m-2d-1, with a pattern from low-to-high values as the distance from the Mackenzie River decreased. We conclude that: (1) climate change is exacerbating the already extreme biological gradient across the Arctic shelf-basin system; (2) the Mackenzie Shelf acts as a weak sink for atmospheric CO2, implying that PP exceeds the respiration of terrigenous and marine organic matter in the surface layer; and (3) shelf break upwelling can transfer CO2 to the atmosphere, but massive outgassing can be attenuated if nutrients brought also by upwelling support diatom production. Our study underscores that cross-shelf exchange of waters, nutrients and particles is a key mechanism that needs to be properly monitored as the Arctic transits to a new state.

  10. Synoptic evaluation of carbon cycling in the Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.

    2014-05-01

    The accelerated decline in Arctic sea ice and an ongoing trend toward more energetic atmospheric and oceanic forcings are modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air-sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in the southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air-sea CO2 exchange, with the aim of documenting the ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air-sea CO2 fluxes. During the field campaign, the mean wind field was a mild upwelling-favorable wind (~ 5 km h-1) from the NE. A decaying ice cover (< 80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2, with an uptake rate of -2.0 ± 3.3 mmol C m-2 d-1 (mean ± standard deviation associated with spatial variability). We attribute this discrepancy to (1) elevated PP rates (> 600 mg C m-2 d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (> 10 mmol C m-2 d-1). Daily PP rates were generally < 100 mg C m-2 d-1 and cumulated to a total PP of ~ 437.6 × 103 t C for the region over a 35-day period. This amount was about twice the organic carbon delivery by river inputs (~ 241.2 × 103 t C). Subsurface PP represented 37.4% of total PP for the whole area and as much as ~ 72.0% seaward of the shelf break. In the upper 100 m, bacteria dominated (54%) total community respiration (~ 250 mg C m-2 d-1), whereas protozoans, metazoans, and benthos, contributed to 24, 10, and 12%, respectively. The range of production-to-biomass ratios of bacteria was wide (1-27% d-1), while we estimated a narrower range for protozoans (6-11% d-1) and metazoans (1-3% d-1). Over the shelf, benthic biomass was twofold (~ 5.9 g C m-2) the biomass of pelagic heterotrophs (~ 2.4 g C m-2), in accord with high vertical carbon fluxes on the shelf (956 ± 129 mg C m-2 d-1). Threshold PP (PP at which NCP becomes positive) in the surface layer oscillated from 20 to 152 mg C m-2 d-1, with a pattern from low-to-high values as the distance from the Mackenzie River decreased. We conclude that (1) climate change is exacerbating the already extreme biological gradient across the Beaufort shelf-basin system; (2) the Mackenzie Shelf acts as a weak sink for atmospheric CO2, suggesting that PP might exceed the respiration of terrigenous and marine organic matter in the surface layer; and (3) shelf break upwelling can transfer CO2 to the atmosphere, but CO2 outgassing can be attenuated if nutrients brought also by upwelling support diatom production. Our study underscores that cross-shelf exchange of waters, nutrients and particles is a key mechanism that needs to be properly monitored as the Arctic transits to a new state.

  11. Velocities and Attenuations of Gas Hydrate-Bearing Sediments

    USGS Publications Warehouse

    Lee, Myung W.

    2007-01-01

    Monopole and dipole logging data at the Mallik 5L-38, Mackenzie Delta, Canada, provide a challenge for sonic velocity and attenuation models used to remotely estimate pore-space gas hydrate content. Velocity and attenuation are linked, with velocity dispersion causing increased attenuation. Sonic waveforms for Mallik 5L-38, however, show no velocity dispersion in gas hydrate-bearing layers, yet are highly attenuated. Attenuation models applied to Mallik 5L-38 data are shown to be inconsistent with the observed velocity measurements, and therefore are suspect in their ability to predict gas hydrate content. A model explicitly linking velocity and attenuation data is presented, accurately predicting gas hydrate content from velocity data alone while demonstrating that the attenuation mechanisms at the Mallik 5L-38 site have not yet been identified.

  12. Detection and quantitation of benzo(a)pyrene-DNA adducts in brain and liver tissues of Beluga whales (Delphinapterus leucas) from the St. Lawrence and Mackenzie Estuaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shugart, L.R.

    1988-01-01

    It should be noted that there are few analytical techniques available for the detection and quantitation of chemical adducts in the DNA of living organisms. The reasons for this are: the analytical technique often has to accommodate the unique chemical and/or physical properties of the individual chemical or its metabolite; the percentage of total chemical that becomes most of the parent compound is usually detoxified and excreted; not all adducts that form between the genotoxic agent and DNA are stable or are involved in the development of subsequent deleterious events in the organism; and the amount of DNA available formore » analysis is often quite limited. 16 refs., 1 tab.« less

  13. Long-Term Validation and Variability of the Shortwave and Longwave Radiation Data of the GEWEX Surface Radiation Budget (SRB) Project

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Cox, Stephan J.; Mikovitz, Colleen; Hinkelman, Laura M.

    2006-01-01

    In this investigation, we make systematic Surface Radiation Budget-Baseline Surface Radiation Network (SRB-BSRN), Surface Radiation Data Centre (SRB-WRDC) and Surface Radiation Budget-Global Energy Balance Archive (SRB-GEBA) comparisons for both shortwave and longwave daily and monthly mean radiation fluxes at the Earth's surface. We first have an overview of all the comparable pairs of data in scatter or scatter density plots. Then we show the time series of the SRB data at grids in which there are ground sites where longterm records of data are available for comparison. An overall very good agreement between the SRB data and ground observations is found. To see the variability of the SRB data during the 21.5 years, we computed the global mean and its linear trend. No appreciable trend is detected at the 5% level. The empirical orthogonal functions (EOF) of the SRB deseasonalized shortwave downward flux are computed over the Pacific region, and the first EOF coefficient is found to be correlated with the ENSO Index at a high value of coefficient of 0.7083.

  14. The Model Parameter Estimation Experiment (MOPEX): Its structure, connection to other international initiatives and future directions

    USGS Publications Warehouse

    Wagener, T.; Hogue, T.; Schaake, J.; Duan, Q.; Gupta, H.; Andreassian, V.; Hall, A.; Leavesley, G.

    2006-01-01

    The Model Parameter Estimation Experiment (MOPEX) is an international project aimed at developing enhanced techniques for the a priori estimation of parameters in hydrological models and in land surface parameterization schemes connected to atmospheric models. The MOPEX science strategy involves: database creation, a priori parameter estimation methodology development, parameter refinement or calibration, and the demonstration of parameter transferability. A comprehensive MOPEX database has been developed that contains historical hydrometeorological data and land surface characteristics data for many hydrological basins in the United States (US) and in other countries. This database is being continuously expanded to include basins from various hydroclimatic regimes throughout the world. MOPEX research has largely been driven by a series of international workshops that have brought interested hydrologists and land surface modellers together to exchange knowledge and experience in developing and applying parameter estimation techniques. With its focus on parameter estimation, MOPEX plays an important role in the international context of other initiatives such as GEWEX, HEPEX, PUB and PILPS. This paper outlines the MOPEX initiative, discusses its role in the scientific community, and briefly states future directions.

  15. The Continuous Intercomparison of Radiation Codes (CIRC): Phase I Cases

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Mlawer, Eli; Delamere, Jennifer; Shippert, Timothy; Turner, David D.; Miller, Mark A.; Minnis, Patrick; Clough, Shepard; Barker, Howard; Ellingson, Robert

    2007-01-01

    CIRC aspires to be the successor to ICRCCM (Intercomparison of Radiation Codes in Climate Models). It is envisioned as an evolving and regularly updated reference source for GCM-type radiative transfer (RT) code evaluation with the principle goal to contribute in the improvement of RT parameterizations. CIRC is jointly endorsed by DOE's Atmospheric Radiation Measurement (ARM) program and the GEWEX Radiation Panel (GRP). CIRC's goal is to provide test cases for which GCM RT algorithms should be performing at their best, i.e, well characterized clear-sky and homogeneous, overcast cloudy cases. What distinguishes CIRC from previous intercomparisons is that its pool of cases is based on observed datasets. The bulk of atmospheric and surface input as well as radiative fluxes come from ARM observations as documented in the Broadband Heating Rate Profile (BBHRP) product. BBHRP also provides reference calculations from AER's RRTM RT algorithms that can be used to select the most optimal set of cases and to provide a first-order estimate of our ability to achieve radiative flux closure given the limitations in our knowledge of the atmospheric state.

  16. Evaluation of Cirrus Cloud Simulations using ARM Data-Development of Case Study Data Set

    NASA Technical Reports Server (NTRS)

    Starr, David OC.; Demoz, Belay; Wang, Yansen; Lin, Ruei-Fong; Lare, Andrew; Mace, Jay; Poellot, Michael; Sassen, Kenneth; Brown, Philip

    2002-01-01

    Cloud-resolving models (CRMs) are being increasingly used to develop parametric treatments of clouds and related processes for use in global climate models (GCMs). CRMs represent the integrated knowledge of the physical processes acting to determine cloud system lifecycle and are well matched to typical observational data in terms of physical parameters/measurables and scale-resolved physical processes. Thus, they are suitable for direct comparison to field observations for model validation and improvement. The goal of this project is to improve state-of-the-art CRMs used for studies of cirrus clouds and to establish a relative calibration with GCMs through comparisons among CRMs, single column model (SCM) versions of the GCMs, and observations. The objective is to compare and evaluate a variety of CRMs and SCMs, under the auspices of the GEWEX Cloud Systems Study (GCSS) Working Group on Cirrus Cloud Systems (WG2), using ARM data acquired at the Southern Great Plains (SGP) site. This poster will report on progress in developing a suitable WG2 case study data set based on the September 26, 1996 ARM IOP case - the Hurricane Nora outflow case. Progress is assessing cloud and other environmental conditions will be described. Results of preliminary simulations using a regional cloud system model (MM5) and a CRM will be discussed. Focal science questions for the model comparison are strongly based on results of the idealized GCSS WG2 cirrus cloud model comparison projects (Idealized Cirrus Cloud Model Comparison Project and Cirrus Parcel Model Comparison Project), which will also be briefly summarized.

  17. The Contribution of Soil Moisture Information to Forecast Skill: Two Studies

    NASA Technical Reports Server (NTRS)

    Koster, Randal

    2010-01-01

    This talk briefly describes two recent studies on the impact of soil moisture information on hydrological and meteorological prediction. While the studies utilize soil moisture derived from the integration of large-scale land surface models with observations-based meteorological data, the results directly illustrate the potential usefulness of satellite-derived soil moisture information (e.g., from SMOS and SMAP) for applications in prediction. The first study, the GEWEX- and ClIVAR-sponsored GLACE-2 project, quantifies the contribution of realistic soil moisture initialization to skill in subseasonal forecasts of precipitation and air temperature (out to two months). The multi-model study shows that soil moisture information does indeed contribute skill to the forecasts, particularly for air temperature, and particularly when the initial local soil moisture anomaly is large. Furthermore, the skill contributions tend to be larger where the soil moisture initialization is more accurate, as measured by the density of the observational network contributing to the initialization. The second study focuses on streamflow prediction. The relative contributions of snow and soil moisture initialization to skill in streamflow prediction at seasonal lead, in the absence of knowledge of meteorological anomalies during the forecast period, were quantified with several land surface models using uniquely designed numerical experiments and naturalized streamflow data covering mUltiple decades over the western United States. In several basins, accurate soil moisture initialization is found to contribute significant levels of predictive skill. Depending on the date of forecast issue, the contributions can be significant out to leads of six months. Both studies suggest that improvements in soil moisture initialization would lead to increases in predictive skill. The relevance of SMOS and SMAP satellite-based soil moisture information to prediction are discussed in the context of these studies.

  18. Quantifying and correcting the impacts of freezing samples on dissolved organic matter absorbance

    NASA Astrophysics Data System (ADS)

    Griffin, C. G.; McClelland, J. W.; Frey, K. E.; Holmes, R. M.

    2012-12-01

    The use of optical measurements as proxies for organic matter concentration and composition has become increasingly popular in recent years. Absorbance of chromophoric dissolved organic matter (CDOM) can be used to estimate concentrations of dissolved organic carbon (DOC), as a qualitative assessment of dissolved organic matter (DOM) average molecular weight and is often used to calibrate satellite remote sensing of organic matter. However, there is evidence that preservation of samples can lead to significant changes in CDOM absorbance spectra. Freezing is a popular means of preservation, but can result in flocculation of DOM when samples are thawed for analysis. We hypothesize that the particles generated as a result of a freeze/thaw cycle lead to increasing absorption in visible wavelengths (400-800 nm). Yet, absorbance in the UV spectra should remain similar to original values. These hypotheses are tested on CDOM spectra collected from two large Arctic watersheds (the Mackenzie and Yukon rivers) and four smaller Texas watersheds (the Colorado, Guadalupe, Nueces and San Antonio rivers). In addition, we experiment with additional filtering and sonication to correct for flocculation from frozen samples. Preliminary data show that short wavelengths are relatively well preserved (200-300 nm). However, CDOM absorption changes unpredictably from 350-450 nm, the wavelengths most commonly used to estimate DOC. Absorption coefficients tend to be higher in these wavelengths after a freeze/thaw cycle, but the magnitude of this increase varies. Some of these impacts can be corrected for with sonication. For instance, when comparing experimental treatments to initial absorption at 365 nm from Mackenzie River samples, R2 increases from 0.60 to 0.79 for samples undergoing one freeze/thaw cycle to those that were also sonicated. Regardless of treatment, however, no spectral slopes were well preserved after a freeze/thaw cycle. These results reinforce earlier work that it is best for all CDOM samples to be measured immediately, without preservation. CDOM measured on frozen samples, particularly after sonicating, can be used as a proxy for bulk DOC concentrations and specific UV absorbance (SUVA), but freeze/thaw effects confound our ability to examine DOM composition from spectral slopes.

  19. Time-series measurements of methane (CH4) distribution during open water and ice-cover in lakes throughout the Mackenzie River Delta (Canada)

    NASA Astrophysics Data System (ADS)

    McIntosh, H.; Lapham, L.; Orcutt, B.; Wheat, C. G.; Lesack, L.; Bergstresser, M.; Dallimore, S. R.; MacLeod, R.; Cote, M.

    2016-12-01

    Arctic lakes are known to emit large amounts of methane to the atmosphere and their importance to the global methane (CH4) cycle has been recognized. It is well known CH4 builds up in Arctic lakes during ice-cover, but the amount of and when the CH4 is released to the atmosphere is not well known. Our preliminary results suggest the largest flux of CH4 from lakes to the atmosphere occurs slightly before complete ice-out; while others have shown the largest flux occurs when lakes overturn in the spring. During ice-out, CH4 can also be oxidized by methane oxidizing bacteria before it can efflux to the atmosphere from the surface water. In order to elucidate the processes contributing to Arctic lake CH4 emissions, continuous, long-term and large scale spatial sampling is required; however it is difficult to achieve in these remote locations. We address this problem using two sampling techniques. 1) We deployed osmotically powered pumps (OsmoSamplers), which were able to autonomously and continuously collect lake bottom water over the course of a year from multiple lakes in the Mackenzie River Delta. OsmoSamplers were placed in four lakes in the mid Delta near Inuvik, Northwest Territories, Canada, two lakes in the outer Delta, and two coastal lakes on Richard's Island in 2015. The dissolved CH4 concentration, stable isotope content of CH4 (δ13C-CH4), and dissolved sulfate concentrations in bottom water from these lakes will be presented to better understand methane dynamics under the ice and over time. 2) Along with the time-series data, we will also present data from discrete samples collected from 40 lakes in the mid Delta during key time periods, before and immediately after the spring ice-out. By determining the CH4 dynamics throughout the year we hope to improve predictions of how CH4 emissions may change in a warming Arctic environment.

  20. Variability of methane fluxes over high latitude permafrost wetlands

    NASA Astrophysics Data System (ADS)

    Serafimovich, Andrei; Hartmann, Jörg; Larmanou, Eric; Sachs, Torsten

    2013-04-01

    Atmospheric methane plays an important role in the global climate system. Due to significant amounts of organic material stored in the upper layers of high latitude permafrost wetlands and a strong Arctic warming trend, there is concern about potentially large methane emissions from Arctic and sub-Arctic areas. The quantification of methane fluxes and their variability from these regions therefore plays an important role in understanding the Arctic carbon cycle and changes in atmospheric methane concentrations. However, direct measurements of methane fluxes in permafrost regions are sparse, very localized, inhomogeneously distributed in space, and thus difficult to use for accurate model representation of regional to global methane contributions from the Arctic. We aim to contribute to reducing uncertainty and improve spatial coverage and spatial representativeness of flux estimates by using airborne eddy covariance measurements across large areas. The research aircraft POLAR 5 was equipped with a turbulence nose boom and a fast response methane analyzer and served as the platform for measurements of methane emissions. The measuring campaign was carried out from 28 June to 10 July 2012 across the entire North Slope of Alaska and the Mackenzie Delta in Canada. The supplemented simulations from the Weather Research and Forecasting (WRF) model exploring the dynamics of the atmospheric boundary layer were used to analyze high methane concentrations occasionally observed within the boundary layer with a distinct drop to background level above. Strong regional differences were detected over both investigated areas showing the non-uniform distribution of methane sources. In order to cover the whole turbulent spectrum and at the same time to resolve methane fluxes on a regional scale, different integration paths were analyzed and validated through spectral analysis. Methane emissions measured over the Mackenzie Delta were higher and generally more variable in space, especially in the outer Delta with known geogenic methane seepage. On the North Slope, methane fluxes were larger in the western part than in the central and eastern parts. The obtained results are essential for the advanced, scale dependent quantification of methane emissions. Our contribution will present an overview of the experiment as well as preliminary results from more than 52 flight hours over high latitude permafrost wetlands.

  1. Spatial variability of particle-attached and free-living bacterial diversity in surface waters from the Mackenzie River to the Beaufort Sea (Canadian Arctic)

    NASA Astrophysics Data System (ADS)

    Ortega-Retuerta, E.; Joux, F.; Jeffrey, W. H.; Ghiglione, J. F.

    2013-04-01

    We explored the patterns of total and active bacterial community structure in a gradient covering surface waters from the Mackenzie River to the coastal Beaufort Sea in the Canadian Arctic Ocean, with a particular focus on free-living (FL) vs. particle-attached (PA) communities. Capillary electrophoresis-single-strand conformation polymorphism (CE-SSCP) showed significant differences when comparing river, coast and open sea bacterial community structures. In contrast to the river and coastal waters, total (16S rDNA-based) and active (16S rRNA-based) communities in the open sea samples were not significantly different, suggesting that most present bacterial groups were equally active in this area. Additionally, we observed significant differences between PA and FL bacterial community structure in the open sea, but similar structure in the two fractions for coastal and river samples. Direct multivariate statistical analyses showed that total community structure was mainly driven by salinity (a proxy of dissolved organic carbon and chromophoric dissolved organic matter), suspended particles, amino acids and chlorophyll a. Pyrosequencing of 16S rRNA genes from selected samples confirmed significant differences between river, coastal and sea samples. The PA fraction was only different (15.7% similarity) from the FL one in the open sea sample. Furthermore, PA samples generally showed higher diversity (Shannon, Simpson and Chao indices) than FL samples. At the class level, Opitutae was most abundant in the PA fraction of the sea sample, followed by Flavobacteria and Gammaproteobacteria, while the FL sea sample was dominated by Alphaproteobacteria. Finally, for the coast and river samples and both PA and FL fractions, Betaproteobacteria, Alphaproteobacteria and Actinobacteria were dominant. These results highlight the coexistence of particle specialists and generalists and the role of particle quality in structuring bacterial communities in the area. These results may also serve as a basis to predict further changes in bacterial communities should climate change lead to further increases in river discharge and related particle loads.

  2. Setting the renormalization scale in pQCD: Comparisons of the principle of maximum conformality with the sequential extended Brodsky-Lepage-Mackenzie approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Hong -Hao; Wu, Xing -Gang; Ma, Yang

    A key problem in making precise perturbative QCD (pQCD) predictions is how to set the renormalization scale of the running coupling unambiguously at each finite order. The elimination of the uncertainty in setting the renormalization scale in pQCD will greatly increase the precision of collider tests of the Standard Model and the sensitivity to new phenomena. Renormalization group invariance requires that predictions for observables must also be independent on the choice of the renormalization scheme. The well-known Brodsky-Lepage-Mackenzie (BLM) approach cannot be easily extended beyond next-to-next-to-leading order of pQCD. Several suggestions have been proposed to extend the BLM approach tomore » all orders. In this paper we discuss two distinct methods. One is based on the “Principle of Maximum Conformality” (PMC), which provides a systematic all-orders method to eliminate the scale and scheme ambiguities of pQCD. The PMC extends the BLM procedure to all orders using renormalization group methods; as an outcome, it significantly improves the pQCD convergence by eliminating renormalon divergences. An alternative method is the “sequential extended BLM” (seBLM) approach, which has been primarily designed to improve the convergence of pQCD series. The seBLM, as originally proposed, introduces auxiliary fields and follows the pattern of the β0-expansion to fix the renormalization scale. However, the seBLM requires a recomputation of pQCD amplitudes including the auxiliary fields; due to the limited availability of calculations using these auxiliary fields, the seBLM has only been applied to a few processes at low orders. In order to avoid the complications of adding extra fields, we propose a modified version of seBLM which allows us to apply this method to higher orders. As a result, we then perform detailed numerical comparisons of the two alternative scale-setting approaches by investigating their predictions for the annihilation cross section ratio R e+e– at four-loop order in pQCD.« less

  3. Offline GCSS Intercomparison of Cloud-Radiation Interaction and Surface Fluxes

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Johnson, D.; Krueger, S.; Zulauf, M.; Donner, L.; Seman, C.; Petch, J.; Gregory, J.

    2004-01-01

    Simulations of deep tropical clouds by both cloud-resolving models (CRMs) and single-column models (SCMs) in the GEWEX Cloud System Study (GCSS) Working Group 4 (WG4; Precipitating Convective Cloud Systems), Case 2 (19-27 December 1992, TOGA-COARE IFA) have produced large differences in the mean heating and moistening rates (-1 to -5 K and -2 to 2 grams per kilogram respectively). Since the large-scale advective temperature and moisture "forcing" are prescribed for this case, a closer examination of two of the remaining external types of "forcing", namely radiative heating and air/sea hear and moisture transfer, are warranted. This paper examines the current radiation and surface flux of parameterizations used in the cloud models participating in the GCSS WG4, be executing the models "offline" for one time step (12 s) for a prescribed atmospheric state, then examining the surface and radiation fluxes from each model. The dynamic, thermodynamic, and microphysical fluids are provided by the GCE-derived model output for Case 2 during a period of very active deep convection (westerly wind burst). The surface and radiation fluxes produced from the models are then divided into prescribed convective, stratiform, and clear regions in order to examine the role that clouds play in the flux parameterizations. The results suggest that the differences between the models are attributed more to the surface flux parameterizations than the radiation schemes.

  4. Extratropical Influence of Sea Surface Temperature and Wind on Water Recycling Rate Over Oceans and Coastal Lands

    NASA Technical Reports Server (NTRS)

    Hu, Hua; Liu, W. Timothy

    1999-01-01

    Water vapor and precipitation are two important parameters confining the hydrological cycle in the atmosphere and over the ocean surface. In the extratropical areas, due to variations of midlatitude storm tracks and subtropical jetstreams, water vapor and precipitation have large variability. Recently, a concept of water recycling rate defined previously by Chahine et al. (GEWEX NEWS, August, 1997) has drawn increasing attention. The recycling rate of moisture is calculated as the ratio of precipitation to total precipitable water (its inverse is the water residence time). In this paper, using multi-sensor spacebased measurements we will study the role of sea surface temperature and ocean surface wind in determining the water recycling rate over oceans and coastal lands. Response of water recycling rate in midlatitudes to the El Nino event will also be discussed. Sea surface temperature data are derived from satellite observations from the Advanced Very High Resolution Radiometer (AVHRR) blended with in situ measurements, available for the period 1982-1998. Global sea surface wind observations are obtained from spaceborne scatterometers aboard on the European Remote-Sensing Satellite (ERS1 and 2), available for the period 1991-1998. Global total precipitable water provided by the NASA Water Vapor Project (NVAP) is available for the period 1988-1995. Global monthly mean precipitation provided by the Global Precipitation Climatology Project (GPCP) is available for the period 1987-1998.

  5. Geochemical and mineralogical controls on metal(loid) mobility in the oxide zone of the Prairie Creek Deposit, NWT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavinga, Drew; Jamieson, Heather; Layton-Matthews, Daniel

    2017-02-01

    Prairie Creek is an unmined high grade Zn-Pb-Ag deposit in the southern Mackenzie Mountains of the Northwest Territories, located in a 320 km2 enclave surrounded by the Nahanni National Park reserve. The upper portion of the quartz-carbonate-sulphide vein mineralization has undergone extensive oxidation, forming high grade zones, rich in smithsonite (ZnCO3) and cerussite (PbCO3). This weathered zone represents a significant resource and a potential component of mine waste material. This study is focused on characterizing the geochemical and mineralogical controls on metal(loid) mobility under mine waste conditions, with particular attention to the metal carbonates as a potential source of tracemore » elements to the environment. Analyses were conducted using a combination of microanalytical techniques (electron microprobe, scanning electron microscopy with automated mineralogy, laser-ablation inductively-coupled mass spectrometry, and synchrotron-based element mapping, micro-X-ray diffraction and micro-X-ray absorbance). The elements of interest included Zn, Pb, Ag, As, Cd, Cu, Hg, Sb and Se.« less

  6. Seismic- and well-log-inferred gas hydrate accumulations on Richards Island

    USGS Publications Warehouse

    Collett, T.S.

    1999-01-01

    The gas hydrate stability zone is areally extensive beneath most of the Mackenzie Delta-Beaufort Sea region, with the base of the gas hydrate stability zone more than 1000 m deep on Richards Island. In this study, gas hydrate has been inferred to occur in nine Richards Island exploratory wells on the basis of well-log responses calibrated to the response of the logs within the cored gas-hydrate-bearing intervals of the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. The integration of the available well-log data with more than 240 km of industry-acquired reflection seismic data have allowed us to map the occurrence of four significant gas hydrate and associated free-gas accumulations in the Ivik-Mallik-Taglu area on Richards Island. The occurrence of gas hydrate on Richards Island is mostly restricted to the crest of large anticlinal features that cut across the base of the gas hydrate stability zone. Combined seismic and well-log data analysis indicate that the known and inferred gas hydrate accumulations on Richards Island may contain as much as 187 178106 m3 of gas.

  7. USGS leads United States effort in Mallik Well

    USGS Publications Warehouse

    2002-01-01

    This winter, in the extremely cold, far reaches of the upper Northwest Territory of Canada, there is an international consortium of researchers participating in a program to study methane hydrates. The researchers are currently drilling a 1200 m-deep production research well through the permafrost. It is one of three wells located in the Mackenzie Delta, on the shore of the Beaufort Sea. Two observation wells were drilled adjacent to the main production test well earlier this year.Research objectives for the program focus on two themes: (1) the assessment of the production and properties of gas hydrates, and (2) an assessment of the stability of continental gas hydrates given warming trends predicted by climate change models. Of particular interest is the physical response of the gas hydrate to depressurization and thermal production stimulation. Cores are being taken from the well, and scientists hope to retrieve at least 200 m of core, including all the gas hydrate-rich intervals. Once cored, the samples are transported 200 kilometers over ice roads to Inuvik. Nearly 60 researchers are examining the cores for everything from geophysical parameters to microbiological analyses.

  8. Gang youth, substance use, and drug normalization

    PubMed Central

    Sanders, Bill

    2014-01-01

    Gang membership is an indicator of chronic substance use.1 Evidence from North America and Europe indicates that gang youth, in comparison to their non-gang peers, are more likely to report alcohol and illicit drug use (Bendixen, Endresen, & Olweus, 2006; Gatti, Tremblay, Vitaro, & McDuff, 2005; Gordon, et al., 2004; Hall, Thornberry, & Lizotte, 2006; Sharp, Aldridge, & Medina, 2006). Qualitative studies focusing specifically on gang members have also noted high frequencies of lifetime rates of use for a variety of illegal substances (De La Rosa, Rugh, & Rice, 2006; Hagedorn, Torres, & Giglio, 1998; Hunt, Jo-Laidler, & Evans, 2002; Mata et al., 2002; Valdez, Kaplan, & Cepeda, 2006). Gang youth, however, have differential attitudes towards the use of various illegal drugs. Marijuana, for instance, has remained a staple within gang culture, but the use of other drugs has been heavily stigmatized, especially heroin, methamphetamine, and crack cocaine (MacKenzie, Hunt, & Joe-Laidler, 2005; Moore, 1978; Taylor, 1990; Waldorf, 1993). Perspectives with good explanatory power should be flexible enough to elucidate these distinctions regarding illicit substance use patterns and preferences. PMID:25221432

  9. Introduction of the 2007-2008 JOGMEC/NRCan/Aurora Mallik Gas Hydrate Production Research Program, NWT, Canada

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Dallimore, S. R.; Numasawa, M.; Yasuda, M.; Fujii, T.; Fujii, K.; Wright, J.; Nixon, F.

    2007-12-01

    Japan Oil, Gas and Metals National Corporation (JOGMEC) and Natural Resource Canada (NRCan) have embarked on a new research program to study the production potential of gas hydrates. The program is being carried out at the Mallik gas hydrate field in the Mackenzie Delta, a location where two previous scientific investigations have been carried in 1998 and 2002. In the 2002 program that was undertaken by seven partners from five countries, 468m3 of gas flow was measured during 124 hours of thermal stimulation using hot warm fluid. Small-scale pressure drawdown tests were also carried out using Schlumberger's Modular Dynamics Tester (MDT) wireline tool, gas flow was observed and the inferred formation permeabilities suggested the possible effectiveness of the simple depressurization method. While the testing undertaken in 2002 can be cited as the first well constrained gas production from a gas hydrate deposit, the results fell short of that required to fully calibrate reservoir simulation models or indeed establish the technical viability of long term production from gas hydrates. The objectives of the current JOGMEC/NRCan/Aurora Mallik production research program are to undertake longer term production testing to further constrain the scientific unknowns and to demonstrate the technical feasibility of sustained gas hydrate production using the depressurization method. A key priority is to accurately measure water and gas production using state-of-art production technologies. The primary production test well was established during the 2007 field season with the re-entry and deepening of JAPEX/JNOC/GSC Mallik 2L-38 well, originally drilled in 1998. Production testing was carried out in April of 2007 under a relatively low drawdown pressure condition. Flow of methane gas was measured from a 12m perforated interval of gas-hydrate-saturated sands from 1093 to 1105m. The results establish the potential of the depressurization method and provide a basis for future prolonged testing planned in the near future. The authors acknowledge the Research Consortium for Methane Hydrate Resources in Japan (MH21), the Ministry of Economy, Trade and Industry (METI) and NRCan for the support and funding. The Mallik 2002 program was undertaken jointly by JNOC, NRCan, GeoForschungsZentrum Potsdam (GFZ), the United State Geological Survey (USGS), the United States Department of Energy (USDOE), the India Ministry of Petroleum and Natural Gas (MOPNG)-Gas Authority of India (GAIL), and the BP-Chevron Texaco Mackenzie Delta Joint Venture.

  10. Norman Wells oil line to be wintertime projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, D.

    Mobilization is underway for the first construction season on $1.3 billion (Canadian) Norman Wells oil pipeline between Norman Wells, N.W. Terr., and Zama, Alta. The 537-mile, 12-in. crude oil line is being built by Interprovincial Pipe Line Co., Ltd. Because of ground conditions in the Mackenzie River delta, where the pipeline will be installed, work must be done while the ground is frozen--essentially a 90-day period from Jan. through early April. Pipe for the line, all 12-in. nominal diameter, has wall thickness varying from 9.39 to 9.53 mm and is grade 5LX-52 with special notch toughness for Arctic use, achievedmore » with additives to the steel plus special refined rolling techniques. The pipe is coated with extruded polyethylene and then shipped by truck and railcar.« less

  11. Up-to-date and projected estimates of survival for people with cystic fibrosis using baseline characteristics: A longitudinal study using UK patient registry data.

    PubMed

    Keogh, Ruth H; Szczesniak, Rhonda; Taylor-Robinson, David; Bilton, Diana

    2018-03-01

    Cystic fibrosis (CF) is the most common inherited disease in Caucasians, affecting around 10,000 individuals in the UK today. Prognosis has improved considerably over recent decades with ongoing improvements in treatment and care. Providing up-to-date survival predictions is important for patients, clinicians and health services planning. Flexible parametric survival modelling of UK CF Registry data from 2011 to 2015, capturing 602 deaths in 10,428 individuals. Survival curves were estimated from birth; conditional on reaching older ages; and projected under different assumptions concerning future mortality trends, using baseline characteristics of sex, CFTR genotype (zero, one, two copies of F508del) and age at diagnosis. Male sex was associated with better survival, as was older age at diagnosis, but only in F508del non-homozygotes. Survival did not differ by genotype among individuals diagnosed at birth. Median survival ages at birth in F508del homozygotes were 46years (males) and 41years (females), and similar in non-homozygotes diagnosed at birth. F508del heterozygotes diagnosed aged 5 had median survival ages of 57 (males) and 51 (females). Conditional on survival to 30, median survival age rises to 52 (males) and 49 (females) in homozygotes. Mortality rates decreased annually by 2% during 2006-2015. Future improvements at this rate suggest median survival ages for F508del homozygous babies of 65 (males) and 56 (females). Over half of babies born today, and of individuals aged 30 and above today, can expect to survive into at least their fifth decade. Evidence before this study We searched PubMed with terms "(cystic fibrosis survival) and (projection OR model OR registry OR United Kingdom OR UK)" to identify relevant studies on survival estimates for individuals with cystic fibrosis (CF). We also considered the most recent annual report from the UK Cystic Fibrosis Registry (Cystic Fibrosis Trust, 2016), a review by Buzzetti and colleagues (2009), the chapter on Epidemiology of Cystic Fibrosis by MacNeill (2016), the study of MacKenzie and colleagues (2014), and references therein. There have been many studies of factors associated with survival in CF; most have focused on identifying risk factors, and only a few have presented estimated survival curves, which are the focus of this work. The most recent study of survival in the UK is by Dodge and colleagues (2007), who used data obtained from CF clinics and the national death register, and gave an estimate of survival for babies born in 2003. We found no previous studies that have obtained detailed information on survival using UK Cystic Fibrosis Registry data. Jackson and colleagues obtained survival estimates for the US and Ireland using registry data (Jackson et al., 2011). MacKenzie and colleagues used US Cystic Fibrosis Foundation Patient Registry data from 2000 to 2010 to project survival for children born and diagnosed with CF in 2010, accounting for sex, genotype and age at diagnosis (MacKenzie et al., 2014). Previous studies on estimated survival in CF have become out of date or have not accounted for the full range of patient characteristics available at birth. Few have presented conditional survival estimates (Dodge et al., 2007). Added value of this study This is the first study to yield detailed survival statistics using the UK Cystic Fibrosis Registry, which is one of the largest national CF registries outside of the US and has almost complete coverage of the UK CF population. The primary goal was to leverage the long-term follow-up of the nearly complete UK CF population available in the Registry for the purposes of producing accurate, precise predictions in the modern era of CF care. Estimates are presented from birth and conditional on survival to older ages. These are the first conditional estimates in CF to also account for genotype, sex and age at diagnosis, which were each included in the modelling using a flexible approach. Projections are also provided under different scenarios based on downward trends in mortality rates. Our use of flexible parametric survival models is novel in this field, and our approach could be used to provide modern survival statistics for other chronic diseases and disorders. Implications of all the available evidence Our estimates of future survival in CF under a range of different scenarios are based on data on nearly all individuals living with the disease in the UK in recent times, reflective of a modern era of care, and are most appropriate for the families of babies being born in the present day with CF. Conditional estimates inform patients who have already reached an older age, and their clinicians. Over half of babies born today, and of individuals aged 30years and above alive today, can expect to survive into their fifth decade. Insights based on our survival projections can be used to inform future needs in CF health care provision. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. A Coupled GCM-Cloud Resolving Modeling System, and a Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CFWs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1 998 and 1999). In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  13. Aerosol Retrievals Using Channel 1 and 2 AVHRR Data

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Geogdzhayev, Igor V.; Cairns, Brian; Rossow, William B.

    1999-01-01

    The effect of tropospheric aerosols on global climate via the direct and indirect radiative forcings is one of the largest remaining uncertainties in climate change studies. Current assessments of the direct aerosol radiative effect mainly focus on sulfate aerosols. It has become clear, however, that other aerosol types like soil dust and smoke from biomass burning are also likely to be important climate forcing factors. The magnitude and even the sign of the climate forcing caused by these aerosol types is still unknown. General circulation models (GCMs) can be used to estimate the climatic effect of the direct radiative forcing by tropospheric and stratospheric aerosols. Aerosol optical properties are already parameterized in the Goddard Institute for Space Studies GCM. Once the global distribution of aerosol properties (optical thickness, size distribution, and chemical composition) is available, the calculation of the direct aerosol forcing is rather straighfforward. However, estimates of the indirect aerosol effect require additional knowledge of the physics and chemistry of aerosol-cloud interactions which are still poorly understood. One of the main objectives of the Global Aerosol Climatology Project, established in 1998 as a joint initiative of NASA's Radiation Science Program and GEWEX, is to infer the global distribution of aerosols, their properties, and their seasonal and interannual variations for the full period of available satellite data. This will be accomplished primarily through a systematic application of multichannel aerosol retrieval algorithms to existing satellite data and advanced 3-dimensional aerosol chemistry/transport models. In this paper we outline the methodology of analyzing channel 1 and 2 AVHRR radiance data over the oceans and describe preliminary retrieval results.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document contains the summaries of papers presented at the 1996 Atmospheric Radiation Measurement (ARM) Science Team meeting held at San Antonio, Texas. The history and status of the ARM program at the time of the meeting helps to put these papers in context. The basic themes have not changed. First, from its beginning, the Program has attempted to respond to the most critical scientific issues facing the US Global Change Research Program. Second, the Program has been strongly coupled to other agency and international programs. More specifically, the Program reflects an unprecedented collaboration among agencies of the federal researchmore » community, among the US Department of Energy`s (DOE) national laboratories, and between DOE`s research program and related international programs, such as Global Energy and Water Experiment (GEWEX) and the Tropical Ocean Global Atmosphere (TOGA) program. Next, ARM has always attempted to make the most judicious use of its resources by collaborating and leveraging existing assets and has managed to maintain an aggressive schedule despite budgets that have been much smaller than planned. Finally, the Program has attracted some of the very best scientific talent in the climate research community and has, as a result, been productive scientifically.« less

  15. A global dataset of sub-daily rainfall indices

    NASA Astrophysics Data System (ADS)

    Fowler, H. J.; Lewis, E.; Blenkinsop, S.; Guerreiro, S.; Li, X.; Barbero, R.; Chan, S.; Lenderink, G.; Westra, S.

    2017-12-01

    It is still uncertain how hydrological extremes will change with global warming as we do not fully understand the processes that cause extreme precipitation under current climate variability. The INTENSE project is using a novel and fully-integrated data-modelling approach to provide a step-change in our understanding of the nature and drivers of global precipitation extremes and change on societally relevant timescales, leading to improved high-resolution climate model representation of extreme rainfall processes. The INTENSE project is in conjunction with the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges Project (GEWEX) Science questions. A new global sub-daily precipitation dataset has been constructed (data collection is ongoing). Metadata for each station has been calculated, detailing record lengths, missing data, station locations. A set of global hydroclimatic indices have been produced based upon stakeholder recommendations including indices that describe maximum rainfall totals and timing, the intensity, duration and frequency of storms, frequency of storms above specific thresholds and information about the diurnal cycle. This will provide a unique global data resource on sub-daily precipitation whose derived indices will be freely available to the wider scientific community.

  16. Intercomparison of land-surface parameterizations launched

    NASA Astrophysics Data System (ADS)

    Henderson-Sellers, A.; Dickinson, R. E.

    One of the crucial tasks for climatic and hydrological scientists over the next several years will be validating land surface process parameterizations used in climate models. There is not, necessarily, a unique set of parameters to be used. Different scientists will want to attempt to capture processes through various methods “for example, Avissar and Verstraete, 1990”. Validation of some aspects of the available (and proposed) schemes' performance is clearly required. It would also be valuable to compare the behavior of the existing schemes [for example, Dickinson et al., 1991; Henderson-Sellers, 1992a].The WMO-CAS Working Group on Numerical Experimentation (WGNE) and the Science Panel of the GEWEX Continental-Scale International Project (GCIP) [for example, Chahine, 1992] have agreed to launch the joint WGNE/GCIP Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS). The principal goal of this project is to achieve greater understanding of the capabilities and potential applications of existing and new land-surface schemes in atmospheric models. It is not anticipated that a single “best” scheme will emerge. Rather, the aim is to explore alternative models in ways compatible with their authors' or exploiters' goals and to increase understanding of the characteristics of these models in the scientific community.

  17. The Integrating Role of the LBA and the LPB Programs as an Example of Cyberinfrastructures in International Scientific Collaboration

    NASA Astrophysics Data System (ADS)

    Dias, P. L.

    2007-05-01

    International science collaboration is a key component of research programs such as the The Large Scale Biosphere Atmosphere Interaction Program (LBA) and the La Plata Basin Project (LPB). Both are programs with crosscutting science questions permeating different areas of knowledge related to the functioning of the natural and agricultural ecosystems in the Amazon system (LBA) and the change in the hydrological, agricultural and social systems of the Plata Basin (LPB) ecosystem under natural climatic variability and climate change. Both programs are strongly related to GEWEX, CLIVAR and IGBP and are based on extensive use of data information system (LBA/LPB/DIS) with mirror sites in the US, Europe and South America. These international programs have a significant impact in building up regional scientific capabilities at all levels of education and triggered the establishment of new research groups located in remote areas of South America. The cyberinfrastructure has been fundamental to promote the integration of the research groups, and a remarkable feedback with the operational forecasting systems has been detected. The LBA/LPB should be used as examples on how to promote international scientific and operational collaboration.

  18. A High-Resolution Model of the Beaufort Sea Circulation

    NASA Astrophysics Data System (ADS)

    Hedstrom, K.; Danielson, S. L.; Curchitser, E. N.; Lemieux, J. F.; Kasper, J.

    2016-02-01

    Configuration of and results from a coupled sea-ice ocean model of the Beaufort Sea shelf at 900 m resolution will be shown. Challenging features of the domain include large fresh water flux from the MacKenzie River, seasonal land-fast ice, and ice-covered open boundary conditions. A pan-Arctic domain provides boundary fields for both the ocean and sea-ice models (Regional Ocean Modeling System - myroms.org). Both models are forced with river inputs from the ARDAT climatology (Whitefield et al., 2015), which includes heat content as well as flow rate. Coastal discharges are prescribed as lateral inflows distributed over the depth of the ocean-land interface. New in the Beaufort domain is the use of a landfast ice parameterization (Lemieux, 2015), which adds a large bottom stress to the ice when the estimated keel depth approaches that of the ocean.

  19. Gas-hydrate concentration estimated from P- and S-wave velocities at the Mallik 2L-38 research well, Mackenzie Delta, Canada

    NASA Astrophysics Data System (ADS)

    Carcione, José M.; Gei, Davide

    2004-05-01

    We estimate the concentration of gas hydrate at the Mallik 2L-38 research site using P- and S-wave velocities obtained from well logging and vertical seismic profiles (VSP). The theoretical velocities are obtained from a generalization of Gassmann's modulus to three phases (rock frame, gas hydrate and fluid). The dry-rock moduli are estimated from the log profiles, in sections where the rock is assumed to be fully saturated with water. We obtain hydrate concentrations up to 75%, average values of 37% and 21% from the VSP P- and S-wave velocities, respectively, and 60% and 57% from the sonic-log P- and S-wave velocities, respectively. The above averages are similar to estimations obtained from hydrate dissociation modeling and Archie methods. The estimations based on the P-wave velocities are more reliable than those based on the S-wave velocities.

  20. Dielectric method of high-resolution gas hydrate estimation

    NASA Astrophysics Data System (ADS)

    Sun, Y. F.; Goldberg, D.

    2005-02-01

    In-situ dielectric properties of natural gas hydrate are measured for the first time in the Mallik 5L-38 Well in the Mackenzie Delta, Canada. The average dielectric constant of the hydrate zones is 9, ranging from 5 to 20. The average resistivity is >5 ohm.m in the hydrate zones, ranging from 2 to 10 ohm.m at a 1.1 GHz dielectric tool frequency. The dielectric logs show similar trends with sonic and induction resistivity logs, but exhibits inherently higher vertical resolution (<5 cm). The average in-situ hydrate saturation in the well is about 70%, ranging from 20% to 95%. The dielectric estimates are overall in agreement with induction estimates but the induction log tends to overestimate hydrate content up to 15%. Dielectric estimates could be used as a better proxy of in-situ hydrate saturation in modeling hydrate dynamics. The fine-scale structure in hydrate zones could help reveal hydrate formation history.

  1. Relation between gas hydrate and physical properties at the Mallik 2L-38 research well in the Mackenzie delta

    USGS Publications Warehouse

    Winters, W.J.; Dallimore, S.R.; Collett, T.S.; Jenner, K.A.; Katsube, J.T.; Cranston, R.E.; Wright, J.F.; Nixon, F.M.; Uchida, T.

    2000-01-01

    As part of an interdisciplinary field program, a 1150-m deep well was drilled in the Canadian Arctic to determine, among other goals, the location, characteristics, and properties of gas hydrate. Numerous physical properties of the host sediment were measured in the laboratory and are presented in relation to the lithology and quantity of in situ gas hydrate. Profiles of measured and derived properties presented from that investigation include: sediment wet bulk density, water content, porosity, grain density, salinity, gas hydrate content (percent occupancy of non-sediment grain void space), grain size, porosity, and post-recovery core temperature. The greatest concentration of gas hydrate is located within sand and gravel deposits between 897 and 922 m. Silty sediment between 926 and 952 m contained substantially less, or no, gas hydrate perhaps because of smaller pore size.

  2. Methods of generating synthetic acoustic logs from resistivity logs for gas-hydrate-bearing sediments

    USGS Publications Warehouse

    Lee, Myung W.

    1999-01-01

    Methods of predicting acoustic logs from resistivity logs for hydrate-bearing sediments are presented. Modified time average equations derived from the weighted equation provide a means of relating the velocity of the sediment to the resistivity of the sediment. These methods can be used to transform resistivity logs into acoustic logs with or without using the gas hydrate concentration in the pore space. All the parameters except the unconsolidation constants, necessary for the prediction of acoustic log from resistivity log, can be estimated from a cross plot of resistivity versus porosity values. Unconsolidation constants in equations may be assumed without rendering significant errors in the prediction. These methods were applied to the acoustic and resistivity logs acquired at the Mallik 2L-38 gas hydrate research well drilled at the Mackenzie Delta, northern Canada. The results indicate that the proposed method is simple and accurate.

  3. Introduction to special section on Annual Cycles on the Arctic Ocean Shelf

    NASA Astrophysics Data System (ADS)

    Fortier, Louis; Cochran, J. Kirk

    2008-03-01

    The perennial sea-ice cover of the Arctic Ocean is shrinking rapidly in response to the anthropogenic warming of Earth's lower atmosphere. From September 2002 to September 2004 the Canadian Arctic Shelf Exchange Study (CASES) logged over 14,500 scientist-days at sea to document the potential impacts of a shift in sea-ice regime on the ecosystem of the Mackenzie Shelf in the southeastern Beaufort Sea. In particular, teams from Canada, Denmark, Japan, Norway, Spain, the United Kingdom, and the United States totaling over 200 scientists took rotations on the CCS Amundsen to study all aspects of the ecosystem during a 385-day over-wintering expedition in the region from September 2003 to September 2004. The resulting wealth of information has revealed an unexpectedly active food web under the winter sea ice of the coastal Beaufort Sea. From the thermodynamics of snow to the reconstruction of local paleo-climate, this special section focuses on how sea-ice cover dynamics dictate biological processes and biogeochemical fluxes on and at the margin of the shallow Arctic continental shelf. The highly successful CASES program has initiated ongoing time series of key measurements of the response of the marine ecosystem to change that have been expanded to other Arctic regions through the ArcticNet project and the International Polar Year.

  4. Marine Arctic Ecosystem Study (MARES) - An Integrated Approach to the Dynamics of the Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Wiese, F. K.; Gryba, R.; Kelly, B. P.

    2016-02-01

    MARES is an integrated ecosystem research initiative coordinated and planned by the Bureau of Ocean Energy Management, the Office of Naval Research, the National Aeronautics and Space Administration, the U.S. Coast Guard, and Shell through the National Oceanographic Partnership Program. The overarching goal is to advance our knowledge of the structure and function of the Beaufort Sea marine ecosystem so as to link atmospheric and oceanic drivers to sea ice patterns and marine mammal distribution and availability to local subsistence communities. The study, funded in 2014, focuses on the marine ecosystem along the Beaufort Sea shelf from Barrow, Alaska to the Mackenzie River delta in Canada and is scheduled to include bio-physical moorings along the US-Canadian border, glider deployments packed with bio-physical sensors, tagging of whales and ice-associated seals with satellite CTD-Fluorometer tags, biophysical and chemical cruises including the measurement and characterization of hydrography, ice, nutrients, primary and secondary production, carbon budgets, benthic fauna, fish, as well as analysis of freshwater input and chemical loadings, and ecosystem modeling. This presentation will focus on preliminary results from the ice seal tagging that started in the summer of 2015 and describe some of the planning and possibilities for partnerships for the more comprehensive 2016 field season and beyond.

  5. Sensitivity of Arctic Permafrost Carbon in the Mackenzie River Basin: A substrate addition and incubation experiment

    NASA Astrophysics Data System (ADS)

    Hedgpeth, A.; Beilman, D.; Crow, S. E.

    2014-12-01

    Arctic soil organic matter (SOM) mineralization processes are fundamental to the functioning of high latitude soils in relation to nutrients, stability, and feedbacks to atmospheric CO2 and climate. The arctic permafrost zone covers 25% of the northern hemisphere and contains 1672Pg of soil carbon (C). 88% of this C currently resides in frozen soils that are vulnerable to environmental change. For instance, arctic growing seasons may be lengthened, resulting in an increase in plant productivity and rate of below ground labile C inputs as root exudates. Understanding controls on Arctic SOM dynamics requires recognition that labile C inputs have the potential to significantly affect mineralization of previously stable SOM, also known as 'priming effects'. We conducted a substrate addition incubation experiment to quantify and compare respiration in highly organic (42-48 %C) permafrost soils along a north-south transect in western Canada. Near surface soils (10-20 cm) were collected from permafrost peatland sites in the Mackenzie River Basin from 69.2-62.6°N. The surface soils are fairly young (Δ14C values > -140.0) and can be assumed to contain relatively reactive soil carbon. To assess whether addition of labile substrate alters SOM decomposition dynamics, 4.77-11.75 g of permafrost soil were spiked with 0.5 mg D-glucose g-1 soil and incubated at 5°C. A mass balance approach was used to determin substrate-induced respiration and preliminary results suggest a potential for positive priming in these C-rich soils. Baseline respiration rates from the three sites were similar (0.067-0.263 mg CO2 g-1 soil C) yet show some site-specific trends. The rate at which added substrate was utilized within these soils suggests that other factors besides temperature and soil C content are controlling substrate consumption and its effect on SOM decomposition. Microbial activity can be stimulated by substrate addition to such an extent that SOM turnover is enhanced, suggesting that soil C decay rates and processes are not constant, but depend on the inter-soil dynamics of other soil C pools. If these C rich soils contain ample C-resources to fuel extra microbial SOM decomposition, then possibly this enhanced use of SOM is not as a means of C acquisition, but to mobilize nutrients needed to meet microbial growth requirements.

  6. Understanding Nearshore Processes Of a Large Arctic Delta Using Combined Seabed Mapping, In Situ Observations, Remote Sensing and Modeling

    NASA Astrophysics Data System (ADS)

    Solomon, S. M.; Couture, N. J.; Forbes, D. L.; Hoque, A.; Jenner, K. A.; Lintern, G.; Mulligan, R. P.; Perrie, W. A.; Stevens, C. W.; Toulany, B.; Whalen, D.

    2009-12-01

    The Mackenzie River Delta and the adjacent continental shelf in the southeastern Beaufort Sea are known to host significant quantities of hydrocarbons. Recent environmental reviews of proposed hydrocarbon development have highlighted the need for a better understanding of the processes that control sediment transport and coastal stability. Over the past several years field surveys have been undertaken in winter, spring and summer to acquire data on seabed morphology, sediment properties, sea ice, river-ocean interaction and nearshore oceanography. These data are being used to improve conceptual models of nearshore processes and to develop and validate numerical models of waves, circulation and sediment transport. The timing and location of sediment erosion, transport and deposition is complex, driven by a combination of open water season storms and spring floods. Unlike temperate counterparts, the interaction between the Mackenzie River and the Beaufort Sea during spring freshet is mediated by the presence of ice cover. Increasing discharge exceeds the under-ice flow capacity leading to flooding of the ice surface, followed by vortex drainage through the ice and scour of the seabed below (“strudel” drainage and scour). During winter months, nearshore circulation slows beneath a thickening ice canopy. Recent surveys have shown that the low gradient inner shelf is composed of extensive shoals where ice freezes to the seabed and intervening zones which are slightly deeper than the ice is thick. The duration of ice contact with the bed determines the thermal characteristics of the seabed. Analysis of cores shows that the silts comprising the shoals are up to 6 m thick. The predominantly well sorted and cross-laminated nature of the silts at the top of the cores suggests an active delta front environment. Measurements of waves, currents, conductivity, temperature and sediment concentration during spring and late summer have been acquired. During moderate August storm events, waves attenuate rapidly inshore of the 3 m isobath. Entrainment of fine material and rapid flocculation due to the presence of brackish water may induce the transient formation of high density suspensions near the seabed which contributes to this rapid attenuation. The relatively poor performance of shallow water wave models (e.g. SWAN) in very shallow depths during storm simulations appears to be related to inaccurate formulations for wave attenuation in this environment.

  7. Measurements of aerosol and CCN properties in the Mackenzie River delta (Canadian Arctic) during spring-summer transition in May 2014

    NASA Astrophysics Data System (ADS)

    Herenz, Paul; Wex, Heike; Henning, Silvia; Bjerring Kristensen, Thomas; Rubach, Florian; Roth, Anja; Borrmann, Stephan; Bozem, Heiko; Schulz, Hannes; Stratmann, Frank

    2018-04-01

    Within the framework of the RACEPAC (Radiation-Aerosol-Cloud Experiment in the Arctic Circle) project, the Arctic aerosol, arriving at a ground-based station in Tuktoyaktuk (Mackenzie River delta area, Canada), was characterized during a period of 3 weeks in May 2014. Basic meteorological parameters and particle number size distributions (PNSDs) were observed and two distinct types of air masses were found. One type were typical Arctic haze air masses, termed accumulation-type air masses, characterized by a monomodal PNSD with a pronounced accumulation mode at sizes above 100 nm. These air masses were observed during a period when back trajectories indicate an air mass origin in the north-east of Canada. The other air mass type is characterized by a bimodal PNSD with a clear minimum around 90 nm and with an Aitken mode consisting of freshly formed aerosol particles. Back trajectories indicate that these air masses, termed Aitken-type air masses, originated from the North Pacific. In addition, the application of the PSCF receptor model shows that air masses with their origin in active fire areas in central Canada and Siberia, in areas of industrial anthropogenic pollution (Norilsk and Prudhoe Bay Oil Field) and the north-west Pacific have enhanced total particle number concentrations (NCN). Generally, NCN ranged from 20 to 500 cm-3, while cloud condensation nuclei (CCN) number concentrations were found to cover a range from less than 10 up to 250 cm-3 for a supersaturation (SS) between 0.1 and 0.7 %. The hygroscopicity parameter κ of the CCN was determined to be 0.23 on average and variations in κ were largely attributed to measurement uncertainties. Furthermore, simultaneous PNSD measurements at the ground station and on the Polar 6 research aircraft were performed. We found a good agreement of ground-based PNSDs with those measured between 200 and 1200 m. During two of the four overflights, particle number concentrations at 3000 m were found to be up to 20 times higher than those measured below 2000 m; for one of these two flights, PNSDs measured above 2000 m showed a different shape than those measured at lower altitudes. This is indicative of long-range transport from lower latitudes into the Arctic that can advect aerosol from different regions in different heights.

  8. Response of River Discharge to Changing Climate Over the Past Millennium in the Upper Mackenzie Basin: Implications for Water Resource Management

    NASA Astrophysics Data System (ADS)

    Wolfe, B. B.; Hall, R. I.; Edwards, T. W.; Jarvis, S. R.; Sinnatamby, R. N.; Yi, Y.; Johnston, J. W.

    2009-05-01

    Runoff generated from high elevations is the primary source of freshwater for western North America, yet this critical resource is managed on the basis of short instrumental records that encompass an insufficient range of climatic conditions. Like other streams that drain this part of the continent and flow across the northern Great Plains, where seasonal and extended intervals of water deficit are a natural element of the landscape, the Peace and Athabasca rivers provide water that is crucial for societal needs. Climate variability and rapidly increasing industrial development are, however, raising concerns over the future availability of water resources for continued economic growth in these watersheds and to maintain the integrity of aquatic ecosystems, including the Peace-Athabasca Delta (PAD). This is particularly acute for the Athabasca River because the Alberta oil sands industry remains dependent on its water for bitumen extraction. Here we report the effects of climate change over the past 1000 years on river discharge in the upper Mackenzie River system based on paleoenvironmental information from the PAD and Lake Athabasca. The delta landscape responds to hydroclimatic changes with marked variability, capturing systematic changes in ice-jam flood frequency and perched basin water balance. Lake Athabasca level appears to directly monitor overall water availability with the highest levels occurring in concert with maximum glacier extent during the Little Ice Age, and the lowest during the 11th century prior to medieval glacier expansion. Recent climate-driven hydrological change appears to be on a trajectory to even lower levels as high-elevation snow and glacier meltwater contributions both continue to decline. The temporal perspective offered by these paleohydrological reconstructions indicates that climatic changes over the past millennium have led to characteristic responses in the quantity and seasonality of streamflow generated from the hydrographic apex of North America. For water resource managers, a key feature that emerges from these results is that the hydrograph of the 21st century may be evolving towards conditions unprecedented over the past 1000 years, extending beyond the 11th century when reduced glacier meltwater contributions were partly compensated by abundant snowmelt runoff. Continuing reduction in both peak and total discharge clearly underscores the need for stringent allocation of freshwater resources in these watersheds.

  9. Evaluating Vertical Moisture Structure of the Madden-Julian Oscillation in Contemporary GCMs

    NASA Astrophysics Data System (ADS)

    Guan, B.; Jiang, X.; Waliser, D. E.

    2013-12-01

    The Madden-Julian Oscillation (MJO) remains a major challenge in our understanding and modeling of the tropical convection and circulation. Many models have troubles in realistically simulating key characteristics of the MJO, such as the strength, period, and eastward propagation. For models that do simulate aspects of the MJO, it remains to be understood what parameters and processes are the most critical in determining the quality of the simulations. This study focuses on the vertical structure of moisture in MJO simulations, with the aim to identify and understand the relationship between MJO simulation qualities and key parameters related to moisture. A series of 20-year simulations conducted by 26 GCMs are analyzed, including four that are coupled to ocean models and two that have a two-dimensional cloud resolving model embedded (i.e., superparameterized). TRMM precipitation and ERA-Interim reanalysis are used to evaluate the model simulations. MJO simulation qualities are evaluated based on pattern correlations of lead/lag regressions of precipitation - a measure of the model representation of the eastward propagating MJO convection. Models with strongest and weakest MJOs (top and bottom quartiles) are compared in terms of differences in moisture content, moisture convergence, moistening rate, and moist static energy. It is found that models with strongest MJOs have better representations of the observed vertical tilt of moisture. Relative importance of convection, advection, boundary layer, and large scale convection/precipitation are discussed in terms of their contribution to the moistening process. The results highlight the overall importance of vertical moisture structure in MJO simulations. The work contributes to the climatological component of the joint WCRP-WWRP/THORPEX YOTC MJO Task Force and the GEWEX Atmosphere System Study (GASS) global model evaluation project focused on the vertical structure and diabatic processes of the MJO.

  10. Why the predictions for monsoon rainfall fail?

    NASA Astrophysics Data System (ADS)

    Lee, J.

    2016-12-01

    To be in line with the Global Land/Atmosphere System Study (GLASS) of the Global Energy and Water Cycle Experiment (GEWEX) international research scheme, this study discusses classical arguments about the feedback mechanisms between land surface and precipitation to improve the predictions of African monsoon rainfall. In order to clarify the impact of antecedent soil moisture on subsequent rainfall evolution, several data sets will be presented. First, in-situ soil moisture field measurements acquired by the AMMA field campaign will be shown together with rain gauge data. This data set will validate various model and satellite data sets such as NOAH land surface model, TRMM rainfall, CMORPH rainfall and HadGEM climate models, SMOS soil moisture. To relate soil moisture with precipitation, two approaches are employed: one approach makes a direct comparison between the spatial distributions of soil moisture as an absolute value and rainfall, while the other measures a temporal evolution of the consecutive dry days (i.e. a relative change within the same soil moisture data set over time) and rainfall occurrences. Consecutive dry days shows consistent results of a negative feedback between soil moisture and rainfall across various data sets, contrary to the direct comparison of soil moisture state. This negative mechanism needs attention, as most climate models usually focus on a positive feedback only. The approach of consecutive dry days takes into account the systematic errors in satellite observations, reminding us that it may cause the misinterpretation to directly compare model with satellite data, due to their difference in data retrievals. This finding is significant, as the climate indices employed by the Intergovernmental Panel on Climate Change (IPCC) modelling archive are based on the atmospheric variable rathr than land.

  11. Remote sensing estimation of terrestrially derived colored dissolved organic matterinput to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Li, J.; Yu, Q.; Tian, Y. Q.

    2017-12-01

    The DOC flux from land to the Arctic Ocean has remarkable implication on the carbon cycle, biogeochemical & ecological processes in the Arctic. This lateral carbon flux is required to be monitored with high spatial & temporal resolution. However, the current studies in the Arctic regions were obstructed by the factors of the low spatial coverages. The remote sensing could provide an alternative bio-optical approach to field sampling for DOC dynamics monitoring through the observation of the colored dissolved organic matter (CDOM). The DOC and CDOM were found highly correlated based on the analysis of the field sampling data from the Arctic-GRO. These provide the solid foundation of the remote sensing observation. In this study, six major Arctic Rivers (Yukon, Kolyma, Lena, Mackenzie, Ob', Yenisey) were selected to derive the CDOM dynamics along four years. Our newly developed SBOP algorithm was applied to the large Landsat-8 OLI image data (nearly 100 images) for getting the high spatial resolution results. The SBOP algorithm is the first approach developing for the Shallow Water Bio-optical properties estimation. The CDOM absorption derived from the satellite images were verified with the field sampling results with high accuracy (R2 = 0.87). The distinct CDOM dynamics were found in different Rivers. The CDOM absorptions were found highly related to the hydrological activities and the terrestrially environmental dynamics. Our study helps to build the reliable system for studying the carbon cycle at Arctic regions.

  12. The relationship between musical skills, music training, and intonation analysis skills.

    PubMed

    Dankovicová, Jana; House, Jill; Crooks, Anna; Jones, Katie

    2007-01-01

    Few attempts have been made to look systematically at the relationship between musical and intonation analysis skills, a relationship that has been to date suggested only by informal observations. Following Mackenzie Beck (2003), who showed that musical ability was a useful predictor of general phonetic skills, we report on two studies investigating the relationship between musical skills, musical training, and intonation analysis skills in English. The specially designed music tasks targeted pitch direction judgments and tonal memory. The intonation tasks involved locating the nucleus, identifying the nuclear tone in stimuli of different length and complexity, and same/different contour judgments. The subjects were university students with basic training in intonation analysis. Both studies revealed an overall significant relationship between musical training and intonation task scores, and between the music test scores and intonation test scores. A more detailed analysis, focusing on the relationship between the individual music and intonation tests, yielded a more complicated picture. The results are discussed with respect to differences and similarities between music and intonation, and with respect to form and function of intonation. Implications of musical training on development of intonation analysis skills are considered. We argue that it would be beneficial to investigate the differences between musically trained and untrained subjects in their analysis of both musical stimuli and intonational form from a cognitive point of view.

  13. BALTEX—an interdisciplinary research network for the Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Reckermann, Marcus; Langner, Joakim; Omstedt, Anders; von Storch, Hans; Keevallik, Sirje; Schneider, Bernd; Arheimer, Berit; Markus Meier, H. E.; Hünicke, Birgit

    2011-10-01

    BALTEX is an environmental research network dealing with the Earth system of the entire Baltic Sea drainage basin. Important elements include the water and energy cycle, climate variability and change, water management and extreme events, and related impacts on biogeochemical cycles. BALTEX was founded in 1993 as a GEWEX continental-scale experiment and is currently in its second 10 yr phase. Phase I (1993-2002) was primarily dedicated to hydrological, meteorological and oceanographic processes in the Baltic Sea drainage basin, hence mostly dealt with the physical aspects of the system. Scientific focus was on the hydrological cycle and the exchange of energy between the atmosphere, the Baltic Sea and the surface of its catchment. The BALTEX study area was hydrologically defined as the Baltic Sea drainage basin. The second 10 yr phase of BALTEX (Phase II: 2003-12) has strengthened regional climate research, water management issues, biogeochemical cycles and overarching efforts to reach out to stakeholders and decision makers, as well as to foster communication and education. Achievements of BALTEX Phase II have been the establishment of an assessment report of regional climate change and its impacts on the Baltic Sea basin (from hydrological to biological and socio-economic), the further development of regional physical climate models and the integration of biogeochemical and ecosystem models. BALTEX features a strong infrastructure, with an international secretariat and a publication series, and organizes various workshops and conferences. This article gives an overview of the BALTEX programme, with an emphasis on Phase II, with some examples from BALTEX-related research.

  14. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    NASA Astrophysics Data System (ADS)

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, H. A. M.; Svensson, Gunilla; Vaillancourt, Paul A.; Zadra, Ayrton

    2016-09-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.

  15. Diagnosing Warm Season Precipitation Over the GCIP Region from a GCM and Reanalysis

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert; Marshall, Susan; Roads, John; Robertson, Franklin R.

    2000-01-01

    A 45 year simulation using a global general circulation model (GCM), the National Center for Atmospheric Research (NCAR) Community Climate Model v.3 (CCM3), forced with observed sea surface temperatures (SST), and 39 years of global National Centers for Environmental Prediction (NCEP) reanalyses were analyzed to determine Mississippi River basin warm season (May, June, July or MJJ) wet and dry year composites in the water and energy budgets. Years that have increased MJJ soil moisture over the GEWEX (Global Water and Energy Experiment) Continental Interior Project (GCIP) region also have high precipitation, lower surface temperature, decreased Bowen ratio, and reduced 500 hPa geopotential height (essentially reduced MJJ ridging). The reverse is true for years that have reduced MJJ soil moisture. Wet years are also accompanied by a general increase in moisture transport from the Gulf of Mexico into the central U.S. There is some indication (though weaker) that soil moisture may then affect precipitation and other quantities and be affected in turn by 500 hPa geopotential heights. The correlations are somewhat low, however, demonstrating the difficulty in providing definitive physical links between the remote and local effects. Analysis of two individual years with an extreme wet event (1993) and an extreme dry event (1988) yields the same general relationships as with the wet and dry composites. The composites from this study are currently serving as the basis for a series of experiments aimed at determining the predictability of the land surface and remote SST on the Mississippi River basin and other large-scale river basins.

  16. Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional singlecolumn models in simulating various types of clouds and cloud systems from Merent geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloudscale model (termed a super-parameterization or multiscale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameteridon NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production nms will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  17. Closing the Seasonal Ocean Surface Temperature Balance in the Eastern Tropical Oceans from Remote Sensing and Model Reanalyses

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Clayson, Carol A.

    2012-01-01

    The Eastern tropical ocean basins are regions of significant atmosphere-ocean interaction and are important to variability across subseasonal to decadal time scales. The numerous physical processes at play in these areas strain the abilities of coupled general circulation models to accurately reproduce observed upper ocean variability. Furthermore, limitations in the observing system of important terms in the surface temperature balance (e.g., turbulent and radiative heat fluxes, advection) introduce uncertainty into the analyses of processes controlling sea surface temperature variability. This study presents recent efforts to close the surface temperature balance through estimation of the terms in the mixed layer temperature budget using state-of-the-art remotely sensed and model-reanalysis derived products. A set of twelve net heat flux estimates constructed using combinations of radiative and turbulent heat flux products - including GEWEX-SRB, ISCCP-SRF, OAFlux, SeaFlux, among several others - are used with estimates of oceanic advection, entrainment, and mixed layer depth variability to investigate the seasonal variability of ocean surface temperatures. Particular emphasis is placed on how well the upper ocean temperature balance is, or is not, closed on these scales using the current generation of observational and model reanalysis products. That is, the magnitudes and spatial variability of residual imbalances are addressed. These residuals are placed into context within the current uncertainties of the surface net heat fluxes and the role of the mixed layer depth variability in scaling the impact of those uncertainties, particularly in the shallow mixed layers of the Eastern tropical ocean basins.

  18. Buffered and unbuffered dike emplacement on Earth and Venus - Implications for magma reservoir size, depth, and rate of magma replenishment

    NASA Technical Reports Server (NTRS)

    Parfitt, E. A.; Head, J. W., III

    1993-01-01

    Models of the emplacement of lateral dikes from magma chambers under constant (buffered) driving pressure conditions and declining (unbuffered) driving pressure conditions indicate that the two pressure scenarios lead to distinctly different styles of dike emplacement. In the unbuffered case, the lengths and widths of laterally emplaced dikes will be severely limited and the dike lengths will be highly dependent on chamber size; this dependence suggests that average dike length can be used to infer the dimensions of the source magma reservoir. On Earth, the characteristics of many mafic-dike swarms suggest that they were emplaced in buffered conditions (e.g., the Mackenzie dike swarm in Canada and some dikes within the Scottish Tertiary). On Venus, the distinctive radial fractures and graben surrounding circular to oval features and edifices on many size scales and extending for hundreds to over a thousand km are candidates for dike emplacement in buffered conditions.

  19. A High-Resolution Model of the Beaufort Sea Circulation

    NASA Astrophysics Data System (ADS)

    Hedstrom, K.; Danielson, S. L.; Curchitser, E. N.; Lemieux, J. F.; Kasper, J.

    2016-12-01

    Configuration of and results from a coupled sea-ice ocean model of the Beaufort Sea shelf at 500 m resolution will be shown. Challenging features of the domain include large fresh water flux from the MacKenzie River, seasonal land-fast ice, and ice-covered open boundary conditions. A pan-Arctic domain provides boundary fields to an intermediate resolution (4 km) domain which in turn provides boundary fields to the Beaufort Shelf domain. These are all coupled ocean and sea-ice models (Regional Ocean Modeling System - myroms.org) and all are forced with river inputs from the ARDAT climatology (Whitefield et al., 2015), which includes heat content as well as flow rate. Coastal discharges are prescribed as lateral inflows distributed over the depth of the ocean-land interface. New in the Beaufort domain is the use of a landfast ice parameterization (Lemieux, 2015), which adds a large bottom stress to the ice when the estimated keel depth approaches that of the ocean.

  20. A broader definition of occupancy: A reply to Hayes and Monofils

    USGS Publications Warehouse

    Fatif, Quresh; Ellis, Martha M.; Amundson, Courtney L.

    2015-01-01

    Occupancy models are widely used to analyze presence–absence data for a variety of taxa while accounting for observation error (MacKenzie et al. 2002, 2006; Tyre et al. 2003; Royle and Dorazio 2008). Hayes and Monfils (2015) question their use for analyzing avian point count data based on purported violations of model assumptions incurred by avian mobility. Animal mobility is an important consideration, not just for occupancy models, but for a variety of population and habitat models (Boyce 2006, Royle et al. 2009, Manning and Goldberg 2010, Dormann et al. 2013, Renner et al. 2015). Nevertheless, we believe the ultimate conclusions of Hayes and Monfils are shortsighted mainly due to a narrow interpretation of occupancy. Rather than turn away from the use of occupancy models, we believe they remain an appropriate method for analyzing many data sets collected from avian point count surveys. Further, we suggest that there is value in having a broader and more nuanced interpretation of occupancy that incorporates the potential for animal movement. 

  1. Climate-driven shifts in quantity and seasonality of river discharge over the past 1000 years from the hydrographic apex of North America

    NASA Astrophysics Data System (ADS)

    Wolfe, Brent B.; Hall, Roland I.; Edwards, Thomas W. D.; Jarvis, Suzanne R.; Sinnatamby, R. Niloshini; Yi, Yi; Johnston, John W.

    2008-12-01

    Runoff generated from high elevations is the primary source of freshwater for western North America, yet this critical resource is managed on the basis of short instrumental records that capture an insufficient range of climatic conditions. Here we probe the effects of climate change over the past ~1000 years on river discharge in the upper Mackenzie River system based on paleoenvironmental information from the Peace-Athabasca Delta. The delta landscape responds to hydroclimatic changes with marked variability, while Lake Athabasca level appears to directly monitor overall water availability. The latter fluctuated systematically over the past millennium, with the highest levels occurring in concert with maximum glacier extent during the Little Ice Age, and the lowest during the 11th century, prior to medieval glacier expansion. Recent climate-driven hydrological change appears to be on a trajectory to even lower levels as high-elevation snow and glacier meltwater contributions both continue to decline.

  2. M/s. MacKinnon Mackenzie and Co. v. Audrey D'Costa, 26 March 1987.

    PubMed

    1987-01-01

    The respondent female employee charged her employer with discrimination under the Equal Remuneration Act (No. 25 of 1976). She claimed that she was paid less as a stenographer than male stenographers performing the same work or work of a similar nature. The Supreme Court upheld a lower court decision supporting the respondent's claims. It rejected arguments that a) the work of female stenographers was different because they worked in a different place and as confidential stenographers attached to senior executives; and b) the difference in pay was justified under the terms of a settlement between the employer and the respondent's union. It noted that an employer could not deliberately create conditions of work only with the object of driving away women from a particular type of work that they can otherwise perform with the object of paying them less and that union settlements must yield to the provisions of the Equal Remuneration Act. full text

  3. Genetic stock assessment of spawning arctic cisco (Coregonus autumnalis) populations by flow cytometric determination of DNA content.

    PubMed

    Lockwood, S F; Bickham, J W

    1991-01-01

    Intraspecific variation in cellular DNA content was measured in five Coregonus autumnalis spawning populations from the Mackenzie River drainage, Canada, using flow cytometry. The rivers assayed were the Peel, Arctic Red, Mountain, Carcajou, and Liard rivers. DNA content was determined from whole blood preparations of fish from all rivers except the Carcajou, for which kidney tissue was used. DNA content measurements of kidney and blood preparations of the same fish from the Mountain River revealed statistically indistinguishable results. Mosaicism was found in blood preparations from the Peel, Arctic Red, Mountain, and Liard rivers, but was not observed in kidney tissue preparations from the Mountain or Carcajou rivers. The Liard River sample had significantly elevated mean DNA content relative to the other four samples; all other samples were statistically indistinguishable. Significant differences in mean DNA content among spawning stocks of a single species reinforces the need for adequate sample sizes of both individuals and populations when reporting "C" values for a particular species.

  4. Arterial Stiffening in Perspective: Advances in Physical and Physiological Science Over Centuries.

    PubMed

    O'Rourke, Michael F; O'Brien, Caroline; Edelman, Elazer R

    2016-07-01

    Arterial stiffening is not a new issue in medicine or research but was the prime concern of Richard Bright in the early 19th century and of the prominent London physicians and pathologists who tried to unscramble the relationship between kidney, heart, and cerebrovascular disease and hardness of the pulse in the late 19th century. It was of major concern to medical educators including Osler and Mackenzie who were still active in practice 100 years ago. It is all too easy (when dependent on the Internet) to consider arterial stiffness to be a new issue. The terms arterial stiffness, aortic stiffness, or wave reflection do not appear as categories for articles such as this in respectable journals, nor in categories for meetings of specialized physicians. Yet as described in this article, the subject was of interest to clinicians, to investigators such as Harvey in the 17th century, and to physicists who developed laws and principles of elasticity from the study of biological materials including ligaments and arteries. This paper provides a perspective on arterial stiffness from the time of William Harvey and Isaac Newton to the present, with a glance into the future. © American Journal of Hypertension, Ltd 2016. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Mapping the Fluid Pathways and Permeability Barriers of a Large Gas Hydrate Reservoir

    NASA Astrophysics Data System (ADS)

    Campbell, A.; Zhang, Y. L.; Sun, L. F.; Saleh, R.; Pun, W.; Bellefleur, G.; Milkereit, B.

    2012-12-01

    An understanding of the relationship between the physical properties of gas hydrate saturated sedimentary basins aids in the detection, exploration and monitoring one of the world's upcoming energy resources. A large gas hydrate reservoir is located in the MacKenzie Delta of the Canadian Arctic and geophysical logs from the Mallik test site are available for the gas hydrate stability zone (GHSZ) between depths of approximately 850 m to 1100 m. The geophysical data sets from two neighboring boreholes at the Mallik test site are analyzed. Commonly used porosity logs, as well as nuclear magnetic resonance, compressional and Stoneley wave velocity dispersion logs are used to map zones of elevated and severely reduced porosity and permeability respectively. The lateral continuity of horizontal permeability barriers can be further understood with the aid of surface seismic modeling studies. In this integrated study, the behavior of compressional and Stoneley wave velocity dispersion and surface seismic modeling studies are used to identify the fluid pathways and permeability barriers of the gas hydrate reservoir. The results are compared with known nuclear magnetic resonance-derived permeability values. The aim of investigating this heterogeneous medium is to map the fluid pathways and the associated permeability barriers throughout the gas hydrate stability zone. This provides a framework for an understanding of the long-term dissociation of gas hydrates along vertical and horizontal pathways, and will improve the knowledge pertaining to the production of such a promising energy source.

  6. Palynology, paleoclimatology and correlation of middle Miocene beds from Porcupine River (locality 90-1), Alaska

    USGS Publications Warehouse

    White, J.M.; Ager, T.A.

    1994-01-01

    Beds in the Upper Ramparts Canyon of the Porcupine River, Alaska (67?? 20' N, 141?? 20' W), yielded a flora rich in pollen of hardwood genera now found in the temperate climates of North America and Asia. The beds are overlain or enclosed by two basalt flows which were dated to 15.2 ?? 0.1 Ma by the 40Ar 39Ar method, fixing the period of the greatest abundance of warm-loving genera to the early part of the middle Miocene. The assemblage is the most northern middle Miocene flora known in Alaska. Organic bed 1 underlies the basalt and is older than 15.2 Ma, but is of early to middle Miocene age. The pollen assemblage from organic bed 1 is dominated by conifer pollen from the pine and redwood-cypress-yew families with rare occurrences of temperate hardwoods. Organic bed 2 is a forest floor containing redwood trees in life position, engulfed by the lowest basalt flow. A pine log has growth rings up to 1 cm thick. Organic beds 3 and 4 comprise lacustrine sediment and peat between the two basalt flows. Their palynoflora contain conifers and hardwood genera, of which about 40% have modern temperate climatic affinities. Hickory, katsura, walnut, sweet gum, wingnut, basswood and elm pollen are consistently present, and beech and oak alone make up about 20% of the pollen assemblage. A warm high latitude climate is indicated for all of the organic beds, but organic bed 3 was deposited under a time of peak warmth. Climate data derived by comparison with modern east Asian vegetation suggest that, at the time of deposition of organic bed 3, the Mean Annual Temperature (MAT) was ca. 9??C, the Warm Month Mean Temperature (WMMT) was ??? 20??C and the Cold Month Mean Temperature (CMMT) was ca. -2??C. In contrast, the modern MAT for the region is -8.6??C, WMMT is 12.6??C and CMMT is -28??C. Organic beds 3 and 4 correlate to rocks of the middle Miocene-late Seldovian Stage of Cook Inlet and also probably correlate to, and more precisely date, the lower third of the Suntrana Formation in the Alaska Range, beds at Unalaklect, part of the upper Mackenzie Bay sequence in the Beaufort-Mackenzie basin, and the Mary Sachs gravel of Banks Island. This suggests that forests with significant percentages of temperate deciduous angiosperms existed between latitudes 60?? and 72??N during the early middle Miocene. ?? 1994.

  7. Gas hydrate concentration estimated from P- and S-wave velocities

    NASA Astrophysics Data System (ADS)

    Carcione, J. M.; Gei, D.

    2003-04-01

    We estimate the concentration of gas hydrate at the Mallik 2L-38 research site, Mackenzie Delta, Canada, using P- and S-wave velocities obtained from well logging and vertical seismic profiles (VSP). The theoretical velocities are obtained from a poro-viscoelastic model based on a Biot-type approach. It considers the existence of two solids (grains and gas hydrate) and a fluid mixture and is based on the assumption that hydrate fills the pore space and shows interconnection. The moduli of the matrix formed by gas hydrate are obtained from the percolation model described by Leclaire et al., (1994). An empirical mixing law introduced by Brie et al., (1995) provides the effective bulk modulus of the fluid phase, giving Wood's modulus at low frequency and Voigt's modulus at high frequencies. The dry-rock moduli are estimated from the VSP profile where the rock is assumed to be fully saturated with water, and the quality factors are obtained from the velocity dispersion observed between the sonic and VSP velocities. Attenuation is described by using a constant-Q model for the dry rock moduli. The amount of dissipation is estimated from the difference between the seismic velocities and the sonic-log velocities. We estimate the amount of gas hydrate by fitting the sonic-log and seismic velocities to the theoretical velocities, using the concentration of gas hydrate as fitting parameter. We obtain hydrate concentrations up to 75 %, average values of 43 and 47 % from the VSP P- and S-wave velocities, respectively, and 47 and 42 % from the sonic-log P- and S-wave velocities, respectively. These averages are computed from 897 to 1110 m, excluding the zones where there is no gas hydrate. We found that modeling attenuation is important to obtain reliable results. largeReferences} begin{description} Brie, A., Pampuri, F., Marsala A.F., Meazza O., 1995, Shear Sonic Interpretation in Gas-Bearing Sands, SPE Annual Technical Conference and Exhibition, Dallas, 1995. Carcione, J.M. and Gei, D., Gas hydrate concentration estimated from P- and S-wave velocities at the Mallik 2L-38 research well, Mackenzie Delta, Canada, submitted to Geophysics. Gei, D. and Carcione, J.M., Acoustic properties of sediments saturated with gas hydrate, free gas and water, Geophysical Prospecting, in press. Leclarie, Ph., Cohen-Tenoudji, F., and Aguirre-Puente, J., 1994, Extension of Biot's theory of wave propagation to frozen porous media, J. Acoust. Soc. Am., 96, 6, 3753-3768.

  8. Enhancing patient-doctor-computer communication in primary care: towards measurement construction.

    PubMed

    Assis-Hassid, Shiri; Reychav, Iris; Heart, Tsipi; Pliskin, Joseph S; Reis, Shmuel

    2015-01-01

    The traditional dyadic dynamics of the medical encounter has been altered into a triadic relationship by introducing the computer into the examination room. This study defines Patient-Doctor-Computer Communication (PDCC) as a new construct and provides an initial validation process of an instrument for assessing PDCC in the computerized exam room: the e-SEGUE. Based on the existing literature, a new construct, PDCC, is defined as the physician's ability to provide patient-centered care while using the computer during the medical encounter. This study elucidates 27 PDCC-related behaviors from the relevant literature and state of the art models of PDCC. These were embedded in the SEGUE communication assessment framework to form the e-SEGUE, a communication skills assessment tool that integrates computer-related communication skills. Based on Mackenzie et al.'s methodological approach of measurement construction, we conducted a two-phased content validity analysis by a general and expert panels of the PDCC behaviors represented in the e-SEGUE. This study was carried out in an environment where EMR use is universal and fully integrated in the physicians' workflow. The panels consisted of medical students, residents, primary care physicians, healthcare leaders and faculty of medicine members, who rated and provided input regarding the 27 behaviors. Overall, results show high level of agreement with 23 PDCC-related behaviors. The PDCC instrument developed in this study, the e-SEGUE, fared well in a rigorous, albeit initial, validation process has a unique potential for training and enhancing patient-doctor communication (PDC) in the computerized examination room pending further development.

  9. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    DOE PAGES

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; ...

    2016-08-27

    We struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Artic winter using weather and climate models, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Themore » transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Finally, observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.« less

  10. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    PubMed Central

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, HAM; Svensson, Gunilla; Vaillancourt, Paul A.; Zadra, Ayrton

    2017-01-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modelled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: Some models lack the cloudy state of the boundary layer due to the representation of mixed-phase micro-physics or to the interaction between micro-and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behaviour. PMID:28966718

  11. How Consistent are Recent Variations in the Tropical Energy and Water Cycle Resolved by Satellite Measurements?

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Lu, H.-I.

    2004-01-01

    One notable aspect of Earth's climate is that although the planet appears to be very close to radiative balance at top-of-atmosphere (TOA), the atmosphere itself and underlying surface are not. Profound exchanges of energy between the atmosphere and oceans, land and cryosphere occur over a range of time scales. Recent evidence from broadband satellite measurements suggests that even these TOA fluxes contain some detectable variations. Our ability to measure and reconstruct radiative fluxes at the surface and at the top of atmosphere is improving rapidly. One question is 'How consistent, physically, are these diverse remotely-sensed data sets'? The answer is of crucial importance to understanding climate processes, improving physical models, and improving remote sensing algorithms. In this work we will evaluate two recently released estimates of radiative fluxes, focusing primarily on surface estimates. The International Satellite Cloud Climatology Project 'FD' radiative flux profiles are available from mid-1983 to near present and have been constructed by driving the radiative transfer physics from the Goddard Institute for Space Studies (GISS) global model with ISCCP clouds and TOVS (TIROS Operational Vertical Sounder)thermodynamic profiles. Full and clear sky SW and LW fluxes are produced. A similar product from the NASA/GEWEX Surface Radiation Budget Project using different radiative flux codes and thermodynamics from the NASA/Goddard Earth Observing System (GEOS-1) assimilation model makes a similar calculation of surface fluxes. However this data set currently extends only through 1995. We also employ precipitation measurements from the Global Precipitation Climatology Project (GPCP) and the Tropical Rainfall Measuring Mission (TRMM). Finally, ocean evaporation estimates from the Special Sensor Microwave Imager (SSM/I) are considered as well as derived evaporation from the NCAR/NCEP Reanalysis. Additional information is included in the original extended abstract.

  12. Coupled fvGCM-GCE Modeling System, TRMM Latent Heating and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2004-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to imiprove the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D GCE model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF will be developed by the end of 2004 and production runs will be conducted at the beginning of 2005. The purpose of this proposal is to augment the current Goddard MMF and other cloud modeling activities. I this talk, I will present: (1) A summary of the second Cloud Modeling Workshop took place at NASA Goddard, (2) A summary of the third TRMM Latent Heating Workshop took place at Nara Japan, (3) A brief discussion on the Goddard research plan of using Weather Research Forecast (WRF) model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  13. Coupled fvGCM-GCE Modeling System: TRMM Latent Heating and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D GCE model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF will be developed by the end of 2004 and production runs will be conducted at the beginning of 2005. The purpose of this proposal is to augment the current Goddard MMF and other cloud modeling activities. In this talk, I will present: (1) A summary of the second Cloud Modeling Workshop took place at NASA Goddard, (2) A summary of the third TRMM Latent Heating Workshop took place at Nara Japan, (3) A brief discussion on the GCE model on developing a global cloud simulator.

  14. Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud- resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production runs will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, ( 2 ) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  15. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison.

    PubMed

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, Ham; Svensson, Gunilla; Vaillancourt, Paul A; Zadra, Ayrton

    2016-09-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modelled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first L agrangian Arc tic air form ation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: Some models lack the cloudy state of the boundary layer due to the representation of mixed-phase micro-physics or to the interaction between micro-and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behaviour.

  16. Toward Creating A Global Retrospective Climatology of Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Curran, Robert J.; Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)

    2000-01-01

    Tropospheric aerosols are thought to cause a significant direct and indirect climate forcing, but the magnitude of this forcing remains highly uncertain because of poor knowledge of global aerosol characteristics and their temporal changes. The standard long-term global product, the one-channel Advanced Very-High-Resolution Radiometer (AVHRR) aerosol optical thickness over the ocean, relies on a single predefined aerosol model and can be inaccurate in many cases. Furthermore, it provides no information on aerosol column number density, thus making it impossible to estimate the indirect aerosol effect on climate. Total Ozone Mapping Spectrometer (TOMS) data can be used to detect absorbing aerosols over land, but are insensitive to aerosols located below one kilometer. It is thus clear that innovative approaches must be employed in order to extract a more quantitative and accurate aerosol climatology from available satellite and other measurements, thus enabling more reliable estimates of the direct and indirect aerosol forcings. The Global Aerosol Climatology Project (GACP) was established in 1998 as part of the Global Energy and Water Cycle Experiment (GEWEX). Its main objective is to analyze satellite radiance measurements and field observations to infer the global distribution of aerosols, their properties, and their seasonal and interannual variations. The overall goal is to develop advanced global aerosol climatologies for the period of satellite data and to make the aerosol climatologies broadly available through the GACP web site.

  17. Creating a global sub-daily precipitation dataset

    NASA Astrophysics Data System (ADS)

    Lewis, Elizabeth; Blenkinsop, Stephen; Fowler, Hayley

    2017-04-01

    Extremes of precipitation can cause flooding and droughts which can lead to substantial damages to infrastructure and ecosystems and can result in loss of life. It is still uncertain how hydrological extremes will change with global warming as we do not fully understand the processes that cause extreme precipitation under current climate variability. The INTENSE project is using a novel and fully-integrated data-modelling approach to provide a step-change in our understanding of the nature and drivers of global precipitation extremes and change on societally relevant timescales, leading to improved high-resolution climate model representation of extreme rainfall processes. The INTENSE project is in conjunction with the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges Project (GEWEX) Science questions. The first step towards achieving this is to construct a new global sub-daily precipitation dataset. Data collection is ongoing and already covers North America, Europe, Asia and Australasia. Comprehensive, open source quality control software is being developed to set a new standard for verifying sub-daily precipitation data and a set of global hydroclimatic indices will be produced based upon stakeholder recommendations. This will provide a unique global data resource on sub-daily precipitation whose derived indices, e.g. monthly/annual maxima, will be freely available to the wider scientific community.

  18. Food provisioning and parental status in songbirds: can occupancy models be used to estimate nesting performance?

    PubMed

    Corbani, Aude Catherine; Hachey, Marie-Hélène; Desrochers, André

    2014-01-01

    Indirect methods to estimate parental status, such as the observation of parental provisioning, have been problematic due to potential biases associated with imperfect detection. We developed a method to evaluate parental status based on a novel combination of parental provisioning observations and hierarchical modeling. In the summers of 2009 to 2011, we surveyed 393 sites, each on three to four consecutive days at Forêt Montmorency, Québec, Canada. We assessed parental status of 2331 adult songbirds based on parental food provisioning. To account for imperfect detection of parental status, we applied MacKenzie et al.'s (2002) two-state hierarchical model to obtain unbiased estimates of the proportion of sites with successfully nesting birds, and the proportion of adults with offspring. To obtain an independent evaluation of detection probability, we monitored 16 active nests in 2010 and conducted parental provisioning observations away from them. The probability of detecting food provisioning was 0.31 when using nest monitoring, a value within the 0.11 to 0.38 range that was estimated by two-state models. The proportion of adults or sites with broods approached 0.90 and varied depending on date during the sampling season and year, exemplifying the role of eastern boreal forests as highly productive nesting grounds for songbirds. This study offers a simple and effective sampling design for studying avian reproductive performance that could be implemented in national surveys such as breeding bird atlases.

  19. Food Provisioning and Parental Status in Songbirds: Can Occupancy Models Be Used to Estimate Nesting Performance?

    PubMed Central

    Corbani, Aude Catherine; Hachey, Marie-Hélène; Desrochers, André

    2014-01-01

    Indirect methods to estimate parental status, such as the observation of parental provisioning, have been problematic due to potential biases associated with imperfect detection. We developed a method to evaluate parental status based on a novel combination of parental provisioning observations and hierarchical modeling. In the summers of 2009 to 2011, we surveyed 393 sites, each on three to four consecutive days at Forêt Montmorency, Québec, Canada. We assessed parental status of 2331 adult songbirds based on parental food provisioning. To account for imperfect detection of parental status, we applied MacKenzie et al.'s (2002) two-state hierarchical model to obtain unbiased estimates of the proportion of sites with successfully nesting birds, and the proportion of adults with offspring. To obtain an independent evaluation of detection probability, we monitored 16 active nests in 2010 and conducted parental provisioning observations away from them. The probability of detecting food provisioning was 0.31 when using nest monitoring, a value within the 0.11 to 0.38 range that was estimated by two-state models. The proportion of adults or sites with broods approached 0.90 and varied depending on date during the sampling season and year, exemplifying the role of eastern boreal forests as highly productive nesting grounds for songbirds. This study offers a simple and effective sampling design for studying avian reproductive performance that could be implemented in national surveys such as breeding bird atlases. PMID:24999969

  20. Submarine landslides in Arctic sedimentation: Canada Basin

    USGS Publications Warehouse

    Mosher, David C.; Shimeld, John; Hutchinson, Deborah R.; Lebedova-Ivanova, N; Chapman, C.

    2016-01-01

    Canada Basin of the Arctic Ocean is the least studied ocean basin in the World. Marine seismic field programs were conducted over the past 6 years using Canadian and American icebreakers. These expeditions acquired more than 14,000 line-km of multibeam bathymetric and multi-channel seismic reflection data over abyssal plain, continental rise and slope regions of Canada Basin; areas where little or no seismic reflection data existed previously. Canada Basin is a turbidite-filled basin with flat-lying reflections correlateable over 100s of km. For the upper half of the sedimentary succession, evidence of sedimentary processes other than turbidity current deposition is rare. The Canadian Archipelago and Beaufort Sea margins host stacked mass transport deposits from which many of these turbidites appear to derive. The stratigraphic succession of the MacKenzie River fan is dominated by mass transport deposits; one such complex is in excess of 132,000 km2 in area and underlies much of the southern abyssal plain. The modern seafloor is also scarred with escarpments and mass failure deposits; evidence that submarine landsliding is an ongoing process. In its latest phase of development, Canada Basin is geomorphologically confined with stable oceanographic structure, resulting in restricted depositional/reworking processes. The sedimentary record, therefore, underscores the significance of mass-transport processes in providing sediments to oceanic abyssal plains as few other basins are able to do.

  1. Magnetic hysteresis parameters and Day plot analysis to characterize diagenetic alteration in gas hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Enkin, Randolph J.; Baker, Judith; Nourgaliev, Danis; Iassonov, Pavel; Hamilton, Tark S.

    2007-06-01

    The J meter coercivity spectrometer is a machine capable of rapid and simple measurement of magnetic hysteresis, isothermal remanence acquisition and magnetic viscosity of rocks and sediments. The J meter was used to study a suite of samples collected from strata in the gas hydrate-bearing JAPEX/JNOC/GSC Mallik 5L-38 well (69.5°N, 134.6°W) in the Mackenzie Delta of the northwestern Canadian Arctic. The Day plot of magnetic hysteresis ratios for these samples is exotic in that the points do not plot along a hyperbola as is usually observed. Rather, they plot as a scatter which is shown to contour into vertical slices using coercivity field (HC) or saturation magnetization (JS), and horizontal slices using the relative quantity of superparamagnetism (JSPM/JS). Optical microscopy reveals that the magnetic minerals are detrital magnetite and authigenic greigite. Greigite is dominant in sands which in situ had >70% gas hydrate saturation and in silts in which gas hydrate growth was blocked by insufficient porosity. We infer that the silts were the accumulation sites for solutes which had been excluded from the pore waters in neighboring coarser-grained sediments during the course of gas hydrate formation. Consequently, we conclude that magnetic properties are related to gas hydrate-related processes, and as such, may have potential as a method of remote sensing for gas hydrate deposits.

  2. Apparatus investigates geological aspects of gas hydrates

    USGS Publications Warehouse

    Booth, J.S.; Winters, W.J.; Dillon, William P.

    1999-01-01

    The US Geological Survey (USGS), in response to potential geohazards, energy resource potential, and climate issues associated with marine gas hydrates, has developed a laboratory research system that permits hydrate genesis and dissociation under deep-sea conditions, employing user-selected sediment types and pore fluids.The apparatus, GHASTI (gas hydrate and sediment test laboratory instrument), provides a means to link field studies and theory and serves as a tool to improve gas hydrate recognition and assessment, using remote sensing techniques.GHASTLI's use was proven in an exploration well project led by the Geological Survey of Canada and the Japanese National Oil Corp., collaborating with Japan Petroleum Exploration Co. and the USGS. The site was in the Mackenzie Delta region of the Northwest Territories (Mallik 2L-38 drillsite).From tests on natural methane hydrate-bearing sand recovered at about 1,000 m subsurface, the in situ quantity of hydrate was estimated from acoustic properties, and a substantial increase in shear strength due to the presence of the hydrate was measured.1 2GHASTI can mimic a wide range of geologic settings and processes. Initial goals involve improved recognition and mapping of gas hydrate-bearing sediments, understanding factors that control the occurrence and concentration of gas hydrates, knowledge of hydrate's significance to slope failure and foundation problems, and analysis of gas hydrate's potential use as an energy resource.

  3. Paleomagnetism of the Late Proterozoic Tsezotene Formation of northwestern Canada

    NASA Astrophysics Data System (ADS)

    Park, John K.; Aitken, James D.

    1986-04-01

    Paleomagnetic evidence from 37 sites of the partly red-pigmented siliciclastic Tsezotene Formation supports a recently proposed apparent polar wander path for the Hadrynian Mackenzie Mountains supergroup (MMs). The probable primary remanence has a direction at D°, I° = 271, +24 (k = 15; α95° = 8) with an associated pole TA (12°N, 214°W; N = 23 specimens; δp°, δm° = 5, 9). TA becomes the oldest pole from the MMS. It helps bridge the gap between the apparently youngest poles of the Grenville Loop (about 0.88 Ga) and the suggested younger poles from the MMs. A secondary pole TB (23°N, 198°W; N = 18 sites; δp°, δm° = 3, 5), derived from a magnetic direction in hematite pigment (D°, I° = 263, +48; k = 73; α95° = 4), supports a magnetization found in the overlying "Copper cycle" and in younger units of the MMs as a pervasive overprint. Another secondary pole Tc (63°N, 141°W; N = 29 sites; δp°, δm° = 6, 6), derived from a magnetization (D°, I° = 317, +87; k = 89; α95° = 3) partly residing in another phase of hematite pigment, is of postfolding age (post-Paleocene). This study demonstrates the importance of using several treatment methods, singly and in combination, when analyzing complex magnetizations.

  4. Deglacial climate modulated by the storage and release of Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Condron, A.; Coletti, A. J.; Bradley, R. S.

    2017-12-01

    Periods of abrupt climate cooling during the last deglaciation (20 - 8 kyr ago) are often attributed to glacial outburst floods slowing the Atlantic meridional overturning circulation (AMOC). Here, we present results from a series of climate model simulations showing that the episodic break-up and mobilization of thick, perennial, Arctic sea ice during this time would have released considerable volumes of freshwater directly to the Nordic Seas, where processes regulating large-scale climate occur. Massive sea ice export events to the North Atlantic are generated whenever the transport of sea ice is enhanced, either by changes in atmospheric circulation, rising sea level submerging the Bering land bridge, or glacial outburst floods draining into the Arctic Ocean from the Mackenzie River. We find that the volumes of freshwater released to the Nordic Seas are similar to, or larger than, those estimated to have come from terrestrial outburst floods, including the discharge at the onset of the Younger Dryas. Our results provide the first evidence that the storage and release of Arctic sea ice helped drive deglacial climate change by modulating the strength of the AMOC.

  5. Chapter 1: An overview of the petroleum geology of the Arctic

    USGS Publications Warehouse

    Spencer, A.M.; Embry, A.F.; Gautier, D.L.; Stoupakova, A.V.; Sorensen, K.

    2011-01-01

    Nine main petroleum provinces containing recoverable resources totalling 61 Bbbl liquids + 269 Bbbloe of gas are known in the Arctic. The three best known major provinces are: West Siberia-South Kara, Arctic Alaska and Timan-Pechora. They have been sourced principally from, respectively, Upper Jurassic, Triassic and Devonian marine source rocks and their hydrocarbons are reservoired principally in Cretaceous sandstones, Triassic sandstones and Palaeozoic carbonates. The remaining six provinces except for the Upper Cretaceous-Palaeogene petroleum system in the Mackenzie Delta have predominantly Mesozoic sources and Jurassic reservoirs. There are discoveries in 15% of the total area of sedimentary basins (c. 8 ?? 106 km2), dry wells in 10% of the area, seismic but no wells in 50% and no seismic in 25%. The United States Geological Survey estimate yet-to-find resources to total 90 Bbbl liquids + 279 Bbbloe gas, with four regions - South Kara Sea, Alaska, East Barents Sea, East Greenland - dominating. Russian estimates of South Kara Sea and East Barents Sea are equally positive. The large potential reflects primarily the large undrilled areas, thick basins and widespread source rocks. ?? 2011 The Geological Society of London.

  6. Session 21.6: Preserving Dark Skies and Protecting Against Light Pollution in a World Heritage Framework

    NASA Astrophysics Data System (ADS)

    Smith, Malcolm G.

    2016-10-01

    This session opened with a crucial explanation by Michel Cotte of how astronomers first need to understand how to apply UNESCO World Heritage Criteria if they want to motivate their government(s) to make the case to UNESCO for World Heritage recognition. UNESCO World Heritage cannot be obtained just to protect dark skies. Much more detail of this and the other presentations in this session, along with many images, can be found at the session website: http://www.noao.edu/education/IAUGA2015FM21. The next speaker, John Hearnshaw, described the Aoraki Mackenzie International Dark Sky Reserve and the work it carries out . This was followed by a wide-ranging summary (by Dan Duriscoe and Nate Ament) of the U.S. National Park Service (NPS) Night Skies Program. The abstract of Cipriano's Marin's paper, ``Developing Starlight connections with UNESCO sites through the Biosphere Smart" was shown in his absence. The final presentation (by Arkadiusz Berlicki, S. Kolomanksi and T. Mrozek) discussed the bi-national Izera Dark Sky Park.

  7. Glendonites in Neoproterozoic low-latitude, interglacial, sedimentary rocks, northwest Canada: Insights into the Cryogenian ocean and Precambrian cold-water carbonates

    NASA Astrophysics Data System (ADS)

    James, Noel P.; Narbonne, Guy M.; Dalrymple, Robert W.; Kurtis Kyser, T.

    2005-01-01

    Stellate crystals of ferroan dolomite in neritic siliciclastic and carbonate sedimentary rocks between Sturtian and Marinoan glaciations in the Mackenzie Mountains are interpreted as replaced glendonites. These pseudomorphs after ikaite indicate that shallow seawater at that time was near freezing. Stromatolites verify that paleoenvironments were in the photic zone and physical sedimentary structures such as hummocky cross-bedding confirm that the seafloor was repeatedly disturbed by storms. Glendonites within these low-latitude, continental shelf to coastal sedimentary deposits imply that global ocean water during much of Cryogenian time was likely very cold. Such an ocean would easily have cooled to yield widespread sea ice and, through positive feedback, growth of low-latitude continental glaciers. In this situation gas hydrates could have formed in shallow-water, cold shelf sediment, but would have been particularly sensitive to destabilization as a result of sea-level change. Co-occurrence of pisolites and glendonites in these rocks additionally implies that some ooids and pisoids might have been, unlike Phanerozoic equivalents, characteristic of cold-water sediments.

  8. Morphology, ecology and biogeography of Stauroneis pachycephala P.T. Cleve (Bacillariophyta) and its transfer to the genus Envekadea

    USGS Publications Warehouse

    Atazadeh, Islam; Edlund, Mark B.; van de Vijver, Bart; Mills, Keely; Spaulding, Sarah A.; Gell, Peter A.; Crawford, Simon; Barton, Andrew F.; Lee, Sylvia S.; Smith, Kathryn E.L.; Newall, Peter; Potapova, Marina

    2014-01-01

    Stauroneis pachycephala was described in 1881 from the Baakens River, Port Elizabeth, South Africa. Recently, it was found during surveys of the MacKenzie River (Victoria, Australia), the Florida Everglades (USA) and coastal marshes of Louisiana (USA). The morphology, ecology and geographic distribution of this species are described in this article. This naviculoid species is characterised by lanceolate valves with a gibbous centre, a sigmoid raphe, an axial area narrowing toward the valve ends, and capitate valve apices. The central area is a distinct stauros that is slightly widened near the valve margin. The raphe is straight and filiform, and the terminal raphe fissures are strongly deflected in opposite directions. Striae are fine and radiate in the middle of the valve, becoming parallel and eventually convergent toward the valve ends. The external surface of the valves and copulae is smooth and lacks ornamentation. We also examined the type material of S. pachycephala. Our observations show this species has morphological characteristics that fit within the genus Envekadea. Therefore, the transfer of S. pachycephala to Envekadea is proposed and a lectotype is designated.

  9. Implication of seismic attenuation for gas hydrate resource characterization, Mallik, Mackenzie Delta, Canada

    NASA Astrophysics Data System (ADS)

    Bellefleur, G.; Riedel, M.; Brent, T.; Wright, F.; Dallimore, S. R.

    2007-10-01

    Wave attenuation is an important physical property of hydrate-bearing sediments that is rarely taken into account in site characterization with seismic data. We present a field example showing improved images of hydrate-bearing sediments on seismic data after compensation of attenuation effects. Compressional quality factors estimated from zero-offset Vertical Seismic Profiling data acquired at Mallik, Northwest Territories, Canada, demonstrate significant wave attenuation for hydrate-bearing sediments. These results are in agreement with previous attenuation estimates obtained from sonic logs and crosshole data at different frequency intervals. The application of an inverse Q-filter to compensate attenuation effects of permafrost and hydrate-bearing sediments improved the resolution of surface 3D seismic data and its correlation with log data, particularly for the shallowest gas hydrate interval. Compensation of the attenuation effects of the permafrost likely explains most of the improvements for the shallow gas hydrate zone. Our results show that characterization of the Mallik gas hydrates with seismic data not corrected for attenuation would tend to overestimate thicknesses and lateral extent of hydrate-bearing strata and hence, the volume of hydrates in place.

  10. Models for Gas Hydrate-Bearing Sediments Inferred from Hydraulic Permeability and Elastic Velocities

    USGS Publications Warehouse

    Lee, Myung W.

    2008-01-01

    Elastic velocities and hydraulic permeability of gas hydrate-bearing sediments strongly depend on how gas hydrate accumulates in pore spaces and various gas hydrate accumulation models are proposed to predict physical property changes due to gas hydrate concentrations. Elastic velocities and permeability predicted from a cementation model differ noticeably from those from a pore-filling model. A nuclear magnetic resonance (NMR) log provides in-situ water-filled porosity and hydraulic permeability of gas hydrate-bearing sediments. To test the two competing models, the NMR log along with conventional logs such as velocity and resistivity logs acquired at the Mallik 5L-38 well, Mackenzie Delta, Canada, were analyzed. When the clay content is less than about 12 percent, the NMR porosity is 'accurate' and the gas hydrate concentrations from the NMR log are comparable to those estimated from an electrical resistivity log. The variation of elastic velocities and relative permeability with respect to the gas hydrate concentration indicates that the dominant effect of gas hydrate in the pore space is the pore-filling characteristic.

  11. Decadal Variability of Surface Incident Solar Radiation over China

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun

    2015-04-01

    Observations have reported a widespread dimming of surface incident solar radiation (Rs) from the 1950s to the 1980s and a brightening afterwards. However, none of the state-of-the-art earth system models, including those from the Coupled Model Intercomparison Project phase 5 (CMIP5), could successfully reproduce the dimming/brightening rates over China. This study provides metadata and reference data to investigate the observed variability of Rs in China. From 1958 to 1990, diffuse solar radiation (Rsdif) and direct solar radiation (Rsdir) was measured separately in China, from which Rs was calculated a sum. However, pyranometers used to measure Rsdif had a strong sensitivity drift problem, which introduced a spurious decreasing trend to Rsdif and Rs measurements. The observed Rsdir did not suffer from such sensitivity drift problem. From 1990 to 1993, the old instruments were replaced and measuring stations were relocated in China, which introduced an abrupt increase in the observed Rs. After 1993, Rs was measured by solid black thermopile pyranometers. Comprehensive comparisons between observation-based and model-based Rs performed in this research have shown that sunshine duration (SunDu)-derived Rs is of high quality and provide accurate estimate of decadal variability of Rs over China. SunDu-derived Rs averaged over 105 stations in China decreased at -2.9 W m-2 per decade from 1961 to 1990 and remained stable afterward. This decadal variability has been confirmed by the observed Rsdir, independent studies on aerosols and diurnal temperature range, and can be reproduced by certain high-quality earth system models. However, neither satellite retrievals (the Global Energy and Water Exchanges Project Surface Radiation Budget (GEWEX SRB)) nor reanalyses (ERA-Interim and Modern-Era Retrospective analysis for Research and Applications (MERRA)) can accurately reproduce such decadal variability of Rs over China for their exclusion of annual variability of tropospheric aerosols.

  12. A Coupled GCM-Cloud Resolving Modeling System, and a Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a superparameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (2ICE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generatio11 regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  13. A Coupled GCM-Cloud Resolving Modeling System, and A Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  14. The Ability of a General Circulation Model to represent the Atmospheric Boundary Layer over the Antarctic Plateau

    NASA Astrophysics Data System (ADS)

    Vignon, Etienne; Hourdin, Frédéric; Genthon, Christophe; Madeleine, Jean-Baptiste; Cheruy, Frédérique; Gallée, Hubert; Bazile, Eric; Lefebvre, Marie-Pierre; Van de Wiel, Bas J. H.

    2017-04-01

    In a General Circulation Model (GCM), the turbulent mixing parametrization of the atmospheric boundary layer (ABL) over the Antarctic Plateau is critical since it affects the continental scale temperature inversion, the katabatic winds and finally the Southern Hemisphere circulation. The aim of this study is to evaluate the representation of the Antarctic Plateau ABL in the Laboratoire de Météorologie Dynamique-Zoom (LMDZ) GCM, the atmospheric component of the IPSL Earth System Model in preparation for the sixth Coupled Models Intercomparison Project. We carry out 1D simulations on the fourth Gewex Atmospheric Boundary Layers Study (GABLS4) case, and 3D simulations with the 'zooming capability' of the horizontal grid and with nudging. Simulations are evaluated and validated using in-situ measurements obtained at Dome C, East Antarctic Plateau, and satellite data. Sensitivity tests to surface parameters, vertical grid and turbulent mixing parametrizations led to significant improvements of the model and to a new configuration better adapted for Antarctic conditions. In particular, we point out the need to remove minimum turbulence thresholds to correctly reproduce very steep temperature and wind speed gradients in the stable ABL. We then assess the ability of the GCM to represent the two distinct stable ABL regimes and very strong near-surface temperature inversions, which are fascinating and critical features of the Dome C climate. This leads us to investigate the competition between radiative and turbulent coupling between the ABL and the snow surface in the model. Our results show that the new configuration of LMDZ reproduces reasonnably well the Dome C climatology and it is able to model strong temperature inversions and radiatively-dominated ABL. However, they also reveal a strong sensitivity of the modeling of the different regimes to the radiative scheme and vertical resolution. The present work finally hints at future developments to better and more physically represent the polar ABL in a GCM.

  15. Improved Arctic Cloud and Aerosol Research and Model Parameterizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth Sassen

    2007-03-01

    In this report are summarized our contributions to the Atmospheric Measurement (ARM) program supported by the Department of Energy. Our involvement commenced in 1990 during the planning stages of the design of the ARM Cloud and Radiation Testbed (CART) sites. We have worked continuously (up to 2006) on our ARM research objectives, building on our earlier findings to advance our knowledge in several areas. Below we summarize our research over this period, with an emphasis on the most recent work. We have participated in several aircraft-supported deployments at the SGP and NSA sites. In addition to deploying the Polarization Diversitymore » Lidar (PDL) system (Sassen 1994; Noel and Sassen 2005) designed and constructed under ARM funding, we have operated other sophisticated instruments W-band polarimetric Doppler radar, and midinfrared radiometer for intercalibration and student training purposes. We have worked closely with University of North Dakota scientists, twice co-directing the Citation operations through ground-to-air communications, and serving as the CART ground-based mission coordinator with NASA aircraft during the 1996 SUCCESS/IOP campaign. We have also taken a leading role in initiating case study research involving a number of ARM coinvestigators. Analyses of several case studies from these IOPs have been reported in journal articles, as we show in Table 1. The PDL has also participated in other major field projects, including FIRE II and CRYSTAL-FACE. In general, the published results of our IOP research can be divided into two categories: comprehensive cloud case study analyses to shed light on fundamental cloud processes using the unique CART IOP measurement capabilities, and the analysis of in situ data for the testing of remote sensing cloud retrieval algorithms. One of the goals of the case study approach is to provide sufficiently detailed descriptions of cloud systems from the data-rich CART environment to make them suitable for application to cloud modeling groups, such as the GEWEX Cloud Simulation Study (GCSS) Cirrus Working Groups. In this paper we summarize our IOP-related accomplishments.« less

  16. Sedimentology, CSFe relationships and stable isotopic compositions in Devonian black mudrocks, Mackenzie Mountains, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Al-Aasm, I. S.; Morad, S.; Durocher, S.; Muir, I.

    1996-11-01

    An integrated approach combining CSFe relationships, stable isotopic compositions, and lithofacies characterization was utilized to constrain the palaeoenvironmental and early diagenetic conditions of Middle-Upper Devonian (Eifelian-Frasnian) mudrocks from the Mackenzie Mountains, Northwest Territories, Canada. These rocks include the Hare Indian Formation (informally subdivided into the lower Bluefish Member and the Hare Indian Upper Member), Carcajou Marker and Canol Formation. The Bluefish Member is dominated by black, laminated, organic-rich shales (TOC = 0.35-10.34 wt.%; av. 5.83 wt.) with moderate degrees of pyritization (DOP) of 0.34-0.67 (av. 0.55). These mudrocks were deposited in dysoxic marine bottom-waters that became progressively more oxygenated with time. Variations in TOC, DOP and organic matter δ 13C PDB values (-29.7% to -19.9%; av. -27.2%) are attributed to repeated clastic dilution and increased input of terrestrial organic matter in association with shallowing-upward ramp-clinothem cycles. Pyrite δ 34S CDT values (-32.7% to -18.8%; av. -24.9%) indicate an open system, bacteriogenic seawater-sulphate reduction. Conversely, the overlying Hare Indian Upper Member, characterized by clinothem facies, is composed of grey to green mudstone with minor argillaceous limestones and considerably less organic matter contents (TOC = 0.28-2.99 wt.%; δ 13C = -29.5% to -22.5%). Deposition occurred in oxic to slightly dysoxic waters (DOP = 0.20-0.54; δ 34S = -23.0% to -20.9%), depending on the palaeotopographic location along the depositional slope. A rapid rise in sea level drowned the carbonate 'ramp' member of the Ramparts Formation and produced the thin, organic-rich Carcajou Marker. Bottom-water stagnation that resulted from subdued ramp palaeotopography produced anoxic sea bottom. Black, laminated, organic-rich shales from the Canol Formation (TOC = 1.37-6.68 wt.%) are very similar to those of the Bluefish Member, and are likewise basinal sediments. However, TOC, DOP and organic-matter δ 13C PDB values (-29.1% to -20.8%; av. -26.2%) do not show pronounced variations and indicate that low-energy, quietwater conditions persisted over relatively long, uninterrupted periods of time. High DOP values (0.72-0.93) throughout the Canol Formation suggest that deposition occurred in anoxic bottom-waters, but as basin-fill conditions continued there was a shift to a dysoxic environment (DOP = 0.55-0.65), which grades into nearshore and offshore sequences of the overlying Imperial Formation. In contrast with the Hare Indian Formation, much heavier δ 34S CDT values of pyrite in Canol mudrocks (-11.1% to +5.3%; av. -3.1%) point to bacterial sulphate reduction in a closed to semi-closed system with respect to seawater sulphate.

  17. Character, paleoenvironment, rate of accumulation, and evidence for seismic triggering of Holocene turbidites, Canada Abyssal Plain, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Phillips, R.L.; Mullen, M.W.; Starratt, S.W.; Jones, Glenn A.; Naidu, A.S.; Finney, B.P.

    1996-01-01

    Four box cores and one piston core show that Holocene sedimentation on the southern Canada Abyssal Plain for the last 8010??120 yr has consisted of a continuing rain of pelagic organic and ice-rafted elastic sediment with a net accumulation rate during the late Holocene of ???10 mm/1000 yr, and episodically emplaced turbidites 1-5 m thick deposited at intervals of 830 to 3450 yr (average 2000 yr). The average net accumulation rate of the mixed sequence of turbidites and thin pelagite interbeds in the cores is about 1.2 m/1000 yr. Physiography suggests that the turbidites originated on the Mackenzie Delta or its clinoform, and ??13C values of -27 to - 25??? in the turbidites are compatible with a provenance on a delta. Extant displaced neritic and lower slope to basin plain calcareous benthic foraminifers coexist in the turbidite units. Their joint occurence indicates that the turbidites originated on the modern continental shelf and entrained sediment from the slope and rise enroute to their final resting place on the Canada Abyssal Plain. The presence of Middle Pleistocene diatoms in the turbidites suggests, in addition, that the turbidites may have originated in shallow submarine slides beneath the upper slope or outer shelf. Small but consistent differences in organic carbon content and ??13C values between the turbidite units suggest that they did not share an identical provenance, which is at least compatible with an origin in slope failures. The primary provenance of the ice-rafted component of the pelagic beds was the glaciated terrane of northwestern Canada; and the provenance of the turbidite units was Pleistocene and Holocene sedimentary deposits on the outer continental shelf and upper slope of the Mackenzie Delta. Largely local derivation of the sediment of the Canada Abyssal Plain indicates that sediment accumulation rates in the Arctic Ocean are valid only for regions with similar depositional sources and processes, and that these rates cannot be extrapolated regionally. The location of an elliptical zone of active seismicity over the inferred provenance of the turbidites suggests that they were triggered by large earthquakes. Distal turbidite sediment accumulation rates were more than two orders of magnitude greater than pelagic sediment accumulation rates on the Canada Abyssal Plain during the last 8000 years. This disparity reconciles the discrepancy between the high accumulation rates assumed by some for the Arctic Ocean because of the numerous major rivers and large ice sheets that discharge into this small mediterranean basin and the low pelagic sedimentation rates that have been reported from the Arctic Ocean.

  18. Torque Studies of Quantum Oscillations in Anisotropic Metals and Superconductors

    NASA Astrophysics Data System (ADS)

    Julian, Stephen

    1998-03-01

    Quantum oscillations provide unique information about the properties of charged quasiparticles at the Fermi surface, but their measurement demands both very pure samples and extremely high measurement sensitivity. Shoenberg first used a torque method to study de Haas van Alphen oscillations in 1937. Since then, under the combined influence of the development of competing techniques, the evolution of magnet technology, and the changing frontiers of condensed matter physics, the technique has come in and out of vogue a number of times. Today the method is undergoing a renaissance for two reasons. Firstly it is ideally suited to the study of quantum oscillations in highly anisotropic metals such as organic metals,( C. Lupien, L. Taillefer, et al., to be published.) two dimensional electron gases in semiconductor heterostructures,( S.A.J. Wiegers, M. Specht, L.P. Lévy, M.Y. Simmons, D.A. Ritchie, A. Cavanna, B. Etienne, G. Martinez and P. Wyder, Phys. Rev. Lett. 79) (1997) 3238, and references therein. and strongly correlated oxides,( C. Bergemann, S.R. Julian, A.P. Mackenzie, et al., to be published.) all of which have become subjects of intense interest. Secondly, the development of micromachined levers allows the observation of quantum oscillations in nanogram sized samples. It is hoped that this will allow the study of quasiparticle Fermi surfaces in the large number of materials for which only very small single crystals are available. In this talk the information available from quantum oscillation measurements, and the historical development of the torque technique, will be reviewed. An overview will then be given of recent measurements, emphasising the advantages and disadvantages of the torque method as compared with competing techniques.

  19. Towards large scale modelling of wetland water dynamics in northern basins.

    NASA Astrophysics Data System (ADS)

    Pedinotti, V.; Sapriza, G.; Stone, L.; Davison, B.; Pietroniro, A.; Quinton, W. L.; Spence, C.; Wheater, H. S.

    2015-12-01

    Understanding the hydrological behaviour of low topography, wetland-dominated sub-arctic areas is one major issue needed for the improvement of large scale hydrological models. These wet organic soils cover a large extent of Northern America and have a considerable impact on the rainfall-runoff response of a catchment. Moreover their strong interactions with the lower atmosphere and the carbon cycle make of these areas a noteworthy component of the regional climate system. In the framework of the Changing Cold Regions Network (CCRN), this study aims at providing a model for wetland water dynamics that can be used for large scale applications in cold regions. The modelling system has two main components : a) the simulation of surface runoff using the Modélisation Environmentale Communautaire - Surface and Hydrology (MESH) land surface model driven with several gridded atmospheric datasets and b) the routing of surface runoff using the WATROUTE channel scheme. As a preliminary study, we focus on two small representative study basins in Northern Canada : Scotty Creek in the lower Liard River valley of the Northwest Territories and Baker Creek, located a few kilometers north of Yellowknife. Both areas present characteristic landscapes dominated by a series of peat plateaus, channel fens, small lakes and bogs. Moreover, they constitute important fieldwork sites with detailed data to support our modelling study. The challenge of our new wetland model is to represent the hydrological functioning of the various landscape units encountered in those watersheds and their interactions using simple numerical formulations that can be later extended to larger basins such as the Mackenzie river basin. Using observed datasets, the performance of the model to simulate the temporal evolution of hydrological variables such as the water table depth, frost table depth and discharge is assessed.

  20. Physical property studies in the USGS GHASTLI Laboratory

    USGS Publications Warehouse

    Winters, William J.; Waite, William F.; Hutchinson, Deborah R.; Mason, David H.

    2008-01-01

    One of the many challenges in studying methane hydrate is that it is unstable at typical surface pressure and temperature conditions. To enable methane hydrates and hydrate-bearing sediments to be formed, analyzed, and experimented with, the National Energy Technology Laboratory (NETL), and the U.S. Geological Survey (USGS) in Woods Hole, MA collaborated in the development of the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI). Over the past decade, the USGS has been operating GHASTLI and collaborating in the development of new sample handling tools and procedures, in an effort to improve our ability to analyze methane hydrate in the lab. These tools will enable hydrate researchers to more confidently link field studies (for example geophysics or drilling) with theoretical and predictive studies, leading to a better understanding of the geological conditions and processes that control the growth and concentration of natural gas hydrates, how hydrates affect the properties of the host sediments, and how the hydrate-sediment system changes when hydrate dissociates and releases the previously bound gas. To date, GHASTLI has been used to measure natural samples from ODP Leg 164 (Blake Ridge off the U.S. southeast Atlantic margin), Leg 204 (Hydrate Ridge off the Pacific Northwest margin) and the Mallik well (Mackenzie Delta in northwestern Canada). Additional samples in the queue for analysis are from the Chevron Joint Industry Project Experiment in the Gulf of Mexico and most recently, from IODP Leg 311 off Vancouver Island. Several foreign nations have asked whether GHASTLI will be available to analyze samples that might be recovered during national drilling programs. The ability to perform lab testing of hydrates within sediments is one of the unique capabilities of GHASTLI that separates it from other simulators at NETL and elsewhere.

  1. Inferred gas hydrate and permafrost stability history models linked to climate change in the Beaufort-Mackenzie Basin, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Majorowicz, J.; Safanda, J.; Osadetz, K.

    2012-03-01

    Atmospheric methane from episodic gas hydrate (GH) destabilization, the "clathrate gun" hypothesis, is proposed to affect past climates, possibly since the Phanerozoic began or earlier. In the terrestrial Beaufort-Mackenzie Basin (BMB), GHs occur commonly below thick ice-bearing permafrost (IBP), but they are rare within it. Two end-member GH models, where gas is either trapped conventionally (Case 1) or where it is trapped dynamically by GH formation (Case 2), were simulated using profile (1-D) models and a 14 Myr ground surface temperature (GST) history based on marine isotopic data, adjusted to the study setting, constrained by deep heat flow, sedimentary succession conductivity, and observed IBP and Type I GH contacts in Mallik wells. Models consider latent heat effects throughout the IBP and GH intervals. Case 1 GHs formed at ~0.9 km depth only ~1 Myr ago by in situ transformation of conventionally trapped natural gas. Case 2 GHs begin to form at ~290-300 m ~6 Myr ago in the absence of lithological migration barriers. During glacial intervals Case 2 GH layers expand both downward and upward as the permafrost grows downward through and intercalated with GHs. The distinctive model results suggest that most BMB GHs resemble Case 1 models, based on the observed distinct and separate occurrences of GHs and IBP and the lack of observed GH intercalations in IBP. Case 2 GHs formed >255 m, below a persistent ice-filled permafrost layer that is as effective a seal to upward methane migration as are Case 1 lithological seals. All models respond to GST variations, but in a delayed and muted manner such that GH layers continue to grow even as the GST begins to increase. The models show that the GH stability zone history is buffered strongly by IBP during the interglacials. Thick IBP and GHs could have persisted since ~1.0 Myr ago and ~4.0 Myr ago for Cases 1 and 2, respectively. Offshore BMB IBP and GHs formed terrestrially during Pleistocene sea level low stands. Where IBP is sufficiently thick, both IBP and GHs persist even where inundated by a Holocene sea level rise and both are also expected to persist into the next glacial even if atmospheric CO2 doubles. We do not address the "clathrate gun" hypothesis directly, but our models show that sub-IBP GHs respond to, rather than cause GST changes, due to both how GST changes propagates with depth and latent heat effects. Models show that many thick GH accumulations are prevented from contributing methane to the atmosphere, because they are almost certainly trapped below either ice-filled IBP or lithological barriers. Where permafrost is sufficiently thick, combinations of geological structure, thermal processes and material properties make sub-IBP GHs unlikely sources for significant atmospheric methane fluxes. Our sub-IBP GH model histories suggest that similar models applied to other GH settings could improve the understanding of GHs and their potential to affect climate.

  2. The cost of work-related physical assaults in Minnesota.

    PubMed Central

    McGovern, P; Kochevar, L; Lohman, W; Zaidman, B; Gerberich, S G; Nyman, J; Findorff-Dennis, M

    2000-01-01

    OBJECTIVE: To describe the long-term productivity costs of occupational assaults. DATA SOURCES/STUDY SETTING: All incidents of physical assaults that resulted in indemnity payments, identified from the Minnesota Department of Labor and Industry (DLI) Workers' Compensation system in 1992. Medical expenditures were obtained from insurers, and data on lost wages, legal fees, and permanency ratings were collected from DLI records. Insurance administrative expenses were estimated. Lost fringe benefits and household production losses were imputed. STUDY DESIGN: The human capital approach was used to describe the long-term costs of occupational assaults. Economic software was used to apply a modified version of Rice, MacKenzie, and Associates' (1989) model for estimating the present value of past losses from 1992 through 1995 for all cases, and the future losses for cases open in 1996. PRINCIPAL FINDINGS: The total costs for 344 nonfatal work-related assaults were estimated at $5,885,448 (1996 dollars). Calculation of injury incidence and average costs per case and per employee identified populations with an elevated risk of assault. An analysis by industry revealed an elevated risk for workers employed in justice and safety (incidence: 198/100,000; $19,251 per case; $38 per employee), social service (incidence: 127/100,000; $24,210 per case; $31 per employee), and health care (incidence: 76/100,000; $13,197 per case; $10 per employee). CONCLUSIONS: Identified subgroups warrant attention for risk factor identification and prevention efforts. Cost estimates can serve as the basis for business calculations on the potential value of risk management interventions. PMID:10966089

  3. Simulated long-term changes in river discharge and soil moisture due to global warming

    USGS Publications Warehouse

    Manabe, S.; Milly, P.C.D.; Wetherald, R.

    2004-01-01

    By use of a coupled ocean atmosphere-land model, this study explores the changes of water availability, as measured by river discharge and soil moisture, that could occur by the middle of the 21st century in response to combined increases of greenhouse gases and sulphate aerosols based upon the "IS92a" scenario. In addition, it presents the simulated change in water availability that might be realized in a few centuries in response to a quadrupling of CO2 concentration in the atmosphere. Averaging the results over extended periods, the radiatively forced changes, which are very similar between the two sets of experiments, were successfully extracted. The analysis indicates that the discharges from Arctic rivers such as the Mackenzie and Ob' increase by up to 20% (of the pre-Industrial Period level) by the middle of the 21st century and by up to 40% or more in a few centuries. In the tropics, the discharges from the Amazonas and Ganga-Brahmaputra rivers increase substantially. However, the percentage changes in runoff from other tropical and many mid-latitude rivers are smaller, with both positive and negative signs. For soil moisture, the results of this study indicate reductions during much of the year in many semiarid regions of the world, such as the southwestern region of North America, the northeastern region of China, the Mediterranean coast of Europe, and the grasslands of Australia and Africa. As a percentage, the reduction is particularly large during the dry season. From middle to high latitudes of the Northern Hemisphere, soil moisture decreases in summer but increases in winter.

  4. Socializing problems and low self-esteem enhance interpersonal models of eating disorders: Evidence from a clinical sample.

    PubMed

    Raykos, Bronwyn C; McEvoy, Peter M; Fursland, Anthea

    2017-09-01

    The present study evaluated the relative clinical validity of two interpersonal models of the maintenance of eating disorders, IPT-ED (Rieger et al., ) and the interpersonal model of binge eating (Wilfley, MacKenzie, Welch, Ayres, & Weissman, ; Wilfley, Pike, & Striegel-Moore, ). While both models propose an indirect relationship between interpersonal problems and eating disorder symptoms via negative affect, IPT-ED specifies negative social evaluation as the key interpersonal problem, and places greater emphasis on the role of low self-esteem as an intermediate variable between negative social evaluation and eating pathology. Treatment-seeking individuals (N = 306) with a diagnosed eating disorder completed measures of socializing problems, generic interpersonal problems, self-esteem, eating disorder symptoms, and negative affect (depression and anxiety). Structural equation models were run for both models. Consistent with IPT-ED, a significant indirect pathway was found from socializing problems to eating disorder symptoms via low self-esteem and anxiety symptoms. There was also a direct pathway from low self-esteem to eating disorder symptoms. Using a socializing problems factor in the model resulted in a significantly better fit than a generic interpersonal problems factor. Inconsistent with both interpersonal models, the direct pathway from socializing problems to eating disorder symptoms was not supported. Interpersonal models that included self-esteem and focused on socializing problems (rather than generic interpersonal problems) explained more variance in eating disorder symptoms. Future experimental, prospective, and treatment studies are required to strengthen the case that these pathways are causal. © 2017 Wiley Periodicals, Inc.

  5. Connectivity and storage functions of channel fens and flat bogs in northern basins

    NASA Astrophysics Data System (ADS)

    Quinton, W. L.; Hayashi, M.; Pietroniro, A.

    2003-12-01

    The hydrological response of low relief, wetland-dominated zones of discontinuous permafrost is poorly understood. This poses a major obstacle to the development of a physically meaningful meso-scale hydrological model for the Mackenzie basin, one of the world's largest northern basins. The present study examines the runoff response of five representative study basins (Scotty Creek, and the Jean-Marie, Birch, Blackstone and Martin Rivers) in the lower Liard River valley as a function of their major biophysical characteristics. High-resolution (4 m × 4 m) IKONOS satellite imagery was used in combination with aerial and ground verification surveys to classify the land cover, and to delineate the wetland area connected to the drainage system. Analysis of the annual hydrographs of each basin for the 4 year period 1997 to 2000, demonstrated that runoff was positively correlated with the drainage density, basin slope, and the percentage of the basin covered by channel fens, and was negatively correlated with the percentage of the basin covered by flat bogs. The detailed analysis of the water-level response to summer rainstorms at several nodes along the main drainage network in the Scotty Creek basin showed that the storm water was slowly routed through channel fens with an average flood-wave velocity of 0·23 km h-1. The flood-wave velocity appears to be controlled by channel slope and hydraulic roughness in a manner consistent with the Manning formula, suggesting that a roughness-based routing algorithm might be useful in large-scale hydrological models. Copyright

  6. Quantifying the Uncertainty in Estimates of Surface Atmosphere Fluxes by Evaluation of SEBS and SCOPE Models

    NASA Astrophysics Data System (ADS)

    Timmermans, J.; van der Tol, C.; Verhoef, A.; Wang, L.; van Helvoirt, M.; Verhoef, W.; Su, Z.

    2009-11-01

    An earth observation based evapotranspiration (ET) product is essential to achieving the GEWEX CEOP science objectives and to achieve the GEOSS water resources societal benefit areas. Conventional techniques that employ point measurements to estimate the components of the energy balance are only representative for local scales and cannot be extended to large areas because of the heterogeneity of the land surface and the dynamic nature of heat transfer processes.The objective of this research is to quantify the uncertainties of evapotranspiration estimates by the Surface Energy Balance System (SEBS) algorithm through validation against the detailed Soil Canopy Observation, Photochemistry and Energy fluxes process (SCOPE) model with site optimized parameters. This SCOPE model takes both radiative processes and biochemical processes into account; it combines the SAIL radiative transfer model with the energy balance at leaf level to simulate the interaction between surface and atmosphere. In this paper the validation results are presented for a semi long term dataset in Reading on 2002.The comparison between the two models showed a high correlation over the complete growth of maize capturing the daily variation to good extent. The absolute values of the SEBS model are however much lower compared to those of the SCOPE model. This is due to the fact the SEBS model uses a surface resistance parameterization that is unable to account of high vegetation. An update of the SEBS model will resolve this problem.

  7. A generalized formulation for downscaling data based on Fourier Transform and inversion: Mathematical rationale and application to the Max-Planck-Institute aerosol climatology data

    NASA Astrophysics Data System (ADS)

    Zhang, Taiping; Stackhouse, Paul W.; Gupta, Shashi K.; Cox, Stephen J.; Mikovitz, J. Colleen

    2017-02-01

    Occasionally, a need arises to downscale a time series of data from a coarse temporal resolution to a finer one, a typical example being from monthly means to daily means. For this case, daily means derived as such are used as inputs of climatic or atmospheric models so that the model results may exhibit variance on the daily time scale and retain the monthly mean of the original data set without an abrupt change from the end of one month to the beginning of the next. Different methods have been developed which often need assumptions, free parameters and the solution of simultaneous equations. Here we derive a generalized formulation by means of Fourier transform and inversion so that it can be used to directly compute daily means from a series of an arbitrary number of monthly means. The formulation can be used to transform any coarse temporal resolution to a finer one. From the derived results, the original data can be recovered almost identically. As a real application, we use this method to derive the daily counterpart of the MAC-v1 aerosol climatology that provides monthly mean aerosol properties for 18 shortwave bands and 12 longwave bands for the years from 1860 to 2100. The derived daily means are to be used as inputs of the shortwave and longwave algorithms of the NASA GEWEX SRB project.

  8. Job satisfaction and organizational citizenship behavior of personnel at one university hospital in Thailand.

    PubMed

    Intaraprasong, Bhusita; Dityen, Warunee; Krugkrunjit, Peera; Subhadrabandhu, Thanya

    2012-06-01

    To investigate the relationship between job satisfaction and Organizational Citizenship Behavior (OCB) of the personnel at one university hospital in Thailand. This cross-sectional descriptive study was conducted on 296 respondents who worked in the Office of the Dean, 13 departments and 2 Offices of Research Center and Office of Community Medicine Center. All of them were personnel in one university hospital in Thailand. The Organizational Citizenship Behavior Questionnaire of Niehoff and Moorman using the five dimensions scale developed by Podsakoff and Mackenzie and Job Descriptive Index (JDI) were used for assessing job satisfaction. For inferential statistics, Pearson's product moment correlation coefficient was used for correlation. The percentage mean score of job satisfaction was 58.67 and subscale of job satisfaction was found that satisfaction with supervision held the highest of the mean score, while satisfaction with pay and promotion had the lowest and low of the mean score. The mean score of OCB was high and the facets of OCB was found that conscientiousness had the highest mean score and sportsmanship had the lowest. By using Pearson's Product Moment Correlation Coefficient to analyze the relationships between satisfaction and OCB, it showed that there were statistically significant low positive correlations between job satisfaction and OCB (r = 0.173, p < 0.01). The one university hospital executives should promote the pay, promotion and supervision factors which encourage personnel to be satisfied and demonstrate their OCB as their reciprocal reaction.

  9. Prevalence and zoonotic risks of Trichophyton mentagrophytes and Cheyletiella spp. in guinea pigs and rabbits in Dutch pet shops.

    PubMed

    Overgaauw, P A M; Avermaete, K H A van; Mertens, C A R M; Meijer, M; Schoemaker, N J

    2017-06-01

    Young rabbits and guinea pigs are often purchased as pets for children and may be infected with zoonotic skin infections. To assess the risk of acquiring such an infection from rabbits or guinea pigs, this study investigated the prevalence of the fungus Trichophyton mentagrophytes and the fur mite Cheyletiella parasitovorax in asymptomatic rabbits and guinea pigs in Dutch pet shops. In 91 pet shops a total of 213 rabbits and 179 guinea pigs were sampled using the Mackenzie technique and cultured. Clean cultures were examined microscopically and a PCR was performed on at least one sample from each pet shop. All animals were investigated for fur mite using a flea comb, a magnifying glass and white paper. From the fur of 3.8% (8/213) of the rabbits and 16.8% (30/179) of the guinea pigs, T. mentagrophytes was isolated. From 1 guinea pig (0,6%) Chrysosporium keratinophilum was isolated. Dermatophyte-positive rabbits and guinea pigs originated from 5.6% (5/90) and 27.3% (24/88) of the investigated pet shops, respectively. Fur mites were not found. Pet shops can play an important role in preventing transmission of zoonotic ringworm infections (dermatophytosis) and educating their customers. Specific preventive measures such as routine screening examinations and (prophylactic) treatment of rabbits and guinea pigs are recommended next to regular hygiene when handling animals. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Flux and age of dissolved organic carbon exported to the Arctic Ocean: A carbon isotopic study of the five largest arctic rivers

    USGS Publications Warehouse

    Raymond, P.A.; McClelland, J.W.; Holmes, R.M.; Zhulidov, A.V.; Mull, K.; Peterson, B.J.; Striegl, Robert G.; Aiken, G.R.; Gurtovaya, T.Y.

    2007-01-01

    The export and Δ14C-age of dissolved organic carbon (DOC) was determined for the Yenisey, Lena, Ob', Mackenzie, and Yukon rivers for 2004–2005. Concentrations of DOC elevate significantly with increasing discharge in these rivers, causing approximately 60% of the annual export to occur during a 2-month period following spring ice breakup. We present a total annual flux from the five rivers of ∼16 teragrams (Tg), and conservatively estimate that the total input of DOC to the Arctic Ocean is 25–36 Tg, which is ∼5–20% greater than previous fluxes. These fluxes are also ∼2.5× greater than temperate rivers with similar watershed sizes and water discharge. Δ14C-DOC shows a clear relationship with hydrology. A small pool of DOC slightly depleted in Δ14C is exported with base flow. The large pool exported with spring thaw is enriched in Δ14C with respect to current-day atmospheric Δ14C-CO2 values. A simple model predicts that ∼50% of DOC exported during the arctic spring thaw is 1–5 years old, ∼25% is 6–10 years in age, and 15% is 11–20 years old. The dominant spring melt period, a historically undersampled period, exports a large amount of young and presumably semilabile DOC to the Arctic Ocean.

  11. The female stalker.

    PubMed

    Meloy, J Reid; Mohandie, Kris; Green, Mila

    2011-01-01

    A study of 143 female stalkers was conducted, part of a large North American sample of stalkers (N=1005) gathered from law enforcement, prosecutorial, and entertainment corporate security files (Mohandie, Meloy, Green McGowan, & Williams, 2006). The typical female stalker was a single, separated, or divorced woman in her mid-30s with a psychiatric diagnosis, most often a mood disorder. She was more likely to pursue a male acquaintance, stranger, or celebrity, rather than a prior sexual intimate. When compared with male stalkers, the female stalkers had significantly less frequent criminal histories, and were significantly less threatening and violent. Their pursuit behavior was less proximity based, and their communications were more benign than those of the males. The average duration of stalking was 17 months, but the modal duration was two months. Stalking recidivism was 50%, with modal time between intervention and re-contacting the victim of one day. Any prior actual relationship (sexual intimate or acquaintance) significantly increased the frequency of threats and violence with large effect sizes for the entire female sample. The most dangerous subgroup was the prior sexually intimate stalkers, of whom the majority both threatened and were physically violent. The least dangerous were the female stalkers of Hollywood celebrities. Two of the McEwan, Mullen, MacKenzie, and Ogloff (2009b) predictor variables for stalking violence among men were externally validated with moderate effect sizes for the women: threats were associated with increased risk of violence, and letter writing was associated with decreased risk of violence. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Meltwater routing and the Younger Dryas

    DOE PAGES

    Condron, Alan; Winsor, Peter

    2012-12-04

    The Younger Dryas -- the last major cold episode on Earth -- is generally considered to have been triggered by a meltwater flood into the North Atlantic. The prevailing hypothesis, proposed by Broecker et al. [1989 Nature 341:318–321] more than two decades ago, suggests that an abrupt rerouting of Lake Agassiz overflow through the Great Lakes and St. Lawrence Valley inhibited deep water formation in the subpolar North Atlantic and weakened the strength of the Atlantic Meridional Overturning Circulation (AMOC).More recently, Tarasov and Peltier [2005 Nature 435:662–665] showed that meltwater could have discharged into the Arctic Ocean via the Mackenziemore » Valley ~4,000 km northwest of the St. Lawrence outlet. Here we use a sophisticated, high-resolution, ocean sea-ice model to study the delivery of meltwater from the two drainage outlets to the deep water formation regions in the North Atlantic. Unlike the hypothesis of Broecker et al., freshwater from the St. Lawrence Valley advects into the subtropical gyre ~3,000 km south of the North Atlantic deep water formation regions and weakens the AMOC by <15%. In contrast, narrow coastal boundary currents efficiently deliver meltwater from the Mackenzie Valley to the deep water formation regions of the subpolar North Atlantic and weaken the AMOC by >30%. We conclude that meltwater discharge from the Arctic, rather than the St. Lawrence Valley, was more likely to have triggered the Younger Dryas cooling.« less

  13. Mercury and omega-3 fatty acid profiles in freshwater fish of the Dehcho Region, Northwest Territories: Informing risk benefit assessments.

    PubMed

    Laird, Matthew J; Henao, Juan J Aristizabal; Reyes, Ellen S; Stark, Ken D; Low, George; Swanson, Heidi K; Laird, Brian D

    2018-10-01

    Traditional foods have significant nutritional, sociocultural and economic value in subarctic First Nations communities of the Northwest Territories, and play a crucial role in promoting cultural continuity and sovereignty. Omega-3 polyunsaturated fatty acids (N-3 PUFAs), including eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), carry significant benefits for neurocognitive development and cardiovascular health. However, the health risks posed by methylmercury may serve to undermine the benefits of fish consumption in Northern Indigenous communities. The objective of this study was to characterize profiles for mercury (Hg) and fatty acids in fish species harvested across lakes of the Dehcho Region, in the Mackenzie Valley of the Northwest Territories, to better understand the risks and benefits associated with traditional foods. Hg levels increased with trophic position, with the highest levels found in Burbot, Lake Trout, Walleye, and Northern Pike. Lake Trout, along with planktivorous species including Lake Whitefish, Cisco, and Sucker, demonstrated higher N-3 PUFAs than other species. Negative associations were observed between Hg and N-3 PUFAs in Lake Trout, Northern Pike, Walleye and Burbot. Further stratifying these relationships revealed significant interactions by lake. Significant differences observed in fatty acid and Hg profiles across lakes underscore the importance of considering both species- and lake-specific findings. This growing dataset of freshwater fish of the Dehcho will inform future efforts to characterize human Hg exposure profiles using probabilistic dose reconstruction models. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Arctic Sea Ice Structure and Texture over Four Decades Using Landsat Archive Data

    NASA Astrophysics Data System (ADS)

    Doulgeris, A. P.; Scambos, T.; Tiampo, K. F.

    2017-12-01

    Arctic sea ice cover is a sensitive indicator of Arctic climate change, and has shown dramatic changes in recent decades, having thinned by 70% ( 3.5 m to 1.2 m between 1980 and 2015). Age distribution of the ice has changed in a similar fashion, with over 90% of the ice older than 5 winters now lost relative to 1985. To date, most of the data have been based on the continuous passive microwave record that began in 1978, which has 25 km grid resolution, or on SAR imagery with somewhat less frequent, less continuous observations. Landsat image data exist for the Arctic sea ice region north of Alaska and the MacKenzie River Delta area in Canada, the Canadian Archipelago, and Baffin Bay, extending back over 40 years. Resolution of the earliest Landsat MSS data is 56-70 m per pixel, and after 1984 many additional images at 30 m resolution are available. This 40+ year time period is used to investigate long-term changes in sea ice properties, such as comparing image-based snapshots with the trend in seasonal extents today, as well as more novel properties like sea ice roughness, lead structure and texture. The proposed study will initially investigate Landsat image analysis techniques to extract quantitative measures of ice roughness, lead fraction and perhaps morphological measures like lead linearity (which potentially indicate strength and compression history within the ice), and to explore these measures over the 40+ year time frame.

  15. A Modeling Study of Oceanic Response to Daily and Monthly Surface Forcing

    NASA Technical Reports Server (NTRS)

    Sui, Chung-Hsiung; Li, Xiao-Fan; Rienecker, Michele M.; Lau, William K.-M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The goal of this study is to investigate the effect of high-frequency surface forcing (wind stresses and heat fluxes) on upper-ocean response. We use the reduced-gravity quasi-isopycnal ocean model by Schopf and Loughe (1995) for this study. Two experiments are performed: one with daily and the other with monthly surface forcing. The two experiments are referred to as DD and MM, respectively. The daily surface wind stress is produced from the SSM/I wind data (Atlas et al. 1991) using the drag coefficient of Large and Pond (1982). The surface latent and sensible heat fluxes are estimated using the atmospheric mixed layer model by Seager et al. (1995) with the time-varying air temperature and specific humidity from the NCEP-NCAR reanalysis (Kalnay et al. 1996). The radiation is based on climatological shortwave radiation from the Earth Radiation Budget Experiment (ERBE) [Harrison et al. 1993] and the daily GEWEX SRB data. The ocean model domain is restricted to the Pacific Ocean with realistic land boundaries. At the southern boundary the model temperature and salinity are relaxed to the Levitus (1994) climatology. The time-mean SST distribution from MM is close to the observed SST climatology while the mean SST field from DD is about 1.5 C cooler. To identify the responsible processes, we examined the mean heat budgets and the heat balance during the first year (when the difference developed) in the two experiments. The analysis reveals that this is contributed by two factors. One is the difference in latent heat flux. The other is the difference in mixing processes. To further evaluate the responsible processes, we repeated the DD experiment by reducing the based vertical diffusion from 1e-4 to 0.5e-5. The resultant SST field becomes quite closer to the observed SST field. SST variability from the two experiments is generally similar, but the equatorial SST differences between the two experiments show interannual variations. We are investigating the possible mechanisms responsible for the different responses.

  16. Measurement of Physical and Hydraulic Properties of Organic Soil Using Computed Tomographic Imagery

    NASA Astrophysics Data System (ADS)

    Blais, K. E.; Quinton, W. L.; Heck, R. J.; Price, J. S.; Schmidt, M. G.

    2005-12-01

    The Lower Liard River valley is located within the continental northern boreal region and the zone of discontinuous permafrost. Lying in the centre of the Mackenzie basin, this valley is an extensive flat headwater region with a high density of open water and peatlands. Several standard methods of measuring the physical properties of organic soils exist, although many of them have several drawbacks that limit their use. Organic soils, in particular, have unique properties that require special attention to ensure that the measured hydrological characteristics are represented as they exist in nature. The goal of this research was to devise an improved method of analyzing and measuring the physical and hydraulic properties of organic soil using MicroCT imagery. Specifically, this research seeks to determine if two and three-dimensional images of peat can be used to accurately characterize air-filled porosity, active porosity, pore size distribution, pore saturated area and capillarity of porous Sphagnum cells. Results indicate that measurements derived from these images are consistent with current literature. They also suggest that this non-destructive method is a valuable tool for measuring peat physical and hydraulic properties and that there is potential for additional research using CT technology.

  17. Evidence for slow late-glacial ice retreat in the upper Rangitata Valley, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Shulmeister, J.; Fink, D.; Winkler, S.; Thackray, G. D.; Borsellino, R.; Hemmingsen, M.; Rittenour, T. M.

    2018-04-01

    A suite of cosmogenic radionuclide ages taken from boulders on lateral and latero-terminal moraines in the Rangitata Valley, eastern South Island, New Zealand demonstrates that relatively thick ice occupied valley reaches inland of the Rangitata Gorge until c. 21 ka. Thereafter ice began to thin, and by c. 17 ka it had retreated 33 km up-valley of the Rangitata Gorge to the Butler-Brabazon Downs, a structurally created basin in the upper Rangitata Valley. Despite its magnitude, this retreat represents a minor ice volume reduction from 21 ka to 17 ka, and numerous lateral moraines preserved suggest a relatively gradual retreat over that 4 ka period. In contrast to records from adjacent valleys, there is no evidence for an ice-collapse at c. 18 ka. We argue that the Rangitata record constitutes a more direct record of glacial response to deglacial climate than other records where glacial dynamics were influenced by proglacial lake development, such as the Rakaia Valley to the North and the major valleys in the Mackenzie Basin to the south-west. Our data supports the concept of a gradual warming during the early deglaciation in the South Island New Zealand.

  18. Pollen-based biomes for Beringia 18,000, 6000 and 0 14C yr BP

    USGS Publications Warehouse

    Edwards, M.E.; Anderson, P.M.; Brubaker, L.B.; Ager, T.A.; Andreev, A.A.; Bigelow, N.H.; Cwynar, L.C.; Eisner, Wendy R.; Harrison, S.P.; Hu, F.-S.; Jolly, D.; Lozhkin, A.V.; MacDonald, G.M.; Mock, Cary J.; Ritchie, J.C.; Sher, A.V.; Spear, R.W.; Williams, J.W.; Yu, G.

    2000-01-01

    The objective biomization method developed by Prentice et al. (1996) for Europe was extended using modern pollen samples from Beringia and then applied to fossil pollen data to reconstruct palaeovegetation patterns at 6000 and 18,000 14C yr BP. The predicted modern distribution of tundra, taiga and cool conifer forests in Alaska and north-western Canada generally corresponds well to actual vegetation patterns, although sites in regions characterized today by a mosaic of forest and tundra vegetation tend to be preferentially assigned to tundra. Siberian larch forests are delimited less well, probably due to the extreme under-representation of Larix in pollen spectra. The biome distribution across Beringia at 6000 14C yr BP was broadly similar to today, with little change in the northern forest limit, except for a possible northward-advance in the Mackenzie delta region. The western forest limit in Alaska was probably east of its modern position. At 18,000 14C yr BP the whole of Beringia was covered by tundra. However, the importance of the various plant functional types varied from site to site, supporting the idea that the vegetation cover was a mosaic of different tundra types.

  19. Estimating site occupancy and abundance using indirect detection indices

    USGS Publications Warehouse

    Stanley, T.R.; Royle, J. Andrew

    2005-01-01

    Knowledge of factors influencing animal distribution and abundance is essential in many areas of ecological research, management, and policy-making. Because common methods for modeling and estimating abundance (e.g., capture-recapture, distance sampling) are sometimes not practical for large areas or elusive species, indices are sometimes used as surrogate measures of abundance. We present an extension of the Royle and Nichols (2003) generalization of the MacKenzie et al. (2002) site-occupancy model that incorporates length of the sampling interval into the, model for detection probability. As a result, we obtain a modeling framework that shows how useful information can be extracted from a class of index methods we call indirect detection indices (IDIs). Examples of IDIs include scent station, tracking tube, snow track, tracking plate, and hair snare surveys. Our model is maximum likelihood, and it can be used to estimate site occupancy and model factors influencing patterns of occupancy and abundance in space. Under certain circumstances, it can also be used to estimate abundance. We evaluated model properties using Monte Carlo simulations and illustrate the method with tracking tube and scent station data. We believe this model will be a useful tool for determining factors that influence animal distribution and abundance.

  20. Petroleum prospectivity of the Canada Basin, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Hart, P.E.

    2011-01-01

    Reconnaissance seismic reflection data indicate that Canada Basin is a remnant of the Amerasia Basin of the Arctic Ocean that lies south of the Alpha-Mendeleev Large Igneous Province, which was constructed on the northern part of the Amerasia Basin between about 127 and 89-75 Ma. Canada Basin is filled with Early Jurassic to Holocene detritus from the Mackenzie River system, which drains the northern third of interior North America, with sizable contributions from Alaska and Northwest Canada. Except for the absence of a salt- and shale-bearing mobile substrate Canada Basin is analogous to the Mississippi Delta and the western Gulf of Mexico. Canada Basin contains about 7 to >14 km of sediment beneath the Mackenzie Prodelta on the southeast, 6 to 7 km of sediment beneath the abyssal plain on the west, and roughly 5 or 6 million cubic km of sediment. About three fourths of the basin fill generates low amplitude seismic reflections, interpreted to represent hemiplegic deposits, and a fourth of the fill generates interbedded lenses to extensive layers of moderate to high amplitude reflections interpreted to represent unconfined turbidite and amalgamated channel deposits. Extrapolation from Arctic Alaska and Northwest Canada suggests that three fourths of the section in Canada Basin may contain intervals of hydrocarbon source rocks and the apparent age of the basin suggests that it contains three of the six stratigraphic intervals that together provided >90?? of the World's discovered reserves of oil and gas.. Worldwide heat flow averages suggest that about two thirds of Canada Basin lies in the oil or gas window. At least five types of structural or stratigraphic features of local to regional occurrence offer exploration targets in Canada Basin. These consist of 1) a belt of late Eocene to Miocene shale-cored detachment folds containing with at least two anticlines that are capped by beds with bright spots, 2) numerous moderate to high amplitude reflection packets (unconfined turbidite or amalgamated channel deposits), interbedded with low amplitude reflections (hemipelagic deposits) that lie in the oil or gas window, 3) basinward dipping onlap unconformities against Northwind Escarpment that are overlain by turbidite or amalgamated channel deposits interbedded with hemipelagic deposits, 4) serpentinized peridotite (?) diapirs with marginal onlap unconformities and overlying domes or anticlines, and 5) supratenuous (compaction) folds in the lower half of the Canada Basin adjacent to Northwind Escarpment. The extent of Canada Basin (>700.000 square km) and its diverse and numerous potential structural and stratigraphic traps offer many targets to hydrocarbon exploration. However deep water (to almost 4000 m), remoteness from harbors and markets, and thick accumulations of seasonal to permanent sea ice (until its possible removal by global warming later this century) will require the discovery of very large deposits for commercial success in most parts of Canada Basin. Copyright 2011, Offshore Technology Conference.

  1. Concentrations of mercury in tissues of beluga whales (Delphinapterus leucas) from several communities in the Canadian Arctic from 1981 to 2002.

    PubMed

    Lockhart, W L; Stern, G A; Wagemann, R; Hunt, R V; Metner, D A; DeLaronde, J; Dunn, B; Stewart, R E A; Hyatt, C K; Harwood, L; Mount, K

    2005-12-01

    Beluga whales have been hunted for food by Native People in the Canadian Arctic since prehistoric time. Here we report the results of analyses of total mercury in samples of liver, kidney, muscle and muktuk from collections over the period 1981-2002. We compare these results with human consumption guidelines and examine temporal and geographic variation. Liver has been analyzed more frequently than other organs and it has been used as the indicator organ. Mercury accumulates in the liver of the whales over time so that the whale ages are usually linked statistically to their levels of mercury in liver. Virtually all the samples of 566 animals analyzed contained mercury in liver at concentrations higher than the Canadian consumption guideline of 0.5 microg g-1 (wet weight) for fish. (There is no regulatory guideline for concentrations in marine mammals in Canada.) Samples from locations in the Mackenzie Delta in the western Canadian Arctic and from Pangnirtung in the eastern Canadian Arctic were obtained more often than from other location and these offered the best chances to determine whether levels have changed over time. Statistical outlier points were removed and the regressions of (ln) mercury in liver on age were used to calculate the level of mercury in whales of age 13.1 years in order to compare age-adjusted levels at different locations. These age-adjusted levels and also the slopes of regressions suggested that levels have increased in the Mackenzie Delta over the sampling period although not in a simple linear fashion. Other locations had fewer collections, generally spread over fewer years. Some of them indicated differences between sampling times but we could not establish whether these differences were simply temporal variation or whether they were segments of a consistent trend. For example, the levels in whales from Arviat were considerably higher in 1999 than in 1984 but we have only two samples. Similarly, samples from Iqaluit in 1994 exceeded considerably those in 1993 and the interval seems too short to reflect any regional temporal trend and more likely represent an extreme case of year-to-year variation. Previous analyses of data from geographically distinct groups had suggested that whales in the western Canadian Arctic had higher levels of mercury than those from the eastern Canadian Arctic. The present analysis suggests that such regional differences have diminished and are no longer statistically significant. No site has indicated significant decreases in more recent samples. The levels of total mercury in the most analyzed organs fell in the order of liver (highest levels), kidney, muscle and muktuk (lowest level). While muktuk had the lowest level of the organs most frequently analyzed, it is the preferred food item from these whales and it still exceeded the consumption guideline in most instances.

  2. A Coupled fcGCM-GCE Modeling System: A 3D Cloud Resolving Model and a Regional Scale Model

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and ore sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicity calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A Brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), (3) A discussion on the Goddard WRF version (its developments and applications), and (4) The characteristics of the four-dimensional cloud data sets (or cloud library) stored at Goddard.

  3. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.; hide

    2008-01-01

    Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite simulator has been developed at GSFC, which is designed to fully utilize the multi-scale modeling system. A brief review of the multi-scale modeling system with unified physics/simulator and examples is presented in this article.

  4. Geochemistry and Flux of Terrigenous Dissolved Organic Matter to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Spencer, R. G.; Mann, P. J.; Hernes, P. J.; Tank, S. E.; Striegl, R. G.; Dyda, R. Y.; Peterson, B. J.; McClelland, J. W.; Holmes, R. M.

    2011-12-01

    Rivers draining into the Arctic Ocean exhibit high concentrations of terrigenous dissolved organic carbon (DOC) and recent studies indicate that DOC export is changing due to climatic warming and alteration in permafrost condition. The fate of exported DOC in the Arctic Ocean is of key importance for understanding the regional carbon cycle and remains a point of discussion in the literature. As part of the Arctic Great Rivers Observatory (Arctic-GRO) project, samples were collected for DOC, chromophoric dissolved organic matter (CDOM) and lignin phenols from the Ob', Yenisey, Lena, Kolyma, Mackenzie and Yukon rivers in 2009 - 2010. DOC and lignin concentrations were elevated during the spring freshet and measurements related to DOC composition indicated an increasing contribution from terrestrial vascular plant sources at this time of year (e.g. lignin carbon-normalized yield, CDOM spectral slope, SUVA254, humic-like fluorescence). CDOM absorption was found to correlate strongly with both DOC (r2=0.83) and lignin concentration (r2=0.92) across the major arctic rivers. Utilizing these relationships we modeled loads for DOC and lignin export from high-resolution CDOM measurements (daily across the freshet) to derive improved flux estimates, particularly from the dynamic spring discharge maxima period when the majority of DOC and lignin export occurs. The new load estimates for DOC and lignin are higher than previous evaluations, emphasizing that if these are more representative of current arctic riverine export, terrigenous DOC is transiting through the Arctic Ocean at a faster rate than previously thought. It is apparent that higher resolution sampling of arctic rivers is exceptionally valuable with respect to deriving accurate fluxes and we highlight the potential of CDOM in this role for future studies and the applicability of in-situ CDOM sensors.

  5. A comprehensive approach to identify dominant controls of the behavior of a land surface-hydrology model across various hydroclimatic conditions

    NASA Astrophysics Data System (ADS)

    Haghnegahdar, Amin; Elshamy, Mohamed; Yassin, Fuad; Razavi, Saman; Wheater, Howard; Pietroniro, Al

    2017-04-01

    Complex physically-based environmental models are being increasingly used as the primary tool for watershed planning and management due to advances in computation power and data acquisition. Model sensitivity analysis plays a crucial role in understanding the behavior of these complex models and improving their performance. Due to the non-linearity and interactions within these complex models, Global sensitivity analysis (GSA) techniques should be adopted to provide a comprehensive understanding of model behavior and identify its dominant controls. In this study we adopt a multi-basin multi-criteria GSA approach to systematically assess the behavior of the Modélisation Environmentale-Surface et Hydrologie (MESH) across various hydroclimatic conditions in Canada including areas in the Great Lakes Basin, Mackenzie River Basin, and South Saskatchewan River Basin. MESH is a semi-distributed physically-based coupled land surface-hydrology modelling system developed by Environment and Climate Change Canada (ECCC) for various water resources management purposes in Canada. We use a novel method, called Variogram Analysis of Response Surfaces (VARS), to perform sensitivity analysis. VARS is a variogram-based GSA technique that can efficiently provide a spectrum of sensitivity information across a range of scales within the parameter space. We use multiple metrics to identify dominant controls of model response (e.g. streamflow) to model parameters under various conditions such as high flows, low flows, and flow volume. We also investigate the influence of initial conditions on model behavior as part of this study. Our preliminary results suggest that this type of GSA can significantly help with estimating model parameters, decreasing calibration computational burden, and reducing prediction uncertainty.

  6. Land-Use and Climate : first results from the LUCID experiments ; implications for experimental design in IPCC-AR5

    NASA Astrophysics Data System (ADS)

    de Noblet, N.; Pitman, A.; Participants, Lucid

    2009-04-01

    The project "Land-Use and Climate, IDentification of robust impacts" (LUCID) was conceived under the auspices of IGBP-iLEAPS and GEWEX-GLASS, to address the robustness of 'local' and possible remote impacts of land-use induced land-cover changes (LCC). LUCID explores, using methodologies that major climate modelling groups recognise, those impacts of LCC that are robust - that is, above the noise generated by model variability and consistent across a suite of climate models. To start with, seven climate models were run, in ensemble mode (5 realisations per 31-years long experiment), with prescribed observed sea-surface temperatures (SSTs) and sea ice extent (SIc). Pre-industrial and present-day simulations were used to explore the impacts of biogeophysical impacts of human-induced land cover change. The imposed LCC perturbation led to statistically significant changes in latent heat flux and near-surface temperature over the regions of land cover change, but few significant changes in precipitation. Our results show no common remote impacts of land cover change. They also highlight a dilemma for both historical hind-casts and future projections; land cover change is regionally important, but it is not feasible within the time frame of the next IPCC (AR5) assessment to implement this change commonly across multiple models. Further analysis are in progress and will be presented to identify the continental regions where changes in LCC may have been more important than the combined changes in SSTs, SIc and CO2 between the pre-industrial times and nowadays.

  7. Evaluating GCM land surface hydrology parameterizations by computing river discharges using a runoff routing model: Application to the Mississippi basin

    NASA Technical Reports Server (NTRS)

    Liston, G. E.; Sud, Y. C.; Wood, E. F.

    1994-01-01

    To relate general circulation model (GCM) hydrologic output to readily available river hydrographic data, a runoff routing scheme that routes gridded runoffs through regional- or continental-scale river drainage basins is developed. By following the basin overland flow paths, the routing model generates river discharge hydrographs that can be compared to observed river discharges, thus allowing an analysis of the GCM representation of monthly, seasonal, and annual water balances over large regions. The runoff routing model consists of two linear reservoirs, a surface reservoir and a groundwater reservoir, which store and transport water. The water transport mechanisms operating within these two reservoirs are differentiated by their time scales; the groundwater reservoir transports water much more slowly than the surface reservior. The groundwater reservior feeds the corresponding surface store, and the surface stores are connected via the river network. The routing model is implemented over the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project Mississippi River basin on a rectangular grid of 2 deg X 2.5 deg. Two land surface hydrology parameterizations provide the gridded runoff data required to run the runoff routing scheme: the variable infiltration capacity model, and the soil moisture component of the simple biosphere model. These parameterizations are driven with 4 deg X 5 deg gridded climatological potential evapotranspiration and 1979 First Global Atmospheric Research Program (GARP) Global Experiment precipitation. These investigations have quantified the importance of physically realistic soil moisture holding capacities, evaporation parameters, and runoff mechanisms in land surface hydrology formulations.

  8. The covariability of North American land-atmosphere coupling strength and rainfall characteristics in reanalyses

    NASA Astrophysics Data System (ADS)

    Ferguson, C. R.; Roundy, J. K.; Kim, W.

    2016-12-01

    The GEWEX North American Regional Hydroclimate Project (RHP): Water for the Food Baskets of the World initiative is aimed at: improving understanding of key processes—both natural and anthropogenic—that determine water availability, improving understanding of the independent and collective sensitivity of these processes to local and global change, and the integration of knowledge gained into the next model development cycle for the benefit of improved water availability forecasts. Considering that the agricultural sector accounts for three quarters of water withdrawals and suffers the brunt of drought-related financial damages, a rational RHP focal point is subseasonal-to-seasonal forecast skill. Forecasts on this timescale over the Great Plains food basket have shown particular sensitivity to land initial conditions (i.e., soil moisture, snow cover, and vegetative stress) and the realism of modeled land-atmosphere (L-A) coupling. L-A coupling strength denotes the degree to which the model's land scheme (i.e., soil column memory and surface flux partitioning) affect the atmospheric forecast scheme's daytime evolution of the convective boundary layer, including cloud development and precipitation. Prior studies have connected L-A coupling strength to the phase and amplitude of the diurnal precipitation cycle, as well as the evolution of heatwaves and drought. In this study, we apply three metrics of L-A coupling strength: soil moisture memory, the two-legged coupling metric, and the convective triggering potential-humidity index, to the 161-year NOAA-Cooperative Institute for Research in Environmental Sciences Twentieth Century Reanalysis (20CRV2c). Over the full period, we also analyze warm-season rainfall characteristics and subsequently perform statistical trend and change point analyses on both sets of results. We test the stationarity of both coupling and rainfall characteristics as well as the hypothesis that any detected shifts in coupling strength and afternoon rainfall frequency will coincide. Although the source data has inherent limitations that will be quantified and discussed, the results will be the first of their kind over such a long period of record and will provide key insights for the North American RHP.

  9. Towards Improved Snow Water Equivalent Estimation via GRACE Assimilation

    NASA Technical Reports Server (NTRS)

    Forman, Bart; Reichle, Rofl; Rodell, Matt

    2011-01-01

    Passive microwave (e.g. AMSR-E) and visible spectrum (e.g. MODIS) measurements of snow states have been used in conjunction with land surface models to better characterize snow pack states, most notably snow water equivalent (SWE). However, both types of measurements have limitations. AMSR-E, for example, suffers a loss of information in deep/wet snow packs. Similarly, MODIS suffers a loss of temporal correlation information beyond the initial accumulation and final ablation phases of the snow season. Gravimetric measurements, on the other hand, do not suffer from these limitations. In this study, gravimetric measurements from the Gravity Recovery and Climate Experiment (GRACE) mission are used in a land surface model data assimilation (DA) framework to better characterize SWE in the Mackenzie River basin located in northern Canada. Comparisons are made against independent, ground-based SWE observations, state-of-the-art modeled SWE estimates, and independent, ground-based river discharge observations. Preliminary results suggest improved SWE estimates, including improved timing of the subsequent ablation and runoff of the snow pack. Additionally, use of the DA procedure can add vertical and horizontal resolution to the coarse-scale GRACE measurements as well as effectively downscale the measurements in time. Such findings offer the potential for better understanding of the hydrologic cycle in snow-dominated basins located in remote regions of the globe where ground-based observation collection if difficult, if not impossible. This information could ultimately lead to improved freshwater resource management in communities dependent on snow melt as well as a reduction in the uncertainty of river discharge into the Arctic Ocean.

  10. Optical Proxies for Dissolved Organic Matter in Estuaries and Coastal Waters

    NASA Astrophysics Data System (ADS)

    Osburn, C. L.; Montgomery, M. T.; Boyd, T. J.; Bianchi, T. S.; Coffin, R. B.; Paerl, H. W.

    2016-02-01

    The flux of terrestrial dissolved organic carbon (DOC) into the coastal ocean from rivers and estuaries is a major part of the ocean's carbon cycle. Absorbing and fluorescing properties of chromophoric dissolved organic matter (CDOM) often are used to fingerprint its sources and to track fluxes of terrestrial DOM into the ocean. They also are used as proxies for organic matter to calibrate remote sensing observations from air and space and from in situ platforms. In general, strong relationships hold for large river dominated estuaries (e.g., the Mississippi River) but little is known about how widely such relationships can be developed in estuaries that have relatively small or multiple riverine inputs. Results are presented from a comparison of six diverse estuarine systems: the Atchafalaya River (ARE), the Mackenzie River (MRE), the Chesapeake Bay (CBE), Charleston Harbor (CHE), Puget Sound (PUG), and the Neuse River (NRE). Mean DOM concentrations ranged from 100 to 700 µM and dissolved lignin concentrations ranged from ca. 3-30 µg L-1. Overall trends were linear between CDOM measured at 350 nm (a350) and DOC concentration (R2=0.77) and between a350 and lignin (R2=0.87). Intercepts of a350 vs lignin were not significantly different from zero (P=0.43) suggesting that most of the CDOM was terrestrial in nature. Deviations from these regressions were strongest in the Neuse River Estuary, the most eutrophic of the six estuaries studied. After this calibration procedure, fluorescence modeling via parallel factor analysis (PARAFAC) was used to make estimates of terrigenous and planktonic DOC in these estuaries.

  11. Landscape-level controls on dissolved carbon flux from diverse catchments of the circumboreal

    USGS Publications Warehouse

    Tank, Suzanne; Frey, Karen E.; Striegl, Robert G.; Raymond, Peter A.; Holmes, R. Max; McClelland, James W.; Peterson, Bruce J.

    2012-01-01

    While much of the dissolved organic carbon (DOC) within rivers is destined for mineralization to CO2, a substantial fraction of riverine bicarbonate (HCO3-) flux represents a CO2 sink, as a result of weathering processes that sequester CO2 as HCO3-. We explored landscape-level controls on DOC and HCO3- flux in subcatchments of the boreal, with a specific focus on the effect of permafrost on riverine dissolved C flux. To do this, we undertook a multivariate analysis that partitioned the variance attributable to known, key regulators of dissolved C flux (runoff, lithology, and vegetation) prior to examining the effect of permafrost, using riverine biogeochemistry data from a suite of subcatchments drawn from the Mackenzie, Yukon, East, and West Siberian regions of the circumboreal. Across the diverse catchments that we study, controls on HCO3- flux were near-universal: runoff and an increased carbonate rock contribution to weathering (assessed as riverwater Ca:Na) increased HCO3- yields, while increasing permafrost extent was associated with decreases in HCO3-. In contrast, permafrost had contrasting and region-specific effects on DOC yield, even after the variation caused by other key drivers of its flux had been accounted for. We used ionic ratios and SO4 yields to calculate the potential range of CO2 sequestered via weathering across these boreal subcatchments, and show that decreasing permafrost extent is associated with increases in weathering-mediated CO2 fixation across broad spatial scales, an effect that could counterbalance some of the organic C mineralization that is predicted with declining permafrost.

  12. Resolving the tectonic transition between ancestral North America and the northern Cordillera

    NASA Astrophysics Data System (ADS)

    Schaeffer, A. J.; Audet, P.; Lebedev, S.

    2015-12-01

    The northern Cordillera, situated in the Canadian northwest, is one of the most actively deforming regions in Canada and host to the highest earthquake activity in the country. Furthermore, it presents a largely contiguous snapshot through almost 4 Gyr of Earth's history across a zone <2000 km in linear extent. Deformation is thought to be driven by tectonic forces transferred from the Alaska-Pacific plate collision eastwards to the Cordilleran Deformation Front (CDF), where the westward edge of the Canadian Shield acts as a rigid backstop. Past studies in the southern Yukon indicate a sharp transition into the craton underlying the CDF and evidence of craton growth through shallow subduction. Further north the proximity of the craton edge to the CDF remains largely unresolved; based on studies of the southern Cordillera and Alaska, significant variations in lithospheric architecture are expected. Additionally, significant seismicity is observed further north off the Beaufort Shelf; however, its relationship to the regional stress fields and associated tectonic forcing is unclear. Despite the high seismicity levels across, detailed study of this region has been limited by insufficient coverage of seismological infrastructure, hindering resolution in past models. With the deployment of the USArray Transportable Array in Alaska over the last several years, combined with regional arrays such as the Yukon-Northwest Seismic Network (YNSN), Banks Island Seismic Network (BISN) and Mackenzie Mountains Experiment, new studies will leverage these datasets enabling more detailed imaging of the structure and seismicity across the region. Here we present a new high-resolution, vertically polarized shear speed and azimuthal model of northwestern Canada and Alaska, constrained by vertical component seismogram fits computed using the Automated Multimode Inversion of Surface, S, and multiple-S waveforms. With this new model, we aim to address key questions relating to the dynamics of the northern Cordillera, including how far west the craton edge extends at depth, in addition to the crustal thickness, velocity structure, and pattern of crustal fabrics around major faults throughout the region.

  13. Current and potential impacts of mosquitoes and the pathogens they vector in the Pacific region

    USGS Publications Warehouse

    LaPointe, Dennis

    2007-01-01

    Mosquitoes and the pathogens they transmit are ubiquitous throughout most of the temperate and tropical regions of the world. The natural and pre-European distribution and diversity of mosquitoes and mosquito-borne diseases throughout much of the Pacific region, however, depicts a depauperate and relatively benign fauna reinforcing the dream of “paradise regained”. In the central and South Pacific few mosquito species were able to colonize the remotest islands and atolls. Native mosquitoes are limited to a few far-ranging species and island endemics are typically restricted to the genera of Aedes and Culex. Only lymphatic filariasis appears to have been present as an endemic mosquito-borne disease before European contact. In nearby Australia, however, some 242 species of mosquitoes are known to occur and more than 70 arboviruses have been identified (Mackenzie 1999). In this regard Australia is more similar to the rest of the tropic and subtropical world than the smaller islands of Oceania. In our ever-shrinking world of global commerce, military activity and travel, the nature of mosquito-borne disease in the Pacific was bound to change. This paper is a brief summary of introduced mosquitoes in the Pacific and their potential impacts on human and wildlife health.

  14. Tracing the transport of colored dissolved organic matter in water masses of the Southern Beaufort Sea: relationship with hydrographic characteristics

    NASA Astrophysics Data System (ADS)

    Matsuoka, A.; Bricaud, A.; Benner, R.; Para, J.; Sempéré, R.; Prieur, L.; Bélanger, S.; Babin, M.

    2012-03-01

    Light absorption by colored dissolved organic matter (CDOM) [aCDOM(λ)] plays an important role in the heat budget of the Arctic Ocean, contributing to the recent decline in sea ice, as well as in biogeochemical processes. We investigated aCDOM(λ) in the Southern Beaufort Sea where a significant amount of CDOM is delivered by the Mackenzie River. In the surface layer, aCDOM(440) showed a strong and negative correlation with salinity, indicating strong river influence and conservative transport in the river plume. Below the mixed layer, a weak but positive correlation between aCDOM(440) and salinity was observed above the upper halocline, resulting from the effect of removal of CDOM due to brine rejection and lateral intrusion of Pacific summer waters into these layers. In contrast, the relationship was negative in the upper and the lower haloclines, suggesting these waters originated from Arctic coastal waters. DOC concentrations in the surface layer were strongly correlated with aCDOM(440) (r2 = 0.97), suggesting that this value can be estimated in this area, using aCDOM(440) that is retrieved using satellite ocean color data. Implications for estimation of DOC concentrations in surface waters using ocean color remote sensing are discussed.

  15. Chapter 50 Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean

    USGS Publications Warehouse

    Grantz, Arthur; Hart, Patrick E.; Childers, Vicki A

    2011-01-01

    Amerasia Basin is the product of two phases of counterclockwise rotational opening about a pole in the lower Mackenzie Valley of NW Canada. Phase 1 opening brought ocean–continent transition crust (serpentinized peridotite?) to near the seafloor of the proto-Amerasia Basin, created detachment on the Eskimo Lakes Fault Zone of the Canadian Arctic margin and thinned the continental crust between the fault zone and the proto-Amerasia Basin to the west, beginning about 195 Ma and ending prior to perhaps about 160 Ma. The symmetry of the proto-Amerasia Basin was disrupted by clockwise rotation of the Chukchi Microcontinent into the basin from an original position along the Eurasia margin about a pole near 72°N, 165 W about 145.5–140 Ma. Phase 2 opening enlarged the proto-Amerasia Basin by intrusion of mid-ocean ridge basalt along its axis between about 131 and 127.5 Ma. Following intrusion of the Phase 2 crust an oceanic volcanic plateau, the Alpha–Mendeleev Ridge LIP (large igneous province), was extruded over the northern Amerasia Basin from about 127 to 89–75 Ma. Emplacement of the LIP halved the area of the Amerasia Basin, and the area lying south of the LIP became the Canada Basin.

  16. Chapter 50: Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Hart, P.E.; Childers, V.A.

    2011-01-01

    Amerasia Basin is the product of two phases of counterclockwise rotational opening about a pole in the lower Mackenzie Valley of NW Canada. Phase 1 opening brought ocean-continent transition crust (serpentinized peridotite?) to near the seafloor of the proto-Amerasia Basin, created detachment on the Eskimo Lakes Fault Zone of the Canadian Arctic margin and thinned the continental crust between the fault zone and the proto-Amerasia Basin to the west, beginning about 195 Ma and ending prior to perhaps about 160 Ma. The symmetry of the proto-Amerasia Basin was disrupted by clockwise rotation of the Chukchi Microcontinent into the basin from an original position along the Eurasia margin about a pole near 72??N, 165 Wabout 145.5-140 Ma. Phase 2 opening enlarged the proto-Amerasia Basin by intrusion of mid-ocean ridge basalt along its axis between about 131 and 127.5 Ma. Following intrusion of the Phase 2 crust an oceanic volcanic plateau, the Alpha-Mendeleev Ridge LIP (large igneous province), was extruded over the northern Amerasia Basin from about 127 to 89-75 Ma. Emplacement of the LIP halved the area of the Amerasia Basin, and the area lying south of the LIP became the Canada Basin. ?? 2011 The Geological Society of London.

  17. Home range size variation in female arctic grizzly bears relative to reproductive status and resource availability.

    PubMed

    Edwards, Mark A; Derocher, Andrew E; Nagy, John A

    2013-01-01

    The area traversed in pursuit of resources defines the size of an animal's home range. For females, the home range is presumed to be a function of forage availability. However, the presence of offspring may also influence home range size due to reduced mobility, increased nutritional need, and behavioral adaptations of mothers to increase offspring survival. Here, we examine the relationship between resource use and variation in home range size for female barren-ground grizzly bears (Ursus arctos) of the Mackenzie Delta region in Arctic Canada. We develop methods to test hypotheses of home range size that address selection of cover where cover heterogeneity is low, using generalized linear mixed-effects models and an information-theoretic approach. We found that the reproductive status of female grizzlies affected home range size but individually-based spatial availability of highly selected cover in spring and early summer was a stronger correlate. If these preferred covers in spring and early summer, a period of low resource availability for grizzly bears following den-emergence, were patchy and highly dispersed, females travelled farther regardless of the presence or absence of offspring. Increased movement to preferred covers, however, may result in greater risk to the individual or family.

  18. From Natural to Design River Deltas

    NASA Astrophysics Data System (ADS)

    Giosan, Liviu

    2016-04-01

    Productive and biologically diverse, deltaic lowlands attracted humans since prehistory and may have spurred the emergence of the first urban civilizations. Deltas continued to be an important nexus for economic development across the world and are currently home for over half a billion people. But recently, under the double whammy of sea level rise and inland sediment capture behind dams, they have become the most threatened coastal landscape. Here I will address several deceptively simple questions to sketch some unexpected answers using example deltas from across the world from the Arctic to the Tropics, from the Danube to the Indus, Mississippi to Godavari and Krishna, Mackenzie to Yukon. What is a river delta? What is natural and what is not in a river delta? Are the geological and human histories of a delta important for its current management? Is maintaining a delta the same to building a new one? Can we design better deltas than Nature? These answers help us see clearly that survival of deltas in the next century depends on human intervention and is neither assured nor simple to address or universally applicable. Empirical observations on the hydrology, geology, biology and biochemistry of deltas are significantly lagging behind modeling capabilities endangering the applicability of numerical-based reconstruction solutions and need to be ramped up significantly and rapidly across the world.

  19. Biot-Gassmann theory for velocities of gas hydrate-bearing sediments

    USGS Publications Warehouse

    Lee, M.W.

    2002-01-01

    Elevated elastic velocities are a distinct physical property of gas hydrate-bearing sediments. A number of velocity models and equations (e.g., pore-filling model, cementation model, effective medium theories, weighted equations, and time-average equations) have been used to describe this effect. In particular, the weighted equation and effective medium theory predict reasonably well the elastic properties of unconsolidated gas hydrate-bearing sediments. A weakness of the weighted equation is its use of the empirical relationship of the time-average equation as one element of the equation. One drawback of the effective medium theory is its prediction of unreasonably higher shear-wave velocity at high porosities, so that the predicted velocity ratio does not agree well with the observed velocity ratio. To overcome these weaknesses, a method is proposed, based on Biot-Gassmann theories and assuming the formation velocity ratio (shear to compressional velocity) of an unconsolidated sediment is related to the velocity ratio of the matrix material of the formation and its porosity. Using the Biot coefficient calculated from either the weighted equation or from the effective medium theory, the proposed method accurately predicts the elastic properties of unconsolidated sediments with or without gas hydrate concentration. This method was applied to the observed velocities at the Mallik 2L-39 well, Mackenzie Delta, Canada.

  20. Detailed evaluation of gas hydrate reservoir properties using JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well downhole well-log displays

    USGS Publications Warehouse

    Collett, T.S.

    1999-01-01

    The JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well project was designed to investigate the occurrence of in situ natural gas hydrate in the Mallik area of the Mackenzie Delta of Canada. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas-hydrate-bearing sediments. Downhole logging tool strings deployed in the Mallik 2L-38 well included the Schlumberger Platform Express with a high resolution laterolog, Array Induction Imager Tool, Dipole Shear Sonic Imager, and a Fullbore Formation Microlmager. The downhole log data obtained from the log- and core-inferred gas-hydrate-bearing sedimentary interval (897.25-1109.5 m log depth) in the Mallik 2L-38 well is depicted in a series of well displays. Also shown are numerous reservoir parameters, including gas hydrate saturation and sediment porosity log traces, calculated from available downhole well-log and core data. The gas hydrate accumulation delineated by the Mallik 2L-38 well has been determined to contain as much as 4.15109 m3 of gas in the 1 km2 area surrounding the drill site.

  1. Dr John Nottingham's 1854 Landmark Treatise on Conical Cornea Considered in the Context of the Current Knowledge of Keratoconus.

    PubMed

    Gokul, Akilesh; Patel, Dipika V; McGhee, Charles N J

    2016-05-01

    John Nottingham has been widely credited with the first accurate description of keratoconus in his treatise on conical cornea, published in 1854. Contained within the 270-page treatise are accounts and theories of keratoconus postulated by authors such as Scarpa, von Carion, von Ammon, and Mackenzie, synthesized by Nottingham in a treatise containing his own original observations. Nottingham's work delves deeply into keratoconus, with coverage reminiscent of a modern review, albeit in a far less succinct manner. He extensively describes the epidemiology, clinical presentation, underlying cause, and treatment of keratoconus. However, the concepts put forth are limited largely by the contemporary lack of understanding of the underlying anatomy and physiology of the eye, and the observations, by technological limitations. He postulates a similar treatment algorithm to that used today; optical devices being the management option of choice in the mild stages with surgery being a last resort. None of the surgical methods discussed are used in the modern era, but he does make reference to the possible efficacy of corneal transplantation. Nottingham's treatise was published over 160 years ago, yet his ideas and observations are surprisingly accurate. It is very possible that he was the first person to publish an accurate, comprehensive description of keratoconus.

  2. Linking mercury exposure to habitat and feeding behaviour in Beaufort Sea beluga whales

    NASA Astrophysics Data System (ADS)

    Loseto, L. L.; Stern, G. A.; Deibel, D.; Connelly, T. L.; Prokopowicz, A.; Lean, D. R. S.; Fortier, L.; Ferguson, S. H.

    2008-12-01

    Mercury (Hg) levels in the Beaufort Sea beluga population have been increasing since the 1990's. Ultimately, it is the Hg content of prey that determines beluga Hg levels. However, the Beaufort Sea beluga diet is not understood, and little is known about the diet Hg sources in their summer habitat. During the summer, they segregate into social groups based on habitat use leading to the hypothesis that they may feed in different food webs explaining Hg dietary sources. Methyl mercury (MeHg) and total mercury (THg) levels were measured in the estuarine-shelf, Amundsen Gulf and epibenthic food webs in the western Canadian Arctic collected during the Canadian Arctic Shelf Exchange Study (CASES) to assess their dietary Hg contribution. To our knowledge, this is the first study to report MeHg levels in estuarine fish and epibenthic invertebrates from the Arctic Ocean. Although the Mackenzie River is a large source of Hg, the estuarine-shelf prey items had the lowest MeHg levels, ranging from 0.1 to 0.27 μg/g dry weight (dw) in arctic cisco ( Coregonus autumnalis) and saffron cod ( Eleginus gracilis) respectively. Highest MeHg levels occurred in fourhorn sculpin ( Myoxocephalus quadricornis) (0.5 μg/g dw) from the epibenthic food web. Beluga hypothesized to feed in the epibenthic and Amundsen Gulf food webs had the highest Hg levels matching with high Hg levels in associated food webs, and estuarine-shelf belugas had the lowest Hg levels (2.6 μg/g dw), corresponding with the low food web Hg levels, supporting the variation in dietary Hg uptake. The trophic level transfer of Hg was similar among the food webs, highlighting the importance of Hg sources at the bottom of the food web as well as food web length. We propose that future biomagnification studies incorporate predator behaviour with food web structure to assist in the evaluation of dietary Hg sources.

  3. Leveraging this Golden Age of Remote Sensing and Modeling of Terrestrial Hydrology to Understand Water Cycling in the Water Availability Grand Challenge for North America

    NASA Astrophysics Data System (ADS)

    Painter, T. H.; Famiglietti, J. S.; Stephens, G. L.

    2016-12-01

    We live in a time of increasing strains on our global fresh water availability due to increasing population, warming climate, changes in precipitation, and extensive depletion of groundwater supplies. At the same time, we have seen enormous growth in capabilities to remotely sense the regional to global water cycle and model complex systems with physically based frameworks. The GEWEX Water Availability Grand Challenge for North America is poised to leverage this convergence of remote sensing and modeling capabilities to answer fundamental questions on the water cycle. In particular, we envision an experiment that targets the complex and resource-critical Western US from California to just into the Great Plains, constraining physically-based hydrologic modeling with the US and international remote sensing capabilities. In particular, the last decade has seen the implementation or soon-to-be launch of water cycle missions such as GRACE and GRACE-FO for groundwater, SMAP for soil moisture, GPM for precipitation, SWOT for terrestrial surface water, and the Airborne Snow Observatory for snowpack. With the advent of convection-resolving mesoscale climate and water cycle modeling (e.g. WRF, WRF-Hydro) and mesoscale models capable of quantitative assimilation of remotely sensed data (e.g. the JPL Western States Water Mission), we can now begin to test hypotheses on the nature and changes in the water cycle of the Western US from a physical standpoint. In turn, by fusing water cycle science, water management, and ecosystem management while addressing these hypotheses, this golden age of remote sensing and modeling can bring all fields into a markedly less uncertain state of present knowledge and decadal scale forecasts.

  4. Aerosol-Cloud-Precipitation Interactions over Indo-Gangetic Basin

    NASA Technical Reports Server (NTRS)

    Tsay, S.-C.; Lau, K. .; Holben, B. N.; Hsu, N. C.; Bhartia, P. K.

    2005-01-01

    About 60% of world population reside in Asia, in term of which sheer population density presents a major environmental stress. Economic expansion in this region is, in fact, accompanied by increases in bio-fuel burning, industrial pollution, and land cover and land use changes. With a growth rate of approx. 8%/yr for Indian economy, more than 600 million people from Lahore, Pakistan to Calcutta, India over the Indo-Gangetic Basin have particularly witnessed increased frequencies of floods and droughts as well as a dramatic increase in atmospheric loading of aerosols (i.e., anthropogenic and natural aerosol) in recent decades. This regional change (e.g., aerosol, cloud, precipitation, etc.) will constitute a vital part of the global change in the 21st century. Better understanding of the impacts of aerosols in affecting monsoon climate and water cycles is crucial in providing the physical basis to improve monsoon climate prediction and for disaster mitigation. Based on climate model simulations, absorbing aerosols (dust and black carbon) play a critical role in affecting interannual and intraseasonal variability of the Indian monsoon. An initiative on the integrated (aerosols, clouds, and precipitation) measurements approach over the Indo-Gangetic Basin will be discussed. An array of ground-based (e.g., AERONET, MPLNET, SMART-COMMIT, etc.) and satellite (e.g., Terra, A-Train, etc.) sensors will be utilized to acquire aerosol characteristics, sources/sinks, and transport processes during the pre-monsoon (April-May, aerosol forcing) season, and to obtain cloud and precipitation properties during the monsoon (May-June, water cycle response) season. Close collaboration with other international programs, such as ABC, CLIVAR, GEWEX, and CEOP in the region is anticipated.

  5. A GLOBAL ASSESSMENT OF SOLAR ENERGY RESOURCES: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Stackhouse, P. W., Jr.; Chandler, W.; Hoell, J. M.; Westberg, D.; Whitlock, C. H.

    2010-12-01

    NASA's POWER project, or the Prediction of the Worldwide Energy Resources project, synthesizes and analyzes data on a global scale. The products of the project find valuable applications in the solar and wind energy sectors of the renewable energy industries. The primary source data for the POWER project are NASA's World Climate Research Project (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Release 3.0) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (V 4.0.3). Users of the POWER products access the data through NASA's Surface meteorology and Solar Energy (SSE, Version 6.0) website (http://power.larc.nasa.gov). Over 200 parameters are available to the users. The spatial resolution is 1 degree by 1 degree now and will be finer later. The data covers from July 1983 to December 2007, a time-span of 24.5 years, and are provided as 3-hourly, daily and monthly means. As of now, there have been over 18 million web hits and over 4 million data file downloads. The POWER products have been systematically validated against ground-based measurements, and in particular, data from the Baseline Surface Radiation Network (BSRN) archive, and also against the National Solar Radiation Data Base (NSRDB). Parameters such as minimum, maximum, daily mean temperature and dew points, relative humidity and surface pressure are validated against the National Climate Data Center (NCDC) data. SSE feeds data directly into Decision Support Systems including RETScreen International clean energy project analysis software that is written in 36 languages and has greater than 260,000 users worldwide.

  6. Global Precipitation Analyses at Time Scales of Monthly to 3-Hourly

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Huffman, George; Curtis, Scott; Bolvin, David; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2002-01-01

    Global precipitation analysis covering the last few decades and the impact of the new TRMM precipitation observations are discussed. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to explore global and regional variations and trends and is compared to the much shorter TRMM (Tropical Rainfall Measuring Mission) tropical data set. The GPCP data set shows no significant trend in precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. Regional trends are also analyzed. A trend pattern that is a combination of both El Nino and La Nina precipitation features is evident in the Goodyear data set. This pattern is related to an increase with time in the number of combined months of El Nino and La Nina during the Goodyear period. Monthly anomalies of precipitation are related to ENRON variations with clear signals extending into middle and high latitudes of both hemispheres. The GPCP daily, 1 degree latitude-longitude analysis, which is available from January 1997 to the present is described and the evolution of precipitation patterns on this time scale related to El Nino and La Nina is described. Finally, a TRMM-based Based analysis is described that uses TRMM to calibrate polar-orbit microwave observations from SSM/I and geosynchronous OR observations and merges the various calibrated observations into a final, Baehr resolution map. This TRMM standard product will be available for the entire TRMM period (January Represent). A real-time version of this merged product is being produced and is available at 0.25 degree latitude-longitude resolution over the latitude range from 50 deg. N -50 deg. S. Examples will be shown, including its use in monitoring flood conditions.

  7. Use of TRMM Rainfall Information in Improving Long-Term, Satellite-Based Global Precipitation Analyses

    NASA Technical Reports Server (NTRS)

    Starr, David OC. (Technical Monitor); Adler, Robert F.; Huffman, George; Curtis, Scott; Bolvin, David; Nelkin, Eric

    2002-01-01

    The TRMM rainfall products are inter-compared among themselves and to the 23 year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/ GEWEX) Global Precipitation Climatology Project (GPCP). Ways in which the TRMM-based estimates can be used to improve the long-term data set are described. These include improvement of the passive microwave algorithm that is applied to the 15 year SSM/I record and calibration or adjustment of the current GPCP fields utilizing the 4-5 year overlap of TRMM and GPCP. A comparison of the GPCP monthly surface precipitation fields and the TRMM-based multi-satellite analyses indicates that the two are similar, but have significant differences that relate to the different input data sets. Although on a zonal average basis over the ocean the two analyses are similar in the deep Tropics, there are subtle differences between the eastern and western Pacific Ocean in the relative magnitudes. In mid-latitudes the GPCP has somewhat larger mean precipitation than TRMM. Statistical comparisons of TRMM and GPCP monthly fields are carried out in terms of histogram matching for both ocean and land regions and for small areas to diagnose differences. These comparisons form the basis for a TRMM calibration of the GPCP fields using matched histograms over regional areas as a function of season. Although final application of this procedure will likely await the Version 6 of the TRMM products, tests using Version 5 are shown that provide a TRMM-calibrated GPCP version that will produce an improved climatology and a more accurate month-to-month precipitation analysis for the last 20 years.

  8. Global intensification in observed short-duration rainfall extremes

    NASA Astrophysics Data System (ADS)

    Fowler, H. J.; Lewis, E.; Guerreiro, S.; Blenkinsop, S.; Barbero, R.; Westra, S.; Lenderink, G.; Li, X.

    2017-12-01

    Extreme rainfall events are expected to intensify with a warming climate and this is currently driving extensive research. While daily rainfall extremes are widely thought to have increased globally in recent decades, changes in rainfall extremes on shorter timescales, often associated with flash flooding, have not been documented at global scale due to surface observational limitations and the lack of a global sub-daily rainfall database. The access to and use of such data remains a challenge. For the first time, we have synthesized across multiple data sources providing gauge-based sub-daily rainfall observations across the globe over the last 6 decades. This forms part of the INTENSE project (part of the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges (GEWEX) Hydroclimate Project cross-cut on sub-daily rainfall). A set of global hydroclimatic indices have been produced based upon stakeholder recommendations including indices that describe maximum rainfall totals and timing, the intensity, duration and frequency of storms, frequency of storms above specific thresholds and information about the diurnal cycle. This will provide a unique global data resource on sub-daily precipitation whose derived indices will be freely available to the wider scientific community. Because of the physical connection between global warming and the moisture budget, we also sought to infer long-term changes in sub-daily rainfall extremes contingent on global mean temperature. Whereas the potential influence of global warming is uncertain at regional scales, where natural variability dominates, aggregating surface stations across parts of the world may increase the global warming-induced signal. Changes in terms of annual maximum rainfall across various resolutions ranging from 1-h to 24-h are presented and discussed.

  9. Fermionology in the Kondo-Heisenberg model: the case of CeCoIn5

    NASA Astrophysics Data System (ADS)

    Zhong, Yin; Zhang, Lan; Lu, Han-Tao; Luo, Hong-Gang

    2015-09-01

    The Fermi surface of heavy electron systems plays a fundamental role in understanding their variety of puzzling phenomena, for example, quantum criticality, strange metal behavior, unconventional superconductivity and even enigmatic phases with yet unknown order parameters. The spectroscopy measurement of the typical heavy fermion superconductor CeCoIn5 has demonstrated multi-Fermi surface structure, which has not been studied in detail theoretically in a model system like the Kondo-Heisenberg model. In this work, we take a step toward such a theoretical model by revisiting the Kondo-Heisenberg model. It is found that the usual self-consistent calculation cannot reproduce the fermionology of the experimental observation of the system due to the sign binding between the hopping of the conduction electrons and the mean-field valence-bond order. To overcome such inconsistency, the mean-field valence-bond order is considered as a free/fitting parameter to correlate them with real-life experiments as performed in recent experiments [M.P. Allan, F. Massee, D.K. Morr, J. Van Dyke, A.W. Rost, A.P. Mackenzie, C. Petrovic, J.C. Davis, Nat. Phys. 9, 468 (2013); J. Van Dyke, F. Massee, M.P. Allan, J.C. Davis, C. Petrovic, D.K. Morr, Proc. Natl. Acad. Sci. 111, 11663 (2014)], which also explicitly reflects the intrinsic dispersion of local electrons observed in experimental measurements. Given the fermionology, the calculated effective mass enhancement, entropy, superfluid density and Knight shift are all in qualitative agreement with the experimental results of CeCoIn5, which confirms our assumption. Our result supports a d_{x^2 - y^2 }-wave pairing structure in the heavy fermion material CeCoIn5.

  10. Structure of Infaunal Communities on the Beaufort Sea Shelf and Slope: Insights from Morphological and Environmental DNA Sequencing Approaches

    NASA Astrophysics Data System (ADS)

    Hardy, S. M.; Bik, H.; Walker, A.; Sharma, J.; Blanchard, A.

    2016-02-01

    Rapid change is occurring in the Arctic concurrently with increased human activity, yet our knowledge of the structure and function of high-Arctic sediment communities is still rudimentary. The Beaufort Sea is particularly poorly sampled, and largely unexplored at slope depths, providing little information with which to assess the impacts of petroleum exploration activities now beginning in this area. We are investigating diversity and community structure of meio- and macrobenthic infauna on the continental shelf and slope of the Beaufort Sea across a range of depths (50 to 1000 m) using traditional taxonomic and environmental DNA sequencing approaches, and comparing results to additional sites in the adjacent NE Chukchi Sea petroleum lease-sale area. The Beaufort slope is topographically complex and characterized by an east-west gradient in benthic habitat characteristics, with heavy input of terrestrial organic matter particularly in the region of the Mackenzie River delta. Warmer, saltier subsurface Atlantic water masses impact benthic communities at mid-slope depths, likely influencing turnover in community structure observed with depth. Food resources are variable across the region, with very high sediment chlorophyll concentrations at 350 m depth in some areas. Differences in nematode assemblages were detected across the Beaufort Sea shelf/slope, across depths within the Beaufort Sea, and between the Beaufort and adjacent NE Chukchi Sea. These differences were apparent in both morphological and environmental sequencing data. Macrofaunal communities showed variable community structure among transects, with high abundance and high dominance in polychaete assemblages coincident with the chlorophyll maximum. Sequencing data also revealed an abundance of protists in sediments which have been mostly ignored in studies of ecosystem dynamics in this region, and may represent an important component of the food web.

  11. Variability of Snow Ablation: Consequences for Runoff Generation at the Process Scale and Lessons for Large Cold Regions Catchments

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.; Carey, S. K.; Granger, R. J.; Hedstrom, N. R.; Janowicz, R.; Pietroniro, A.; Quinton, W. L.

    2002-12-01

    The supply of water to large northern catchments such as the Mackenzie and Yukon Rivers is dominated by snowmelt runoff from first order mountain catchments. In order to understand the timing, peak and duration of the snowmelt freshet at larger scale it is important to appreciate the spatial and temporal variability of snowmelt and runoff processes at the source. For this reason a comprehensive hydrology study of a Yukon River headwaters catchment, Wolf Creek Research Basin, near Whitehorse, has focussed on the spatial variability of snow ablation and snowmelt runoff generation and the consequences for the water balance in a mountain tundra zone. In northern mountain tundra, surface energetics vary with receipt of solar radiation, shrub vegetation cover and initial snow accumulation. Therefore the timing of snowmelt is controlled by aspect, in that south facing slopes become snow-free 4-5 weeks before the north facing. Runoff generation differs widely between the slopes; there is normally no spring runoff generated from the south facing slope as all meltwater evaporates or infiltrates. On the north facing slope, snowmelt provides substantial runoff to hillside macropores which rapidly route water to the stream channel. Macropore distribution is associated with organic terrain and discontinuous permafrost, which in turn result from the summer surface energetics. Therefore the influence of small-scale snow redistribution and energetics as controlled by topography must be accounted for when calculating contributing areas to larger scale catchments, and estimating the effectiveness of snowfall in generating streamflow. This concept is quite distinct from the drainage controlled contributing area that has been found useful in temperate-zone hydrology.

  12. Total Column Water Vapor Trends from 15 Years of MODIS/NIR above the Arctic

    NASA Astrophysics Data System (ADS)

    OMAR, D. A.; Sarkissian, A.; Keckhut, P.; Bock, O.; Claud, C.; Irbah, A.

    2016-12-01

    Water vapor is defined as a major climate indicator at many occasions, highly variable spatially and temporarily, water vapor has the most important natural GHG effect, through his high infra-red absorption capacity, and temperature changes sensitivity, water vapor affects the Earth radiative budget and energy transfer, evolved at many atmospheric dynamics including the cloud formation and the aerosols composition. As a consequence to the accelerated transition towards the new climate especially above the arctic, and to investigate the feedback to the arctic amplification and the global warming, we study the water vapor variability and trends on a relatively long term above the arctic region, using the Total Column Water Vapor retrieval from MODIS/NIR spectro-radiometer on board of TERRA satellite. These 15 Years monthly daytime satellite data were compared to GPS integrated water vapor over four selected NDACC polar stations: Sodankyla-Finland, Ny-Alesund -Svalbard, Thule-Greenland, Scoresbysund-Greenland. GPS data are calculated with the temperature and pressure profile of the nearest coastal ERA-Interim station. These data were filtered for nearly coincident time to satellite over pass in order to exclude the timing effects. Errors, relative biases and RMSE at both monthly and seasonally scales will be presented and discussed. Then the MODIS 15 years linear trends and anomalies above the whole Arctic will be shown with a special focus on sea ice extent decline feed-back and hydrologic cycle connections with respect to heat waves. Results show wetter trends on the Mackenzie and mid-Siberia at September, unlike the European arctic summer which is getting drier, while Svalbard is getting wetter almost all the year. Conclusion and perspectives are also presented.

  13. Dissolved methane in the Beaufort Sea and the Arctic Ocean, 1992-2009; sources and atmospheric flux

    USGS Publications Warehouse

    Lorenson, Thomas D.; Greinert, Jens; Coffin, Richard B.

    2016-01-01

    Methane concentration and isotopic composition was measured in ice-covered and ice-free waters of the Arctic Ocean during eleven surveys spanning the years of 1992-1995 and 2009. During ice-free periods, methane flux from the Beaufort shelf varies from 0.14 to 0.43 mg CH4 m-2 day-1. Maximum fluxes from localized areas of high methane concentration are up to 1.52 mg CH4 m-2 day-1. Seasonal buildup of methane under ice can produce short-term fluxes of methane from the Beaufort shelf that varies from 0.28 to 1.01 to mg CH4 m-2 day-1. Scaled-up estimates of minimum methane flux from the Beaufort Sea and pan-Arctic shelf for both ice-free and ice-covered periods range from 0.02 Tg CH4 yr-1 and 0.30 Tg CH4 yr-1 respectively to maximum fluxes of 0.18 Tg CH4 yr-1 and 2.2 Tg CH4 yr-1 respectively. A methane flux of 0.36 Tg CH4 yr-1from the deep Arctic Ocean was estimated using data from 1993-94. The flux can be as much as 2.35 Tg CH4 yr-1 estimated from maximum methane concentrations and wind speeds of 12 m/s, representing only 0.42% of the annual atmospheric methane budget of ~560 Tg CH4 yr-1. There were no significant changes in methane fluxes during the time period of this study. Microbial methane sources predominate with minor influxes from thermogenic methane offshore Prudhoe Bay and the Mackenzie River delta and may include methane from gas hydrate. Methane oxidation is locally important on the shelf and is a methane sink in the deep Arctic Ocean.

  14. Export of Nitrogen From the Yukon River Basin to the Bering Sea

    NASA Astrophysics Data System (ADS)

    Dornblaser, M. M.; Striegl, R. G.

    2005-12-01

    The US Geological Survey measured nitrogen export from the 831,400 km2 Yukon River basin during 2001-04 as part of a five year water quality study of the Yukon River and its major tributaries. Concentrations of NO2+NO3, NH4+DON, and particulate N were measured ~6 times annually during open water and once under ice cover at three locations on the Yukon River, and on the Porcupine and Tanana Rivers. Concentration and continuous flow data were used to generate daily and annual loads of N species. NH4 concentration was generally negligible when compared to DON concentration, allowing for comparison of the relative importance of DIN vs. DON export at various watershed scales. NO2 concentration was also small compared to NO3. At Pilot Station, the last site on the Yukon before it flows into the Yukon Delta and the Bering Sea, DIN, DON, and particulate N loads averaged 19.3 × 106 kg/yr, 52.6 × 106 kg/yr, and 39.1 × 106 kg/yr, respectively. Normalized for the watershed area at Pilot Station, corresponding N yields were 1.65, 4.52, and 3.35 mmol/m2/yr. DIN yield for the Yukon at Pilot Station is substantially less than the NO3 flux reported for tropical/temperate rivers such as the Amazon, the Yangtze, and the Mississippi. DIN yield in the upper Yukon River basin is similar to that of the Mackenzie and other arctic rivers, but increases substantially downstream. This is likely due to development around Fairbanks in the Tanana River basin. When compared to other headwater basins in the upper Yukon, the Tanana basin yields about four times more DIN and two times more particulate N, while DON yields are only slightly elevated.

  15. Long-Term Effects of Staying Connected with Your Teen® on Drug Use Frequency at Age 20

    PubMed Central

    Haggerty, Kevin P.; Skinner, Martie L.; Catalano, Richard F.; Abbott, Robert D.; Crutchfield, Robert D.

    2014-01-01

    Drug prevention interventions frequently target early adolescents in order to stop or delay initiation of substance use. However, the prevalence and frequency of drug use escalate and then peak during emerging adulthood, making it important to determine whether drug use prevention efforts in adolescence have lasting effects into adulthood. Additionally, given differences in drug use frequency between ethnic groups, intervention effects by race should be examined when possible. This study evaluates the efficacy of a family-focused prevention program, Staying Connected with Your Teen®, delivered to parents and teens in 8th grade, on family stressors during 9th and 10th grade, 10th-grade drug use (as potential mediators), and drug use frequency at age 20. Families (N = 331; Black = 163, White = 168) were randomly assigned to 3 conditions; parent-adolescent group-administered (PA), self-administered with telephone support (SA), and no-treatment control (Haggerty, Skinner, MacKenzie, & Catalano, 2007). The impact of the intervention was assessed using latent variable structural equation models. Age 20 drug use frequency was significantly higher among Whites than Blacks as expected. The PA intervention had direct effects on reducing drug use frequency for both Blacks and Whites. The SA intervention had an impact on family stressors during adolescence for Whites, but not for Blacks. Results suggest that both formats for delivery were modestly efficacious for Whites but only direct delivery was modestly efficacious for Blacks. Given the substantial savings in cost of the self-administered program over the group-administered format, improving the efficacy of self-administered programming for Blacks is recommended. PMID:25428694

  16. Large Scale Geomorphic Mapping of Cryoplanation Terraces in Central and Eastern Alaska

    NASA Astrophysics Data System (ADS)

    Queen, C.; Nyland, K. E.; Nelson, F. E.

    2017-12-01

    Cryoplanation terraces (CTs) are large periglacial landforms characterized by alternating treads and risers, giving the appearance of giant staircases ascending ridgecrests and hillsides. The risers (scarps) are typically covered with coarse clastic material, while the surfaces of the nearly planar treads are a mosaic of vegetation, rock debris, and surficial periglacial landforms. CTs are best developed in areas of moderate relief across Beringia, the largely unglaciated region between the Lena and Mackenzie rivers, including Bering Sea islands that were formerly highlands on the Bering Land Bridge. CTs are generally thought to develop through locally intensified weathering at the base of scarps by processes associated with late lying bodies of snow. This hypothesis has been the subject of much speculative literature, but until recently there have been few process-oriented field studies performed on them. The work reported here builds on foundational work by R. D. Reger, who inventoried and investigated a large number of CTs in central and western Alaska. The resultant large-scale (1:2000) maps of cryoplanation terraces at Eagle Summit and Mount Fairplay in east-central Alaska were created using traditional and GPS-based mapping methodologies. Pits were excavated at representative locations across treads to obtain information about subsurface characteristics. The resulting maps show the location and morphology of surficial geomorphic features on CT scarps, treads, and sideslopes, superimposed on high-resolution topographic maps and perspective diagrams. GIS-based analysis of the assembled map layers promotes three-dimensional understanding of the spatial relationships between CT morphology, material properties, and erosional processes, and provides key insights into intra- and inter- terrace relationships. In concert with relative and absolute dating of material on the landforms, this research is generally supportive of the "nivation hypothesis of CT development."

  17. Estimating Evapotranspiration Using an Observation Based Terrestrial Water Budget

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; McWilliams, Eric B.; Famiglietti, James S.; Beaudoing, Hiroko K.; Nigro, Joseph

    2011-01-01

    Evapotranspiration (ET) is difficult to measure at the scales of climate models and climate variability. While satellite retrieval algorithms do exist, their accuracy is limited by the sparseness of in situ observations available for calibration and validation, which themselves may be unrepresentative of 500m and larger scale satellite footprints and grid pixels. Here, we use a combination of satellite and ground-based observations to close the water budgets of seven continental scale river basins (Mackenzie, Fraser, Nelson, Mississippi, Tocantins, Danube, and Ubangi), estimating mean ET as a residual. For any river basin, ET must equal total precipitation minus net runoff minus the change in total terrestrial water storage (TWS), in order for mass to be conserved. We make use of precipitation from two global observation-based products, archived runoff data, and TWS changes from the Gravity Recovery and Climate Experiment satellite mission. We demonstrate that while uncertainty in the water budget-based estimates of monthly ET is often too large for those estimates to be useful, the uncertainty in the mean annual cycle is small enough that it is practical for evaluating other ET products. Here, we evaluate five land surface model simulations, two operational atmospheric analyses, and a recent global reanalysis product based on our results. An important outcome is that the water budget-based ET time series in two tropical river basins, one in Brazil and the other in central Africa, exhibit a weak annual cycle, which may help to resolve debate about the strength of the annual cycle of ET in such regions and how ET is constrained throughout the year. The methods described will be useful for water and energy budget studies, weather and climate model assessments, and satellite-based ET retrieval optimization.

  18. Using grasping tasks to evaluate hand force coordination in children with hemiplegic cerebral palsy.

    PubMed

    Mackenzie, Samuel J; Getchell, Nancy; Modlesky, Christopher M; Miller, Freeman; Jaric, Slobodan

    2009-08-01

    Mackenzie SJ, Getchell N, Modlesky CM, Miller F, Jaric S. Using grasping tasks to evaluate hand force coordination in children with hemiplegic cerebral palsy. To assess force coordination in children with hemiplegic cerebral palsy (CP) using a device that allows for testing both unimanual and bimanual manipulation tasks performed under static and dynamic conditions. Nonequivalent groups design. University research laboratory for motor control. Six children with hemiplegic CP (age, mean +/- SD, 11.6+/-1.8 y) and 6 typically developing controls (11.6+/-1.6 y). Not applicable. Children performed simple lifting and force-matching static ramp tasks by way of both unimanual and bimanual pulling using a device that measures grip force (force acting perpendicularly at the digits-device contact area) and load force (tangential force). Main outcome measures were grip/load force ratios (grip force scaling) and correlation coefficients (force coupling). CP subjects showed significantly higher grip/load force ratios (P<.05) and slightly lower correlation coefficients than the control group, with more pronounced differences for most tasks when using their involved hand. For subjects with CP, switching from unimanual to bimanual conditions did not bring changes in scaling or coupling for the involved hand (P>.05). Compared with healthy children, the impaired hand function in the hemiplegic CP pediatric population could be reflected in excessive grip force that is also decoupled from ongoing changes in load force. Therefore, the bimanual grip load device used in this study could provide a sensitive measure of grip force coordination in CP, although nonmotor deficits should be taken into account when asking children to perform more complex tasks.

  19. Branched glycerol dialkyl glycerol tetraethers in Arctic lake sediments: Sources and implications for paleothermometry at high latitudes

    NASA Astrophysics Data System (ADS)

    Peterse, Francien; Vonk, Jorien E.; Holmes, R. Max; Giosan, Liviu; Zimov, Nikita; Eglinton, Timothy I.

    2014-08-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are analyzed in different lakes of the Mackenzie (Canadian Arctic) and Kolyma (Siberian Arctic) River basins to evaluate their sources and the implications for brGDGT-based paleothermometry in high-latitude lakes. The comparison of brGDGT distributions and concentrations in the lakes with those in river suspended particulate matter, riverbank sediments, and permafrost material indicates that brGDGTs in Arctic lake sediments have mixed sources. In contrast to global observations, distributional offsets between brGDGTs in Arctic lakes and elsewhere in the catchment are minor, likely due to the extreme seasonality and short window of biological production at high latitudes. Consequently, both soil- and lake-calibrated brGDGT-based temperature proxies return sensible temperature estimates, even though the mean air temperature (MAT) in the Arctic is below the calibration range. The original soil-calibrated MBT-CBT (methylation of branched tetraethers-cyclisation of branched tetraethers) proxy generates MATs similar to those in the studied river basins, whereas using the recently revised MBT'-CBT calibration overestimates MAT. The application of the two global lake calibrations, generating summer air temperatures (SAT) and MAT, respectively, illustrates the influence of seasonality on the production of brGDGTs in lakes, as the latter overestimates actual MAT, whereas the SAT-based lake calibration accounts for this influence and consequently returns more accurate temperatures. Our results in principle support the application of brGDGT-based temperature proxies in high-latitude lakes in order to obtain long-term paleotemperature records for the Arctic, although the calibration and associated transfer function have to be selected with care.

  20. Pore Effect on the Occurrence and Formation of Gas Hydrate in Permafrost of Qilian Mountain, Qinghai-Tibet Plateau, China

    NASA Astrophysics Data System (ADS)

    Gao, H.; Lu, H.; Lu, Z.

    2014-12-01

    Gas hydrates were found in the permafrost of Qilian Mountain, Qinghai- Tibet Plateau, China in 2008. It has been found that gas hydrates occur in Jurassic sedimentary rocks, and the hydrated gases are mainly thermogenic. Different from the gas hydrates existing in loose sands in Mallik, Mackenzie Delta, Canada and North Slope, Alaska, USA, the gas hydrates in Qilian Mountain occurred in hard rocks. For understanding the occurrence and formation mechanism of gas hydrate in hard rcok, extensive experimental investigations have been conducted to study the pore features and hydrate formation in the rocks recovered from the hydrate layers in Qilian Mountain. The structures of sedimentary rock were observed by high-resolution X-ray CT, and pore size distribution of a rock specimen was measured with the mercury-injection method. Methane hydrate was synthesized in water-saturated rocks, and the saturations of hydrate in sedimentary rocks of various types were estimated from the amount of gas released from certain volume of rock. X-ray CT observation revealed that fractures were developed in the rocks associated with faults, while those away from faults were generally with massive structure. The mercury-injection analysis of pore features found that the porosities of the hydrate-existing rocks were generally less than 3%, and the pore sizes were generally smaller than 100 nm. The synthesizing experiments found that the saturation of methane hydrate were generally lower than 6% of pore space in rocks, but up to 16% when fractures developed. The low hydrate saturation in Qilian sedimentary rocks has been found mainly due to the small pore size of rock. The low hydrate saturation in the rocks might be the reason for the failure of regional seismic and logging detections of gas hydrates in Qilian Mountain.

  1. FP7 GLOWASIS - A new collaborative project aimed at pre-validation of a GMES Global Water Scarcity Information Service

    NASA Astrophysics Data System (ADS)

    Westerhoff, R.; Levizzani, V.; Pappenberger, F.; de Roo, A.; Lange, R. D.; Wagner, W.; Bierkens, M. F.; Ceran, M.; Weerts, A.; Sinclair, S.; Miguez-Macho, G.; Langius, E.; Glowasis Team

    2011-12-01

    The main objective of the project GLOWASIS is to pre-validate a GMES Global Service for Water Scarcity Information. It will be set up as a one-stop-shop portal for water scarcity information, in which focus is put on: - monitoring data from satellites and in-situ sensors; - improving forecasting models with improved monitoring data; - linking statistical water data in forecasting; - promotion of GMES Services and European satellites. In European and global pilots on the scale of river catchments it combines hydrological models with in-situ and satellite derived water cycle information, as well as government ruled statistical water demand data. By linking water demand and supply in three pilot studies with existing platforms (European Drought Observatory and PCR-GLOBWB) for medium- and long-term forecasting in Europe, Africa and worldwide, GLOWASIS' information contributes both in near-real time reporting for emerging drought events as well as in provision of climate change time series. By combining complex water cycle variables, governmental issues and economic relations with respect to water demand, GLOWASIS will aim for the needed streamlining of the wide variety of important water scarcity information. More awareness for the complexity of the water scarcity problem will be created and additional capabilities of satellite-measured water cycle parameters can be promoted. The service uses data from GMES Core Services LMCS Geoland2 and Marine Core Service MyOcean (land use, soil moisture, soil sealing, sea level), in-situ data from GEWEX' initiatives (i.e. International Soil Moisture network), agricultural and industrial water use and demand (statistical - AQUASTAT, SEEAW and modelled) and additional water-cycle information from existing global satellite services. In-depth interviews with a.o. EEA and the Australian Bureau of Meteorology are taking place. GLOWASIS will aim for an open source and open-standard information portal on water scarcity and use of modern media (forums, Twitter, etc). Infrastructure of the GLOWASIS portal is set up for dissemination and inclusion of current and future innovative and integrated multi-purpose products for research & operational applications with open standards. The project has started in January 2011 and the duration is 24 months.

  2. Visualizing DOM super-spectrum covariance in vanKrevelen space

    NASA Astrophysics Data System (ADS)

    Fatland, D. R.; Kalawe, J.; Stubbins, A.; Spencer, R. G.; Sleighter, R. L.; Abdulla, H. A.; Dittmar, T.

    2011-12-01

    We investigate the fate of terrigenous organic matter, DOM exported to the coastal marine environ. Many methods (fluor., FT-ICR-MS, NMR, 13C, lignin, etc) help characterize this DOM. We define a 'super spectrum' as amalgamation of analyses to a data stack and we search for physically significant patterns therein beginning with covariance across 31 samples from six circum-Arctic rivers: The Ob, Kolyma, Mackenzie, Yukon, Lena, and Yenisey sampled five times throughout the year. A vanKrevelen diagram is convenient to view distributions of molecules provided by Fourier Transform Ion Cyclotron Resonance Mass Spectometry (FT-ICR-MS). We augment this distribution space in the vertical dimension, for example to show peak height, molecular mass, principle component weighting or covariance. We use Worldwide Telescope, a virtual globe with strong data support from Microsoft Research to explore covariance results along 3+ dimensions (adding brightness, color and a parameter slide). The results show interesting covariance e.g. between molecules and PARAFAC peaks, a step towards fluorophore and cohort identification in the terrigenous DOM spectrum. Given the geoscience explosion in data volume and data complexity we feel these results should survive beyond the end point of a journal article. We are building a cloud-based Library on the Microsoft Azure platform to support this and subsequent analyses to enable data and methods to carry over and benefit other research groups and objectives.

  3. Identification of geostructures of continental crust, particularly as they relate to mineral-resource evaluation

    NASA Technical Reports Server (NTRS)

    Gryc, G. (Principal Investigator); Lathram, E. H.

    1972-01-01

    The authors have identified the following significant results. As a precursor to the ERTS-1 investigation, the spatial relationship of geostructures seen on Nimbus IDCS photographs to the distribution of mineralized areas in Alaska and western Canada was analyzed to determine the possible metallogenic significance of the geostructures. In Canada, mercury and porphyry molybdenum deposits are closely associated with strong northwest-trending fault systems; the development of mineralized regions seems related to major crustal zones or fractures trending southwestward across the Cordillera from the Precambrian shield. In Alaska, comparison of the northeast- and northwest-trending set of possible crustal structures shown on the Nimbus photo, with the distribution of known mineral deposits suggests a similar relationship. The mineralized region of massive sulfides in Prince William Sound and upper Copper River areas and of porphyry coppers in the Nabesna area forms a broad northeast-trending belt possibly related to the Minto Arch on the Shield. The belt of metalliferous deposits in the western Alaska Range follows a comparable northeast trend. Mercury deposits, suggested by many to be fault-controlled, together with most tin and tungsten deposits, occupy a northeast-trending belt between the Bristol Bay-Mackenzie Bay linear and extensions of a linear along the lower Yukon River. This belt intersects the northwest-trending Canadian belt of similar deposits in the Fairbanks area.

  4. Dissolved Organic Matter Land-Ocean Linkages in the Arctic

    NASA Astrophysics Data System (ADS)

    Mann, P. J.; Spencer, R. M.; Hernes, P. J.; Tank, S. E.; Striegl, R.; Dyda, R. Y.; Peterson, B. J.; McClelland, J. W.; Holmes, R. M.

    2012-04-01

    Rivers draining into the Arctic Ocean exhibit high concentrations of terrigenous dissolved organic carbon (DOC), and recent studies indicate that DOC export is changing due to climatic warming and alteration in permafrost condition. The fate of exported DOC in the Arctic Ocean is important for understanding the regional carbon cycle and remains a point of discussion in the literature. As part of the NSF funded Arctic Great Rivers Observatory (Arctic-GRO) project, samples were collected for DOC, chromophoric and fluorescent dissolved organic matter (CDOM & FDOM) and lignin phenols from the Ob', Yenisey, Lena, Kolyma, Mackenzie and Yukon rivers in 2009 - 2010. DOC and lignin concentrations were elevated during the spring freshet and measurements related to DOC composition indicated an increasing contribution from terrestrial vascular plant sources at this time of year (e.g. lignin carbon-normalized yield, CDOM spectral slope, SUVA254, humic-like fluorescence). CDOM absorption was found to correlate strongly with both DOC (r2=0.83) and lignin concentration (r2=0.92) across the major arctic rivers. Lignin composition was also successfully modeled using FDOM measurements decomposed using PARAFAC analysis. Utilizing these relationships we modeled loads for DOC and lignin export from high-resolution CDOM measurements (daily across the freshet) to derive improved flux estimates, particularly from the dynamic spring discharge maxima period when the majority of DOC and lignin export occurs. The new load estimates for DOC and lignin are higher than previous evaluations, emphasizing that if these are more representative of current arctic riverine export, terrigenous DOC is transiting through the Arctic Ocean at a faster rate than previously thought. It is apparent that higher resolution sampling of arctic rivers is exceptionally valuable with respect to deriving accurate fluxes and we highlight the potential of CDOM in this role for future studies and the applicability of in-situ CDOM sensors.

  5. Rayleigh-wave Tomography Study of Northwestern Canada

    NASA Astrophysics Data System (ADS)

    McLellan, M. E.; Audet, P.; Schaeffer, A. J.

    2015-12-01

    Due to the ongoing collision of the Yakutat block with the North American plate in southeastern Alaska, a significant amount of deformation is occurring in the northern Canadian Cordillera. The stress transfer associated with the accretion of this terrane is believed to be responsible for the seismicity across this widespread region. Estimates of crustal thickness within the Mackenzie and Richardson Mountains provide constraints on models describing the evolution of crustal roots responsible for supporting such belts that transmit tectonic stresses over long distances (>1000 km); unfortunately, current seismic velocity models used to map crustal thickness have limited resolution due to sparse coverage by seismograph networks. Here we use data from a new regional seismograph network (Yukon-Northwest Seismograph Network - YNSN) as well as permanent stations to map out crustal structure. Crustal thickness variations can be obtained from 3-D seismic velocity models determined from the inversion of surface-wave dispersion data. In this work we present preliminary results of a regional tomography study of northwestern Canada, encompassing the northern Canadian Cordillera, using dispersion curves derived from ambient noise cross-correlations in addition to teleseismic two-station interferometry. We collected all available vertical component seismic data from stations located in the Yukon and surrounding regions from the period between June 2012 and June 2015. Using this data set, we first cross-correlated hour-long segments of the ambient seismic noise between all available stations pairs that share common data availability and obtained virtual Rayleigh waves with energy over periods 10-50 s that are predominantly sensitive to crust and uppermost mantle structure. This data set is complemented by Rayleigh-wave dispersion measurements, spanning the period range 25—175 s, derived by cross-correlating vertical component data from teleseismic earthquakes (M>5) lying along the great circle path between individual station pairs. We then measured group and phase velocities from these Rayleigh wave data sets and produced the first regional, high-resolution, azimuthally anisotropic phase and group velocity maps of northwestern Canada.

  6. The Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) Experiment

    NASA Technical Reports Server (NTRS)

    Smith, William L., Jr.; Charlock, Thomas; Wielicki, Bruce; Kahn, Ralph; Martins, J. Vanderlei; Gatebe, Charles; Hobbs, Peter V.; Purgold, G. Carl; Redemann, Jens; Remer, Lorraine

    2004-01-01

    NASA has developed an Earth Observing System (EOS) consisting of a series of satellites designed to study global change from space. The EOS flagship is the EOS TERRA satellite, launched in December 1999, equipped with five unique sensors to monitor and study the Earth s heat budget and many of the key controlling variables governing the Earth's climate system. CLAMS, the Chesapeake Lighthouse and Aircraft Measurements for Satellites field campaign was conducted from NASA Wallops Flight Facility and successfully executed over the middle Atlantic eastern seaboard from July 10 August 2, 2001. CLAMS is primarily a shortwave closure experiment designed to validate and improve EOS TERRA satellite data products being derived from three sensors: CERES (Clouds and Earth's Radiant Energy System), MISR (Multi-angle Imaging Spectro-Radiometer) and MODIS (MODerate Resolution Imaging Spectroradiometer). CLAMS is jointly sponsored by the CERES, MISR and MODIS instrument teams and the NASA GEWEX Global Aerosol Climatology Project (GACP). CLAMS primary objectives are to validate satellite-based retrievals of aerosol properties and vertical profiles of radiative flux, temperature and water vapor. Central to CLAMS measurement strategy is the Chesapeake Lighthouse, a stable sea platform located in the Atlantic Ocean, 13 miles east of Virginia Beach near the mouth of the Chesapeake Bay and the site of an ongoing CERES Ocean Validation Experiment (COVE). Six research aircraft were deployed to make detailed measurements of the atmosphere and ocean surface in the vicinity of COVE, over the surrounding ocean, over nearby NOAA buoys and over a few land sites. The measurements are used to validate and provide ground truth for simultaneous products being derived from TERRA data, a key step toward an improved understanding and ability to predict changes in the Earth's climate. One of the two CERES instruments on-board TERRA was programmed for Rotating Azimuth Plane Scans (RAPS) during CLAMS, increasing the CERES coverage over COVE by a factor of 10. Nine coordinated aircraft missions and numerous additional sorties were flown under a variety of atmospheric conditions and aerosol loadings. On one golden day, July 17, all six aircraft flew coordinated patterns, vertically stacked between 100 ft and 65,000 ft over the COVE site as the TERRA satellite orbited overhead. A summary of CLAMS measurement campaign and a description of the platforms and measurements is given.

  7. Outcome of the third cloud retrieval evaluation workshop

    NASA Astrophysics Data System (ADS)

    Roebeling, Rob; Baum, Bryan; Bennartz, Ralf; Hamann, Ulrich; Heidinger, Andy; Thoss, Anke; Walther, Andi

    2013-05-01

    Accurate measurements of global distributions of cloud parameters and their diurnal, seasonal, and interannual variations are needed to improve understanding of the role of clouds in the weather and climate system, and to monitor their time-space variations. Cloud properties retrieved from satellite observations, such as cloud vertical placement, cloud water path and cloud particle size, play an important role for such studies. In order to give climate and weather researchers more confidence in the quality of these retrievals their validity needs to be determined and their error characteristics must be quantified. The purpose of the Cloud Retrieval Evaluation Workshop (CREW), held from 15-18 Nov. 2011 in Madison, Wisconsin, USA, is to enhance knowledge on state-of-art cloud properties retrievals from passive imaging satellites, and pave the path towards optimizing these retrievals for climate monitoring as well as for the analysis of cloud parameterizations in climate and weather models. CREW also seeks to observe and understand methods used to prepare daily and monthly cloud parameter climatologies. An important workshop component is discussion on results of the algorithm and sensor comparisons and validation studies. Hereto a common database with about 12 different cloud properties retrievals from passive imagers (MSG, MODIS, AVHRR, POLDER and/or AIRS), complemented with cloud measurements that serve as a reference (CLOUDSAT, CALIPSO, AMSU, MISR), was prepared for a number of "golden days". The passive imager cloud property retrievals were inter-compared and validated against Cloudsat, Calipso and AMSU observations. In our presentation we summarize the outcome of the inter-comparison and validation work done in the framework of CREW, and elaborate on reasons for observed differences. More in depth discussions were held on retrieval principles and validation, and utilization of cloud parameters for climate research. This was done in parallel breakout sessions on cloud vertical placement, cloud physical properties, and cloud climatologies. We present the recommendations of these sessions, propose a way forward to establish international partnerships on cloud research, and summarize actions defined to tailor CREW activities to missions of international programs, such as the Global Energy and Water Cycle Experiment (GEWEX) and Sustained, Co-Ordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM). Finally, attention is given to increase the traceability and uniformity of different longterm and homogeneous records of cloud parameters.

  8. Snow mass and river flows modelled using GRACE total water storage observations

    NASA Astrophysics Data System (ADS)

    Wang, S.

    2017-12-01

    Snow mass and river flow measurements are difficult and less accurate in cold regions due to the hash environment. Floods in cold regions are commonly a result of snowmelt during the spring break-up. Flooding is projected to increase with climate change in many parts of the world. Forecasting floods from snowmelt remains a challenge due to scarce and quality issues in basin-scale snow observations and lack of knowledge for cold region hydrological processes. This study developed a model for estimating basin-level snow mass (snow water equivalent SWE) and river flows using the total water storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. The SWE estimation is based on mass balance approach which is independent of in situ snow gauge observations, thus largely eliminates the limitations and uncertainties with traditional in situ or remote sensing snow estimates. The model forecasts river flows by simulating surface runoff from snowmelt and the corresponding baseflow from groundwater discharge. Snowmelt is predicted using a temperature index model. Baseflow is predicted using a modified linear reservoir model. The model also quantifies the hysteresis between the snowmelt and the streamflow rates, or the lump time for water travel in the basin. The model was applied to the Red River Basin, the Mackenzie River Basin, and the Hudson Bay Lowland Basins in Canada. The predicted river flows were compared with the observed values at downstream hydrometric stations. The results were also compared to that for the Lower Fraser River obtained in a separate study to help better understand the roles of environmental factors in determining flood and their variations with different hydroclimatic conditions. This study advances the applications of space-based time-variable gravity measurements in cold region snow mass estimation, river flow and flood forecasting. It demonstrates a relatively simple method that only needs GRACE TWS and temperature data for river flow or flood forecasting. The model can be particularly useful for regions with spare observation networks, and can be used in combination with other available methods to help improve the accuracy in river flow and flood forecasting over cold regions.

  9. Coastal erosion vs riverline sediment discharge in the Arctic shelfx seas

    USGS Publications Warehouse

    Rachold, V.; Grigoriev, M.N.; Are, F.E.; Solomon, Sean C.; Reimnitz, E.; Kassens, H.; Antonow, M.

    2000-01-01

    This article presents a comparison of sediment input by rivers and by coastal erosion into both the Laptev Sea and the Canadian Beaufort Sea (CBS). New data on coastal erosion in the Laptev Sea, which are based on field measurements and remote sensing information and existing data on coastal erosion in the CBS as well as riverine sediment discharge into both the Laptev Sea and the CBS are included. Strong regional differences in the percentages of coastal ero- sion and riverine sediment supply are observed. The CBS is dominated by the riverine sediment discharge (64.45x106 t a-1) mainly of the Mackenzie River. which is the largest single source of sediments in the Arctic. Riverine sediment discharge into the Laptev Sea amounts to 24.10x106 t a-1, more than 70% of which are related to the Lena River. In comparison with the CBS. the Laptev Sea coast on average delivers approximately twice as much sediment mass per kilometer, a result of higher erosion rates due to higher cliffs and seasonal ice melting. In the Laptev Sea sediment input by coastal erosion (58.4x106 t a-1) is therefore more important than in the CBS and the ratio between riverine and coastal sediment input amounts to 0.4. Coastal erosion supplying 5.6x106 t a-1 is less significant for the sediment budget of the CBS where riverine sediment discharge exceeds coastal sediment input by a factor of ca. 10.

  10. Ozonolysis of α-phellandrene - Part 2: Compositional analysis of secondary organic aerosol highlights the role of stabilised Criegee intermediates

    NASA Astrophysics Data System (ADS)

    Mackenzie-Rae, Felix A.; Wallis, Helen J.; Rickard, Andrew R.; Pereira, Kelly L.; Saunders, Sandra M.; Wang, Xinming; Hamilton, Jacqueline F.

    2018-04-01

    The molecular composition of the water-soluble fraction of secondary organic aerosol (SOA) generated from the ozonolysis of α-phellandrene is investigated for the first time using high-pressure liquid chromatography coupled to high-resolution quadrupole-Orbitrap tandem mass spectrometry. In total, 21 prominent products or isomeric product groups were identified using both positive and negative ionisation modes, with potential formation mechanisms discussed. The aerosol was found to be composed primarily of polyfunctional first- and second-generation species containing one or more carbonyl, acid, alcohol and hydroperoxide functionalities, with the products significantly more complex than those proposed from basic gas-phase chemistry in the companion paper (Mackenzie-Rae et al., 2017). Mass spectra show a large number of dimeric products are also formed. Both direct scavenging evidence using formic acid and indirect evidence from double bond equivalency factors suggest the dominant oligomerisation mechanism is the bimolecular reaction of stabilised Criegee intermediates (SCIs) with non-radical ozonolysis products. Saturation vapour concentration estimates suggest monomeric species cannot explain the rapid nucleation burst of fresh aerosol observed in chamber experiments; hence, dimeric species are believed to be responsible for new particle formation, with detected first- and second-generation products driving further particle growth in the system. Ultimately, identification of the major constituents and formation pathways of α-phellandrene SOA leads to a greater understanding of the atmospheric processes and implications of monoterpene emissions and SCIs, especially around eucalypt forests where α-phellandrene is primarily emitted.

  11. Controls on the physical properties of gas-hydrate-bearing sediments because of the interaction between gas hydrate and porous media

    USGS Publications Warehouse

    Lee, Myung W.; Collett, Timothy S.

    2005-01-01

    Physical properties of gas-hydrate-bearing sediments depend on the pore-scale interaction between gas hydrate and porous media as well as the amount of gas hydrate present. Well log measurements such as proton nuclear magnetic resonance (NMR) relaxation and electromagnetic propagation tool (EPT) techniques depend primarily on the bulk volume of gas hydrate in the pore space irrespective of the pore-scale interaction. However, elastic velocities or permeability depend on how gas hydrate is distributed in the pore space as well as the amount of gas hydrate. Gas-hydrate saturations estimated from NMR and EPT measurements are free of adjustable parameters; thus, the estimations are unbiased estimates of gas hydrate if the measurement is accurate. However, the amount of gas hydrate estimated from elastic velocities or electrical resistivities depends on many adjustable parameters and models related to the interaction of gas hydrate and porous media, so these estimates are model dependent and biased. NMR, EPT, elastic-wave velocity, electrical resistivity, and permeability measurements acquired in the Mallik 5L-38 well in the Mackenzie Delta, Canada, show that all of the well log evaluation techniques considered provide comparable gas-hydrate saturations in clean (low shale content) sandstone intervals with high gas-hydrate saturations. However, in shaly intervals, estimates from log measurement depending on the pore-scale interaction between gas hydrate and host sediments are higher than those estimates from measurements depending on the bulk volume of gas hydrate.

  12. Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Wickert, Andrew D.

    2016-11-01

    Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA) rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and sometimes delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combining models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins - the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of observational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions. The sharp boundaries of the reconstructed past drainage basins complement the flexurally smoothed GIA signal that is more often used to validate ice-sheet reconstructions, and provide a complementary framework to reduce nonuniqueness in model reconstructions of the North American ice-sheet complex.

  13. The psychosocial profile of adolescent risk of homelessness.

    PubMed

    Bearsley-Smith, Cate A; Bond, Lyndal M; Littlefield, Lyn; Thomas, Lyndal R

    2008-06-01

    To contrast the psychosocial profile of adolescents with risk factors for homelessness, identified using Chamberlain and MacKenzie's self-report scale, compared to the profiles of homeless adolescents. Multinomial logistic regression analyses were conducted contrasting profiles for (a) 137 homeless adolescents, (b) 766 secondary students reporting risk factors for homelessness, and (c) 4,844 students not reporting risks for homelessness. Fourteen percent of a representative population of at-school adolescents, from Victoria, Australia, showed elevated risk of homelessness. These adolescents showed depressive symptoms at least equivalent to homeless adolescents (RR 6.0, 95% CI: 4.9, 7.3, and RR 3.5, 95% CI: 2.1, 5.8, respectively). In multivariate analyses, homeless and at risk adolescents reported equivalent levels of family conflict, early problem behaviour and low opportunities and rewards for family involvement. Compared to adolescents not at risk, at risk adolescents were more likely to be female and to show poorer social skills/assertiveness and depressive symptoms. Compared to at risk adolescents, homeless adolescents showed additional family, school, peer and individual risks, but lower depressive symptomatology. The findings highlight the potential we have to quickly and simply detect adolescents showing significant risk of homelessness. This sizable minority of adolescents report risks often equivalent to homeless adolescents. It is hoped that stakeholders working with young people will utilise this screening potential to identify and intervene effectively with this significant subpopulation of youth, and their families, while they are still at home and school.

  14. Oceanographic structure drives the assembly processes of microbial eukaryotic communities.

    PubMed

    Monier, Adam; Comte, Jérôme; Babin, Marcel; Forest, Alexandre; Matsuoka, Atsushi; Lovejoy, Connie

    2015-03-17

    Arctic Ocean microbial eukaryote phytoplankton form subsurface chlorophyll maximum (SCM), where much of the annual summer production occurs. This SCM is particularly persistent in the Western Arctic Ocean, which is strongly salinity stratified. The recent loss of multiyear sea ice and increased particulate-rich river discharge in the Arctic Ocean results in a greater volume of fresher water that may displace nutrient-rich saltier waters to deeper depths and decrease light penetration in areas affected by river discharge. Here, we surveyed microbial eukaryotic assemblages in the surface waters, and within and below the SCM. In most samples, we detected the pronounced SCM that usually occurs at the interface of the upper mixed layer and Pacific Summer Water (PSW). Poorly developed SCM was seen under two conditions, one above PSW and associated with a downwelling eddy, and the second in a region influenced by the Mackenzie River plume. Four phylogenetically distinct communities were identified: surface, pronounced SCM, weak SCM and a deeper community just below the SCM. Distance-decay relationships and phylogenetic structure suggested distinct ecological processes operating within these communities. In the pronounced SCM, picophytoplanktons were prevalent and community assembly was attributed to water mass history. In contrast, environmental filtering impacted the composition of the weak SCM communities, where heterotrophic Picozoa were more numerous. These results imply that displacement of Pacific waters to greater depth and increased terrigenous input may act as a control on SCM development and result in lower net summer primary production with a more heterotroph dominated eukaryotic microbial community.

  15. Systematic errors in regional climate model RegCM over Europe and sensitivity to variations in PBL parameterizations

    NASA Astrophysics Data System (ADS)

    Güttler, I.

    2012-04-01

    Systematic errors in near-surface temperature (T2m), total cloud cover (CLD), shortwave albedo (ALB) and surface net longwave (SNL) and shortwave energy flux (SNS) are detected in simulations of RegCM on 50 km resolution over the European CORDEX domain when forced with ERA-Interim reanalysis. Simulated T2m is compared to CRU 3.0 and other variables to GEWEX-SRB 3.0 dataset. Most of systematic errors found in SNL and SNS are consistent with errors in T2m, CLD and ALB: they include prevailing negative errors in T2m and positive errors in CLD present during most of the year. Errors in T2m and CLD can be associated with the overestimation of SNL and SNS in most simulations. Impact of errors in albedo are primarily confined to north Africa, where e.g. underestimation of albedo in JJA is consistent with associated surface heating and positive SNS and T2m errors. Sensitivity to the choice of the PBL scheme and various parameters in PBL schemes is examined from an ensemble of 20 simulations. The recently implemented prognostic PBL scheme performs over Europe with a mixed success when compared to standard diagnostic scheme with a general increase of errors in T2m and CLD over all of the domain. Nevertheless, the improvements in T2m can be found in e.g. north-eastern Europe during DJF and western Europe during JJA where substantial warm biases existed in simulations with the diagnostic scheme. The most detectable impact, in terms of the JJA T2m errors over western Europe, comes form the variation in the formulation of mixing length. In order to reduce the above errors an update of the RegCM albedo values and further work in customizing PBL scheme is suggested.

  16. Evaluation of ACCESS Model Cloud Properties Over the SouthernOcean Area Using Multiple-satellite ProductsSan Luo1,2 Zhian Sun2, Xiaogu Zheng1, Lawrie Rikus2 and Charmaine Franklin31 College of Global Change and Earth System Science, Beijing Normal University, China 2 Collaboration for Australian Weather and Climate Research3 CSIRO

    NASA Astrophysics Data System (ADS)

    Luo, S.

    2016-12-01

    Radiation field and cloud properties over the Southern Ocean area generated by the Australian Community Climate and Earth System Simulator (ACCESS) are evaluated using multiple-satellite products from the Fast Longwave And Shortwave radiative Fluxes (FLASHFlux) project and NASA/GEWEX surface radiation budget (SRB) data. The cloud properties are also evaluated using the observational simulator package COSP, a synthetic brightness temperature model (SBTM) and cloud liquid-water path data (UWisc) from the University of Wisconsin satellite retrievals. All of these evaluations are focused on the Southern Ocean area in an effort to understand the reasons behind the short-wave radiation biases at the surface. It is found that the model overestimates the high-level cloud fraction and frequency of occurrence of small ice-water content and underestimates the middle and low-level cloud fraction and water content. In order to improve the modelled radiation fields over the Southern Ocean area, two main modifications have been made to the physical schemes in the ACCESS model. Firstly the autoconversion rate at which the cloud water is converted into rain and the accretion rate in the warm rain scheme have been modified, which increases the cloud liquid-water content in warm cloud layers. Secondly, the scheme which determines the fraction of supercooled liquid water in mixed-phase clouds in the parametrization of cloud optical properties has been changed to use one derived from CALIPSO data which provides larger liquid cloud fractions and thus higher optical depths than the default scheme. Sensitivity tests of these two schemes in ACCESS climate runs have shown that applying either can lead to a reduction of the solar radiation reaching the surface and reduce the short-wave radiation biases.

  17. Status and Plans for the WCRP/GEWEX Global Precipitation Climatology Project (GPCP)

    NASA Technical Reports Server (NTRS)

    Adkerm Robert F.

    2006-01-01

    Status and plans for GPCP are presented along with scientific findings from the current data set. Global and large regional rainfall variations and possible long-term changes are examined using the 26-year (1979-2004) monthly dataset from the Global Precipitation Climatology Project (GPCP). One emphasis is to discriminate among the variations due to ENSO, volcanic events and possible long-term changes. Although the global change of precipitation in the data set is near zero, the data set does indicate an upward trend (0.13 mm/day/25yr) and a downward trend (-0.06 mm/day/25yr) over tropical oceans and lands (25S-25N), respectively. This corresponds to a 4% increase (ocean) and 2% decrease (land) during this time period. Simple techniques are derived to attempt to eliminate variations due to ENSO and major volcanic eruptions in the Tropics. Using only annual values two "volcano years" are determined by examining ocean-land coupled variations in precipitation related to ENSO and other phenomena. The outlier years coincide with Pinatubo and El Chicon eruptions. The ENSO signal is reduced by deriving mean ocean and land values for El Nino, La Nina and neutral conditions based on Nino 3.4 SST and normalizing the annual ocean and land precipitation to the neutral set of cases. The impact of the two major volcanic eruptions over the past 25 years is estimated to be about a 5% reduction in tropical rainfall. The modified data set (with ENSO and volcano effect at least partially removed) retains the same approximate linear change slopes over the data set period, but with reduced variance leading to significance tests with results in the 90-95% range. Intercomparisons between the GPCP, SSM/I (1988-2004), and TRMM (1998-2004) satellite rainfall products and alternate gauge analyses over land are made to attempt to increase or decrease confidence in the changes seen in the GPCP analysis.

  18. A Comparison between Predicted and Observed Atmospheric States and their Effects on Infrasonic Source Time Function Inversion at Source Physics Experiment 6

    NASA Astrophysics Data System (ADS)

    Aur, K. A.; Poppeliers, C.; Preston, L. A.

    2017-12-01

    The Source Physics Experiment (SPE) consists of a series of underground chemical explosions at the Nevada National Security Site (NNSS) designed to gain an improved understanding of the generation and propagation of physical signals in the near and far field. Characterizing the acoustic and infrasound source mechanism from underground explosions is of great importance to underground explosion monitoring. To this end we perform full waveform source inversion of infrasound data collected from the SPE-6 experiment at distances from 300 m to 6 km and frequencies up to 20 Hz. Our method requires estimating the state of the atmosphere at the time of each experiment, computing Green's functions through these atmospheric models, and subsequently inverting the observed data in the frequency domain to obtain a source time function. To estimate the state of the atmosphere at the time of the experiment, we utilize the Weather Research and Forecasting - Data Assimilation (WRF-DA) modeling system to derive a unified atmospheric state model by combining Global Energy and Water Cycle Experiment (GEWEX) Continental-scale International Project (GCIP) data and locally obtained sonde and surface weather observations collected at the time of the experiment. We synthesize Green's functions through these atmospheric models using Sandia's moving media acoustic propagation simulation suite (TDAAPS). These models include 3-D variations in topography, temperature, pressure, and wind. We compare inversion results using the atmospheric models derived from the unified weather models versus previous modeling results and discuss how these differences affect computed source waveforms with respect to observed waveforms at various distances. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  19. Observability considerations for multi-sensor and product fusion: Bias, information content, and validation (Invited)

    NASA Astrophysics Data System (ADS)

    Reid, J. S.; Zhang, J.; Hyer, E. J.; Campbell, J. R.; Christopher, S. A.; Ferrare, R. A.; Leptoukh, G. G.; Stackhouse, P. W.

    2009-12-01

    With the successful development of many aerosol products from the NASA A-train as well as new operational geostationary and polar orbiting sensors, the scientific community now has a host of new parameters to use in their analyses. The variety and quality of products has reached a point where the community has moved from basic observation-based science to sophisticated multi-component research that addresses the complex atmospheric environment. In order for these satellite data contribute to the science their uncertainty levels must move from semi-quantitative to quantitative. Initial attempts to quantify uncertainties have led to some recent debate in the community as to the efficacy of aerosol products from current and future NASA satellite sensors. In an effort to understand the state of satellite product fidelity, the Naval Research Laboratory and a newly reformed Global Energy and Water Cycle Experiment (GEWEX) aerosol panel have both initiated assessments of the nature of aerosol remote sensing uncertainty and bias. In this talk we go over areas of specific concern based on the authors’ experiences with the data, emphasizing the multi-sensor problem. We first enumerate potential biases, including retrieval, sampling/contextual, and cognitive bias. We show examples of how these biases can subsequently lead to the pitfalls of correlated/compensating errors, tautology, and confounding. The nature of bias is closely related to the information content of the sensor signal and its subsequent application to the derived aerosol quantity of interest (e.g., optical depth, flux, index of refraction, etc.). Consequently, purpose-specific validation methods must be employed, especially when generating multi-sensor products. Indeed, cloud and lower boundary condition biases in particular complicate the more typical methods of regressional bias elimination and histogram matching. We close with a discussion of sequestration of uncertainty in multi-sensor applications of these products in both pair-wise and fused fashions.

  20. Mountains, Climate Change and North American Water Security

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.; Fang, X.; Whitfield, P. H.; Rasouli, K.; Harder, P.; Siemens, E.; Pradhananga, D.

    2016-12-01

    The juxtaposition of cold high precipitation catchments in mountains and low precipitation in downstream lowlands means that mountain water supplies support over half the world's population and sustain most irrigation agriculture. How secure is this mountain water in northern North America? Irrigation and other consumptive downstream uses have put immense pressure on water supplied from the Canadian Rockies. Excess water from these rivers also carries risk. Downstream communities are often located in the flood plains of mountain rivers, making them subject to the extreme hydrometeorology of the headwaters as was evident in the BC/Alberta/Saskatchewan floods of 2013 and droughts of 2015/2016. Climate change is disproportionately warming high mountain areas and the impacts of warming on water are magnified in high mountains because seasonal snowpacks, perennial snowfields and glaciers form important stores of water and control the timing of release of water and the seasonal and annual discharge of major mountain rivers. Changes in mountain snow and glacial regimes are rapidly occurring in Western Canada and this is already impacting downstream water security by changing flood risk, streamflow timing and volume. Hydrological process modelling is diagnosing the causes of intensification of hydrological cycling and coupled to climate models suggesting that the timing and quantity of mountain waters will shift under certain climate, glacier cover and forest cover scenarios and so impact the water security of downstream food production. So far, changes in precipitation are matched by evapotranspiration and sublimation providing some resilience to change in streamflow due to intensification of hydrological cycling. Faster glacier melt in drought periods has buffered low flows but this capacity id dwindling as glaciers ablate. The International Network for Alpine Research Catchment Hydrology (INARCH) project of GEWEX is quantifying water resiliency and risk in mountain headwaters so as to better assess the water security of downstream regions. INARCH results from Western Canada suggest current mountain river resiliency is at risk from increased climate variability as rainfall runoff replaces snowmelt and glacier melt runoff processes.

  1. The Continual Intercomparison of Radiation Codes: Results from Phase I

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Mlawer, Eli; Delamere, Jennifer; Shippert, Timothy; Cole, Jason; Iacono, Michael; Jin, Zhonghai; Li, Jiangnan; Manners, James; Raisanen, Petri; hide

    2011-01-01

    The computer codes that calculate the energy budget of solar and thermal radiation in Global Climate Models (GCMs), our most advanced tools for predicting climate change, have to be computationally efficient in order to not impose undue computational burden to climate simulations. By using approximations to gain execution speed, these codes sacrifice accuracy compared to more accurate, but also much slower, alternatives. International efforts to evaluate the approximate schemes have taken place in the past, but they have suffered from the drawback that the accurate standards were not validated themselves for performance. The manuscript summarizes the main results of the first phase of an effort called "Continual Intercomparison of Radiation Codes" (CIRC) where the cases chosen to evaluate the approximate models are based on observations and where we have ensured that the accurate models perform well when compared to solar and thermal radiation measurements. The effort is endorsed by international organizations such as the GEWEX Radiation Panel and the International Radiation Commission and has a dedicated website (i.e., http://circ.gsfc.nasa.gov) where interested scientists can freely download data and obtain more information about the effort's modus operandi and objectives. In a paper published in the March 2010 issue of the Bulletin of the American Meteorological Society only a brief overview of CIRC was provided with some sample results. In this paper the analysis of submissions of 11 solar and 13 thermal infrared codes relative to accurate reference calculations obtained by so-called "line-by-line" radiation codes is much more detailed. We demonstrate that, while performance of the approximate codes continues to improve, significant issues still remain to be addressed for satisfactory performance within GCMs. We hope that by identifying and quantifying shortcomings, the paper will help establish performance standards to objectively assess radiation code quality, and will guide the development of future phases of CIRC

  2. Global Precipitation Analyses (3-Hourly to Monthly) Using TRMM, SSM/I and other Satellite Information

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Huffman, George; Curtis, Scott; Bolvin, David; Nelkin, Eric

    2002-01-01

    Global precipitation analysis covering the last few decades and the impact of the new TRMM precipitation observations are discussed. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to explore global and regional variations and trends and is compared to the much shorter TRMM(Tropical Rainfall Measuring Mission) tropical data set. The GPCP data set shows no significant trend in precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. Regional trends are also analyzed. A trend pattern that is a combination of both El Nino and La Nina precipitation features is evident in the 20-year data set. This pattern is related to an increase with time in the number of combined months of El Nino and La Nina during the 20 year period. Monthly anomalies of precipitation are related to ENS0 variations with clear signals extending into middle and high latitudes of both hemispheres. The GPCP daily, 1 deg. latitude-longitude analysis, which is available from January 1997 to the present is described and the evolution of precipitation patterns on this time scale related to El Nino and La Nina is discussed. Finally, a TRMM-based 3-hr analysis is described that uses TRMM to calibrate polar-orbit microwave observations from SSM/I and geosynchronous IR observations and merges the various calibrated observations into a final, 3-hr resolution map. This TRMM standard product will be available for the entire TRMM period (January 1998-present). A real-time version of this merged product is being produced and is available at 0.25 deg. latitude-longitude resolution over the latitude range from 5O deg. N-50 deg. S. Examples are shown, including its use in monitoring flood conditions.

  3. Numerical modeling of the simulated gas hydrate production test at Mallik 2L-38 in the pilot scale pressure reservoir LARS - Applying the "foamy oil" model

    NASA Astrophysics Data System (ADS)

    Abendroth, Sven; Thaler, Jan; Klump, Jens; Schicks, Judith; Uddin, Mafiz

    2014-05-01

    In the context of the German joint project SUGAR (Submarine Gas Hydrate Reservoirs: exploration, extraction and transport) we conducted a series of experiments in the LArge Reservoir Simulator (LARS) at the German Research Centre of Geosciences Potsdam. These experiments allow us to investigate the formation and dissociation of hydrates at large scale laboratory conditions. We performed an experiment similar to the field-test conditions of the production test in the Mallik gas hydrate field (Mallik 2L-38) in the Beaufort Mackenzie Delta of the Canadian Arctic. The aim of this experiment was to study the transport behavior of fluids in gas hydrate reservoirs during depressurization (see also Heeschen et al. and Priegnitz et al., this volume). The experimental results from LARS are used to provide details about processes inside the pressure vessel, to validate the models through history matching, and to feed back into the design of future experiments. In experiments in LARS the amount of methane produced from gas hydrates was much lower than expected. Previously published models predict a methane production rate higher than the one observed in experiments and field studies (Uddin et al. 2010; Wright et al. 2011). The authors of the aforementioned studies point out that the current modeling approach overestimates the gas production rate when modeling gas production by depressurization. They suggest that trapping of gas bubbles inside the porous medium is responsible for the reduced gas production rate. They point out that this behavior of multi-phase flow is not well explained by a "residual oil" model, but rather resembles a "foamy oil" model. Our study applies Uddin's (2010) "foamy oil" model and combines it with history matches of our experiments in LARS. Our results indicate a better agreement between experimental and model results when using the "foamy oil" model instead of conventional models of gas flow in water. References Uddin M., Wright J.F. and Coombe D. (2010) - Numerical Study of gas evolution and transport behaviors in natural gas hydrate reservoirs; CSUG/SPE 137439. Wright J.F., Uddin M., Dallimore S.R. and Coombe D. (2011) - Mechanisms of gas evolution and transport in a producing gas hydrate reservoir: an unconventional basis for successful history matching of observed production flow data; International Conference on Gas Hydrates (ICGH 2011).

  4. Regional Scaling of Airborne Eddy Covariance Flux Observation

    NASA Astrophysics Data System (ADS)

    Sachs, T.; Serafimovich, A.; Metzger, S.; Kohnert, K.; Hartmann, J.

    2014-12-01

    The earth's surface is tightly coupled to the global climate system by the vertical exchange of energy and matter. Thus, to better understand and potentially predict changes to our climate system, it is critical to quantify the surface-atmosphere exchange of heat, water vapor, and greenhouse gases on climate-relevant spatial and temporal scales. Currently, most flux observations consist of ground-based, continuous but local measurements. These provide a good basis for temporal integration, but may not be representative of the larger regional context. This is particularly true for the Arctic, where site selection is additionally bound by logistical constraints, among others. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. The Airborne Measurements of Methane Fluxes (AIRMETH) campaigns are designed to quantitatively and spatially explicitly address this issue: The research aircraft POLAR 5 is used to acquire thousands of kilometers of eddy-covariance flux data. During the AIRMETH-2012 and AIRMETH-2013 campaigns we measured the turbulent exchange of energy, methane, and (in 2013) carbon dioxide over the North Slope of Alaska, USA, and the Mackenzie Delta, Canada. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking flux observations to meteorological and biophysical drivers in the flux footprints. We use wavelet transforms of the original high-frequency data to improve spatial discretization of the flux observations. This also enables the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between flux observations and the meteorological and biophysical drivers. The resulting ERFs are used to extrapolate fluxes over spatio-temporally explicit grids of the study area. The presentation will focus on 2012 sensible and latent heat fluxes observed over the North Slope of Alaska and the scaling performance of the ERF approach.

  5. Arctic River Discharge and Sediment Loads --- an Overview

    NASA Astrophysics Data System (ADS)

    Syvitski, J. P.; Overeem, I.; Brakenridge, G. R.; Hudson, B.; Cohen, S.

    2014-12-01

    Evidence suggests that river discharge has been increasing (+10%) over the last 30 years (1977-2007) for most arctic rivers. The peak melt month occurs earlier in the season in 66% of the studied rivers. Cold season flow is also increasing. Satellite discharge estimates, daily, based on microwave radiometry, are now possible from 1998 onwards. Daily river discharge hindcasts over the last 60 years using the water balance model WBMsed at a 10km spatial resolution are now available. The WBMsed model can be used in forecast mode assuming valid input climatology. The challenge here has been the accuracy of sub-polar precipitation grids. While each of these three methods (gauging, orbital sensing, modeling) has temporal and spatial coverage limitations, the combination of all three methods provides for a realistic way forward for estimating local discharge across the pan arctic. Flood inundation products are routinely produced for the pan-arctic using automated mapping algorithms developed by the Dartmouth Flood Observatory. The determination of artic river sediment loads is less than ideal. Some rivers have only been monitored for a short number of years, and many have not been monitored at all. The WBMsed model is perhaps the best method of estimating the daily sediment flux to the Arctic Ocean, at least for rivers where the mean discharge is greater than 30 m3/s. Additionally there is limited-duration field monitoring by national surveys. New methods are being explored, including back calculating the delivery of sediment to the coastal ocean by plume dimensions observed from space (MODIS, LandSat). These methods have had moderate success when applied to plumes extending in the Greenland fjords. Canada maintains an active circa 7-y satellite program (ArcticNet) to track the Mackenzie discharge during the spring-summer runoff period when turbid river water is apt to flow under and over marginal sea ice in the Beaufort Sea.

  6. A goodness-of-fit test for occupancy models with correlated within-season revisits

    USGS Publications Warehouse

    Wright, Wilson; Irvine, Kathryn M.; Rodhouse, Thomas J.

    2016-01-01

    Occupancy modeling is important for exploring species distribution patterns and for conservation monitoring. Within this framework, explicit attention is given to species detection probabilities estimated from replicate surveys to sample units. A central assumption is that replicate surveys are independent Bernoulli trials, but this assumption becomes untenable when ecologists serially deploy remote cameras and acoustic recording devices over days and weeks to survey rare and elusive animals. Proposed solutions involve modifying the detection-level component of the model (e.g., first-order Markov covariate). Evaluating whether a model sufficiently accounts for correlation is imperative, but clear guidance for practitioners is lacking. Currently, an omnibus goodnessof- fit test using a chi-square discrepancy measure on unique detection histories is available for occupancy models (MacKenzie and Bailey, Journal of Agricultural, Biological, and Environmental Statistics, 9, 2004, 300; hereafter, MacKenzie– Bailey test). We propose a join count summary measure adapted from spatial statistics to directly assess correlation after fitting a model. We motivate our work with a dataset of multinight bat call recordings from a pilot study for the North American Bat Monitoring Program. We found in simulations that our join count test was more reliable than the MacKenzie–Bailey test for detecting inadequacy of a model that assumed independence, particularly when serial correlation was low to moderate. A model that included a Markov-structured detection-level covariate produced unbiased occupancy estimates except in the presence of strong serial correlation and a revisit design consisting only of temporal replicates. When applied to two common bat species, our approach illustrates that sophisticated models do not guarantee adequate fit to real data, underscoring the importance of model assessment. Our join count test provides a widely applicable goodness-of-fit test and specifically evaluates occupancy model lack of fit related to correlation among detections within a sample unit. Our diagnostic tool is available for practitioners that serially deploy survey equipment as a way to achieve cost savings.

  7. Modelling Landscape-Level Numerical Responses of Predators to Prey: The Case of Cats and Rabbits

    PubMed Central

    Cruz, Jennyffer; Glen, Alistair S.; Pech, Roger P.

    2013-01-01

    Predator-prey systems can extend over large geographical areas but empirical modelling of predator-prey dynamics has been largely limited to localised scales. This is due partly to difficulties in estimating predator and prey abundances over large areas. Collection of data at suitably large scales has been a major problem in previous studies of European rabbits (Oryctolagus cuniculus) and their predators. This applies in Western Europe, where conserving rabbits and predators such as Iberian lynx (Lynx pardinus) is important, and in other parts of the world where rabbits are an invasive species supporting populations of introduced, and sometimes native, predators. In pastoral regions of New Zealand, rabbits are the primary prey of feral cats (Felis catus) that threaten native fauna. We estimate the seasonal numerical response of cats to fluctuations in rabbit numbers in grassland–shrubland habitat across the Otago and Mackenzie regions of the South Island of New Zealand. We use spotlight counts over 1645 km of transects to estimate rabbit and cat abundances with a novel modelling approach that accounts simultaneously for environmental stochasticity, density dependence and varying detection probability. Our model suggests that cat abundance is related consistently to rabbit abundance in spring and summer, possibly through increased rabbit numbers improving the fecundity and juvenile survival of cats. Maintaining rabbits at low abundance should therefore suppress cat numbers, relieving predation pressure on native prey. Our approach provided estimates of the abundance of cats and rabbits over a large geographical area. This was made possible by repeated sampling within each season, which allows estimation of detection probabilities. A similar approach could be applied to predator-prey systems elsewhere, and could be adapted to any method of direct observation in which there is no double-counting of individuals. Reliable estimates of numerical responses are essential for managing both invasive and threatened predators and prey. PMID:24039978

  8. Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures.

    PubMed

    Testa, Claudia M; Sherer, Todd B; Greenamyre, J Timothy

    2005-03-24

    Rotenone, a pesticide and complex I inhibitor, causes nigrostriatal degeneration similar to Parkinson disease pathology in a chronic, systemic, in vivo rodent model [M. Alam, W.J. Schmidt, Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats, Behav. Brain Res. 136 (2002) 317-324; R. Betarbet, T.B. Sherer, G. MacKenzie, M. Garcia-Osuna, A.V. Panov, J.T. Greenamyre, Chronic systemic pesticide exposure reproduces features of Parkinson's disease, Nat. Neurosci. 3 (2000) 1301-1306; S.M. Fleming, C. Zhu, P.O. Fernagut, A. Mehta, C.D. DiCarlo, R.L. Seaman, M.F. Chesselet, Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone, Exp. Neurol. 187 (2004) 418-429; T.B. Sherer, J.H. Kim, R. Betarbet, J.T. Greenamyre, Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation, Exp. Neurol. 179 (2003) 9-16.]. To better investigate the role of mitochondria and complex I inhibition in chronic, progressive neurodegenerative disease, we developed methods for long-term culture of rodent postnatal midbrain organotypic slices. Chronic complex I inhibition over weeks by low dose (10-50 nM) rotenone in this system lead to dose- and time-dependent destruction of substantia nigra pars compacta neuron processes, morphologic changes, some neuronal loss, and decreased tyrosine hydroxylase (TH) protein levels. Chronic complex I inhibition also caused oxidative damage to proteins, measured by protein carbonyl levels. This oxidative damage was blocked by the antioxidant alpha-tocopherol (vitamin E). At the same time, alpha-tocopherol also blocked rotenone-induced reductions in TH protein and TH immunohistochemical changes. Thus, oxidative damage is a primary mechanism of mitochondrial toxicity in intact dopaminergic neurons. The organotypic culture system allows close study of this and other interacting mechanisms over a prolonged time period in mature dopaminergic neurons with intact processes, surrounding glia, and synaptic connections.

  9. [The concise history of atrial fibrillation].

    PubMed

    Fazekas, Tamás

    2007-01-01

    The author reviews the history of atrial fibrillation, the most common sustained cardiac arrhythmia. The chaotic irregularity of arterial pulse was clearly acknowledged by most of physicians of the ancient China, Egypt and Greece. William Harvey (1578-1657), who first described the circulatory system appropriately, was probably the first to describe fibrillation of the auricles in animals in 1628. The French "clinical pathologist", Jean Baptist de Sénac (1693-1770) was the first who assumed a correlation between "rebellious palpitation" and stenosis of the mitral valve. Robert Adams (1791-1875) also reported in 1827 the association of irregular pulses and mitral stenosis. The discovery of digitalis leaf in 1785 by William Withering (1741-1799) brought relief to patients with atrial fibrillation and congestive heart failure by reducing the ventricular rate. From an analysis of simultaneously recorded arterial and venous pressure curves, the Scottish Sir James Mackenzie (1853-11925) demonstrated that a presystolic wave cannot be seen during "pulsus irregularis perpetuus", a term very first used by Heinrich Ewald Hering (1866-1948). Arthur Cushny (1866-1926) noted the similarity between pulse curves in clinical "delirium cordis" and those in dogs with atrial fibrillation. The first human ECG depicting atrial fibrillation was published by Willem Einthoven (1860-1927) in 1906. The proof of a direct connection between absolute arrhythmia and atrial fibrillation was established by two Viennese physicians, Carl Julius Rothberger and Heinrich Winterberg in 1909. Sir Thomas Lewis (1881-1945), the father of modem electrocardiography, studied electrophysiological characteristics of atrial fibrillation and has shown that its basic perpetuating mechanism is circus movement of electrical impulse (re-entry). After him, the major discoveries relating to the pathophysiology and clinical features of atrial fibrillation in the 20th century stemmed from Karel Frederick Wenckebach (1864-1940), Gordon Moe (1915-1989), Bernhard Lown (*1921) and Maurits Allessie. Over the past ten years, awareness has increased of transcatheter radiofrequency and cryoablation of non-valvular atrial fibrillation and the battle against formation of intraatrial thrombi for preventing cerebral thromboembolism.

  10. Are hotspots always hotspots? The relationship between diversity, resource and ecosystem functions in the Arctic.

    PubMed

    Link, Heike; Piepenburg, Dieter; Archambault, Philippe

    2013-01-01

    The diversity-ecosystem function relationship is an important topic in ecology but has not received much attention in Arctic environments, and has rarely been tested for its stability in time. We studied the temporal variability of benthic ecosystem functioning at hotspots (sites with high benthic boundary fluxes) and coldspots (sites with lower fluxes) across two years in the Canadian Arctic. Benthic remineralisation function was measured as fluxes of oxygen, silicic acid, phosphate, nitrate and nitrite at the sediment-water interface. In addition we determined sediment pigment concentration and taxonomic and functional macrobenthic diversity. To separate temporal from spatial variability, we sampled the same nine sites from the Mackenzie Shelf to Baffin Bay during the same season (summer or fall) in 2008 and 2009. We observed that temporal variability of benthic remineralisation function at hotspots is higher than at coldspots and that taxonomic and functional macrobenthic diversity did not change significantly between years. Temporal variability of food availability (i.e., sediment surface pigment concentration) seemed higher at coldspot than at hotspot areas. Sediment chlorophyll a (Chl a) concentration, taxonomic richness, total abundance, water depth and abundance of the largest gallery-burrowing polychaete Lumbrineristetraura together explained 42% of the total variation in fluxes. Food supply proxies (i.e., sediment Chl a and depth) split hot- from coldspot stations and explained variation on the axis of temporal variability, and macrofaunal community parameters explained variation mostly along the axis separating eastern from western sites with hot- or coldspot regimes. We conclude that variability in benthic remineralisation function, food supply and diversity will react to climate change on different time scales, and that their interactive effects may hide the detection of progressive change, particularly at hotspots. Time-series of benthic functions and its related parameters should be conducted at both hot- and coldspots to produce reliable predictive models.

  11. The silicon isotopic composition of fine-grained river sediments and its relation to climate and lithology

    NASA Astrophysics Data System (ADS)

    Bayon, G.; Delvigne, C.; Ponzevera, E.; Borges, A. V.; Darchambeau, F.; De Deckker, P.; Lambert, T.; Monin, L.; Toucanne, S.; André, L.

    2018-05-01

    The δ30Si stable isotopic composition of silicon in soils and fine-grained sediments can provide insights into weathering processes on continents, with important implications on the Si budget of modern and past oceans. To further constrain the factors controlling the distribution of Si isotopes in sediments, we have analysed a large number (n = 50) of separate size-fractions of sediments and suspended particulate materials collected near the mouth of rivers worldwide. This includes some of the world's largest rivers (e.g. Amazon, Congo, Mackenzie, Mississippi, Murray-Darling, Nile, Yangtze) and rivers from the case study areas of the Congo River Basin and Northern Ireland. Silt-size fractions exhibit a mean Si isotopic composition (δ30Si = -0.21 ± 0.19‰; 2 s.d.) similar to that previously inferred for the upper continental crust. In contrast, clay-size fractions display a much larger range of δ30Si values from -0.11‰ to -2.16‰, which yield a global δ30Siclay of -0.57 ± 0.60‰ (2 s.d.) representative of the mean composition of the average weathered continental crust. Overall, these new data show that the Si isotopic signature transported by river clays is controlled by the degree of chemical weathering, as inferred from strong relationships with Al/Si ratios. At a global scale, the clay-bound Si isotopic composition of the world's largest river systems demonstrates a link with climate, defining a general correlation with mean annual temperature (MAT) in corresponding drainage basins. While the distribution of Si isotopes in river sediments also appears to be influenced by the tectonic setting, lithological effects and sediment recycling from former sedimentary cycles, our results pave the way for their use as paleo-weathering and paleo-climate proxies in the sedimentary record.

  12. Trophic interactions in the benthic boundary layer of the Beaufort Sea shelf, Arctic Ocean: Combining bulk stable isotope and fatty acid signatures

    NASA Astrophysics Data System (ADS)

    Connelly, Tara L.; Deibel, Don; Parrish, Christopher C.

    2014-01-01

    The food web structure and diets of 26 taxa of benthic boundary layer (BBL) zooplankton on the Beaufort Sea shelf were studied using carbon and nitrogen stable isotopes and fatty acids. Mean δ15N values ranged from 7.3‰ for the amphipod Melita formosa to 14.9‰ for an unidentified polychaete, suggesting that taxa sampled came from three trophic levels. For 8 taxa, the lightest carbon signature occurred near the mouth of the Mackenzie River. Stable isotope ratios helped clarify the origin of signature fatty acids. Levels of certain polyunsaturated fatty acids (PUFA) were negatively correlated with δ15N, with the exception of 22:6ω3, which was positively correlated with δ15N, suggesting that this essential PUFA was retained through the food web. Discriminant analysis proved to be a powerful tool, predicting taxa from fatty acid profiles with 99% accuracy, and revealing strong phylogenetic trends in fatty acid profiles. The amphipod Arrhis phyllonyx had higher levels of ω6 PUFA, especially 20:4ω6 with several possible sources, than other peracarid crustaceans. The holothurian had high levels of odd numbered and branched chain fatty acids, indicative of bacterial consumption, while fatty acids of phytoplankton origin were important discriminants for Calanus hyperboreus and the chaetognaths Eukrohnia hamata and Parasagitta elegans. This relationship indicates that the conventional phytoplankton-copepod-chaetognath food web found in the water column also exists in the BBL. This observation, as well as generally low δ15N and high levels of certain PUFA in samples with lower δ15N, strongly suggests that BBL zooplankton on the Beaufort Sea shelf have access to fresh material of phytoplankton origin either by feeding on sedimenting matter or by active migration to surface waters.

  13. Water and Metasomatism in the Slave Cratonic Lithosphere (Canada): An FTIR Study

    NASA Technical Reports Server (NTRS)

    Kilgore, McKensie; Peslier, Anne H.; Brandon, Alan D.; Schaffer, Lillian Aurora; Pearson, D. Graham; O'Reilly, Suzanne Yvette; Kopylova, Maya G.; Griffin, William L.

    2017-01-01

    Water in the mantle influences melting, viscosity, seismic velocity, and electrical conductivity. The role played by water in the long-term stabilization of cratonic roots is currently being debated. This study focuses on water contents of mantle minerals (olivine, pyroxene and garnet) from xenoliths found in kimberlites of the Archean Slave craton. 19 mantle xenoliths from central Lac de Gras, and 10 from northern Jericho were analyzed by FTIR for water, and their equilibration depths span the several compositional layers identified beneath the region. At both locations, the shallow peridotites have lower water contents in their olivines (11-30 ppm H2O) than those from the deeper layers (28-300 ppm H2O). The driest olivines, however, are not at the base of the cratonic lithosphere (>6 GPa) as in the Kaapvaal craton. Instead, the deepest olivines are hydrous (31-72 ppm H2O at Lac de Gras and 275 ppm H2O at Jericho). Correlations of water in clinopyroxene and garnet with their other trace element contents are consistent with water being added by metasomatism by melts resembling kimberlite precursors in the mantle approx.0.35 Ga ago beneath Lac de Gras. The northern Jericho xenoliths are derived from a region of the Slave craton that is even more chemically stratified, and was affected at depth by the 1.27 Ga Mackenzie igneous events. Metasomatism at Jericho may be responsible for the particularly high olivine water contents (up to 300 ppm H2O) compared to those at Lac de Gras, which will be investigated by acquiring trace-element data on these xenoliths. These data indicate that several episodes of metasomatic rehydration occurred in the deep part of the Slave craton mantle lithosphere, with the process being more intense in the northern part beneath Jericho, likely related to a translithospheric suture serving as a channel to introduce fluids and/or melts in the northern region. Consequently, rehydration of the lithosphere does not necessarily cause cratonic root delamination and these peridotites may represent localized metasomatic zones - the wall rocks to kimberlite magma passage.

  14. Leachable Li and Mg Evidence for Hydrological Changes in the Mono Basin, CA, USA

    NASA Astrophysics Data System (ADS)

    Sahajpal, R.; Hemming, N.; Zimmerman, S. R.; Hemming, S. R.

    2007-12-01

    Hydrology in closed basin lakes, such as Mono Lake of the US western Great Basin, is sensitive to regional climate changes. Lake level history of the Mono Basin has been put into a precise age framework using the paleomagnetic intensity of the Wilson Creek Formation sediments to North Atlantic records, and accordingly Greenland's GISP2 oxygen isotope record (Zimmerman et al., 2006, EPSL, v. 252, pp. 94- 106). This allows correlation of the lake level indicators and Greenland climate at high resolution. The physical evidence for lake level, based on the association of strata in near shore terraces, can be confidently correlated to proxies of lake chemistry preserved in the strata. We have tested the application of leachable Li, following the procedure developed by Bischoff et al. (1997, Quaternary Research, v. 48, pp. 313-325) for Owens Lake. At Owens Lake there is a positive correlation between salinity based on diatoms with leachable Li concentrations. In contrast, at Mono Lake the leachable Li concentration follows the bulk carbonate concentration, generally correlating low lake levels (high salinity) with low leachable Li concentrations. Our preferred explanation for both the carbonate and leachable Li concentrations is based on the fact that the Mono Basin rarely overflows, and therefore precipitation of minerals during evaporation leads to chemical divides (Garrels and Mackenzie., 1967, in "Equilibrium Concepts in Natural Water Systems", W. Stumm, Ed., pp. 222-242). As Li behaves conservatively compared to elements like Ca2+ and Mg2+, it might be expected that the leachable Li would be higher when lake level is lower. However, the host for the Li appears to be Mg-smectite. Therefore, the concentration of leachable Li in the sediment is controlled by the concentration of Mg-smectite, as well as the Li/Mg of the water from which the Mg- smectite precipitated and the Kd of the Li into the Mg-smectite. We are studying the Li and Mg systematics of these samples in order to deconvolve these factors and contribute to paleo-hydrological studies of this and other closed basin lakes.

  15. Developing a Workflow Composite Score to Measure Clinical Information Logistics. A Top-down Approach.

    PubMed

    Liebe, J D; Hübner, U; Straede, M C; Thye, J

    2015-01-01

    Availability and usage of individual IT applications have been studied intensively in the past years. Recently, IT support of clinical processes is attaining increasing attention. The underlying construct that describes the IT support of clinical workflows is clinical information logistics. This construct needs to be better understood, operationalised and measured. It is therefore the aim of this study to propose and develop a workflow composite score (WCS) for measuring clinical information logistics and to examine its quality based on reliability and validity analyses. We largely followed the procedural model of MacKenzie and colleagues (2011) for defining and conceptualising the construct domain, for developing the measurement instrument, assessing the content validity, pretesting the instrument, specifying the model, capturing the data and computing the WCS and testing the reliability and validity. Clinical information logistics was decomposed into the descriptors data and information, function, integration and distribution, which embraced the framework validated by an analysis of the international literature. This framework was refined selecting representative clinical processes. We chose ward rounds, pre- and post-surgery processes and discharge as sample processes that served as concrete instances for the measurements. They are sufficiently complex, represent core clinical processes and involve different professions, departments and settings. The score was computed on the basis of data from 183 hospitals of different size, ownership, location and teaching status. Testing the reliability and validity yielded encouraging results: the reliability was high with r(split-half) = 0.89, the WCS discriminated between groups; the WCS correlated significantly and moderately with two EHR models and the WCS received good evaluation results by a sample of chief information officers (n = 67). These findings suggest the further utilisation of the WCS. As the WCS does not assume ideal workflows as a gold standard but measures IT support of clinical workflows according to validated descriptors a high portability of the WCS to other hospitals in other countries is very likely. The WCS will contribute to a better understanding of the construct clinical information logistics.

  16. Accumulated state assessment of the Peace-Athabasca-Slave River system.

    PubMed

    Dubé, Monique G; Wilson, Julie E

    2013-07-01

    Effects-based analysis is a fundamental component of watershed cumulative effects assessment. This study conducted an effects-based analysis for the Peace-Athabasca-Slave River System, part of the massive Mackenzie River Basin, encompassing 20% of Canada's total land mass and influenced by cumulative contributions of the W.A.C. Bennett Dam (Peace River) and industrial activities including oil sands mining (Athabasca River). This study assessed seasonal changes in 1) Peace River water quality and quantity before and after dam development, 2) Athabasca River water quality and quantity before and after oil sands developments, 3) tributary inputs from the Peace and Athabasca Rivers to the Slave River, and 4) upstream to downstream differences in water quality in the Slave River. In addition, seasonal benchmarks were calculated for each river based on pre-perturbation post-perturbation data for future cumulative effects assessments. Winter discharge (January-March) from the Peace and Slave Rivers was significantly higher than before dam construction (pre-1967) (p < 0.05), whereas summer peak flows (May-July) were significantly lower than before the dam showing that regulation has significantly altered seasonal flow regimes. During spring freshet and summer high flows, the Peace River strongly influenced the quality of the Slave River, as there were no significant differences in loadings of dissolved N, total P (TP), total organic C (TOC), total As, total Mn, total V, and turbidity and specific conductance between these rivers. In the Athabasca River, TP and specific conductance concentrations increased significantly since before oil sands developments (1967-2010), whereas dissolved N and sulfate have increased after the oil sands developments (1977-2010). Recently, the Athabasca River had significantly higher concentrations of dissolved N, TP, TOC, dissolved sulfate, specific conductance, and total Mn than either the Slave or the Peace Rivers during the winter months. The transboundary nature of the Peace, Athabasca, and Slave River basins has resulted in fragmented monitoring and reporting of the state of these rivers, and a more consistent monitoring framework is recommended. Copyright © 2012 SETAC.

  17. Effective-Medium Models for Marine Gas Hydrates, Mallik Revisited

    NASA Astrophysics Data System (ADS)

    Terry, D. A.; Knapp, C. C.; Knapp, J. H.

    2011-12-01

    Hertz-Mindlin type effective-medium dry-rock elastic models have been commonly used for more than three decades in rock physics analysis, and recently have been applied to assessment of marine gas hydrate resources. Comparisons of several effective-medium models with derivative well-log data from the Mackenzie River Valley, Northwest Territories, Canada (i.e. Mallik 2L-38 and 5L-38) were made several years ago as part of a marine gas hydrate joint industry project in the Gulf of Mexico. The matrix/grain supporting model (one of the five models compared) was clearly a better representation of the Mallik data than the other four models (2 cemented sand models; a pore-filling model; and an inclusion model). Even though the matrix/grain supporting model was clearly better, reservations were noted that the compressional velocity of the model was higher than the compressional velocity measured via the sonic logs, and that the shear velocities showed an even greater discrepancy. Over more than thirty years, variations of Hertz-Mindlin type effective medium models have evolved for unconsolidated sediments and here, we briefly review their development. In the past few years, the perfectly smooth grain version of the Hertz-Mindlin type effective-medium model has been favored over the infinitely rough grain version compared in the Gulf of Mexico study. We revisit the data from the Mallik wells to review assertions that effective-medium models with perfectly smooth grains are a better predictor than models with infinitely rough grains. We briefly review three Hertz-Mindlin type effective-medium models, and standardize nomenclature and notation. To calibrate the extended effective-medium model in gas hydrates, we use a well accepted framework for unconsolidated sediments through Hashin-Shtrikman bounds. We implement the previously discussed effective-medium models for saturated sediments with gas hydrates and compute theoretical curves of seismic velocities versus gas hydrate saturation to compare with well log data available from the Canadian gas hydrates research site. By directly comparing the infinitely rough and perfectly smooth grain versions of the Hertz-Mindlin type effective-medium model, we provide additional insight to the discrepancies noted in the Gulf of Mexico study.

  18. Seismic Modeling Of Reservoir Heterogeneity Scales: An Application To Gas Hydrate Reservoirs

    NASA Astrophysics Data System (ADS)

    Huang, J.; Bellefleur, G.; Milkereit, B.

    2008-12-01

    Natural gas hydrates, a type of inclusion compound or clathrate, are composed of gas molecules trapped within a cage of water molecules. The occurrence of gas hydrates in permafrost regions has been confirmed by core samples recovered from the Mallik gas hydrate research wells located within Mackenzie Delta in Northwest Territories of Canada. Strong vertical variations of compressional and shear sonic velocities and weak surface seismic expressions of gas hydrates indicate that lithological heterogeneities control the distribution of hydrates. Seismic scattering studies predict that typical scales and strong physical contrasts due to gas hydrate concentration will generate strong forward scattering, leaving only weak energy captured by surface receivers. In order to understand the distribution of hydrates and the seismic scattering effects, an algorithm was developed to construct heterogeneous petrophysical reservoir models. The algorithm was based on well logs showing power law features and Gaussian or Non-Gaussian probability density distribution, and was designed to honor the whole statistical features of well logs such as the characteristic scales and the correlation among rock parameters. Multi-dimensional and multi-variable heterogeneous models representing the same statistical properties were constructed and applied to the heterogeneity analysis of gas hydrate reservoirs. The petrophysical models provide the platform to estimate rock physics properties as well as to study the impact of seismic scattering, wave mode conversion, and their integration on wave behavior in heterogeneous reservoirs. Using the Biot-Gassmann theory, the statistical parameters obtained from Mallik 5L-38, and the correlation length estimated from acoustic impedance inversion, gas hydrate volume fraction in Mallik area was estimated to be 1.8%, approximately 2x108 m3 natural gas stored in a hydrate bearing interval within 0.25 km2 lateral extension and between 889 m and 1115 m depth. With parallel 3-D viscoelastic Finite Difference (FD) software, we conducted a 3D numerical experiment of near offset Vertical Seismic Profile. The synthetic results implied that the strong attenuation observed in the field data might be caused by the scattering.

  19. Performance of a TKE diffusion scheme in ECMWF IFS Single Column Model

    NASA Astrophysics Data System (ADS)

    Svensson, Jacob; Bazile, Eric; Sandu, Irina; Svensson, Gunilla

    2015-04-01

    Numerical Weather Prediction models (NWP) as well as climate models are used for decision making on all levels in society and their performance and accuracy are of great importance for both economical and safety reasons. Today's extensive use of weather apps and websites that directly uses model output even more highlights the importance of realistic output parameters. The turbulent atmospheric boundary layer (ABL) includes many physical processes which occur on a subgrid scale and need to be parameterized. As the absolute major part of the biosphere is located in the ABL, it is of great importance that these subgrid processes are parametrized so that they give realistic values of e.g. temperature and wind on the levels close to the surface. GEWEX (Global Energy and Water Exchange Project) Atmospheric Boundary Layer Study (GABLS), has the overall objective to improve the understanding and the representation of the atmospheric boundary layers in climate models. The study has pointed out that there is a need for a better understanding and representation of stable atmospheric boundary layers (SBL). Therefore four test cases have been designed to highlight the performance of and differences between a number of climate models and NWP:s in SBL. In the experiments, most global NWP and climate models have shown to be too diffusive in stable conditions and thus give too weak temperature gradients, too strong momentum mixing and too weak ageostrophic Ekman flow. The reason for this is that the models need enhanced diffusion to create enough friction for the large scale weather systems, which otherwise would be too fast and too active. In the GABLS test cases, turbulence schemes that use Turbulent Kinetic Energy (TKE) have shown to be more skilful than schemes that only use stability and gradients. TKE as a prognostic variable allows for advection both vertically and horizontally and gives a "memory" from previous time steps. Therefore, e.g. the ECMWF-GABLS workshop in 2011 recommended a move for global NWP models towards a TKE scheme. Here a comparison between a TKE diffusion scheme (based on the implementation in the ARPEGE model by Meteo France) is compared to ECMWF:s IFS operational first-order scheme and to a less diffusive version, using a single column version of ECMWF:s IFS model. Results from the test cases GABLS 1, 3 and 4 together with the Diurnal land/atmosphere coupling experiment (DICE) are presented.

  20. Outcome of the Third Cloud Retrieval Evaluation Workshop

    NASA Astrophysics Data System (ADS)

    Roebeling, R.; Baum, B.; Bennartz, R.; Hamann, U.; Heidinger, A.; Thoss, A.; Walther, A.

    2012-04-01

    Accurate measurements of global distributions of cloud parameters and their diurnal, seasonal, and inter-annual variations are needed to improve the understanding of the role of clouds in the weather and climate system, and to monitor their time-space variations. Cloud properties retrieved from satellite observations, such as cloud vertical placement, cloud water path and cloud particle size, play an important role such studies. In order to give climate and weather researchers more confidence in the quality of these retrievals their validity needs to be determined and their error characteristics need to be quantified. The purpose of the Cloud Retrieval Evaluation Workshop (CREW), which was held from 15-18 November 2011 in Madison, Wisconsin, USA, is to enhance our knowledge on state-of-art cloud properties retrievals from passive imaging satellites, and pave the path towards optimising these retrievals for climate monitoring as well as for the analysis of cloud parameterizations in climate and weather models. CREW also seeks to observe and understand methods that are used to prepare daily and monthly cloud parameter climatologies. An important component of the workshop is the discussion on the results of the algorithm and sensor comparisons and validation studies. Hereto a common database with about 12 different cloud properties retrievals from passive imagers (MSG, MODIS, AVHRR, POLDER and/or AIRS), complemented with cloud measurements that serve as a reference (CLOUDSAT, CALIPSO, AMSU, MISR), was prepared for a number of "golden days". The passive imager cloud property retrievals were inter-compared and validated against Cloudsat, Calipso and AMSU observations. In our presentation we will summarize the outcome of the inter-comparison and validation work done in the framework of CREW, and elaborate on the reasons for the observed differences. More in depth discussions were held on retrieval principles and validation, and the utilization of cloud parameters for climate research. This was done in parallel breakout sessions on cloud vertical placement; cloud physical properties, and cloud climatologies. We will present the recommendations of these sessions, propose a way forward to establish international partnerships on cloud research, and summarize the actions defined to tailor the CREW activities to missions of international programs, such as the Global Energy and Water Cycle Experiment (GEWEX) and Sustained, Co-Ordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM). Finally, attention will be given to increase the traceability and uniformity of different long-term and homogeneous records of cloud parameters.

  1. Oceanographic structure drives the assembly processes of microbial eukaryotic communities

    PubMed Central

    Monier, Adam; Comte, Jérôme; Babin, Marcel; Forest, Alexandre; Matsuoka, Atsushi; Lovejoy, Connie

    2015-01-01

    Arctic Ocean microbial eukaryote phytoplankton form subsurface chlorophyll maximum (SCM), where much of the annual summer production occurs. This SCM is particularly persistent in the Western Arctic Ocean, which is strongly salinity stratified. The recent loss of multiyear sea ice and increased particulate-rich river discharge in the Arctic Ocean results in a greater volume of fresher water that may displace nutrient-rich saltier waters to deeper depths and decrease light penetration in areas affected by river discharge. Here, we surveyed microbial eukaryotic assemblages in the surface waters, and within and below the SCM. In most samples, we detected the pronounced SCM that usually occurs at the interface of the upper mixed layer and Pacific Summer Water (PSW). Poorly developed SCM was seen under two conditions, one above PSW and associated with a downwelling eddy, and the second in a region influenced by the Mackenzie River plume. Four phylogenetically distinct communities were identified: surface, pronounced SCM, weak SCM and a deeper community just below the SCM. Distance–decay relationships and phylogenetic structure suggested distinct ecological processes operating within these communities. In the pronounced SCM, picophytoplanktons were prevalent and community assembly was attributed to water mass history. In contrast, environmental filtering impacted the composition of the weak SCM communities, where heterotrophic Picozoa were more numerous. These results imply that displacement of Pacific waters to greater depth and increased terrigenous input may act as a control on SCM development and result in lower net summer primary production with a more heterotroph dominated eukaryotic microbial community. PMID:25325383

  2. Low Permafrost Methane Emissions from Arctic Airborne Flux Measurements

    NASA Astrophysics Data System (ADS)

    Sachs, T.; Serafimovich, A.; Metzger, S.; Kohnert, K.; Hartmann, J.

    2014-12-01

    One of the most pressing questions with regard to climate feedback processes in a warming Arctic is the regional-scale greenhouse gas release from Arctic permafrost areas. Ground-based eddy covariance (EC) measurements provide continuous in-situ observations of the surface-atmosphere exchange of energy and matter. However, these observations are rare in the Arctic permafrost zone and site selection is bound by logistical constraints among others. Consequently, these observations cover only small areas that are not necessarily representative of the region of interest. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. The Airborne Measurements of Methane Fluxes (AIRMETH) campaigns are designed to quantitatively and spatially explicitly address this question. During the AIRMETH-2012 and AIRMETH-2013 campaigns aboard the research aircraft POLAR 5 we measured turbulent exchange of energy, methane, and (in 2013) carbon dioxide along thousands of kilometers covering the North Slope of Alaska and the Mackenzie Delta, Canada. Time-frequency (wavelet) analysis, footprint modeling, and machine learning techniques are used to (i) determine spatially resolved turbulence statistics, fluxes, and contributions of biophysical surface properties, and (ii) extract regionally valid functional relationships between environmental drivers and the observed fluxes. These environmental response functions (ERF) are used to explain spatial flux patterns and - if drivers are available in temporal resolution - allow for spatio-temporal scaling of the observations. This presentation will focus on 2012 methane fluxes on the North Slope of Alaska and the relevant processes on the regional scale and provide an updated 100 m resolution methane flux map of the North Slope of Alaska.

  3. Petroleum prospectivity of the Canada Basin, Arctic Ocean

    USGS Publications Warehouse

    Grantz, Arthur; Hart, Patrick E.

    2012-01-01

    Reconnaissance seismic reflection data indicate that Canada Basin is a >700,000 sq. km. remnant of the Amerasia Basin of the Arctic Ocean that lies south of the Alpha-Mendeleev Large Igneous Province, which was constructed across the northern part of the Amerasia Basin between about 127 and 89-83.5 Ma. Canada Basin was filled by Early Jurassic to Holocene detritus from the Beaufort-Mackenzie Deltaic System, which drains the northern third of interior North America, with sizable contributions from Alaska and Northwest Canada. The basin contains roughly 5 or 6 million cubic km of sediment. Three fourths or more of this volume generates low amplitude seismic reflections, interpreted to represent hemipelagic deposits, which contain lenses to extensive interbeds of moderate amplitude reflections interpreted to represent unconfined turbidite and amalgamated channel deposits.Extrapolation from Arctic Alaska and Northwest Canada suggests that three fourths of the section in Canada Basin is correlative with stratigraphic sequences in these areas that contain intervals of hydrocarbon source rocks. In addition, worldwide heat flow averages suggest that about two thirds of Canada Basin lies in the oil or gas windows. Structural, stratigraphic and combined structural and stratigraphic features of local to regional occurrence offer exploration targets in Canada Basin, and at least one of these contains bright spots. However, deep water (to almost 4000 m), remoteness from harbors and markets, and thick accumulations of seasonal to permanent sea ice (until its possible removal by global warming later this century) will require the discovery of very large deposits for commercial success in most parts of Canada Basin. ?? 2011 Elsevier Ltd.

  4. Distribution and sources of organic matter in surface marine sediments across the North American Arctic margin

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; O'Connor, Alison E.; Kuzyk, Zou Zou; Yunker, Mark B.; Gobeil, Charles; Macdonald, Robie W.

    2013-09-01

    As part of the International Polar Year research program, we conducted a survey of surface marine sediments from box cores along a section extending from the Bering Sea to Davis Strait via the Canadian Archipelago. We used bulk elemental and isotopic compositions, together with biomarkers and principal components analysis, to elucidate the distribution of marine and terrestrial organic matter in different regions of the North American Arctic margin. Marked regional contrasts were observed in organic carbon loadings, with the highest values (≥1 mg C m-2 sediment) found in sites along Barrow Canyon and the Chukchi and Bering shelves, all of which were characterized by sediments with low oxygen exposure, as inferred from thin layers (<2 cm) of Mn oxihydroxides. We found strong regional differences in inorganic carbon concentrations, with sites from the Canadian Archipelago and Lancaster Sound displaying elevated values (2-7 wt %) and highly depleted 14C compositions consistent with inputs from bedrock carbonates. Organic carbon:nitrogen ratios, stable carbon isotopes, and terrigenous organic biomarkers (lignin phenols and cutin acids) all indicate marked regional differences in the proportions of marine and terrigenous organic matter present in surface sediments. Regions such as Barrow Canyon and the Mackenzie River shelf were characterized by the highest contributions of land-derived organic matter, with compositional characteristics that suggested distinct sources and provenance. In contrast, sediments from the Canadian Archipelago and Davis Strait had the smallest contributions of terrigenous organic matter and the lowest organic carbon loadings indicative of a high degree of post-depositional oxidation.

  5. Probabilistic surface reconstruction from multiple data sets: An example for the Australian Moho

    NASA Astrophysics Data System (ADS)

    Bodin, T.; Salmon, M.; Kennett, B. L. N.; Sambridge, M.

    2012-10-01

    Interpolation of spatial data is a widely used technique across the Earth sciences. For example, the thickness of the crust can be estimated by different active and passive seismic source surveys, and seismologists reconstruct the topography of the Moho by interpolating these different estimates. Although much research has been done on improving the quantity and quality of observations, the interpolation algorithms utilized often remain standard linear regression schemes, with three main weaknesses: (1) the level of structure in the surface, or smoothness, has to be predefined by the user; (2) different classes of measurements with varying and often poorly constrained uncertainties are used together, and hence it is difficult to give appropriate weight to different data types with standard algorithms; (3) there is typically no simple way to propagate uncertainties in the data to uncertainty in the estimated surface. Hence the situation can be expressed by Mackenzie (2004): "We use fantastic telescopes, the best physical models, and the best computers. The weak link in this chain is interpreting our data using 100 year old mathematics". Here we use recent developments made in Bayesian statistics and apply them to the problem of surface reconstruction. We show how the reversible jump Markov chain Monte Carlo (rj-McMC) algorithm can be used to let the degree of structure in the surface be directly determined by the data. The solution is described in probabilistic terms, allowing uncertainties to be fully accounted for. The method is illustrated with an application to Moho depth reconstruction in Australia.

  6. Microsomal enzyme activities in beluga whales from the Mackenzie River Delta, Northwest Territories, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockhart, L.; Metner, D.; Muir, D.

    1995-12-31

    On two occasions the authors have obtained samples of liver from freshly killed beluga whales harvested by Inuit hunters. The first samples were obtained from whales trapped in the Husky Lakes; with the onset of winter, ice restricted these whales to small breathing holes where they were taken by hunters. They were found to be starving, with body weights about 200 kg less than those expected for whales of their length. Liver mixed-function oxygenase activities, ethoxyresorufin-O-deethylase and aryl hydrocarbon hydroxylase, correlated closely with blubber residues of polychlorinated biphenyls. A second group of whales was taken in the summer hunt inmore » Kugmallit Bay and showed no sign of starvation. The enzyme activities in these whales had weaker statistical relationships to PCB residues. These observations suggested that mobilization of blubber by the starving whales may have released PCBs to act pharmacologically. The authors could not test this hypothesis directly on whales, but an experiment was carried out on laboratory fish to try to examine it. Arctic char were given low dosages of PCB congener 126 and then maintained on diets of full normal ration, half-ration and quarter-ration over a period of 48 weeks, with sub-sampling at intervals. Fish receiving less than maintenance rations responded with decreases in body fat and increases in EROD activities. These laboratory results suggest that correlations between enzymatic activities and PCBs in the starving whales may indeed have been the result of the loss of blubber and concomitant release of PCBs.« less

  7. Analysis of mesoscopic attenuation in gas-hydrate bearing sediments

    NASA Astrophysics Data System (ADS)

    Rubino, J. G.; Ravazzoli, C. L.; Santos, J. E.

    2007-05-01

    Several authors have shown that seismic wave attenuation combined with seismic velocities constitute a useful geophysical tool to infer the presence and amounts of gas hydrates lying in the pore space of the sediments. However, it is still not fully understood the loss mechanism associated to the presence of the hydrates, and most of the works dealing with this problem focuse on macroscopic fluid flow, friction between hydrates and sediment matrix and squirt flow. It is well known that an important cause of the attenuation levels observed in seismic data from some sedimentary regions is the mesoscopic loss mechanism, caused by heterogeneities in the rock and fluid properties greater than the pore size but much smaller than the wavelengths. In order to analyze this effect in heterogeneous gas-hydrate bearing sediments, we developed a finite-element procedure to obtain the effective complex modulus of an heterogeneous porous material containing gas hydrates in its pore space using compressibility tests at different oscillatory frequencies in the seismic range. The complex modulus were obtained by solving Biot's equations of motion in the space-frequency domain with appropriate boundary conditions representing a gedanken laboratory experiment measuring the complex volume change of a representative sample of heterogeneous bulk material. This complex modulus in turn allowed us to obtain the corresponding effective phase velocity and quality factor for each frequency and spatial gas hydrate distribution. Physical parameters taken from the Mallik 5L-38 Gas Hydrate Research well (Mackenzie Delta, Canada) were used to analyze the mesoscopic effects in realistic hydrated sediments.

  8. Levels of C{sub 10}-C{sub 13} polychloro-n-alkanes in marine mammals from the Arctic and the St. Lawrence River estuary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomy, G.T.; Muir, D.C.G.; Stern, G.A.

    2000-05-01

    Marine mammals from various regions of the Arctic and the St. Lawrence River estuary were examined for the first time for levels of C{sub 10}--C{sub 13} polychloro-n-alkanes (sPCAs). Respective mean total sPCA concentrations in the blubber of beluga whales (Delphinapterus leucas) from Saqqaq and Nuussuaq, western Greenland, were 0.23 {+-} 0.02 (n = 2) and 0.164 {+-} 0.06 {micro}g/g (n = 2), similar to that in beluga from the Mackenzie Delta in the western Canadian Arctic 0.21 {+-} 0.08 {micro}g/g (m = 3). sPCAs levels were higher in beluga blubber from the St. Lawrence River (0.37 to 1.4 {micro}g/g). Meanmore » sPCA concentrations in the blubber samples from walruses (Odobenus rosmarus) (Thule, northwest Greenland) and ringed seal (Phoca hispida) (Eureka, southwest Ellesmere Island) were 0.43 {+-} 0.06 (n = 2) and 0.53 {+-} 0.2 {micro}g/g (n = 6), respectively. Relative to commercial sPCA formulations, samples from the Arctic marine mammals showed a predominance of the shorter chain length lower percent chlorinated PCA congeners, the more volatile components of industrial formulations. This observation is consistent with long-range atmospheric transport of sPCAs to this region. The profiles of the belugas from the St. Lawrence River estuary, however, had higher proportions of the less volatile sPCA congeners, implying that contamination to this region is probably from local sources.« less

  9. Terahertz photometers to observe solar flares from space (SOLAR-T project)

    NASA Astrophysics Data System (ADS)

    Kaufmann, Pierre; Raulin, Jean-Pierre

    The space experiment SOLAR-T designed to observe solar flares at THz frequencies was completed. We present the concept, fabrication and performance of a double THz photometers system. An innovative optical setup allows observations of the full solar disk and the detection of small burst transients at the same time. It is the first detecting system conceived to observe solar flare THz emissions on board of stratospheric balloons. The system has been integrated to data acquisition and telemetry modules for this application. SOLAR-T uses two Golay cell detectors preceded by low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. Its photometers can detect small solar bursts (tens of solar flux units) with sub second time resolution. One artificial Sun setup was developed to simulate actual observations. Tests comprised the whole system performance, on ambient and low pressure and temperature conditions. It is intended to provide data on the still unrevealed spectral shape of the mysterious THz solar flares emissions. The experiment is planned to be on board of two long-duration stratospheric balloon flights over Antarctica and Russia in 2014-2016. The SOLAR-T development, fabrication and tests has been accomplished by engineering and research teams from Mackenzie, Unicamp and Bernard Lyot Solar Observatory; Propertech Ltda.; Neuron Ltda.; and Samsung, Brazil; Tydex LCC, Russia; CONICET, Argentina; the stratospheric balloon missions will be carried in cooperation with teams from University of California, Berkeley, USA (flight over Antarctica), and Lebedev Physical Institute, Moscow, Russia (flight over Russia).

  10. Precambrian crust beneath the Mesozoic northern Canadian Cordillera discovered by Lithoprobe seismic reflection profiling

    NASA Astrophysics Data System (ADS)

    Cook, Frederick A.; Clowes, Ronald M.; Snyder, David B.; van der Velden, Arie J.; Hall, Kevin W.; Erdmer, Philippe; Evenchick, Carol A.

    2004-04-01

    The Cordillera in northern Canada is underlain by westward tapering layers that can be followed from outcrops of Proterozoic strata in the Foreland belt to the lowermost crust of the orogenic interior, a distance of as much as 500 km across strike. They are interpreted as stratified Proterozoic rocks, including ˜1.8-0.7 Ga supracrustal rocks and their basement. The layering was discovered on two new deep seismic reflection profiles in the Yukon (Line 3; ˜650 km) and northern British Columbia (Line 2; ˜1245 km in two segments) that were acquired as part of the Lithoprobe Slave-Northern Cordillera Lithospheric Evolution (SNORCLE) transect. In the Mackenzie Mountains of the eastern Yukon, the layering in Line 3 is visible between 5.0 and 12.0 s (˜15 to 36 km depth). It is followed southwestward for nearly 650 km (˜500 km across strike) and thins to less than 1.0 s (˜3.0-3.5 km thickness) near the Moho at the Yukon-Alaska international boundary. In the northern Rocky Mountains of British Columbia, the upper part of the layering on Line 2 correlates with outcrops of Proterozoic (1.76-1.0 Ga) strata in the Muskwa anticlinorium. At this location, the layering is at least 15 km thick and is followed westward then southward into the middle and lower crust for ˜700 km (˜300 km across strike). It disappears as a thin taper at the base of the crust ˜150 km east of the coast of the Alaskan panhandle. The only significant disruption in the layering occurs at the Tintina fault zone, a late to postorogenic strike-slip fault with up to 800 km of displacement, which appears as a vertical zone of little reflectivity that disrupts the continuity of the deep layering on both profiles (˜300 km apart). The base of the layered reflection zone coincides with the Moho, which exhibits variable character and undulates in a series of broad arches with widths of ˜150 km. In general, the mantle appears to have few reflections. However, at the southwest end of Line 3 near the Alaska-British Columbia border, a reflection dips eastward from ˜14.0 s to ˜21.0 s (˜45 to 73 km depth) beneath exposed Eocene magmatic rocks. It is interpreted as a relict subduction surface of the Kula plate. Our interpretation of Proterozoic layered rocks beneath most of the northern Cordillera suggests a much different crustal structure than previously considered: (1) Ancient North American crust comprising up to 25 km of metamorphosed Proterozoic to Paleozoic sediments plus 5-10 km of pre-1.8 Ga crystalline basement projects westward beneath most of the northern Canadian Cordillera. (2) The lateral (500 km by at least 1000 km) and vertical (up to 25 km) extent of the Proterozoic layers and their internal deformation are consistent with a long-lived margin for northwestern North America with alternating episodes of extension and contraction. (3) The detachments that carry deformed rocks of the Mackenzie Mountains and northern Rocky Mountains are largely confined to the upper crustal region above the layering. (4) Accreted terranes include thin klippen that were thrust over North American pericratonic strata (e.g., Yukon-Tanana), and terranes such as Nisling and Stikinia that thicken westward as the underlying Proterozoic layers taper and disappear. (5) The ages of exposed rocks are not necessarily indicative of the ages of underlying crust, a frequent observation in Lithoprobe interpretations, so that estimates of crustal growth based on surface geology may not be representative.

  11. Sources and Reactivity of Terrestrial Organic Carbon to the Colville River Delta, Beaufort Sea, Alaska

    NASA Astrophysics Data System (ADS)

    Schreiner, K. M.; Bianchi, T. S.; Rosenheim, B. E.

    2014-12-01

    Terrestrial particulate organic carbon (tPOC) delivery to nearshore deltaic regions is an important mechanism of OC storage and burial, and continental margins worldwide account for approximately 90% of the carbon burial in the ocean. Increasing warming in the Arctic is leading to an acceleration of the hydrologic cycle, warming of permafrost, and broad shifts in vegetation. All of these changes are likely to affect the delivery, reactivity, and burial of tPOC in nearshore Arctic regions, making the Arctic an ideal place to study the effects of climate change on tPOC delivery. However, to date, most studies of tPOC delivery from North America to the Arctic Ocean have focused on large Arctic rivers like the Mackenzie and Yukon, and a significant portion of those watersheds lie in sub-Arctic latitudes, meaning that their tPOC delivery is likely not uniquely representative of the high Arctic tundra. Here, we focus on tPOC delivery by the Colville River, the largest North American river with a watershed that does not include sub-Arctic latitudes. Sediment samples from the river delta and nearby Simpson's Lagoon were taken in August of 2010 and subsequently fractionated by density, in order to study the delivery of both discrete and sediment-sorbed tPOC. Samples were analyzed for stable carbon isotopes, bulk radiocarbon, terrestrial biomarkers (including lignin-phenols, and other CuO reaction products), and aquatic biomarkers (algal pigments), and additionally a subset of the samples were analyzed by ramped pyrolysis-14C. Results show that tPOC delivery near the river mouth is sourced from coastal plain tundra, with additional delivery of tPOC from peat released into the lagoon from the seaward limit of the tundra by coastal erosion. Ramped pyrolysis-14C analysis also shows a clear differentiation between tPOC delivered by the river and tPOC delivered by coastal retreat in the lagoon. Additionally, a significant portion of the OC released by the Colville River is relatively thermochemically reactive and sourced from Pleistocene-aged yedoma-like deposits, and could contribute to increased OC mineralization in the Beaufort shelf. These results are the first to combine biomarker and ramped pyrolysis-14C analyses in an Arctic setting.

  12. The International Summer School on Land Cover Change and Hydroclimate of the La Plata Basin

    NASA Technical Reports Server (NTRS)

    Berbery, Ernesto Hugo; Herdies, Dirceu L.; Alcaraz-Segura, Domingo; de Goncalves, Luis G. G.; Lettenmaier, Dennis P.; Toll, David

    2011-01-01

    The La Plata Basin (LPB) in southern South America has been subject to land cover and land use changes (LCLUCs) since colonial times and with an accelerated rate in the last decades and over extensive areas. The work of Ameghino even suggested that there were relations between those land use changes and the frequency of droughts and floods in the region. Despite this early knowledge, not much is known of the potential impacts of LCLUC on the hydroclimate of the La Plata basin. Besides, over the last century much of the La Plata Basin has had a reported increase in precipitation and heavy rains, and these changes along with an increase in population growth - have resulted in more adverse effects from flooding. To draw attention to these issues, during two weeks in November 2009 the International Summer School on Land Cover Change and Hydroclimate of the La Plata Basin was organized at the grounds of the Itaip Hydropower Plant in Brazil. The school was the result of the combination of interests between the La Plata Basin Regional Hydroclimate Project, the Inter-American Institute for Global Change Research (IAI), and the International Hydroinformatics Center (IHC) in Itaip . LPB is an umbrella project endorsed by the Global Energy and Water Cycle Experiment (GEWEX) and the Climate Prediction and Variability (CLIVAR), both of the World Climate Research Programme (WCRP). LPB has made a priority to train young scientists and promote interdisciplinary collaborations in areas related to Climate, Hydrology, Ecology and Agriculture. The IAI, with a similar agenda, was a natural partner to develop this Summer School, which in turn benefited from Itaipu s interest in relating with the scientific community of neighboring countries. The choice of location (Itaip Technological Park) was made so that participants could relate research usually done at academic institutions to applications and operations at one of the largest hydropower plants in the world. The school was attended by 45 advanced graduate students and young scientists with different backgrounds from seven countries, including less technically advanced ones in the region..

  13. Evaluation of various LandFlux evapotranspiration algorithms using the LandFlux-EVAL synthesis benchmark products and observational data

    NASA Astrophysics Data System (ADS)

    Michel, Dominik; Hirschi, Martin; Jimenez, Carlos; McCabe, Mathew; Miralles, Diego; Wood, Eric; Seneviratne, Sonia

    2014-05-01

    Research on climate variations and the development of predictive capabilities largely rely on globally available reference data series of the different components of the energy and water cycles. Several efforts aimed at producing large-scale and long-term reference data sets of these components, e.g. based on in situ observations and remote sensing, in order to allow for diagnostic analyses of the drivers of temporal variations in the climate system. Evapotranspiration (ET) is an essential component of the energy and water cycle, which can not be monitored directly on a global scale by remote sensing techniques. In recent years, several global multi-year ET data sets have been derived from remote sensing-based estimates, observation-driven land surface model simulations or atmospheric reanalyses. The LandFlux-EVAL initiative presented an ensemble-evaluation of these data sets over the time periods 1989-1995 and 1989-2005 (Mueller et al. 2013). Currently, a multi-decadal global reference heat flux data set for ET at the land surface is being developed within the LandFlux initiative of the Global Energy and Water Cycle Experiment (GEWEX). This LandFlux v0 ET data set comprises four ET algorithms forced with a common radiation and surface meteorology. In order to estimate the agreement of this LandFlux v0 ET data with existing data sets, it is compared to the recently available LandFlux-EVAL synthesis benchmark product. Additional evaluation of the LandFlux v0 ET data set is based on a comparison to in situ observations of a weighing lysimeter from the hydrological research site Rietholzbach in Switzerland. These analyses serve as a test bed for similar evaluation procedures that are envisaged for ESA's WACMOS-ET initiative (http://wacmoset.estellus.eu). Reference: Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. F., Zhang, Y., and Seneviratne, S. I. (2013). Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrology and Earth System Sciences, 17(10): 3707-3720.

  14. Assessing skill of a global bimonthly streamflow ensemble prediction system

    NASA Astrophysics Data System (ADS)

    van Dijk, A. I.; Peña-Arancibia, J.; Sheffield, J.; Wood, E. F.

    2011-12-01

    Ideally, a seasonal streamflow forecasting system might be conceived of as a system that ingests skillful climate forecasts from general circulation models and propagates these through thoroughly calibrated hydrological models that are initialised using hydrometric observations. In practice, there are practical problems with each of these aspects. Instead, we analysed whether a comparatively simple hydrological model-based Ensemble Prediction System (EPS) can provide global bimonthly streamflow forecasts with some skill and if so, under what circumstances the greatest skill may be expected. The system tested produces ensemble forecasts for each of six annual bimonthly periods based on the previous 30 years of global daily gridded 1° resolution climate variables and an initialised global hydrological model. To incorporate some of the skill derived from ocean conditions, a post-EPS analog method was used to sample from the ensemble based on El Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation (PDO) index values observed prior to the forecast. Forecasts skill was assessed through a hind-casting experiment for the period 1979-2008. Potential skill was calculated with reference to a model run with the actual forcing for the forecast period (the 'perfect' model) and was compared to actual forecast skill calculated for each of the six forecast times for an average 411 Australian and 51 pan-tropical catchments. Significant potential skill in bimonthly forecasts was largely limited to northern regions during the snow melt period, seasonally wet tropical regions at the transition of wet to dry season, and the Indonesian region where rainfall is well correlated to ENSO. The actual skill was approximately 34-50% of the potential skill. We attribute this primarily to limitations in the model structure, parameterisation and global forcing data. Use of better climate forecasts and remote sensing observations of initial catchment conditions should help to increase actual skill in future. Future work also could address the potential skill gain from using weather and climate forecasts and from a calibrated and/or alternative hydrological model or model ensemble. The approach and data might be useful as a benchmark for joint seasonal forecasting experiments planned under GEWEX.

  15. Tectonothermal modeling of hydrocarbon maturation, Central Maracaibo Basin, Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manske, M.C.

    1996-08-01

    The petroliferous Maracaibo Basin of northwestern Venezuela and extreme eastern Colombia has evolved through a complex geologic history. Deciphering the tectonic and thermal evolution is essential in the prediction of hydrocarbon maturation (timing) within the basin. Individual wells in two areas of the central basin, Blocks III and V, have been modeled to predict timing of hydrocarbon generation within the source Upper Cretaceous La Luna Formation, as well as within interbedded shales of the Lower-Middle Eocene Misoa Formation reservoir sandstones. Tectonic evolution, including burial and uplift (erosional) history, has been constrained with available well data. The initial extensional thermal regimemore » of the basin has been approximated with a Mackenzie-type thermal model, and the following compressional stage of basin development by applying a foreland basin model. Corrected Bottom Hole Temperature (BHT) measurements; from wells in the central basin, along with thermal conductivity measurements of rock samples from the entire sedimentary sequence, resulted in the estimation of present day heat flow. An understanding of the basin`s heat flow, then, allowed extrapolation of geothermal gradients through time. The relation of geothermal gradients and overpressure within the Upper Cretaceous hydrocarbon-generating La Luna Formation and thick Colon Formation shales was also taken into account. Maturation modeling by both the conventional Time-Temperature Index (TTI) and kinetic Transformation Ratio (TR) methods predicts the timing of hydrocarbon maturation in the potential source units of these two wells. These modeling results are constrained by vitrinite reflectance and illite/smectite clay dehydration data, and show general agreement. These results also have importance regarding the timing of structural formation and hydrocarbon migration into Misoa reservoirs.« less

  16. Providing Undergraduate Research Opportunities Through the World Rivers Observatory Collaborative Network

    NASA Astrophysics Data System (ADS)

    Gillies, S. L.; Marsh, S. J.; Janmaat, A.; Peucker-Ehrenbrink, B.; Voss, B.; Holmes, R. M.

    2013-12-01

    Successful research collaboration exists between the University of the Fraser Valley (UFV), a primarily undergraduate-serving university located on the Fraser River in British Columbia, and the World Rivers Observatory that is coordinated through the Woods Hole Oceanographic Institution (WHOI) and the Woods Hole Research Center (WHRC). The World Rivers Observatory coordinates time-series sampling of 15 large rivers, with particular focus on the large Arctic rivers, the Ganges-Brahmaputra, Congo, Fraser, Yangtze (Changjiang), Amazon, and Mackenzie River systems. The success of this international observatory critically depends on the participation of local collaborators, such as UFV, that are necessary in order to collect temporally resolved data from these rivers. Several faculty members and undergraduate students from the Biology and Geography Departments of UFV received on-site training from the lead-PIs of the Global Rivers Observatory. To share information and ensure good quality control of sampling methods, WHOI and WHRC hosted two international workshops at Woods Hole for collaborators. For the past four years, faculty and students from UFV have been collecting a variety of bi-monthly water samples from the Fraser River for the World Rivers Observatory. UFV undergraduate students who become involved learn proper sampling techniques and are given the opportunity to design and conduct their own research. Students have collected, analyzed and presented data from this project at regional, national, and international scientific meetings. UFV undergraduate students have also been hosted by WHOI and WHRC as guest students to work on independent research projects. While at WHOI and WHRC, students are able to conduct research using state-of-the-art specialized research facilities not available at UFV.

  17. Understanding and Addressing Vulnerability Following the 2010 Haiti Earthquake: Applying a Feminist Lens to Examine Perspectives of Haitian and Expatriate Health Care Providers and Decision-Makers.

    PubMed

    Durocher, Evelyne; Chung, Ryoa; Rochon, Christiane; Hunt, Matthew

    2016-07-01

    Vulnerability is a central concept in humanitarian aid. Discussions of vulnerability in disaster response literature and guidelines for humanitarian aid range from considerations of a universal human vulnerability, to more nuanced examinations of how particular characteristics render individuals more or less at risk. Despite its frequent use, there is a lack of clarity about how vulnerability is conceptualized and how it informs operational priorities in humanitarian assistance. Guided by interpretive description methodology, we draw on the feminist taxonomy of vulnerability presented by Mackenzie, Rogers and Dodds (2014) to examine perspectives of 24 expatriate and Haitian decision-makers and health professionals interviewed between May 2012 and March 2013. The analysis explores concepts of vulnerability and equity in relation to the humanitarian response following the 2010 earthquake in Haiti. Participants' conceptualizations of vulnerability included consideration for inherent vulnerabilities related to individual characteristics (e.g. being a woman or disabled) and situational vulnerabilities related to particular circumstances such as having less access to health care resources or basic necessities. Participants recognized that vulnerabilities could be exacerbated by socio-political structures but felt ill-equipped to address these. The use of the taxonomy and a set of questions inspired by Hurst's (2008) approach to identifying and reducing vulnerability can guide the analysis of varied sources of vulnerability and open discussions about how and by whom vulnerabilities should be addressed in humanitarian responses. More research is required to inform how humanitarian responders could balance addressing acute vulnerability with consideration of systemic and pre-existing circumstances that underlie much of the vulnerability experienced following an acute disaster.

  18. Understanding and Addressing Vulnerability Following the 2010 Haiti Earthquake: Applying a Feminist Lens to Examine Perspectives of Haitian and Expatriate Health Care Providers and Decision-Makers

    PubMed Central

    Chung, Ryoa; Rochon, Christiane; Hunt, Matthew

    2016-01-01

    Vulnerability is a central concept in humanitarian aid. Discussions of vulnerability in disaster response literature and guidelines for humanitarian aid range from considerations of a universal human vulnerability, to more nuanced examinations of how particular characteristics render individuals more or less at risk. Despite its frequent use, there is a lack of clarity about how vulnerability is conceptualized and how it informs operational priorities in humanitarian assistance. Guided by interpretive description methodology, we draw on the feminist taxonomy of vulnerability presented by Mackenzie, Rogers and Dodds (2014) to examine perspectives of 24 expatriate and Haitian decision-makers and health professionals interviewed between May 2012 and March 2013. The analysis explores concepts of vulnerability and equity in relation to the humanitarian response following the 2010 earthquake in Haiti. Participants’ conceptualizations of vulnerability included consideration for inherent vulnerabilities related to individual characteristics (e.g. being a woman or disabled) and situational vulnerabilities related to particular circumstances such as having less access to health care resources or basic necessities. Participants recognized that vulnerabilities could be exacerbated by socio-political structures but felt ill-equipped to address these. The use of the taxonomy and a set of questions inspired by Hurst’s (2008) approach to identifying and reducing vulnerability can guide the analysis of varied sources of vulnerability and open discussions about how and by whom vulnerabilities should be addressed in humanitarian responses. More research is required to inform how humanitarian responders could balance addressing acute vulnerability with consideration of systemic and pre-existing circumstances that underlie much of the vulnerability experienced following an acute disaster. PMID:27617037

  19. Past and future hydro-climatic change and the 2015 drought in the interior of western Canada

    NASA Astrophysics Data System (ADS)

    DeBeer, C. M.; Wheater, H. S.; Pomeroy, J. W.; Stewart, R. E.; Szeto, K.; Brimelow, J.; Chun, K. P.; Masud, M. B.; Bonsal, B. R.

    2015-12-01

    The interior of western Canada has experienced rapid and severe hydro-climatic change in recent decades. This is projected to continue in future. Since 1950, mean annual air temperature has increased by 2 °C (4 °C increase in winter daily means) with associated changes in cryospheric regime. Changes in precipitation have varied regionally; in the Prairies there has been a decrease in winter precipitation, shift from snowfall to rainfall, and increased clustering of summer rainfall events into multiple day storms. Regionally, river discharge indicates an earlier spring freshet and increased incidence of rain-on-snow peak flow events, but otherwise mixed responses due to multiple process interactions. In winter/spring 2015, persistent anomalous ridging conditions developed over western North America causing widespread drought. This produced abnormally warm and dry conditions over the Rocky Mountain headwaters of the Mackenzie and Saskatchewan Rivers, resulting in low spring snowpacks that melted earlier than normal and were followed by an atypical lack of spring rainfall. By summer 2015, most of western Canada was subject to extreme drought conditions leading to record dry soil moisture conditions in parts of the Prairies during a key crop growth time, streamflows that were greatly diminished, and extensive wildfires across the Boreal Forest. The importance of the warmer winter to this drought and the contextual trend for increasing winter warmth provide new insight into the impact of climate warming on droughts in cold regions. This talk will discuss efforts by the Changing Cold Regions Network (CCRN; www.ccrnetwork.ca) to understand and diagnose the 2015 drought, its potential linkages with the concurrent California drought and other continental events, and its relevance in the context of historical and predicted future climate change.

  20. Exploratory Hydrocarbon Drilling Impacts to Arctic Lake Ecosystems

    PubMed Central

    Thienpont, Joshua R.; Kokelj, Steven V.; Korosi, Jennifer B.; Cheng, Elisa S.; Desjardins, Cyndy; Kimpe, Linda E.; Blais, Jules M.; Pisaric, Michael FJ.; Smol, John P.

    2013-01-01

    Recent attention regarding the impacts of oil and gas development and exploitation has focused on the unintentional release of hydrocarbons into the environment, whilst the potential negative effects of other possible avenues of environmental contamination are less well documented. In the hydrocarbon-rich and ecologically sensitive Mackenzie Delta region (NT, Canada), saline wastes associated with hydrocarbon exploration have typically been disposed of in drilling sumps (i.e., large pits excavated into the permafrost) that were believed to be a permanent containment solution. However, failure of permafrost as a waste containment medium may cause impacts to lakes in this sensitive environment. Here, we examine the effects of degrading drilling sumps on water quality by combining paleolimnological approaches with the analysis of an extensive present-day water chemistry dataset. This dataset includes lakes believed to have been impacted by saline drilling fluids leaching from drilling sumps, lakes with no visible disturbances, and lakes impacted by significant, naturally occurring permafrost thaw in the form of retrogressive thaw slumps. We show that lakes impacted by compromised drilling sumps have significantly elevated lakewater conductivity levels compared to control sites. Chloride levels are particularly elevated in sump-impacted lakes relative to all other lakes included in the survey. Paleolimnological analyses showed that invertebrate assemblages appear to have responded to the leaching of drilling wastes by a discernible increase in a taxon known to be tolerant of elevated conductivity coincident with the timing of sump construction. This suggests construction and abandonment techniques at, or soon after, sump establishment may result in impacts to downstream aquatic ecosystems. With hydrocarbon development in the north predicted to expand in the coming decades, the use of sumps must be examined in light of the threat of accelerated permafrost thaw, and the potential for these industrial wastes to impact sensitive Arctic ecosystems. PMID:24223170

  1. Exploratory hydrocarbon drilling impacts to Arctic lake ecosystems.

    PubMed

    Thienpont, Joshua R; Kokelj, Steven V; Korosi, Jennifer B; Cheng, Elisa S; Desjardins, Cyndy; Kimpe, Linda E; Blais, Jules M; Pisaric, Michael F J; Smol, John P

    2013-01-01

    Recent attention regarding the impacts of oil and gas development and exploitation has focused on the unintentional release of hydrocarbons into the environment, whilst the potential negative effects of other possible avenues of environmental contamination are less well documented. In the hydrocarbon-rich and ecologically sensitive Mackenzie Delta region (NT, Canada), saline wastes associated with hydrocarbon exploration have typically been disposed of in drilling sumps (i.e., large pits excavated into the permafrost) that were believed to be a permanent containment solution. However, failure of permafrost as a waste containment medium may cause impacts to lakes in this sensitive environment. Here, we examine the effects of degrading drilling sumps on water quality by combining paleolimnological approaches with the analysis of an extensive present-day water chemistry dataset. This dataset includes lakes believed to have been impacted by saline drilling fluids leaching from drilling sumps, lakes with no visible disturbances, and lakes impacted by significant, naturally occurring permafrost thaw in the form of retrogressive thaw slumps. We show that lakes impacted by compromised drilling sumps have significantly elevated lakewater conductivity levels compared to control sites. Chloride levels are particularly elevated in sump-impacted lakes relative to all other lakes included in the survey. Paleolimnological analyses showed that invertebrate assemblages appear to have responded to the leaching of drilling wastes by a discernible increase in a taxon known to be tolerant of elevated conductivity coincident with the timing of sump construction. This suggests construction and abandonment techniques at, or soon after, sump establishment may result in impacts to downstream aquatic ecosystems. With hydrocarbon development in the north predicted to expand in the coming decades, the use of sumps must be examined in light of the threat of accelerated permafrost thaw, and the potential for these industrial wastes to impact sensitive Arctic ecosystems.

  2. ANALYSIS ON THE VARIATION OF MEDIAL ROTATION VALUES ACCORDING TO THE POSITION OF THE HUMERAL DIAPHYSIS.

    PubMed

    Miyazaki, Alberto Naoki; Fregoneze, Marcelo; Santos, Pedro Doneux; da Silva, Luciana Andrade; do Val Sella, Guilherme; Cohen, Carina; Busin Giora, Taís Stedile; Checchia, Sergio Luiz; Raia, Fabio; Pekelman, Hélio; Cymrot, Raquel

    2012-01-01

    To analyze the validity of measurements of medial rotation (MR) of the shoulder, using vertebral levels, according to the variation in the position of the humeral diaphysis, and to test the bi-goniometer as a new measuring instrument. 140 shoulders (70 patients) were prospectively evaluated in cases presenting unilateral shoulder MR limitation. The vertebral level was evaluated by means of a visual scale and was correlated with the angle obtained according to the position of the humeral diaphysis, using the bi-goniometer developed with the Department of Mechanical Engineering of Mackenzie University. The maximum vertebral level reached through MR on the unaffected side ranged from T3 to T12, and on the affected side, from T6 to the trochanter. Repositioning of the affected limb in MR according to the angular values on the normal side showed that 57.13% of the patients reached lower levels, between the sacrum, gluteus and trochanter. From analysis on the maximum vertebral level attained and the variation between the affected angle x (frontal plane: abduction and MR of the shoulder) and the unaffected angle x in MR, we observed that the greater the angle of the diaphyseal axis was, the lower the variation in the vertebral level attained was. From evaluating the linear correlation between the variables of difference in maximum vertebral level reached and variation in the affected angle y (extension and abduction of the shoulder) and the unaffected angle y in MR, we observed that there was no well-established linear relationship between these variables. Measurement of MR using vertebral levels does not correspond to the real values, since it varies according to the positioning of the humeral diaphysis.

  3. ANALYSIS ON THE VARIATION OF MEDIAL ROTATION VALUES ACCORDING TO THE POSITION OF THE HUMERAL DIAPHYSIS

    PubMed Central

    Miyazaki, Alberto Naoki; Fregoneze, Marcelo; Santos, Pedro Doneux; da Silva, Luciana Andrade; do Val Sella, Guilherme; Cohen, Carina; Busin Giora, Taís Stedile; Checchia, Sergio Luiz; Raia, Fabio; Pekelman, Hélio; Cymrot, Raquel

    2015-01-01

    Objective: To analyze the validity of measurements of medial rotation (MR) of the shoulder, using vertebral levels, according to the variation in the position of the humeral diaphysis, and to test the bi-goniometer as a new measuring instrument. Methods: 140 shoulders (70 patients) were prospectively evaluated in cases presenting unilateral shoulder MR limitation. The vertebral level was evaluated by means of a visual scale and was correlated with the angle obtained according to the position of the humeral diaphysis, using the bi-goniometer developed with the Department of Mechanical Engineering of Mackenzie University. Results: The maximum vertebral level reached through MR on the unaffected side ranged from T3 to T12, and on the affected side, from T6 to the trochanter. Repositioning of the affected limb in MR according to the angular values on the normal side showed that 57.13% of the patients reached lower levels, between the sacrum, gluteus and trochanter. From analysis on the maximum vertebral level attained and the variation between the affected angle x (frontal plane: abduction and MR of the shoulder) and the unaffected angle x in MR, we observed that the greater the angle of the diaphyseal axis was, the lower the variation in the vertebral level attained was. From evaluating the linear correlation between the variables of difference in maximum vertebral level reached and variation in the affected angle y (extension and abduction of the shoulder) and the unaffected angle y in MR, we observed that there was no well-established linear relationship between these variables. Conclusion: Measurement of MR using vertebral levels does not correspond to the real values, since it varies according to the positioning of the humeral diaphysis. PMID:27047845

  4. Reservoir controls on the occurrence and production of gas hydrates in nature

    USGS Publications Warehouse

    Collett, Timothy Scott

    2014-01-01

    modeling has shown that concentrated gas hydrate occurrences in sand reservoirs are conducive to existing well-based production technologies. The resource potential of gas hydrate accumulations in sand-dominated reservoirs have been assessed for several polar terrestrial basins. In 1995, the U.S. Geological Survey (USGS) assigned an in-place resource of 16.7 trillion cubic meters of gas for hydrates in sand-dominated reservoirs on the Alaska North Slope. In a more recent assessment, the USGS indicated that there are about 2.42 trillion cubic meters of technically recoverable gas resources within concentrated, sand-dominated, gas hydrate accumulations in northern Alaska. Estimates of the amount of in-place gas in the sand dominated gas hydrate accumulations of the Mackenzie Delta Beaufort Sea region of the Canadian arctic range from 1.0 to 10 trillion cubic meters of gas. Another prospective gas hydrate resources are those of moderate-to-high concentrations within sandstone reservoirs in marine environments. In 2008, the Bureau of Ocean Energy Management estimated that the Gulf of Mexico contains about 190 trillion cubic meters of gas in highly concentrated hydrate accumulations within sand reservoirs. In 2008, the Japan Oil, Gas and Metals National Corporation reported on a resource assessment of gas hydrates in which they estimated that the volume of gas within the hydrates of the eastern Nankai Trough at about 1.1 trillion cubic meters, with about half concentrated in sand reservoirs. Because conventional production technologies favor sand-dominated gas hydrate reservoirs, sand reservoirs are considered to be the most viable economic target for gas hydrate production and will be the prime focus of most future gas hydrate exploration and development projects.

  5. A reassessment of North American river basin water balances in light of new estimates of mountain snow accumulation

    NASA Astrophysics Data System (ADS)

    Wrzesien, M.; Durand, M. T.; Pavelsky, T.

    2017-12-01

    The hydrologic cycle is a key component of many aspects of daily life, yet not all water cycle processes are fully understood. In particular, water storage in mountain snowpacks remains largely unknown. Previous work with a high resolution regional climate model suggests that global and continental models underestimate mountain snow accumulation, perhaps by as much as 50%. Therefore, we hypothesize that since snow water equivalent (one aspect of the water balance) is underestimated, accepted water balances for major river basins are likely wrong, particularly for mountainous river basins. Here we examine water balances for four major high latitude North American watersheds - the Columbia, Mackenzie, Nelson, and Yukon. The mountainous percentage of each basin ranges, which allows us to consider whether a bias in the water balance is affected by mountain area percentage within the watershed. For our water balance evaluation, we especially consider precipitation estimates from a variety of datasets, including models, such as WRF and MERRA, and observation-based, such as CRU and GPCP. We ask whether the precipitation datasets provide enough moisture for seasonal snow to accumulate within the basin and whether we see differences in the variability of annual and seasonal precipitation from each dataset. From our reassessment of high-latitude water balances, we aim to determine whether the current understanding is sufficient to describe all processes within the hydrologic cycle or whether datasets appear to be biased, particularly in high-elevation precipitation. Should currently-available datasets appear to be similarly biased in precipitation, as we have seen in mountain snow accumulation, we discuss the implications for the continental water budget.

  6. The characteristics of gas hydrates occurring in natural environment

    NASA Astrophysics Data System (ADS)

    Lu, H.; Moudrakovski, I.; Udachin, K.; Enright, G.; Ratcliffe, C.; Ripmeester, J.

    2009-12-01

    In the past few years, extensive analyses have been carried out for characterizing the natural gas hydrate samples from Cascadia, offshore Vancouver Island; Mallik, Mackenzie Delta; Mount Elbert, Alaska North Slope; Nankai Trough, offshore Japan; Japan Sea and offshore India. With the results obtained, it is possible to give a general picture of the characteristics of gas hydrates occurring in natural environment. Gas hydrate can occur in sediments of various types, from sands to clay, although it is preferentially enriched in sediments of certain types, for example coarse sands and fine volcanic ash. Most of the gas hydrates in sediments are invisible, occurring in the pores of the sediments, while some hydrates are visible, appearing as massive, nodular, planar, vein-like forms and occurring around the seafloor, in the fractures related to fault systems, or any other large spaces available in sediments. Although methane is the main component of most of the natural gas hydrates, C2 to C7 hydrocarbons have been recognized in hydrates, sometimes even in significant amounts. Shallow marine gas hydrates have been found generally to contain minor amounts of hydrogen sulfide. Gas hydrate samples with complex gas compositions have been found to have heterogeneous distributions in composition, which might reflect changes in the composition of the available gas in the surrounding environment. Depending on the gas compositions, the structure type of a natural gas hydrate can be structure I, II or H. For structure I methane hydrate, the large cages are almost fully occupied by methane molecules, while the small cages are only partly occupied. Methane hydrates occurring in different environments have been identified with almost the same crystallographic parameters.

  7. An effective medium inversion algorithm for gas hydrate quantification and its application to laboratory and borehole measurements of gas hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Chand, Shyam; Minshull, Tim A.; Priest, Jeff A.; Best, Angus I.; Clayton, Christopher R. I.; Waite, William F.

    2006-08-01

    The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L-38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.

  8. Oxygen Isotopes and Meltwater: Younger Dryas and 8.2 ka Event

    NASA Astrophysics Data System (ADS)

    Keigwin, L. D.

    2015-12-01

    Delta 18-O is one of our most powerful and widely used proxies, with, arguably, the fewest likely unknown unknowns. Here I will consider the d18-O evidence for the two best-known floods of mostly liquid water to the ocean, the Younger Dryas (YD) and the 8.2 ka event. The first d18-O signal of a meltwater flood in the ocean was reported 40 years ago by Kennett and Shackleton (1975) and that paper led directly to the meltwater diversion hypothesis for the origin of the YD cooling. It was later suggested by Rooth (1982) that such a flood could interrupt Nordic seas convection and trigger the YD cold episode. It was reported at this meeting last year that a candidate flood has been found in the Mackenzie River region of the western Arctic based on low d18-O and multiple other lines of evidence. The 8.2 ka event was about one-tenth the duration of the YD but with possibly higher transport, and is more difficult to detect in open marine sediments. As with the YD, it has been modeled by hosing and low salinities have been derived by temperature correcting the d18-O. The resulting low salinity was shown not to follow the prediction of the highest resolution modeling, and theory, that the fresh water would be transported mostly equatorward along the continental shelf. However, I report here that the low d18-O signal of the 8.2 ka flooding is present in new cores from near Logan Canyon on the Scotian shelf break, and in Jordan Basin, Gulf of Maine. These results substantially validate the modeling of Condron and Winsor that fresh water transport must have been along the continental shelf.

  9. Circulation and water properties in the landfast ice zone of the Alaskan Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Weingartner, Thomas J.; Danielson, Seth L.; Potter, Rachel A.; Trefry, John H.; Mahoney, Andy; Savoie, Mark; Irvine, Cayman; Sousa, Leandra

    2017-09-01

    Moorings, hydrography, satellite-tracked drifters, and high-frequency radar data describe the annual cycle in circulation and water properties in the landfast ice zone (LIZ) of the Alaskan Beaufort Sea. Three seasons, whose duration and characteristics are controlled by landfast ice formation and ablation, define the LIZ: ;winter;, ;break-up;, and ;open-water;. Winter begins in October with ice formation and ends in June when rivers commence discharging. Winter LIZ ice velocities are zero, under-ice currents are weak ( 5 cm s-1), and poorly correlated with winds and local sea level. The along-shore momentum balance is between along-shore pressure gradients and bottom and ice-ocean friction. Currents at the landfast ice-edge are swift ( 35 cm s-1), wind-driven, with large horizontal shears, and potentially unstable. Weak cross-shore velocities ( 1 cm s-1) imply limited exchanges between the LIZ and the outer shelf in winter. The month-long break-up season (June) begins with the spring freshet and concludes when landfast ice detaches from the bottom. Cross-shore currents increase, and the LIZ hosts shallow ( 2 m), strongly-stratified, buoyant and sediment-laden, under-ice river plumes that overlie a sharp, 1 m thick, pycnocline across which salinity increases by 30. The plume salt balance is between entrainment and cross-shore advection. Break-up is followed by the 3-month long open-water season when currents are swift (≥20 cm s-1) and predominantly wind-driven. Winter water properties are initialized by fall advection and evolve slowly due to salt rejection from ice. Fall waters and ice within the LIZ derive from local rivers, the Mackenzie and/or Chukchi shelves, and the Arctic basin.

  10. Ice-type classifications from airborne pulse-limited radar altimeter return waveform characteristics

    NASA Technical Reports Server (NTRS)

    Fedor, L. S.; Hayne, G. S.; Walsh, E. J.

    1989-01-01

    During mid-March 1978, the NASA C-130 aircraft was deployed to Eielson Air Force Base in Fairbanks, Alaska, to make a series of flights over ice in the Beaufort Sea. The radar altimeter data analyzed were obtained northeast of Mackenzie Bay on March 14th in the vicinity of 69.9 deg N, 134.2 deg W. The data were obtained with a 13.9 GHz radar altimeter developed under the NASA Advanced Applications Flight Experiments (AAFE) Program. This airborne radar was built as a forerunner of the Seasat radar altimeter, and utilized the same pulse compression technique. Pulse-limited radar data taken with the altimeter from 1500-m altitude over sea ice are registered to high-quality photography. The backscattered power is statistically related the surface conductivity and to the number of facets whose surface normal is directed towards the radar. The variations of the radar return waveform shape and signal level are correlated with the variation of the ice type determined from photography. The AAFE altimeter has demonstrated that the return waveform shape and signal level of an airborne pulse-limited altimeter at 13.9 GHz respond to sea ice type. The signal level responded dramatically to even a very small fracture in the ice, as long as it occurred directly at the altimeter nadir point. Shear zones and regions of significant compression ridging consistently produced low signal levels. The return waveforms frequently evidenced the characteristics of both specular and diffuse scattering, and there was an indication that the power backscattered at 3 deg off-nadir in a shear zone was actually somewhat higher than that from nadir.

  11. An effective medium inversion algorithm for gas hydrate quantification and its application to laboratory and borehole measurements of gas hydrate-bearing sediments

    USGS Publications Warehouse

    Chand, S.; Minshull, T.A.; Priest, J.A.; Best, A.I.; Clayton, C.R.I.; Waite, W.F.

    2006-01-01

    The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L–38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.

  12. Influence of Translation Initiation on Organellar Protein Targeting in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sally A. Mackenzie

    2011-04-18

    A primary focus of the Mackenzie laboratory is the elucidation of processes and machinery for mitochondrial genome maintenance and transmission in higher plants. We have found that numerous organellar DNA maintenance components in plants appear to be dual targeted to mitochondria and plastids. Of particular interest was the observation that some twin (tandemly arrayed) dual targeting presequences appeared to utilize non-AUG alternative translation initiation, allowing for multiple translation starts at a single gene. Two aspects of this phenomenon were of particular interest: (1) Alternative translation initiation might provide a mechanism to regulate protein targeting temporally and spatially, a possibility thatmore » had not been demonstrated previously, and (2) alternative translation initiation might occur in genes involved in nuclear-controlled mitochondrial genome recombination, thought to be exclusively mitochondrial in their function. During the course of this research, we pursued three aims, with an emphasis on two specific genes of interest: POLgamma2, an organellar DNA polymerase, and MSH1, a MutS homolog thought to participate in mitochondrial, but not plastid, genome recombination surveillance. Our aims were to (1) Identify additional genes within Arabidopsis and other genomes that employ non-AUG alternative translation initiation, (2) Locate sequences upstream to the annotated AUG that confer alternative non-AUG translation initiation activity, and (3) Identify cis and trans factors that influence start site selection in genes with non-AUG starts. Toward these ends, we have shown that non-AUG initiation occurs in a number of genes, likely influencing targeting behavior of the protein. We have also shown that start site selection is strongly influenced by Kozak consensus sequence environment, indicating that alternative translation initiation in plants occurs by relaxation of ribosome scanning.« less

  13. Apparent optical properties of the Canadian Beaufort Sea - Part 1: Observational overview and water column relationships

    NASA Astrophysics Data System (ADS)

    Antoine, D.; Hooker, S. B.; Bélanger, S.; Matsuoka, A.; Babin, M.

    2013-07-01

    A data set of radiometric measurements collected in the Beaufort Sea (Canadian Arctic) in August 2009 (Malina project) is analyzed in order to describe apparent optical properties (AOPs) in this sea, which has been subject to dramatic environmental changes for several decades. The two properties derived from the measurements are the spectral diffuse attenuation coefficient for downward irradiance, Kd, and the spectral remote sensing reflectance, Rrs. The former controls light propagation in the upper water column. The latter determines how light is backscattered out of the water and becomes eventually observable from a satellite ocean color sensor. The data set includes offshore clear waters of the Beaufort Basin as well as highly turbid waters of the Mackenzie River plumes. In the clear waters, we show Kd values that are much larger in the ultraviolet and blue parts of the spectrum than what could be anticipated considering the chlorophyll concentration. A larger contribution of absorption by colored dissolved organic matter (CDOM) is responsible for these high Kd values, as compared to other oligotrophic areas. In turbid waters, attenuation reaches extremely high values, driven by high loads of particulate materials and also by a large CDOM content. In these two extreme types of waters, current satellite chlorophyll algorithms fail. This questions the role of ocean color remote sensing in the Arctic when Rrs from only the blue and green bands are used. Therefore, other parts of the spectrum (e.g., the red) should be explored if one aims at quantifying interannual changes in chlorophyll in the Arctic from space. The very peculiar AOPs in the Beaufort Sea also advocate for developing specific light propagation models when attempting to predict light availability for photosynthesis at depth.

  14. Apparent optical properties of the Canadian Beaufort Sea - Part 1: Observational overview and water column relationships

    NASA Astrophysics Data System (ADS)

    Antoine, D.; Hooker, S. B.; Belanger, S.; Matsuoka, A.; Babin, M.

    2013-03-01

    A data set of radiometric measurements collected in the Beaufort Sea (Canadian Arctic) in August 2009 (MALINA project) is analysed in order to describe apparent optical properties (AOPs) in this sea, which is subject to dramatic environmental changes for several decades. The two properties derived from the measurements are the spectral diffuse attenuation coefficient for downward irradiance, Kd, and the spectral remote sensing reflectance, Rrs. The former controls light propagation in the upper water column. The latter determines how light is backscattered out of the water and becomes eventually observable from a satellite ocean colour sensor. The data set includes offshore clear waters of the Beaufort basin as well as highly turbid waters of the Mackenzie River plumes. In the clear waters, we show Kd values that are much larger in the ultraviolet and blue parts of the spectrum than what could be anticipated considering the chlorophyll concentration. A larger contribution of absorption by coloured dissolved organic matter (CDOM) is responsible for this high Kd values, as compared to other oligotrophic areas. In turbid waters, attenuation reaches extremely high values, driven by high loads of particulate materials and also by a large CDOM content. In these two extreme types of waters, current satellite chlorophyll algorithms fail. This is questioning the role of ocean colour remote sensing in the Arctic when Rrs from only the blue and green bands are used. Therefore, other parts of the spectrum (e.g. the red) should be explored if one aims at quantifying interannual changes in chlorophyll in the Arctic from space. The very peculiar AOPs in the Beaufort Sea also advocate for developing specific light propagation models when attempting to predict light availability for photosynthesis at depth.

  15. Iceberg and meltwater discharge events in the western Arctic Ocean since MIS 5: a comparison of sediment cores off the East Siberian and Chukchi margins

    NASA Astrophysics Data System (ADS)

    Xiao, W.; Wang, R.; Zhang, T.; Duan, X.; Polyak, L.

    2017-12-01

    In the Pleistocene the western Arctic Ocean was affected by deglacial discharge events from ice sheets in northern North America as well as the East Siberian and Chukchi margins. Distribution of Ice Rafted Debris (IRD) >250 μm and planktonic foraminiferal N. pachyderma (sin.) (Nps) δ18O and δ13C was compared in CHINARE sediment cores ARC2-M03 (Wang et al., 2013) and ARC3-P37 from the Chukchi Abyssal Plain and Northwind Ridge, respectively, to identify the impacts of icebergs and meltwater on paleoceanographic environments since MIS 5. The IRD is mainly composed of quartz grains and fragments of clastic rocks and detrital carbonates. The carbonates, mostly dolomites characteristic of the Canadian Arctic Archipelago (CAA) provenance, typically anti-correlate with quartz and clastic rocks, indicating different sources such as Chukchi-Alaskan or East Siberian margin. Most of the Nps δ18O depletions correspond to peaks in detrital carbonates, suggesting a strong influence of meltwater from the Laurentide Ice Sheet (LIS) on the western Arctic Ocean. A conspicuous dark gray interval interpreted to represent glacial/deglacial environments of MIS 4/3 age, shows a remarkable depletion in Nps δ13C along with high δ18O values and absence of IRD. This unusual signature may be related to a persistent sea-ice cover and/or high fluxes of terrigenous material with deglacial debris flows. In a younger grey interval corresponding to MIS2, high abundances of quartz and clastic rocks in the Northwind Ridge core ARC3-P37 indicate iceberg discharge from areas other than CAA, such as the Mackenzie LIS lobe or Chukchi-Alaskan margin. The MIS2-Holocene transition is marked by an increase in detrital carbonates co-occurring with Nps δ13C and δ18O depletion (Polyak et al., 2007), indicative of LIS iceberg/meltwater fluxes from the CAA. We note that stable-isotope events in the study area may go unnoticed because of gaps in foraminiferal records related to dissolution and/or adverse conditions for planktonic foraminifers (very low salinities and high turbidity) during deglaciations.

  16. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    NASA Astrophysics Data System (ADS)

    Stubbins, Aron; Spencer, Robert; Mann, Paul; Holmes, R.; McClelland, James; Niggemann, Jutta; Dittmar, Thorsten

    2015-10-01

    Wildfires have produced black carbon (BC) since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC). The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon) were analyzed for dissolved organic carbon (DOC), colored dissolved organic matter (CDOM), and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254). Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  17. Relating Satellite Gravimetry to Global Snow Water Equivalent

    NASA Astrophysics Data System (ADS)

    Baumann, S. C.

    2017-12-01

    The gravimetric satellites GRACE measure changes of Earth's mass. The data mainly show changes in total water storage (TWS) but cannot distinguish between different sources. Hence, other data are necessary to extract the different compartments. Due to the spatial resolution of 200,000 km² and an accuracy of 2.5 cm w.e., other global products are compared with GRACE. In this study, the hydrological model WGHM and the land surface model GLDAS were used. All data were pre-processed in the same way as the GRACE data. Data were converted into monthly 1° grid values. Time is from 01/2003 to 12/2013 with a total of 131 months. The aim of the study was to extract SWE from GRACE as snow is an important factor for permafrost development. The main assumption is that changes in TWS can be linked to changes in SWE if SWE is the dominant compartment of TWS or if SWE changes proportionally with TWS. The study area were two river catchments in North America (Mackenzie, Yukon) and three in Russia (Lena, Ob, Yenisei). TWS as SWE from both models were correlated with GRACE as with each other (1) pixel and (2) catchment based. The (1) pixel based correlation used absolute values and the (2) catchment based correlation the sum of monthly anomalies from the total mean for each catchment. Initial results of the (1) pixel based correlation show a very high correlation of the WGHM vs. GLDAS data. The correlation of GRACE vs. WGHM is higher compared to the correlation between GRACE vs. GLDAS. The (2) correlation of the catchment data was higher than 0.74 in all river catchments for the WGHM vs. GLDAS data (TWS and SWE). As for the pixel based correlation, values for the correlation of GRACE vs. WGHM are higher compared to GRACE vs. GLDAS in all river catchments. Summed monthly WGHM anomalies of the catchments showed a uniform periodically annual pattern. GRACE data showed the same pattern between 2006 and 2011 but had more peaks in the beginning and the end of the study period. Therefore, a second correlation was performed for this uniform shorter period. The (1) pixel based correlation of GRACE vs. the two models had higher values in the river catchments in North America and lower values in Russia. This pattern was more pronounced in the correlation of GRACE vs. WGHM. The (2) catchment based correlation of the shorter period improved for nearly all correlation pairs and river catchments.

  18. Application of global datasets for hydrological modelling of a remote, snowmelt driven catchment in the Canadian Sub-Arctic

    NASA Astrophysics Data System (ADS)

    Casson, David; Werner, Micha; Weerts, Albrecht; Schellekens, Jaap; Solomatine, Dimitri

    2017-04-01

    Hydrological modelling in the Canadian Sub-Arctic is hindered by the limited spatial and temporal coverage of local meteorological data. Local watershed modelling often relies on data from a sparse network of meteorological stations with a rough density of 3 active stations per 100,000 km2. Global datasets hold great promise for application due to more comprehensive spatial and extended temporal coverage. A key objective of this study is to demonstrate the application of global datasets and data assimilation techniques for hydrological modelling of a data sparse, Sub-Arctic watershed. Application of available datasets and modelling techniques is currently limited in practice due to a lack of local capacity and understanding of available tools. Due to the importance of snow processes in the region, this study also aims to evaluate the performance of global SWE products for snowpack modelling. The Snare Watershed is a 13,300 km2 snowmelt driven sub-basin of the Mackenzie River Basin, Northwest Territories, Canada. The Snare watershed is data sparse in terms of meteorological data, but is well gauged with consistent discharge records since the late 1970s. End of winter snowpack surveys have been conducted every year from 1978-present. The application of global re-analysis datasets from the EU FP7 eartH2Observe project are investigated in this study. Precipitation data are taken from Multi-Source Weighted-Ensemble Precipitation (MSWEP) and temperature data from Watch Forcing Data applied to European Reanalysis (ERA)-Interim data (WFDEI). GlobSnow-2 is a global Snow Water Equivalent (SWE) measurement product funded by the European Space Agency (ESA) and is also evaluated over the local watershed. Downscaled precipitation, temperature and potential evaporation datasets are used as forcing data in a distributed version of the HBV model implemented in the WFLOW framework. Results demonstrate the successful application of global datasets in local watershed modelling, but that validation of actual frozen precipitation and snowpack conditions is very difficult. The distributed hydrological model shows good streamflow simulation performance based on statistical model evaluation techniques. Results are also promising for inter-annual variability, spring snowmelt onset and time to peak flows. It is expected that data assimilation of stream flow using an Ensemble Kalman Filter will further improve model performance. This study shows that global re-analysis datasets hold great potential for understanding the hydrology and snowpack dynamics of the expansive and data sparse sub-Arctic. However, global SWE products will require further validation and algorithm improvements, particularly over boreal forest and lake-rich regions.

  19. Paleoclimate records at high latitude in Arctic during the Paleogene

    NASA Astrophysics Data System (ADS)

    Salpin, Marie; Schnyder, Johann; Baudin, François; Suan, Guillaume; Labrousse, Loïc; Popescu, Speranta; Suc, Jean-Pierre

    2015-04-01

    Paleoclimate records at high latitude in Arctic during the Paleogene SALPIN Marie1,2, SCHNYDER Johann1,2, BAUDIN François1,2, SUAN Guillaume3, LABROUSSE Loïc1,2, POPESCU Speranta4, SUC Jean-Pierre1,4 1: Sorbonne Universités, UPMC Univ Paris 06, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP), F 75005, Paris, France 2: CNRS, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP), F 75005 Paris, France 3: UCB Lyon 1, UMR 5276, LGLTPE, 69622 Villeurbanne Cedex, France 4: GEOBIOSTRATDATA.CONSULTING, 385 Route du Mas Rillier 69140 Rillieux la Pape, France The Paleogene is a period of important variations of the Earth climate system either in warming or cooling. The climatic optima of the Paleogene have been recognized both in continental and marine environment. This study focus on high latitudes of the northern hemisphere, in the Arctic Basin. The basin has had an influence on the Cenozoic global climate change according to its polar position. Is there a specific behaviour of the Arctic Basin with respect to global climatic stimuli? Are there possible mechanisms of coupling/decoupling of its dynamics with respect to the global ocean? To answer these questions a unique collection of sedimentary series of Paleogene age interval has been assembled from the Laurentian margin in Northern Yukon (Canada) and from the Siberian margin (New Siberian Islands). Selected continental successions of Paleocene-Eocene age were used to study the response of the Arctic system to known global events, e.g. the climatic optima of the Paleogene (the so-called PETM, ETM2 or the Azolla events). Two sections of Paleocene-Eocene age were sampled near the Mackenzie delta, the so-called Coal Mine (CoMi) and Caribou Hills (CaH) sections. The aim of the study is to precise the climatic fluctuations and to characterise the source rock potential of the basin, eventually linked to the warming events. This study is based on data of multi-proxy analyses: mineralogy on bulk and clay fraction, Rock-Eval pyrolysis, palynology, palynofacies, carbon isotopes. The organic matter of the two sections is dominated by Type III kerogens. First results from palynology and clay minerals proportions suggest episodes of warming that could be compared to similar warming intervals recorded on the Siberian margin. In addition, in the northern Yukon the mineralogical results suggests fluctuations of the local detrital sources, either driven by tectonic or eustatism, that could be surimposed on the climatic patterns.

  20. Correlation of Hydraulic Fracturing Induced Seismicity with Operation Parameters of Shale Gas Extraction: Two Case Studies in Western Canada

    NASA Astrophysics Data System (ADS)

    Farahbod, A. M.; Kao, H.; Cassidy, J. F.; Snyder, D. B.; Cairns, S.; Walker, D.

    2015-12-01

    Northeast British Columbia, specifically the Horn River Basin (HRB) and Montney Trend, are among the largest shale gas production regions in western Canada. In contrast, there has been no large-scale hydraulic fracturing (HF) operation in the Northwest Territories in the Norman Wells region of the central Mackenzie valley. In this study, we investigate the effect of injection pressure, operation duration and injected volume on the observed seismicity in the HRB and Norman Wells regions and compare our observations with the pre-HF records. In the HRB, we apply the single-station location and waveform correlation methods to establish a homogenous earthquake catalog (2006/12-2011/12). In the Northwest Territories, we combine data from a local seismograph network of 4 stations plus a dense array of 7 stations located from 1 km to 50 km from the operation wells to locate earthquakes (2013/09-2014/07). In the HRB, the initial effect of an increased injected volume is an increase in earthquake frequency but not magnitude. Local earthquakes gradually become larger in magnitude as the scale of HF in the region expands. While the injection pressure during HF operations has been regulated at a relatively constant level, the massive increase of injection volume in 2010 and 2011 coincides with a series of ML>3 events. Relatively large seismic moment release (>1014 N m) occurred only when the monthly injected volume exceeded ~150,000 m3. In addition, we observe variable time lags, from days to up to 4 months between intense HF and the occurrence of a significant local earthquake. On the other hand, in the Norman Wells region, two small-scale HF were performed in 2014 with a total injected volume of ~ 14000 m3. We observed an increase in the number of micro-earthquakes (M < 2.0) during the HF period without a clear change in the overall seismic pattern. From these two observations, we conclude that HF operations do not necessarily result in an increase in the occurrence rate of larger earthquakes. A clear change in background seismicity pattern towards more frequent occurrence and/or greater magnitudes occurred only when the monthly total injected volume became significantly higher. The hydrologic properties of the source formations and local geologic conditions might also play important roles in induced seismogenesis.

Top