Science.gov

Sample records for macro-residual strains due

  1. Lattice Strain Due to an Atomic Vacancy

    PubMed Central

    Li, Shidong; Sellers, Michael S.; Basaran, Cemal; Schultz, Andrew J.; Kofke, David A.

    2009-01-01

    Volumetric strain can be divided into two parts: strain due to bond distance change and strain due to vacancy sources and sinks. In this paper, efforts are focused on studying the atomic lattice strain due to a vacancy in an FCC metal lattice with molecular dynamics simulation (MDS). The result has been compared with that from a continuum mechanics method. It is shown that using a continuum mechanics approach yields constitutive results similar to the ones obtained based purely on molecular dynamics considerations. PMID:19582230

  2. 38 CFR 4.58 - Arthritis due to strain.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Arthritis due to strain... FOR RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.58 Arthritis due to strain. With service incurred lower extremity amputation or shortening, a disabling arthritis, developing in...

  3. 38 CFR 4.58 - Arthritis due to strain.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Arthritis due to strain... FOR RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.58 Arthritis due to strain. With service incurred lower extremity amputation or shortening, a disabling arthritis, developing in...

  4. Spread of Amikacin Resistance in Acinetobacter baumannii Strains Isolated in Spain Due to an Epidemic Strain

    PubMed Central

    Vila, Jordi; Ruiz, Joaquim; Navia, Margarita; Becerril, Berta; Garcia, Isabel; Perea, Sofia; Lopez-Hernandez, Inmaculada; Alamo, Isabel; Ballester, Frederic; Planes, Anna M.; Martinez-Beltran, Jesus; De Anta, Teresa Jimenez

    1999-01-01

    Sixteen amikacin-resistant clinical Acinetobacter baumannii isolates from nine different hospitals in Spain were investigated to determine whether the high incidence of amikacin-resistant A. baumannii was due to the dissemination of an amikacin-resistant strain or to the spread of an amikacin resistance gene. The epidemiological relationship studied by repetitive extragenic palindromic PCR and low-frequency restriction analysis of chromosomal DNA showed that the same clone was isolated in eight of nine hospitals, although other clones were also found. The strains were studied for the presence of the aph(3′)-VIa and aac(6′)-I genes, which encode enzymes which inactivate amikacin, by PCR. All 16 clinical isolates had positive PCRs with primers specific for the amplification of the aph(3′)-VIa gene, whereas none had a positive reaction for the amplification of the aac(6′)-I gene. Therefore, the high incidence of amikacin resistance among clinical A. baumannii isolates in Spain was mainly due to an epidemic strain, although the spread of the aph(3′)-VI gene cannot be ruled out. PMID:9986846

  5. Spontaneous bacterial peritonitis due to a group IIk-2 strain.

    PubMed Central

    Dhawan, V K; Rajashekaraiah, K R; Metzger, W I; Rice, T W; Kallick, C A

    1980-01-01

    This paper describes a patient with spontaneous bacterial peritonitis caused by a group IIk-2 strain. No other organism was isolated from the peritoneal fluid cultured aerobically and anaerobically. PMID:7381015

  6. Are quantum dots in unexpected locations due to strain?

    NASA Astrophysics Data System (ADS)

    Zimmerman, Neil; Thorbeck, Ted

    It is a fairly common occurrence that, in top-gated Si quantum dots, the dots appear in reproducible but unexpected positions. For instance, sometimes a group will make gates in order to electrostatically generate tunnel barriers, but discover that the quantum dot is formed underneath the gate rather than between two barrier gates. We will discuss the possibility that such quantum dots arise from the mechanical strain induced by the gate. The model is simple: i) We simulate metal or polysilicon gates on top of a Si/SiO2 wafer, and calculate the stress and strain from differential thermal contraction of the materials; ii) Using the fact that the energy of the Si conduction band depends on strain through the deformation potential, we then convert the strain modulation to a potential energy modulation. As an example, we find that, for a single Al gate, there is a potential well directly underneath the gate with the size of a few meV, in agreement with recent experimental results. We also show that polysilicon gates will not produce such strain-induced quantum dots.

  7. Strain intermittency due to avalanches in ferroelastic and porous materials.

    PubMed

    Soprunyuk, V; Puchberger, S; Tröster, A; Vives, E; Salje, E K H; Schranz, W

    2017-06-07

    The avalanche statistics in porous materials and ferroelastic domain wall systems has been studied for slowly increasing compressive uniaxial stress with stress rates between 0.2 and 17 kPa s(-1). Velocity peaks [Formula: see text] are calculated from the measured strain drops and used to determine the corresponding Energy distributions [Formula: see text]. Power law distributions [Formula: see text] have been obtained over 4-6 decades. For most of the porous materials and domain wall systems an exponent [Formula: see text] was obtained in good agreement with mean-field theory of the interface pinning transition. For charcoal, shale and calcareous schist we found significant deviations of the exponents from mean-field values in agreement with recent acoustic emission experiments.

  8. Strain intermittency due to avalanches in ferroelastic and porous materials

    NASA Astrophysics Data System (ADS)

    Soprunyuk, V.; Puchberger, S.; Tröster, A.; Vives, E.; Salje, E. K. H.; Schranz, W.

    2017-06-01

    The avalanche statistics in porous materials and ferroelastic domain wall systems has been studied for slowly increasing compressive uniaxial stress with stress rates between 0.2 and 17 kPa s-1. Velocity peaks {{v}m}=\\text{d}h/\\text{d}t are calculated from the measured strain drops and used to determine the corresponding Energy distributions N≤ft(E\\equiv vm2\\right) . Power law distributions N≤ft(vm2\\right)\\propto ≤ft(vm2\\right){{}-\\varepsilon} have been obtained over 4-6 decades. For most of the porous materials and domain wall systems an exponent \\varepsilon =1.5+/- 0.1 was obtained in good agreement with mean-field theory of the interface pinning transition. For charcoal, shale and calcareous schist we found significant deviations of the exponents from mean-field values in agreement with recent acoustic emission experiments.

  9. Brain strain uncertainty due to shape variation in and simplification of head angular velocity profiles.

    PubMed

    Zhao, Wei; Ji, Songbai

    2017-04-01

    Head angular velocity, instead of acceleration, is more predictive of brain strains. Surprisingly, no study exists that investigates how shape variation in angular velocity profiles affects brain strains, beyond characteristics such as peak magnitude and impulse duration. In this study, we evaluated brain strain uncertainty due to variation in angular velocity profiles and further compared with that resulting from simplifying the profiles into idealized shapes. To do so, we used reconstructed head impacts from American National Football League for shape extraction and simulated head uniaxial coronal rotations from onset to full stop. The velocity profiles were scaled to maintain an identical peak velocity magnitude and duration in order to isolate the shape for investigation. Element-wise peak maximum principal strains from 44 selected impacts were obtained. We found that the shape of angular velocity profile could significantly affect brain strain magnitude (e.g., percentage difference of 4.29-17.89 % in the whole brain relative to the group average, with cumulative strain damage measure (CSDM) uncertainty range of 23.9 %) but not pattern (correlation coefficient of 0.94-0.99). Strain differences resulting from simplifying angular velocity profiles into idealized shapes were largely within the range due to shape variation, in both percentage difference and CSDM (signed difference of 3.91 % on average, with a typical range of 0-6 %). These findings provide important insight into the uncertainty or confidence in the performance of kinematics-based injury metrics. More importantly, they suggest the feasibility to simplify head angular velocity profiles into idealized shapes, at least within the confinements of the profiles evaluated, to enable real-time strain estimation via pre-computation in the future.

  10. Quantifying the strain due to grain boundary sliding of forsterite using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Dillman, A. M.; Kohlstedt, D. L.

    2016-12-01

    Grain boundary sliding (GBS) is a deformation process that requires either diffusion or dislocation motion in order to maintain fully dense samples and deform at a steady-state strain rate. When accommodated by diffusion (diffusion creep), this deformation is characterized by a Newtonian viscosity with a strong dependence on grain size. To better understand the combination of diffusion and sliding, explicit measurements of the degree of grain boundary sliding, taken at a very fine scale, are necessary. High purity, synthetic forsterite was chosen to study the contribution of GBS, as it can be created with a grain size of 1 μm and its relatively sluggish grain growth kinetics limit the grain size to generally <10 μm. This forsterite was deformed at 1250°C and a confining pressure of 0.1 MPa in order to quantify the amoun­­­­­t of strain due to grain boundary sliding in the diffusion creep regime. Uniaxial compression experiments with differential stresses of 1 to 125 MPa were performed on samples cut into right prisms, with at least one face polished flat. This face, oriented parallel to the applied stress, was imaged using atomic force microscopy after deformation. The amount of strain due to grain boundary sliding was determined using high resolution measurements of topography. A methodology was developed to account for thermal grooving of the polished face and to objectively quantify the ratio of grain boundary sliding strain to total strain, ξ. For the differential stresses applied, ξ = 63%. This ratio was independent of strain and decreased slightly with increasing grain size. This value of 63% is very similar to experimentally determined values of ξ for pure, fine grained alumina. With this new methodology for determining the strain due to grain boundary sliding, we will be able to determine the point of transition between different deformation regimes that require different contributions of grain boundary sliding.

  11. Meningitis Due to Mixed Infection with Penicillin-Resistant and Penicillin-Susceptible Strains of Streptococcus pneumoniae

    PubMed Central

    Chaves, Fernando; Campelo, Carolina; Sanz, Francisca; Otero, Joaquin R.

    2003-01-01

    Streptococcus pneumoniae is the major cause of bacterial meningitis. We report a case of meningitis due to a mixed infection with two distinct strains of S. pneumoniae: one penicillin-resistant strain of serotype 9V and one penicillin-susceptible strain of serotype 7. The two strains exhibited different pulsed-field gel electrophoresis profiles. PMID:12517910

  12. Extensive variation between inbred mouse strains due to endogenous L1 retrotransposition

    PubMed Central

    Akagi, Keiko; Li, Jingfeng; Stephens, Robert M.; Volfovsky, Natalia; Symer, David E.

    2008-01-01

    Numerous inbred mouse strains comprise models for human diseases and diversity, but the molecular differences between them are mostly unknown. Several mammalian genomes have been assembled, providing a framework for identifying structural variations. To identify variants between inbred mouse strains at a single nucleotide resolution, we aligned 26 million individual sequence traces from four laboratory mouse strains to the C57BL/6J reference genome. We discovered and analyzed over 10,000 intermediate-length genomic variants (from 100 nucleotides to 10 kilobases), distinguishing these strains from the C57BL/6J reference. Approximately 85% of such variants are due to recent mobilization of endogenous retrotransposons, predominantly L1 elements, greatly exceeding that reported in humans. Many genes’ structures and expression are altered directly by polymorphic L1 retrotransposons, including Drosha (also called Rnasen), Parp8, Scn1a, Arhgap15, and others, including novel genes. L1 polymorphisms are distributed nonrandomly across the genome, as they are excluded significantly from the X chromosome and from genes associated with the cell cycle, but are enriched in receptor genes. Thus, recent endogenous L1 retrotransposition has diversified genomic structures and transcripts extensively, distinguishing mouse lineages and driving a major portion of natural genetic variation. PMID:18381897

  13. Fatal varicella due to the vaccine-strain varicella-zoster virus

    PubMed Central

    Leung, Jessica; Siegel, Subhadra; Jones, James F; Schulte, Cynthia; Blog, Debra; Scott Schmid, D; Bialek, Stephanie R; Marin, Mona

    2014-01-01

    We describe a death in a 15-mo-old girl who developed a varicella-like rash 20 d after varicella vaccination that lasted for 2 mo despite acyclovir treatment. The rash was confirmed to be due to vaccine-strain varicella-zoster virus (VZV). This is the first case of fatal varicella due to vaccine-strain VZV reported from the United States. The patient developed severe respiratory complications that worsened with each new crop of varicella lesions; vaccine-strain VZV was detected in the bronchial lavage specimen. Sepsis and multi-organ failure led to death. The patient did not have a previously diagnosed primary immune deficiency, but her failure to thrive and repeated hospitalizations early in life (starting at 5 mo) for presumed infections and respiratory compromise treated with corticosteroids were suggestive of a primary or acquired immune deficiency. Providers should monitor for adverse reactions after varicella vaccination. If severe adverse events develop, acyclovir should be administered as soon as possible. The possibility of acyclovir resistance and use of foscarnet should be considered if lesions do not improve after 10 d of treatment (or if they become atypical [e.g., verrucous]). Experience with use of varicella vaccine indicates that the vaccine has an excellent safety profile and that serious adverse events are very rare and mostly described in immunocompromised patients. The benefit of vaccination in preventing severe disease and mortality outweigh the low risk of severe events occurring after vaccination. PMID:23982221

  14. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements.

    PubMed

    Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing

    2017-03-22

    Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface.

  15. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements

    PubMed Central

    Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing

    2017-01-01

    Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface. PMID:28327510

  16. Neonatal infections due to multi-resistant strains: Epidemiology, current treatment, emerging therapeutic approaches and prevention.

    PubMed

    Tzialla, Chryssoula; Borghesi, Alessandro; Pozzi, Margherita; Stronati, Mauro

    2015-12-07

    Severe infections represent the main cause of neonatal mortality accounting for more than one million neonatal deaths worldwide every year. Antibiotics are the most commonly prescribed medications in neonatal intensive care units. The benefits of antibiotic therapy when indicated are clearly enormous, but the continued and widespread use of antibiotics has generated over the years a strong selective pressure on microorganisms, favoring the emergence of resistant strains. Health agencies worldwide are galvanizing attention toward antibiotic resistance in gram-positive and gram-negative bacteria. Infections in neonatal units due to multidrug and extensively multidrug resistant bacteria are rising and are already seriously challenging antibiotic treatment options. While there is a growing choice of agents against multi-resistant gram-positive bacteria, new options for multi-resistant gram-negative bacteria in the clinical practice have decreased significantly in the last 20 years making the treatment of infections caused by multidrug-resistant pathogens challenging mostly in neonates. Treatment options are currently limited and will be some years before any new treatment for neonates become available for clinical use, if ever. The aim of the review is to highlight the current knowledge on antibiotic resistance in the neonatal population, the possible therapeutic choices, and the prevention strategies to adopt in order to reduce the emergency and spread of resistant strains.

  17. Topological phase transition due to strain-controlled evolution of the inverted bands in 1 T'-M X2

    NASA Astrophysics Data System (ADS)

    Lin, Xianqing; Ni, Jun

    2017-06-01

    First-principles calculations have been performed to study the evolution of the inverted bands and the topological phase diagrams of monoclinic transition-metal dichalcogenide monolayers (1 T'-M X2 with M =Mo , W and X =S , Se, Te) under strain. We find that the band topology undergoes a nontrivial to trivial transition in compressed systems due to the strain-sensitive inverted p -orbital and d -orbital bands, which exhibit an anisotropic evolution behavior with respect to the strain orientation. In M Te2 , the normally ordered py and d bands at the X point are inverted mainly by compressive strain along the y direction (ɛy), which, together with the unchanged inverted bands at the Γ point, turns the topology trivial. In M S2 and M Se2 , the inverted px and d bands at Γ become normally ordered under a large compressive strain along the x direction (ɛx). M Te2 acquires a much smaller critical strain for the topological phase transition (TPT) than S- and Se-based systems due to strain-sensitive head-to-head bonding between the py orbitals. Particularly, the critical compressive ɛy can be further reduced by applying tensile ɛx for M Te2 . Our results provide a concrete mechanism behind the nontrivial band topology in 1 T'-M X2 and a guide for applying strain to control the TPT.

  18. A case of intoxication due to a highly cytotoxic Bacillus cereus strain isolated from cooked chicken.

    PubMed

    López, Ana C; Minnaard, Jessica; Pérez, Pablo F; Alippi, Adriana M

    2015-04-01

    Outbreaks of Bacillus cereus infection/intoxication are not commonly reported because symptoms are often mild, and the disease is self-limiting. However, hypervirulent strains increase health risks. We report a case, which occurred in Argentina, of severe food poisoning illness on a healthy adult woman associated to B. cereus strain MVL2011. The studied strain was highly cytotoxic, showed high ability to detach Caco-2 cells and was positive for the hblA, hblB, and hblC genes of the hbl complex, bceT, entS and ces. As it is considered that B. cereus emetic cluster evolved from a panmictic population of diarrheal strains, B. cereus MVL2011 could constitute an intermediate strain between diarrheal and emetic strains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. In vitro quantification of strain patterns in the craniofacial skeleton due to masseter and temporalis activities.

    PubMed

    Maloul, Asmaa; Regev, Eran; Whyne, Cari M; Beek, Marteen; Fialkov, Jeffrey A

    2012-09-01

    Many complications in craniofacial surgery can be attributed to a lack of characterization of facial skeletal strain patterns. This study aimed to delineate human midfacial strain patterns under uniform muscle loading. The left sides of 5 fresh-frozen human cadaveric heads were dissected of all soft tissues except the temporalis and masseter muscles. Tensile forces were applied to the free mandibular ends of the muscles. Maxillary alveolar arches were used to restrain the skulls. Eight strain gauges were bonded to the surface of the midface to measure the strain under single muscle loading conditions (100 N). Maxillary strain gauges revealed a biaxial load state for both muscles. Thin antral bone experienced high maximum principal tensile strains (maximum of 685.5 με) and high minimum principal compressive strains (maximum of -722.44 με). Similar biaxial patterns of lower magnitude were measured on the zygoma (maximum of 208.59 με for maximum principal strains and -78.11 με for minimum principal strains). Results, consistent for all specimens and counter to previously accepted concepts of biomechanical behavior of the midface under masticatory muscle loading, included high strain in the thin maxillary antral wall, rotational bending through the maxilla and zygoma, and a previously underestimated contribution of the temporalis muscle. This experimental model produced repeatable strain patterns quantifying the mechanics of the facial skeleton. These new counterintuitive findings underscore the need for accurate characterization of craniofacial strain patterns to address problems in the current treatment methods and develop robust design criteria.

  20. Quantum phase transitions in strained graphene due to the interplay between spin fluctuations and anisotropic band structure

    NASA Astrophysics Data System (ADS)

    Arya, S.; Laad, M. S.; Hassan, S. R.

    2017-08-01

    Strain tuning is increasingly being recognized as a clean tuning parameter to induce novel behavior in quantum matter. Motivated by the possibility of straining graphene up to 20 percent, we investigate novel quantum criticality due to interplay between strain-induced anisotropic band structure and critical antiferromagnetic (AF) spin fluctuations in this setting. We detail how this interplay drives (i) a quantum phase transition (QPT) between the Dirac-semimetal-incoherent pseudogapped metal-correlated insulator as a function of strain (ɛ ), and (ii) critical AF spin fluctuations-driven divergent nematic susceptibility near critical strain (ɛc) manifesting as critical singularities in magnetothermal expansion and Grüneisen coefficients. The correlated band insulator at large strain affords realization of a two-dimensional dimerized spin-singlet state due to this interplay, and doping such an insulator can lead to a spin-charge separated metal, leading to anomalous metallicity and possible unconventional superconductivity. On a wider front, our work serves to illustrate the range of novel states realizable by strain-tuning quantum materials.

  1. Atomistic mechanisms of strain relaxation due to ductile void growth in ultrathin films of face-centered-cubic metals

    NASA Astrophysics Data System (ADS)

    Gungor, M. Rauf; Maroudas, Dimitrios

    2005-06-01

    A comprehensive computational analysis is reported of the atomistic mechanisms of strain relaxation and failure in free-standing Cu thin films under applied biaxial tensile strain for strain levels up to 6%. The analysis focuses on nanometer-scale-thick films with a preexisting void extending across the film thickness and the film plane oriented normal to the [111] crystallographic direction. Our computational study is based on isothermal-isostrain large-scale molecular-dynamics simulations within an embedded-atom-method parametrization for Cu. Our analysis has revealed various regimes in the film's mechanical response as the applied strain level increases. Within the considered strain range, after an elastic response at a low strain (<2%), void growth is the major strain relaxation mechanism mediated by the emission of perfect screw dislocation pairs from the void surface and subsequent dislocation propagation; as a result, a plastic zone forms around the void. Plastic deformation is accompanied by the glide motion of the dislocations emitted from the void surface, void surface morphological transitions, formation of a step pattern on the film's surfaces, dislocation jogging, vacancy generation due to gliding jogged dislocations, dislocation-vacancy interactions, vacancy pipe diffusion along dislocation cores, as well as dislocation-dislocation interactions. The increase in film surface roughness with increasing strain eventually leads to nucleation and propagation from the film surfaces of threading dislocation loops, which ultimately break up when they reach the opposite free surface of the thin film.

  2. Systemic infections in three infants due to a lactose-fermenting strain of Salmonella virchow.

    PubMed

    Ruiz, J; Núñez, M L; Sempere, M A; Díaz, J; Gómez, J

    1995-05-01

    Three previously healthy children developed gastroenteritis which led within a few days to systemic infections, two cases of bacteremia and one of meningitis. A lactose-fermenting Salmonella virchow strain was isolated from cerebrospinal fluid and blood cultures. In one case, this strain was also isolated from stool cultures. All the children had been fed the same milk formula. There was no other relationship between them. The batch of dried-milk formula was confirmed as the source of the infection by isolation of an identical lactose-fermenting Salmonella virchow strain by the Centro Nacional de Alimentación.

  3. Strain in shore fast ice due to incoming ocean waves and swell

    NASA Astrophysics Data System (ADS)

    Fox, Colin; Squire, Vernon A.

    1991-03-01

    Using a development from the theoretical model presented by Fox and Squire (1990), this paper investigates the strain field generated in shore fast ice by normally incident ocean waves and swell. After a brief description of the model and its convergence, normalized absolute strain (relative to a 1-m incident wave) is found as a function of distance from the ice edge for various wave periods, ice thicknesses, and water depths. The squared transfer function, giving the relative ability of incident waves of different periods to generate strain in the ice, is calculated, and its consequences are discussed. The ice is then forced with a Pierson-Moskowitz spectrum, and the consequent strain spectra are plotted as a function of penetration into the ice sheet. Finally, rms strain, computed as the incoherent sum of the strains resulting from energy in the open water spectrum, is found. The results have implications to the breakup of shore fast ice and hence to the floe size distribution of the marginal ice zone.

  4. Apoptosis of Epithelial Cells and Macrophages due to Nonpigmented Serratia marcescens Strains

    PubMed Central

    Krzymińska, Sylwia; Ochocka, Katarzyna; Kaznowski, Adam

    2012-01-01

    Serratia marcescens strains are opportunistic pathogens that are increasingly recognized as a cause of severe nosocomial infections. In this study we observed interactions between nonpigmented strains with human epithelial and macrophage-like cells. The strains revealed hemolytic activity only after the contact of the cells with erythrocytes. The contact of the bacteria with the host cells was also essential to their cytotoxicity. Moreover, all strains revealed adherence ability and were invasive to epithelial cells. Analyses of cellular morphology and DNA fragmentation of the HEp-2 and J774 cells exhibited typical features of cells undergoing apoptosis. We observed morphological changes, including condensation of nuclear chromatin and formation of membrane-bound apoptotic bodies. The lowest apoptotic index in HEp-2 cells did not exceed 25%, whereas the highest reached 59% at 24 h and 72% at 48 h after infection. Most of the strains (60%) induced fragmentation of nuclear DNA. The process depended on the activation of caspases, and was completely blocked by the pan-caspase inhibitor z-VAD-fmk. This study provided new insights into the mechanisms of nonpigmented S. marcescens pathogenesis. The results revealed that the strains produce cell-contact toxins that facilitate bacterial invasion, induce hemolysis, cytotoxicity, and apoptosis of host cells. PMID:22649305

  5. Comparative evaluation of two vaccine candidates against experimental leishmaniasis due to Leishmania major infection in four inbred mouse strains.

    PubMed

    Benhnini, Fouad; Chenik, Mehdi; Laouini, Dhafer; Louzir, Hechmi; Cazenave, Pierre André; Dellagi, Koussay

    2009-11-01

    Experimental leishmaniasis in BALB/c and C57BL/6 mice are the most investigated murine models that were used for the preclinical evaluation of Leishmania vaccine candidates. We have previously described two new inbred mouse strains named PWK and MAI issued from feral founders that also support the development of experimental leishmaniasis due to L. major. In this study, we sought to determine whether different mouse inbred strains generate concordant or discordant results when used to evaluate the potential of Leishmania proteins to protect against experimental leishmaniasis. To this end, two Leishmania proteins, namely, LACK (for Leishmania homolog of receptor for activated C kinase) and LmPDI (for L. major protein disulfide isomerase) were compared for their capacity to protect against experimental leishmaniasis in PWK, MAI, BALB/c, and C57BL/6 inbred mouse strains. Our data show that the capacity of Leishmania proteins to confer protection depends on the mouse strain used, stressing the important role played by the genetic background in shaping the immune response against the pathogen. These results may have important implications for the preclinical evaluation of candidate Leishmania vaccines: rather than using a single mouse strain, a panel of different inbred strains of various genetic backgrounds should be tested in parallel. The antigen that confers protection in the larger range of inbred strains may have better chances to be also protective in outbred human populations and should be selected for clinical trials.

  6. Plane stress-strain state of a circular cylindrical bushing due to a finite out-of-plane shear

    NASA Astrophysics Data System (ADS)

    Zhukov, B. A.

    2017-01-01

    The paper deals with the determination of the stress-strain state due to a finite longitudinal shear in a circular cylindrical bushing manufactured from the Mooney-Rivlin material. Some expressions for the internal stresses and displacements in the plane perpendicular to the longitudinal shear are obtained.

  7. Infections due to gentamicin-resistant Staphylococcus aureus strain in a nursery for neonatal infants.

    PubMed Central

    Vogel, L; Nathan, C; Sweeney, H M; Kabins, S A; Cohen, S

    1978-01-01

    An apparently homogeneous strain of Staphylococcus aureus resistant to gentamicin (Gmr), kanamycin, tobramycin, and sisomicin, but susceptible to amikacin and netilmicin, caused multiple infections in neonatal infants in a special care nursery. Nasal cultures revealed a high rate of carriage of the Gmr staphylococcus in infants without clinical infection. Segregating patients according to a modified cohort system and use of careful aseptic techniques led to apparent elimination of the Gmr strain. The resistance to aminoglycosides in this strain was mediated by an aminoglycoside 6'-N-acetyltransferase and a gentamicin phosphotransferase. Genetic determinants for these enzymes were borne on a circular covalently closed plasmid of approximately 11 megadaltons. These resistance determinants closely resemble those found in isolates of S. aureus that have caused nosocomial infections in patients in Europe. PMID:263886

  8. Determining horizontal displacement and strains due to subsidence. Rept. of Investigations/1991

    SciTech Connect

    Tandanand, S.; Powell, L.R.

    1991-01-01

    Horizontal displacements and ground strains induced by mine subsidence are significant information needed for calculating damage and developing precautions against subsidence effects on surface structures. To devise a simple method for determining the surface horizontal displacements and strains simultaneously with the subsidence prediction, the U.S. Bureau of Mines examined the significance of the tilt number, which is the proportionality constant in the relationship between the horizontal displacement and the slope of the subsidence profile. The ratio of the tilt number to the critical radius of the subsidence trough is identical to the ratio of the maximum possible horizontal displacement to the full subsidence, which is found to be constant in most European coalfields. If this ratio is known for a particular minesite in the United States, then horizontal displacement and ground strains can be readily obtained from the primary subsidence data.

  9. Mantle strain localisation induced by grain size reduction due to chemical unbalance between olivine and clinopyroxene

    NASA Astrophysics Data System (ADS)

    Précigout, Jacques; Stünitz, Holger; Le Breton, Nicole

    2015-04-01

    Mantle strain localisation plays a key role for the lithosphere dynamics. Though, its origin in the viscous regime remains unknown. Based on experimental data, we show that chemical unbalance between clinopyroxene (Cpx) and olivine (Ol) can trigger viscous strain localisation in the conditions of the lithospheric mantle. Using a solid-medium Griggs-type apparatus, we performed direct shear deformation at 900°C, 1.2 GPa and 2.10-5 s-1, on mineral aggregates composed of 70% Ol (Fo91) and 30% Cpx (diopside). During deformation, the strain-stress curve is characterised by a peak of differential stress around 900 MPa, followed by a weakening of several hundred of MPa until a plateau is reached. This weakening correlates with intense strain localisation within the sample where grain size has been strongly reduced, particularly within fine-grained layers of two-phase material. The grain size in these layers is far below one micron. Microprobe analyses indicate that Ol and Cpx compose these layers, as well, but their composition differs from the starting material, and especially for Cpx. Indeed, while starting Cpx have XMg (Mg/(Mg+Fe)) between 0.970 and 0.982, the XMg of deformed CPx ranges from 0.925 to 0.970. Furthermore, the XMg in Cpx systematically decreases as strain increases. We then performed PerpleX calculations that give the theoretical compositions for Ol and Cpx considering our bulk composition at 900°C and 1.2 GPa. Our results show that the compositions of starting Cpx have significantly shifted towards the theoretical equilibrium during deformation, highlighting a chemical unbalance between Ol and Cpx at the onset of deformation. We attribute the nucleation of new Ol and Cpx to this chemical unbalance, which probably promoted strain to localise as a result of grain size reduction and coeval change of deformation mechanism from dislocation creep to diffusion creep.

  10. Strain distribution due to surface domains: a self-consistent approach with respect to surface elasticity

    PubMed Central

    Fuhr, Javier

    2015-01-01

    Summary Elastically mediated interactions between surface domains are classically described in terms of point forces. Such point forces lead to local strain divergences that are usually avoided by introducing a poorly defined cut-off length. In this work, we develop a self-consistent approach in which the strain field induced by the surface domains is expressed as the solution of an integral equation that contains surface elastic constants, S ij. For surfaces with positive S ij the new approach avoids the introduction of a cut-off length. The classical and the new approaches are compared in case of 1-D periodic ribbons. PMID:25821670

  11. Impact comminution of solids due to local kinetic energy of high shear strain rate: II-Microplane model and verification

    NASA Astrophysics Data System (ADS)

    Caner, Ferhun C.; Bažant, Zdeněk P.

    2014-03-01

    The new theory presented in the preceding paper, which models the dynamic comminution of concrete due to very high shear strain rate, is now compared to recent test data on the penetration of projectiles through concrete walls of different thicknesses, ranging from 127 to 254 mm. These data are analyzed by an explicit finite element code using the new microplane constitutive model M7 for concrete, which was previously shown to provide the most realistic description of the quasi-static uni-, bi- and tri-axial test data with complex loading path and unloading. Model M7 incorporates the quasi-static strain rate effects due viscoelasticity and to the rate of cohesive crack debonding based on activation energy of bond ruptures, which are expected to extend to very high rates. Here model M7 is further enhanced by apparent viscosity capturing the energy dissipation due to the strain-rate effect of comminution. The maximum shear strain rates in the computations are of the order of 105 s-1. The simulations document that, within the inevitable uncertainties, the measured exit velocities of the projectiles can be matched quite satisfactorily and the observed shapes of the entry and exit craters can be reproduced correctly.

  12. Inbred Strains Derived from Feral Mice Reveal New Pathogenic Mechanisms of Experimental Leishmaniasis Due to Leishmania major

    PubMed Central

    Babay, Besma E. C.; Louzir, Hechmi; Kebaïer, Chahnaz; Boubaker, Samir; Dellagi, Koussay; Cazenave, Pierre-André

    2004-01-01

    Two inbred mouse strains, derived from feral founders, are susceptible to experimental leishmaniasis due to Leishmania major and support a disease of a severity intermediate between those observed in strains C57BL/6 and BALB/c. Mice of the MAI strain develop a severe, nonhealing, but nonfatal disease with no resistance to a secondary parasite challenge. The immunological responses showed a TH2 dominance characterized by an early peak of interleukin-4 (IL-4) and IL-13. However, neutralization of IL-4, which leads to a resistance phenotype in BALB/c mice, has no effect on disease progression in MAI mice. Mice of strain PWK develop a protracted but self-healing disease, characterized by a mixed TH1-plus-TH2 pattern of immune responses in which IL-10 plays an aggravating role, and acquire resistance to a secondary challenge. These features are close to those observed in human cutaneous leishmaniasis due to L. major and make PWK mice a suitable model for the human disease. PMID:15271920

  13. Inbred strains derived from feral mice reveal new pathogenic mechanisms of experimental leishmaniasis due to Leishmania major.

    PubMed

    Babay, Besma E C; Louzir, Hechmi; Kebaïer, Chahnaz; Boubaker, Samir; Dellagi, Koussay; Cazenave, Pierre-André

    2004-08-01

    Two inbred mouse strains, derived from feral founders, are susceptible to experimental leishmaniasis due to Leishmania major and support a disease of a severity intermediate between those observed in strains C57BL/6 and BALB/c. Mice of the MAI strain develop a severe, nonhealing, but nonfatal disease with no resistance to a secondary parasite challenge. The immunological responses showed a TH2 dominance characterized by an early peak of interleukin-4 (IL-4) and IL-13. However, neutralization of IL-4, which leads to a resistance phenotype in BALB/c mice, has no effect on disease progression in MAI mice. Mice of strain PWK develop a protracted but self-healing disease, characterized by a mixed TH1-plus-TH2 pattern of immune responses in which IL-10 plays an aggravating role, and acquire resistance to a secondary challenge. These features are close to those observed in human cutaneous leishmaniasis due to L. major and make PWK mice a suitable model for the human disease.

  14. Representation of horizontal strain due to tidal bending by observation and modeling

    NASA Astrophysics Data System (ADS)

    Rack, Wolfgang; King, Matt; Marsh, Oliver; Wild, Christian; Floricioiu, Dana

    2017-04-01

    An important control of ice sheet mass balance is the ice dynamics in the grounding zones around Antarctica. On many outflow glaciers a large temporal variability in ice flow has been observed, which is at least partly related to tides. Here we investigate the tide induced short term ice deformation in an ice shelf grounding zone and the related bending stresses and strain. We make use of the arguably most precise measurement method, differential SAR interferometry, in combination with ground based measurements and model assumptions for tidal bending. Ground validation and satellite data have been acquired within a dedicated field campaign. The Southern McMurdo Ice Shelf in the Western Ross Ice Shelf region was chosen as the experiment site. This area is optimal for the data interpretation because of a simple grounding line configuration, small ice flux, and favourable satellite imaging geometry. It is also a safe area which allowed the installation of tiltmeters and GPS stations, and glaciological measurements such as ice thickness and snow accumulation. From November 2014 to January 2015 the tidal movement was recorded over a period of 2.5 months. TerrSAR-X radar images have been acquired over the same period as a basis to derive ice shelf flexure maps. Despite the viscoelastic effects in ice shelf bending a simple elastic bending model for a beam of finite ice thickness can largely explain the GPS-observed surface strain. Using the same model and taking into account the viewing geometry of the satellite radar, it is now possible to separate horizontal and vertical displacement components in the satellite data. As a result we can obtain more realistic ice shelf flexure profiles from the interferometric SAR measurement. The newly derived flexure profiles are therefore more suitable to recover viscoelastic effects of tidal bending in grounding zones of ice shelves and outlet glaciers. These effects would have otherwise remained unnoticed.

  15. Changing epidemiology of invasive Haemophilus influenzae in Ontario, Canada: evidence for herd effects and strain replacement due to Hib vaccination.

    PubMed

    Adam, H J; Richardson, S E; Jamieson, F B; Rawte, P; Low, D E; Fisman, D N

    2010-05-28

    The epidemiology of invasive Haemophilus influenzae infections was evaluated in Ontario between 1989 and 2007 to assess the impact of the introduction of the conjugate H. influenzae serotype b (Hib) vaccine in the early 1990 s on Hib and non-Hib serotypes in both vaccinated and unvaccinated cohorts as well as the possibility of "strain replacement" with non-vaccine H. influenzae strains. Data were collected by the provincial Public Health Laboratories-Toronto, Ontario Agency for Health Protection and Promotion, which performed almost all serotyping on invasive (blood, CSF, other sterile sites) H. influenzae strains isolated in the province during the study period. Temporal trends for Hib, other typeable strains, and non-typeable H. influenzae were evaluated by Poisson regression, controlling for the specimen submissions. Prior to infant Hib vaccination, the most commonly observed serotype was serotype b (64.9%). Subsequently, 70.3%, 13.6%, and 9.4% of isolates were non-typeable, serotype f, and serotype b, respectively. Infant Hib vaccination resulted in a decrease in Hib incidence in all age groups (pooled IRR 0.432) and marked increases of non-typeable and serotype f H. influenzae in children aged <5 years (IRR 2.4 and 3.0, respectively). Vaccination against Hib has altered the epidemiology of invasive H. influenzae infections in Ontario. Prevention of invasive Hib disease was observed in both vaccinated and unvaccinated age groups. Invasive H. influenzae infection now commonly presents as sepsis due to non-typeable H. influenzae in older individuals. However, strain replacement of Hib with serotype f and non-typeable strains in children under 5 years was documented.

  16. Effects of nutritional supplementation with l-arginine on repair of injuries due to muscle strain: experimental study on rats☆

    PubMed Central

    Couto, Lauren Izabel Medeiros; Wuicik, William Luiz; Kuhn, Ivan; Capriotti, Juan Rodolfo Vilela; Repka, João Carlos

    2015-01-01

    Objective To evaluate the influence of oral supplementation with arginine on regeneration of injuries due to straining of the anterior tibial muscle of rats. Methods Twenty-four Wistar rats of weight 492.5 ± 50.45 g were used. Injuries were induced through straining the anterior tibial muscles. The rats were separated into three groups of eight rats each. In the untreated group (UTG), after induction of injuries, the rats were observed for 24 h. In the simulation group (SG) and the arginine group (AG) respectively, the rats received isotonic saline solution and arginine solution via direct gavage, over a seven-day period. At the end of the period, blood samples were collected for serum evaluations of creatine kinase (CK), lactic dehydrogenase (LDH), aspartate aminotransferase (AST) and C-reactive protein (CRP). The right and left anterior tibial muscles were resected for histopathological evaluations on the muscle injuries, investigating edema, hemorrhage and disorganization or morphometric alteration of the muscle fibers. The tissue repair was investigated in terms of proliferation of adipose tissue, angiogenesis and collagen fibers. The ANOVA and Student's t methods were used and p ≤ 0.05 was taken to be statistically significant. Results In the serum evaluations, the AG showed lower CK assay values and higher AST values. In the histopathological evaluation, the UTG presented edema and hemorrhage compatible with injuries due to strain; the SG presented edema and hemorrhage with proliferation of adipose tissue and collagen fibers; and the AG presented not only the findings of the SG but also, especially, intense angiogenesis. Conclusion Oral supplementation with arginine did not cause any significant metabolic alterations that would contraindicate its use and it induced angiogenesis during the repair of muscles injured due to strain. PMID:26401505

  17. Marked increase in biofilm-derived rough pneumococcal variants and rifampin-resistant strains not due to hex gene mutations.

    PubMed

    McEllistrem, M Catherine; Scott, Jennifer R; Zuniga-Castillo, Jacobo; Khan, Saleem A

    2009-06-01

    Otitis, pneumonia, and meningitis are tissue-based pneumococcal infections that can be associated with biofilms. The emergence of phenotypic rough variants, also known as acapsular small-colony variants, is essential for pneumococcal biofilm formation. These rough variants can increase nearly 100-fold in biofilms over time and can arise through single nucleotide polymorphisms (SNPs), deletions, or tandem duplications in the first gene of the capsular operon, cps3D. We detected a 100-fold increase in rifampin-resistant (Rif(r)) mutants in biofilms compared to planktonic cultures using a nonvaccine serotype 3 strain, which is causing an increasing number of cases of otitis in the 7-valent pneumococcal conjugate vaccine era. Since both rough variants and Rif(r) strains can arise through SNPs, they could emerge due to alteration of the mismatch repair (MMR) system. The Hex system, a pneumococcal MMR system, repairs mismatches during replication and transformation. In this study, no mutations were detected in the hexAB gene sequences among several rough variants with unique mutations in the cps3D gene. Within a hexA null mutant grown in broth, we detected only a 17.5-fold increase in rough variants compared to the wild-type parental strain. Taken together, these data suggest that mutations in the hex genes and modulation of hexA activity are unlikely to account for the generation of biofilm-derived rough variants.

  18. TESTING AND ANALYSIS OF CAP CONCRETE STRESS AND STRAIN DUE TO SHRINKAGE, CREEP, AND EXPANSION FINAL REPORT

    SciTech Connect

    Guerrero, H.; Restivo, M.

    2011-08-01

    In-situ decommissioning of Reactors P- and R- at the Savannah River Site will require filling the reactor vessels with a special concrete based on materials such as magnesium phosphate, calcium aluminate or silica fume. Then the reactor vessels will be overlain with an 8 ft. thick layer of Ordinary Portland Cement (OPC) steel reinforced concrete, called the 'Cap Concrete'. The integrity of this protective layer must be assured to last for a sufficiently long period of time to avoid ingress of water into the reactor vessel and possible movement of radioactive contamination into the environment. During drying of this Cap Concrete however, shrinkage strains are set up in the concrete as a result of diffusion and evaporation of water from the top surface. This shrinkage varies with depth in the poured slab due to a non-uniform moisture distribution. This differential shrinkage results in restraint of the upper layers with larger shrinkage by lower layers with lesser displacements. Tensile stresses can develop at the surface from the strain gradients in the bulk slab, which can lead to surface cracking. Further, a mechanism called creep occurs during the curing period or early age produces strains under the action of restraining forces. To investigate the potential for surface cracking, an experimental and analytical program was started under TTQAP SRNL-RP-2009-01184. Slab sections made of Cap Concrete mixture were instrumented with embedded strain gages and relative humidity sensors and tested under controlled environmental conditions of 23 C and relative humidities (RH) of 40% and 80% over a period of 50 days. Calculation methods were also developed for predictions of stress development in the full-scale concrete placement over the reactor vessels. These methods were evaluated by simulating conditions for the test specimens and the calculation results compared to the experimental data. A closely similar test with strain gages was performed by Kim and Lee for a

  19. Efficacy of Ampicillin plus Ceftriaxone in Treatment of Experimental Endocarditis Due to Enterococcus faecalis Strains Highly Resistant to Aminoglycosides

    PubMed Central

    Gavaldà, Joan; Torres, Carmen; Tenorio, Carmen; López, Pedro; Zaragoza, Myriam; Capdevila, Josep A.; Almirante, Benito; Ruiz, Fernanda; Borrell, Nuria; Gomis, Xavier; Pigrau, Carles; Baquero, Fernando; Pahissa, Albert

    1999-01-01

    The purpose of this work was to evaluate the in vitro possibilities of ampicillin-ceftriaxone combinations for 10 Enterococcus faecalis strains with high-level resistance to aminoglycosides (HLRAg) and to assess the efficacy of ampicillin plus ceftriaxone, both administered with humanlike pharmacokinetics, for the treatment of experimental endocarditis due to HLRAg E. faecalis. A reduction of 1 to 4 dilutions in MICs of ampicillin was obtained when ampicillin was combined with a fixed subinhibitory ceftriaxone concentration of 4 μg/ml. This potentiating effect was also observed by the double disk method with all 10 strains. Time-kill studies performed with 1 and 2 μg of ampicillin alone per ml or in combination with 5, 10, 20, 40, and 60 μg of ceftriaxone per ml showed a ≥2 log10 reduction in CFU per milliliter with respect to ampicillin alone and to the initial inoculum for all 10 E. faecalis strains studied. This effect was obtained for seven strains with the combination of 2 μg of ampicillin per ml plus 10 μg of ceftriaxone per ml and for six strains with 5 μg of ceftriaxone per ml. Animals with catheter-induced endocarditis were infected intravenously with 108 CFU of E. faecalis V48 or 105 CFU of E. faecalis V45 and were treated for 3 days with humanlike pharmacokinetics of 2 g of ampicillin every 4 h, alone or combined with 2 g of ceftriaxone every 12 h. The levels in serum and the pharmacokinetic parameters of the humanlike pharmacokinetics of ampicillin or ceftriaxone in rabbits were similar to those found in humans treated with 2 g of ampicillin or ceftriaxone intravenously. Results of the therapy for experimental endocarditis caused by E. faecalis V48 or V45 showed that the residual bacterial titers in aortic valve vegetations were significantly lower in the animals treated with the combinations of ampicillin plus ceftriaxone than in those treated with ampicillin alone (P < 0.001). The combination of ampicillin and ceftriaxone showed in vitro and

  20. Temperature increase of Zircaloy-4 cladding tubes due to plastic heat dissipation during tensile tests at 0.1-10 s-1 strain rates

    NASA Astrophysics Data System (ADS)

    Hellouin de Menibus, Arthur; Auzoux, Quentin; Besson, Jacques; Crépin, Jérôme

    2014-11-01

    This study is focused on the impact of rapid Reactivity Initiated Accident (RIA) representative strain rates (about 1 s-1 NEA, 2010) on the behavior and fracture of unirradiated cold work stress relieved Zircaloy-4 cladding tubes. Uniaxial ring tests (HT) and plane strain ring tensile tests (PST) were performed in the 0.1-10 s-1 strain rate range, at 25 °C. The local temperature increase due to plastic dissipation was measured with a high-speed infrared camera. Limited temperature increases were measured at 0.1 s-1 strain rate. Limited but not strongly localized temperature increases were measured at 1 s-1. Large temperature increase were measured at 5 and 10 s-1 (142 °C at 5 s-1 strain rate in HT tests). The local temperature increase induced heterogeneous temperature fields, which enhanced strain localization and resulted in a reduction of the plastic elongation at fracture.

  1. Combination of poroelasticity theory and constant strain rate test in modelling land subsidence due to groundwater extraction

    NASA Astrophysics Data System (ADS)

    Pham, Tien Hung; Rühaak, Wolfram; Sass, Ingo

    2017-04-01

    Extensive groundwater extraction leads to a drawdown of the ground water table. Consequently, soil effective stress increases and can cause land subsidence. Analysis of land subsidence generally requires a numerical model based on poroelasticity theory, which was first proposed by Biot (1941). In the review of regional land subsidence accompanying groundwater extraction, Galloway and Burbey (2011) stated that more research and application is needed in coupling of stress-dependent land subsidence process. In geotechnical field, the constant rate of strain tests (CRS) was first introduced in 1969 (Smith and Wahls 1969) and was standardized in 1982 through the designation D4186-82 by American Society for Testing and Materials. From the reading values of CRS tests, the stress-dependent parameters of poroelasticity model can be calculated. So far, there is no research to link poroelasticity theory with CRS tests in modelling land subsidence due to groundwater extraction. One dimensional CRS tests using conventional compression cell and three dimension CRS tests using Rowe cell were performed. The tests were also modelled by using finite element method with mixed elements. Back analysis technique is used to find the suitable values of hydraulic conductivity and bulk modulus that depend on the stress or void ratio. Finally, the obtained results are used in land subsidence models. Biot, M. A. (1941). "General theory of three-dimensional consolidation." Journal of applied physics 12(2): 155-164. Galloway, D. L. and T. J. Burbey (2011). "Review: Regional land subsidence accompanying groundwater extraction." Hydrogeology Journal 19(8): 1459-1486. Smith, R. E. and H. E. Wahls (1969). "Consolidation under constant rates of strain." Journal of Soil Mechanics & Foundations Div.

  2. In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics.

    PubMed

    Pinchuk, I V; Bressollier, P; Verneuil, B; Fenet, B; Sorokulova, I B; Mégraud, F; Urdaci, M C

    2001-11-01

    A limited number of antibiotics can be used against Helicobacter pylori infection, and resistance jeopardizes the success of treatment. Therefore, a search for new agents is warranted. The use of probiotics to enhance gastrointestinal health has been proposed for many years, but the scientific basis of the prophylactic and therapeutic actions of probiotics has not yet been clearly delineated. Probiotic strain Bacillus subtilis 3, whose safety has previously been demonstrated, is known to have antagonistic properties against species of the family Enterobacteriaceae. In the present study, it was also found to inhibit H. pylori. The anti-H. pylori activity present in the cell-free supernatant was not related to pH or organic acid concentration. It was heat stable and protease insensitive. At least two antibiotics, detected by thin-layer chromatography (R(f) values, 0.47 and 0.85, respectively) and confirmed by high-performance liquid chromatographic analysis, were found to be responsible for this anti-H. pylori activity. All H. pylori strains tested were sensitive to both compounds. One of these compounds was identified as amicoumacin A, an antibiotic with anti-inflammatory properties. MICs for H. pylori determined in solid and liquid media ranged between 1.7 and 6.8 microg/ml and 0.75 and 2.5 microg/ml, respectively. The underestimation of MICs determined in solid medium may be due to physicochemical instability of the antibiotic under these test conditions. An additive effect between amicoumacin A and the nonamicoumacin antibiotic against H. pylori was demonstrated.

  3. In Vitro Anti-Helicobacter pylori Activity of the Probiotic Strain Bacillus subtilis 3 Is Due to Secretion of Antibiotics

    PubMed Central

    Pinchuk, Irina V.; Bressollier, Philippe; Verneuil, Bernard; Fenet, Bernard; Sorokulova, Irina B.; Mégraud, Francis; Urdaci, Maria C.

    2001-01-01

    A limited number of antibiotics can be used against Helicobacter pylori infection, and resistance jeopardizes the success of treatment. Therefore, a search for new agents is warranted. The use of probiotics to enhance gastrointestinal health has been proposed for many years, but the scientific basis of the prophylactic and therapeutic actions of probiotics has not yet been clearly delineated. Probiotic strain Bacillus subtilis 3, whose safety has previously been demonstrated, is known to have antagonistic properties against species of the family Enterobacteriaceae. In the present study, it was also found to inhibit H. pylori. The anti-H. pylori activity present in the cell-free supernatant was not related to pH or organic acid concentration. It was heat stable and protease insensitive. At least two antibiotics, detected by thin-layer chromatography (Rf values, 0.47 and 0.85, respectively) and confirmed by high-performance liquid chromatographic analysis, were found to be responsible for this anti-H. pylori activity. All H. pylori strains tested were sensitive to both compounds. One of these compounds was identified as amicoumacin A, an antibiotic with anti-inflammatory properties. MICs for H. pylori determined in solid and liquid media ranged between 1.7 and 6.8 μg/ml and 0.75 and 2.5 μg/ml, respectively. The underestimation of MICs determined in solid medium may be due to physicochemical instability of the antibiotic under these test conditions. An additive effect between amicoumacin A and the nonamicoumacin antibiotic against H. pylori was demonstrated. PMID:11600371

  4. [An epidemic of primary bacteremia due to an endemic strain of Serratia marcescens in an intensive care unit].

    PubMed

    Volkow-Fernández, P; Ponce de León-Rosales, S; Sifuentes-Osornio, J; Calva-Mercado, J J; Ruiz-Palacios, G M; Cerbón, M A

    1993-01-01

    An outbreak of Serratia marcescens bacteremia detected in the intensive care unit (ICU) of a tertiary care center on the last days of October, 1985, is described. The rate of primary S. marcescens nosocomial bacteremia during the pre-epidemic period (January-September 1985) was 6.25 per cent; and for the post-epidemic period compared with the epidemic were significantly different (p < 0.0001). The outbreak strains belonged to the biotype A8b, which has been endemic in our hospital. The responsible organism exhibited an unusual antimicrobial resistance pattern associated to the presence of a specific plasmid (greater than 50 kilobases), which showed similar fragments after restriction endonuclease digestion. No specific risk factors were identified in the case-control study. The outbreak was probably related to a greater influx of infected patients, resulting in less careful infection control measures, due to the emergency situation which suffered the hospital after the earthquakes in 1985. The unusual high rate of blood isolation of S. marcescens at the ICU was the first sign of the outbreak. The prompt reinforcement of infection control policies facilitated its resolution.

  5. Hypermotility in Clostridium perfringens strain SM101 is due to spontaneous mutations in genes linked to cell division.

    PubMed

    Liu, Hualan; McCord, Kristin D; Howarth, Jonathon; Popham, David L; Jensen, Roderick V; Melville, Stephen B

    2014-07-01

    Clostridium perfringens is a Gram-positive anaerobic pathogen of humans and animals. Although they lack flagella, C. perfringens bacteria can still migrate across surfaces using a type of gliding motility that involves the formation of filaments of bacteria lined up in an end-to-end conformation. In strain SM101, hypermotile variants are often found arising from the edges of colonies on agar plates. Hypermotile cells are longer than wild-type cells, and video microscopy of their gliding motility suggests that they form long, thin filaments that move rapidly away from a colony, analogously to swarmer cells in bacteria with flagella. To identify the cause(s) of the hypermotility phenotype, the genome sequences of normal strains and their direct hypermotile derivatives were determined and compared. Strains SM124 and SM127, hypermotile derivatives of strains SM101 and SM102, respectively, contained 10 and 6 single nucleotide polymorphisms (SNPs) relative to their parent strains. While SNPs were located in different genes in the two sets of strains, one feature in common was mutations in cell division genes, an ftsI homolog in strain SM124 (CPR_1831) and a minE homolog in strain SM127 (CPR_2104). Complementation of these mutations with wild-type copies of each gene restored the normal motility phenotype. A model explaining the principles underlying the hypermotility phenotype is presented.

  6. Strain changes on the cortical shell of vertebral bodies due to spine ageing: a parametric study using a finite element model evaluated by strain measurements.

    PubMed

    Lu, Yongtao; Rosenau, Eike; Paetzold, Helge; Klein, Anke; Püschel, Klaus; Morlock, Michael M; Huber, Gerd

    2013-12-01

    The probability of fractures of the cortical shell of vertebral bodies increases as ageing progresses. Ageing involves all the spinal component changes. However, the effect of the spinal component ageing on the fracture risk of the cortical shell remains poorly understood. In this study, the influence of the ageing of the spinal components on cortical shell strain was investigated. A lumbar spinal specimen (L3-L5) was mechanically tested under a quasi-static axial compressive load. Clinical computed tomography images of the same specimen were used to create a corresponding finite element model. The material properties were determined by calibrating the finite element model using the L4 cortical shell strains of the anterior centre measurement site. The remaining experiment data (axial displacement, the intra-discal pressures, L4 cortical shell strain on the lateral measurement site) were used to evaluate the model. The individual ageing process of the six spinal components (cortical shell, cancellous bone, bony endplate, posterior elements, nucleus pulposus and annulus matrix) was simulated by changing their Young's moduli and Poisson's ratios, and the effect on cortical shell strain was investigated. Results show that the cortical shell strain is more sensitive to the ageing of the cortical shell and the cancellous bone than to the ageing of the nucleus pulposus, the annulus matrix, and the bony endplates and of the posterior elements. The results can help the clinicians focus on the aspects that mainly influence the vertebral cortex fracture risk factor.

  7. Local strain evolution due to athermal γ→ε martensitic transformation in biomedical CoCrMo alloys.

    PubMed

    Yamanaka, Kenta; Mori, Manami; Koizumi, Yuichiro; Chiba, Akihiko

    2014-04-01

    Locally developed strains caused by athermal γ face-centered cubic (fcc)→ε hexagonal close-packed (hcp) martensitic transformation were investigated for the γ matrix of Ni-free Co-29Cr-6Mo (wt%) alloys prepared with or without added nitrogen. Electron-backscatter-diffraction-(EBSD)-based strain analysis revealed that in addition to ε-martensite interiors, the N-free alloy that had a duplex microstructure consisting of the γ matrix and athermal ε-martensite plates showed larger magnitudes of both elastic and plastic strains in the γ phase matrix than the N-doped counterpart that did not have a ε-martensite phase. Transmission electron microscopy (TEM) results indicated that the ε-martensite microplates were aggregates of thin ε-layers, which were formed by three different {111}γ〈112¯〉γ Shockley partial dislocations in accordance with a previously proposed mechanism (Putaux and Chevalier, 1996) that canceled the shear strains of the individual variants. The plastic strains are believed to have originated from the martensitic transformation itself, and the activity of dislocations is believed to be the origin of the transformation. We have revealed that the elastic strains in the γ matrix originate from interactions among the ε-martensite phase, extended dislocations, and/or thin ε-layers. The dislocations highly dissociated into stacking faults, making stress relaxation at intersections difficult and further introducing local strain evolution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Prediction of plastic strains in ultra-high molecular weight polyethylene due to microscopic asperity interactions during sliding wear.

    PubMed

    McNie, C; Barton, D C; Stone, M H; Fisher, J

    1998-01-01

    Studies of explanted femoral heads have shown that scratches caused by bone cement, bone or metallic particles are present on the rubbing surface. This damage has been cited as a cause of increased wear of ultra-high molecular weight polyethylene (UHMWPE) acetabular cups and it is known that the particulate wear debris produced leads to osteolysis. A series of explanted Charnley femoral heads have been surface characterized using a Talysurf 6 profilometer and found to have scratches with lip heights in the size range 0.1-3.25 microns with an average height of 1 micron giving an average aspect ratio (defined as height/half-width) of 0.1. These geometries were incorporated into a finite element model of a stainless steel asperity sliding over UHMWPE under conditions similar to those in an artificial hip system. It was found that as the aspect ratio of the asperity lip increased, the plastic strains both on and below the surface of the UHMWPE increased non-linearly, but that the magnitude of the strain was independent of the asperity height. The asperity aspect ratio was also found to affect the position of the maximum sub-surface strain, as the asperity aspect ratio was increased the maximum strain rose to the surface. The high plastic strains predicted offer an explanation for the highly elevated wear rates in scratched counterface tests and the aspect ratio of scratch lips is therefore a critical determinant of plastic strain.

  9. Common skin infection due to Panton-Valentine leucocidin-producing Staphylococcus aureus strains in asylum seekers from Eritrea: a genome-based investigation of a suspected outbreak.

    PubMed

    Jaton, L; Pillonel, T; Jaton, K; Dory, E; Prod'hom, G; Blanc, D S; Tissot, F; Bodenmann, P; Greub, G

    2016-08-01

    Since late 2014, multiple cases of abscesses and boils due to methicillin-susceptible Staphylococcus aureus (MSSA) expressing the Panton-Valentine leucocidin (PVL) were observed in Eritrean asylum seekers in Lausanne, Switzerland. Strains isolated from infected Eritrean and non-Eritrean patients were compared by whole genome sequencing to determine whether these numerous cases result from an outbreak. The genome of S. aureus PVL-producing strains were sequenced and compared. Clinical and epidemiological characteristics of patients infected by PVL-producing strains were investigated. This work reports 15 cases of infections due to PVL-producing strains affecting mostly asylum seekers (n = 10), people working with refugees and/or exposed to Africans (n = 3). Most infections were due to closely related strains of CC152 (n = 8) and CC15 (n = 3), two distantly related (>34 000 core single nucleotide polymorphisms) clonal complexes. An epidemiological link between the 15 cases could be ruled out by whole genome sequencing (33 to 172 core single nucleotide polymorphisms between the different strains of a given complex). Altogether, these results reflect the probable high incidence of CC15 and CC152 PVL-producing strains in eastern Africa. Clinicians facing unusual skin infections in African refugees (or in any person returning from this region of high endemicity) should consider S. aureus PVL-producer before suspecting rare infections such as leishmaniasis or rickettsiosis. Clinicians should also remember that PVL are frequently expressed by MSSA in some regions of the world and that antibiotics that are efficient on toxin expression, such as clindamycin, represent the best therapeutic option.

  10. Finite element modelling predicts changes in joint shape and cell behaviour due to loss of muscle strain in jaw development

    PubMed Central

    Brunt, Lucy H.; Norton, Joanna L.; Bright, Jen A.; Rayfield, Emily J.; Hammond, Chrissy L.

    2015-01-01

    Abnormal joint morphogenesis is linked to clinical conditions such as Developmental Dysplasia of the Hip (DDH) and to osteoarthritis (OA). Muscle activity is known to be important during the developmental process of joint morphogenesis. However, less is known about how this mechanical stimulus affects the behaviour of joint cells to generate altered morphology. Using zebrafish, in which we can image all joint musculoskeletal tissues at high resolution, we show that removal of muscle activity through anaesthetisation or genetic manipulation causes a change to the shape of the joint between the Meckel's cartilage and Palatoquadrate (the jaw joint), such that the joint develops asymmetrically leading to an overlap of the cartilage elements on the medial side which inhibits normal joint function. We identify the time during which muscle activity is critical to produce a normal joint. Using Finite Element Analysis (FEA), to model the strains exerted by muscle on the skeletal elements, we identify that minimum principal strains are located at the medial region of the joint and interzone during mouth opening. Then, by studying the cells immediately proximal to the joint, we demonstrate that biomechanical strain regulates cell orientation within the developing joint, such that when muscle-induced strain is removed, cells on the medial side of the joint notably change their orientation. Together, these data show that biomechanical forces are required to establish symmetry in the joint during development. PMID:26253758

  11. Strain evolution in Si substrate due to implantation of MeV ion observed by extremely asymmetric x-ray diffraction

    SciTech Connect

    Emoto, T.; Ghatak, J.; Satyam, P. V.; Akimoto, K.

    2009-08-15

    We studied the strain introduced in a Si(111) substrate due to MeV ion implantation using extremely asymmetric x-ray diffraction and measured the rocking curves of asymmetrical 113 diffraction for the Si substrates implanted with a 1.5 MeV Au{sup 2+} ion at fluence values of 1x10{sup 13}, 5x10{sup 13}, and 1x10{sup 14}/cm{sup 2}. The measured curves consisted of a bulk peak and accompanying subpeak with an interference fringe. The positional relationship of the bulk peak to the subpeak and the intensity variation of those peaks with respect to the wavelengths of the x rays indicated that crystal lattices near the surface were strained; the lattice spacing of surface normal (111) planes near the surface was larger than that of the bulk. Detailed strain profiles along the depth direction were successfully estimated using a curve-fitting method based on Darwin's dynamical diffraction theory. Comparing the shapes of resultant strain profiles, we found that a strain evolution rapidly occurred within a depth of approx300 nm at fluence values between 1x10{sup 13} and 5x10{sup 13}/cm{sup 2}. This indicates that formation of the complex defects progressed near the surface when the fluence value went beyond a critical value between 1x10{sup 13} and 5x10{sup 13}/cm{sup 2} and the defects brought a large strain to the substrate.

  12. Phase shift of TE and TM modes in an optical fiber due to axial strain (exact solution)

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1992-01-01

    Axial strain may be determined by monitoring the phase shift of modes of a variety of optical fiber sensors. In this paper, the exact solution of a circular optical fiber is used to calculate the phase shift of the TE and TM modes. Whenever an optical fiber is stressed, the optical path length, the index of refraction, and the propagation constants of each fiber mode change. In consequence, the modal phase term, beta(ln)z, of the fields is shifted by an amount Delta phi. In certain cases, it is desirable to control the phase shift term in order to make the fiber either more or less sensitive to certain kinds of strain. It is shown that it can be accomplished by choosing appropriate fiber parameters.

  13. Epidemiological investigation of the first human brucellosis case in Spain due to Brucella suis biovar 1 strain 1330.

    PubMed

    Compés Dea, Cecilia; Guimbao Bescós, Joaquín; Alonso Pérez de Ágreda, Juan Pablo; Muñoz Álvaro, Pilar María; Blasco Martínez, José María; Villuendas Usón, María Cruz

    2017-03-01

    No cases of human brucellosis caused by Brucella suis has been reported in Spain. This study involved interviews with the case and his co-workers, inspection of their workplace, checking infection control measures, and typing the Brucella strain isolated in the blood culture. Brucella suis biovar 1 strain 1330 was isolated from a patient who worked in a waste treatment plant. Food borne transmission, contact with animals, and risk jobs were ruled out. An accidental inoculation with a contaminated needle from a research laboratory waste container was identified as the most probable mode of transmission. There should be controls to ensure that waste containers are sealed. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  14. Functional MRI for characterization of renal perfusion impairment and edema formation due to acute kidney injury in different mouse strains

    PubMed Central

    Chen, Rongjun; Gutberlet, Marcel; Jang, Mi-Sun; Meier, Martin; Mengel, Michael; Hartung, Dagmar; Wacker, Frank; Rong, Song; Hueper, Katja

    2017-01-01

    Purpose The purpose was to characterize acute kidney injury (AKI) in C57BL/6 (B6)- and 129/Sv (Sv)-mice by noninvasive measurement of renal perfusion and tissue edema using functional MRI. Methods Different severities of AKI were induced in B6- and Sv-mice by renal ischemia reperfusion injury (IRI). Unilateral clamping of the renal pedicle for 35 min (moderate AKI) or 45 min (severe AKI) was done. MRI (7-Tesla) was performed 1, 7 and 28 days after surgery using a flow alternating inversion recovery (FAIR) arterial spin labeling (ASL) sequence. Maps of perfusion and T1-relaxation time were calculated. Relative MRI-parameters of the IRI kidney compared to the contralateral not-clipped kidney were compared between AKI severities and between mouse strains using unpaired t-tests. In addition, fibrosis was assessed by Masson Trichrome and collagen IV staining. Results After moderate AKI relative perfusion impairment was significantly higher in B6- than in Sv-mice at d7 (55±7% vs. 82±8%, p<0.05) and d28 (76±7% vs. 102±3%, p<0.01). T1-values increased in the early phase after AKI in both mouse strains. T1-increase was more severe after prolonged ischemia times of 45 min compared to 35 min in both mouse strains, measured in the renal cortex and outer stripe of outer medulla. Kidney volume loss (compared to the contralateral kidney) occurred already after 7 days but proceeded markedly towards 4 weeks in severe AKI. Early renal perfusion impairment was predictive for later kidney volume loss. The progression to chronic kidney disease (CKD) in the severe AKI model was similar in both mouse strains as revealed by histology. Conclusion Quantification of renal perfusion and tissue edema by functional MRI allows characterization of strain differences upon AKI. Renal perfusion impairment was stronger in B6- compared to Sv-animals following moderate AKI. Prolonged ischemia times were associated with more severe perfusion impairment and edema formation in the early phase and

  15. The 1998 Senegal Epidemic of Meningitis Was Due to the Clonal Expansion of A:4:P1.9, Clone III-1, Sequence Type 5 Neisseria meningitidis Strains

    PubMed Central

    Nicolas, Pierre; Raphenon, Georges; Guibourdenche, Martine; Decousset, Laurent; Stor, Richard; Gaye, Abou Beckr

    2000-01-01

    Between January and April 1998, a meningitis outbreak due to serogroup A meningococcus took place in Senegal. The outbreak began in Gandiaye, 165 km to the east of Dakar, and progressed towards the towns of Gossas, Niakkhar, Guinguineo, Fatik, Foundiougne, Dioffior, Sokone, Kaolack, and Nioro. At the same time, the outbreak reached regions of Kaffrine, Koungheul, and Tambacounda in the east of Senegal. A total of 1,350 cases and 200 deaths were reported. The WHO Collaborating Center in Marseilles received 24 strains for analysis. All were serogroup A Neisseria meningitidis, type 4 and subtype P1.9. Multilocus enzyme electrophoresis, performed by Institut Pasteur Paris, showed that the strains belonged to clone III-1. DNA restriction fragments generated by endonuclease BglII and analyzed by pulsed-field gel electrophoresis showed 24 indistinguishable fingerprint patterns similar to those of meningococcus strains isolated from African outbreaks since 1988. Three strains were studied by multilocus sequence typing (MLST) with seven loci. The comparison between sequences and existing alleles on the MLST website (http://mlst.zoo.ox.ac.uk) allowed us to assign these strains to sequence type 5 (ST5), as their sequences were identical to the consensus at seven loci. All 24 strains were susceptible to penicillin, amoxicillin, chloramphenicol, and rifampin. Subgroup III is finishing its spread towards west of the meningitis belt of Africa. To our knowledge, this is the first time subgroup III, and more precisely ST5, strains are reported as being responsible for a meningitis outbreak in Senegal. PMID:10618087

  16. Is the effect of job strain on myocardial infarction risk due to interaction between high psychological demands and low decision latitude? Results from Stockholm Heart Epidemiology Program (SHEEP).

    PubMed

    Hallqvist, J; Diderichsen, F; Theorell, T; Reuterwall, C; Ahlbom, A

    1998-06-01

    The objectives are to examine if the excess risk of myocardial infarction from exposure to job strain is due to interaction between high demands and low control and to analyse what role such an interaction has regarding socioeconomic differences in risk of myocardial infarction. The material is a population-based case-referent study having incident first events of myocardial infarction as outcome (SHEEP: Stockholm Heart Epidemiology Program). The analysis is restricted to males 45-64 yr of age with a more detailed analysis confined to those still working at inclusion. In total, 1047 cases and 1450 referents were included in the analysis. Exposure categories of job strain were formed from self reported questionnaire information. The results show that high demands and low decision latitude interact with a synergy index of 7.5 (95% C.I.: 1.8-30.6) providing empirical support for the core mechanism of the job strain model. Manual workers are more susceptible when exposed to job strain and its components and this increased susceptibility explains about 25-50% of the relative excess risk among manual workers. Low decision latitude may also, as a causal link, explain about 30% of the socioeconomic difference in risk of myocardial infarction. The distinction between the interaction and the causal link mechanisms identifies new etiologic questions and intervention alternatives. The specific causes of the increased susceptibility among manual workers to job strain and its components seem to be an interesting and important research question.

  17. Elastic strain field due to an inclusion of a polyhedral shape with a non-uniform lattice misfit

    NASA Astrophysics Data System (ADS)

    Nenashev, A. V.; Dvurechenskii, A. V.

    2017-03-01

    An analytical solution in a closed form is obtained for the three-dimensional elastic strain distribution in an unlimited medium containing an inclusion with a coordinate-dependent lattice mismatch (an eigenstrain). Quantum dots consisting of a solid solution with a spatially varying composition are examples of such inclusions. It is assumed that both the inclusion and the surrounding medium (the matrix) are elastically isotropic and have the same Young's modulus and Poisson ratio. The inclusion shape is supposed to be an arbitrary polyhedron, and the coordinate dependence of the lattice misfit, with respect to the matrix, is assumed to be a polynomial of any degree. It is shown that, both inside and outside the inclusion, the strain tensor is expressed as a sum of contributions of all faces, edges, and vertices of the inclusion. Each of these contributions, as a function of the observation point's coordinates, is a product of some polynomial and a simple analytical function, which is the solid angle subtended by the face from the observation point (for a contribution of a face), or the potential of the uniformly charged edge (for a contribution of an edge), or the distance from the vertex to the observation point (for a contribution of a vertex). The method of constructing the relevant polynomial functions is suggested. We also found out that similar expressions describe an electrostatic or gravitational potential, as well as its first and second derivatives, of a polyhedral body with a charge/mass density that depends on coordinates polynomially.

  18. Use of multiple molecular subtyping techniques to investigate a Legionnaires' disease outbreak due to identical strains at two tourist lodges.

    PubMed Central

    Mamolen, M; Breiman, R F; Barbaree, J M; Gunn, R A; Stone, K M; Spika, J S; Dennis, D T; Mao, S H; Vogt, R L

    1993-01-01

    A multistate outbreak of Legionnaires' disease occurred among nine tour groups of senior citizens returning from stays at one of two lodges in a Vermont resort in October 1987. Interviews and serologic studies of 383 (85%) of the tour members revealed 17 individuals (attack rate, 4.4%) with radiologically documented pneumonia and laboratory evidence of legionellosis. A survey of tour groups staying at four nearby lodges and of Vermont-area medical facilities revealed no additional cases. Environmental investigation of common tour stops revealed no likely aerosol source of Legionella infection outside the lodges. Legionella pneumophila serogroup 1 was isolated from water sources at both implicated lodges, and the monoclonal antibody subtype matched those of the isolates from six patients from whom clinical isolates were obtained. The cultures reacted with monoclonal antibodies MAB1, MAB2, 33G2, and 144C2 to yield a 1,2,5,7 or a Benidorm 030E pattern. The strains were also identical by alloenzyme electrophoresis and DNA ribotyping techniques. The epidemiologic and laboratory data suggest that concurrent outbreaks occurred following exposures to the same L. pneumophila serogroup 1 strain at two separate lodges. Multiple molecular subtyping techniques can provide essential information for epidemiologic investigations of Legionnaires' disease. PMID:8253953

  19. Use of multiple molecular subtyping techniques to investigate a Legionnaires' disease outbreak due to identical strains at two tourist lodges.

    PubMed

    Mamolen, M; Breiman, R F; Barbaree, J M; Gunn, R A; Stone, K M; Spika, J S; Dennis, D T; Mao, S H; Vogt, R L

    1993-10-01

    A multistate outbreak of Legionnaires' disease occurred among nine tour groups of senior citizens returning from stays at one of two lodges in a Vermont resort in October 1987. Interviews and serologic studies of 383 (85%) of the tour members revealed 17 individuals (attack rate, 4.4%) with radiologically documented pneumonia and laboratory evidence of legionellosis. A survey of tour groups staying at four nearby lodges and of Vermont-area medical facilities revealed no additional cases. Environmental investigation of common tour stops revealed no likely aerosol source of Legionella infection outside the lodges. Legionella pneumophila serogroup 1 was isolated from water sources at both implicated lodges, and the monoclonal antibody subtype matched those of the isolates from six patients from whom clinical isolates were obtained. The cultures reacted with monoclonal antibodies MAB1, MAB2, 33G2, and 144C2 to yield a 1,2,5,7 or a Benidorm 030E pattern. The strains were also identical by alloenzyme electrophoresis and DNA ribotyping techniques. The epidemiologic and laboratory data suggest that concurrent outbreaks occurred following exposures to the same L. pneumophila serogroup 1 strain at two separate lodges. Multiple molecular subtyping techniques can provide essential information for epidemiologic investigations of Legionnaires' disease.

  20. True polar wander of a quasi-fluid planet with a fossil shape: Effect of strain energy due to tidal deformation

    NASA Astrophysics Data System (ADS)

    Harada, Y.

    2011-12-01

    In the present study, temporal variation of a paleo-pole position due to TPW is formulated and calculated based on strain energy in a previous study. Especially, quasi-fluid approximation is suitable to deal with large-scale and long-term variation of a paleo-pole position. Thus, an orientation of a paleo-rotation axis in each time step is estimated in here by following conventional formulation with the quasi-fluid approximation for TPW, and simultaneously by taking total energy minimization into account. In practice, this procedure is physically same as to incorporate elastic torque due to tidal deformation of a lithosphere into the Liouville equation including the quasi-fluid approximation. In this study, like the previous one, only one symmetric surface load is regarded as a driving force of TPW for convenience sake. In this calculation, variable parameters are defined as follows: a location of emplacement, duration of formation, and maximum of intensity of a load. The result with strain energy is compared with that without strain energy. As a result, the case with the strain energy indicates different characteristics from that without the strain energy in the following points. First, the paleo-poles under steady states are different each other in the cases for same parameters. These results are not consistent even with the previous results concerning just the final condition. Second, also in the cases for same parameters, time scales when the paleo-poles reach the static limits are different. These results demonstrate the fact that strain energy within a lithosphere effectively weakens influence of a load on TPW. Although this kind of influence has already been pointed out by the previous results just in the cases of the steady states, the present results further revealed similar effect also on a characteristic time scale of TPW. Strictly speaking, however, it is impossible to estimate this exact time scale only by reducing an effective size of a load. This is

  1. Antibiotic Resistance in Pseudomonas aeruginosa Strains with Increased Mutation Frequency Due to Inactivation of the DNA Oxidative Repair System▿

    PubMed Central

    Mandsberg, L. F.; Ciofu, O.; Kirkby, N.; Christiansen, L. E.; Poulsen, H. E.; Høiby, N.

    2009-01-01

    The chronic Pseudomonas aeruginosa infection of the lungs of cystic fibrosis (CF) patients is characterized by the biofilm mode of growth and chronic inflammation dominated by polymorphonuclear leukocytes (PMNs). A high percentage of P. aeruginosa strains show high frequencies of mutations (hypermutators [HP]). P. aeruginosa is exposed to oxygen radicals, both those generated by its own metabolism and especially those released by a large number of PMNs in response to the chronic CF lung infection. Our work therefore focused on the role of the DNA oxidative repair system in the development of HP and antibiotic resistance. We have constructed and characterized mutT, mutY, and mutM mutants in P. aeruginosa strain PAO1. The mutT and mutY mutants showed 28- and 7.5-fold increases in mutation frequencies, respectively, over that for PAO1. These mutators had more oxidative DNA damage (higher levels of 7,8-dihydro-8-oxodeoxyguanosine) than PAO1 after exposure to PMNs, and they developed resistance to antibiotics more frequently. The mechanisms of resistance were increased β-lactamase production and overexpression of the MexCD-OprJ efflux-pump. Mutations in either the mutT or the mutY gene were found in resistant HP clinical isolates from patients with CF, and complementation with wild-type genes reverted the phenotype. In conclusion, oxidative stress might be involved in the development of resistance to antibiotics. We therefore suggest the possible use of antioxidants for CF patients to prevent the development of antibiotic resistance. PMID:19332676

  2. Diarrhea, bacteremia and multiorgan dysfunction due to an extraintestinal pathogenic Escherichia coli strain with enteropathogenic E. coli genes.

    PubMed

    Kessler, Robert; Nisa, Shahista; Hazen, Tracy H; Horneman, Amy; Amoroso, Anthony; Rasko, David A; Donnenberg, Michael S

    2015-11-01

    A 55-year-old man with well-controlled HIV had severe diarrhea for 3 weeks and developed multiorgan dysfunction and bacteremia due to Escherichia coli. The genome of the patient's isolate had features characteristic of extraintestinal pathogenic E. coli and genes distantly related to those defining enteropathogenic E. coli.

  3. An international invasive meningococcal disease outbreak due to a novel and rapidly expanding serogroup W strain, Scotland and Sweden, July to August 2015

    PubMed Central

    Lucidarme, Jay; Scott, Kevin J; Ure, Roisin; Smith, Andrew; Lindsay, Diane; Stenmark, Bianca; Jacobsson, Susanne; Fredlund, Hans; Cameron, J Claire; Smith-Palmer, Alison; McMenamin, Jim; Gray, Steve J; Campbell, Helen; Ladhani, Shamez; Findlow, Jamie; Mölling, Paula; Borrow, Ray

    2016-01-01

    The 23rd World Scout Jamboree in 2015 took place in Japan and included over 33,000 scouts from 162 countries. Within nine days of the meeting ending, six cases of laboratory-confirmed invasive serogroup W meningococcal disease occurred among scouts and their close contacts in Scotland and Sweden. The isolates responsible were identical to one-another by routine typing and, where known (4 isolates), belonged to the ST-11 clonal complex (cc11) which is associated with large outbreaks and high case fatality rates. Recent studies have demonstrated the need for high-resolution genomic typing schemes to assign serogroup W cc11 isolates to several distinct strains circulating globally over the past two decades. Here we used such schemes to confirm that the Jamboree-associated cases constituted a genuine outbreak and that this was due to a novel and rapidly expanding strain descended from the strain that has recently expanded in South America and the United Kingdom. We also identify the genetic differences that define the novel strain including four point mutations and three putative recombination events involving the horizontal exchange of 17, six and two genes, respectively. Noteworthy outcomes of these changes were antigenic shifts and the disruption of a transcriptional regulator. PMID:27918265

  4. Experimental study of the efficacy of linezolid alone and in combinations against experimental meningitis due to Staphylococcus aureus strains with decreased susceptibility to beta-lactams and glycopeptides.

    PubMed

    Cabellos, Carmen; Garrigós, Carmen; Taberner, Ferran; Force, Enriqueta; Pachón-Ibañez, M Eugenia

    2014-09-01

    To evaluate in vitro and in vivo efficacies of linezolid, vancomycin, and the combination of linezolid and rifampicin against two Staphylococcus aureus strains with reduced susceptibility to beta-lactams and one of them also to glycopeptides. In vitro killing curves and a rabbit model: Meningitis was induced by intracisternal inoculation of 10(8) CFU/ml of each strain. Five hours later (0 h), rabbits were randomly assigned to control or to therapeutic groups. CSF bacterial counts, lactate and protein concentrations, and pharmacokinetic parameters were determined. In vivo: linezolid and its combination with rifampicin reduced bacterial concentrations at 24 h, median cfu/mL 4.85 vs 3.87 (p < 0.05) for linezolid and 5.02 vs 4.21 (p < 0.05) for linezolid + rifampicin, against the glycopeptide intermediate S. aureus (GISA) strain and improved inflammatory parameters. Despite the need for more experimental data, our results suggest that linezolid and its combinations could be considered as a potential alternative in difficult-to-treat CNS infections and especially in those due to GISA strains and deserve more studies. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  5. Rat strain differences in levels and effects of chronic inflammation due to intratracheal instillation of quartz on lung tumorigenesis induced by DHPN.

    PubMed

    Nakano, Yuko; Yokohira, Masanao; Hashimoto, Nozomi; Yamakawa, Keiko; Kishi, Sosuke; Ninomiya, Fumiko; Kanie, Shohei; Saoo, Kousuke; Imaida, Katsumi

    2014-10-01

    Chronic inflammatory effects of single intratracheal instillation (i.t.) of quartz on rat lung tumorigenesis were examined using 4 different animal models. At first, in order to determine an appropriate dose of quartz i.t. to promote lung tumorigenesis, F344 male rats were administrated single 0, 0.5, 1, 2 or 4 mg quartz/rat after initiation by N-bis(2-hydroxypropyl) nitrosamine (DHPN). Further studies were performed to examine strain differences of the effects of chronic inflammation caused by quartz i.t. in 3 strains of rat, i.e. F344, Wistar-Hannover and SD. Each was instilled with 2mg quartz/rat after DHPN administration and sacrificed in week 24. In addition, strain differences in generation of inflammation were determined at days 1 and 28. Finally, for determination of long-term effects period, F344 and Wistar-Hannover rats were similarly treated, but the experiment was terminated at week 52. In F344 rats, the tumor areas in DHPN treated groups showed a tendency to increase along with the dose of quartz. F344 rats demonstrated the highest and Wistar-Hannover rats the lowest sensitivity to quartz in acute and chronic phases in the 3 strains. In 52 week, in F344 rats, the multiplicity of tumors and the serum concentration of IL-6 in the group treated with DHPN and quartz were significantly increased. The present experiments indicated that chronic inflammation due to quartz instillation exerted promoting effects on lung carcinogenesis in F344, SD and Wistar-Hannover rats. The strain differences in tumor promotion appeared to correlate with inflammatory reactions to quartz and increase of IL-6.

  6. Hospital Acquired Pneumonia Due to Achromobacter spp. in a Geriatric Ward in China: Clinical Characteristic, Genome Variability, Biofilm Production, Antibiotic Resistance and Integron in Isolated Strains

    PubMed Central

    Liu, Chao; Pan, Fei; Guo, Jun; Yan, Weifeng; Jin, Yi; Liu, Changting; Qin, Long; Fang, Xiangqun

    2016-01-01

    Background: Hospital-acquired pneumonia (HAP) due to Achromobacter has become a substantial concern in recent years. However, HAP due to Achromobacter in the elderly is rare. Methods: A retrospective analysis was performed on 15 elderly patients with HAP due to Achromobacter spp., in which the sequence types (STs), integrons, biofilm production and antibiotic resistance of the Achromobacter spp. were examined. Results: The mean age of the 15 elderly patients was 88.8 ± 5.4 years. All patients had at least three underlying diseases and catheters. Clinical outcomes improved in 10 of the 15 patients after antibiotic and/or mechanical ventilation treatment, but three patients had chronic infections lasting more than 1 year. The mortality rate was 33.3% (5/15). All strains were resistant to aminoglycosides, aztreonam, nitrofurantoin, and third- and fourth-generation cephalosporins (except ceftazidime and cefoperazone). Six new STs were detected. The most frequent ST was ST306. ST5 was identified in two separate buildings of the hospital. ST313 showed higher MIC in cephalosporins, quinolones and carbapenems, which should be more closely considered in clinical practice. All strains produced biofilm and had integron I and blaOXA-114-like. The main type was blaOXA-114q. The variable region of integron I was different among strains, and the resistance gene of the aminoglycosides was most commonly inserted in integron I. Additionally, blaPSE-1 was first reported in this isolate. Conclusion: Achromobacter spp. infection often occurs in severely ill elders with underlying diseases. The variable region of integrons differs, suggesting that Achromobacter spp. is a reservoir of various resistance genes. PMID:27242678

  7. Hospital Acquired Pneumonia Due to Achromobacter spp. in a Geriatric Ward in China: Clinical Characteristic, Genome Variability, Biofilm Production, Antibiotic Resistance and Integron in Isolated Strains.

    PubMed

    Liu, Chao; Pan, Fei; Guo, Jun; Yan, Weifeng; Jin, Yi; Liu, Changting; Qin, Long; Fang, Xiangqun

    2016-01-01

    Hospital-acquired pneumonia (HAP) due to Achromobacter has become a substantial concern in recent years. However, HAP due to Achromobacter in the elderly is rare. A retrospective analysis was performed on 15 elderly patients with HAP due to Achromobacter spp., in which the sequence types (STs), integrons, biofilm production and antibiotic resistance of the Achromobacter spp. were examined. The mean age of the 15 elderly patients was 88.8 ± 5.4 years. All patients had at least three underlying diseases and catheters. Clinical outcomes improved in 10 of the 15 patients after antibiotic and/or mechanical ventilation treatment, but three patients had chronic infections lasting more than 1 year. The mortality rate was 33.3% (5/15). All strains were resistant to aminoglycosides, aztreonam, nitrofurantoin, and third- and fourth-generation cephalosporins (except ceftazidime and cefoperazone). Six new STs were detected. The most frequent ST was ST306. ST5 was identified in two separate buildings of the hospital. ST313 showed higher MIC in cephalosporins, quinolones and carbapenems, which should be more closely considered in clinical practice. All strains produced biofilm and had integron I and blaOXA-114-like . The main type was blaOXA-114q . The variable region of integron I was different among strains, and the resistance gene of the aminoglycosides was most commonly inserted in integron I. Additionally, blaPSE-1 was first reported in this isolate. Achromobacter spp. infection often occurs in severely ill elders with underlying diseases. The variable region of integrons differs, suggesting that Achromobacter spp. is a reservoir of various resistance genes.

  8. Gd5(Si,Ge)4 thin film displaying large magnetocaloric and strain effects due to magnetostructural transition

    NASA Astrophysics Data System (ADS)

    Hadimani, Ravi L.; Silva, Joao H. B.; Pereira, Andre M.; Schlagel, Devo L.; Lograsso, Thomas A.; Ren, Yang; Zhang, Xiaoyi; Jiles, David C.; Araújo, Joao P.

    2015-01-01

    Magnetic refrigeration based on the magnetocaloric effect is one of the best alternatives to compete with vapor-compression technology. Despite being already in its technology transfer stage, there is still room for optimization, namely, on the magnetic responses of the magnetocaloric material. In parallel, the demand for different magnetostrictive materials has been greatly enhanced due to the wide and innovative range of technologies that emerged in the last years (from structural evaluation to straintronics fields). In particular, the Gd5(SixGe1-x)4 compounds are a family of well-known alloys that present both giant magnetocaloric and colossal magnetostriction effects. Despite their remarkable properties, very few reports have been dedicated to the nanostructuring of these materials: here, we report a ˜800 nm Gd5Si2.7Ge1.3 thin film. The magnetic and structural investigation revealed that the film undergoes a first order magnetostructural transition and as a consequence exhibits large magnetocaloric effect (-ΔSmMAX ˜ 8.83 J kg-1 K-1, ΔH = 5T) and giant thermal expansion (12000 p.p.m). The thin film presents a broader magnetic response in comparison with the bulk compound, which results in a beneficial magnetic hysteresis reduction. The ΔSmMAX exhibited by the Gd5(Si,Ge)4 thin film makes it a promising candidate for micro/nano magnetic refrigeration area.

  9. The first clinical case due to AP92 like strain of Crimean-Congo Hemorrhagic Fever virus and a field survey

    PubMed Central

    2009-01-01

    Background Crimean-Congo Hemorrhagic Fever (CCHF) is a fatal infection, but no clinical case due to AP92 strain was reported. We described the first clinical case due to AP92 like CCHFV. Methods A case infected by a AP92 like CCHFV was detected in Balkanian part of Turkey. Diagnosis was confirmed by RT-PCR and sequencing. A human serologic and tick survey studies were performed in the region, where the case detected. Results Thirty eight individuals out of 741 were found to be anti CCHFV IgM positive. The attack rate for overall CCHFV was calculated as 5.2%. In univariate analyses, CCHFV IgM positivity was found to be associated with the age (p < 0.001), male gender (p = 0.001), agricultural activity (p = 0.036), and history of tick bite (p = 0.014). In multivariate analysis, older age (OR: 1.03, CI:1.01–1.05, p < 0.001), male gender were found to be the risk factors (OR: 2.5, CI:1.15–5.63, p = 0.020) for CCHFV infection. Conclusion This is the first human case with AP92 like CCHFV infection. Furthermore, this is the first report of AP92 like strain in Turkey. In the region, elderly males carry the highest risk for CCHFV infection. PMID:19515251

  10. Enhancement of UV Light Sensitivity of a Vibrio parahaemolyticus O3:K6 Pandemic Strain Due to Natural Lysogenization by a Telomeric Phage▿

    PubMed Central

    Zabala, Beatriz; García, Katherine; Espejo, Romilio T.

    2009-01-01

    The Vibrio parahaemolyticus O3:K6 pandemic clonal strain was first observed in southern Chile in 2004 and has since caused approximately 8,000 seafood-related diarrhea cases in this region. The massive proliferation of the original clonal population offers a unique opportunity to study the evolution of a bacterial pathogen in its natural environment by detection and characterization of emerging bacterial variants. Here, we describe a group of pandemic variants characterized by the presence of a 42-kb extrachromosomal DNA that can be recovered by alkaline extraction. Upon treatment with mitomycin C, these variants lyse with production of a myovirus containing DNA of equal size to the plasmid but which cannot be recovered by alkaline extraction. Plasmid and phage DNAs show similar restriction patterns corresponding to enzyme sites in a circular permutation. Sequenced regions showed 81 to 99% nucleotide similarity to bacteriophage VHML of Vibrio harveyi. Altogether these observations indicate that the 42-kb plasmid corresponds to a prophage, consisting of a linear DNA with terminal hairpins of a telomeric temperate phage with a linear genome. Bacteria containing the prophage were 7 to 15 times more sensitive to UV radiation, likely due to phage induction by UV irradiation as plasmid curing restored the original sensitivity. The enhanced UV sensitivity could have a significant role in reducing the survival and propagation capability of the V. parahaemolyticus pandemic strain in the ocean. PMID:19151181

  11. Efficacies of colistin and tigecycline in mice with experimental pneumonia due to NDM-1-producing strains of Klebsiella pneumoniae and Escherichia coli.

    PubMed

    Docobo-Pérez, Fernando; Nordmann, Patrice; Domínguez-Herrera, Juan; López-Rojas, Rafael; Smani, Younes; Poirel, Laurent; Pachón, Jerónimo

    2012-03-01

    New Delhi metallo-β-lactamase-1 (NDM-1)-producing Enterobacteriaceae have emerged as a global threat. The aim of this study was to assess the efficacies of colistin and tigecycline in an experimental model of pneumonia caused by NDM-1-producing Escherichia coli and Klebsiella pneumoniae. The susceptibilities of K. pneumoniae NDM, E. coli NDM and K. pneumoniae ATCC 29665 were determined using the broth microdilution technique. The pharmacokinetics of colistin and tigecycline in an experimental model of pneumonia were performed using immunocompetent C57BL/6 mice. Mice were treated with colistin (60 mg/kg/day) or tigecycline (10 mg/kg/day). Mortality, bacteraemia and lung bacterial concentrations were recorded. The strains were susceptible to colistin and tigecycline. The ratio of area under the concentration-time curve/minimum inhibitory concentration (AUC/MIC) for colistin was 158.5 (all three strains) and that for tigecycline was 18.5 (K. pneumoniae NDM) and 37 (K. pneumoniae ATCC 29665 and E. coli NDM). In vivo, colistin decreased bacterial lung concentrations of K. pneumoniae NDM and K. pneumoniae ATCC 29665 by 1.16 log colony-forming units (CFU)/g and 2.23 logCFU/g, respectively, compared with controls (not significant). Tigecycline reduced K. pneumoniae NDM and K. pneumoniae ATCC 29665 load by 2.67 logCFU/g and 4.62 logCFU/g (P<0.05). Colistin and tigecycline decreased lung concentrations of E. coli NDM by 2.27 logCFU/g and 4.15 logCFU/g (P<0.05), respectively, compared with controls, and was more active than colistin (P<0.05). In conclusion, these results suggest that colistin is inappropriate for treating pneumonia due to NDM-1-producing K. pneumoniae and its efficacy was suboptimal against NDM-1-producing E. coli. A high tigecycline dose was efficacious for treating experimental pneumonia due to NDM-1-producing E. coli and K. pneumoniae. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  12. New aspects about reduced LCF-life time of spherical ductile cast iron due to dynamic strain aging at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Mouri, Hayato; Wunderlich, Wilfried; Hayashi, Morihito

    2009-06-01

    Spherical ductile cast iron (FCD400) is widely used as container material in nuclear energy processing line due to its superior mechanical properties and low price. Fatigue properties in low cycle fatigue (LCF) can be described well by the Manson-Coffin-Basquin's rule. However, at intermediate temperature range between 453 and 723 K the elongation-temperature-diagram shows a significantly 20-10% reduced elongation and an increase in yield stress in tensile test experiments. These non-linear deviations and the phenomenon of less ductility at intermediate temperatures are known for a long time [1] [K. Chijiiwa, M. Hayashi, Mechanical properties of ductile cast iron at temperature in the region of room temperature to liquid, Imono 51 (7) (2004) 395-400]. But the following explanation is presented for the first time. In the same temperature range as the reduced fatigue life time dynamic strain ageing (DSA) also known as Portevin-le-Chartelier effect with the formation of visible serrations occurs. Both phenomena are explained by interaction effects between carbon diffusion and dislocation velocity which have at this temperature the same order of magnitude. However, this phenomenon shows interesting behavior at intermediate temperature range. During the low cycle fatigue test, DSA phenomenon disappeared, but mechanical properties show clear evidence of DSA phenomenon. Therefore, the purpose of this paper is to study the correlation of DSA occurrence, LCF and mechanical properties.

  13. Increased prevalence of carbapenem resistant Enterobacteriaceae in hospital setting due to cross-species transmission of the bla NDM-1 element and clonal spread of progenitor resistant strains.

    PubMed

    Wang, Xuan; Chen, Gongxiang; Wu, Xiaoyan; Wang, Liangping; Cai, Jiachang; Chan, Edward W; Chen, Sheng; Zhang, Rong

    2015-01-01

    This study investigated the transmission characteristics of carbapenem-resistant Enterobacteriaceae (CRE) strains collected from a hospital setting in China, in which consistent emergence of CRE strains were observable during the period of May 2013 to February 2014. Among the 45 CRE isolates tested, 21 (47%) strains were found to harbor the bla NDM-1 element, and the rest of 24 CRE strains were all positive for bla KPC-2. The 21 bla NDM-1-borne strains were found to comprise multiple Enterobacteriaceae species including nine Enterobacter cloacae, three Escherichia coli, three Citrobacter freundii, two Klebsiella pneumoniae, two Klebsiella oxytoca, and two Morganella morganii strains, indicating that cross-species transmission of bla NDM-1 is a common event. Genetic analyses by PFGE and MLST showed that, with the exception of E. coli and E. cloacae, strains belonging to the same species were often genetically unrelated. In addition to bla NDM-1, several CRE strains were also found to harbor the bla KPC-2, bla VIM-1, and bla IMP-4 elements. Conjugations experiments confirmed that the majority of carbapenem resistance determinants were transferable. Taken together, our findings suggest that transmission of mobile resistance elements among members of Enterobacteriaceae and clonal spread of CRE strains may contribute synergistically to a rapid increase in the population of CRE in clinical settings, prompting a need to implement more rigorous infection control measures to arrest such vicious transmission cycle in CRE-prevalent areas.

  14. Conjugal immunity of Streptomyces strains carrying the integrative element pSAM2 is due to the pif gene (pSAM2 immunity factor).

    PubMed

    Possoz, Christophe; Gagnat, Josette; Sezonov, Guennadi; Guérineau, Michel; Pernodet, Jean-Luc

    2003-03-01

    Mechanisms of conjugal immunity preventing redundant exchange between two cells harbouring the same conjugative element have been reported in diverse bacteria. Such a system does exist for pSAM2, a conjugative and integrative element of Streptomyces. The apparition of the conjugative free form of pSAM2 in the donor strain during mating can be considered as the initial step of transfer. We analysed the genes involved in transfer inhibition by mating donors harbouring pSAM2 with recipient strains containing different regions of pSAM2. The conjugal immunity was previously thought to be mediated by the transcriptional repressor KorSA. Although the transfer efficiency is reduced by its presence in the recipient, the initiation of the transfer process is not affected. In contrast, the presence in the recipient strain of a single pSAM2 gene, pif (pSAM2 immunity factor), was sufficient to abolish both transfer and initiation of transfer. Thus, the clustered genes korSA and pif act complementarily to maintain pSAM2 in a 'prophage' state under non-conjugal conditions. KorSA is involved in intracellular signalling, whereas Pif participates in intercellular signalling. The Pif nudix motif is essential for its activity. This is the first protein of the nudix family shown to be involved in bacterial conjugation.

  15. [Efficacy of levofloxacin, lomefloxacin and moxifloxacin vs. other fluoroquinolones in experimental plague due to FI+ and FI- strains of Yersinia pestis in Albino mice].

    PubMed

    Ryzhko, I V; Tsuraeva, R I; Anisimov, B I; Trishina, A V

    2009-01-01

    Activity of levofloxacin, lomefloxacin and moxifloxacin against 20 FI+ and 20 FI- strains of Yersinia pestis was studied. It was shown that the strains were highly susceptible to the fluoroquinolones. In the experiments on mice subcutaneously infected with suspension of strains 231 FI+ and 231 FI- of Y. pestis in a dose of about 1000 LD50 (10(4) microbial cells) the ED50 of levofloxacin and moxifloxacin was 5.5-14.0 mg/kg independent of the infective culture phenotype and that of lomefloxacin was 18.5 mg/kg. Estimation of the impact of the pathogen infective dose value on the results of the experimental plague treatment with the therapeutic dose equivalent to the human one showed high efficacy of the fluoroquinolones (efficacy index of 10(4)). The treatment for 7 days provided 90-100-percent survival of the animals. The prophylactive use of lomefloxacin (in 5 hours - 5 days) was less efficient (70-80% of the survivals) in the animals infected with the antigen-changed (FI-) variant of the pathogen. Levofloxacin and moxifloxacin provided 90-100-percent survival of the animals treated for a course of 5 days independent of the pathogen phenotype. The study demonstrated that the use oflevofloxacin, lomefloxacin and moxifloxacin was prospective for the prophylaxis and therapy of experimental plague.

  16. Increased Furfural Tolerance Due to Overexpression of NADH-Dependent Oxidoreductase FucO in Escherichia coli Strains Engineered for the Production of Ethanol and Lactate▿

    PubMed Central

    Wang, X.; Miller, E. N.; Yomano, L. P.; Zhang, X.; Shanmugam, K. T.; Ingram, L. O.

    2011-01-01

    Furfural is an important fermentation inhibitor in hemicellulose sugar syrups derived from woody biomass. The metabolism of furfural by NADPH-dependent oxidoreductases, such as YqhD (low Km for NADPH), is proposed to inhibit the growth and fermentation of xylose in Escherichia coli by competing with biosynthesis for NADPH. The discovery that the NADH-dependent propanediol oxidoreductase (FucO) can reduce furfural provided a new approach to improve furfural tolerance. Strains that produced ethanol or lactate efficiently as primary products from xylose were developed. These strains included chromosomal mutations in yqhD expression that permitted the fermentation of xylose broths containing up to 10 mM furfural. Expression of fucO from plasmids was shown to increase furfural tolerance by 50% and to permit the fermentation of 15 mM furfural. Product yields with 15 mM furfural were equivalent to those of control strains without added furfural (85% to 90% of the theoretical maximum). These two defined genetic traits can be readily transferred to enteric biocatalysts designed to produce other products. A similar strategy that minimizes the depletion of NADPH pools by native detoxification enzymes may be generally useful for other inhibitory compounds in lignocellulosic sugar streams and with other organisms. PMID:21685167

  17. Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate.

    PubMed

    Wang, X; Miller, E N; Yomano, L P; Zhang, X; Shanmugam, K T; Ingram, L O

    2011-08-01

    Furfural is an important fermentation inhibitor in hemicellulose sugar syrups derived from woody biomass. The metabolism of furfural by NADPH-dependent oxidoreductases, such as YqhD (low K(m) for NADPH), is proposed to inhibit the growth and fermentation of xylose in Escherichia coli by competing with biosynthesis for NADPH. The discovery that the NADH-dependent propanediol oxidoreductase (FucO) can reduce furfural provided a new approach to improve furfural tolerance. Strains that produced ethanol or lactate efficiently as primary products from xylose were developed. These strains included chromosomal mutations in yqhD expression that permitted the fermentation of xylose broths containing up to 10 mM furfural. Expression of fucO from plasmids was shown to increase furfural tolerance by 50% and to permit the fermentation of 15 mM furfural. Product yields with 15 mM furfural were equivalent to those of control strains without added furfural (85% to 90% of the theoretical maximum). These two defined genetic traits can be readily transferred to enteric biocatalysts designed to produce other products. A similar strategy that minimizes the depletion of NADPH pools by native detoxification enzymes may be generally useful for other inhibitory compounds in lignocellulosic sugar streams and with other organisms.

  18. Ciprofloxacin treatment failure in a murine model of pyelonephritis due to an AAC(6')-Ib-cr-producing Escherichia coli strain susceptible to ciprofloxacin in vitro.

    PubMed

    Guillard, T; Cambau, E; Chau, F; Massias, L; de Champs, C; Fantin, B

    2013-12-01

    AAC(6')-Ib-cr is a plasmid-mediated quinolone resistance mechanism described worldwide for Escherichia coli. Since it confers in vitro only a low level of resistance to ciprofloxacin, we evaluated its impact on the in vivo activity of ciprofloxacin. Isogenic strains were obtained by transferring plasmid p449, harboring aac(6')-Ib-cr, into the quinolone-susceptible strain E. coli CFT073-RR and its D87G gyrA mutant. MICs were 0.015, 0.06, 0.25, and 0.5 μg/ml against E. coli strains CFT073-RR, CFT073-RR/p449, CFT073-RR GyrA(r), and CFT073-RR GyrA(r)/p449, respectively. Bactericidal activity was reduced at 1× the MIC for the three resistant derivatives, while at a fixed concentration of 0.5 μg/ml, 99.9% killing was observed for all strains except E. coli CFT073-RR GyrA(r)/p449. In the murine model of pyelonephritis, an optimal regimen of ciprofloxacin (10 mg/kg of body weight twice a day [b.i.d.]) significantly decreased the bacterial count in the kidneys of mice infected with E. coli CFT073 (1.6 versus 4.3 log10 CFU/g of kidney compared to untreated controls; P = 0.0001), while no significant decrease was observed for E. coli CFT073-RR/p449 (2.7 versus 3.1 log10 CFU/g; P = 0.84), E. coli CFT073-RR GyrA(r) (4.2 versus 4.1 log10 CFU/g; P = 0.35), or E. coli CFT073-RR GyrA(r)/p449 (2.9 versus 3.6 log10 CFU/g; P = 0.47). While pharmacokinetic and pharmacodynamic (PK/PD) parameters accounted for ciprofloxacin failure against gyrA-containing mutants, this was not the case for the aac(6')-Ib-cr-containing strains, suggesting an in situ hydrolysis of ciprofloxacin in the latter case.

  19. Ciprofloxacin Treatment Failure in a Murine Model of Pyelonephritis Due to an AAC(6′)-Ib-cr-Producing Escherichia coli Strain Susceptible to Ciprofloxacin In Vitro

    PubMed Central

    Guillard, T.; Cambau, E.; Chau, F.; Massias, L.; de Champs, C.

    2013-01-01

    AAC(6′)-Ib-cr is a plasmid-mediated quinolone resistance mechanism described worldwide for Escherichia coli. Since it confers in vitro only a low level of resistance to ciprofloxacin, we evaluated its impact on the in vivo activity of ciprofloxacin. Isogenic strains were obtained by transferring plasmid p449, harboring aac(6′)-Ib-cr, into the quinolone-susceptible strain E. coli CFT073-RR and its D87G gyrA mutant. MICs were 0.015, 0.06, 0.25, and 0.5 μg/ml against E. coli strains CFT073-RR, CFT073-RR/p449, CFT073-RR GyrAr, and CFT073-RR GyrAr/p449, respectively. Bactericidal activity was reduced at 1× the MIC for the three resistant derivatives, while at a fixed concentration of 0.5 μg/ml, 99.9% killing was observed for all strains except E. coli CFT073-RR GyrAr/p449. In the murine model of pyelonephritis, an optimal regimen of ciprofloxacin (10 mg/kg of body weight twice a day [b.i.d.]) significantly decreased the bacterial count in the kidneys of mice infected with E. coli CFT073 (1.6 versus 4.3 log10 CFU/g of kidney compared to untreated controls; P = 0.0001), while no significant decrease was observed for E. coli CFT073-RR/p449 (2.7 versus 3.1 log10 CFU/g; P = 0.84), E. coli CFT073-RR GyrAr (4.2 versus 4.1 log10 CFU/g; P = 0.35), or E. coli CFT073-RR GyrAr/p449 (2.9 versus 3.6 log10 CFU/g; P = 0.47). While pharmacokinetic and pharmacodynamic (PK/PD) parameters accounted for ciprofloxacin failure against gyrA-containing mutants, this was not the case for the aac(6′)-Ib-cr-containing strains, suggesting an in situ hydrolysis of ciprofloxacin in the latter case. PMID:24018262

  20. [Expression of high-level cephalosporinase due to mutation in the AmpC attenuator of a clinical Escherichia coli strain].

    PubMed

    Guan, Xi-zhou; Liu, You-ning; Luo, Yan-ping; She, Dan-yang; Lu, Si-jing; Zhou, Guang; Chen, Liang-an

    2006-03-07

    To study the resistant phenotype of a clinical strain of Escherichia coli and to explore the effect of its attenuator mutation on AmpC expression. A clinical strain of Escherichia coli 20022 (ECO20022) resistant to cefoxitin was isolated clinically. The phenotype was examined by three-dimensional methods, isoelectric focusing (IEF), and microdilution method. The regulator genes of ECO20022 were amplified and sequenced, and the difference between them was analyzed by BLAST method. Then the regulator genes were cloned into pCAT3-basic vector (a promoterless reporter gene vector). Microdilution method was used to detect the minimal inhibitory concentration (MIC) of chloramphenicol and ampicillin to this strain with E. coli ATCC25922 as quality control bacterium. ELISA was used to detect the content of chloramphenicol acetyl transferase (CAT). Compared to the standard E. coli K-12, there were four base substitutions, i.e., 22C-T, 26, 27TA-GT, and 32G-A in the attenuator region of ECO20022. Three-dimensional method showed that this strain was high AmpC-producing. IEF found that it produced three beta-lactamases with the values of PI of 5.4, 8.2, and 9.0 respectively. The beta-lactamase with the PI of 9.0 could be inhibited by cloxacillin but not by clavulanate. The strain was resistant to not only most of third generation cephalosporins, but also to cefepime; however it was still susceptible to carbapenem. The secondary structure of the attenuator RNA of ECO20022 was different from the traditional structure of E. coli K-12. The regulator gene was successfully cloned into pCAT3-basic vector and direct and indirect tests indicated that this regulator gene enhanced the CAT expressing level as much as 10 times that of Escherichia coli K-12. AmpC attenuator mutation leads to high AmpC expression in Escherichia coli, resulting in a significant rise of resistance level to beta-lactamase and a great menace to clinical antibiotic therapy.

  1. A family cluster of hepatitis A virus due to an uncommon IA strain circulating in Campania (southern Italy), not associated with raw shellfish or berries: a wake-up call to implement vaccination against hepatitis A?

    PubMed

    Tosone, Grazia; Mascolo, Silvia; Bruni, Roberto; Taffon, Stefania; Equestre, Michele; Tosti, Maria Elena; Ciccaglione, Anna Rita; Martucci, Fiorella; Liberti, Alfonso; Iannece, Maria Donata; Orlando, Raffaele

    2016-09-01

    Hepatitis A virus is a widely occurring disease, with different prevalence rates between countries in the North and West and those in the South and East. In Italy endemicity is low/medium, but not homogeneously distributed: in the northern/central regions a large hepatitis A outbreak due to genotype IA, related to the consumption of contaminated mixed frozen berries, occurred between 2013 and 2014, whereas in southern Italian regions recurrent outbreaks of hepatitis A, due to the IB genotype, still result from consumption of raw seafood. In 2014 an uncommon genotype IA strain was isolated from five patients (2 adults and 3 children) with hepatitis A, living in the surroundings of Naples (Campania) who did not have any of the most common risk factors for hepatitis A in Italy, such as consumption of raw shellfish or frozen berries, or travel to endemic countries. Moreover, based on the analysis of viral sequences obtained, this strain differed from several others in the national database, which had been recently isolated during Italian outbreaks. This case report reinforces the need to implement both information campaigns about the prevention of hepatitis A and vaccination programmes in childhood; in addition, it would be suitable to sequence strains routinely not only during large outbreaks of hepatitis A in order to obtain a more detailed national database of HAV strains circulating in Italy.

  2. Strain localization in thin films of Bi(Fe,Mn)O3 due to the formation of stepped Mn4+-rich antiphase boundaries

    DOE PAGES

    MacLaren, I.; Sala, B.; Andersson, S. M. L.; ...

    2015-10-17

    Here, the atomic structure and chemistry of thin films of Bi(Fe,Mn)O3 (BFMO) films with a target composition of Bi2FeMnO6 on SrTiO3 are studied using scanning transmission electron microscopy imaging and electron energy loss spectroscopy. It is shown that Mn4+-rich antiphase boundaries are locally nucleated right at the film substrate and then form stepped structures that are approximately pyramidal in three dimensions. These have the effect of confining the material below the pyramids in a highly strained state with an out-of-plane lattice parameter close to 4.1 Å. Outside the area enclosed by the antiphase boundaries, the out-of-plane lattice parameter is muchmore » closer to bulk values for BFMO. This suggests that to improve the crystallographic perfection of the films whilst retaining the strain state through as much of the film as possible, ways need to be found to prevent nucleation of the antiphase boundaries. Since the antiphase boundaries seem to form from the interaction of Mn with the Ti in the substrate, one route to perform this would be to grow a thin buffer layer of pure BiFeO3 on the SrTiO3 substrate to minimise any Mn-Ti interactions.« less

  3. Strain Localization in Thin Films of Bi(Fe,Mn)O3 Due to the Formation of Stepped Mn(4+)-Rich Antiphase Boundaries.

    PubMed

    MacLaren, I; Sala, B; Andersson, S M L; Pennycook, T J; Xiong, J; Jia, Q X; Choi, E-M; MacManus-Driscoll, J L

    2015-12-01

    The atomic structure and chemistry of thin films of Bi(Fe,Mn)O3 (BFMO) films with a target composition of Bi2FeMnO6 on SrTiO3 are studied using scanning transmission electron microscopy imaging and electron energy loss spectroscopy. It is shown that Mn(4+)-rich antiphase boundaries are locally nucleated right at the film substrate and then form stepped structures that are approximately pyramidal in three dimensions. These have the effect of confining the material below the pyramids in a highly strained state with an out-of-plane lattice parameter close to 4.1 Å. Outside the area enclosed by the antiphase boundaries, the out-of-plane lattice parameter is much closer to bulk values for BFMO. This suggests that to improve the crystallographic perfection of the films whilst retaining the strain state through as much of the film as possible, ways need to be found to prevent nucleation of the antiphase boundaries. Since the antiphase boundaries seem to form from the interaction of Mn with the Ti in the substrate, one route to perform this would be to grow a thin buffer layer of pure BiFeO3 on the SrTiO3 substrate to minimise any Mn-Ti interactions.

  4. Long Range Ferromagnetic Order in LaCoO3-δ epitaxial films due to the interplay of epitaxial strain and oxygen vacancy ordering

    DOE PAGES

    Mehta, Virat; Biskup, Nevenko; Arenholz, E; ...

    2015-04-23

    We demonstrate that a combination of electronic structure modification and oxygen vacancy ordering can stabilize a long-range ferromagnetic ground state in epitaxial LaCoO3 thin films. Highest saturation magnetization values are found in the thin films in tension on SrTiO3 and (La,Sr)(Al,Ta)O3 substrates and the lowest values are found in thin films in compression on LaAlO3. Electron microscopy reveals oxygen vacancy ordering to varying degrees in all samples, although samples with the highest magnetization are the most defective. Element-specific x-ray absorption techniques reveal the presence of high spin Co2+ and Co3+ as well as low spin Co3+ in different proportions dependingmore » on the strain state. The interactions among the high spin Co ions and the oxygen vacancy superstructure are correlated with the stabilization of the long-range ferromagnetic order.« less

  5. Long-range ferromagnetic order in LaCoO3 -δ epitaxial films due to the interplay of epitaxial strain and oxygen vacancy ordering

    NASA Astrophysics Data System (ADS)

    Mehta, V. V.; Biskup, N.; Jenkins, C.; Arenholz, E.; Varela, M.; Suzuki, Y.

    2015-04-01

    We demonstrate that a combination of electronic structure modification and oxygen vacancy ordering can stabilize a long-range ferromagnetic ground state in epitaxial LaCoO3 thin films. Highest saturation magnetization values are found in the thin films in tension on SrTiO3 and (La ,Sr )(Al ,Ta )O3 substrates and the lowest values are found in thin films in compression on LaAlO3. Electron microscopy reveals oxygen vacancy ordering to varying degrees in all samples, although samples with the highest magnetization are the most defective. Element-specific x-ray absorption techniques reveal the presence of high spin Co2 + and Co3 + as well as low spin Co3 + in different proportions depending on the strain state. The interactions among the high spin Co ions and the oxygen vacancy superstructure are correlated with the stabilization of the long-range ferromagnetic order.

  6. GENERAL ENHANCEMENT OF MUTAGENIC POTENCY OF VARIOUS MUTAGENS DUE TO DELETED GENES IN THE ΔuvrB STRAINS TA 98 AND TA 100 OF SALMONELLA COMPARED WITH STRAINS CONTAINING ONLY A POINT MUTATION IN uvrB

    EPA Science Inventory

    The two most common strains used in Ames mutagenicity assays, TA98 and TA 100, contain a �uvrB mutation designed to enhance the mutagenicity of compounds, presumably due to the loss of the nucleotide excision repair system. We showed previously that the �uvrB mutations in these s...

  7. GENERAL ENHANCEMENT OF MUTAGENIC POTENCY OF VARIOUS MUTAGENS DUE TO DELETED GENES IN THE ΔuvrB STRAINS TA 98 AND TA 100 OF SALMONELLA COMPARED WITH STRAINS CONTAINING ONLY A POINT MUTATION IN uvrB

    EPA Science Inventory

    The two most common strains used in Ames mutagenicity assays, TA98 and TA 100, contain a �uvrB mutation designed to enhance the mutagenicity of compounds, presumably due to the loss of the nucleotide excision repair system. We showed previously that the �uvrB mutations in these s...

  8. Decrease of U(VI) Immobilization Capability of the Facultative Anaerobic Strain Paenibacillus sp. JG-TB8 under Anoxic Conditions Due to Strongly Reduced Phosphatase Activity

    PubMed Central

    Reitz, Thomas; Rossberg, Andre; Barkleit, Astrid; Selenska-Pobell, Sonja; Merroun, Mohamed L.

    2014-01-01

    Interactions of a facultative anaerobic bacterial isolate named Paenibacillus sp. JG-TB8 with U(VI) were studied under oxic and anoxic conditions in order to assess the influence of the oxygen-dependent cell metabolism on microbial uranium mobilization and immobilization. We demonstrated that aerobically and anaerobically grown cells of Paenibacillus sp. JG-TB8 accumulate uranium from aqueous solutions under acidic conditions (pH 2 to 6), under oxic and anoxic conditions. A combination of spectroscopic and microscopic methods revealed that the speciation of U(VI) associated with the cells of the strain depend on the pH as well as on the aeration conditions. At pH 2 and pH 3, uranium was exclusively bound by organic phosphate groups provided by cellular components, independently on the aeration conditions. At higher pH values, a part (pH 4.5) or the total amount (pH 6) of the dissolved uranium was precipitated under oxic conditions in a meta-autunite-like uranyl phosphate mineral phase without supplying an additional organic phosphate substrate. In contrast to that, under anoxic conditions no mineral formation was observed at pH 4.5 and pH 6, which was clearly assigned to decreased orthophosphate release by the cells. This in turn was caused by a suppression of the indigenous phosphatase activity of the strain. The results demonstrate that changes in the metabolism of facultative anaerobic microorganisms caused by the presence or absence of oxygen can decisively influence U(VI) biomineralization. PMID:25157416

  9. Catheter colonization and abscess formation due to Staphylococcus epidermidis with normal and small-colony-variant phenotype is mouse strain dependent.

    PubMed

    Sander, Gunnar; Börner, Tina; Kriegeskorte, André; von Eiff, Christof; Becker, Karsten; Mahabir, Esther

    2012-01-01

    Coagulase-negative staphylococci (CoNS) form a thick, multilayered biofilm on foreign bodies and are a major cause of nosocomial implant-associated infections. Although foreign body infection models are well-established, limited in vivo data are available for CoNS with small-colony-variant (SCV) phenotype described as causative agents in implant-associated infections. Therefore, we investigated the impact of the Staphylococcus epidermidis phenotype on colonization of implanted PVC catheters and abscess formation in three different mouse strains. Following introduction of a catheter subcutaneously in each flank of 8- to 12-week-old inbred C57BL/6JCrl (B6J), outbred Crl:CD1(ICR) (CD-1), and inbred BALB/cAnNCrl (BALB/c) male mice, doses of S. epidermidis O-47 wild type, its hemB mutant with stable SCV phenotype, or its complemented mutant at concentrations of 10(6) to 10(9) colony forming units (CFUs) were gently spread onto each catheter. On day 7, mice were sacrificed and the size of the abscesses as well as bacterial colonization was determined. A total of 11,500 CFUs of the complemented mutant adhered to the catheter in BALB/c followed by 9,960 CFUs and 9,900 CFUs from S. epidermidis wild type in BALB/c and CD-1, respectively. SCV colonization was highest in CD-1 with 9,500 CFUs, whereas SCVs were not detected in B6J. The minimum dose that led to colonization or abscess formation in all mouse strains was 10(7) or 10(8) CFUs of the normal phenotype, respectively. A minimum dose of 10(8) or 10(9) CFU of the hemB mutant with stable SCV phenotype led to colonization only or abscess formation, respectively. The largest abscesses were detected in BALB/c inoculated with wild type bacteria or SCV (64 mm(2) vs. 28 mm(2)). Our results indicate that colonization and abscess formation by different phenotypes of S. epidermidis in a foreign body infection model is most effective in inbred BALB/c followed by outbred CD-1 and inbred B6J mice.

  10. Long Range Ferromagnetic Order in LaCoO3-δ epitaxial films due to the interplay of epitaxial strain and oxygen vacancy ordering

    SciTech Connect

    Mehta, Virat; Biskup, Nevenko; Arenholz, E; Varela del Arco, Maria; Suzuki, Yuri

    2015-04-23

    We demonstrate that a combination of electronic structure modification and oxygen vacancy ordering can stabilize a long-range ferromagnetic ground state in epitaxial LaCoO3 thin films. Highest saturation magnetization values are found in the thin films in tension on SrTiO3 and (La,Sr)(Al,Ta)O3 substrates and the lowest values are found in thin films in compression on LaAlO3. Electron microscopy reveals oxygen vacancy ordering to varying degrees in all samples, although samples with the highest magnetization are the most defective. Element-specific x-ray absorption techniques reveal the presence of high spin Co2+ and Co3+ as well as low spin Co3+ in different proportions depending on the strain state. The interactions among the high spin Co ions and the oxygen vacancy superstructure are correlated with the stabilization of the long-range ferromagnetic order.

  11. Gd 5 (Si,Ge) 4 thin film displaying large magnetocaloric and strain effects due to magnetostructural transition

    SciTech Connect

    Hadimani, Ravi L.; Silva, Joao H. B.; Pereira, Andre M.; Schlagel, Devo L.; Lograsso, Thomas A.; Ren, Yang; Zhang, Xiaoyi; Jiles, David C.; Araújo, Joao P.

    2015-01-19

    Magnetic refrigeration based on the magnetocaloric effect is one of the best alternatives to compete with vapor-compression technology. Despite being already in its technology transfer stage, there is still room for optimization, namely, on the magnetic responses of the magnetocaloric material. In parallel, the demand for different magnetostrictive materials has been greatly enhanced due to the wide and innovative range of technologies that emerged in the last years (from structural evaluation to straintronics fields). In particular, the Gd5(SixGe1-x)4 compounds are a family of well-known alloys that present both giant magnetocaloric and colossal magnetostriction effects. Despite their remarkable properties, very few reports have been dedicated to the nanostructuring of these materials: here, we report a ~800 nm Gd5Si2.7Ge1.3thin film. The magnetic and structural investigation revealed that the film undergoes a first order magnetostructural transition and as a consequence exhibits large magnetocaloric effect (-ΔSmMAX ~8.83 J kg-1 K-1, ΔH = 5T) and giant thermal expansion (12000 p.p.m). The thin film presents a broader magnetic response in comparison with the bulk compound, which results in a beneficial magnetic hysteresis reduction. The ΔSmMAX exhibited by the Gd5(Si,Ge)4thin film makes it a promising candidate for micro/nano magnetic refrigeration area.

  12. [Case report of the first world death due to a new strain of human influenza A H1N1 virus and behavior of human influenzae in pregnant women].

    PubMed

    Noguera Sánchez, Marcelo Fidias; Karchmer Krivitzky, Samuel; EsliRabadán, Martínez Cesar; Antonio Sánchez, Pedro

    2013-01-01

    Influenza A H1N1 is an acute respiratory illness caused by a new strain of H1N1. Human influenza is a subtype of influenza Avirus, from the family of Orthomyxoviridae. This strain is the cause of new influenza pandemic declared by the World Health Organization in June, 2009. This paper reports the first case occurred in Mexico: a 39-year-old woman with a history of diabetes mellitus type 2 and obesity grade II, which suffered atypical and aggressive pneumonia positive to coronavirus. Patient died 98 hours after her admission to the hospital unit. Due to the clinical presentation of the case, the doctors sent samples to the Instituto Nacional de Diagnóstico y Referencia Epidemiológica that sent an aliquot of the National Center for Immunization and Respiratory Diseases of theAgency of Public Health in Canada, that reported positivity to influenza virus, and catalogued it as a new global strain called influenza A virus H1N1. The notice of 229E/NL63 coronavirus and its relationship to the recent outbreaks of avian influenza in humans and the clinical presentation of the case were the epidemiological circumstances that prevented the nation epidemiology system to establish global containment strategies to prevent the spread of this emerging infection. The consequence was the declaration of WHO pandemic alert level 6. Its behavior in pregnancy, reported by Assistant General Direction of Epidemiology in Mexico, has placed this infection as a risk factor for women.

  13. Enhancement of two dimensional electron gas concentrations due to Si3N4 passivation on Al0.3Ga0.7N/GaN heterostructure: strain and interface capacitance analysis

    NASA Astrophysics Data System (ADS)

    Dinara, Syed Mukulika; Jana, Sanjay Kr.; Ghosh, Saptarsi; Mukhopadhyay, Partha; Kumar, Rahul; Chakraborty, Apurba; Bhattacharya, Sekhar; Biswas, Dhrubes

    2015-04-01

    Enhancement of two dimensional electron gas (2DEG) concentrations at Al0.3Ga0.7N/GaN hetero interface after a-Si3N4 (SiN) passivation has been investigated from non-destructive High Resolution X-ray Diffraction (HRXRD) analysis, depletion depth and capacitance-voltage (C-V) profile measurement. The crystalline quality and strained in-plane lattice parameters of Al0.3Ga0.7N and GaN were evaluated from double axis (002) symmetric (ω-2θ) diffraction scan and double axis (105) asymmetric reciprocal space mapping (DA RSM) which revealed that the tensile strain of the Al0.3Ga0.7N layer increased by 15.6% after SiN passivation. In accordance with the predictions from theoretical solution of Schrödinger-Poisson's equations, both electrochemical capacitance voltage (ECV) depletion depth profile and C-V characteristics analyses were performed which implied effective 9.5% increase in 2DEG carrier density after passivation. The enhancement of polarization charges results from increased tensile strain in the Al0.3Ga0.7N layer and also due to the decreased surface states at the interface of SiN/Al0.3Ga0.7N layer, effectively improving the carrier confinement at the interface.

  14. Efficacies of Imipenem, Meropenem, Cefepime, and Ceftazidime in Rats with Experimental Pneumonia Due to a Carbapenem-Hydrolyzing β-Lactamase-Producing Strain of Enterobacter cloacae

    PubMed Central

    Mimoz, Olivier; Leotard, Sophie; Jacolot, Anne; Padoin, Christophe; Louchahi, Kamel; Petitjean, Olivier; Nordmann, Patrice

    2000-01-01

    The antibacterial activities of imipenem-cilastatin, meropenem-cilastatin, cefepime and ceftazidime against Enterobacter cloacae NOR-1, which produces the carbapenem-hydrolyzing β-lactamase NmcA and a cephalosporinase, and against one of its in vitro-obtained ceftazidime-resistant mutant were compared by using an experimental model of pneumonia with immunocompetent rats. The MICs of the β-lactams with an inoculum of 5 log10 CFU/ml were as follows for E. cloacae NOR-1 and its ceftazidime-resistant mutant, respectively: imipenem, 16 and 128 μg/ml, meropenem, 4 and 32 μg/ml, cefepime, <0.03 and 1 μg/ml, and ceftazidime, 1 and 512 μg/ml. The chromosomally located cephalosporinase and carbapenem-hydrolyzing β-lactamase NmcA were inducible by cefoxitin and meropenem in E. cloacae NOR-1, and both were stably overproduced in the ceftazidime-resistant mutant. Renal impairment was induced (uranyl nitrate, 1 mg/kg of body weight) in rats to simulate the human pharmacokinetic parameters for the β-lactams studied. Animals were intratracheally inoculated with 8.5 log10 CFU of E. cloacae, and therapy was initiated 3 h later. At that time, animal lungs showed bilateral pneumonia containing more than 6 log10 CFU of E. cloacae per g of tissue. Despite the relative low MIC of meropenem for E. cloacae NOR-1, the carbapenem-treated rats had no decrease in bacterial counts in their lungs 60 h after therapy onset compared to the counts for the controls, regardless of whether E. cloacae NOR-1 or its ceftazidime-resistant mutant was inoculated. A significant decrease in bacterial titers was observed for the ceftazidime-treated rats infected with E. cloacae NOR-1 only. Cefepime was the only β-lactam tested effective as treatment against infections due to E. cloacae NOR-1 or its ceftazidime-resistant mutant. PMID:10722486

  15. High temperature strain gage apparent strain compensation

    NASA Technical Reports Server (NTRS)

    Holmes, Harlan K.; Moore, T. C., Sr.

    1992-01-01

    Once an installed strain gage is connected to a strain indicating device and the instrument is balanced, a subsequent change in temperature of the gage installation will generally produce a resistance change in the gage. This purely temperature-induced resistance will be registered by the indicating device as a strain and is referred to as 'apparent strain' to distinguish it from strain due to applied stress. One desirable technique for apparent strain compensation is to employ two identical gages with identical mounting procedures which are connected with a 'half bridge' configuration where gages see the same thermal environment but only one experiences a mechanical strain input. Their connection in adjacent arms of the bridge will then balance the thermally induced apparent strains and, in principle, only the mechanical strain remains. Two approaches that implement this technique are discussed.

  16. Characterization of a Nosocomial Outbreak Caused by a Multiresistant Acinetobacter baumannii Strain with a Carbapenem-Hydrolyzing Enzyme: High-Level Carbapenem Resistance in A. baumannii Is Not Due Solely to the Presence of β-Lactamases

    PubMed Central

    Bou, Germán; Cerveró, Gonzalo; Domínguez, M. Angeles; Quereda, Carmen; Martínez-Beltrán, Jesús

    2000-01-01

    From February to November 1997, 29 inpatients at Ramón y Cajal Hospital, Madrid, Spain, were determined to be either colonized or infected with imipenem- and meropenem-resistant Acinetobacter baumannii (IMRAB) strains (MICs, 128 to 256 μg/ml). A wide antibiotic multiresistance profile was observed with IMRAB strains. For typing IMRAB isolates, pulsed-field gel electrophoresis was used. For comparative purposes, 30 imipenem- and meropenem-susceptible A. baumannii (IMSAB) strains isolated before, during, and after the outbreak were included in this study. The molecular-typing results showed that the outbreak was caused by a single IMRAB strain (genotype A). By cloning experiments we identified a class D β-lactamase (OXA-24) encoded in the chromosomal DNA of this IMRAB strain which showed carbapenem hydrolysis. Moreover, the outer membrane profile of the IMRAB strain showed a reduction in the expression of two porins at 22 and 33 kDa when compared with genetically related IMSAB isolates. In addition no efflux mechanisms were identified in the IMRAB strains. In summary, we report here the molecular characterization of a nosocomial outbreak caused by one multiresistant A. baumannii epidemic strain that harbors a carbapenem-hydrolyzing enzyme. Although alterations in the penicillin-binding proteins cannot be ruled out, the reduction in the expression of two porins and the presence of this OXA-derived β-lactamase are involved in the carbapenem resistance of the epidemic nosocomial IMRAB strain. PMID:10970374

  17. The relationship of the compressive modulus of articular cartilage with its deformation response to cyclic loading: does cartilage optimize its modulus so as to minimize the strains arising in it due to the prevalent loading regime?

    PubMed

    Barker, M K; Seedhom, B B

    2001-03-01

    To investigate the relationship of the instantaneous compressive modulus with its deformation response to cyclic loading typical of that encountered at the knee joint during level walking. The study was performed on 24 osteochondral plugs taken from three unembalmed cadaveric knees. As the compressive modulus of cartilage has been shown to vary topographically across the knee in an established manner, the specimens were taken from specific sites on the femur and tibia of each knee. All the cartilage specimens were immersed in Hanks' salt solution at 37 degrees C and were subjected to the same cyclic loading regimen that was representative of a typical walking cycle in a specialized indentation apparatus, for over 1 h. The viscous and elastic components of matrix strain, the creep rate and the cartilage compressive modulus were measured. The latter was found to be significantly related to the strain response of cartilage to cyclic loading. Elastic strain varied exponentially with the compressive modulus; specimens with a modulus less than 4 MPa experienced elastic strains in the range 0.18-0.36, whereas stiffer specimens experienced strains between 0.05 and 0.13. Viscous strain varied linearly with cartilage stiffness and was as low as 0.02 at the lower values of the compressive modulus but increased to 0.22 for a compressive modulus of 18 MN/m(2). The rate of creep under cyclic load was inversely linearly related to cartilage stiffness. The strain response of soft specimens approached steady state by 200 cycles but that of stiff specimens did not approach it until 1300 cycles. It was hypothesized that the viscous strain response of cartilage can be explained in terms of differences in permeability between specimens of different compressive modulus, stiffer cartilage having a lower permeability than soft cartilage.

  18. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1995-01-01

    The purpose of this paper is to present a consistent and thorough development of the strain and strain-rate measures affiliated with Hencky. Natural measures for strain and strain-rate, as I refer to them, are first expressed in terms of of the fundamental body-metric tensors of Lodge. These strain and strain-rate measures are mixed tensor fields. They are mapped from the body to space in both the Eulerian and Lagrangian configurations, and then transformed from general to Cartesian fields. There they are compared with the various strain and strain-rate measures found in the literature. A simple Cartesian description for Hencky strain-rate in the Lagrangian state is obtained.

  19. First detection of Aspergillus fumigatus azole-resistant strain due to Cyp51A TR46/Y121F/T289A in an azole-naive patient in Spain

    PubMed Central

    Pelaez, T.; Monteiro, M.C.; Garcia-Rubio, R.; Bouza, E.; Gomez-Lopez, A.; Mellado, E.

    2015-01-01

    We report the first isolation of a voriconazole-resistant Aspergillus fumigatus strain harbouring the azole resistance mechanism TR46/Y121F/T289A, recovered from an azole-naive patient in Spain with chronic obstructive pulmonary disease. This new finding in Spain suggests the spread of this resistance mechanism and reinforces the need for antifungal susceptibility surveillance. PMID:26082842

  20. Strain control of composite superconductors to prevent degradation of superconducting magnets due to a quench: I. Ag/Bi2Sr2CaCu2Ox multifilament round wires

    NASA Astrophysics Data System (ADS)

    Ye, Liyang; Li, Pei; Jaroszynski, Jan; Schwartz, Justin; Shen, Tengming

    2017-02-01

    The critical current of many practical superconductors is sensitive to strain, and this sensitivity is exacerbated during a quench that induces a peak local strain which can be fatal to superconducting magnets. Here, a new method is introduced to quantify the influence of the conductor stress and strain state during normal operation on the margin to degradation during a quench, as measured by the maximum allowable hot spot temperature T allowable, for composite wires within superconducting magnets. The first conductor examined is Ag-sheathed Bi2Sr2CaCu2Ox round wire carrying high engineering critical current density, J E, of 550 A mm-2 at 4.2 K and 15 T. The critical axial tensile stress of this conductor is determined to be 150 MPa and, in the absence of Lorentz forces, T allowable is greater than 450 K. With increasing axial tensile stress, σ a, however, T allowable decreases nonlinearly, dropping to 280 K for σ a = 120 MPa and to 160 K for σ a = 145 MPa. T allowable(σ a) is shown to be nonlinear and independent of magnetic field from 15 to 30 T. T allowable(σ a) dictates the balance between magnetic field generation, which increases with the magnet operating current and stress, and the safety margin, which decreases with decreasing T allowable, and therefore has important engineering value. It is also shown that T allowable(σ a) can be predicted accurately by a general strain model, showing that strain control is the key to preventing degradation of superconductors during a quench.

  1. Antipathogenic activity of probiotics against Salmonella Typhimurium and Clostridium difficile in anaerobic batch culture systems: is it due to synergies in probiotic mixtures or the specificity of single strains?

    PubMed

    Tejero-Sariñena, Sandra; Barlow, Janine; Costabile, Adele; Gibson, Glenn R; Rowland, Ian

    2013-12-01

    Probiotics are currently being investigated for prevention of infections caused by enteric pathogens. The aim of this in vitro study was to evaluate the influence of three single probiotics: Lactobacillus casei NCIMB 30185 (PXN 37), Lactobacillus acidophilus NCIMB 30184 (PXN 35), Bifidobacterium breve NCIMB 30180 (PXN 25) and a probiotic mixture containing the above strains plus twelve other strains belonging to the Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus and Bacillus genera on the survival of Salmonella Typhimurium and Clostridium difficile using pH-controlled anaerobic batch cultures containing mixed faecal bacteria. Changes in relevant bacterial groups and effects of probiotic addition on survival of the two pathogens were assessed over 24 h. Quantitative analysis of bacterial populations revealed that there was a significant increase in lactobacilli and/or bifidobacteria numbers, depending on probiotic addition, compared with the control (no added probiotic). There was also a significant reduction in S. Typhimurium and C. difficile numbers in the presence of certain probiotics compared with controls. Of the probiotic treatments, two single strains namely L. casei NCIMB 30185 (PXN 37), and B. breve NCIMB 30180 (PXN 25) were the most potent in reducing the numbers of S. Typhimurium and C. difficile. In addition, the supplementation with probiotics into the systems influenced some fermentations parameters. Acetate was found in the largest concentrations in all vessels and lactate and formate were generally detected in higher amounts in vessels with probiotic addition compared to controls.

  2. An Outbreak of Diarrhea in Mandera, Kenya, Due to Escherichia coli Serogroup O-Nontypable Strain That Had a Coding Gene for Enteroaggregative E. coli Heat-Stable Enterotoxin 1.

    PubMed

    Ochi, Sadayuki; Shah, Mohammad; Odoyo, Erick; Bundi, Martin; Miringu, Gabriel; Guyo, Sora; Wandera, Ernest; Kathiiko, Cyrus; Kariuki, Samuel; Karama, Mohamed; Tsuji, Takao; Ichinose, Yoshio

    2017-02-08

    In an outbreak of gastroenteritis in December 2009, in Mandera, Kenya, Escherichia coli O-nontypable (ONT) strain was isolated from stool specimens of patients (18/24, 75%). The E. coli ONT organisms could not be assigned to any of the recognized diarrheagenic groups of E. coli However, they possessed the enteroaggregative E. coli heat-stable enterotoxin-1 gene. The cell-free culture filtrates of the E. coli ONT strain isolated from the outbreak cases induced considerable amount of fluid accumulation in suckling mouse intestine, indicating production of an enterotoxic factor(s). These results identify E. coli that did not have any diarrheagenic characteristics except astA as the etiological agent of the diarrheal outbreak in Mandera. It is however considered necessary to characterize the fluid accumulation factor(s) to determine whether any novel toxins were responsible for the fluid accumulation. Moreover, it is important to study dissemination of strains producing the enterotoxic factor(s) to assess their public health significance distribution in the environment. © The American Society of Tropical Medicine and Hygiene.

  3. Strain localization in thin films of Bi(Fe,Mn)O3 due to the formation of stepped Mn4+-rich antiphase boundaries

    SciTech Connect

    MacLaren, I.; Sala, B.; Andersson, S. M. L.; Pennycook, T. J.; Xiong, Jia; Jia, Q. X.; Choi, E. -M.; MacManus-Driscoll, J. L.

    2015-10-17

    Here, the atomic structure and chemistry of thin films of Bi(Fe,Mn)O3 (BFMO) films with a target composition of Bi2FeMnO6 on SrTiO3 are studied using scanning transmission electron microscopy imaging and electron energy loss spectroscopy. It is shown that Mn4+-rich antiphase boundaries are locally nucleated right at the film substrate and then form stepped structures that are approximately pyramidal in three dimensions. These have the effect of confining the material below the pyramids in a highly strained state with an out-of-plane lattice parameter close to 4.1 Å. Outside the area enclosed by the antiphase boundaries, the out-of-plane lattice parameter is much closer to bulk values for BFMO. This suggests that to improve the crystallographic perfection of the films whilst retaining the strain state through as much of the film as possible, ways need to be found to prevent nucleation of the antiphase boundaries. Since the antiphase boundaries seem to form from the interaction of Mn with the Ti in the substrate, one route to perform this would be to grow a thin buffer layer of pure BiFeO3 on the SrTiO3 substrate to minimise any Mn-Ti interactions.

  4. Strain Gage

    NASA Technical Reports Server (NTRS)

    1995-01-01

    HITEC Corporation developed a strain gage application for DanteII, a mobile robot developed for NASA. The gage measured bending forces on the robot's legs and warned human controllers when acceptable forces were exceeded. HITEC further developed the technology for strain gage services in creating transducers out of "Indy" racing car suspension pushrods, NASCAR suspension components and components used in motion control.

  5. Use of aztreonam in association with cefepime for the treatment of nosocomial infections due to multidrug-resistant strains of Pseudomonas aeruginosa to β-lactams in ICU patients: A pilot study.

    PubMed

    Dupont, Hervé; Marciniak, Sandra; Zogheib, Elie; Mammeri, Hedi; Friggeri, Arnaud; Ammenouche, Nacim; Levrard, Mélanie; Airapetian, Norair; Tinturier, François; Mahjoub, Yazine

    2015-06-01

    Resistance to all β-lactams is emerging among Pseudomonas aeruginosa (PA) clinical isolates. Aztreonam and cefepime act synergistically in vitro against AmpC overproducing PA isolates. The objective of this study was to evaluate the clinical efficacy of this treatment in ICU patients infected with multidrug-resistant PA. Retrospective study (2 years, 2 ICUs) in a tertiary university hospital. Inclusion criteria were proven infection with evidence of a bacterial strain of PA resistant to all β-lactams and treated with the association of at least aztreonam plus cefepime. Treatment was considered effective for pneumonia using CPIS scores at the end of treatment and for other infections, using the SOFA score and signs of infection improvement at the end of treatment. Infectious episodes were classified as cure or failure. Thirteen patients were included (10 nosocomial pneumonia, 3 nosocomial intra-abdominal infections). The median [25th-75th percentiles] admission SAPS2 score was 54 [51-69] and the median SOFA score at the beginning of infection was 7 [4-8]. The median CPIS scores for pneumonia at the beginning and end of treatment were 9 [7-10.5] and 2 [0.75-5.5]. The duration of treatment with the combination of aztreonam plus cefepime was 14 days [9.5-16]. Nine episodes were classified as cures and 4 as failures, indicating a clinical efficacy of 69.2%. Overall mortality was 38.5%. These data suggest that the association of cefepime plus aztreonam could be an attractive alternative in the treatment of infections with multidrug-resistant PA to all β-lactams with a clinical efficacy rate of 69%. Copyright © 2015 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  6. Decreased fecal corticosterone levels due to domestication: a comparison between the white-backed Munia (Lonchura striata) and its domesticated strain, the Bengalese finch (Lonchura striata var. domestica) with a suggestion for complex song evolution.

    PubMed

    Suzuki, Kenta; Yamada, Hiroko; Kobayashi, Tetsuya; Okanoya, Kazuo

    2012-11-01

    The Bengalese finch (BF; Lonchura striata var. domestica) is a domesticated strain of the white-backed munia (WBM; Lonchura striata). Environmental stresses activate the hypothalamic-pituitary-adrenal (HPA) axis and release corticosterone (CORT). We hypothesized that domesticated songbirds have reduced CORT levels because of reduced levels of environmental stresses (compared to wild conditions) and reductions in the role of CORT, which is necessary for survival in the wild. However, no study has examined the effects of domestication on songbird CORT levels. To explore the domestication effects, we compared CORT levels between domesticated BFs and their wild ancestors WBMs. We also compared CORT levels between bought and aviary-raised BFs, and between wild-caught and captive-raised WBMs to examine the influence of being raised. However, blood collection causes stress, which affects endocrine dynamics and makes continuous sampling difficult in small birds. Therefore, we used a non-invasive method to measure fecal CORT. Parallelism between diluted fecal extracts and a CORT standard, extraction efficiency, and ACTH challenge demonstrated the effectiveness of this method. This study demonstrates that BFs have lower fecal CORT than do WBMs, regardless of whether the WBMs were wild-caught or captive-raised. In addition, BFs sing more complex songs than WBMs. Considerable evidence suggests that song complexity is related to CORT levels. Previously, we found that the corticosteroid receptors were expressed in song-control areas of the BF brain. Based on these results, we hypothesize that reduced CORT levels through domestication might be one factor allowing for the development of more complex songs in BFs. Copyright © 2012 Wiley Periodicals, Inc.

  7. Growth of the Bacteriocin-Producing Lactobacillus sakei Strain CTC 494 in MRS Broth Is Strongly Reduced Due to Nutrient Exhaustion: a Nutrient Depletion Model for the Growth of Lactic Acid Bacteria

    PubMed Central

    Leroy, Frédéric; De Vuyst, Luc

    2001-01-01

    Although commercial MRS broth has been designed to allow excellent growth of lactobacilli, most of these bacteria are still subjected to a self-inhibiting process. The most likely explanation is the accumulation of lactic acid or other toxic end products and the depletion of nutrients. In this study, the self-inhibition of Lactobacillus sakei CTC 494 was analyzed in a kinetic way, and a nutrient depletion model was set up to describe the growth inhibition process. This simple model has considerable advantages compared to commonly used descriptive models such as the logistic growth equation. It offers a better fit and a more realistic description of the growth data by taking into account both growth inhibition due to lactic acid production and changes in growth rates due to nutrient depletion. Depending on the fermentation conditions, in MRS broth there appears to be a strong decrease of the specific growth rate over time. Some undefined compounds present in the complex nitrogen source of MRS broth appear to be of crucial importance because of their limited availability. Moreover, nutrient availability affects bacteriocin production through its effect on cell growth as well as on the bacteriocin production per cell. A plateau value for the bacteriocin production by L. sakei CTC 494 was observed. PMID:11571136

  8. Extended-Spectrum-β-Lactamase-Producing Escherichia coli as a Cause of Pediatric Infections: Report of a Neonatal Intensive Care Unit Outbreak Due to a CTX-M-14-Producing Strain

    PubMed Central

    Oteo, Jesús; Cercenado, Emilia; Fernández-Romero, Sara; Saéz, David; Padilla, Belén; Zamora, Elena; Cuevas, Oscar; Bautista, Verónica

    2012-01-01

    Little information is available about pediatric infections caused by extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli. We characterized an outbreak caused by a CTX-M-14-producing E. coli isolate in a neonatal intensive care unit (NICU) and studied other infections caused by ESBL-producing E. coli in non-NICU pediatric units. All children ≤4 years old who were infected or colonized by ESBL-producing E. coli isolates between January 2009 and September 2010 were included. Molecular epidemiology was studied by phylogroup analysis, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing. Antibiotic resistance genes were analyzed by PCR and sequencing. Plasmids were studied by PFGE with S1 nuclease digestion and by incompatibility group analysis using a PCR-based replicon-typing scheme. Of the ESBL-producing E. coli isolates colonizing or infecting the 30 newborns, identical PFGE results were observed for 21 (70%) isolates, which were classified as CTX-M-14-producing E. coli of ST23 phylogroup A. blaCTX-M-14a was linked to ISEcp1 and was carried on an ∼80-bp IncK plasmid. A smaller ongoing outbreak due to SHV-12-producing ST131 E. coli was also identified in the same NICU. Fifteen additional infections with ESBL-producing E. coli were identified in non-NICU pediatric units, but none was caused by the CTX-M-14-producing E. coli epidemic clone. Overall, CTX-M-14 (71.1%), CTX-M-15 (13.3%), and SHV-12 (13.3%) were the most important ESBLs causing pediatric infections in this study. Infections of newborns with CTX-M-14-producing E. coli were caused by both clonal and nonclonal isolates. PMID:21986825

  9. 38 CFR 4.58 - Arthritis due to strain.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... With service incurred lower extremity amputation or shortening, a disabling arthritis, developing in... associated with the leg amputation or shortening, will be considered as service incurred, provided, however... amputation will not be granted service connection. This will generally require separate evaluation of...

  10. 38 CFR 4.58 - Arthritis due to strain.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... With service incurred lower extremity amputation or shortening, a disabling arthritis, developing in... associated with the leg amputation or shortening, will be considered as service incurred, provided, however... amputation will not be granted service connection. This will generally require separate evaluation of...

  11. 38 CFR 4.58 - Arthritis due to strain.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... With service incurred lower extremity amputation or shortening, a disabling arthritis, developing in... associated with the leg amputation or shortening, will be considered as service incurred, provided, however... amputation will not be granted service connection. This will generally require separate evaluation of...

  12. Enhancement of two dimensional electron gas concentrations due to Si{sub 3}N{sub 4} passivation on Al{sub 0.3}Ga{sub 0.7}N/GaN heterostructure: strain and interface capacitance analysis

    SciTech Connect

    Dinara, Syed Mukulika Jana, Sanjay Kr.; Ghosh, Saptarsi; Mukhopadhyay, Partha; Kumar, Rahul; Chakraborty, Apurba; Biswas, Dhrubes; Bhattacharya, Sekhar

    2015-04-15

    Enhancement of two dimensional electron gas (2DEG) concentrations at Al{sub 0.3}Ga{sub 0.7}N/GaN hetero interface after a-Si{sub 3}N{sub 4} (SiN) passivation has been investigated from non-destructive High Resolution X-ray Diffraction (HRXRD) analysis, depletion depth and capacitance-voltage (C-V) profile measurement. The crystalline quality and strained in-plane lattice parameters of Al{sub 0.3}Ga{sub 0.7}N and GaN were evaluated from double axis (002) symmetric (ω-2θ) diffraction scan and double axis (105) asymmetric reciprocal space mapping (DA RSM) which revealed that the tensile strain of the Al{sub 0.3}Ga{sub 0.7}N layer increased by 15.6% after SiN passivation. In accordance with the predictions from theoretical solution of Schrödinger-Poisson’s equations, both electrochemical capacitance voltage (ECV) depletion depth profile and C-V characteristics analyses were performed which implied effective 9.5% increase in 2DEG carrier density after passivation. The enhancement of polarization charges results from increased tensile strain in the Al{sub 0.3}Ga{sub 0.7}N layer and also due to the decreased surface states at the interface of SiN/Al{sub 0.3}Ga{sub 0.7}N layer, effectively improving the carrier confinement at the interface.

  13. Piezoelectric field in strained GaAs.

    SciTech Connect

    Chow, Weng Wah; Wieczorek, Sebastian Maciej

    2005-11-01

    This report describes an investigation of the piezoelectric field in strained bulk GaAs. The bound charge distribution is calculated and suitable electrode configurations are proposed for (1) uniaxial and (2) biaxial strain. The screening of the piezoelectric field is studied for different impurity concentrations and sample lengths. Electric current due to the piezoelectric field is calculated for the cases of (1) fixed strain and (2) strain varying in time at a constant rate.

  14. Simulation and Analysis of Strain Sensitivity of CNT-Based Strain Sensors

    NASA Astrophysics Data System (ADS)

    Sapra, Gaurav; Vig, Renu; Sharma, Manu

    2016-10-01

    Carbon nanotubes (CNT) is turning out to be a replacement to all the existing traditional sensors due to their high gauge factor, multidirectional sensing capability, high flexibility, low mass density, high dynamic range and high sensitivity to strains at nano and macro- scales. The strain sensitivity of CNT-based strain sensors depends on number of parameters; quality and quantity of CNT used, type of polymer used, deposition and dispersion technique adopted and also on environmental conditions. Due to all these parameters, the piezoresistive behavior of CNT is diversified and it needs to be explored. This paper theoretically analyses the strain sensitivity of CNT-based strain sensors. The strain sensitivity response of CNT strain sensor is a result of change in total resistance of CNT network with respect to applied strain. The total resistance of CNT network consists of intrinsic resistance and inter-tube resistance. It has been found that the change in intrinsic resistance under strain is due to the variation of bandgap of individual, which depends on the chirality of the tube and it varies exponentially with strain. The inter-tube resistance of CNT network changes nonlinearly due to change in distance between neighboring CNTs with respect to applied strain. As the distance d between CNTs increases due to applied strain, tunneling resistance Rtunnel increases nonlinearly in exponential manner. When the concentration of CNTs in composite is close to percolation threshold, then the change of inter-tube resistances is more dominant than intrinsic resistance. At percolation threshold, the total resistance of CNT networks changes nonlinearly and this effect of nonlinearity is due to tunneling effect. The strain sensitivity of CNT-based strain sensors also varies nonlinearly with the change in temperature. For the change of temperature from -20∘C to 50∘C, there is more than 100% change in strain sensitivity of CNT/polymer composite strain sensor. This change is

  15. Hip flexor strain - aftercare

    MedlinePlus

    ... flexor - aftercare; Hip flexor injury - aftercare; Hip flexor tear - aftercare; Iliopsoas strain - aftercare; Strained iliopsoas muscle - aftercare; Torn iliopsoas muscle - aftercare; Psoas strain - aftercare

  16. Sadovskii vortex in strain

    NASA Astrophysics Data System (ADS)

    Freilich, Daniel; Llewellyn Smith, Stefan

    2015-11-01

    Sadovskii vortices are patches of fluid with uniform vorticity surrounded by a vortex sheet. They were first constructed as models for wakes behind bluff objects. We investigate the Sadovskii vortex in a straining field and examine limiting cases to validate our computational method. One limit is the patch vortex in strain (Moore & Saffman, Aircraft wake turbulence and its detection 1971), where there is no vortex sheet. We solve this as a free-boundary problem, and show that a simple method using the Biot-Savart law quickly gives solutions for stable shapes. When used for the more elongated (stronger straining field) situations, the method also leads to new vortex shapes. In the hollow vortex case, where there is no vortex patch and the circulation is entirely due to the vortex sheet (Llewellyn Smith and Crowdy, J. Fluid Mech. 691 2012), we use the Birkhoff-Rott equation to calculate the velocity of the fluid on the vortex boundary. The combination of these two methods can then be used to calculate the shape and velocity field of the Sadovksii vortex in strain.

  17. Strain balanced quantum posts

    SciTech Connect

    Alonso-Alvarez, D.; Alen, B.; Ripalda, J. M.; Llorens, J. M.; Taboada, A. G.; Briones, F.; Roldan, M. A.; Hernandez-Saz, J.; Hernandez-Maldonado, D.; Herrera, M.; Molina, S. I.

    2011-04-25

    Quantum posts are assembled by epitaxial growth of closely spaced quantum dot layers, modulating the composition of a semiconductor alloy, typically InGaAs. In contrast with most self-assembled nanostructures, the height of quantum posts can be controlled with nanometer precision, up to a maximum value limited by the accumulated stress due to the lattice mismatch. Here, we present a strain compensation technique based on the controlled incorporation of phosphorous, which substantially increases the maximum attainable quantum post height. The luminescence from the resulting nanostructures presents giant linear polarization anisotropy.

  18. Geobacteraceae strains and methods

    DOEpatents

    Lovley, Derek R.; Nevin, Kelly P.; Yi, Hana

    2015-07-07

    Embodiments of the present invention provide a method of producing genetically modified strains of electricigenic microbes that are specifically adapted for the production of electrical current in microbial fuel cells, as well as strains produced by such methods and fuel cells using such strains. In preferred embodiments, the present invention provides genetically modified strains of Geobacter sulfurreducens and methods of using such strains.

  19. Sadovskii vortex in strain

    NASA Astrophysics Data System (ADS)

    Freilich, Daniel; Llewellyn Smith, Stefan

    2014-11-01

    A Sadovskii vortex is a patch of fluid with uniform vorticity surrounded by a vortex sheet. Using a boundary element type method, we investigate the steady states of this flow in an incompressible, inviscid straining flow. Outside the vortex, the fluid is irrotational. In the limiting case where the entire circulation is due to the vortex patch, this is a patch vortex (Moore & Saffman, Aircraft wake turbulence and its detection 1971). In the other limiting case, where all the circulation is due to the vortex sheet, this is a hollow vortex (Llewellyn Smith and Crowdy, J. Fluid Mech. 691, 2012). This flow has two governing nondimensional parameters, relating the strengths of the straining field, vortex sheet, and patch vorticity. We study the relationship between these two parameters, and examine the shape of the resulting vortices. We also work towards a bifurcation diagram of the steady states of the Sadovskii vortex in an attempt to understand the connection between vortex sheet and vortex patch desingularizations of the point vortex. Support from NSF-CMMI-0970113.

  20. Muscle strain treatment

    MedlinePlus

    Treatment - muscle strain ... Question: How do you treat a muscle strain ? Answer: Rest the strained muscle and apply ice for the first few days after the injury. Anti-inflammatory medicines or acetaminophen ( ...

  1. Muscle strain (image)

    MedlinePlus

    A muscle strain is the stretching or tearing of muscle fibers. A muscle strain can be caused by sports, exercise, a ... something that is too heavy. Symptoms of a muscle strain include pain, tightness, swelling, tenderness, and the ...

  2. Fundamental understanding of piezoelectric strain sensors

    NASA Astrophysics Data System (ADS)

    Sirohi, Jayant; Chopra, Inderjit

    1999-06-01

    This paper investigates the behavior of piezoelectric elements as strain sensors. Strain is measured in terms of the charge generated by the element as a result of the direct piezoelectric effect. Strains from piezoceramic and piezofilm sensors are compared with strains from a conventional foil strain gage and the advantages of each type of sensor are discussed, along with their limitations. The sensors are surface bonded and are calibrated by means of a dynamic beam bending setup over a frequency range of 5 - 500 Hz. Correction factors to account for transverse strain and shear lag effects due to the bond layer are analytically derived and validated experimentally. Additionally, design of signal conditioning electronics to collect the signals from the piezoelectric sensors is addressed. The superior performance of piezoelectric sensors compared to conventional strain gages in terms of sensitivity and signal to noise ratio is demonstrated.

  3. Ignition Delay Associated with a Strained Strip

    NASA Technical Reports Server (NTRS)

    Gerk, T. J.; Karagozian, A. R.

    1996-01-01

    Ignition processes associated with two adjacent fuel-oxidizer interferences bounding a strained fuel strip are explored here using single-step activation energy asymptotics. Calculations are made for constant as well as temporally decaying strain fields. There possible models of ignition are determined: one in which the two interfaces ignite independently as diffusion flames; one in which the two interfaces ignite dependently and in which ignition occurs to form a single , premixed flame at very high strain rates before ignition is completely prevented. In contrast to a single, isolated interface in which ignition can be prevented by overmatching heat production with heat convection due to strain, ignition of a strained fuel strip can also be prevented if the finite extend of fuel is diluted by oxidizer more quickly than heat production can cause a positive feedback thermal runaway. These behaviors are dependent on the relative sizes of timescales associated with species and heat diffusion, with convection due to strain, and with the chemical reaction. The result here indicate that adjacent, strained species interfaces may ignite quite differently in nature from ignition of a single, strained intrface and that their interdependence should be considered as the interfaces are brought closer together in complex strain fields. Critical strain rates leading to complete ignition delay are found to be considerably smaller for the fuel strip than those for single interfaces as the fuel strip is made thin in comparison to diffusion and chemical length scales.

  4. Novel pre-strain method for dielectric electroactive polymers

    NASA Astrophysics Data System (ADS)

    Newell, Brittany; Krutz, Gary; Stewart, Frank; Pascal, Kevin

    2016-04-01

    Dielectric electroactive polymers have demonstrated their significant potential in a variety of applications due to their material strength and elastomeric material properties. Mechanical pre-strain has been shown to enhance material actuation potential significantly. However, with this enhancement comes sacrifices. Mechanical pre-strain imposes a stiff mechanical boundary on the dielectric material in order to maintain the strain. In this research, investigations were made into the mechanisms of mechanical pre-strain and into alternate pre-strain methods. These studies discovered alternate methods capable of producing enhanced pre-strains and final actuation without the addition of the solid strain boundary.

  5. Strain amplification in the bone mechanosensory system.

    PubMed

    Cowin, S C; Weinbaum, S

    1998-09-01

    This article discusses the potential mechanisms by which the strain induced at the membrane of an osteocyte may be amplified from the strain experienced by the whole bone due to mechanical loading. These mechanisms address the question of how these mechanical load-induced small strains of (typically) about 0.1% (but up to 0.5%) applied to a whole bone are amplified to strains of 1% or larger at the membrane of the osteocyte buried in its lacuna in the bone matrix. The answer to this question is an important link in the mechanosensory system in bone and in relating in vitro cell studies to in vivo cellular response.

  6. Superlattice strain gage

    DOEpatents

    Noel, Bruce W.; Smith, Darryl L.; Sinha, Dipen N.

    1990-01-01

    A strain gage comprising a strained-layer superlattice crystal exhibiting piezoelectric properties is described. A substrate upon which such a strained-layer superlattice crystal has been deposited is attached to an element to be monitored for strain. A light source is focused on the superlattice crystal and the light reflected from, passed through, or emitted from the crystal is gathered and compared with previously obtained optical property data to determine the strain in the element.

  7. Superlattice strain gage

    DOEpatents

    Noel, B.W.; Smith, D.L.; Sinha, D.N.

    1988-06-28

    A strain gage comprising a strained-layer superlattice crystal exhibiting piezoelectric properties is described. A substrate upon which such a strained-layer superlattice crystal has been deposited is attached to an element to be monitored for strain. A light source is focused on the superlattice crystal and the light reflected from, passed through, or emitted from the crystal is gathered and compared with previously obtained optical property data to determine the strain in the element. 8 figs.

  8. Distributed strain monitoring for bridges: temperature effects

    NASA Astrophysics Data System (ADS)

    Regier, Ryan; Hoult, Neil A.

    2014-03-01

    To better manage infrastructure assets as they reach the end of their service lives, quantitative data is required to better assess structural behavior and allow for more informed decision making. Distributed fiber optic strain sensors are one sensing technology that could provide comprehensive data for use in structural assessments as these systems potentially allow for strain to be measured with the same accuracy and gage lengths as conventional strain sensors. However, as with many sensor technologies, temperature can play an important role in terms of both the structure's and sensor's performance. To investigate this issue a fiber optic distributed strain sensor system was installed on a section of a two span reinforced concrete bridge on the TransCanada Highway. Strain data was acquired several times a day as well as over the course of several months to explore the effects of changing temperature on the data. The results show that the strain measurements are affected by the bridge behavior as a whole. The strain measurements due to temperature are compared to strain measurements that were taken during a load test on the bridge. The results show that even a small change in temperature can produce crack width and strain changes similar to those due to a fully loaded transport truck. Future directions for research in this area are outlined.

  9. Mechanical strain effects on black phosphorus nanoresonators.

    PubMed

    Wang, Cui-Xia; Zhang, Chao; Jiang, Jin-Wu; Park, Harold S; Rabczuk, Timon

    2016-01-14

    We perform classical molecular dynamics simulations to investigate the effects of mechanical strain on single-layer black phosphorus nanoresonators at different temperatures. We find that the resonant frequency is highly anisotropic in black phosphorus due to its intrinsic puckered configuration, and that the quality factor in the armchair direction is higher than in the zigzag direction at room temperature. The quality factors are also found to be intrinsically larger than those in graphene and MoS2 nanoresonators. The quality factors can be increased by more than a factor of two by applying tensile strain, with uniaxial strain in the armchair direction being the most effective. However, there is an upper bound for the quality factor increase due to nonlinear effects at large strains, after which the quality factor decreases. The tension induced nonlinear effect is stronger along the zigzag direction, resulting in a smaller maximum strain for quality factor enhancement.

  10. Due process traditionalism.

    PubMed

    Sunstein, Cass R

    2008-06-01

    In important cases, the Supreme Court has limited the scope of "substantive due process" by reference to tradition, but it has yet to explain why it has done so. Due process traditionalism might be defended in several distinctive ways. The most ambitious defense draws on a set of ideas associated with Edmund Burke and Friedrich Hayek, who suggested that traditions have special credentials by virtue of their acceptance by many minds. But this defense runs into three problems. Those who have participated in a tradition may not have accepted any relevant proposition; they might suffer from a systematic bias; and they might have joined a cascade. An alternative defense sees due process traditionalism as a second-best substitute for two preferable alternatives: a purely procedural approach to the Due Process Clause, and an approach that gives legislatures the benefit of every reasonable doubt. But it is not clear that in these domains, the first-best approaches are especially attractive; and even if they are, the second-best may be an unacceptably crude substitute. The most plausible defense of due process traditionalism operates on rule-consequentialist grounds, with the suggestion that even if traditions are not great, they are often good, and judges do best if they defer to traditions rather than attempting to specify the content of "liberty" on their own. But the rule-consequentialist defense depends on controversial and probably false assumptions about the likely goodness of traditions and the institutional incapacities of judges.

  11. Strain analyis in Banda Sea using grid strain based on GPS observation

    NASA Astrophysics Data System (ADS)

    Herawati, Yola Asis; Meilano, Irwan; Sarsito, Dina Anggreni; Effendi, Jony

    2017-07-01

    Eastern Indonesia has very high deformation due to tectonic activity in triple junction area. Convergencing between plate in Eastern Indonesia trigger some microblocks. Tectonic block as one of deformation phenomenom due to the interaction of between plates can be understood by using strain analysis. Strain analysis shows the change of position, shape and dimension from an object. This research use 80 GPS from previous study by Koulali et al, (2015) and 7 continuous GPS in Bird's Head to calculate strain rates in order to find relation between tectonic activity and strain rates in Banda Sea, and to identify block boundary. The GPS data are calculated using GAMIT/GLOBK software to obtain time series in each station. Strain rates are calculated using softwae package named grid strain which calculate strain based on interpolation using discretized geodetic measurement resulting strain rates in grid system. The data distribution and algorithm in grid strain influence the result of strain rates from grid strain. The result from strain calculation is in ranges -16,421×10-8 to -0,194×10-8 for shortening parameter and 1,653×10-8 to 18,92×10-8 for extension parameter. From strain analysis known that strain rates can identify tectonic activity but not accurately for block boundary. Banda Block, Timor Block, and Bird's Head Block has different strain pattern especially in their boundary. Timor and eastern part of Banda Block dominated by shortening according to the back arc located in there, meanwhile western part of Banda Block and mostly of Bird's Head dominated by very low shortening according to collision between Eurasia and Australia Plates. For further analysis need some additional data such as density of GPS sites, sesimicity, and gravity data.

  12. Optical Strain Measurement System Development

    NASA Technical Reports Server (NTRS)

    Lant, C. T.

    1985-01-01

    Investigations of physical phenomena affecting the durability of SSME components require measurement systems operational in hostile environments. The need for such instrumentation caused the definition and operation of an optical strain measurement system. This optical strain measurement system based on the speckle shift method is being developed. This is a noncontact, automatic method of measuring surface strain in one dimension that corrects for error due to rigid body motion. It provides a gauge length of 1 to 2 mm and allows the region of interest on the test specimen to be mapped point by point. The output is a graphics map of the points inspected on the specimen; data points is stored in quasi-real time. This is the first phase of a multiphase effort in optical strain measurement. The speckle pattern created by the test specimen is interpreted as high order interference fringes resulting from a random diffraction grating, being the natural surface roughness of the specimen. Strain induced on the specimen causes a change in spacing of the surface roughness, which in turn shifts the position of the interference pattern (speckles).

  13. Optical Strain Measurement System Development

    NASA Technical Reports Server (NTRS)

    Lant, C. T.

    1985-01-01

    Investigations of physical phenomena affecting the durability of SSME components require measurement systems operational in hostile environments. The need for such instrumentation caused the definition and operation of an optical strain measurement system. This optical strain measurement system based on the speckle shift method is being developed. This is a noncontact, automatic method of measuring surface strain in one dimension that corrects for error due to rigid body motion. It provides a gauge length of 1 to 2 mm and allows the region of interest on the test specimen to be mapped point by point. The output is a graphics map of the points inspected on the specimen; data points is stored in quasi-real time. This is the first phase of a multiphase effort in optical strain measurement. The speckle pattern created by the test specimen is interpreted as high order interference fringes resulting from a random diffraction grating, being the natural surface roughness of the specimen. Strain induced on the specimen causes a change in spacing of the surface roughness, which in turn shifts the position of the interference pattern (speckles).

  14. Human due diligence.

    PubMed

    Harding, David; Rouse, Ted

    2007-04-01

    Most companies do a thorough job of financial due diligence when they acquire other companies. But all too often, deal makers simply ignore or underestimate the significance of people issues in mergers and acquisitions. The consequences are severe. Most obviously, there's a high degree of talent loss after a deal's announcement. To make matters worse, differences in decision-making styles lead to infighting; integration stalls; and productivity declines. The good news is that human due diligence can help companies avoid these problems. Done early enough, it helps acquirers decide whether to embrace or kill a deal and determine the price they are willing to pay. It also lays the groundwork for smooth integration. When acquirers have done their homework, they can uncover capability gaps, points of friction, and differences in decision making. Even more important, they can make the critical "people" decisions-who stays, who goes, who runs the combined business, what to do with the rank and file-at the time the deal is announced or shortly thereafter. Making such decisions within the first 30 days is critical to the success of a deal. Hostile situations clearly make things more difficult, but companies can and must still do a certain amount of human due diligence to reduce the inevitable fallout from the acquisition process and smooth the integration. This article details the steps involved in conducting human due diligence. The approach is structured around answering five basic questions: Who is the cultural acquirer? What kind of organization do you want? Will the two cultures mesh? Who are the people you most want to retain? And how will rank-and-file employees react to the deal? Unless an acquiring company has answered these questions to its satisfaction, the acquisition it is making will be very likely to end badly.

  15. A balloon strain gage

    NASA Technical Reports Server (NTRS)

    Rand, J. L.

    1981-01-01

    This paper describes the development of a unique strain measuring device which is intended to monitor the state of strain in thin balloon films during flight. The gate is bonded directly to the film without significantly altering the state of strain or stress in the wall of the balloon. Results of a model balloon inflation are presented which indicate the gage to measure strain in a deployed balloon.

  16. Balloon film strain measurement

    NASA Technical Reports Server (NTRS)

    Rand, J. L.

    1983-01-01

    A discussion is presented of the results of a flight test program in which scientific research balloon material strain was measured in order to determine stress levels. Attention is given to material strain characteristics during the inflation, launch, ascent, and flight of a natural shape, zero-pressure scientific balloon. Measurements were conducted with a simple thin film strain transducer. Thermal, meridional and circumferential strain history data for the test flight are given.

  17. Elevated temperature strain gages

    NASA Technical Reports Server (NTRS)

    Brittain, J. O.; Geslin, D.; Lei, J. F.

    1985-01-01

    Materials were evaluated that could be used in manufacturing electrical resistance strain gages for static strain measurements at temperatures at or above 1273 K. Strain gage materials must have a characteristic response to strain, temperature and time that is reproducible or that varies in a predictable manner within specified limits. Several metallic alloys were evaluated, as well as a series of transition metal carbides, nitrides and silicides.

  18. Sprains and Strains

    MedlinePlus

    ... happens. A strain is a stretched or torn muscle or tendon. Tendons are tissues that connect muscle to bone. Twisting or pulling these tissues can ... suddenly or develop over time. Back and hamstring muscle strains are common. Many people get strains playing ...

  19. [Onychomycoses due to molds].

    PubMed

    Chabasse, D; Pihet, M

    2014-12-01

    Onychomycoses represent about 30% of superficial mycosis that are encountered in Dermatology consults. Fungi such as dermatophytes, which are mainly found on the feet nails, cause nearly 50% of these onychopathies. Yeasts are predominantly present on hands, whereas non-dermatophytic moulds are very seldom involved in both foot and hand nails infections. According to literature, these moulds are responsible for 2 to 17% of onychomycoses. Nevertheless, we have to differentiate between onychomycoses due to pseudodermatophytes such as Neoscytalidium (ex-Scytalidium) and Onychocola canadensis, which present a high affinity for keratin, and onychomycoses due to filamentous fungi such as Aspergillus, Fusarium, Scopulariopsis, Acremonium... These saprophytic moulds are indeed most of the time considered as colonizers rather than real pathogens agents. Mycology and histopathology laboratories play an important role. They allow to identify the species that is involved in nail infection, but also to confirm parasitism by the fungus in the infected nails. Indeed, before attributing any pathogenic role to non-dermatophytic moulds, it is essential to precisely evaluate their pathogenicity through samples and accurate mycological and/or histological analysis. The treatment of onychomycoses due to non-dermatophytic moulds is difficult, as there is today no consensus. The choice of an antifungal agent will first depend on the species that is involved in the infection, but also on the severity of nail lesions and on the patient himself. In most cases, the onychomycosis will be cured with chemical or mechanical removing of the infected tissues, followed by a local antifungal treatment. In some cases, a systemic therapy will be discussed.

  20. Photosensitivity due to thiazides.

    PubMed

    Gómez-Bernal, S; Alvarez-Pérez, A; Rodríguez-Pazos, L; Gutiérrez-González, E; Rodríguez-Granados, M T; Toribio, J

    2014-05-01

    Thiazides are widely used diuretics that first became available in the 1950s. The first reports of photosensitivity reactions to thiazides were published shortly after the introduction of these drugs, but few cases have been described since. We review all the cases of photosensitivity due to thiazides published up to December 2011. We found 62 cases, 33 in women and 29 in men. The most common presentation was eczematous lesions in a photodistributed pattern, and the most common causative agent was hydrochlorothiazide. The results of photobiological studies were published in only some of the cases reviewed. In most cases, phototesting revealed an abnormal response to UV-A alone or to both UV-A and UV-B. In some cases, the results of phototesting were normal and only photopatch testing yielded abnormal results. Diagnosis of photosensitivity due to thiazides requires a high degree of suspicion. Ideally, diagnosis should be confirmed by a photobiological study. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  1. Strain powered antennas

    NASA Astrophysics Data System (ADS)

    Domann, John P.; Carman, Greg P.

    2017-01-01

    This paper proposes the creation of strain powered antennas that radiate electromagnetic energy by mechanically vibrating a piezoelectric or piezomagnetic material. A closed form analytic model of electromagnetic radiation from a strain powered electrically small antenna is derived and analyzed. Fundamental scaling laws and the frequency dependence of strain powered antennas are discussed. The radiation efficiency of strain powered electrically small antennas is contrasted with a conventional electric dipole. Analytical results show that operating at the first mechanical resonance produces the most efficient strain powered radiation relative to electric dipole antennas. A resonant analysis is exploited to determine the material property space that produces efficient strain powered antennas. These results show how a properly designed strain powered antenna can radiate more efficiently than an equally sized electric dipole antenna.

  2. Credit where due.

    PubMed

    Friedman, Steven G

    2016-08-01

    The history of medicine is filled with stories of tireless researchers who failed to get credit for their hard work. Examples of this include Rosalind Franklin, who helped to elucidate the structure of DNA; Frederick Banting, who helped to discover insulin; and Jay McLean, who discovered heparin. The founding of the field of vascular surgery provides one of the most vivid examples of uncredited work. Even though Alexis Carrel was an unpaid, untitled assistant in Charles Guthrie's laboratory, it was Carrel alone who received a Nobel Prize for their work. In an attempt to give credit where due, the reasons for this injustice are described. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  3. Nanoscale strain mapping in battery nanostructures

    NASA Astrophysics Data System (ADS)

    Ulvestad, A.; Cho, H. M.; Harder, R.; Kim, J. W.; Dietze, S. H.; Fohtung, E.; Meng, Y. S.; Shpyrko, O. G.

    2014-02-01

    Coherent x-ray diffraction imaging is used to map the local three dimensional strain inhomogeneity and electron density distribution of two individual LiNi0.5Mn1.5O4-δ cathode nanoparticles in both ex-situ and in-situ environments. Our reconstructed images revealed a maximum strain of 0.4%. We observed different variations in strain inhomogeneity due to multiple competing effects. The compressive/tensile component of the strain is connected to the local lithium content and, on the surface, interpreted in terms of a local Jahn-Teller distortion of Mn3+. Finally, the measured strain distributions are discussed in terms of their impact on competing theoretical models of the lithiation process.

  4. Extraordinary strain hardening by gradient structure.

    PubMed

    Wu, XiaoLei; Jiang, Ping; Chen, Liu; Yuan, Fuping; Zhu, Yuntian T

    2014-05-20

    Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures.

  5. Strain stiffening in synthetic and biopolymer networks.

    PubMed

    Erk, Kendra A; Henderson, Kevin J; Shull, Kenneth R

    2010-05-10

    Strain-stiffening behavior common to biopolymer networks is difficult to reproduce in synthetic networks. Physically associating synthetic polymer networks can be an exception to this rule and can demonstrate strain-stiffening behavior at relatively low values of strain. Here, the stiffening behavior of model elastic networks of physically associating triblock copolymers is characterized by shear rheometry. Experiments demonstrate a clear correlation between network structure and strain-stiffening behavior. Stiffening is accurately captured by a constitutive model with a single fitting parameter related to the midblock length. The same model is also effective for describing the stiffening of actin, collagen, and other biopolymer networks. Our synthetic polymer networks could be useful model systems for biological materials due to (1) the observed similarity in strain-stiffening behavior, which can be quantified and related to network structure, and (2) the tunable structure of the physically associating network, which can be manipulated to yield a desired response.

  6. Hydraulic Calibrator for Strain-Gauge Balances

    NASA Technical Reports Server (NTRS)

    Skelly, Kenneth; Ballard, John

    1987-01-01

    Instrument for calibrating strain-gauge balances uses hydraulic actuators and load cells. Eliminates effects of nonparallelism, nonperpendicularity, and changes of cable directions upon vector sums of applied forces. Errors due to cable stretching, pulley friction, and weight inaccuracy also eliminated. New instrument rugged and transportable. Set up quickly. Developed to apply known loads to wind-tunnel models with encapsulated strain-gauge balances, also adapted for use in calibrating dynamometers, load sensors on machinery and laboratory instruments.

  7. Highly Invasive Listeria monocytogenes Strains Have Growth and Invasion Advantages in Strain Competition

    PubMed Central

    Manthou, Evanthia; Ciolacu, Luminita; Wagner, Martin; Skandamis, Panagiotis N.

    2015-01-01

    Multiple Listeria monocytogenes strains can be present in the same food sample; moreover, infection with more than one L. monocytogenes strain can also occur. In this study we investigated the impact of strain competition on the growth and in vitro virulence potential of L. monocytogenes. We identified two strong competitor strains, whose growth was not (or only slightly) influenced by the presence of other strains and two weak competitor strains, which were outcompeted by other strains. Cell contact was essential for growth inhibition. In vitro virulence assays using human intestinal epithelial Caco2 cells showed a correlation between the invasion efficiency and growth inhibition: the strong growth competitor strains showed high invasiveness. Moreover, invasion efficiency of the highly invasive strain was further increased in certain combinations by the presence of a low invasive strain. In all tested combinations, the less invasive strain was outcompeted by the higher invasive strain. Studying the effect of cell contact on in vitro virulence competition revealed a complex pattern in which the observed effects depended only partially on cell-contact suggesting that competition occurs at two different levels: i) during co-cultivation prior to infection, which might influence the expression of virulence factors, and ii) during infection, when bacterial cells compete for the host cell. In conclusion, we show that growth of L. monocytogenes can be inhibited by strains of the same species leading potentially to biased recovery during enrichment procedures. Furthermore, the presence of more than one L. monocytogenes strain in food can lead to increased infection rates due to synergistic effects on the virulence potential. PMID:26529510

  8. Highly Invasive Listeria monocytogenes Strains Have Growth and Invasion Advantages in Strain Competition.

    PubMed

    Zilelidou, Evangelia A; Rychli, Kathrin; Manthou, Evanthia; Ciolacu, Luminita; Wagner, Martin; Skandamis, Panagiotis N

    2015-01-01

    Multiple Listeria monocytogenes strains can be present in the same food sample; moreover, infection with more than one L. monocytogenes strain can also occur. In this study we investigated the impact of strain competition on the growth and in vitro virulence potential of L. monocytogenes. We identified two strong competitor strains, whose growth was not (or only slightly) influenced by the presence of other strains and two weak competitor strains, which were outcompeted by other strains. Cell contact was essential for growth inhibition. In vitro virulence assays using human intestinal epithelial Caco2 cells showed a correlation between the invasion efficiency and growth inhibition: the strong growth competitor strains showed high invasiveness. Moreover, invasion efficiency of the highly invasive strain was further increased in certain combinations by the presence of a low invasive strain. In all tested combinations, the less invasive strain was outcompeted by the higher invasive strain. Studying the effect of cell contact on in vitro virulence competition revealed a complex pattern in which the observed effects depended only partially on cell-contact suggesting that competition occurs at two different levels: i) during co-cultivation prior to infection, which might influence the expression of virulence factors, and ii) during infection, when bacterial cells compete for the host cell. In conclusion, we show that growth of L. monocytogenes can be inhibited by strains of the same species leading potentially to biased recovery during enrichment procedures. Furthermore, the presence of more than one L. monocytogenes strain in food can lead to increased infection rates due to synergistic effects on the virulence potential.

  9. A resistance strain gage with repeatable and cancellable apparent strain for use to 1500 F

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1990-01-01

    A temperature compensated static strain gauge, which is fabricated from Pd13Cr alloy and a Pt compensator, is being developed and has been tested over a temperature range to 1500 F at NASA-Lewis. The PdCr compensated strain gage has significantly lower apparent strain to 500 F than other high temperature strain gages. The PdCr compensated gage is protected from oxidation by a flame-sprayed alumina-4 wt pct zirconia overcoating. Test Results to 1500 F indicate apparent strain variations of less than 250 micro-epsilon and reproducibility between thermal cycles within 50 micro-epsilon. The apparent strain of the coated PdCr compensated gage can be predicted and cancelled due to its reproducibility and low value.

  10. A resistance strain gage with repeatable and cancellable apparent strain for use to 800 C

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1990-01-01

    A temperature compensated static strain gage, which is fabricated from palladium-13w/o chromium (Pd13Cr) alloy and a platinum (Pt) compensator, is being developed and was tested over a temperature range to 800 C at NASA-Lewis. The PdCr compensated strain gage has significantly lower apparent strain to 800 C than other high temperature strain gages. The PdCr compensated gage is protected from oxidation by a flame-sprayed alumina-4w/o zirconia overcoating. Test results to 800 C indicate apparent strain variations of less than 300 micro-epsilon and reproducibility between thermal cycles within 50 micro-epsilon. Apparent strain of the coated PdCr compensated gage can be predicted and cancelled due to its reproducibility and low value.

  11. A CW ultrasonic bolt-strain monitor

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1977-01-01

    There exists a need for a relatively inexpensive system for measuring strain in bolts. The torque wrench is one technique for straining bolts which has been widely applied. Unfortunately, friction in the bolt threads and between the nut and the work tend to make such a simple system inaccurate. In practice, a torque wrench is unacceptable for many situations where strain is critical. In this article, an ultrasonic technique is described which can indicate changes in bolt strain to better than one part in 10,000. The technique is based on the one-dimensional propagating-ultrasonic-wave model and uses a new ultrasonic instrument called a Reflection Oscillator Ultrasonic Spectrometer which is a closed-loop feedback marginal-oscillator system that frequency locks the device to the peak of a mechanical resonance in the bolt. The instrument indicates a shift in the bolt resonance frequency due to elongation and changes in velocity of sound due to strain. Data are presented comparing a standard torque wrench to the ultrasonic monitor for different measured stresses on the bolt as well as for different bolt conditions. The strain instrument can be used to monitor changing stresses, to measure material properties and may be applied as a strain gage or load cell.

  12. Resolution of axial shear strain elastography

    NASA Astrophysics Data System (ADS)

    Thitaikumar, Arun; Righetti, Raffaella; Krouskop, Thomas A.; Ophir, Jonathan

    2006-10-01

    The technique of mapping the local axial component of the shear strain due to quasi-static axial compression is defined as axial shear strain elastography. In this paper, the spatial resolution of axial shear strain elastography is investigated through simulations, using an elastically stiff cylindrical lesion embedded in a homogeneously softer background. Resolution was defined as the smallest size of the inclusion for which the strain value at the inclusion/background interface was greater than the average of the axial shear strain values at the interface and inside the inclusion. The resolution was measured from the axial shear strain profile oriented at 45° to the axis of beam propagation, due to the absence of axial shear strain along the normal directions. The effects of the ultrasound system parameters such as bandwidth, beamwidth and transducer element pitch along with signal processing parameters such as correlation window length (W) and axial shift (ΔW) on the estimated resolution were investigated. The results show that the resolution (at 45° orientation) is determined by the bandwidth and the beamwidth. However, the upper bound on the resolution is limited by the larger of the beamwidth and the window length, which is scaled inversely to the bandwidth. The results also show that the resolution is proportional to the pitch and not significantly affected by the axial window shift.

  13. Strained graphene Hall bar

    NASA Astrophysics Data System (ADS)

    Milovanović, S. P.; Peeters, F. M.

    2017-02-01

    The effects of strain, induced by a Gaussian bump, on the magnetic field dependent transport properties of a graphene Hall bar are investigated. The numerical simulations are performed using both classical and quantum mechanical transport theory and we found that both approaches exhibit similar characteristic features. The effects of the Gaussian bump are manifested by a decrease of the bend resistance, R B, around zero-magnetic field and the occurrence of side-peaks in R B. These features are explained as a consequence of bump-assisted scattering of electrons towards different terminals of the Hall bar. Using these features we are able to give an estimate of the size of the bump. Additional oscillations in R B are found in the quantum description that are due to the population/depopulation of Landau levels. The bump has a minor influence on the Hall resistance even for very high values of the pseudo-magnetic field. When the bump is placed outside the center of the Hall bar valley polarized electrons can be collected in the leads.

  14. Three dimensional strained semiconductors

    DOEpatents

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  15. Strain sensor comprising a strain sensitive, two-mode optical

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1994-01-01

    A strain sensor uses an optical fiber including a strain sensitive portion and at least one strain insensitive portion. The strain sensitive portion is mounted on the surface of a structure at a location where a strain is desired to be measured. The strain insensitive portion(s) may be fused to the strain sensitive portion to transmit light therethrough, so that the resulting pattern may be detected to determine the amount of strain by comparison with a similar fiber not subjected to strain, or with the light pattern produced when the fiber is not under strain.

  16. Thin film strain transducer

    NASA Technical Reports Server (NTRS)

    Rand, J. L. (Inventor)

    1984-01-01

    A strain transducer system and process for making the same is disclosed. A beryllium copper ring having four strain gages is electrically connected in Wheatstone bridge fashion to the output instrumentation. Tabs are bonded to a balloon or like surface with strain on the surface causing bending of a ring which provides an electrical signal through the gages proportional to the surface strain. A photographic pattern of a one half ring segment as placed on a sheet of beryllium copper for chem-mill etch formation is illustrated.

  17. Strained Silicon Photonics

    PubMed Central

    Schriever, Clemens; Bohley, Christian; Schilling, Jörg; Wehrspohn, Ralf B.

    2012-01-01

    A review of recent progress in the field of strained silicon photonics is presented. The application of strain to waveguide and photonic crystal structures can be used to alter the linear and nonlinear optical properties of these devices. Here, methods for the fabrication of strained devices are summarized and recent examples of linear and nonlinear optical devices are discussed. Furthermore, the relation between strain and the enhancement of the second order nonlinear susceptibility is investigated, which may enable the construction of optically active photonic devices made of silicon. PMID:28817015

  18. Light intensity strain analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. G. (Inventor)

    1973-01-01

    A process is described for the analysis of the strain field of structures subjected to large deformations involving a low modulus substrate having a high modulus, relatively thin coating. The optical properties of transmittance and reflectance are measured for the coated substrate while stressed and unstressed to indicate the strain field for the coated substrate.

  19. Mechanical strain isolator mount

    NASA Technical Reports Server (NTRS)

    James, Gordon E. (Inventor)

    1991-01-01

    Certain devices such as optical instruments must preserve their alignmental integrity while being subjected to mechanical strain. A mechanical strain isolator mount is provided to preserve the alignmental integrity of an alignment sensitive instrument. An alignment sensitive instrument is mounted on a rectangular base. Flexural legs are connected at their proximal ends to the rectangular base. Flexural legs are also spaced parallel to the sides. Mounting pads are connected to the legs at the distal end and the mechanical strain isolator mount is attached to the substrate by means of threaded bolts. When a mounting pad and its respective leg is subjected to lateral strain in either the X or Y direction via the substrate, the respective leg relieves the strain by bending in the direction of the strain. An axial strain on a mounting pad in the Z direction is relieved by a rotational motion of the legs in the direction of the strain. When the substrate is stress free, the flexural legs return to their original condition and thus preserve the original alignment integrity of the alignment sensitive instrument.

  20. Chitinase producing Bt strains

    Treesearch

    Haim B. Gunner; Matthew Zimet; Sarah Berger

    1985-01-01

    Screening of 402 strains of more than 18 varieties of Bacillus thuringiensis showed chitinase to be inducible in virtually every serovar tested. Though the chitinase titre varied among strains, there was a strong correlation between enhanced lethality to spruce budworm, Choristoneura fumiferana (Clemens), and an increase in...

  1. Hamstring strain - aftercare

    MedlinePlus

    ... mild muscle strain or pull Grade 2 -- partial muscle tear Grade 3 -- complete muscle tear Recovery time depends on the grade of the ... be healing as expected. Alternative Names Pulled hamstring muscle; Sprain - ... Ali K, Leland JM. Hamstring strains and tears in the athlete. Clin Sports Med . 2012;31( ...

  2. Negative strain rate sensitivity in bulk metallic glass and its similarities with the dynamic strain aging effect during deformation

    SciTech Connect

    Dalla Torre, Florian H.; Dubach, Alban; Siegrist, Marco E.; Loeffler, Joerg F.

    2006-08-28

    Detailed investigations were carried out on the deformation behavior of Zr-based monolithic bulk metallic glass and bulk metallic glass matrix composites. The latter, due to splitting and multiplication of shear bands, exhibits larger compressive strains than the former, without significant loss of strength. Serrated flow in conjunction with a negative strain rate sensitivity was observed in both materials. This observation, together with an increase in stress drops with increasing strain and their decrease with increasing strain rate, indicates phenomenologically close similarities with the dynamic strain aging deformation mechanism known for crystalline solids. The micromechanical mechanism of a shear event is discussed in light of these results.

  3. The complex evolution of strain during nanoscale patterning of 60 nm thick strained silicon layer directly on insulator

    NASA Astrophysics Data System (ADS)

    Moutanabbir, O.; Reiche, M.; Erfurth, W.; Naumann, F.; Petzold, M.; Gösele, U.

    2009-06-01

    The strain behavior in nanoscale patterned biaxial tensile strained Si layer on insulator is investigated in 60-nm-thick nanostructures with dimensions in the 80-400 nm range. The in-plane strain is evaluated by using UV micro-Raman. We found that less than 30% of the biaxial strain is maintained in the 200×200 nm2 nanostructures. This relaxation, due to the formation of free surfaces, becomes more important in smaller nanostructures. The strain is completely relieved at 80 nm. This phenomenon is described based on detailed three-dimensional finite element simulations. The anisotropic relaxation in rectangular nanostructures is also discussed.

  4. Strain and strain rate echocardiography in children with Wilson’s disease

    PubMed Central

    Cemşit, Karakurt; Serkan, Çelik; Ayşe, Selimoğlu; İlknur, Varol; Hamza, Karabiber; Saim, Yoloğlu

    2016-01-01

    < 0.05). Segmental analysis showed that rotational strain measurement of the anterior and lateral segments of the patient group were statistically significantly lower than the corresponding values of the control group (p < 0.05). Segmental analysis showed statistically significantly lower values of end-systolic longitudinal strain [STSR (ES)] of the basal lateral (p < 0.05) and end-systolic longitudinal strain [SLSC (ES)] of the basal septal segment (p < 0.05) in the patient group. End-systolic longitudinal strain [SLSC (ES)] and positive peak transverse strain (STSR peak P) were statistically significantly lower in the patient group (p < 0.05). Segmental analysis showed statistically significantly lower values of endsystolic longitudinal strain [SLSC (ES)] of the mid-anterior and basal anterior segments (p < 0.05), end-systolic longitudinal strain [STSR (ES)] measurements of the posterior and mid-posterior segments, end-systolic longitudinal displacement [DLDC (ES)] of the basal posterior, mid-posterior and mid-antero-septal segments in the patient group. Conclusion Cardiac arrhythmias, cardiomyopathy and sudden cardiac death are rare complications but may be seen in children with Wilson’s disease due to copper accumulation in the heart tissue. Strain and strain rate echocardiography is a relatively new and useful echocardiographic technique to evaluate cardiac function and cardiac deformation abnormalities. Our study showed that despite normal systolic function, patients with Wilson’s disease showed diastolic dysfunction and regional deformation abnormalities, especially rotational strain and strain rate abnormalities. PMID:27176875

  5. Molecular typing of Brucella melitensis endemic strains and differentiation from the vaccine strain Rev-1.

    PubMed

    Noutsios, Georgios T; Papi, Rigini M; Ekateriniadou, Loukia V; Minas, Anastasios; Kyriakidis, Dimitrios A

    2012-03-01

    In the present study forty-four Greek endemic strains of Br. melitensis and three reference strains were genotyped by Multi locus Variable Number Tandem Repeat (ML-VNTR) analysis based on an eight-base pair tandem repeat sequence that was revealed in eight loci of Br. melitensis genome. The forty-four strains were discriminated from the vaccine strain Rev-1 by Restriction Fragment Length Polymorphism (RFLP) and Denaturant Gradient Gel Electrophoresis (DGGE). The ML-VNTR analysis revealed that endemic, reference and vaccine strains are genetically closely related, while most of the loci tested (1, 2, 4, 5 and 7) are highly polymorphic with Hunter-Gaston Genetic Diversity Index (HGDI) values in the range of 0.939 to 0.775. Analysis of ML-VNTRs loci stability through in vitro passages proved that loci 1 and 5 are non stable. Therefore, vaccine strain can be discriminated from endemic strains by allele's clusters of loci 2, 4, 6 and 7. RFLP and DGGE were also employed to analyse omp2 gene and reveled different patterns among Rev-1 and endemic strains. In RFLP, Rev-1 revealed three fragments (282, 238 and 44 bp), while endemic strains two fragments (238 and 44 bp). As for DGGE, the electrophoretic mobility of Rev-1 is different from the endemic strains due to heterologous binding of DNA chains of omp2a and omp2b gene. Overall, our data show clearly that it is feasible to genotype endemic strains of Br. melitensis and differentiate them from vaccine strain Rev-1 with ML-VNTR, RFLP and DGGE techniques. These tools can be used for conventional investigations in brucellosis outbreaks.

  6. The Course of Due Process.

    ERIC Educational Resources Information Center

    Getty, Laura A.; Summy, Sarah E.

    2004-01-01

    Discussion of due process rights for children with disabilities considers common issues leading to due process requests, due process procedures, hearing officers, procedural violations, effects of due process meetings, and areas for improvement (i.e., accountability, paperwork). Tables list categories of procedural violations with examples and…

  7. Heat strain in cold.

    PubMed

    Rintamäki, Hannu; Rissanen, Sirkka

    2006-07-01

    In spite of increased environmental cold stress, heat strain is possible also in a cold environment. The body heat balance depends on three factors: environmental thermal conditions, metabolic heat production and thermal insulation of clothing and other protective garments. As physical exercise may increase metabolic heat production from rest values by ten times or even more, the required thermal insulation of clothing may vary accordingly. However, in most outdoor work, and often in indoor cold work, too, the thermal insulation of clothing is impractical, difficult or impossible to adjust according to the changes in physical activity. This is especially true with whole body covering garments like chemical protective clothing. As a result of this imbalance, heat strain may develop. In cold all the signs of heat strain (core temperature above 38 degrees C, warm or hot thermal sensations, increased cutaneous circulation and sweating) may not be present at the same time. Heat strain in cold may be whole body heat strain or related only to torso or core temperature. Together with heat strain in torso or body core, there can be at the same time even cold strain in peripheral parts and/or superficial layers of the body. In cold environment both the preservation of insulation and facilitation of heat loss are important. Development of clothing design is still needed to allow easy adjustments of thermal insulation.

  8. Thin film strain transducer

    NASA Astrophysics Data System (ADS)

    Rand, J. L.

    1981-01-01

    Previous attempts to develop an appropriate sensor for measuring the stress or strain of high altitude balloons during flight are reviewed as well as the various conditions that must be met by such a device. The design, development and calibration of a transducer which promises to satisfy the necessary design constraints are described. The thin film strain transducer has a low effective modulus so as not to interfere with the strain that would naturally occur in the balloon. In addition, the transducer has a high sensitivity to longitudinal strain (7.216 mV/V/unit strain) which is constant for all temperature from room temperature to -80 C and all strains from 5 percent compression to 10 percent tensile strain. At the same time, the sensor is relatively insensitive (0.27 percent) to transverse forces. The device has a standard 350 ohm impedance which is compatible with available bridge balance, amplification and telemetry instrumentation now available for balloon flight. Recommendations are included for improved coatings to provide passive thermal control as well as model, tethered and full scale flight testing.

  9. Controlled-strain rate tests at very low strain rates of 2618 aluminum at 200 C

    NASA Technical Reports Server (NTRS)

    Ding, J. L.; Lee, S. R.

    1988-01-01

    Constant strain rate tests and constant load creep tests were performed on 2618 aluminum at 200 C. The strain rates used in the constant strain rate tests were 10 to the minus 6, 10 to the minus 7, 10 to the minum 8, and 10 to the minus 9/sec. Due to the fact that the strain rates in both tests were comparable to each other, the similarities between them can therefore be studied. It was concluded that metals are essentially rate sensitive at elevated temperatures. The traditional definition of creep and plasticity used in the classical creep analysis is actually a reflection of the material behavior under different loading conditions. A constitutive equation based on the test data under one loading condition should work well for other loading conditions as long as the strain rates are in the same range as those under which the material constants are determined.

  10. Determining Micromechanical Strain in Nitinol

    SciTech Connect

    Strasberg, Matthew; /SLAC

    2006-09-27

    Nitinol is a superelastic alloy made of equal parts nickel and titanium. Due to its unique shape memory properties, nitinol is used to make medical stents, lifesaving devices used to allow blood flow in occluded arteries. Micromechanical models and even nitinol-specific finite element analysis (FEA) software are insufficient for unerringly predicting fatigue and resultant failure. Due to the sensitive nature of its application, a better understanding of nitinol on a granular scale is being pursued through X-ray diffraction techniques at the Stanford Synchrotron Radiation Laboratory (SSRL) at the Stanford Linear Accelerator Center (SLAC). Through analysis of powder diffraction patterns of nitinol under increasing tensile loads, localized strain can be calculated. We compare these results with micromechanical predictions in order to advance nitinol-relevant FEA tools. From this we hope to gain a greater understanding of how nitinol fatigues under multi-axial loads.

  11. Strain gauge installation tool

    DOEpatents

    Conard, Lisa Marie

    1998-01-01

    A tool and a method for attaching a strain gauge to a test specimen by maaining alignment of, and applying pressure to, the strain gauge during the bonding of the gauge to the specimen. The tool comprises rigid and compliant pads attached to a spring-loaded clamp. The pads are shaped to conform to the specimen surface to which the gauge is to be bonded. The shape of the pads permits the tool to align itself to the specimen and to maintain alignment of the gauge to the specimen during the bond curing process. A simplified method of attaching a strain gauge is provided by use of the tool.

  12. Principal component analysis of shear strain effects.

    PubMed

    Chen, Hao; Varghese, Tomy

    2009-05-01

    Shear stresses are always present during quasi-static strain imaging, since tissue slippage occurs along the lateral and elevational directions during an axial deformation. Shear stress components along the axial deformation axes add to the axial deformation while perpendicular components introduce both lateral and elevational rigid motion and deformation artifacts into the estimated axial and lateral strain tensor images. A clear understanding of these artifacts introduced into the normal and shear strain tensor images with shear deformations is essential. In addition, signal processing techniques for improved depiction of the strain distribution is required. In this paper, we evaluate the impact of artifacts introduced due to lateral shear deformations on the normal strain tensors estimated by varying the lateral shear angle during an axial deformation. Shear strains are quantified using the lateral shear angle during the applied deformation. Simulation and experimental validation using uniformly elastic and single inclusion phantoms were performed. Variations in the elastographic signal-to-noise and contrast-to-noise ratios for axial deformations ranging from 0% to 5%, and for lateral deformations ranging from 0 to 5 degrees were evaluated. Our results demonstrate that the first and second principal component strain images provide higher signal-to-noise ratios of 20 dB with simulations and 10 dB under experimental conditions and contrast-to-noise ratio levels that are at least 20 dB higher when compared to the axial and lateral strain tensor images, when only lateral shear deformations are applied. For small axial deformations, the lateral shear deformations significantly reduces strain image quality, however the first principal component provides about a 1-2dB improvement over the axial strain tensor image. Lateral shear deformations also significantly increase the noise level in the axial and lateral strain tensor images with larger axial deformations

  13. Revisiting borehole strain, typhoons, and slow earthquakes using quantitative estimates of precipitation-induced strain changes

    NASA Astrophysics Data System (ADS)

    Hsu, Ya-Ju; Chang, Yuan-Shu; Liu, Chi-Ching; Lee, Hsin-Ming; Linde, Alan T.; Sacks, Selwyn I.; Kitagawa, Genshio; Chen, Yue-Gau

    2015-06-01

    Taiwan experiences high deformation rates, particularly along its eastern margin where a shortening rate of about 30 mm/yr is experienced in the Longitudinal Valley and the Coastal Range. Four Sacks-Evertson borehole strainmeters have been installed in this area since 2003. Liu et al. (2009) proposed that a number of strain transient events, primarily coincident with low-barometric pressure during passages of typhoons, were due to deep-triggered slow slip. Here we extend that investigation with a quantitative analysis of the strain responses to precipitation as well as barometric pressure and the Earth tides in order to isolate tectonic source effects. Estimates of the strain responses to barometric pressure and groundwater level changes for the different stations vary over the ranges -1 to -3 nanostrain/millibar(hPa) and -0.3 to -1.0 nanostrain/hPa, respectively, consistent with theoretical values derived using Hooke's law. Liu et al. (2009) noted that during some typhoons, including at least one with very heavy rainfall, the observed strain changes were consistent with only barometric forcing. By considering a more extensive data set, we now find that the strain response to rainfall is about -5.1 nanostrain/hPa. A larger strain response to rainfall compared to that to air pressure and water level may be associated with an additional strain from fluid pressure changes that take place due to infiltration of precipitation. Using a state-space model, we remove the strain response to rainfall, in addition to those due to air pressure changes and the Earth tides, and investigate whether corrected strain changes are related to environmental disturbances or tectonic-original motions. The majority of strain changes attributed to slow earthquakes seem rather to be associated with environmental factors. However, some events show remaining strain changes after all corrections. These events include strain polarity changes during passages of typhoons (a characteristic that is

  14. Strain and magnetic remanence

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham John

    1993-05-01

    Experimental data may be compatible with the hypothesis that a single direction of magnetic remanence rotates as a rigid marker with strains up to 40% shortening in coaxial, perfect flattening ( X = Y > Z). Detailed agreement with the passive line model is relatively poor for the specimens in which remanance is carried by magnetite. However, for this range of strains the differences with the passive line model (Wettstein's equation) are so slight that the latter model may be more easily employed to de-strain or restore deformed remanance to its original attitude. In the case of hematite-bearing remanences, the differences between the passive line and rigid marker model are even smaller because of the higher aspect ratios of grains of hematite. Therefore it is suggested that Wettstein's equation may be safely used to restore remanence after even higher strains, where the remanence is carried by hematite.

  15. Nanowires enabling strained photovoltaics

    SciTech Connect

    Greil, J.; Bertagnolli, E.; Lugstein, A.; Birner, S.

    2014-04-21

    Photovoltaic nano-devices have largely been relying on charge separation in conventional p-n junctions. Junction formation via doping, however, imposes major challenges in process control. Here, we report on a concept for photovoltaic energy conversion at the nano scale without the need for intentional doping. Our approach relies on charge carrier separation in inhomogeneously strained germanium nanowires (Ge NWs). This concept utilizes the strain-induced gradient in bandgap along tapered NWs. Experimental data confirms the feasibility of strain-induced charge separation in individual vapor-liquid-solid grown Ge NW devices with an internal quantum efficiency of ∼5%. The charge separation mechanism, though, is not inherently limited to a distinct material. Our work establishes a class of photovoltaic nano-devices with its opto-electronic properties engineered by size, shape, and applied strain.

  16. Strains and Sprains

    MedlinePlus

    ... in the joint or muscle swelling and bruising warmth and redness of the injured area difficulty moving ... looks "bent" or misshapen signs of infection (increased warmth, redness, streaks, swelling, and pain) a strain or ...

  17. Sprains and Strains

    MedlinePlus

    ... people at risk for strains. Gymnastics, tennis, rowing, golf, and other sports that require extensive gripping can ... participating in any sport or exercise. Wear protective equipment when playing. Run on even surfaces. Information on ...

  18. On strain-rate independent damping in continuum mechanics

    NASA Astrophysics Data System (ADS)

    Mulder, Gerben

    2017-10-01

    Strain-rate independent damping is a theory of energy dissipation in solids. It is based on the assumption that an increase or decrease in the strain-energy density correlates with a multiplication of 1+η or 1-η respectively, of the material stiffness matrix, with 0≤ η <<1 with η either a constant or a function of the strain-energy density. This type of damping has a loss (Watt m-3) of η times the absolute value of the rate of change of the strain-energy density. For uni-axial strain and a suitable function of the strain-energy density, the energy dissipation (Joule m-3) due to an infinitesimal change of the strain is strain-rate independent and proportional to the absolute value of the strain raised to a power ranging from 1 to 2. This is an idealization of tests results, based on forced harmonic strain cycles, with an energy dissipation (Joule m-3 cycle-1) found to be nearly frequency independent and almost proportional to the strain amplitude raised to a power ranging from 2 to 3. The PDEs derived for strain-rate independent damping can be solved for 1, 2 or 3 dimensions via direct integration, provided that the software supports PDE coefficients that are functions of the solution and its space and time derivatives. A 3D problem with 22,000 DOF's and 10,000 time steps was solved successfully and convincingly.

  19. Resistance fail strain gage technology as applied to composite materials

    NASA Technical Reports Server (NTRS)

    Tuttle, M. E.; Brinson, H. F.

    1985-01-01

    Existing strain gage technologies as applied to orthotropic composite materials are reviewed. The bonding procedures, transverse sensitivity effects, errors due to gage misalignment, and temperature compensation methods are addressed. Numerical examples are included where appropriate. It is shown that the orthotropic behavior of composites can result in experimental error which would not be expected based on practical experience with isotropic materials. In certain cases, the transverse sensitivity of strain gages and/or slight gage misalignment can result in strain measurement errors.

  20. Photothermal strain imaging

    NASA Astrophysics Data System (ADS)

    Choi, Changhoon; Ahn, Joongho; Jeon, Seungwan; Kim, Chulhong

    2017-07-01

    Vulnerable plaques are the major cause of cardiovascular disease, but they are difficult to detect with conventional intravascular imaging techniques. Techniques are needed to identify plaque vulnerability based on the presence of lipids in plaque. Thermal strain imaging (TSI) is an imaging technique based on ultrasound (US) wave propagation speed, which varies with the medium temperature. In TSI, the strain that occurs during tissue temperature change can be used for lipid detection because it has a different tendency depending on the type of tissue. Here, we demonstrate photothermal strain imaging (pTSI) using an intravascular ultrasound catheter. pTSI is performed by slightly and selectively heating lipid using a relatively inexpensive continuous laser source. We applied a speckle-tracking algorithm to US B-mode images for strain calculations. As a result, the strain produced in porcine fat was different from the strain produced in water-bearing gelatin phantom, which made it possible to distinguish the two. This suggests that pTSI could potentially be a way of differentiating lipids in coronary artery.

  1. Accumulated financial strain and women's health over three decades.

    PubMed

    Shippee, Tetyana Pylypiv; Wilkinson, Lindsay R; Ferraro, Kenneth F

    2012-09-01

    Drawing from cumulative inequality theory, this research examines how accumulated financial strain affects women's self-rated health in middle and later life. Using data from the National Longitudinal Survey of Mature Women (1967-2003), we employ random-coefficient growth curve models to examine whether recurring financial strain influences women's health, above and beyond several measures of objective social status. Predicted probabilities of poor health were estimated by the frequency of financial strain. Financial strain is associated with rapid declines in women's health during middle and later life, especially for those women who reported recurrent strain. Changes in household income and household wealth were also associated with women's health but did not eliminate the effects due to accumulated financial strain. Accumulated financial strain has long-term effects on women's health during middle and later life. The findings demonstrate the importance of measuring life course exposure to stressors in studies of health trajectories.

  2. Smart composite structure based on integrated passive wireless strain sensors

    NASA Astrophysics Data System (ADS)

    Wong, Zi Jing; Kim, Chun-Gon

    2008-03-01

    This paper reports the development of low-cost inductively coupled passive wireless strain sensors which could be easily embedded within composite prepreg layers for structural health monitoring application. The sensors of 5 different patterns were fabricated and were experimentally tested. Theoretical modeling utilizing two different approaches and electromagnetic simulation were performed to estimate both the strain-free resonant frequency and the shift of resonant frequency of the sensor due to strain. Both the modeling and simulation results showed satisfactory agreement with the experimental data. The Terman model was found to give a better approximation of the strain-free resonant frequency, but the CAD model managed to predict the resonant frequency shift caused by strain more closer to the simulation result. Experimentally, all the sensors showed great strain sensing potential, as good linearity between resonant frequency and strain and relatively low hysteresis characteristics were observed. Finally, the feasibility of constructing sensor array was verified.

  3. Theory of strain in single-layer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Rostami, Habib; Roldán, Rafael; Cappelluti, Emmanuele; Asgari, Reza; Guinea, Francisco

    2015-11-01

    Strain engineering has emerged as a powerful tool to modify the optical and electronic properties of two-dimensional crystals. Here we perform a systematic study of strained semiconducting transition metal dichalcogenides. The effect of strain is considered within a full Slater-Koster tight-binding model, which provides us with the band structure in the whole Brillouin zone (BZ). From this, we derive an effective low-energy model valid around the K point of the BZ, which includes terms up to second order in momentum and strain. For a generic profile of strain, we show that the solutions for this model can be expressed in terms of the harmonic oscillator and double quantum well models, for the valence and conduction bands respectively. We further study the shift of the position of the electron and hole band edges due to uniform strain. Finally, we discuss the importance of spin-strain coupling in these 2D semiconducting materials.

  4. Tuning Surface Properties of Low Dimensional Materials via Strain Engineering.

    PubMed

    Yang, Shengchun; Liu, Fuzhu; Wu, Chao; Yang, Sen

    2016-08-01

    The promising and versatile applications of low dimensional materials are largely due to their surface properties, which along with their underlying electronic structures have been well studied. However, these materials may not be directly useful for applications requiring properties other than their natal ones. In recent years, strain has been shown to be an additionally useful handle to tune the physical and chemical properties of materials by changing their geometric and electronic structures. The strategies for producing strain are summarized. Then, the electronic structure of quasi-two dimensional layered non-metallic materials (e.g., graphene, MX2, BP, Ge nanosheets) under strain are discussed. Later, the strain effects on catalytic properties of metal-catalyst loaded with strain are focused on. Both experimental and computational perspectives for dealing with strained systems are covered. Finally, an outlook on engineering surface properties utilizing strain is provided. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Computer modelling of bone's adaptation: the role of normal strain, shear strain and fluid flow.

    PubMed

    Tiwari, Abhishek Kumar; Prasad, Jitendra

    2017-04-01

    Bone loss is a serious health problem. In vivo studies have found that mechanical stimulation may inhibit bone loss as elevated strain in bone induces osteogenesis, i.e. new bone formation. However, the exact relationship between mechanical environment and osteogenesis is less clear. Normal strain is considered as a prime stimulus of osteogenic activity; however, there are some instances in the literature where osteogenesis is observed in the vicinity of minimal normal strain, specifically near the neutral axis of bending in long bones. It suggests that osteogenesis may also be induced by other or secondary components of mechanical environment such as shear strain or canalicular fluid flow. As it is evident from the literature, shear strain and fluid flow can be potent stimuli of osteogenesis. This study presents a computational model to investigate the roles of these stimuli in bone adaptation. The model assumes that bone formation rate is roughly proportional to the normal, shear and fluid shear strain energy density above their osteogenic thresholds. In vivo osteogenesis due to cyclic cantilever bending of a murine tibia has been simulated. The model predicts results close to experimental findings when normal strain, and shear strain or fluid shear were combined. This study also gives a new perspective on the relation between osteogenic potential of micro-level fluid shear and that of macro-level bending shear. Attempts to establish such relations among the components of mechanical environment and corresponding osteogenesis may ultimately aid in the development of effective approaches to mitigating bone loss.

  6. Strain: Fact or Fiction?

    NASA Astrophysics Data System (ADS)

    Heilbronner, Renée

    2017-04-01

    2017 marks the 50th anniversary of the publication of John Ramsay's well known textbook "Folding and Fracturing of Rocks" - ... and the 30th anniversary of the rejection of a rather less well known paper entitled "Strain: Fact or Fiction?" submitted by Renée Panozzo to the Journal of Structural Geology. The gist of the paper was simple and straight forward: it was argued that not every fabric that can be observed in deformed rocks is necessarily a measure of the amount of strain the rock incurred. A distinction was made between a general "fabric", i.e., the traceable geometry of grain boundaries, for example, and a so-called "strain fabric", i.e., the model geometry that would result from homogeneously straining an initially isotropic fabric and that would exhibit at least orthorhombic symmetry. To verify if a given fabric was indeed a strain fabric it was therefore suggested to use the SURFOR method (published by Panozzo) and to carry out a so-called strain test, i.e., a check of symmetry, before interpreting the results of a fabric analysis in terms of strain. The problem with the paper was that it was very obviously written out of frustration. The frustration came form having reviewed a number of manuscripts which tried to use the then novel SURFOR method for strain analysis without first checking if the the fabric was a indeed a "strain fabric" or not, and then blaming the SURFOR method for producing ambiguous results. As a result, the paper was not exactly well balanced and carefully thought out. It was considered "interesting but not scholarly" by one of the reviewers and down-right offensive by the second. To tell the truth, however, the paper was not formally rejected. The editor Sue Treagus strongly encouraged Panozzo to revise the paper, ... and 30 years later, I will follow her advise and offer a revised paper as a tribute to John Ramsay. To quote from the original manuscript: "We should be a little more impressed that strain works so well, and less

  7. Flexible photonic crystals for strain sensing

    NASA Astrophysics Data System (ADS)

    Fortes, Luís M.; Gonçalves, M. Clara; Almeida, Rui M.

    2011-01-01

    Three-dimensional (3-D) photonic crystals (PCs) have been studied as possible strain sensing materials, based on strain-induced stop band frequency shifting. Self-assembly of polystyrene microspheres, achieved by sedimentation over a flexible polyimide tape substrate whose surface hydrophilicity was optimized in order to achieve maximum wettability, led to an organized 3-D direct opal template. This was infiltrated with a silica sol-gel solution by dip-coating or by chemical vapour deposition and an inverse opal structure was ultimately obtained by chemical dissolution of the polymer template. The structural and optical properties of these PCs have been studied by scanning electron microscopy (FE-SEM) and UV/visible spectroscopy under variable degrees of strain. FE-SEM showed the presence of ordered domains up to ∼30 μm2. A mechano-optical effect was evidenced by strain-induced shifting of the photonic stop band peak wavelength of the direct, infiltrated and inverse opals up to 50 nm in transmission mode, due to changes in interplanar spacing upon bending the flexible PCs. Optical response strain cycles were studied, suggesting the possible use of these structures in reversible photonic strain sensors integrated in sensor/actuator devices.

  8. Strain responsive concave and convex microlens arrays

    NASA Astrophysics Data System (ADS)

    Chandra, Dinesh; Yang, Shu; Lin, Pei-Chun

    2007-12-01

    We report the fabrication of single-component, strain responsive microlens arrays with real-time tunability. The concave lens array is fabricated by patterning hard oxide layer on a bidirectionally prestretched soft elastomer, poly(dimethylsiloxane) (PDMS) followed by confined buckling upon release of the prestrain. The convex microlens array is replica molded from the concave lenses in PDMS. Due to difference in lens formation mechanisms, the two types of lenses show different tunable range of focal length in response to the applied strain: large focal length change is observed from the concave microlens array, whereas that from the convex microlens array is much smaller.

  9. Ecoepidemics with Two Strains: Diseased Prey.

    NASA Astrophysics Data System (ADS)

    Elena, Elisa; Grammauro, Maria; Venturino, Ezio

    2011-09-01

    In this work we present a minimal model for an ecoepidemic situation with two diseases affecting the prey population. The main assumptions are the following ones. The predators recognize and hunt only the healthy prey. An infected prey of one strain becomes immune to the other one. The major finding shows that the two strains cannot simultaneously thrive in the system, contrary to the standard assumptions in epidemiology. But this rather unexpected and remarkable result, paralleling another one when the epidemics affects the predators, is most likely due to the assumptions made.

  10. Shock due to urosepsis: A multicentre study

    PubMed Central

    Yamamichi, Fukashi; Shigemura, Katsumi; Kitagawa, Koichi; Takaba, Kei; Tokimatsu, Issei; Arakawa, Soichi; Fujisawa, Masato

    2017-01-01

    Introduction Urosepsis is a severe infection that can cause shock afterwards. The purpose of this study is to investigate the clinical and bacterial risk factors for shock in those cases with urosepsis caused by urinary tract infection in a multicentre study. Methods Our study included 77 consecutive urosepsis cases from four hospitals. We examined factors such as patient characteristics, underlying disease, serum white blood cell (WBC) count, platelet count, C-reactive protein (CRP) level at the time of diagnosis of urosepsis, urinary tract occlusion, causative bacteria, and bacterial antibiotic susceptibilities. Statistical analyses were performed to assess the potential risk factors for shock during the clinical course of urosepsis by a multivariate analysis. Results We had 38 male and 39 female patients aged 25–104 (median 73). Underlying diseases included cancers (n=22, 28.6 %) and diabetes mellitus (n=17, 22.1 %). Positive blood culture was seen in 74 cases; these involved 88 bacterial strains, of which Escherichia coli was the most common (34 strains, 38.6 %). There were 31 cases with shock (40.3 %) and multivariate analyses demonstrated that serum CRP was the only clinical risk factor for shock due to urosepsis. Conclusions Our study demonstrated that serum CRP was a risk factor for shock during urosepsis in a multicentre analysis. Further prospective studies with a greater number of patients are needed to draw more definitive conclusions. PMID:28360956

  11. Strain isolated ceramic coatings

    NASA Technical Reports Server (NTRS)

    Tolokan, R. P.; Brady, J. B.; Jarrabet, G. P.

    1985-01-01

    Plasma sprayed ceramic coatings are used in gas turbine engines to improve component temperature capability and cooling air efficiency. A compliant metal fiber strain isolator between a plasma sprayed ceramic coating and a metal substrate improves ceramic durability while allowing thicker coatings for better insulation. Development of strain isolated coatings has concentrated on design and fabrication of coatings and coating evaluation via thermal shock testing. In thermal shock testing, five types of failure are possible: buckling failure im compression on heat up, bimetal type failure, isothermal expansion mismatch failure, mudflat cracking during cool down, and long term fatigue. A primary failure mode for thermally cycled coatings is designated bimetal type failure. Bimetal failure is tensile failure in the ceramic near the ceramic-metal interface. One of the significant benefits of the strain isolator is an insulating layer protecting the metal substrate from heat deformation and thereby preventing bimetal type failure.

  12. Strain avalanches in plasticity

    NASA Astrophysics Data System (ADS)

    Argon, A. S.

    2013-09-01

    Plastic deformation at the mechanism level in all solids occurs in the form of discrete thermally activated individual stress relaxation events. While there are clear differences in mechanisms between dislocation mediated events in crystalline solids and by individual shear transformations in amorphous metals and semiconductors, such relaxation events interact strongly to form avalanches of strain bursts. In all cases the attendant distributions of released energy as amplitudes of acoustic emissions, or in serration amplitudes in flow stress, the levels of strain bursts are of fractal character with fractal exponents in the range from -1.5 to -2.0, having the character of phenomena of self-organized criticality, SOC. Here we examine strain avalanches in single crystals of ice, hcp metals, the jerky plastic deformations of nano-pillars of fcc and bcc metals deforming in compression, those in the plastic flow of bulk metallic glasses, all demonstrating the remarkable universality of character of plastic relaxation events.

  13. Strain gauge installation tool

    DOEpatents

    Conard, L.M.

    1998-06-16

    A tool and a method are disclosed for attaching a strain gauge to a test specimen by maintaining alignment of, and applying pressure to, the strain gauge during the bonding of the gauge to the specimen. The tool comprises rigid and compliant pads attached to a spring-loaded clamp. The pads are shaped to conform to the specimen surface to which the gauge is to be bonded. The shape of the pads permits the tool to align itself to the specimen and to maintain alignment of the gauge to the specimen during the bond curing process. A simplified method of attaching a strain gauge is provided by use of the tool. 6 figs.

  14. Muscle strain injuries.

    PubMed

    Garrett, W E

    1996-01-01

    One of the most common injuries seen in the office of the practicing physician is the muscle strain. Until recently, little data were available on the basic science and clinical application of this basic science for the treatment and prevention of muscle strains. Studies in the last 10 years represent action taken on the direction of investigation into muscle strain injuries from the laboratory and clinical fronts. Findings from the laboratory indicate that certain muscles are susceptible to strain injury (muscles that cross multiple joints or have complex architecture). These muscles have a strain threshold for both passive and active injury. Strain injury is not the result of muscle contraction alone, rather, strains are the result of excessive stretch or stretch while the muscle is being activated. When the muscle tears, the damage is localized very near the muscle-tendon junction. After injury, the muscle is weaker and at risk for further injury. The force output of the muscle returns over the following days as the muscle undertakes a predictable progression toward tissue healing. Current imaging studies have been used clinically to document the site of injury to the muscle-tendon junction. The commonly injured muscles have been described and include the hamstring, the rectus femoris, gastrocnemius, and adductor longus muscles. Injuries inconsistent with involvement of a single muscle-tendon junction proved to be at tendinous origins rather than within the muscle belly. Important information has also been provided regarding injuries with poor prognosis, which are potentially repairable surgically, including injuries to the rectus femoris muscle, the hamstring origin, and the abdominal wall. Data important to the management of common muscle injuries have been published. The risks of reinjury have been documented. The early efficacy and potential for long-term risks of nonsteroidal antiinflammatory agents have been shown. New data can also be applied to the field

  15. Radio frequency strain monitor

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S. (Inventor); Rogowski, Robert S. (Inventor); Holben, Jr., Milford S. (Inventor)

    1989-01-01

    A radio frequency strain monitor includes a voltage controlled oscillator for generating an oscillating signal that is input into a propagation path. The propagation path is preferably bonded to the surface of a structure to be monitored and produces a propagated signal. A phase difference between the oscillating and propagated signals is detected and maintained at a substantially constant value which is preferably a multiple of 90.degree. by changing the frequency of the oscillating signal. Any change in frequency of the oscillating signal provides an indication of strain in the structure to which the propagation path is bonded.

  16. The apparent strain stability and repeatability of a BCL3 resistance strain gage

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1991-01-01

    Experiments were conducted at NASA-Lewis to study the effect of microstructural instability on the apparent strain stability and reproducibility of a BCL3 resistance strain gage. The resistance drift of the gage at various temperatures in the phase transition temperature range (PTTR) was measured. The effects of the heating and cooling rates with which the gage passed through the PTTR on the apparent strain characteristics of the gage were also studied. BCL3 gage, like other Fe-Cr-Al based gages, exhibited apparent strain instability in the temperature range of 700 to 1100 F due to the reversible microstructural transition the gage materials experienced in this temperature range. The BCL3 gage had a maximum apparent strain drift in the neighborhood of 770 F with an average drift rate of approx. -440 microstrain/hr in 2 hrs. The use of the BCL3 gage as well as other Fe-Cl-Al based gages for static strain measurements within the PTTR should be avoided unless the time durations in the PTTR are small enough to introduce a neglible drift. The microstructure transition that the BCL3 gage underwent occurred in the temperature range of 750 to 1050 F during heating and around 1000 to 800 F during cooling. The heating rate, and, in particular, the cooling rate with which the gage passed through the PTTR affected the shape and the repeatability of the apparent strain curve of the gage.

  17. Novel B19' strain glass with large recoverable strain

    NASA Astrophysics Data System (ADS)

    Liang, Qianglong; Wang, Dong; Zhang, Jian; Ji, Yuanchao; Ding, Xiangdong; Wang, Yu; Ren, Xiaobing; Wang, Yunzhi

    2017-08-01

    We report a strain glass state (B19' strain glass) in a Ni-rich TiNi shape memory alloy produced by cold rolling. As compared to previously reported strain glasses, this strain glass state has outstanding properties including quasilinear superelasticity with a large recoverable strain (˜4%), and slim hysteresis and high strength (˜1.0 GPa) over a wide temperature range (˜200 K). The existence of the B19' strain glass state is confirmed by (i) frequency dispersion of storage modulus, (ii) continuous decrease of electrical resistivity, and (iii) continuous growth of B19' nanodomains upon cooling. This study proves that the effect of defect strength on the creation of a strain glass state is in parallel to the effect of cooling rate on the creation of a structural glass, e.g., any strain crystal (i.e., martensite) can be turned into a strain glass if strong enough defects could be engineered.

  18. ConStrains identifies microbial strains in metagenomic datasets.

    PubMed

    Luo, Chengwei; Knight, Rob; Siljander, Heli; Knip, Mikael; Xavier, Ramnik J; Gevers, Dirk

    2015-10-01

    An important fraction of microbial diversity is harbored in strain individuality, so identification of conspecific bacterial strains is imperative for improved understanding of microbial community functions. Limitations in bioinformatics and sequencing technologies have to date precluded strain identification owing to difficulties in phasing short reads to faithfully recover the original strain-level genotypes, which have highly similar sequences. We present ConStrains, an open-source algorithm that identifies conspecific strains from metagenomic sequence data and reconstructs the phylogeny of these strains in microbial communities. The algorithm uses single-nucleotide polymorphism (SNP) patterns in a set of universal genes to infer within-species structures that represent strains. Applying ConStrains to simulated and host-derived datasets provides insights into microbial community dynamics.

  19. MWCNTs based flexible and stretchable strain sensors

    NASA Astrophysics Data System (ADS)

    Khan, Saeed Ahmed; Gao, Min; Zhu, Yuechang; Yan, Zhuocheng; Lin, Yuan

    2017-06-01

    Carbon nanotubes have potential applications in flexible and stretchable devices due to their remarkable electromechanical properties. Flexible and stretchable strain sensors of multi-walled carbon nanotubes (MWCNTs) with aligned or random structures were fabricated on poly-dimethylsiloxane (PDMS) substrate with different techniques. It was observed that the spraycoatedtechniquebased strain sensor fabricated on PDMS substrate showed higher sensitivity higher stretchability, better linearity and excellent longer time stability than the sensor fabricated with other methods presented in this work. The scanning electron microscopy images indicated the spray coating technique can produce a better uniform and compact CNT network, which is the important role affecting the performance of CNT-based flexible strain sensors. Project supported by the National Basic Research Program of China (No. 2015CB351905), the National Natural Science Foundation of China (No. 61306015), the Technology Innovative Research Team of Sichuan Province of China (No.2015TD0005), and “111” Project (No. B13042)

  20. Dialysis Culture of T-Strain Mycoplasmas

    PubMed Central

    Masover, Gerald K.; Hayflick, Leonard

    1974-01-01

    Using dialyzing cultures of T-strain mycoplasmas, it was possible to make some observations relevant to the growth and metabolism of these organisms which would not be possible in nondialyzing cultures due to growth inhibition of the organisms by elevated pH and increased ammonium ion concentration in media containing urea. The rate of ammonia accumulation was found to be related to the initial urea concentration in the medium and could not be accounted for by any change in the multiplication rate of the organisms. More ammonia was generated than could be accounted for by the added urea alone, suggesting that an ammonia-producing activity other than urease may be present in T-strain mycoplasmas. Titers above 107 color change units per ml were achieved in dialysis cultures of a T-strain mycoplasma in the presence of urea, and such titers were maintained for approximately 60 h during dialysis culture in the absence of added urea. PMID:4595203

  1. The breaking strain of neutron star crust

    SciTech Connect

    Kadau, Kai; Horowitz, C J

    2009-01-01

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Due to the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gTavitational wave radiation could limit the spin periods of some stars and might be detectable in large scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in Magnetar Giant and Micro Flares.

  2. Influence of pore pressure change on coseismic volumetric strain

    NASA Astrophysics Data System (ADS)

    Wang, Chi-Yuen; Barbour, Andrew J.

    2017-10-01

    Coseismic strain is fundamentally important for understanding crustal response to changes of stress after earthquakes. The elastic dislocation model has been widely applied to interpreting observed shear deformation caused by earthquakes. The application of the same theory to interpreting volumetric strain, however, has met with difficulty, especially in the far field of earthquakes. Predicted volumetric strain with dislocation model often differs substantially, and sometimes of opposite signs, from observed coseismic volumetric strains. The disagreement suggests that some processes unaccounted for by the dislocation model may occur during earthquakes. Several hypotheses have been suggested, but none have been tested quantitatively. In this paper we first examine published data to highlight the difference between the measured and calculated static coseismic volumetric strains; we then use these data to provide quantitative test of the model that the disagreement may be explained by the change of pore pressure in the shallow crust. The test allows us to conclude that coseismic change of pore pressure may be an important mechanism for coseismic crustal strain and, in the far field, may even be the dominant mechanism. Thus in the interpretation of observed coseismic crustal strain, one needs to account not only for the elastic strain due to fault rupture but also for the strain due to coseismic change of pore pressure.

  3. Identification of diarrheagenic Escherichia coli strains from avian organic fertilizers.

    PubMed

    Puño-Sarmiento, Juan; Gazal, Luis Eduardo; Medeiros, Leonardo P; Nishio, Erick K; Kobayashi, Renata K T; Nakazato, Gerson

    2014-08-28

    The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC) strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%), three strains as Shiga toxin-producing (STEC; 4.7%), 10 strains as enteroaggregative (EAEC; 12.5%), but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections.

  4. Identification of Diarrheagenic Escherichia coli Strains from Avian Organic Fertilizers

    PubMed Central

    Puño-Sarmiento, Juan; Gazal, Luis Eduardo; Medeiros, Leonardo P.; Nishio, Erick K.; Kobayashi, Renata K. T.; Nakazato, Gerson

    2014-01-01

    The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC) strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%), three strains as Shiga toxin-producing (STEC; 4.7%), 10 strains as enteroaggregative (EAEC; 12.5%), but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections. PMID:25170683

  5. Repetitive strain injury.

    PubMed

    Al-Otaibi, S T

    2001-05-01

    Repetitive strain injury is a group of musculoskeletal disorders affecting muscles, tendons, nerves and blood vessels. These disorders could be attributed to occupational causes; however non-occupational causes should be excluded. The management of these cases required a multidisciplinary team approach.

  6. Strain gage barometric transmitter

    NASA Technical Reports Server (NTRS)

    Viton, P.

    1977-01-01

    A strain gage barometric transmitter for measuring the atmospheric pressure in severe environmental conditions is described. This equipment specifications are presented and its performance assessed. It is shown that this barometric sensor can measure the atmospheric pressure with a precision of 0.5 mb during a 6 month period.

  7. Balloon film strain measurement

    NASA Astrophysics Data System (ADS)

    Rand, James L.

    In order to understand the state of stress in scientific balloons, a need exists for the measurement of film deformation in flight. The results of a flight test program are reported where material strain was measured for the first time during the inflation, launch, ascent and float of a typical natural shape, zero pressure scientific balloon.

  8. Apparent-Strain Correction for Combined Thermal and Mechanical Testing

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; O'Neil, Teresa L.

    2007-01-01

    Combined thermal and mechanical testing requires that the total strain be corrected for the coefficient of thermal expansion mismatch between the strain gage and the specimen or apparent strain when the temperature varies while a mechanical load is being applied. Collecting data for an apparent strain test becomes problematic as the specimen size increases. If the test specimen cannot be placed in a variable temperature test chamber to generate apparent strain data with no mechanical loads, coupons can be used to generate the required data. The coupons, however, must have the same strain gage type, coefficient of thermal expansion, and constraints as the specimen to be useful. Obtaining apparent-strain data at temperatures lower than -320 F is challenging due to the difficulty to maintain steady-state and uniform temperatures on a given specimen. Equations to correct for apparent strain in a real-time fashion and data from apparent-strain tests for composite and metallic specimens over a temperature range from -450 F to +250 F are presented in this paper. Three approaches to extrapolate apparent-strain data from -320 F to -430 F are presented and compared to the measured apparent-strain data. The first two approaches use a subset of the apparent-strain curves between -320 F and 100 F to extrapolate to -430 F, while the third approach extrapolates the apparent-strain curve over the temperature range of -320 F to +250 F to -430 F. The first two approaches are superior to the third approach but the use of either of the first two approaches is contingent upon the degree of non-linearity of the apparent-strain curve.

  9. Biaxial compressive strain engineering in graphene/boron nitride heterostructures.

    PubMed

    Pan, Wei; Xiao, Jianliang; Zhu, Junwei; Yu, Chenxi; Zhang, Gang; Ni, Zhenhua; Watanabe, K; Taniguchi, T; Shi, Yi; Wang, Xinran

    2012-01-01

    Strain engineered graphene has been predicted to show many interesting physics and device applications. Here we study biaxial compressive strain in graphene/hexagonal boron nitride heterostructures after thermal cycling to high temperatures likely due to their thermal expansion coefficient mismatch. The appearance of sub-micron self-supporting bubbles indicates that the strain is spatially inhomogeneous. Finite element modeling suggests that the strain is concentrated on the edges with regular nano-scale wrinkles, which could be a playground for strain engineering in graphene. Raman spectroscopy and mapping is employed to quantitatively probe the magnitude and distribution of strain. From the temperature-dependent shifts of Raman G and 2D peaks, we estimate the TEC of graphene from room temperature to above 1000K for the first time.

  10. Biaxial Compressive Strain Engineering in Graphene/Boron Nitride Heterostructures

    PubMed Central

    Pan, Wei; Xiao, Jianliang; Zhu, Junwei; Yu, Chenxi; Zhang, Gang; Ni, Zhenhua; Watanabe, K.; Taniguchi, T.; Shi, Yi; Wang, Xinran

    2012-01-01

    Strain engineered graphene has been predicted to show many interesting physics and device applications. Here we study biaxial compressive strain in graphene/hexagonal boron nitride heterostructures after thermal cycling to high temperatures likely due to their thermal expansion coefficient mismatch. The appearance of sub-micron self-supporting bubbles indicates that the strain is spatially inhomogeneous. Finite element modeling suggests that the strain is concentrated on the edges with regular nano-scale wrinkles, which could be a playground for strain engineering in graphene. Raman spectroscopy and mapping is employed to quantitatively probe the magnitude and distribution of strain. From the temperature-dependent shifts of Raman G and 2D peaks, we estimate the TEC of graphene from room temperature to above 1000K for the first time. PMID:23189242

  11. Stochastic disease extinction in multistrain diseases with interacting strains

    NASA Astrophysics Data System (ADS)

    Bianco, Simone; Shaw, Leah; Schwartz, Ira

    2009-03-01

    The study of multistrain diseases, diseases with several coexisting strains, is a major challenge for mathematical biology. Examples of such diseases are influenza, HIV, dengue and ebola. In this work we present an agent-based model for multistrain diseases with strain interactions mediated by antibody-dependent enhancement. An individual infected with a strain develops antibodies which will protect him/her against all the strains. When the level of protection wanes, the presence of antibodies will enhance the infectiousness of the individual when an infection with a different strain occurs. This mechanism is called antibody-dependent enhancement (ADE). We use this model to investigate the role that fluctuations due to system size have on disease extinction paths and discuss how interactions mediated by ADE affect rates of disease fade-out. Finally, we discuss the effect that varying the number of strains has on disease extinction.

  12. Torsion Strain Effects on Critical Currents of Hts Superconducting Tapes

    NASA Astrophysics Data System (ADS)

    Takayasu, Makoto; Minervini, Joseph V.; Bromberg, Leslie

    2010-04-01

    A torsional twist strain effect on the critical current of a thin HTS tape has been found to be well described by a longitudinal strain model taking into account the internal shortening compressive strains accompanied with the tensile longitudinal strains due to a torsional twist. The critical current of a twisted tape is given by the integration of the critical current densities corresponding to the strain distribution over the tape cross-section using axial strain data of the tape. The model is supported with experimental results of YBCO and BSCCO-2223 tapes. It has been also found that torsional twisting effects on the critical currents of a tape composing of the conventional lapped-tape cable and the twisted stacked-tape cable are described by the same equation as that of a twisted single tape.

  13. Strain engineering of diamond silicon vacancy centers in MEMS cantilevers

    NASA Astrophysics Data System (ADS)

    Meesala, Srujan; Sohn, Young-Ik; Atikian, Haig; Holzgrafe, Jeffrey; Zhang, Mian; Burek, Michael; Loncar, Marko

    2016-05-01

    The silicon vacancy (SiV) center in diamond has recently attracted attention as a solid state quantum emitter due to its attractive optical properties. We fabricate diamond MEMS cantilevers, and use electrostatic actuation to apply controlled strain fields to single SiV centers implanted in these devices. The strain response of the four electronic transitions of the SiV at 737 nm is measured via cryogenic (4 K) photoluminescence excitation. We demonstrate over 300 GHz of tuning for the mean transition frequency between the ground and excited states, and over 100 GHz of tuning for the orbital splittings within the ground and excited states. The interaction Hamiltonian for strain fields is inferred, and large strain susceptibilities of the order 1 PHz/strain are measured. We discuss prospects to utilize our device to reduce phonon-induced decoherence in SiV spin qubits, and to exploit the large strain susceptibilities for hybrid quantum systems based on nanomechanical resonators.

  14. Extraordinary strain hardening by gradient structure

    PubMed Central

    Wu, XiaoLei; Jiang, Ping; Chen, Liu; Yuan, Fuping; Zhu, Yuntian T.

    2014-01-01

    Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures. PMID:24799688

  15. Network of flexible capacitive strain gauges for the reconstruction of surface strain

    NASA Astrophysics Data System (ADS)

    Wu, Jingzhe; Song, Chunhui; Saleem, Hussam S.; Downey, Austin; Laflamme, Simon

    2015-05-01

    Monitoring of surface strain on mesosurfaces is a difficult task, often impeded by the lack of scalability of conventional sensing systems. A solution is to deploy large networks of flexible strain gauges, a type of large area electronics. The authors have recently proposed a soft elastomeric capacitor (SEC) as an economical skin-type solution for large-scale deployment onto mesosurfaces. The sensing principle is based on a measurable change in the sensor’s capacitance upon strain. In this paper, we study the performance of the sensor at reconstructing surface strain map and deflection shapes. A particular feature of the sensor is that it measures surface strain additively, because it is not utilized within a Wheatstone bridge configuration. An algorithm is proposed to decompose the additive in-plane strain measurements from the SEC into principal components. The algorithm consists of assuming a polynomial shape function, and deriving the strain based on Kirchhoff plate theory. A least-squares estimator (LSE) is used to minimize the error between the assumed model and the SEC signals after the enforcement of boundary conditions. Numerical simulations are conducted on a symmetric rectangular cantilever thin plate under symmetric and asymmetric static loads to demonstrate the accuracy and real-time applicability of the algorithm. The performance of the algorithm is further examined on an asymmetric cantilever laminated thin plate constituted with orthotropic materials mimicking a wind turbine blade, and subjected to a non-stationary wind load. Results from simulations show good performance of the algorithm at reconstructing the surface strain maps for both in-plane principal strain components, and that it can be applied in real time. However, its performance can be improved by strengthening assumptions on boundary conditions. The algorithm exhibits robustness in performance with respect to load and noise in signals, except when most of the sensors’ signals are

  16. In vivo cranial bone strain and bite force in the agamid lizard Uromastyx geyri

    PubMed Central

    Porro, Laura B.; Ross, Callum F.; Iriarte-Diaz, Jose; O'Reilly, James C.; Evans, Susan E.; Fagan, Michael J.

    2014-01-01

    In vivo bone strain data are the most direct evidence of deformation and strain regimes in the vertebrate cranium during feeding and can provide important insights into skull morphology. Strain data have been collected during feeding across a wide range of mammals; in contrast, in vivo cranial bone strain data have been collected from few sauropsid taxa. Here we present bone strain data recorded from the jugal of the herbivorous agamid lizard Uromastyx geyri along with simultaneously recorded bite force. Principal and shear strain magnitudes in Uromastyx geyri were lower than cranial bone strains recorded in Alligator mississippiensis, but higher than those reported from herbivorous mammals. Our results suggest that variations in principal strain orientations in the facial skeleton are largely due to differences in feeding behavior and bite location, whereas food type has little impact on strain orientations. Furthermore, mean principal strain orientations differ between male and female Uromastyx during feeding, potentially because of sexual dimorphism in skull morphology. PMID:24577443

  17. A prospective study of iliotibial band strain in runners.

    PubMed

    Hamill, Joseph; Miller, Ross; Noehren, Brian; Davis, Irene

    2008-10-01

    Iliotibial band syndrome is the leading cause of lateral knee pain in runners. It is thought that pain develops from strain on the iliotibial band due to friction of the iliotibial band sliding over the lateral femoral epicondyle. The purpose of this study was to investigate mechanical strain in the iliotibial band as a possible causative factor in the development of iliotibial band syndrome. From a large prospective study, female runners who incurred iliotibial band syndrome during the study were compared to a control group who incurred no injuries. Strain, strain rate and duration of impingement were determined from a musculoskeletal model of the lower extremity. The results indicated that the iliotibial band syndrome subjects exhibited greater strain throughout the support period, but particularly at midsupport compared to the control group. Strain rate was significantly greater in the iliotibial band syndrome group compared to the control group and was greater in the involved limb of the iliotibial band syndrome group compared to their contralateral limb. However, there were no differences in the duration of impingement between the groups. This study indicates that a major factor in the development of iliotibial band syndrome is strain rate. Therefore, we suggest that strain rate, rather than the magnitude of strain, may be a causative factor in developing iliotibial band syndrome. The effect size (>0.5) indicated that strain rate may be biologically significant in the etiology of iliotibial band syndrome.

  18. Viscoelastic strain-energy hinge for solar array deployment

    NASA Astrophysics Data System (ADS)

    Kwak, Moon K.; Ra, Wan-Kyu; Yoon, Kwang J.

    1999-07-01

    This paper is concerned with the viscoelastic strain-energy hinge for solar array deployment. The original strain-energy hinge proposed by TRW for solar array deployment was made of strip measures. Due to its structural simplicity, the strain-energy hinge has been considered as an alternative to the torsional spring type deployment mechanism. However, theoretical modeling of the strain-energy hinge is extremely difficult because of its nonlinear pre- and post-buckling dynamic behavior. To investigate its dynamic characteristics, series of buckling and deployment tests on a single strain-energy hinge and a solar array structure equipped with strain-energy hinge have been conducted. The deployment test results show that there remain residual vibrations after deployment, which are resulted from the rapid deployment and the bending flexibility of the strain- energy hinge. We propose the use of viscoelastic material embedded between the layers of the strip measure to increase the passive damping. It results in less residual vibrations and smooth deployment. Experimental results show that viscoelastic strain-energy hinge ins superior to the ordinary strain-energy hinge in deployments. Based on the experiments on the single strain-energy hinge, an equivalent 1D torsional spring model is proposed. Simulation results based on the equivalent model are fairly in good agreement with experimental results.

  19. High Strain Rate Behavior of Nanoporous Tantalum

    NASA Astrophysics Data System (ADS)

    Ruestes, Carlos J.; Bringa, Eduardo M.; Stukowski, Alexander; Rodriguez Nieva, Joaquin F.; Bertolino, Graciela; Tang, Yizhe; Meyers, Marc A.

    2012-02-01

    Nano-scale failure under extreme conditions is not well understood. In addition to porosity arising from mechanical failure at high strain rates, porous structures also develop due to radiation damage. Therefore, understanding the role of porosity on mechanical behavior is important for the assessment and development of materials like metallic foams, and materials for new fission and fusion reactors, with improved mechanical properties. We carry out molecular dynamics (MD) simulations of a Tantalum (a model body-centered cubic metal) crystal with a collection of nanovoids under compression. The effects of high strain rate, ranging from 10^7s-1 to 10^10s-1, on the stress strain curve and on dislocation activity are examined. We find massive total dislocation densities, and estimate a much lower density of mobile dislocations, due to the formation of junctions. Despite the large stress and strain rate, we do not observe twin formation, since nanopores are effective dislocation production sources. A significant fraction of dislocations survive unloading, unlike what happens in fcc metals, and future experiments might be able to study similar recovered samples and find clues to their plastic behavior during loading.

  20. Strain-specific resistance to Potato virus Y (PVY) in potato and its effect on the relative abundance of PVY strains in commercial potato fields

    USDA-ARS?s Scientific Manuscript database

    Potato virus Y (PVY) is a serious threat to potato production due to negative effects on tuber yield and quality, and in particular, due to induction of potato tuber necrotic ringspot disease (PTNRD). PTNRD is typically associated with recombinant strains of PVY. These recombinant strains have been ...

  1. Highly stretchable miniature strain sensor for large dynamic strain measurement

    SciTech Connect

    Song, Bo; Yao, Shurong; Nie, Xu; Yu, Xun; Blecke, Jill

    2016-01-01

    In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages, as its gauge factor is 500 times of that of the conventional foil strain gages.

  2. Highly stretchable miniature strain sensor for large dynamic strain measurement

    DOE PAGES

    Song, Bo; Yao, Shurong; Nie, Xu; ...

    2016-01-01

    In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages,more » as its gauge factor is 500 times of that of the conventional foil strain gages.« less

  3. Occupational asthma due to azodicarbonamide.

    PubMed

    Kim, Cheol-Woo; Cho, Jae-Hwa; Leem, Jong-Han; Ryu, Jeong-Seon; Lee, Hong-Lyeol; Hong, Yun-Chul

    2004-04-30

    Azodicarbonamide is a low molecular weight foaming agent for plastics and rubbers. Azodicarbonamide can elicit acute and chronic health related problems due to its potential for pulmonary and cutaneous sensitization. Some cases of occupational asthma associated with exposure to azodicarbonamide have been reported, of which only a few cases were confirmed by specific inhalation challenges. Here, the first case of occupational asthma due to azodicarbonamide in Korea, in which the diagnosis was confirmed by specific inhalation challenge, is reported.

  4. Onychomycosis Due to Nondermatophytic Molds

    PubMed Central

    Hwang, Sung Min; Ha, Gyoung Yim

    2012-01-01

    Background Although there have been many studies about onychomycosis due to nondermatophytic molds (NDM), few studies about etiologic agents including NDM in onychomycosis have been reported in Korea. Objective: This study investigated onychomycosis due to NDM in the Gyeongju area of Korea. Objective This study investigated onychomycosis due to NDM in the Gyeongju area of Korea. Methods In the 10-year period from 1999~2009, we reviewed 59 patients with onychomycosis due to NDM. The etiologic agents were identified by cultures on Sabouraud's Dextrose agar with and without cycloheximide. In some cases, internal transcribed spacer sequence analysis was done. NDM isolated considered pathogens when the presence of fungal elements was identified by direct microscopy observation and in follow-up cultures yielding the same fungi. Results Onychomycosis due to NDM comprised 2.3% of all onychomycosis. Of the 59 patients with onychomycosis due to NDM, 84.7% were toenail onychomycosis and 15.3% were fingernail onychomycosis. The incidence rate was highest in the fifth decade (27.1%). The ratio of male to female patients was 1:1.6. The frequency of associated diseases, in descending order, was hypertension, diabetes mellitus, and cerebral hematoma. Distal and lateral subungual onychomycosis (86.4%) was the most common clinical type of onychomycosis. Aspergillus spp. was the most frequently isolated etiologic agent of onychomycosis due to NDM (83.0%). Other causative agents were Scopulariopsis brevicaulis (10.2%), Acremonium spp. (3.4%), Fusarium solani (1.7%), and Chaetomium globosum (1.7%). Conclusion Because of the increase in onychomycosis due to NDM, we suggest the need of a careful mycological examination in patients with onychomycosis. PMID:22577268

  5. [Otomycosis due to Scopulariopsis brevicaulis].

    PubMed

    Besbes, M; Makni, F; Cheikh-Rouhou, F; Sellami, H; Kharrat, K; Ayadi, A

    2002-01-01

    We report a case of otomycosis due to Scopulariopsis brevicaulis in a patient with left cholesteatomatous chronic otitis media who presented with otorrhea associated with left otalgia. Scopulariopsis brevicaulis is a fungus which is rarely described as causing otomycosis although it is a saprophyte and widespread in the environment. In this case the contamination could be due to intensive gardening with poor hygiene. Its mycologic diagnosis is relatively easy and nystatin remains the most effective treatment in this region.

  6. Strain patterns and strain accumulation along plate margins

    NASA Technical Reports Server (NTRS)

    Savage, J. C.

    1978-01-01

    Observations of strain accumulation along plate margins in Japan, New Zealand, and the United States indicate that: (1) a typical maximum rate of secular strain accumulation is on the order of 0.3 ppm/a, (2) a substantial part of the strain accumulation process can be attributed to slip at depth on the major plate boundary faults, and (3) some plastic deformation in a zone 100 km or more in width is apparently involved in the strain accumulation process.

  7. High temperature strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); You, Tao (Inventor)

    2011-01-01

    A ceramic strain gage based on reactively sputtered indium-tin-oxide (ITO) thin films is used to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500.degree. C. A scanning electron microscopy (SEM) of the thick ITO sensors reveals a partially sintered microstructure comprising a contiguous network of submicron ITO particles with well defined necks and isolated nanoporosity. Densification of the ITO particles was retarded during high temperature exposure with nitrogen thus stabilizing the nanoporosity. ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions, sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established.

  8. Novel strained superjunction VDMOS

    NASA Astrophysics Data System (ADS)

    Naugarhiya, Alok; Dubey, Shashank; Kondekar, Pravin N.

    2015-09-01

    In this paper, we have proposed novel strained superjunction (s-SJ) vertical double diffused MOS (VDMOS). Through channel engineering, we have introduced strain effects in s-SJ device using thin separate p-type silicon-germanium (p-SiGe) layer over silicon p-pillar. Further, we have designed process flow for the possible fabrication of s-SJ VDMOS. The proposed s-SJ devices fitted with less input capacitance (Cin) and 1.2∼3 times higher output current density than conventional SJ VDMOS. Therefore, 40% less gate charge (Qg) is required to turn-on the s-SJ VDMOS and Ron A is optimized in between 12% and 46%.

  9. Strain Gage Signal Interpretation.

    DTIC Science & Technology

    1986-02-01

    blades and vanes in many engines have been collected, played back and examined. The engine types encompass GE’s stable of turbine engines from the small...aeromechanical engineer . 1.3 SUMMARY OF RESULTS Strain gage signals from vibrating rotor blades and vanes were collected, examined, classified, and generalized...turboprops, to turbojets and to the large high bypass turbofan engines . Test conditions include all the phases that are investigated

  10. Strained Ring Energetic Binders

    DTIC Science & Technology

    1993-08-27

    polyhomobenzvalene ( PHBV ). PHBV was not found to have the mechanical instability problems of PBV, but was still thermally unstable (Tonset - 660C, Tmax - 1090C...DISCUSSION 4 Polybenzvalene (PBV) 4 Polyhomobenzvalene ( PHBV ) 6 Chain-Transfer Studies 11 CONCLUSIONS 15 EXPERIMENTAL PROCEDURES 16 .F 4E 19 APPENDICES A...strained ring polymers similar to PBV are known. The investigation of one of these polymers, polyhomobenzvalene ( PHBV ), is also described in this report

  11. Strain Measurement - Unidirectional.

    DTIC Science & Technology

    1983-04-20

    a ballpoint pen or a rounded piece of brass rod. If critical alignment is not necessary, gage lines may be located outside the immediate gage location...supplemented as needed by tabulated values. If the test design includes specification limits for the values, they should be included on the plots. Plots of...enough baseline before the event to allow estimation of the noise and stability. If the strain is to be correlated to specific events, the events should

  12. Symmetry in strain engineering of nanomembranes: making new strained materials.

    PubMed

    Paskiewicz, Deborah M; Scott, Shelley A; Savage, Donald E; Celler, George K; Lagally, Max G

    2011-07-26

    Strain in a material changes the lattice constant and thereby creates a material with new properties relative to the unstrained, but chemically identical, material. The ability to alter the strain (its magnitude, direction, extent, periodicity, symmetry, and nature) allows tunability of these new properties. A recent development, crystalline nanomembranes, offers a powerful platform for using and tuning strain to create materials that have unique properties, not achievable in bulk materials or with conventional processes. Nanomembranes, because of their thinness, enable elastic strain sharing, a process that introduces large amounts of strain and unique strain distributions in single-crystal materials, without exposing the material to the formation of extended defects. We provide here prescriptions for making new strained materials using crystal symmetry as the driver: we calculate the strain distributions in flat nanomembranes for two-fold and four-fold elastically symmetric materials. We show that we can controllably tune the amount of strain and the asymmetry of the strain distribution in elastically isotropic and anisotropic materials uniformly over large areas. We perform the experimental demonstration with a trilayer Si(110)/Si((1-x))Ge(x)(110)/Si(110) nanomembrane: an elastically two-fold symmetric system in which we can transfer strain that is biaxially isotropic. We are thus able to make uniformly strained materials that cannot be made any other way.

  13. Production of WTC.ZI-zi rat congenic strain and its pathological and genetic analyses.

    PubMed

    Kuramoto, T; Yamasaki, K; Kondo, A; Nakajima, K; Yamada, M; Serikawa, T

    1998-04-01

    A new rat congenic strain, WTC.ZI-zi, was produced after eleven generations of backcrossing between ZI strain as a donor strain and WTC strain as an inbred partner. WTC.ZI-zi/zi homozygous rats generally exhibit more conspicuous body tremor and much earlier occurrence of flaccid paresis than the original ZI strain. The average life span of the congenic strain is approximately nine months, which is also much shorter than that of the original ZI strain. Pathological analysis of the central nervous system of the congenic strain revealed more aggravated vacuolation and hypomyelination than in the original ZI strain. Establishment of the genetic profile with microsatellite markers showed that the congenic strain was genetically almost identical to the WTC strain except for a small chromosome segment bearing the zitter gene. Analysis of markers in this region implied that the length of the donor segment was approximately 13.4 centimorgans which corresponded to 0.65% of the total genome. Thus, these results suggested that expressional alterations of zitter gene were due to replacement of the genetic background from the original ZI strain to the WTC strain. Furthermore, the WTC.ZI-zi congenic strain could provide a refined tool for the analysis of zitter mutation, because the congenic strain has a strict control strain, WTC, and the length of the donor chromosome is genetically defined.

  14. Strain measurement based battery testing

    DOEpatents

    Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk

    2017-05-23

    A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.

  15. Marble decay due to microcracking

    NASA Astrophysics Data System (ADS)

    Shushakova, V.; Fuller, E. R., Jr.; Heidelbach, F.; Siegesmund, S.

    2012-04-01

    An actual degradation phenomenon of marble structures, i.e., microcracking, is examined via computer simulations with a microstructure-based finite element modelling. Crack initiation and crack propagation were characterized, as well their dependence on grain- shape preferred orientation (SPO), lattice preferred orientation (LPO), grain size and grain-boundary fracture toughness. Calcite is used as an illustrative example. Results are expected to be general for myriad marble microstructures, as the thermophysical properties of various marbles do not differ that much. Three SPOs were analyzed: equiaxed grains; elongated grains and a mixture of equiaxed and elongated grains. Six LPOs were considered: a random orientation distribution function (ODF); an ODF with strong directional crystal texture generated via March Dollase fiber-texture; and four types of actual marble texture as measured on marble samples with electron back-scattered diffraction (EBSD). Two different grain sizes were analyzed: fine grains range up to 200μm and medium size grains of approximate 1mm. The fracture surface energy for the grain boundaries was chosen to be 20 % and 40 % of the fracture surface energy of a grain, so that both intergranular and transgranular fractures were possible. Simulations were performed for both heating and cooling by 50 °C in steps of 1 °C. Microcracking results were correlated with the thermoelastic responses (indicators) related to degradation. Certain combinations of SPO, LPO, grain size, and grain-boundary fracture toughness have a significant influence on the thermal-elastic response of marble. For instance, thermal stresses and elastic strain energy are a strong function of the LPO. With increasing LPO the strain energy density and the maximum principal stress decreases. With decreasing grain size and increasing LPO and SPO, the area of microcracking is smaller and microcracking commences at a higher temperature differential.

  16. Carbon fiber-ZnO nanowire hybrid structures for flexible and adaptable strain sensors

    NASA Astrophysics Data System (ADS)

    Liao, Qingliang; Mohr, Markus; Zhang, Xiaohui; Zhang, Zheng; Zhang, Yue; Fecht, Hans-Jörg

    2013-11-01

    We report the flexible piezotronic strain sensors fabricated using carbon fiber-ZnO nanowire hybrid structures by a novel and reliable method. The I-V characteristic of the sensor shows high sensitivity to external strain due to the change in Schottky barrier height (SBH), which has a linear relationship with strain. This fabricated strain sensor has a quick, real-time current response under both static and dynamic mechanical loads. The change in SBH resulted from the strain-induced piezoelectric potential is investigated by band gap theory. In this work we develop a new feasible method to fabricate a flexible strain sensor within the fabric adapted to textile structures, able to measure their strain.We report the flexible piezotronic strain sensors fabricated using carbon fiber-ZnO nanowire hybrid structures by a novel and reliable method. The I-V characteristic of the sensor shows high sensitivity to external strain due to the change in Schottky barrier height (SBH), which has a linear relationship with strain. This fabricated strain sensor has a quick, real-time current response under both static and dynamic mechanical loads. The change in SBH resulted from the strain-induced piezoelectric potential is investigated by band gap theory. In this work we develop a new feasible method to fabricate a flexible strain sensor within the fabric adapted to textile structures, able to measure their strain. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03536k

  17. Carbuncle due to Salmonella Enteritidis: a novel presentation.

    PubMed

    Alfouzan, Wadha; Bulach, Dieter; Izumiya, Hidemasa; AlBassam, Khaled; Sheikh, Simin; Alrubai'aan, Nasser; Albert, M John

    2017-01-01

    Salmonella Enteritidis causes intestinal and extra-intestinal infections, but rarely cutaneous infections. It has never been reported to cause carbuncle (a collection of interconnected furuncles with multiple pustular openings). We report a case of carbuncle due to S. Enteritidis. An adult Bangladeshi patient with type 2 diabetes presented with a carbuncle on the left-side of his neck. A pure culture of S. Enteritidis was grown from the pus of the carbuncle. The patient was successfully treated with ciprofloxacin to which the isolate was susceptible. Whole genome sequencing of the strain showed that it possessed three additional virulence genes-pef (for plasmid-encoded fimbriae), spv (for salmonella plasmid virulence), rck (for resistance to complement killing) -responsible for systemic infections that were absent in the genome of a reference S. Enteritidis strain. In phylogenetic analysis, the strain clustered with other S. Enteritidis strains from different parts of the world. A weakened immune system of the patient due to diabetes mellitus and the additional virulence genes of the isolate may have contributed to the unusual presentation of carbuncle. The possibility of S. Enteritidis to cause carbuncle should be considered.

  18. [Dehydration due to "mouth broken"].

    PubMed

    Meijler, D P M; van Mossevelde, P W J; van Beek, R H T

    2012-09-01

    Two children were admitted to a medical centre due to dehydration after an oral injury and the extraction of a tooth. One child complained of "mouth broken". Dehydration is the most common water-electrolyte imbalance in children. Babies and young children are prone to dehydration due to their relatively large body surface area, the high percentage extracellular fluid, and the limited ability of the kidneys to conserve water. After the removal ofa tooth, after an oral trauma or in case of oral discomfort, a child is at greater risk of dehydration by reduced fluid and food intake due to oral pain and/or discomfort and anxiety to drink. In those cases, extra attention needs to be devoted to the intake of fluids.

  19. Hypercalcemia due to talc granulomatosis.

    PubMed

    Woywodt, A; Schneider, W; Goebel, U; Luft, F C

    2000-04-01

    Pulmonary disease due to talc, a group of hydrous magnesium silicates, is almost exclusively encountered after occupational exposure. One form of this rare disorder is talc granulomatosis. In varying degrees, hypercalcemia is typical of granulomatous disease but has not yet been reported in talcosis. We report the case of a former mold maker who presented with hypercalcemia. Laboratory findings indicated extra-renal 1-alpha-hydroxylation of 25-hydroxyvitamin D. Pulmonary infiltrates prompted a lung biopsy that disclosed talc granulomatosis. We suggest that talc granulomatosis should be added to the list of granulomatous disorders capable of causing hypercalcemia due to increased extra-renal 1-alpha-hydroxylation of 25-hydroxyvitamin D.

  20. Dysphagia due to cervical osteophytes.

    PubMed

    Khan, Mohammad Saeed; Bansal, Meghana; Agarwal, Abhishek

    2012-05-01

    Cervical bony outgrowths or osteophytes are common and usually asymptomatic. In some cases, they may be associated with dysphagia, dysphonia, dyspnea and pulmonary aspiration. The most common causes of cervical osteophytes are osteoarthritis, ankylosing spondylitis and ankylosing hyperostosis or Diffuse Idiopathic Spinal Hyperostosis (DISH), also known as Forestier's Disease. Other causes are hypoparathyroidism, trauma, acromegaly, ochronosis and flourosis. However, while dysphagia due to osteophytes is reported in the setting of DISH, it is very rare with osteoarthritis. We report a case of a patient who developed dysphagia due to anterior cervical osteophytes in the setting of osteoarthritis.

  1. Reliable strain measurement in transistor arrays by robust scanning transmission electron microscopy

    SciTech Connect

    Kim, Suhyun; Kim, Joong Jung; Jung, Younheum; Lee, Kyungwoo; Byun, Gwangsun; Hwang, KyoungHwan; Lee, Sunyoung; Lee, Kyupil

    2013-09-15

    Accurate measurement of the strain field in the channels of transistor arrays is critical for strain engineering in modern electronic devices. We applied atomic-resolution high-angle annular dark-field scanning transmission electron microscopy to quantitative measurement of the strain field in transistor arrays. The quantitative strain profile over 20 transistors was obtained with high reliability and a precision of 0.1%. The strain field was found to form homogeneously in the channels of the transistor arrays. Furthermore, strain relaxation due to the thin foil effect was quantitatively investigated for thicknesses of 35 to 275 nm.

  2. Molecular Epidemiology of sil Locus in Clinical Streptococcus pyogenes Strains

    PubMed Central

    Plainvert, Céline; Dinis, Márcia; Ravins, Miriam; Hanski, Emanuel; Touak, Gérald; Dmytruk, Nicolas; Fouet, Agnès

    2014-01-01

    Streptococcus pyogenes (group A Streptococcus [GAS]) causes a wide variety of diseases, ranging from mild noninvasive to severe invasive infections. Mutations in regulatory components have been implicated in the switch from colonization to invasive phenotypes. The inactivation of the sil locus, composed of six genes encoding a quorum-sensing complex, gives rise to a highly invasive strain. However, studies conducted on limited collections of GAS strains suggested that sil prevalence is around 15%; furthermore, whereas a correlation between the presence of sil and the genetic background was suggested, no link between the presence of a functional sil locus and the invasive status was assessed. We established a collection of 637 nonredundant strains covering all emm genotypes present in France and of known clinical history; 68%, 22%, and 10% were from invasive infections, noninvasive infections, and asymptomatic carriage, respectively. Among the 637 strains, 206 were sil positive. The prevalence of the sil locus varied according to the emm genotype, being present in >85% of the emm4, emm18, emm32, emm60, emm87, and emm90 strains and absent from all emm1, emm28, and emm89 strains. A random selection based on 2009 French epidemiological data indicated that 16% of GAS strains are sil positive. Moreover, due to mutations leading to truncated proteins, only 9% of GAS strains harbor a predicted functional sil system. No correlation was observed between the presence or absence of a functional sil locus and the strain invasiveness status. PMID:24671796

  3. Development of High Cordycepin-Producing Cordyceps militaris Strains.

    PubMed

    Kang, Naru; Lee, Hyun-Hee; Park, Inmyoung; Seo, Young-Su

    2017-03-01

    Cordyceps militaris, known as Dong-Chong-Xia-Cao, produces the most cordycepin among Cordyceps species and can be cultured artificially. For these reasons, C. militaris is widely used as herb or functional food in the East Asia. In this study, we developed a new strain of C. militaris that produces higher cordycepin content than parent strains through mating-based sexual reproduction. Twenty parent strains were collected and identified as C. militaris based on internal trasncrived spacer and rDNA sequences. Seven single spores of MAT 1-1 idiomorph and five single spores of MAT 1-2 idiomorph were isolated from 12 parent strains. When 35 combinations were mated on the brown rice medium with the isolated single spores, eight combinations formed a stroma with a normal perithecia and confirmed mated strains. High pressure liquid chromatography analysis showed that mated strain KSP8 produced the most cordycepin in all the media among all the tested strains. This result showed due to genetic recombination occurring during the sexual reproduction of C. militaris. The development of C. militaris strain with increased cordycepin content by this approach can help not only to generate new C. militaris strains, but also to contribute to the health food or medicine industry.

  4. Development of High Cordycepin-Producing Cordyceps militaris Strains

    PubMed Central

    Kang, Naru; Lee, Hyun-Hee; Park, Inmyoung

    2017-01-01

    Cordyceps militaris, known as Dong-Chong-Xia-Cao, produces the most cordycepin among Cordyceps species and can be cultured artificially. For these reasons, C. militaris is widely used as herb or functional food in the East Asia. In this study, we developed a new strain of C. militaris that produces higher cordycepin content than parent strains through mating-based sexual reproduction. Twenty parent strains were collected and identified as C. militaris based on internal trasncrived spacer and rDNA sequences. Seven single spores of MAT 1-1 idiomorph and five single spores of MAT 1-2 idiomorph were isolated from 12 parent strains. When 35 combinations were mated on the brown rice medium with the isolated single spores, eight combinations formed a stroma with a normal perithecia and confirmed mated strains. High pressure liquid chromatography analysis showed that mated strain KSP8 produced the most cordycepin in all the media among all the tested strains. This result showed due to genetic recombination occurring during the sexual reproduction of C. militaris. The development of C. militaris strain with increased cordycepin content by this approach can help not only to generate new C. militaris strains, but also to contribute to the health food or medicine industry. PMID:28435352

  5. Due Process Hearing Case Study

    ERIC Educational Resources Information Center

    Bateman, David F.; Jones, Marni Gail

    2010-01-01

    This article presents a due process hearing case study of a mother who contended that his son, D.J., has been denied of a free and appropriate public education (FAPE) of his School District after being suspended from school. D.J., an elementary student, had been described as hyperactive, inattentive, defiant, and often volatile. He was identified…

  6. Due Process Hearing Case Study

    ERIC Educational Resources Information Center

    Bateman, David F.

    2008-01-01

    Ben is a 16-year-old student who resides with his family in an unnamed School District. He is eligible for special education by reason of specific learning disability and ADHD. His parents requested a due process hearing, alleging that the District failed to provide him with a free appropriate public education (FAPE) and requesting reimbursement…

  7. Due Process Hearing Case Study

    ERIC Educational Resources Information Center

    Bateman, David F.; Jones, Marni Gail

    2010-01-01

    This article presents a due process hearing case study of a mother who contended that his son, D.J., has been denied of a free and appropriate public education (FAPE) of his School District after being suspended from school. D.J., an elementary student, had been described as hyperactive, inattentive, defiant, and often volatile. He was identified…

  8. Due Process Hearing Case Study

    ERIC Educational Resources Information Center

    Bateman, David F.

    2008-01-01

    Ben is a 16-year-old student who resides with his family in an unnamed School District. He is eligible for special education by reason of specific learning disability and ADHD. His parents requested a due process hearing, alleging that the District failed to provide him with a free appropriate public education (FAPE) and requesting reimbursement…

  9. Due Process Hearing Case Study

    ERIC Educational Resources Information Center

    Bateman, David F.

    2009-01-01

    "Chuck" is a 10-year-old student residing in an unnamed District ("the District"), identified as eligible for specially designed instruction because of a specific learning disability. His parents' due process complaint (filed in December 2008) requested compensatory education for the period September 2006 to June 2008. They believed that Chuck,…

  10. Due Process Hearing Case Study

    ERIC Educational Resources Information Center

    Bateman, David F.

    2009-01-01

    William is 9 years of age, residing with his parent within the boundaries of an unnamed district ("the District"). As a student with autism he is eligible for special education programming and services. There was one issue presented for this due process hearing: What was the appropriate program and placement for him for the 2008-2009 school year?…

  11. Elephantine nose due to rhinoentomophthoromycosis.

    PubMed

    Ghorpade, Ashok; Sarma, Podila S A; Iqbal, Syed Md

    2006-01-01

    Rhinoentomophthoromycosis in an immunocompetent Indian male due to Basidiobolus species resulting in a huge (elephantine) nasal deformity, is reported. The diagnosis was done by demonstration of hyphae in direct tissue smear examination in potassium hydroxide, histopathological examination and by cultural characteristics. He showed an excellent response to oral potassium iodide solution.

  12. Strainrange partitioning - A total strain range version. [for creep fatigue life prediction by summing inelastic and elastic strain-range-life relations for two Ni base superalloys

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Saltsman, J. F.

    1983-01-01

    Procedures are presented for expressing the Strainrange Partitioning (SRP) method for creep fatigue life prediction in terms of total strain range. Inelastic and elastic strain-range - life relations are summed to give total strain-range - life relations. The life components due to inelastic strains are dealt with using conventional SRP procedures while the life components due to elastic strains are expressed as families of time-dependent terms for each type of SRP cycle. Cyclic constitutive material behavior plays an important role in establishing the elastic strain-range life relations as well as the partitioning of the inelastic strains. To apply the approach, however, it is not necessary to have to determine the magnitude of the inelastic strain range. The total strain SRP approach is evaluated and verified using two nickel base superalloys, AF2-1DA and Rene 95. Excellent agreement is demonstrated between observed and predicted cyclic lifetimes with 70 to 80 percent of the predicted lives falling within factors of two of the observed lives. The total strain-range SRP approach should be of considerable practical value to designers who are faced with creep-fatigue problems for which the inelastic strains cannot be calculated with sufficient accuracy to make reliable life predictions by the conventional inelastic strain range SRP approach.

  13. Structural studies of fungal cell-wall polysaccharides from two strains of Talaromyces flavus.

    PubMed

    Parra, E; Jiménez-Barbero, J; Bernabé, M; Leal, J A; Prieto, A; Gómez-Miranda, B

    1994-01-03

    The water-soluble cell-wall polysaccharides isolated from strains CBS 352.72 and 310.38 of Talaromyces flavus have been investigated by chemical analyses and NMR studies. Two different skeletons coexist, having the structures: [formula:see text]. The small differences between the polysaccharides isolated from both strains are probably due to slight diminution of branching in strain 352.72, as compared with strain 310.38.

  14. EBSD characterization of a hot worked 304 austenitic stainless steel under strain reversal.

    PubMed

    Jorge-Badiola, D; Iza-Mendia, A; Gutiérrez, I

    2009-07-01

    Monotonic and strain reversal hot torsion tests were performed on a 304 austenitic stainless steel, this led to changes in microstructures depending on the strain path. electron backscatter diffraction was used as the tool for characterizing the microstructures. It was possible to find some intragranular microstructural changes due to the reversal of the strain by means of several local and global misorientation-related parameters. Sigma3 boundaries also showed sensitivity to strain reversal.

  15. Prosthetic valve endocarditis and bloodstream infection due to Mycobacterium chimaera.

    PubMed

    Achermann, Yvonne; Rössle, Matthias; Hoffmann, Matthias; Deggim, Vanessa; Kuster, Stefan; Zimmermann, Dieter R; Bloemberg, Guido; Hombach, Michael; Hasse, Barbara

    2013-06-01

    Prosthetic valve endocarditis (PVE) due to fast-growing nontuberculous mycobacteria (NTM) has been reported anecdotally. Reports of PVE with slowly growing NTM, however, are lacking. We present here one case of PVE and one case of bloodstream infection caused by Mycobacterium chimaera. Randomly amplified polymorphic DNA (RAPD)-PCR indicated a relatedness of the two M. chimaera strains. Both patients had heart surgery 2 years apart from each other. A nosocomial link was not detected.

  16. Prosthetic Valve Endocarditis and Bloodstream Infection Due to Mycobacterium chimaera

    PubMed Central

    Achermann, Yvonne; Rössle, Matthias; Hoffmann, Matthias; Deggim, Vanessa; Kuster, Stefan; Zimmermann, Dieter R.; Hombach, Michael; Hasse, Barbara

    2013-01-01

    Prosthetic valve endocarditis (PVE) due to fast-growing nontuberculous mycobacteria (NTM) has been reported anecdotally. Reports of PVE with slowly growing NTM, however, are lacking. We present here one case of PVE and one case of bloodstream infection caused by Mycobacterium chimaera. Randomly amplified polymorphic DNA (RAPD)-PCR indicated a relatedness of the two M. chimaera strains. Both patients had heart surgery 2 years apart from each other. A nosocomial link was not detected. PMID:23536407

  17. Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing.

    PubMed

    Wu, Hong; Watanabe, Tomoko; Araki, Yoshio; Kitagaki, Hiroshi; Akao, Takeshi; Takagi, Hiroshi; Shimoi, Hitoshi

    2009-06-01

    Sake yeast can produce high levels of ethanol in concentrated rice mash. While both sake and laboratory yeast strains belong to the species Saccharomyces cerevisiae, the laboratory strains produce much less ethanol. This disparity in fermentation activity may be due to the strains' different responses to environmental stresses, including ethanol accumulation. To obtain more insight into the stress response of yeast cells under sake brewing conditions, we carried out small-scale sake brewing tests using laboratory yeast strains disrupted in specific stress-related genes. Surprisingly, yeast strains with disrupted ubiquitin-related genes produced more ethanol than the parental strain during sake brewing. The elevated fermentation ability conferred by disruption of the ubiquitin-coding gene UBI4 was confined to laboratory strains, and the ubi4 disruptant of a sake yeast strain did not demonstrate a comparable increase in ethanol production. These findings suggest different roles for ubiquitin in sake and laboratory yeast strains.

  18. Genotypic comparison of Pantoea agglomerans plant and clinical strains

    PubMed Central

    2009-01-01

    Background Pantoea agglomerans strains are among the most promising biocontrol agents for a variety of bacterial and fungal plant diseases, particularly fire blight of apple and pear. However, commercial registration of P. agglomerans biocontrol products is hampered because this species is currently listed as a biosafety level 2 (BL2) organism due to clinical reports as an opportunistic human pathogen. This study compares plant-origin and clinical strains in a search for discriminating genotypic/phenotypic markers using multi-locus phylogenetic analysis and fluorescent amplified fragment length polymorphisms (fAFLP) fingerprinting. Results Majority of the clinical isolates from culture collections were found to be improperly designated as P. agglomerans after sequence analysis. The frequent taxonomic rearrangements underwent by the Enterobacter agglomerans/Erwinia herbicola complex may be a major problem in assessing clinical associations within P. agglomerans. In the P. agglomerans sensu stricto (in the stricter sense) group, there was no discrete clustering of clinical/biocontrol strains and no marker was identified that was uniquely associated to clinical strains. A putative biocontrol-specific fAFLP marker was identified only in biocontrol strains. The partial ORF located in this band corresponded to an ABC transporter that was found in all P. agglomerans strains. Conclusion Taxonomic mischaracterization was identified as a major problem with P. agglomerans, and current techniques removed a majority of clinical strains from this species. Although clear discrimination between P. agglomerans plant and clinical strains was not obtained with phylogenetic analysis, a single marker characteristic of biocontrol strains was identified which may be of use in strain biosafety determinations. In addition, the lack of Koch's postulate fulfilment, rare retention of clinical strains for subsequent confirmation, and the polymicrobial nature of P. agglomerans clinical reports

  19. The relationship between strain geometry and geometrically necessary dislocations

    NASA Astrophysics Data System (ADS)

    Hansen, Lars; Wallis, David

    2016-04-01

    The kinematics of past deformations are often a primary goal in structural analyses of strained rocks. Details of the strain geometry, in particular, can help distinguish hypotheses about large-scale tectonic phenomena. Microstructural indicators of strain geometry have been heavily utilized to investigate large-scale kinematics. However, many of the existing techniques require structures for which the initial morphology is known, and those structures must undergo the same deformation as imposed macroscopically. Many deformed rocks do not exhibit such convenient features, and therefore the strain geometry is often difficult (if not impossible) to ascertain. Alternatively, crystallographic textures contain information about the strain geometry, but the influence of strain geometry can be difficult to separate from other environmental factors that might affect slip system activity and therefore the textural evolution. Here we explore the ability for geometrically necessary dislocations to record information about the deformation geometry. It is well known that crystallographic slip due to the motion of dislocations yields macroscopic plastic strain, and the mathematics are established to relate dislocation glide on multiple slip systems to the strain tensor of a crystal. This theoretical description generally assumes that dislocations propagate across the entire crystal. However, at any point during the deformation, dislocations are present that have not fully transected the crystal, existing either as free dislocations or as dislocations organized into substructures like subgrain boundaries. These dislocations can remain in the lattice after deformation if the crystal is quenched sufficiently fast, and we hypothesize that this residual dislocation population can be linked to the plastic strain geometry in a quantitative manner. To test this hypothesis, we use high-resolution electron backscatter diffraction to measure lattice curvatures in experimentally deformed

  20. Strain relaxation in graphene grown by chemical vapor deposition

    SciTech Connect

    Troppenz, Gerald V. Gluba, Marc A.; Kraft, Marco; Rappich, Jörg; Nickel, Norbert H.

    2013-12-07

    The growth of single layer graphene by chemical vapor deposition on polycrystalline Cu substrates induces large internal biaxial compressive strain due to thermal expansion mismatch. Raman backscattering spectroscopy and atomic force microscopy were used to study the strain relaxation during and after the transfer process from Cu foil to SiO{sub 2}. Interestingly, the growth of graphene results in a pronounced ripple structure on the Cu substrate that is indicative of strain relaxation of about 0.76% during the cooling from the growth temperature. Removing graphene from the Cu substrates and transferring it to SiO{sub 2} results in a shift of the 2D phonon line by 27 cm{sup −1} to lower frequencies. This translates into additional strain relaxation. The influence of the processing steps, used etching solution and solvents on strain, is investigated.

  1. Strain analysis of a chiral smectic-A elastomer.

    PubMed

    Spillmann, Christopher M; Konnert, John H; Adams, James M; Deschamps, Jeffrey R; Naciri, Jawad; Ratna, Banahalli R

    2010-09-01

    We present a detailed analysis of the molecular packing of a strained liquid crystal elastomer composed of chiral mesogens in the smectic-A phase. X-ray diffraction patterns of the elastomer collected over a range of orientations with respect to the x-ray beam were used to reconstruct the three-dimensional scattering intensity as a function of tensile strain. We show that the smectic domain order is preserved in these strained elastomers. Changes in the intensity within a given scattering plane are due to reorientation, and not loss, of the molecular order in directions orthogonal to the applied strain. Incorporating the physical parameters of the elastomer, a nonlinear elastic model is presented to describe the rotation of the smectic-layered domains under strain, thus providing a fundamental analysis to the mechanical response of these unique materials.

  2. Spall Response of Tantalum at Extreme Strain-Rates

    NASA Astrophysics Data System (ADS)

    Hahn, Eric; Germann, Tim; Meyers, Marc

    Strain-rate and microstructure play a significant role in the ultimate mechanical response of materials. Using non-equilibrium molecular dynamics simulations, we characterize the ductile tensile failure of single and nanocrystalline tantalum over multiple orders of magnitude of strain-rate. This comparison is extended to over nine orders of magnitude including experimental results from resent laser shock campaigns. Spall strength primarily follows a power law dependence with strain-rate over this extensive range. In all cases, voids nucleate heterogeneously at pre-existing defects. Predictions based on traditional theory suggest that, as strain-rate increases, tensile strength should increase. Alternatively, as grain size decreases, tensile strength may decrease due to an increased propensity to fail at a growing volume fraction of grain boundaries. Strain-rate and grain size dictate void nucleation sites by changing the type and density of available defects: vacancies, dislocations, twins, and grain boundaries.

  3. Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors.

    PubMed

    Amjadi, Morteza; Turan, Mehmet; Clementson, Cameron P; Sitti, Metin

    2016-03-02

    There is an increasing demand for flexible, skin-attachable, and wearable strain sensors due to their various potential applications. However, achieving strain sensors with both high sensitivity and high stretchability is still a grand challenge. Here, we propose highly sensitive and stretchable strain sensors based on the reversible microcrack formation in composite thin films. Controllable parallel microcracks are generated in graphite thin films coated on elastomer films. Sensors made of graphite thin films with short microcracks possess high gauge factors (maximum value of 522.6) and stretchability (ε ≥ 50%), whereas sensors with long microcracks show ultrahigh sensitivity (maximum value of 11,344) with limited stretchability (ε ≤ 50%). We demonstrate the high performance strain sensing of our sensors in both small and large strain sensing applications such as human physiological activity recognition, human body large motion capturing, vibration detection, pressure sensing, and soft robotics.

  4. Tuning surface Dirac valleys by strain in topological crystalline insulators

    NASA Astrophysics Data System (ADS)

    Zhao, Lu; Wang, Jianfeng; Gu, Bing-Lin; Duan, Wenhui

    2015-05-01

    A topological crystalline insulator has an even number of Dirac cones (i.e., multiple valleys) in its surface band structure, thus potentially leading to valleytronic applications such as graphene. Using the density-functional-theory method, we systematically investigate the strain-induced evolution of topological surface states on the SnTe(111) surface. Our results show that compressive strain can shift the Dirac cones at the Γ ¯ and M ¯ valleys to different extents (even oppositely) in energy, while the tensile strain can induce different band gaps at the valleys due to the enhanced penetration depths of surface states. Exploiting a strain-induced nanostructure with well-defined edges on the (111) surface, we demonstrate strong valley-selective filtering for massless Dirac fermions by dynamically applying local external pressure. Our findings may pave the way for strain-engineered valley-resolved manipulation of Dirac fermions with high tunability and scalability.

  5. Development of a high temperature static strain sensor

    NASA Technical Reports Server (NTRS)

    Hulse, Charles O.; Bailey, Richard S.; Grant, Howard P.

    1986-01-01

    The goal of this program is to develop an electrical resistance strain gage system which will accurately measure the static strains of superalloy blades and vanes in gas turbine engines running on a test stand. Accurate knowledge of these strains is essential to reaching the goals of the HOST program in the selection and experimental verification of the various theoretical models developed to understand and improve the performance of these engines. The specific objective is to develop a complete system capable of making strain measurements of up to + or - 10 percent of full scale during a 50 hour period at temperatures as high as 1250 K. In addition to survival and stability, attaining a low temperature coefficient of resistance, of the order of 20 ppm/K or less, was a major goal. This requirement arises from the presently unavoidable uncertainties in measurement of the exact temperatures inside gas turbines for use in making corrections for apparent strain due to temperature.

  6. A bilinear stress-strain relationship for arteries.

    PubMed

    Zhang, Wei; Kassab, Ghassan S

    2007-02-01

    A comprehensive understanding of the mechanical properties of blood vessels is essential for vascular physiology, pathophysiology and tissue engineering. A well-known approach to study the elasticity of blood vessels is to postulate a strain energy function such as the exponential or polynomial forms. It is typically difficult to fit experimental data to derive material parameters for blood vessels, however, due to the highly nonlinear nature of the stress-strain relation. In this work, we generalize the strain definition to absorb the elastic nonlinearity and then propose a two-dimensional bilinear stress-strain relation between second Piola-Kirchhoff stress and the new strain measure. The model is found to represent the Fung's exponential model very well. The novel linearized constitutive relation simplifies the determination of material constants by reducing the nonlinearity and provides a clearer physical interpretation of the model parameters. The limitations of the constitutive model and its implications for vascular mechanics are discussed.

  7. Repetitive strain injury.

    PubMed

    van Tulder, Maurits; Malmivaara, Antti; Koes, Bart

    2007-05-26

    Repetitive strain injury remains a controversial topic. The term repetitive strain injury includes specific disorders such as carpal tunnel syndrome, cubital tunnel syndrome, Guyon canal syndrome, lateral epicondylitis, and tendonitis of the wrist or hand. The diagnosis is usually made on the basis of history and clinical examination. Large high-quality studies using newer imaging techniques, such as MRI and ultrasonography are few. Consequently, the role of such imaging in diagnosis of upper limb disorders remains unclear. In many cases, no specific diagnosis can be established and complaints are labelled as non-specific. Little is known about the effectiveness of treatment options for upper limb disorders. Strong evidence for any intervention is scarce and the effect, if any, is mainly short-term pain relief. Exercise is beneficial for non-specific upper limb disorders. Immobilising hand braces and open carpal tunnel surgery release are beneficial for carpal tunnel syndrome, and topical and oral non-steroidal anti-inflammatory drugs, and corticosteroid injections are helpful for lateral epicondylitis. Exercise is probably beneficial for neck pain, as are corticosteroid injections and exercise for shoulder pain. Although upper limb disorders occur frequently in the working population, most trials have not exclusively included a working population or assessed effects on work-related outcomes. Further high-quality trials should aim to include sufficient sample sizes, working populations, and work-related outcomes.

  8. Chylothorax due to tuberculosis lymphadenitis

    PubMed Central

    Kutlu, Orkide; Demirbas, Soner; Sakin, Abdullah

    2016-01-01

    Chylothorax is a rare clinical condition characterized by high triglyceride and low cholesterol levels in milky pleural aspirate. Generally, it occurs through leakage of chyle as result of trauma or malignancy. Chylothorax due to tuberculous lymphadenitis is very rare clinical condition that has only been documented in a few cases. Although precise pathogenesis is not known, enlarged mediastinal and hilar lymph nodes are thought to be associated with opening of collateral anastomosis between thoracic duct and the azygos and intercostal veins by creating pressure on thoracic duct and cisterna chyli. Presently described is case of chylothorax thought to be due to compression from mediastinal tuberculous lymphadenitis, and which had complete remission after antituberculosis treatment. PMID:28275756

  9. High strain-rate magnetoelasticity in Galfenol

    NASA Astrophysics Data System (ADS)

    Domann, J. P.; Loeffler, C. M.; Martin, B. E.; Carman, G. P.

    2015-09-01

    This paper presents the experimental measurements of a highly magnetoelastic material (Galfenol) under impact loading. A Split-Hopkinson Pressure Bar was used to generate compressive stress up to 275 MPa at strain rates of either 20/s or 33/s while measuring the stress-strain response and change in magnetic flux density due to magnetoelastic coupling. The average Young's modulus (44.85 GPa) was invariant to strain rate, with instantaneous stiffness ranging from 25 to 55 GPa. A lumped parameters model simulated the measured pickup coil voltages in response to an applied stress pulse. Fitting the model to the experimental data provided the average piezomagnetic coefficient and relative permeability as functions of field strength. The model suggests magnetoelastic coupling is primarily insensitive to strain rates as high as 33/s. Additionally, the lumped parameters model was used to investigate magnetoelastic transducers as potential pulsed power sources. Results show that Galfenol can generate large quantities of instantaneous power (80 MW/m3 ), comparable to explosively driven ferromagnetic pulse generators (500 MW/m3 ). However, this process is much more efficient and can be cyclically carried out in the linear elastic range of the material, in stark contrast with explosively driven pulsed power generators.

  10. Thermal strain analysis of optic fiber sensors.

    PubMed

    Her, Shiuh-Chuan; Huang, Chih-Ying

    2013-01-31

    An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating.

  11. Quality Control On Strained Semiconductor Devices

    SciTech Connect

    Dommann, Alex; Neels, Antonia

    2010-11-24

    New semiconductor devices are based very often on strained silicon which promises to squeeze more device performance out of current devices. With strained silicon it is possible to get the same device performance using less power. The technique is using strain as a 'design element' for silicon to improve the device performance and has become a hot topic in semiconductor research in the past years. However in the same time topics like 'System in Package'(SiP) on thin wafers are getting more and more important. The chips of thin wafers in advanced packaging are extremely sensitive to induced stresses due to packaging issues. If we are using now strain as a design element for improving device performance we increase the sensitivity again and therefore also the risk of aging of such SiP's. High Resolution X-ray diffraction (HRXRD) techniques such as Rocking Curves (RC's) and Reciprocal Space Mapping (RSM) are therefore very powerful tools to study the stresses in packaged devices.

  12. Necrotizing fasciitis due to appendicitis.

    PubMed

    Groth, D; Henderson, S O

    1999-10-01

    Necrotizing fasciitis, although rare, is one of the more serious, life-threatening complications of missed acute appendicitis. Patients who are predisposed to developing necrotizing fasciitis, regardless of the cause, are typically immunocompromised. We present a case of a 49-year-old immunocompetent female whose diagnosis of acute appendicitis was missed and who subsequently developed necrotizing fasciitis of the abdominal wall and flank. She recovered 1 month after admission due to aggressive surgical and medical therapy.

  13. Maternal mortality due to violence.

    PubMed

    Rizzi, R G; Córdoba, R R; Maguna, J J

    1998-12-01

    The objectives were to investigate the death of women by violent injuries, including induced abortion, in the Province of Córdoba, Argentina, 1992-1996 and to perform a bibliographic review on maternal death due to violence. Reports of autopsies of all violent deaths in women aged 12-44 years were reviewed to determine the cause of death for cases of suicide, homicide, accident or induced abortion and a bibliographic review was performed through MEDLINE. Two hundred and seventy two women died due to violence, including 22 which were due to complications of induced abortion. The remaining 250 deaths were: 44 (17.6%) by suicide, 51 (20.4%) by homicide and 155 (62%) by traffic accidents, including 6 pregnant women (2 died by suicide, 1 by homicide and 3 by accidents). Violence against women and pregnant women is a growing problem in developing countries. The implication of a simplified screening has been proposed to identify abuses against women, searching for frequency of abuse, its severity and to determine who provokes it.

  14. Subsidence due to geothermal fluid withdrawal

    SciTech Connect

    Narasimhan, T. N.; Goyal, K. P.

    1984-12-01

    Single-phase and two-phase geothermal reservoirs are currently being exploited for power production in Italy, Mexico, New Zealand, the United States, and elsewhere. Vertical ground displacements of up to 4.5 m and horizontal ground displacements of up to 0.5 m have been observed at Wairakei, New Zealand, that are clearly attributable to the resource exploitation. Similarly, vertical displacements of about 0.13 m have been recorded at The Geysers, California. No significant ground displacements that are attributable to large-scale fluid production have been observed at Larderello, Italy, and Cerro Prieto, Mexico. In this paper, observations show that subsidence due to geothermal fluid production is characterized by such features as an offset of the subsidence bowl from the main area of production, time-lag between production and subsidence, and nonlinear stress-strain relationships. Several plausible conceptual models, of varying degrees of sophistication, have been proposed to explain the observed features. At present, relatively more is known about the physical mechanisms that govern subsidence than the relevant thermal mechanisms. Finally, although attempts have been made to simulate observed geothermal subsidence, the modeling efforts have been seriously limited by a lack of relevant field data needed to sufficiently characterize the complex field system.

  15. Subsidence due to geothermal fluid withdrawal

    SciTech Connect

    Narasimhan, T.N.; Goyal, K.P.

    1982-10-01

    Single-phase and two-phase geothermal reservoirs are currently being exploited for power production in Italy, Mexico, New Zealand, the U.S. and elsewhere. Vertical ground displacements of upto 4.5 m and horizontal ground displacements of up t o 0.5 m have been observed at Wairakei, New Zealand that are clearly attributable to the resource exploitation. Similarly, vertical displacements of about 0.13 m have been recorded at The Geysers, California. No significant ground displacements that are attributable to large-scale fluid production have been observed at Larderello, Italy and Cerro Prieto, Mexico. Observations show that subsidence due to geothermal fluid production is characterized by such features as an offset of the subsidence bowl from the main area of production, time-lag between production and subsidence and nonlinear stress-strain relationships. Several plausible conceptual models, of varying degrees of sophistication, have been proposed to explain the observed features. At present, relatively more is known about the physical mechanisms that govern subsidence than the relevant therma mechanisms. Although attempts have been made to simulate observed geothermal subsidence, the modeling efforts have been seriously limited by a lack of relevant field data needed to sufficiently characterize the complex field system.

  16. Strain mapping on gold thin film buckling and siliconblistering

    SciTech Connect

    Goudeau, P.; Tamura, N.; Parry, G.; Colin, J.; Coupeau, C.; Cleymand, F.; Padmore, H.

    2005-09-01

    Stress/Strain fields associated with thin film buckling induced by compressive stresses or blistering due to the presence of gas bubbles underneath single crystal surfaces are difficult to measure owing to the microscale dimensions of these structures. In this work, we show that micro Scanning X-ray diffraction is a well suited technique for mapping the strain/stress tensor of these damaged structures.

  17. Probing Impulsive Strain Propagation with X-Ray Pulses

    SciTech Connect

    Reis, D. A.; DeCamp, M. F.; Bucksbaum, P. H.; Clarke, R.; Dufresne, E.; Hertlein, M.; Merlin, R.; Falcone, R.; Kapteyn, H.; Murnane, M. M.

    2001-04-02

    Pump-probe time-resolved x-ray diffraction of allowed and nearly forbidden reflections in InSb is used to follow the propagation of a coherent acoustic pulse generated by ultrafast laser excitation. The surface and bulk components of the strain could be simultaneously measured due to the large x-ray penetration depth. Comparison of the experimental data with dynamical diffraction simulations suggests that the conventional model for impulsively generated strain underestimates the partitioning of energy into coherent modes.

  18. Probing Impulsive Strain Propagation with X-Ray Pulses

    NASA Astrophysics Data System (ADS)

    Reis, D. A.; Decamp, M. F.; Bucksbaum, P. H.; Clarke, R.; Dufresne, E.; Hertlein, M.; Merlin, R.; Falcone, R.; Kapteyn, H.; Murnane, M. M.; Larsson, J.; Missalla, Th.; Wark, J. S.

    2001-04-01

    Pump-probe time-resolved x-ray diffraction of allowed and nearly forbidden reflections in InSb is used to follow the propagation of a coherent acoustic pulse generated by ultrafast laser excitation. The surface and bulk components of the strain could be simultaneously measured due to the large x-ray penetration depth. Comparison of the experimental data with dynamical diffraction simulations suggests that the conventional model for impulsively generated strain underestimates the partitioning of energy into coherent modes.

  19. [Antagonistic activity of novel green microalgae strain].

    PubMed

    Selivanova, E A; Ignatenko, M E; Nemtseva, N V

    2014-01-01

    Screening of novel microalgae strains for the presence of pronounced antagonistic (antibacterial) activity against opportunistic bacteria. 11 pure cultures of green unicellular algae isolated from fresh and salt basins of Orenburg region were studied for the presence of antagonistic activity against 4 test-strains of opportunistic bacteria by a photometric method. The effect of water extracts of microalgae Astermonas gracilis on the speed of self-purification of brine from Escherichia coli as well as antibacterial activity of peloid were evaluated under co-cultivation conditions. Pure cultures of green unicellular algae Scenedesmus obliquus (Turpin) Kütz, Scenedesmus magnus Meyen var. magnus, Pediastru duplex Meyen var. duplex, Chlorella vulgaris Bory, Monoraphidium arcuatum (Korschikov) Hindak (=Ankistrodesmus arcuatus Korschikov), Dictyosphaerium sp. had the most pronounced antagonistic activit against opportunistic bacteria. Water extract ofA. gracilis microalgae accelerated brine self-purification fro E. coli due to antibacterial effect. Peloid containing extracts of microorganism cells had a pronounced antibacterial effect against opportunistic bacteria. Antagonistic substances localized inside cells of microalgae increased the speed of allochthonic microorganism elimination that is one of the mechanisms of self-purification of a basin and antibacterial effect of peloid. The novel green microalgae strains studied due to the presence of pronounced antagonistic activity may have a wide practical application.

  20. Using a <670> zone axis for convergent beam electron diffraction measurements of lattice strain in strained silicon.

    PubMed

    Diercks, D R; Kaufman, M J; Irwin, R B; Jain, A; Robertson, L; Weijtmans, J W; Wise, R

    2010-08-01

    Convergent beam electron diffraction patterns of silicon from the gate channel region of a complementary metal-oxide-semiconductor transistor with recessed Si(.82)Ge(.18) stressors were analysed using three zone axes: <230>, <340> and <670>. Values measured using these axes were compared with each other with regards to strain along the [110] and the [001] directions. It was demonstrated that strain measurements made using all three axes showed reasonable agreement with each other: an increase in the [110] compressive strain and a switch from compressive to tensile strain in the [001] with decreasing distance below the gate. It was also observed that the strain calculations using the <230> axis had the lowest uncertainty whereas the <670> axis allowed for measurements closest to the gate due to the improved lateral resolution at that tilt angle.

  1. Thermal conductivity of graphene mediated by strain and size

    SciTech Connect

    Kuang, Youdi; Shi, Sanqiang; Wang, Xinjiang; Huang, Baoling; Lindsay, Lucas

    2016-06-09

    Based on first-principles calculations and full iterative solution of the linearized Boltzmann–Peierls transport equation for phonons, we systematically investigate effects of strain, size and temperature on the thermal conductivity k of suspended graphene. The calculated size-dependent and temperature-dependent k for finite samples agree well with experimental data. The results show that, contrast to the convergent room-temperature k = 5450 W/m-K of unstrained graphene at a sample size ~8 cm, k of strained graphene diverges with increasing the sample size even at high temperature. Out-of-plane acoustic phonons are responsible for the significant size effect in unstrained and strained graphene due to their ultralong mean free path and acoustic phonons with wavelength smaller than 10 nm contribute 80% to the intrinsic room temperature k of unstrained graphene. Tensile strain hardens the flexural modes and increases their lifetimes, causing interesting dependence of k on sample size and strain due to the competition between boundary scattering and intrinsic phonon–phonon scattering. k of graphene can be tuned within a large range by strain for the size larger than 500 μm. These findings shed light on the nature of thermal transport in two-dimensional materials and may guide predicting and engineering k of graphene by varying strain and size.

  2. Two-dimensional simulations of displacement accumulation incorporating shear strain

    PubMed Central

    Bayer, Matthew; Hall, Timothy J.; Neves, Lucio P.; Carneiro, A. A. O.

    2015-01-01

    Using ultrasound images to track large tissue deformations usually requires breaking up the deformation into steps and then summing the resulting displacement estimates. The accumulated displacement estimation error therefore depends on the error in each step, but also on the statistical relationships between estimation steps. These relationships have not been thoroughly studied. Building on previous work with one-dimensional simulations, the work reported here measured error variance for single-step and accumulated displacement estimates using two-dimensional numerical simulations of ultrasound echo signals, subjected to both normal and axial shear strain as well as electronic noise. Previous results were confirmed, showing that errors due to electronic noise are negatively correlated between steps and accumulate slowly, while errors due to strain are positively correlated and accumulate quickly. These properties hold for both normal and axial shear strain. A general comparison of tracking performance for tissue under normal and axial shear strain was also performed. Under axial shear strain error variance tends to increase with larger lateral kernel sizes but decrease for larger axial kernel sizes; the opposite relationship holds under normal strain. A combination of these two types of strain limits the practical kernel size in both dimensions. PMID:24275539

  3. Thermal conductivity of graphene mediated by strain and size

    DOE PAGES

    Kuang, Youdi; Shi, Sanqiang; Wang, Xinjiang; ...

    2016-06-09

    Based on first-principles calculations and full iterative solution of the linearized Boltzmann–Peierls transport equation for phonons, we systematically investigate effects of strain, size and temperature on the thermal conductivity k of suspended graphene. The calculated size-dependent and temperature-dependent k for finite samples agree well with experimental data. The results show that, contrast to the convergent room-temperature k = 5450 W/m-K of unstrained graphene at a sample size ~8 cm, k of strained graphene diverges with increasing the sample size even at high temperature. Out-of-plane acoustic phonons are responsible for the significant size effect in unstrained and strained graphene due tomore » their ultralong mean free path and acoustic phonons with wavelength smaller than 10 nm contribute 80% to the intrinsic room temperature k of unstrained graphene. Tensile strain hardens the flexural modes and increases their lifetimes, causing interesting dependence of k on sample size and strain due to the competition between boundary scattering and intrinsic phonon–phonon scattering. k of graphene can be tuned within a large range by strain for the size larger than 500 μm. These findings shed light on the nature of thermal transport in two-dimensional materials and may guide predicting and engineering k of graphene by varying strain and size.« less

  4. Thermal conductivity of graphene mediated by strain and size

    SciTech Connect

    Kuang, Youdi; Shi, Sanqiang; Wang, Xinjiang; Huang, Baoling; Lindsay, Lucas

    2016-06-09

    Based on first-principles calculations and full iterative solution of the linearized Boltzmann–Peierls transport equation for phonons, we systematically investigate effects of strain, size and temperature on the thermal conductivity k of suspended graphene. The calculated size-dependent and temperature-dependent k for finite samples agree well with experimental data. The results show that, contrast to the convergent room-temperature k = 5450 W/m-K of unstrained graphene at a sample size ~8 cm, k of strained graphene diverges with increasing the sample size even at high temperature. Out-of-plane acoustic phonons are responsible for the significant size effect in unstrained and strained graphene due to their ultralong mean free path and acoustic phonons with wavelength smaller than 10 nm contribute 80% to the intrinsic room temperature k of unstrained graphene. Tensile strain hardens the flexural modes and increases their lifetimes, causing interesting dependence of k on sample size and strain due to the competition between boundary scattering and intrinsic phonon–phonon scattering. k of graphene can be tuned within a large range by strain for the size larger than 500 μm. These findings shed light on the nature of thermal transport in two-dimensional materials and may guide predicting and engineering k of graphene by varying strain and size.

  5. Colony Dimorphism in Bradyrhizobium Strains

    PubMed Central

    Sylvester-Bradley, Rosemary; Thornton, Philip; Jones, Peter

    1988-01-01

    Ten isolates of Bradyrhizobium spp. which form two colony types were studied; the isolates originated from a range of legume species. The two colony types differed in the amount of gum formed or size or both, depending on the strain. Whole 7-day-old colonies of each type were subcultured to determine the proportion of cells which had changed to the other type. An iterative computerized procedure was used to determine the rate of switching per generation between the two types and to predict proportions reached at equilibrium for each strain. The predicted proportions of the wetter (more gummy) or larger colony type at equilibrium differed significantly between strains, ranging from 0.9999 (strain CIAT 2383) to 0.0216 (strain CIAT 2469), because some strains switched faster from dry to wet (or small to large) and others switched faster from wet to dry (or large to small). Predicted equilibrium was reached after about 140 generations in strain USDA 76. In all but one strain (CIAT 3030) the growth rate of the wetter colony type was greater than or similar to that of the drier type. The mean difference in generation time between the two colony types was 0.37 h. Doubling times calculated for either colony type after 7 days of growth on the agar surface ranged from 6.0 to 7.3 h. The formation of two persistent colony types by one strain (clonal or colony dimorphism) may be a common phenomenon among Bradyrhizobium strains. Images PMID:16347599

  6. Geodetic strain measurements in Washington.

    USGS Publications Warehouse

    Savage, J.C.; Lisowski, M.; Prescott, W.H.

    1981-01-01

    Two new geodetic measurements of strain accumulation in the state of Washington for the interval 1972-1979 are reported. Near Seattle the average principal strain rates are 0.07 + or - 0.03 mu strain/yr N19oW and -0.13 + or - 0.02 mu strain/yr N71oE, and near Richland (south central Washington) the average principal strain rates are -0.02 + or - 0.01 mu strain/yr N36oW and -0.04 + or - 0.01 mu strain/yr N54oE. Extension is taken as positive, and the uncertainties quoted are standard deviations. A measurement of shear strain accumulation (dilation not determined) in the epoch 1914- 1966 along the north coast of Vancouver Island by the Geodetic Survey of Canada indicates a marginally significant accumulation of right-lateral shear (0.06 + or - 0.03 mu rad/yr) across the plate boundary (N40oW strike). Although there are significant differences in detail, these strain measurements are roughly consistent with a crude dislocation model that represents subduction of the Juan de Fuca plate. The observed accumulation of strain implies that large, shallow, thrust earthquakes should be expected off the coast of Washington and British Columbia. However, this conclusion is not easily reconciled with either observations of elevation change along the Washington coast or the focal mechanism solutions for shallow earthquakes in Washington. -Authors

  7. Errors Due to Counting Statistics in the Triaxial Strain (Stress) Tensor Determined by Diffraction.

    DTIC Science & Technology

    2014-09-26

    Distribution of this docimnt Reproduction in whole or in part in unlimited is permitted for any purpose of the United States Government L" __j a m...1973). 3) S. Taira, T. Abe and T. Ehiro, X-ray Study of Surface Residual Stress Produced in Fatigue Process of Annealed Metals, Bull J.S.M.E., 12:53

  8. Forming patterns and mechanical properties of austenitic chromium-nickel steel due to strain aging

    NASA Astrophysics Data System (ADS)

    Kamyshanchenko, N. V.; Krasilnikov, V. V.; Nikulin, I. S.; Gal'tsev, A. V.; Belenko, V. A.; Gal'tseva, I. N.

    2016-02-01

    The work presents the results of studies of forming patterns and mechanical properties of martensite transformation, found in the chromium-nickel steels of 08X18H10T grade, subjected to pre-heat treatment followed by deformation aging. Internal energy state is determined by using acoustic emission. The observed patterns improve the mechanical parameters of steels quenched and plastically deformed at low temperature and then subjected to temper under load in the optimum temperature being associated with obtaining a more stable condition of the structure through the processes of relaxation of internal stresses, high dispersion and uniform distribution of carbides and intermetallic particles, increasing the density of dislocations as well as through other processes occurring during deformation aging martensite. Start your abstract here...

  9. Shear Stress at a Film-Substrate Interface Due to Mismatch Strain,

    DTIC Science & Technology

    1988-01-01

    situation provides useful results on the edge effect for very wide films, it provides no basis for assessing the influence of lateral dimension of the film...the edge stress concentration is more severe than it would be in a more complete description of the edge effect . Indeed, for points very close to the

  10. Vortex Evolution due to Straining: A Mechanism for Dominance of Strong, Interior Anticyclones

    DTIC Science & Technology

    2006-06-01

    questions is a rotating, conservative, Shallow-water model with Asymmetric and Gradient-wind Balance approximations. The controlling mechanisms are vortex...Red Spot of Jupiter (figure 1). Coherent vortices have also been found in computational turbulence studies of initially randomly distributed...Many studies have noted the preferential existence of anticyclones both in nature (e.g., atmospheric blocking anticylones and submesoscale coherent

  11. Bicrystals with strain gradient effects

    SciTech Connect

    Shu, J.Y.

    1997-01-09

    Boundary between two perfectly bonded single crystals plays an important role in determining the deformation of the bicrystals. This work addresses the role of the grain boundary by considering the elevated hardening of a slip system due to a slip gradient. The slip gradients are associated with geometrically necessary dislocations and their effects become pronounced when a representative length scale of the deformation field is comparable to the dominant microstructural length scale of a material. A new rate-dependent crystal plasticity theory is presented and has been implemented within the finite element method framework. A planar bicrystal under uniform in-plane loading is studied using the new crystal theory. The strain is found to be continuous but nonuniform within a boundary layer around the interface. The lattice rotation is also nonuniform within the boundary layer. The width of the layer is determined by the misorientation of the grains, the hardening of slip systems, and most importantly by the characteristic material length scales. The overall yield strength of the bicrystal is also obtained. A significant grain-size dependence of the yield strength, the Hall- Petch effect is predicted.

  12. Size dependent anisotropic strain and optical properties of strained Si nanocrystals.

    PubMed

    Dhara, Soumen; Giri, P K

    2011-10-01

    We report on the growth of strained Si nanocrystals (NCs) of sizes in the range 5-43 nm and analyze the detailed nature of strain and its influence on the optical properties of the NCs as a function of size. Freestanding Si NPs were prepared in a controlled way using a contamination free mechanical ball milling for duration 2-40 hrs. Structural analysis based on X-ray diffraction (XRD) pattern and high resolution transmission electron microscopy (HRTEM) confirms the good crystalline nature of these Si NCs. A detailed analysis of XRD line profile reveals that nature of the strain is anisotropic and the screw type dislocations are the main contributors to the lattice strain. The dislocation density and corresponding strain changes non-monotonically, while the crystallite size changes monotonically with milling time. Direct evidence of dislocations is shown from HRTEM images. The UV-vis-NIR absorption spectra of the Si NCs show an enhanced absorption band in the visible region that shows a systematic blue shift with reduced NC sizes. Si NCs with size approximately 5-10 nm exhibits a distinct photoluminescence (PL) band in the visible region at 580-585 nm at room temperature, while higher size NCs does not exhibit any visible emission. PL excitation measurement shows a very small Stokes shift for the visible emission band indicating no involvement of defects/interface in the emission. We argue that the observed absorption and emission can be explained based on the enhanced confinement effect on the strained Si NCs due to the combined effect of strain and size quantization.

  13. Maculopathy due to drug inhalation.

    PubMed

    Asensio-Sánchez, V M; Gonzalez-Buendia, L; Marcos-Fernández, M

    2014-08-01

    A case of maculopathy due to "poppers" is described. Poppers is a drug composed of various forms of alkyl nitrite. A 39 year-old man, who had been using poppers for years, was seen in the clinic with phosphenes, reduced visual acuity and central scotoma. The SD-OCT in the right eye showed disruption at the level of the IS/OS junction line. The SD-OCT scan in the left eye showed an outer rectangular retinal hole and an outer retinal cyst. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  14. Anaphylaxis due to head injury.

    PubMed

    Bruner, Heather C; Bruner, David I

    2015-05-01

    Both anaphylaxis and head injury are often seen in the emergency department, but they are rarely seen in combination. We present a case of a 30-year-old woman who presented with anaphylaxis with urticaria and angioedema following a minor head injury. The patient responded well to intramuscular epinephrine without further complications or airway compromise. Prior case reports have reported angioedema from hereditary angioedema during dental procedures and maxillofacial surgery, but there have not been any cases of first-time angioedema or anaphylaxis due to head injury.

  15. Endocarditis due to Kingella kingae.

    PubMed

    Odum, L; Jensen, K T; Slotsbjerg, T D

    1984-06-01

    Four cases of endocarditis due to Kingella kingae are described in compromised patients. All had primary heart disease, and two had systemic lupus erythematosis and congenital heart defect respectively, in addition. Confirmation of Kingella kingae was made in one case at autopsy. The literature on 11 cases of endocarditis, 2 bacteremia, 4 osteomyelitis, 5 septic arthritis and 1 intervertebral disc infection, all caused by Kingella kingae, is reviewed. Our findings confirm that the organism is of low pathogenicity. Children may be predisposed to infection with Kingella kingae.

  16. Anaphylaxis Due to Head Injury

    PubMed Central

    Bruner, Heather C.; Bruner, David I.

    2015-01-01

    Both anaphylaxis and head injury are often seen in the emergency department, but they are rarely seen in combination. We present a case of a 30-year-old woman who presented with anaphylaxis with urticaria and angioedema following a minor head injury. The patient responded well to intramuscular epinephrine without further complications or airway compromise. Prior case reports have reported angioedema from hereditary angioedema during dental procedures and maxillofacial surgery, but there have not been any cases of first-time angioedema or anaphylaxis due to head injury. PMID:25987924

  17. Strain induced highly oriented graphene wrinkles

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Yang, Shudu; Wang, Ashu

    2017-07-01

    Graphene, a two-dimensional (2D) material, is an important constituent part for the development of mechanic, electronic and photonic systems due to its remarkable properties, however, wrinkling is a ubiquitous phenomenon in 2D membranes. As a 2D material with atomic thickness, graphene is found to be wrinkled easily because of its relatively low bending rigidity, and besides, wrinkle affects graphene’s remarkable physical property severely. Despite their prevalence and potential impact on large-scale graphene properties, only a several approaches have been dedicated to control their structural morphology and orientation by transferring graphene onto polymer substrates. Here we report a new route to control the orientation of wrinkles by directly applying external mechanical strains to metal substrates until plastic deformation happens. By changing direction and magnitude of tension strain, wrinkles with different spacing but all with orientations perpendicular to the tensile direction can be obtained.

  18. Surface-state spin textures in strained bulk HgTe: Strain-induced topological phase transitions

    NASA Astrophysics Data System (ADS)

    Kirtschig, Frank; van den Brink, Jeroen; Ortix, Carmine

    2016-12-01

    The opening of a band gap due to compressive uniaxial strain renders bulk HgTe a strong three-dimensional topological insulator with protected gapless surface states at any surface. By employing a six-band k .p model, we determine the spin textures of the topological surface states of bulk HgTe uniaxially strained along the (100 ) direction. We show that at the (010 ) and (001 ) surfaces, an increase in the strain magnitude triggers a topological phase transition where the winding number of the surface-state spin texture is flipped while the four topological invariants characterizing the bulk band structure of the material are unchanged.

  19. Bronchobiliary fistulae due to echinococcosis.

    PubMed

    Gerazounis, M; Athanassiadi, Kalliopi; Metaxas, E; Athanassiou, Maria; Kalantzi, Nikolitsa

    2002-08-01

    A bronchobiliary fistula (BBF) is a rare complication of echinococcosis due to rupture of hydatid cysts located at the upper surface of the liver to the bronchial tree. We present our experience in treating this uncommon and dangerous entity. During the last 20 years, 21 patients, ten men and 11 women ranging in age from 26 to 83 years with a BBF were treated in our department. They presented dyspnea, biloptysis, cough or fever. Diagnostic imaging studies have been very helpful in identifying the communication and in delineating its location. The disease was limited to the liver in 11 cases, whereas in the rest ten cases, both liver and lung were involved. Right thoracotomy was the approach of choice. Our strategy consisted of adequate evacuation of the intrahepatic cysts, obliteration of the cyst space, freeing the adherent lung, dissection and closure of the BBF. Two deaths occurred due to anaphylactic shock and cardiac insufficiency. Follow up at 7-12 years did not reveal any recurrence. Although the incidence of echinococcosis has been decreased, the BBF still remains a serious complication with a high morbidity and mortality. Early diagnosis and management of septic associated complications are essential.

  20. Decoherence due to Scattering Atoms

    NASA Astrophysics Data System (ADS)

    Uys, Hermann; Perreault, John; Cronin, Alex

    2004-05-01

    Coherent manipulation of a quantum system is difficult because of uncontrolled interactions with the system's environment. The study of decoherence so introduced is important for progress in quantum mechanical engineering, and for understanding the transition from quantum to classical behavior. We have observed loss of fringe contrast in a Mach-Zhender atom interferometer due to scattering background gas atoms and propose that this might be interpreted as quantum decoherence. Progress will be reported on the use of a general model of decoherence incorporating a semi-classical picture of atom scattering to explain the contrast loss [1]. A formal analogy is made to decoherence due to scattering photons from atoms in an interferometer [2]. [1] S.M. Tan, D.F. Waals, ``Loss of coherence in interferometry", Phys. Rev. A 47 p.4663 (1993) [2] D.A. Kokorowski, A.D. Cronin, T.D. Roberts, and D.E. Pritchard, ``From single- to multiple-photon decoherence in an atom interferometer", Phys. Rev. Lett. 86 p. 2191 (2001)

  1. Euthanasia: killing as due care?

    PubMed

    Oduncu, Fuat S

    2003-01-01

    On 10 April 2001, the Netherlands was the first country to pass a law on the killing of patients at their request (euthanasia), which took effect on 1 April 2002. Belgium followed and passed a euthanasia law on 16 May 2002, which took effect on 23 September 2002 and is even more liberal than the Dutch one. Physicians will be exempted from criminal liability provided they satisfy the so-called 'due care criteria'. However, in medical history euthanasia has never been part of the medical duty of care. Instead, the goals of medicine have always been the relief of pain and suffering. The current article provides insights into the Dutch, Belgian and Oregon euthanasia and physician-assisted suicide practices and reflects upon some central medical and legal documents on the regulation of euthanasia and the provision of palliative care. Modern palliative care includes both the delivery of competent palliative skills and a virtuous attitude of compassionate caring about the terminally ill patient as an autonomous person. Here, the author rejects killing as due care and proposes a novel concept of 'RAHME' (Aramaic: compassion, love, mercy), which calls for a holistically oriented concept where physicians act as companions to the terminally ill and dying patients.

  2. Strain gauge measurement uncertainties on hydraulic turbine runner blade

    NASA Astrophysics Data System (ADS)

    Arpin-Pont, J.; Gagnon, M.; Tahan, S. A.; Coutu, A.; Thibault, D.

    2012-11-01

    Strains experimentally measured with strain gauges can differ from those evaluated using the Finite Element (FE) method. This difference is due mainly to the assumptions and uncertainties inherent to each method. To circumvent this difficulty, we developed a numerical method based on Monte Carlo simulations to evaluate measurement uncertainties produced by the behaviour of a unidirectional welded gauge, its position uncertainty and its integration effect. This numerical method uses the displacement fields of the studied part evaluated by an FE analysis. The paper presents a study case using in situ data measured on a hydraulic turbine runner. The FE analysis of the turbine runner blade was computed, and our numerical method used to evaluate uncertainties on strains measured at five locations with welded strain gauges. Then, measured strains and their uncertainty ranges are compared to the estimated strains. The uncertainty ranges obtained extended from 74 μepsilon to 165 μepsilon. Furthermore, the biases observed between the median of the uncertainty ranges and the FE strains varied from -36 to 36 μepsilon. Note that strain gauge measurement uncertainties depend mainly on displacement fields and gauge geometry.

  3. Printing of stretchable silk membranes for strain measurements.

    PubMed

    Ling, Shengjie; Zhang, Qiang; Kaplan, David L; Omenetto, Fiorenzo; Buehler, Markus J; Qin, Zhao

    2016-07-07

    Quantifying the deformation of biological tissues under mechanical loading is crucial to understand its biomechanical response in physiological conditions and important for designing materials and treatments for biomedical applications. However, strain measurements for biological tissues subjected to large deformations and humid environments are challenging for conventional methods due to several limitations such as strain range, boundary conditions, surface bonding and biocompatibility. Here we propose the use of silk solutions and printing to synthesize prototype strain gauges for large strain measurements in biological tissues. The study shows that silk-based strain gauges can be stretched up to 1300% without failure, which is more than two orders of magnitude larger than conventional strain gauges, and the mechanics can be tuned by adjusting ion content. We demonstrate that the printing approach can accurately provide well bonded fluorescent features on the silk membranes using designs which can accurately measure strain in the membrane. The results show that these new strain gauges measure large deformations in the materials by eliminating the effects of sliding from the boundaries, making the measurements more accurate than direct outputs from tensile machines.

  4. Two-strain competition in quasineutral stochastic disease dynamics.

    PubMed

    Kogan, Oleg; Khasin, Michael; Meerson, Baruch; Schneider, David; Myers, Christopher R

    2014-10-01

    We develop a perturbation method for studying quasineutral competition in a broad class of stochastic competition models and apply it to the analysis of fixation of competing strains in two epidemic models. The first model is a two-strain generalization of the stochastic susceptible-infected-susceptible (SIS) model. Here we extend previous results due to Parsons and Quince [Theor. Popul. Biol. 72, 468 (2007)], Parsons et al. [Theor. Popul. Biol. 74, 302 (2008)], and Lin, Kim, and Doering [J. Stat. Phys. 148, 646 (2012)]. The second model, a two-strain generalization of the stochastic susceptible-infected-recovered (SIR) model with population turnover, has not been studied previously. In each of the two models, when the basic reproduction numbers of the two strains are identical, a system with an infinite population size approaches a point on the deterministic coexistence line (CL): a straight line of fixed points in the phase space of subpopulation sizes. Shot noise drives one of the strain populations to fixation, and the other to extinction, on a time scale proportional to the total population size. Our perturbation method explicitly tracks the dynamics of the probability distribution of the subpopulations in the vicinity of the CL. We argue that, whereas the slow strain has a competitive advantage for mathematically "typical" initial conditions, it is the fast strain that is more likely to win in the important situation when a few infectives of both strains are introduced into a susceptible population.

  5. Influence of Lysobacter enzymogenes Strain C3 on Nematodes

    PubMed Central

    Chen, J.; Moore, W. H.; Yuen, G. Y.; Kobayashi, D.; Caswell-Chen, E. P.

    2006-01-01

    Chitinolytic microflora may contribute to biological control of plant-parasitic nematodes by causing decreased egg viability through degradation of egg shells. Here, the influence of Lysobacter enzymogenes strain C3 on Caenorhabditis elegans, Heterodera schachtii, Meloidogyne javanica, Pratylenchus penetrans, and Aphelenchoides fragariae is described. Exposure of C. elegans to L. enzymogenes strain C3 on agar resulted in almost complete elimination of egg production and death of 94% of hatched juveniles after 2 d. Hatch of H. schachtii eggs was about 50% on a lawn of L. enzymogenes strain C3 on agar as compared to 80% on a lawn of E. coli. Juveniles that hatched on a lawn of L. enzymogenes strain C3 on agar died due to disintegration of the cuticle and body contents. Meloidogyne javanica juveniles died after 4 d exposure to a 7-d-old chitin broth culture of L. enzymogenes strain C3. Immersion of A. fragariae, M. javanica, and P. penetrans juveniles and adults in a nutrient broth culture of L. enzymogenes strain C3 led to rapid death and disintegration of the nematodes. Upon exposure to L. enzymogenes strain C3 cultures in nutrient broth, H. schachtii juveniles were rapidly immobilized and then lysed after three days. The death and disintegration of the tested nematodes suggests that toxins and enzymes produced by this strain are active against a range of nematode species. PMID:19259452

  6. Strain Pattern in Supercooled Liquids

    NASA Astrophysics Data System (ADS)

    Illing, Bernd; Fritschi, Sebastian; Hajnal, David; Klix, Christian; Keim, Peter; Fuchs, Matthias

    2016-11-01

    Investigations of strain correlations at the glass transition reveal unexpected phenomena. The shear strain fluctuations show an Eshelby-strain pattern [˜cos (4 θ ) /r2 ], characteristic of elastic response, even in liquids, at long times. We address this using a mode-coupling theory for the strain fluctuations in supercooled liquids and data from both video microscopy of a two-dimensional colloidal glass former and simulations of Brownian hard disks. We show that the long-ranged and long-lived strain signatures follow a scaling law valid close to the glass transition. For large enough viscosities, the Eshelby-strain pattern is visible even on time scales longer than the structural relaxation time τ and after the shear modulus has relaxed to zero.

  7. Searching for Strain Transients in PBO data

    NASA Astrophysics Data System (ADS)

    Wei, M.; McGuire, J. J.; Richardson, E.; Kraft, R. L.; Hardwig, M. D.

    2011-12-01

    We applied a recently developed strain anomaly detector, the Network Stain Filter [Ohtani et al., 2010], to the continuous GPS datasets from the PBO in Alaska and Salton Trough. The strategy of the filter is to find spatially and temporally coherent signals by processing data from the entire network simultaneously. Compared to previous Network Inversion Filter [Segall and Matthews, 1997], the new detector does not require the knowledge of potential sources, which can be either unknown and/or very numerous in a large tectonically active area. At Alaska, we find a strain anomaly between Kodiak Island and Kenai Peninsula that began in early 2010. There are earthquakes that are likely related to the strain anomaly. The physical interpretation of the strain anomaly is still in progress. The secular motion since 2006 that PBO recorded is consistent with a model that consist of two locked patches on Kodiak Island and Kenai Peninsula and a creeping patch near Cook Inlet as determined earlier by Zweck et al. [2002]. Seasonal signals dominate in the data and are highly correlated between stations in the horizontal components. The reason for this correlation in seasonal term azimuths between stations is not clear. At Salton Trough, the post-seismic deformation of the 2010 Mw 7.2 El Mayor Earthquake dominates the transient signals. The maximum post-seismic slip recorded by the GPS is 23 mm during 1.5 years after the earthquake (Site ID P494). Additionally, we are exploring using InSAR data as a complimentary method for detecting strain anomaly in areas with shallow sources, such as in the Salton Trough. A creep event on the Superstition Hills Fault in October 2006 has been observed by InSAR but missed by nearby GPS stations due to low amplitude at the location [Wei et al., 2009].

  8. Colloid straining within saturated heterogeneous porous media.

    PubMed

    Porubcan, Alexis A; Xu, Shangping

    2011-02-01

    The transport of 0.46 μm, 2.94 μm, 5.1 μm and 6.06 μm latex particles in heterogeneous porous media prepared from the mixing of 0.78 mm, 0.46 mm and 0.23 mm quartz sands was investigated through column transport experiments. It was observed that the 0.46 μm particles traveled conservatively within the heterogeneous porous media, suggesting that under the experimental conditions employed in this research the strong repulsive interactions between the negatively charged latex particles and the clean quartz sands led to minimal colloid immobilization due to physicochemical filtration. The immobilization of the 2.94 μm, 5.1 μm and 6.06 μm latex particles was thus attributed to colloid straining. Experimental results showed that the straining of colloidal particles within heterogeneous sand mixtures increased when the fraction of finer sands increased. The mathematical model that was developed and tested based on results obtained using uniform sands (Xu et al., 2006) was found to be able to describe colloid straining within heterogeneous porous media. Examination of the relationship between the best-fit values of the clean-bed straining rate coefficients (k(0)) and the ratio of colloid diameter (d(p)) and sand grain size (d(g)) indicated that when number-average sizes were used to represent the size of the heterogeneous porous media, there existed a consistent relationship for both uniform sands and heterogeneous sand mixtures. Similarly, the use of the number-averaged sizes for the heterogeneous porous media produced a uniform relationship between the colloid straining capacity term (λ) and the ratio of d(p)/d(g) for all the sand treatments.

  9. Casimir interaction of strained graphene

    NASA Astrophysics Data System (ADS)

    Bordag, M.; Fialkovsky, I.; Vassilevich, D.

    2017-08-01

    We calculate the Casimir interaction of two freestanding graphene samples under uniaxial strain. Our approach fully takes retardation and dispersion into account and is based on quantum field theoretical expressions for conductivities in terms of the polarization operator. Contrary to some recent results the force shows a rather weak dependence on the realistic values of strain, changing just by a few percent in its maximum as compared to the non-strained case.

  10. Strain engineering of graphene nanoribbons: pseudomagnetic versus external magnetic fields

    NASA Astrophysics Data System (ADS)

    Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis

    2017-05-01

    Bandgap opening due to strain engineering is a key architect for making graphene's optoelectronic, straintronic, and spintronic devices. We study the bandgap opening due to strain induced ripple waves and investigate the interplay between pseudomagnetic fields and externally applied magnetic fields on the band structures and spin relaxation in graphene nanoribbons (GNRs). We show that electron-hole bands of GNRs are highly influenced (i.e. level crossing of the bands are possible) by coupling two combined effects: pseudomagnetic fields (PMF) originating from strain tensor and external magnetic fields. In particular, we show that the tuning of the spin-splitting band extends to large externally applied magnetic fields with increasing values of pseudomagnetic fields. Level crossings of the bands in strained GNRs can also be observed due to the interplay between pseudomagnetic fields and externally applied magnetic fields. We also investigate the influence of this interplay on the electromagnetic field mediated spin relaxation mechanism in GNRs. In particular, we show that the spin hot spot can be observed at approximately B = 65 T (the externally applied magnetic field) and B0 = 53 T (the magnitude of induced pseudomagnetic field due to ripple waves) which may not be considered as an ideal location for the design of straintronic devices. Our analysis might be used for tuning the bandgaps in strained GNRs and utilized to design the optoelectronic devices for straintronic applications.

  11. Strain gage adhesives -- Operating characteristics

    NASA Astrophysics Data System (ADS)

    Hannah, R. L.; Reese, R. T.

    1994-02-01

    This paper is concerned with the adhesives which are used to bond the strain gages to substrates. Strain gage installations include four basic parts: the gage, the adhesive used to attach the gage to the stressed surface, the coatings used to protect the gage over its service life, and the electrical circuitry and data acquisition system used to record the strains. This paper describes the operating characteristics of the adhesives. The figures developed in this paper summarize the information available on adhesives from excellent manufacturer's catalogs, texts and references, and from experiences from the SEM Western Regional Strain Gage Committee.

  12. Thermal strain imaging: a review

    PubMed Central

    Seo, Chi Hyung; Shi, Yan; Huang, Sheng-Wen; Kim, Kang; O'Donnell, Matthew

    2011-01-01

    Thermal strain imaging (TSI) or temporal strain imaging is an ultrasound application that exploits the temperature dependence of sound speed to create thermal (temporal) strain images. This article provides an overview of the field of TSI for biomedical applications that have appeared in the literature over the past several years. Basic theory in thermal strain is introduced. Two major energy sources appropriate for clinical applications are discussed. Promising biomedical applications are presented throughout the paper, including non-invasive thermometry and tissue characterization. We present some of the limitations and complications of the method. The paper concludes with a discussion of competing technologies. PMID:22866235

  13. High temperature strain gage evaluation

    NASA Technical Reports Server (NTRS)

    Gonzalez, J. I.

    1977-01-01

    The structural thermal test of an advanced ramjet missile section required strain measurements as high as 922 K (1200 F). Since there is relatively little experience in the use of strain gages above the 700-755 K (800-900 F) level, a program was initiated to select and evaluate the best available gage. Candidate gages suitable for measurements up to 922 K (1200 F) were selected. This involved the determination of their operating characteristics, availability, cost, installation aspects, etc. The evaluation involved the following tests: strain as a function of load at room temperature and apparent strain as a function of temperature.

  14. Hydrogen production from microbial strains

    DOEpatents

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  15. [Infections due to Mycobacterium simiae].

    PubMed

    García-Martos, Pedro; García-Agudo, Lidia; González-Moya, Enrique; Galán, Fátima; Rodríguez-Iglesias, Manuel

    2015-10-01

    Mycobacterium simiae is a slow-growing photochromogenic environmental mycobacterium, first described in 1965. Rarely associated with human infections, possibly due to its limited pathogenicity, it mainly produces lung infection in immunocompetent elderly patients with underlying lung disease, and in disseminated infections in immunosuppressed young patients with AIDS. A microbiological culture is needed to confirm the clinical suspicion, and genetic sequencing techniques are essential to correctly identify the species. Treating M. simiae infections is complicated, owing to the multiple resistance to tuberculous drugs and the lack of correlation between in vitro susceptibility data and in vivo response. Proper treatment is yet to be defined, but must include clarithromycin combined with other antimicrobials such as moxifloxacin and cotrimoxazole. It is possible that M. simiae infections are undiagnosed.

  16. Collisional Aggregation Due to Turbulence

    NASA Astrophysics Data System (ADS)

    Pumir, Alain; Wilkinson, Michael

    2016-03-01

    Collisions between particles suspended in a fluid play an important role in many physical processes. As an example, collisions of microscopic water droplets in clouds are a necessary step in the production of macroscopic raindrops. Collisions of dust grains are also conjectured to be important for planet formation in the gas surrounding young stars and to play a role in the dynamics of sand storms. In these processes, collisions are favored by fast turbulent motions. Here we review recent advances in the understanding of collisional aggregation due to turbulence. We discuss the role of fractal clustering of particles and caustic singularities of their velocities. We also discuss limitations of the Smoluchowski equation for modeling such processes. These advances lead to a semiquantitative understanding on the influence of turbulence on collision rates and point to deficiencies in the current understanding of rainfall and planet formation.

  17. Occupational injuries due to violence.

    PubMed

    Hales, T; Seligman, P J; Newman, S C; Timbrook, C L

    1988-06-01

    Each year in the United States, an estimated 800 to 1,400 people are murdered at work, and an unknown number of nonfatal injuries due to workplace violence occur. Based on Ohio's workers' compensation claims from 1983 through 1985, police officers, gasoline service station employees, employees of the real estate industry, and hotel/motel employees were found to be at the highest risk for occupational violent crime (OVC) injury and death. Grocery store employees, specifically those working in convenience food stores, and employees of the real estate industry had the most reported rapes. Four previously unidentified industries at increased risk of employee victimization were described. Identification of industries and occupations at high risk for crime victimization provides the opportunity to focus preventive strategies to promote employee safety and security in the workplace.

  18. Inductance due to spin current

    SciTech Connect

    Chen, Wei

    2014-03-21

    The inductance of spintronic devices that transport charge neutral spin currents is discussed. It is known that in a media that contains charge neutral spins, a time-varying electric field induces a spin current. We show that since the spin current itself produces an electric field, this implies existence of inductance and electromotive force when the spin current changes with time. The relations between the electromotive force and the corresponding flux, which is a vector calculated by the cross product of electric field and the trajectory of the device, are clarified. The relativistic origin generally renders an extremely small inductance, which indicates the advantage of spin current in building low inductance devices. The same argument also explains the inductance due to electric dipole current and applies to physical dipoles consist of polarized bound charges.

  19. Development of a mechanical strain amplifying transducer with Bragg grating sensor for low-amplitude strain sensing

    NASA Astrophysics Data System (ADS)

    Nawrot, Urszula; Geernaert, Thomas; De Pauw, Ben; Anastasopoulos, Dimitrios; Reynders, Edwin; De Roeck, Guido; Berghmans, Francis

    2017-07-01

    Vibration-based damage identification is a well-known method to support health monitoring of civil engineering structures. Damage in such structures can be identified by measuring changes of the natural frequencies, damping factors or modal displacements of the structure. However, this approach suffers from the low sensitivity of these natural frequencies and modal displacements to certain types of damage. Modal strains and curvatures can be more sensitive to local damage, but direct monitoring of these quantities with sufficient spatial resolution is not possible with current measurement techniques due to the very small strain levels (sub-microstrain) caused by ambient or operational excitation. To deal with this issue, we propose a novel mechanical transducer equipped with an optical fiber Bragg grating (FBG) sensor that enhances the sensitivity to strain with a factor larger than 30. The principle of operation of the transducer exploits a symmetric cantilever structure that enlarges the strain experienced by the FBG sensor compared to the strain applied to the transducer itself. We carried out dynamic and static tests to verify the ability of the strain-amplifying transducers to measure small-amplitude strain levels and to evidence the potential for carrying out FBG based modal strain measurements on concrete civil engineering structures.

  20. Strain relaxation mechanisms in compressively strained thin SiGe-on-insulator films grown by selective Si oxidation

    NASA Astrophysics Data System (ADS)

    Gunji, Marika; Marshall, Ann F.; McIntyre, Paul C.

    2011-01-01

    We report on strain relaxation mechanisms in highly compressive-strained (0.67%-2.33% biaxial strain), thin SiGe-on-insulator (SGOI) structures with Ge atomic fraction ranging from 0.18 to 0.81. SGOI layers (8.7-75 nm thickness) were fabricated by selective oxidization of Si from compressively strained SiGe films epitaxially grown on single crystalline Si-on-insulator (SOI) layers. During high temperature oxidation annealing, strain relaxation occurred due to both intrinsic stacking fault (SF) formation and biaxial stress-driven buckling of the SiGe layers through viscous flow of the overlying and underlying SiO2 layers. Transmission electron microscopy (TEM) and x-ray diffraction were performed to confirm the simultaneous occurrence of these two strain relaxation mechanisms. The results indicate that ˜30 % of the observed strain relaxation can be attributed to formation of intrinsic SFs and the remaining strain relaxation to stress-driven buckling of the SiGe layers. In addition, cross-sectional TEM images show that some of the SFs and layer buckling roughness appears to be spatially correlated.

  1. Silicon Germanium Strained Layers and Heterostructures

    NASA Astrophysics Data System (ADS)

    Willander, M.; Nur, O.; Jain, S. C.

    2004-01-01

    The integration of strained-Si1 xGex into Si technology has enhanced the performance and extended the functionality of Si based circuits. The improvement of device performance is observed in both AC as well as DC characteristics of these devices. The category of such devices includes field effect as well as bipolar families. Speed performance in some based circuits has reached limits previously dominated by III-V heterostructures based devices. In addition, for some optoelectronics applications including photodetectors it is now possible to easily integrate strained-Si1 xGex based optical devices into standard Silicon technology. The impact of integrating strained and relaxed Si1 xGex alloys into Si technology is important. It has lead to stimulate Si research as well as offers easy options for performances that requires very complicated and costly process if pure Si has to be used. In this paper we start by discussing the strain and stability of Si1 xGex alloys. The origin and the process responsible for transient enhanced diffusion (TED) in highly doped Si containing layers will be mentioned. Due to the importance of TED for thin highly doped Boron strained-Si1 xGex layers and its degrading consequences, possible suppression design methods will be presented. Quantum well pchannel MOSFETs (QW-PMOSFETs) based on thin buried QW are solution to the low speed and weak current derivability. Different aspects of designing these devices for a better performance are briefly reviewed. Other FETs based on tensile strained Si on relaxed Si1 xGex for n-channel and modulation doped field effect transistors (MODFETs) showed excellent performance. Record AC performance well above 200GHz for fmax is already observed and this record is expected to increase in the coming years. Heterojunction bipolar transistors (HPTs) with thin strained-Si1 xGex highly doped base have lead to optimize the performance of the bipolar technology for many applications easily. The strategies of design

  2. On measuring the strength of metals at ultrahigh strain rates

    NASA Astrophysics Data System (ADS)

    Vogler, T. J.

    2009-09-01

    The strain rate sensitivity of materials is normally measured through a combination of quasistatic, Hopkinson bar, and pressure-shear experiments. Recent advances in uniaxial strain ramp loading provide a new means to reach strain rates significantly higher than achievable in pressure-shear experiments. One way to determine strength in ramp loading is by comparing the uniaxial stress-strain response to an appropriate pressure-density response obtained from an equation of state for the material. Using this approach, strengths for aluminum are obtained for strain rates of 105-108 s-1. Two issues arise in this calculation: heating due to plastic work and the effect of the superimposed hydrostatic stress on the strength. Heating due to plastic work is calculated and accounted for within the context of the equation of state for the material in a straightforward manner, but neglecting this heating can lead to significant errors in the calculated strength at higher compression levels. A simple scaling of strength with the pressure-dependent shear modulus is utilized to estimate the strength at zero pressure for ramp loading and pressure-shear experiments. When examined in this manner, the strain rate dependence of aluminum is found to be less than previously reported, with little increase in strength below strain rates of about 107s-1. The effects on ramp loading strength measurements of heating due to plastic work and of hydrostatic pressure are also examined for copper and tantalum using simple equation of state and strength models. The effect of plastic heating is similar for the three materials for a given strain level but quite different for a constant stress, with aluminum showing greater effects than the other materials. The effect of hydrostatic pressure in ramp loading experiments is similar for all three materials, but the effect is likely to be much greater in pressure-shear experiments for aluminum than the other materials.

  3. Adaptor for Measuring Principal Strains with Tuckerman Strain Gage

    NASA Technical Reports Server (NTRS)

    Mcpherson, A E

    1943-01-01

    An adapter is described which uses three Tuckerman optical strain gages to measure the displacement of the three vortices of an equilateral triangle along lines 120 degrees apart. These displacements are substituted in well-known equations in order to compute the magnitude and direction of the principal strains. Tests of the adaptor indicate that principal strains over a gage length of 1.42 inch may be measured with a systematic error not exceeding 4 percent and a mean observational error of the order of + or minus 0.000006. The maximum observed error in strain was of the order of 0.00006. The directions of principal strains for unidirectional stress were measured with the adaptor with an average error of the order of 1 degree.

  4. Strain relaxation in nanopatterned strained silicon round pillars

    NASA Astrophysics Data System (ADS)

    Himcinschi, C.; Singh, R.; Radu, I.; Milenin, A. P.; Erfurth, W.; Reiche, M.; Gösele, U.; Christiansen, S. H.; Muster, F.; Petzold, M.

    2007-01-01

    Periodic arrays of strained Si (sSi) round nanopillars were fabricated on sSi layers deposited on SiGe virtual substrates by electron-beam lithography and subsequent reactive-ion etching. The strain in the patterned sSi nanopillars was determined using high-resolution UV micro-Raman spectroscopy. The strain relaxes significantly upon nanostructuring: from 0.9% in the unpatterned sSi layer to values between 0.22% and 0.57% in the round sSi pillars with diameters from 100 up to 500nm. The strain distribution in the sSi nanopillars was analyzed by finite element (FE) modeling. The FE calculations confirm the strain relaxation after patterning, in agreement with the results obtained from Raman spectroscopy.

  5. Strain Dependence of Photoluminescense of Individual Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel N.; Leeuw, Tonya K.; Tsyboulski, Dmitri A.; Bachilo, Sergei M.; Weisman, Bruce; Arepalli, Sivaram

    2007-01-01

    We have investigated strain dependence of photoluminescense (PL) spectra of single wall carbon nanotubes (SWNT). Nanotubes were sparsely dispersed in a thin PMMA film applied to acrylic bar, and strained in both compression and extension by bending this bar in either direction in a homebuilt four-point bending rig. The average surface strain was measured with high accuracy by a resistive strain gage applied on top of the film. The near infrared imaging and spectroscopy were performed on the inverted microscope equipped with high numerical aperture reflective objective lens and InGaAs CCD cameras. PL was excited with a diode laser at either 658, 730 or 785 nm, linearly polarized in the direction of the strain. We were able to measure (n,m) types and orientation of individual nanotubes with respect to strain direction and strain dependence of their PL maxima. It was found that PL peak shifts with respect to the values measured in SDS micelles are a sum of three components. First, a small environmental shift due to difference in the dielectric constant of the surrounding media, that is constant and independent of the nanotube type. Second, shift due to isotropic compression of the film during drying. Third, shifts produced by the uniaxial loading of the film in the experiment. Second and third shifts follow expression based on the first-order expansion of the TB hamiltonian. Their magnitude is proportional to the nanotube chiral angle and strain, and direction is determined by the nanotube quantum number. PL strain dependence measured for a number of various nanotube types allows to estimate TB carbon-carbon transfer integral.

  6. First Report of an Infant Botulism Case Due to Clostridium botulinum Type Af

    PubMed Central

    de Jong, Laura I. T.; Fernández, Rafael A.; Pareja, Virtudes; Giaroli, Gabriel; Guidarelli, Sergio R.; Dykes, Janet K.

    2014-01-01

    Most infant botulism cases worldwide are due to botulinum toxin types A and B. Rarely, Clostridium botulinum strains that produce two serotypes (Ab, Ba, and Bf) have also been isolated from infant botulism cases. This is the first reported case of infant botulism due to C. botulinum type Af worldwide. PMID:25502535

  7. First report of an infant botulism case due to Clostridium botulinum type Af.

    PubMed

    de Jong, Laura I T; Fernández, Rafael A; Pareja, Virtudes; Giaroli, Gabriel; Guidarelli, Sergio R; Dykes, Janet K; Lúquez, Carolina

    2015-02-01

    Most infant botulism cases worldwide are due to botulinum toxin types A and B. Rarely, Clostridium botulinum strains that produce two serotypes (Ab, Ba, and Bf) have also been isolated from infant botulism cases. This is the first reported case of infant botulism due to C. botulinum type Af worldwide.

  8. A Practical Data Recovery Technique for Long-Term Strain Monitoring of Mega Columns during Construction

    PubMed Central

    Choi, Se Woon; Kwon, EunMi; Kim, Yousok; Hong, Kappyo; Park, Hyo Seon

    2013-01-01

    A practical data recovery method is proposed for the strain data lost during the safety monitoring of mega columns. The analytical relations among the measured strains are derived to recover the data lost due to unexpected errors in long-term measurement during construction. The proposed technique is applied to recovery of axial strain data of a mega column in an irregular building structure during construction. The axial strain monitoring using the wireless strain sensing system was carried out for one year and five months between 23 July 2010 and 22 February 2012. During the long-term strain sensing, three different types of measurement errors occurred. Using the recovery technique, the strain data that could not be measured at different intervals in the measurement were successfully recovered. It is confirmed that the problems that may occur during long-term wireless strain sensing of mega columns during construction could be resolved through the proposed recovery method. PMID:23966189

  9. Experimental study on strain distribution of ionic polymer-metal composite actuator using digital image correlation

    NASA Astrophysics Data System (ADS)

    Liu, Hongguang; Xiong, Ke; Wang, Man; Bian, Kan; Zhu, Kongjun

    2017-02-01

    Ionic polymer-metal composite (IPMC) cantilever actuators demonstrate significant bending deformation upon application of excitation voltage across the electrodes. In this paper a cantilever beam shaped IPMC actuator with platinum (Pt) electrodes is fabricated to investigate the micro-scale lateral deformation behavior under DC voltages using a digital microscope to measure the deformation. The digital image correlation (DIC) method is utilized to analyze the displacement and strain fields of the sample. The experimental results indicate that the longitudinal normal strain is linearly distributed along the thickness direction and the strain gradient is approximately exponential with excitation voltage. The amplitude of the transverse strain is bigger than the longitudinal strain, and the strains are also found to decrease along the length direction of the IPMC cantilever actuator. The longitudinal and transverse normal strains of the IPMC actuator under DC voltages are compressive strains due to water loss effect in the air.

  10. Spacecraft Dynamic Characterization by Strain Energies Method

    NASA Astrophysics Data System (ADS)

    Bretagne, J.-M.; Fragnito, M.; Massier, S.

    2002-01-01

    In the last years the significant increase in satellite broadcasting demand, with the wide band communication dawn, has given a great impulse to the telecommunication satellite market. The big demand is translated from operators (such as SES/Astra, Eutelsat, Intelsat, Inmarsat, EuroSkyWay etc.) in an increase of orders of telecom satellite to the world industrials. The largest part of these telecom satellite orders consists of Geostationary platforms which grow more and more in mass (over 5 tons) due to an ever longer demanded lifetime (up to 20 years), and become more complex due to the need of implementing an ever larger number of repeaters, antenna reflectors and feeds, etc... In this frame, the mechanical design and verification of these large spacecraft become difficult and ambitious at the same time, driven by the dry mass limitation objective. By the Finite Element Method (FEM), and on the basis of the telecom satellite heritage of a world leader constructor such as Alcatel Space Industries it is nowadays possible to model these spacecraft in a realistic and confident way in order to identify the main global dynamic aspects such as mode shapes, mass participation and/or dynamic responses. But on the other hand, one of the main aims consists in identifying soon in a program the most critical aspects of the system behavior in the launch dynamic environment, such as possible dynamic coupling between the different subsystems and secondary structures of the spacecraft (large deployable reflectors, thrusters, etc.). To this aim a numerical method has been developed in the frame of the Alcatel SPACEBUS family program, using MSC/Nastran capabilities and it is presented in this paper. The method is based on Spacecraft sub-structuring and strain energy calculation. The method mainly consists of two steps : 1) subsystem modal strain energy ratio (with respect to the global strain energy); 2) subsystem strain energy calculation for each mode according to the base driven

  11. Biomechanical strain of goldsmiths.

    PubMed

    Cândido, Paula Emanuela Fernandes; Teixeira, Juliana Vieira Schmidt; Moro, Antônio Renato Pereira; Gontijo, Leila Amaral

    2012-01-01

    The work of the goldsmiths consists in the manufacture of jewelry. The piece, be it an earring, bracelet or necklace, is hand-assembled. This task requires precision, skill, kindness and patience. In this work, we make use of tools such as cuticle clippers and rounded tip, beads or precious stones and also pieces of metal. This type of activity requires a biomechanical stress of hands and wrists. In order to quantify the biomechanical stress, we performed a case study to measure the movements performed by an assembly of pieces of jewelry. As method for research, filming was done during assembly of parts to a paste, using a Nikon digital camera, for 1 (one) hour. The film was edited by Kinovea software, and the task was divided into cycles, each cycle corresponds to a complete object. In one cycle, there are four two movements of supination and pronation movements of the forearm. The cycle lasts approximately sixteen seconds, totaling 1800 cycles in eight hours. Despite the effort required of the wrists, the activity shows no complaints from the employees, but this fact does not mischaracterizes the ability of employees to acquire repetitive strain injuries and work-related musculoskeletal disorders.

  12. Secondary amyloidosis due to FMF.

    PubMed

    Yonem, Ozlem; Bayraktar, Yusuf

    2007-06-01

    Familial Mediterranean fever (FMF) is an ethnically restricted disease with an autosomal recessive inheritance characterized by recurrent attacks of fever, painful manifestations in the abdomen, chest and joints. The disease affects mainly non-Ashkenazi Jews, Armenians, Turks Arabs and other people of Mediterranean origin. The disease may present at any age, more than 80% of patients being symptomatic by the age of 20. Although the inflammatory attacks that characterize the disease may sometimes be debilitating, secondary (AA) amyloidosis remains the most serious manifestation of FMF causing considerable morbidity due mostly to nephropathic amyloidosis. The largest series of secondary amyloidosis in FMF have been reported from Turkey. The pathophysiological steps in progressing a patient from FMF to amyloidosis are not definitely known. Daily treatment with colchicine can prevent both the attacks and amyloid deposition but no effective alternative treatment exists for colchicine resistant cases. Meanwhile more population based epidemiological and genetic data should be gathered by worldwide collaborative studies to elucidate the link between FMF and amyloidosis and to develop alternative therapies.

  13. Pulmonary Complications due to Esophagectomy.

    PubMed

    Shirinzadeh, Abulfazl; Talebi, Yashar

    2011-01-01

    Esophageal carcinoma is the scourge of human beings. Pulmonary complications in patients who have undergone operation are common (20-30% of cases) and there are no suitable tools and ways to predict these complications. During a period of 10 years, from March 1998 to February 2007, 200 patients (150 male and 50 female) underwent Esophagectomy due to esophageal carcinoma in thoracic surgery ward retrospectively. Complications include the length of hospitalization, mechanical ventilation, morbidity and mortality. Patients' risk factors include age, preoperative chemo-radiotherapy, stage of the disease and preoperative spirometry condition. WE GROUPED OUR PATIENTS INTO THREE CATEGORIES: Normal (FEV1 ≥ 80% predicted), mildly impaired (FEV1 65% to 79% predicted), more severely impaired (FEV1 < 65% predicted).Although almost all patients had radiographic pulmonary abnormalities, significant pulmonary complications occurred in 40 patients (20%) which underwent Esophagectomy. Pleural effusion and atelectasia in 160 patients (80%). 24 patients needed chest-tube insertion. 20 patients (10%) developed ARDS. 14 patients (7%) developed chylothorax. 20 patients (10%) of patients died during their postoperative hospital stay. 30 patients (15%) required mechanical ventilation for greater than 48 hours. We reviewed a number of preoperative clinical variables to determine whether they contributed to postoperative pulmonary complications as well as other outcomes. In general, age, impaired pulmonary function especially in those patients with FEV1 less than 65% predicted was associated with prolonged hospital length of stay (LOS). In fact pulmonary complications rate after Esophagectomy are high and there was associated mortality and morbidity.

  14. Diplopia due to mask barotrauma.

    PubMed

    Latham, Emi; van Hoesen, Karen; Grover, Ian

    2011-11-01

    Scuba diving is a very popular and safe sport. Occasionally divers will suffer an injury from barotrauma, decompression sickness or an arterial gas embolism. The history and physical examination are important when determining the etiology of the injury and its subsequent treatment. This article will help readers identify key components of the history and physical examination in a patient to help differentiate between and injury caused by barotrauma or arterial gas embolism. This is a case of a diver that was initially felt to have an arterial gas embolism after scuba diving. After obtaining further history and performing a detailed physical exam it was determined that his diplopia was due to barotrauma from his mask. This was confirmed by an orbital computed tomography (CT) scan. Scuba diving is a very safe sport. When injuries occur it is important to obtain a careful history and physical examination to determine the exact cause of the injury because treatments vary according to the type of injury. In this case, the history and physical examination showed that the only neurologic sign the patient had was diplopia, which is not consistent with a diagnosis of arterial gas embolism. The CT scan helped with the diagnosis because it proved the patient had an orbital hematoma causing his proptosis and double vision. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Galactorrhea due to psychotropic drugs.

    PubMed

    Kropp, S; Ziegenbein, M; Grohmann, R; Engel, R R; Degner, D

    2004-03-01

    Within the drug safety program in psychiatry AMSP ( Arzneimittelsicherheit in der Psychiatrie), severe adverse drug reactions (ADRs) are assessed. Currently 35 psychiatric hospitals and departments are participating in detecting severe ADRs. This paper focuses on prolactin-dependent ADRs such as gynecomastia and galactorrhea due to psychotropic medications. Related to the number of patients surveyed (122,562 from 1993 to 2000), these are rare events (0.03 % or 35 cases). Imputed drugs were mostly antipsychotics, but antidepressants were also imputed in single cases. In the group of antipsychotics, relative frequencies of galactorrhea were highest for amisulpride and risperidone and corresponded to the degree of D2 binding. Galactorrhea assessed as "severe" was accompanied by distressing symptoms such as pain, tension, enlargement of breasts, or soaked clothing. The AMSP data contribute to the knowledge on endocrine ADRs by the large number of patients examined and help clinicians select the appropriate drug if their patients have been prone to for these ADRs in the past.

  16. The effects of academic and interpersonal stress on dating violence among college students: a test of classical strain theory.

    PubMed

    Mason, Brandon; Smithey, Martha

    2012-03-01

    This study examines Merton's Classical Strain Theory (1938) as a causative factor in intimate partner violence among college students. We theorize that college students experience general life strain and cumulative strain as they pursue the goal of a college degree. We test this strain on the likelihood of using intimate partner violence. Strain due to unrealistic expectations of intimate partnership and economic strain are also examined. The analysis examines the following causative factors representing strain: 1) the College Undergraduate Stress Scale (Renner & Mackin, 1998); 2) cumulative academic strain measured by college classification; 3) cumulative intimate partner strain measured as the length of time in the relationship; 4) academic strain measured by number of hours studied weekly, and 5) economic strain measured by number of hours worked weekly. Additionally, we examine the extent to which gender and race/ethnicity differentially affect intimate partner in the context of these measures of strain. The Conflict Tactics Scales II (Straus et al, 1996) are used to measure dating violence and include indicators for sexual coercion, physical aggression, injury, and psychological aggression. Data were collected from 142 students in lower-division classes from Texas Tech University. Results show that general strain and cumulative intimate partner strain increase the use of dating violence among college students. The longer dating partners are in a relationship, the higher the chances of psychological aggression, physical assault, and sexual coercion. Converse to our expectations, time spent working reduces psychological aggression due to reducing time spent together rather than reflecting economic strain.

  17. Hypothetical strain-free oligoradicals

    PubMed Central

    Hoffmann, Roald; Eisenstein, Odile; Balaban, Alexandru T.

    1980-01-01

    Several new classes of oligoradicals free of angle strain are suggested and examined by means of molecular orbital calculations. The collapse products of these hypothetical radicals are highly strained molecules. Various electronic strategies for the stabilization of these oligoradicals have been explored. PMID:16592882

  18. Difference Between Strain and Sprain.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    Provided in this description of the differences between a strain (damage to the muscle or tendon) and a sprain (damage to the ligament) are definitions of mild, moderate, and severe (first, second, and third degree) strains and sprains. A final caution is given that these are two separate and distinct problems and should be treated as such. (DC)

  19. Difference Between Strain and Sprain.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    Provided in this description of the differences between a strain (damage to the muscle or tendon) and a sprain (damage to the ligament) are definitions of mild, moderate, and severe (first, second, and third degree) strains and sprains. A final caution is given that these are two separate and distinct problems and should be treated as such. (DC)

  20. Moire strain analysis of paper

    Treesearch

    R. E. Rowlands; P. K. Beasley; D. E. Gunderson

    1983-01-01

    Efficient use of paper products involves using modern aspects of materials science and engineering mechanics. This implies the ability to determine simultaneously different components of strain at multiple locations and under static or dynamic conditions. Although measuring strains in paper has been a topic of interest for over 40 years, present capability remains...

  1. Characterization of Salmonella enteritidis strains.

    PubMed Central

    Poppe, C; McFadden, K A; Brouwer, A M; Demczuk, W

    1993-01-01

    A study was conducted to characterize 318 Salmonella enteritidis strains that were mainly isolated from poultry and their environment in Canada. Biotype, phagetype (PT), plasmid profile (PP), hybridization with a plasmid-derived virulence sequence probe, antibiotic resistance, outer membrane proteins (OMPs), and lipopolysaccharide (LPS) profiles were determined. Relationships of these properties to one another, and their diagnostic and pathogenic significance were assessed. Biotyping indicated that failure to ferment rhamnose was sometimes useful as a marker for epidemiologically related strains. Phagetyping was the most effective method for subdividing S. enteritidis; it distinguished 12 PTs. Phagetype 13 was occasionally associated with septicemia and mortality in chickens. The strains belonged to 15 PPs. A 36 megadalton (MDa) plasmid was found in 97% of the strains. Only the 36 MDa plasmid hybridized with the probe. Seventeen percent of the strains were drug resistant; all strains were sensitive to ciprofloxacin. Thirty-five of 36 strains possessed the same OMP profile, and 36 of 41 strains contained smooth LPS. Images Fig. 1. PMID:8358678

  2. Measured Strain of Nb3Sn Coils During Excitation and Quench

    SciTech Connect

    Caspi, S.; Bartlett, S.E.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Hannaford, C.R.; Hafalia, A.R.; Lietzke, S.; Mattafirri,M.; Nyman, M.; Sabbi, G.

    2005-04-16

    The strain in a high field Nb{sub 3}Sn coil was measured during magnet assembly, cool-down, excitation and spot heater quenches. Strain was measured with a full bridge strain gauge mounted directly over the turns and impregnated with the coil. Two such coils were placed in a ''common coil'' fashion capable of reaching 11T at 4.2K. The measured steady state strain in the coil is compared with results obtained using the FEM code ANSYS. During quenches, the transient strain (due to temperature rise) was also measured and compared with the calculated mechanical time response to a quench.

  3. Measured strain in Nb3Sn coils during excitation and quence

    SciTech Connect

    Caspi, S.; Barlett, S.E.; Dietderich, D. R.; Ferracin, P.; Gourlay, S. A.; Hannaford, C. R.; Hafalia, A.R.; Lietzke, A.F.; Mattafirri, S.; Nyman, M.; Sabbi, G.

    2005-06-01

    The strain in a high field Nb{sub 3}Sn coil was measured during magnet assembly, cool-down, excitation and spot heater quenches. Strain was measured with a full bridge strain gauge mounted directly over the turns and impregnated with the coil. Two such coils were placed in a 'common coil' fashion capable of reaching 11 T at 4.2 K. The measured steady state strain in the coil is compared with results obtained using the FEM code ANSYS. During quenches, the transient strain (due to temperature rise) was also measured and compared with the calculated mechanical time response to a quench.

  4. Highly Stretchable Strain Sensors Using an Electrospun Polyurethane Nanofiber/Graphene Composite.

    PubMed

    Hu, Daqing; Wang, Qinghe; Yu, Jixian; Hao, Wentao; Lu, Hongbo; Zhang, Guobing; Wang, Xianghua; Qiu, Longzhen

    2016-06-01

    A highly flexible and stretchable strain sensor has been prepared by coating chemical reduction of graphene oxide on electrospun polyurethane nanofiber mats. The sensor exhibits an ohmic behavior regardless of applied strains and the current monotonically increases with the increase of the tensile strain. The morphology and stability of electrospun polyurethane nanocomposite mats were also studied. The flexible and stretchable strain sensor has great potential for practical application such as efficient human-motion detection. This cheap and simple process of graphene layer provides an effective fabrication for graphene stretchable electronic devices and strain sensors due to excellent stability and electrical proper.

  5. Occurrence of Urease in T Strains of Mycoplasma

    PubMed Central

    Shepard, Maurice C.; Lunceford, Carl D.

    1967-01-01

    A previously unknown metabolite necessary for growth of T strains of Mycoplasma in artificial culture media has been identified as urea. The source of this metabolite was the mammalian plasma or serum enrichment of the culture medium. Normal horse serum was the most satisfactory native protein enrichment for cultivation of T strains of mycoplasma, and it is believed that its superior performance in agar and fluid culture media is associated with its relatively high urea content (approximately 40 mg/100 ml). T-strain urease activity was maximal at pH 6.0 ± 0.5. This is also the optimal pH for growth of T strains. Substrate concentrations greater than 1.0% urea were inhibitory to growth and urease activity of T-strain organisms, and optimal urea concentrations in fluid media appeared to lie within the range of 0.008 to 0.01 m. This range of urea concentration permitted maximal growth of T-strain organisms without rapid loss of viability due to excessive ammonia accumulation and rise in pH to lethal levels. T strains of Mycoplasma were cultivated in a serum-free fluid medium containing urea as the only added metabolite and nitrogen source. T strains are the only known human mycoplasmas which exhibit urease activity, and this biochemical marker can be employed as an aid in the detection and identification of T strains of Mycoplasma (urease color test) and in distinguishing T strains from other members of the human Mycoplasma group. PMID:6025439

  6. Cardiac Strain Imaging With Coherent Compounding of Diverging Waves.

    PubMed

    Grondin, Julien; Sayseng, Vincent; Konofagou, Elisa E

    2017-08-01

    Current methods of cardiac strain imaging at high frame rate suffer from motion matching artifacts or poor lateral resolution. Coherent compounding has been shown to improve echocardiographic image quality while maintaining a high frame rate, but has never been used to image cardiac strain. However, myocardial velocity can have an impact on coherent compounding due to displacements between frames. The objective of this paper was to investigate the feasibility and performance of coherent compounding for cardiac strain imaging at a low and a high myocardial velocity. Left-ventricular contraction in short-axis view was modeled as an annulus with radial thickening and circumferential rotation. Simulated radio-frequency channel data with a cardiac phased array were obtained using three different beamforming methods: single diverging wave, coherent compounding of diverging waves, and conventional focusing. Axial and lateral displacements and strains as well as radial strains were estimated and compared to their true value. In vivo feasibility of cardiac strain imaging with coherent compounding was performed and compared to single diverging wave imaging. At low myocardial velocities, the axial, lateral, and radial strain relative error for nine compounded waves (16.3%, 40.4%, and 18.9%) were significantly lower than those obtained with single diverging wave imaging (19.9%, 80.3%, and 30.6%) and closer to that obtained with conventional focusing (16.7%, 43.7%, and 16%). In vivo left-ventricular radial strains exhibited higher quality with nine compounded waves than with single diverging wave imaging. These results indicate that cardiac strain can be imaged using coherent compounding of diverging waves with a better performance than with single diverging wave imaging while maintaining a high frame rate, and therefore, has the potential to improve diagnosis of myocardial strain-based cardiac diseases.

  7. Strain gage system evaluation program

    NASA Technical Reports Server (NTRS)

    Dolleris, G. W.; Mazur, H. J.; Kokoszka, E., Jr.

    1978-01-01

    A program was conducted to determine the reliability of various strain gage systems when applied to rotating compressor blades in an aircraft gas turbine engine. A survey of current technology strain gage systems was conducted to provide a basis for selecting candidate systems for evaluation. Testing and evaluation was conducted in an F 100 engine. Sixty strain gage systems of seven different designs were installed on the first and third stages of an F 100 engine fan. Nineteen strain gage failures occurred during 62 hours of engine operation, for a survival rate of 68 percent. Of the failures, 16 occurred at blade-to-disk leadwire jumps (84 percent), two at a leadwire splice (11 percent), and one at a gage splice (5 percent). Effects of erosion, temperature, G-loading, and stress levels are discussed. Results of a post-test analysis of the individual components of each strain gage system are presented.

  8. Residual strains in conduit arteries.

    PubMed

    Rachev, A; Greenwald, S E

    2003-05-01

    Residual strains and stresses are those that exist in a body when all external loads are removed. Residual strains in arteries can be characterized by the opening angle of the sector-like cross-section which arises when an unloaded ring segment is radially cut. A review of experimental methods for measuring residual strains and the main results about the variation of the opening angle with arterial localization, age, smooth muscle activity, mechanical environment and certain vascular pathologies are presented and discussed. It is shown that, in addition to their well-established ability to homogenize the stress field in the arterial wall, residual strains make arteries more compliant and thereby improve their performance as elastic reservoirs and ensure more effective local control of the arterial lumen by smooth muscle cells. Finally, evidence that, in some cases, residual strains remain in arteries even after they have been cut radially is discussed.

  9. May the use of different background strains 'strain' the stress-related phenotype of GR(+/-) mice?

    PubMed

    Vogt, Miriam A; Pfeiffer, Natascha; Le Guisquet, Anne Marie; Brandwein, Christiane; Brizard, Bruno; Gass, Peter; Belzung, Catherine; Chourbaji, Sabine

    2017-09-29

    Genetically altered mice are available on different background strains. While respective backcrosses are often performed for pragmatic reasons, e.g. references, comparability, or existing protocols, the interaction between the mutations per se and the background strain often remains a neglected factor. The heterozygous mutation of the glucocorticoid receptor gene (GR) represents a well-examined model for depressive-like behavior in mice. To address the question in how far a robust depressive-like phenotype on a distinct background strain may allow a generalized conclusion, we analyzed respective phenotypes in two commonly used inbred strains: i.) C57BL/6N and ii.) BALB/c. Beside the use of different genetic models, we also extended our approach by applying two alternative paradigms to induce a depressive-like phenotype. Our study therefore comprised the model of 'unpredictable chronic mild stress' (UCMS) for four weeks and 'learned helplessness' (LH), which were used to study the role of GR, a key player in the development of depression. In the course of the experiment two cohorts of male GR(+/-) mice on either C57BL/6N or BALB/c background strain underwent a behavioral test battery to assess basal and depressive-like features. While both stress paradigms were functional in inducing depressive-like changes, the results were strictly strain-dependent. The genetic consequences became even more obvious under non-stress conditions with significant effects detected in BALB/c mice, which indicates a different basal stress predisposition due to differences in the genetic background. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Building up strain in colloidal metal nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Sneed, Brian T.; Young, Allison P.; Tsung, Chia-Kuang

    2015-07-01

    The focus on surface lattice strain in nanostructures as a fundamental research topic has gained momentum in recent years as scientists investigated its significant impact on the surface electronic structure and catalytic properties of nanomaterials. Researchers have begun to tell a more complete story of catalysis from a perspective which brings this concept to the forefront of the discussion. The nano-`realm' makes the effects of surface lattice strain, which acts on the same spatial scales, more pronounced due to a higher ratio of surface to bulk atoms. This is especially evident in the field of metal nanoparticle catalysis, where displacement of atoms on surfaces can significantly alter the sorption properties of molecules. In part, the concept of strain-engineering for catalysis opened up due to the achievements that were made in the synthesis of a more sophisticated nanoparticle library from an ever-expanding set of methodologies. Developing synthesis methods for metal nanoparticles with well-defined and strained architectures is a worthy goal that, if reached, will have considerable impact in the search for catalysts. In this review, we summarize the recent accomplishments in the area of surface lattice-strained metal nanoparticle synthesis, framing the discussion from the important perspective of surface lattice strain effects in catalysis.

  11. Strain Insensitive Optical Phase Locked Loop

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O. (Inventor); Rogowski, Robert S. (Inventor)

    1998-01-01

    A strain sensor uses optical fibers including strain insensitive portions and a strain sensitive portion. The optical fibers form a sensitive arm of an optical phase locked loop (OPLL). The use of the OPLL allows for multimode optical fiber to be used in a strain insensitive configuration. Only strain information for the strain sensitive portion is monitored rather than the integrated strain measurements commonly made with optical fiber sensors.

  12. Pulmonary Complications due to Esophagectomy

    PubMed Central

    Shirinzadeh, Abulfazl; Talebi, Yashar

    2011-01-01

    Introduction Esophageal carcinoma is the scourge of human beings. Pulmonary complications in patients who have undergone operation are common (20-30% of cases) and there are no suitable tools and ways to predict these complications. Methods During a period of 10 years, from March 1998 to February 2007, 200 patients (150 male and 50 female) underwent Esophagectomy due to esophageal carcinoma in thoracic surgery ward retrospectively. Complications include the length of hospitalization, mechanical ventilation, morbidity and mortality. Patients’ risk factors include age, preoperative chemo-radiotherapy, stage of the disease and preoperative spirometry condition. Results We grouped our patients into three categories: Normal (FEV1 ≥ 80% predicted), mildly impaired (FEV1 65% to 79% predicted), more severely impaired (FEV1 < 65% predicted).Although almost all patients had radiographic pulmonary abnormalities, significant pulmonary complications occurred in 40 patients (20%) which underwent Esophagectomy. Pleural effusion and atelectasia in 160 patients (80%). 24 patients needed chest-tube insertion. 20 patients (10%) developed ARDS. 14 patients (7%) developed chylothorax. 20 patients (10%) of patients died during their postoperative hospital stay. 30 patients (15%) required mechanical ventilation for greater than 48 hours. Conclusion We reviewed a number of preoperative clinical variables to determine whether they contributed to postoperative pulmonary complications as well as other outcomes. In general, age, impaired pulmonary function especially in those patients with FEV1 less than 65% predicted was associated with prolonged hospital length of stay (LOS). In fact pulmonary complications rate after Esophagectomy are high and there was associated mortality and morbidity. PMID:24250962

  13. Otomycosis due to filamentous fungi.

    PubMed

    García-Agudo, Lidia; Aznar-Marín, Pilar; Galán-Sánchez, Fátima; García-Martos, Pedro; Marín-Casanova, Pilar; Rodríguez-Iglesias, Manuel

    2011-10-01

    Otomycosis is common throughout the world but barely studied in Spain. Our objective was to determine the microbiological and epidemiological characteristics of this pathology in Cadiz (Spain) between 2005 and 2010. Samples from patients with suspicion of otomycosis underwent a direct microscopic examination and culture on different media for fungi and bacteria. Mycological cultures were incubated at 30°C for at least seven days. Identification of fungi was based on colonial morphology and microscopic examination of fungal structure. From a total of 2,633 samples, microbial growth was present in 1,375 (52.2%) and fungal isolation in 390 (28.4%). We identified 228 yeasts and 184 filamentous fungi (13.4% of positive cultures and 47.2% of otomycosis), associated with yeasts in 22 cases (5.6%). The most frequent species were Aspergillus flavus (42.4%), A. niger (35.9%), A. fumigatus (12.5%), A. candidus (7.1%), A. terreus (1.6%), and Paecilomyces variotii (0.5%). Infection was predominant in men (54.9%) and patients beyond 55 years old (46.8%). The most common clinical symptoms were itching (98.9%), otalgia (59.3%), and hypoacusis (56.0%). Fall season reported the lowest number of cases (20.1%). Incidence of otomycosis and fungi producing otomycosis vary within the distinct geographical areas. In Cadiz, this infection is endemic due to warm temperatures, high humidity, sea bathing, and wind, which contributes to disseminate the conidia. Despite Aspergillus niger has been reported as the main causative agent, A. flavus is predominant in Cadiz. Although infection is usually detected in warm months, we observed a homogeneous occurrence of otomycosis in almost all the seasons.

  14. Inbreeding Ratio and Genetic Relationships among Strains of the Western Clawed Frog, Xenopus tropicalis

    PubMed Central

    Igawa, Takeshi; Watanabe, Ai; Suzuki, Atsushi; Kashiwagi, Akihiko; Kashiwagi, Keiko; Noble, Anna; Guille, Matt; Simpson, David E.; Horb, Marko E.; Fujii, Tamotsu; Sumida, Masayuki

    2015-01-01

    The Western clawed frog, Xenopus tropicalis, is a highly promising model amphibian, especially in developmental and physiological research, and as a tool for understanding disease. It was originally found in the West African rainforest belt, and was introduced to the research community in the 1990s. The major strains thus far known include the Nigerian and Ivory Coast strains. However, due to its short history as an experimental animal, the genetic relationship among the various strains has not yet been clarified, and establishment of inbred strains has not yet been achieved. Since 2003 the Institute for Amphibian Biology (IAB), Hiroshima University has maintained stocks of multiple X. tropicalis strains and conducted consecutive breeding as part of the National BioResource Project. In the present study we investigated the inbreeding ratio and genetic relationship of four inbred strains at IAB, as well as stocks from other institutions, using highly polymorphic microsatellite markers and mitochondrial haplotypes. Our results show successive reduction of heterozygosity in the genome of the IAB inbred strains. The Ivory Coast strains clearly differed from the Nigerian strains genetically, and three subgroups were identified within both the Nigerian and Ivory Coast strains. It is noteworthy that the Ivory Coast strains have an evolutionary divergent genetic background. Our results serve as a guide for the most effective use of X. tropicalis strains, and the long-term maintenance of multiple strains will contribute to further research efforts. PMID:26222540

  15. Effect of coating on the strain transfer of optical fiber sensors.

    PubMed

    Her, Shiuh-Chuan; Huang, Chih-Ying

    2011-01-01

    Optical fiber strain sensors with light weight, small dimensions and immunity to electromagnetic interference are widely used in structural health monitoring devices. As a sensor, it is expected that the strains between the optical fiber and host structure are the same. However, due to the shear deformation of the protective coating, the optical fiber strain is different from that of host structure. To improve the measurement accuracy, the strain measured by the optical fiber needs to be modified to reflect the influence of the coating. In this investigation, a theoretical model of the strain transferred from the host material to the optical fiber is developed to evaluate the interaction between the host material and coating. The theoretical predictions are validated with a numerical analysis using the finite element method. Experimental tests are performed to reveal the differential strains between the optical fiber strain sensor and test specimen. The Mach-Zehnder interferometric type fiber-optic sensor is adopted to measure the strain. Experimental results show that the strain measured at the optical fiber is lower than the true strain in the test specimen. The percentage of strain in the test specimen actually transferred to the optical fiber is dependent on the bonded length of the optical fiber and the protective coating. The general trend of the strain transformation obtained from both experimental tests and theoretical predictions shows that the longer the bonded length and the stiffer the coating the more strain is transferred to the optical fiber.

  16. Strain-rate dependence of ramp-wave evolution and strength in tantalum

    DOE PAGES

    Lane, J. Matthew D.; Foiles, Stephen M.; Lim, Hojun; ...

    2016-08-25

    We have conducted molecular dynamics (MD) simulations of quasi-isentropic ramp-wave compression to very high pressures over a range of strain rates from 1011 down to 108 1/s. Using scaling methods, we collapse wave profiles from various strain rates to a master profile curve, which shows deviations when material response is strain-rate dependent. Thus, we can show with precision where, and how, strain-rate dependence affects the ramp wave. We find that strain rate affects the stress-strain material response most dramatically at strains below 20%, and that above 30% strain the material response is largely independent of strain rate. We show goodmore » overall agreement with experimental stress-strain curves up to approximately 30% strain, above which simulated response is somewhat too stiff. We postulate that this could be due to our interatomic potential or to differences in grain structure and/or size between simulation and experiment. Strength is directly measured from per-atom stress tensor and shows significantly enhanced elastic response at the highest strain rates. As a result, this enhanced elastic response is less pronounced at higher pressures and at lower strain rates.« less

  17. Strain-rate dependence of ramp-wave evolution and strength in tantalum

    SciTech Connect

    Lane, J. Matthew D.; Foiles, Stephen M.; Lim, Hojun; Brown, Justin L.

    2016-08-25

    We have conducted molecular dynamics (MD) simulations of quasi-isentropic ramp-wave compression to very high pressures over a range of strain rates from 1011 down to 108 1/s. Using scaling methods, we collapse wave profiles from various strain rates to a master profile curve, which shows deviations when material response is strain-rate dependent. Thus, we can show with precision where, and how, strain-rate dependence affects the ramp wave. We find that strain rate affects the stress-strain material response most dramatically at strains below 20%, and that above 30% strain the material response is largely independent of strain rate. We show good overall agreement with experimental stress-strain curves up to approximately 30% strain, above which simulated response is somewhat too stiff. We postulate that this could be due to our interatomic potential or to differences in grain structure and/or size between simulation and experiment. Strength is directly measured from per-atom stress tensor and shows significantly enhanced elastic response at the highest strain rates. As a result, this enhanced elastic response is less pronounced at higher pressures and at lower strain rates.

  18. High Strain Rate Behavior of Polyurea Compositions

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant; Milby, Christopher

    2011-06-01

    Polyurea has been gaining importance in recent years due to its impact resistance properties. The actual compositions of this viscoelastic material must be tailored for specific use. It is therefore imperative to study the effect of variations in composition on the properties of the material. High-strain-rate response of three polyurea compositions with varying molecular weights has been investigated using a Split Hopkinson Pressure Bar arrangement equipped with titanium bars. The polyurea compositions were synthesized from polyamines (Versalink, Air Products) with a multi-functional isocyanate (Isonate 143L, Dow Chemical). Amines with molecular weights of 1000, 650, and a blend of 250/1000 have been used in the current investigation. The materials have been tested up to strain rates of 6000/s. Results from these tests have shown interesting trends on the high rate behavior. While higher molecular weight composition show lower yield, they do not show dominant hardening behavior. On the other hand, the blend of 250/1000 show higher load bearing capability but lower strain hardening effects than the 600 and 1000 molecular weight amine based materials. Refinement in experimental methods and comparison of results using aluminum Split Hopkinson Bar is presented.

  19. Ultrasound strain imaging using Barker code

    NASA Astrophysics Data System (ADS)

    Peng, Hui; Tie, Juhong; Guo, Dequan

    2017-01-01

    Ultrasound strain imaging is showing promise as a new way of imaging soft tissue elasticity in order to help clinicians detect lesions or cancers in tissues. In this paper, Barker code is applied to strain imaging to improve its quality. Barker code as a coded excitation signal can be used to improve the echo signal-to-noise ratio (eSNR) in ultrasound imaging system. For the Baker code of length 13, the sidelobe level of the matched filter output is -22dB, which is unacceptable for ultrasound strain imaging, because high sidelobe level will cause high decorrelation noise. Instead of using the conventional matched filter, we use the Wiener filter to decode the Barker-coded echo signal to suppress the range sidelobes. We also compare the performance of Barker code and the conventional short pulse in simulation method. The simulation results demonstrate that the performance of the Wiener filter is much better than the matched filter, and Baker code achieves higher elastographic signal-to-noise ratio (SNRe) than the short pulse in low eSNR or great depth conditions due to the increased eSNR with it.

  20. Spherical nanoindentation stress–strain curves

    SciTech Connect

    Pathak, Siddhartha; Kalidindi, Surya R.

    2015-03-24

    Although indentation experiments have long been used to measure the hardness and Young's modulus, the utility of this technique in analyzing the complete elastic–plastic response of materials under contact loading has only been realized in the past few years – mostly due to recent advances in testing equipment and analysis protocols. This paper provides a timely review of the recent progress made in this respect in extracting meaningful indentation stress–strain curves from the raw datasets measured in instrumented spherical nanoindentation experiments. These indentation stress–strain curves have produced highly reliable estimates of the indentation modulus and the indentation yield strength in the sample, as well as certain aspects of their post-yield behavior, and have been critically validated through numerical simulations using finite element models as well as direct in situ scanning electron microscopy (SEM) measurements on micro-pillars. Much of this recent progress was made possible through the introduction of a new measure of indentation strain and the development of new protocols to locate the effective zero-point of initial contact between the indenter and the sample in the measured datasets. As a result, this has led to an important key advance in this field where it is now possible to reliably identify and analyze the initial loading segment in the indentation experiments.

  1. Spherical nanoindentation stress–strain curves

    DOE PAGES

    Pathak, Siddhartha; Kalidindi, Surya R.

    2015-03-24

    Although indentation experiments have long been used to measure the hardness and Young's modulus, the utility of this technique in analyzing the complete elastic–plastic response of materials under contact loading has only been realized in the past few years – mostly due to recent advances in testing equipment and analysis protocols. This paper provides a timely review of the recent progress made in this respect in extracting meaningful indentation stress–strain curves from the raw datasets measured in instrumented spherical nanoindentation experiments. These indentation stress–strain curves have produced highly reliable estimates of the indentation modulus and the indentation yield strength inmore » the sample, as well as certain aspects of their post-yield behavior, and have been critically validated through numerical simulations using finite element models as well as direct in situ scanning electron microscopy (SEM) measurements on micro-pillars. Much of this recent progress was made possible through the introduction of a new measure of indentation strain and the development of new protocols to locate the effective zero-point of initial contact between the indenter and the sample in the measured datasets. As a result, this has led to an important key advance in this field where it is now possible to reliably identify and analyze the initial loading segment in the indentation experiments.« less

  2. High temperature strain measurement with a resistance strain gage

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Fichtel, ED; Mcdaniel, Amos

    1993-01-01

    A PdCr based electrical resistance strain gage was demonstrated in the laboratory to be a viable sensor candidate for static strain measurement at high temperatures. However, difficulties were encountered while transferring the sensor to field applications. This paper is therefore prepared for recognition and resolution of the problems likely to be encountered with PdCr strain gages in field applications. Errors caused by the measurement system, installation technique and lead wire attachment are discussed. The limitations and some considerations related to the temperature compensation technique used for this gage are also addressed.

  3. Recent advances in echocardiography: strain and strain rate imaging

    PubMed Central

    Mirea, Oana; Duchenne, Jurgen; Voigt, Jens-Uwe

    2016-01-01

    Deformation imaging by echocardiography is a well-established research tool which has been gaining interest from clinical cardiologists since the introduction of speckle tracking. Post-processing of echo images to analyze deformation has become readily available at the fingertips of the user. New parameters such as global longitudinal strain have been shown to provide added diagnostic value, and ongoing efforts of the imaging societies and industry aimed at harmonizing methods will improve the technique further. This review focuses on recent advances in the field of echocardiographic strain and strain rate imaging, and provides an overview on its current and potential future clinical applications. PMID:27158476

  4. Characterization of microstructural damage due to low-cycle fatigue by EBSD observation

    SciTech Connect

    Kamaya, Masayuki

    2009-12-15

    Electron backscatter diffraction (EBSD) in conjunction with scanning electron microscopy was used to assess the damage due to cyclic or uniform strain. Samples of Type 316 stainless steel after fatigue and tensile tests were prepared for EBSD observation and the misorientation angle between neighboring points (local misorientation) was evaluated. It was shown that the local misorientation developed due to the cyclic and uniform strain and that its spatial distribution was not uniform. In fatigue samples, the area of large local misorientation tended to form clusters, whereas it localized to the grain boundaries in the tensile samples, and the magnitude of local misorientation and the degree of the localization increased with the strain amplitude. The degree of localization was quantified via statistical processing of the measured data. It was also shown that the source of damage (cyclic or uniform strain) and the loading direction could be deduced from the EBSD observations of the damaged sample.

  5. Inelastic Strain Analysis of Solder Joint in NASA Fatigue Specimen

    NASA Technical Reports Server (NTRS)

    Dasgupta, Abhijit; Oyan, Chen

    1991-01-01

    The solder fatigue specimen designed by NASA-GSFC/UNISYS is analyzed in order to obtain the inelastic strain history during two different representative temperature cycles specified by UNISYS. In previous reports (dated July 25, 1990, and November 15, 1990), results were presented of the elastic-plastic and creep analysis for delta T = 31 C cycle, respectively. Subsequent results obtained during the current phase, from viscoplastic finite element analysis of the solder fatigue specimen for delta T = 113 C cycle are summarized. Some common information is repeated for self-completeness. Large-deformation continuum formulations in conjunction with a standard linear solid model is utilized for modeling the solder constitutive creep-plasticity behavior. Relevant material properties are obtained from the literature. Strain amplitudes, mean strains, and residual strains (as well as stresses) accumulated due to a representative complete temperature cycle are obtained as a result of this analysis. The partitioning between elastic strains, time-independent inelastic (plastic) strains, and time-dependent inelastic (creep) strains is also explicitly obtained for two representative cycles. Detailed plots are presented for two representative temperature cycles. This information forms an important input for fatigue damage models, when predicting the fatigue life of solder joints under thermal cycling

  6. High-sensitivity strain visualization using electroluminescence technologies

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Jo, Hongki

    2016-04-01

    Visualizing mechanical strain/stress changes is an emerging area in structural health monitoring. Several ways are available for strain change visualization through the color/brightness change of the materials subjected to the mechanical stresses, for example, using mechanoluminescence (ML) materials and mechanoresponsive polymers (MRP). However, these approaches were not effectively applicable for civil engineering system yet, due to insufficient sensitivity to low-level strain of typical civil structures and limitation in measuring both static and dynamic strain. In this study, design and validation for high-sensitivity strain visualization using electroluminescence technologies are presented. A high-sensitivity Wheatstone bridge, of which bridge balance is precisely controllable circuits, is used with a gain-adjustable amplifier. The monochrome electroluminescence (EL) technology is employed to convert both static and dynamic strain change into brightness/color change of the EL materials, through either brightness change mode (BCM) or color alternation mode (CAM). A prototype has been made and calibrated in lab, the linearity between strain and brightness change has been investigated.

  7. Laser-based strain measurements for high temperature applications

    NASA Technical Reports Server (NTRS)

    Lant, Christian T.

    1992-01-01

    The Instrumentation and Control Technology Division at NASA Lewis Research Center has developed a high performance optical strain measurement system for high temperature applications using wires and fibers. The system is based on Yamaguchi's two-beam speckle-shift strain measurement technique. The system automatically calculates surface strains at a rate of 5 Hz using a digital signal processor in a high speed micro-computer. The system is fully automated, and can be operated remotely. This report describes the speckle-shift technique and the latest NASA system design. It also shows low temperature strain test results obtained from small diameter tungsten, silicon carbide, and sapphire specimens. These specimens are of interest due to their roles in composite materials research at NASA Lewis.

  8. Modifying the Optoelectronic Properties of Rubrene by Strain

    NASA Astrophysics Data System (ADS)

    Sharifzadeh, Sahar; Ramasubramaniam, Ashwin

    Rubrene crystals are promising organic electronic and optoelectronic materials due to their high charge carrier mobility. Recent studies have shown that the electronic properties of rubrene films can be tuned by substrate-induced strain, suggesting a new route towards the design of more efficient devices. Here, we present a first-principles density functional theory and many-body perturbation theory analysis of strain-induced changes to the mechanical, electronic, and optical properties of rubrene crystals. With an applied strain that is consistent with experiment, we predict changes of hole motilities in excellent agreement with electrical conductivity measurements. Furthermore, we predict that the optical absorption and nature of low-energy excitons within the crystal can be tuned by an applied strain as low as 1%. This work utilized resources at the Center for Nanoscale Materials, supported by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

  9. Strain rate sensitivity of nanoindentation creep in an AlCoCrFeNi high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Jiao, Z. M.; Wang, Z. H.; Wu, R. F.; Qiao, J. W.

    2016-09-01

    Creep behaviors of an AlCoCrFeNi high-entropy alloy with the body-centered cubic structure were investigated by nanoindentation. The enhanced strain gradient induced by higher strain rate leads to decreased strain rate sensitivity during creep process. The present alloy exhibits excellent creep resistance, mainly due to its large entropy of mixing and highly distorted lattice structure.

  10. Natural competence in Histophilus somni strain 2336.

    PubMed

    Shah, Nehal; Bandara, Aloka B; Sandal, Indra; Inzana, Thomas J

    2014-10-10

    Histophilus somni is an etiologic agent of shipping fever pneumonia, myocarditis, and other systemic diseases of bovines. Virulence factors that have been identified in H. somni include biofilm formation, lipooligosaccharide phase variation, immunoglobulin binding proteins, survival in phagocytic cells, and many others. However, to identify the genes responsible for virulence, an efficient mutagenesis system is needed. Mutagenesis of H. somni using allelic exchange is difficult, likely due to its tight restriction modification system. Mutagenesis by natural transformation in Haemophilus influenzae is well established and shows a strong bias for fragments containing specific uptake signal sequences (USS) within the genome. We hypothesized that natural transformation may also be possible in H. somni strain 2336 because its genome is over-represented with H. influenzae USS (5'-AAGTGCGGT-3') and contains most of the genes necessary for competence. H. somni strain 2336 was successfully transformed and mutated with genomic linear DNA from an H. somni mutant (738Δlob2a), which contains a kanamycin-resistance (Kan(R)) gene and the USS within lob2A. Although most of the competence genes found in H. influenzae were present in H. somni, comD and the 5' portion of comE were absent, which may account for the low transformation efficiency. The transformation efficiency of strain 2336 was greatest during mid-log growth phase and when cyclic adenosine monophosphate was added to the transformation medium. However, mutants were not isolated when strain 2336 was transformed with genomic DNA containing the same Kan(R) gene from H. somni luxS or uspE mutants, which lack the USS in these specific genes. Shuttle vector pNS3K was also naturally transformed into strain 2336, though at a lower efficiency. However, natural transformation with either H. somni linear DNA (2336Δlob2A) or pNS3K was unsuccessful with H. somni commensal strain 129Pt and several other disease isolates. Copyright

  11. STRAIN LOCALIZATION IN IRRADIATED MATERIALS

    SciTech Connect

    Byun, Thak Sang; Hashimoto, Naoyuki

    2006-01-01

    Low temperature irradiation can significantly harden metallic materials and often lead to strain localization and ductility loss in deformation. This paper provides a review on the radiation effects on the deformation of metallic materials, focusing on microscopic and macroscopic strain localization phenomena. The microscopic strain localization often observed in irradiated materials are dislocation channeling and deformation twinning, in which dislocation glides are evenly distributed and well confined in the narrow bands, usually a fraction of a micron wide. Dislocation channeling is a common strain localization mechanism observed virtually in all irradiated metallic materials with ductility, while deformation twinning is an alternative localization mechanism occurring only in low stacking fault energy materials. In some high stacking fault energy materials where cross slip is easy, curved and widening channels can be formed depending on dose and stress state. Irradiation also prompts macroscopic strain localization (or plastic instability). It is shown that the plastic instability stress and true fracture stress are nearly independent of irradiation dose if there is no radiation-induced phase change or embrittlement. A newly proposed plastic instability criterion is that the metals after irradiation show necking at yield when the yield stress exceeds the dose-independent plastic instability stress. There is no evident relationship between the microscopic and macroscopic strain localizations; which is explained by the long-range back-stress hardening. It is proposed that the microscopic strain localization is a generalized phenomenon occurring at high stress.

  12. Radio Frequency (RF) strain monitor

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S. (Inventor); Rogowski, Robert S. (Inventor); Holben, Milford S., Jr. (Inventor)

    1988-01-01

    This invention relates to an apparatus for measuring strain in a structure. In particular, the invention detects strain in parts per million to over ten percent along an entire length (or other dimension) of a structure measuring a few millimeters to several kilometers. By using a propagation path bonded to the structure, the invention is not limited by the signal attenuation characteristics of the structure and thus frequencies in the megahertz to gigahertz range may be used to detect strain in part per million to over ten percent with high precision.

  13. Low TCR nanocomposite strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); Chen, Ximing (Inventor)

    2012-01-01

    A high temperature thin film strain gage sensor capable of functioning at temperatures above 1400.degree. C. The sensor contains a substrate, a nanocomposite film comprised of an indium tin oxide alloy, zinc oxide doped with alumina or other oxide semiconductor and a refractory metal selected from the group consisting of Pt, Pd, Rh, Ni, W, Ir, NiCrAlY and NiCoCrAlY deposited onto the substrate to form an active strain element. The strain element being responsive to an applied force.

  14. Virtual strain gage size study

    SciTech Connect

    Reu, Phillip L.

    2015-09-22

    DIC is a non-linear low-pass spatial filtering operation; whether we consider the effect of the subset and shape function, the strain window used in the strain calculation, of other post-processing of the results, each decision will impact the spatial resolution, of the measurement. More fundamentally, the speckle size limits, the spatial resolution by dictating the smallest possible subset. After this decision the processing settings are controlled by the allowable noise level balanced by possible bias errors created by the data filtering. This article describes a process to determine optimum DIC software settings to determine if the peak displacements or strains are being found.

  15. Strain accumulation in quasicrystalline solids

    NASA Technical Reports Server (NTRS)

    Nori, Franco; Ronchetti, Marco; Elser, Veit

    1988-01-01

    The relaxation of two-dimensional quasicrystalline elastic networks when their constituent bonds are perturbed homogeneously is studied. Whereas ideal, quasi-periodic networks are stable against such perturbations, significant accumulations of strain in a class of disordered networks generated by a growth process are found. The grown networks are characterized by root mean square phason fluctuations which grow linearly with system size. The strain accumulation observed in these networks also grows linearly with system size. Finally, dependence of strain accumulation on cooling rate is found.

  16. Effect of asymmetric strain relaxation on dislocation relaxation processes in heteroepitaxial semiconductors

    NASA Astrophysics Data System (ADS)

    Andersen, D.; Hull, R.

    2017-02-01

    The effect of asymmetric interfacial strain configurations upon the generation of misfit dislocation arrays in lattice mismatched epitaxy is considered. For example, elastic strain relaxation for Si1-xGex/Si(110) films is uniaxial, assuming glide on {111} planes as expected for the diamond cubic system, which leads to asymmetric strain relief. Here, we extend our previously developed relaxation model for generation of dislocation arrays in SiGe/Si, by accounting for how the different energetics of asymmetrically strained films affect the kinetics of the relaxation process. Similarly, non-polar III-nitride epitaxial films have asymmetric strain from the outset of growth due to the different c/a lattice parameter ratios. In both systems, the asymmetric strain is represented by an additional term in the misfit dislocation applied stress equation. In SiGe/Si(110), a simple elasticity analysis of the strain produced by the uniaxial array of dislocations predicts that the relaxation orthogonal to the dislocation line direction occurs at a faster rate than predicted by purely biaxial strain relief due to the contributions of the strain parallel to the dislocations. This difference is because the strain parallel to the dislocation line directions continues to resolve stress onto the misfit dislocations even as the orthogonal strain is minimized. As a result, the minimum strain energy is predicted to occur for a dislocation spacing, which produces tensile layer strain in the orthogonal direction. Such tensile strain may modify the (opto)electronic properties of a Si, Ge, or GeSi epilayer but is only predicted to occur for advanced stages of relaxation. These asymmetric derivations are applicable to any thin film system where strain is not strictly biaxial.

  17. Management of severe pain due to lumbar disk protrusion.

    PubMed

    Conroy, Liam

    2015-03-01

    Lumbar intervertebral disk protrusion can cause excruciating pain in severe cases, which can be exacerbated by activity such as sitting down and straining at stool. Acute sciatica due to disk rupture will improve within 1 to 3 months. The efficacy of drugs used for the management of sciatica in primary care is unclear. Severe cases can require opioid analgesia, however people taking opioids for pain relief frequently present with opioid-induced bowel dysfunction. The use of transforaminal steroid injections is a controversial issue and repeat steroid injections should be considered in light of the risk-benefit profile of the individual patient.

  18. Irradiation creep due to SIPA under cascade damage conditions

    SciTech Connect

    Woo, C.H.; Garner, F.A.; Holt, R.A.

    1992-12-31

    This paper derives the relationships between void swelling and irradiation creep due to Stress-Induced Preferred Absorption (SIPA) and SIPA-Induced Growth (SIG) under cascade damage conditions in an irradiated pressurized tube. It is found that at low swelling rates irradiation creep is a major contribution to the total diametral strain rate of the tube, whereas at high swelling rates the creep becomes a minor contribution. The anisotropy of the corresponding dislocation structure is also predicted to decline as the swelling rate increases. The theoretical predictions are found to agree very well with experimental results.

  19. Plasmid-mediate transfer of FLO1 into industrial Saccharomyces cerevisiae PE-2 strain creates a strain useful for repeat-batch fermentations involving flocculation-sedimentation.

    PubMed

    Gomes, Daniel G; Guimarães, Pedro M R; Pereira, Francisco B; Teixeira, José A; Domingues, Lucília

    2012-03-01

    The flocculation gene FLO1 was transferred into the robust industrial strain Saccharomyces cerevisiae PE-2 by the lithium acetate method. The recombinant strain showed a fermentation performance similar to that of the parental strain. In 10 repeat-batch cultivations in VHG medium with 345 g glucose/L and cell recycling by flocculation-sedimentation, an average final ethanol concentration of 142 g/L and an ethanol productivity of 2.86 g/L/h were achieved. Due to the flocculent nature of the recombinant strain it is possible to reduce the ethanol production cost because of lower centrifugation and distillation costs.

  20. What Are Sprains and Strains?

    MedlinePlus

    ... a lot. Examples are gymnastics, tennis, rowing, and golf. People who play these sports sometimes strain their ... and stretch before playing a sport. Wear protective equipment when playing. Run on flat surfaces. For More ...

  1. Strain control of real- and lattice-spin currents in a silicene junction

    NASA Astrophysics Data System (ADS)

    Phonapha, Sarayut; Suwanvarangkoon, Assanai; Soodchomshom, Bumned

    2017-09-01

    We investigate real- and lattice-spin currents controlled by strain in a silicene-based junction, where chemical potential, perpendicular electric field and circularly polarized light are applied into the strained barrier. We find that the junction yields strain filtering effect with perfect strain control of real- (or lattice-)spin currents. (i) By applying electric field without circularly polarized light we show that total current is carried by pure lattice-spin up (or down) electrons tunable by strain. (ii) When circularly polarized light is irradiated onto silicene sheet without applying electric field, total current is carried by pure real-spin up (or down) electrons tunable by strain. High conductance peaks associated with pure real- (or lattice-)spin currents in case ii (or i) occur at specific magnitude of strain, yielding strain filtering effect. Magnitudes of filtered strain due to pure real- (or lattice-) spin currents may be tunable by varying chemical potential. Sensitivity may be enhanced by increasing thickness of strained barrier. Significantly, (iii) when both perpendicular electric field and circularly polarized light are applied, the total current is carried by three species of electron groups tunable by strain. This may lead to controllable numbers of electron species to transport. This result shows that strain filtering effect in a silicene-based junction is quite different from that in graphene junction. Our work reveals potential of silicene as a nano-electro-mechanical device and spin-valleytronic applications.

  2. Genotype characterization of commonly used Newcastle disease virus vaccine strains of India.

    PubMed

    Dey, Sohini; Chellappa, Madhan Mohan; Gaikwad, Satish; Kataria, Jag Mohan; Vakharia, Vikram N

    2014-01-01

    Newcastle disease is an avian pathogen causing severe economic losses to the Indian poultry industry due to recurring outbreaks in vaccinated and unvaccinated flocks. India being an endemic country, advocates vaccination against the virus using lentogenic and mesogenic strains. Two virus strains which are commonly used for vaccination are strain F (a lentogenic virus) and strain R2B (a mesogenic virus). Strain F is given to 0-7 days old chicks and R2B is given to older birds which are around 6-8 weeks old. To understand the genetic makeup of these two strains, a complete genome study and phylogenetic analysis of the F, HN genes of these vaccine strains were carried out. Both the viral strains had a genome length of 15,186 nucleotides and consisted of six genes with conserved complimentary 3' leader and 5' trailer regions. The fusion protein cleavage site of strain F is GGRQGRL and strain R2B is RRQKRF. Although both the viral strains had different virulence attributes, the length of the HN protein was similar with 577 amino acids. Phylogenetic analysis of F, HN and complete genome sequences grouped these two strains in genotype II category which are considered as early genotypes and corroborated with their years of isolation.

  3. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains

    NASA Astrophysics Data System (ADS)

    Hu, Ting; Han, Yang; Dong, Jinming

    2014-11-01

    The mechanical and electronic properties of both the monolayer and bilayer phosphorenes under either isotropic or uniaxial strain have been systematically investigated using first-principles calculations. It is interesting to find that: 1) Under a large enough isotropic tensile strain, the monolayer phosphorene would lose its pucker structure and transform into a flat hexagonal plane, while two inner sublayers of the bilayer phosphorene could be bonded due to its interlayer distance contraction. 2) Under the uniaxial tensile strain along a zigzag direction, the pucker distance of each layer in the bilayer phosphorene can exhibit a specific negative Poisson’s ratio. 3) The electronic properties of both the monolayer and bilayer phosphorenes are sensitive to the magnitude and direction of the applied strains. Their band gaps decrease more rapidly under isotropic compressive strain than under uniaxial strain. Also, their direct-indirect band gap transitions happen at the larger isotropic tensile strains compared with that under uniaxial strain. 4) Under the isotropic compressive strain, the bilayer phosphorene exhibits a transition from a direct-gap semiconductor to a metal. In contrast, the monolayer phosphorene initially has the direct-indirect transition and then transitions to a metal. However, under isotropic tensile strain, both the bilayer and monolayer phosphorene show the direct-indirect transition and, finally, the transition to a metal. Our numerical results may open new potential applications of phosphorene in nanoelectronics and nanomechanical devices by external isotropic strain or uniaxial strain along different directions.

  4. In-situ strain localization analysis in low density transformation-twinning induced plasticity steel using digital image correlation

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Yadegari-Dehnavi, M. R.; Zarei-Hanzaki, A.; Mohtadi-Bonab, M. A.; Basu, R.; Szpunar, J. A.

    2015-04-01

    The effect of deformation temperature on the strain localization has been evaluated by an adapted digital image correlation (DIC) technique during tensile deformation. The progress of strain localization was traced by the corresponding strain maps. The electron backscatter diffraction analysis and tint etching technique were utilized to determine the impact of martensitic transformation and deformation twinning on the strain localization in both elastic and plastic regimes. In elastic regime the narrow strain bands which are aligned perpendicular to the tension direction were observed in temperature range of 25 to 180 °C due to the stress-assisted epsilon martensite. The strain bands were disappeared by increasing the temperature to 300 °C and reappeared at 400 °C due to the stress-assisted deformation twinning. In plastic regime strain localization continued at 25 °C and 180 °C due to the strain-induced alfa-martensite and deformation twinning, respectively. The intensity of plastic strain localization was increased by increasing the strain due to the enhancement of martensite and twin volume fraction. The plastic strain showed more homogeneity at 300 °C due to the lack of both strain-induced martensite and deformation twinning. Effect of deformation mechanism by changing temperature on strain localization is investigated by digital image correlation. EBSD technique is served to validate deformation mechanism as well as microstructural evolution. Strain induced martensite as well as deformation twinning is activated in the present steel affecting strain localization.

  5. Magnetic Domain Strain Sensor Program

    DTIC Science & Technology

    1990-08-01

    static strain measurement at elevated temperatures. 2.2 Magnetic Strain Measurement Theory The initial work at GED investigated the Barkhausen effect...including large and small Barkhausen jumps. This is a wave propaga- tion phenomenon in which a magnetic wave velocity is measured. The wave velocity in a...theory explaining the phenomenon that deviates from the Barkhausen effect. Some basic concepts had to be examined to better understand magnetic phenomena

  6. PLASTICITY AND NON-LINEAR ELASTIC STRAINS

    DTIC Science & Technology

    conditions existing in plane waves in an extended medium to give the time rate of change of stress as a function of the time rate of change of strain, the stress invariants, the total strain and the plastic strain. (Author)

  7. Draft Genome Sequence of a Taxonomically Unique Acinetobacter Clinical Strain with Proteolytic and Hemolytic Activities

    PubMed Central

    Traglia, German Matías; Almuzara, Marisa; Barberis, Claudia; Montaña, Sabrina; Schramm, Sareda T. J.; Enriquez, Brandi; Mussi, María Alejandra; Vay, Carlos; Iriarte, Andres

    2015-01-01

    Acinetobacter sp. strain A47, which has been recovered from several soft tissue samples from a patient undergoing reconstructive surgery due to a traumatic amputation, was categorized as a taxonomically unique bacterial strain. The molecular analysis based on three housekeeping protein-coding genes (16S rRNA, rpoB, and gyrB) showed that strain A47 does not belong to any of the hitherto known taxa and may represent a previously undescribed Acinetobacter species. PMID:25744988

  8. Effect of thermally induced strain on optical fiber sensors embedded in cement-based composites

    NASA Astrophysics Data System (ADS)

    Yuan, Li-bo; Zhou, Li-min; Jin, Wei; Lau, K. T.; Poon, Chi-kin

    2003-04-01

    A critical issue in developing a fiber-optic strain gauge is its codependency on temperature and strain. Any changes in the output of the optical fiber sensor due to its own thermal sensitivity and the thermal expansion of the most material will be misinterpreted as a change in shape-induced strain in the structure. This codependence is often referred to as thermally induced apparent strain or simply apparent strain. In this paper, an analytical model was developed to evaluate the thermally induced strain in fiber optic sensors embedded in cement-based composites. The effects of thermal induced strain on embedded optical fiber were measured with a white-light fiber-optic Michelson sensing interferometer for a number of cement-based host materials.

  9. A novel long-period fiber grating sensor for large strain measurement

    NASA Astrophysics Data System (ADS)

    Chen, Genda; Xiao, Hai; Huang, Ying; Zhou, Zhi; Zhang, Yinan

    2009-03-01

    Critical buildings such as hospitals and police stations must remain functional immediately following a major earthquake event. Due to earthquake effects, they often experience large strains, leading to progressive collapses. Therefore, monitoring and assessing the large strain condition of critical buildings is of paramount importance to post-earthquake responses and evacuations in earthquake-prone regions. In this study, a novel large strain sensor based on the long period fiber grating (LPFG) technology is proposed and developed. CO2 laser induced LPFG sensors are characterized for such mechanical properties as strain sensitivity in extension and flexure, sensor stability, and measurement range. For practical applications, the need for LPFG sensor packaging is identified and verified in laboratory implementations. By introducing various strain transfer mechanisms, the strain sensitivity of LPFG sensors can be customized for different applications at corresponding strain transfer ratios.

  10. Stress Corrosion Cracking Behavior of Interstitial Free Steel Via Slow Strain Rate Technique

    NASA Astrophysics Data System (ADS)

    Murkute, Pratik; Ramkumar, J.; Mondal, K.

    2016-07-01

    An interstitial free steel is subjected to slow strain rate tests to investigate the stress corrosion cracking (SCC) behavior at strain rates ranging from 10-4 to 10-6s-1 in air and 3.5 wt.% NaCl solution. The ratios of time to failure, failure strain, and ultimate tensile stress at different strain rates in air to that in corrosive were considered as SCC susceptibility. Serrated stress-strain curve observed at lowest strain rate is explained by the Portevin-Le Chatelier effect. Maximum susceptibility to SCC at lowest strain rate is attributed to the soluble γ-FeOOH in the rust analyzed by Fourier Transformed Infrared spectroscopy. Mechanism for SCC relates to the anodic dissolution forming the groove, where hydrogen embrittlement can set in and finally fracture happens due to triaxiality.

  11. Variation in genotype and higher virulence of a strain of Sporothrix schenckii causing disseminated cutaneous sporotrichosis.

    PubMed

    Zhang, Zhenying; Liu, Xiaoming; Lv, Xuelian; Lin, Jingrong

    2011-12-01

    Sporotrichosis is usually a localized, lymphocutaneous disease, but its disseminated type was rarely reported. The main objective of this study was to identify specific DNA sequence variation and virulence of a strain of Sporothrix schenckii isolated from the lesion of disseminated cutaneous sporotrichosis. We confirmed this strain to be S. schenckii by(®) tubulin and chitin synthase gene sequence analysis in addition to the routine mycological and partial ITS and NTS sequencing. We found a 10-bp deletion in the ribosomal NTS region of this strain, in reference to the sequence of control strains isolated from fixed cutaneous sporotrichosis. After inoculated into immunosuppressed mice, this strain caused more extensive system involvement and showed stronger virulence than the control strain isolated from a fixed cutaneous sporotrichosis. Our study thus suggests that different clinical manifestation of sporotrichosis may be associated with variation in genotype and virulence of the strain, independent of effects due to the immune status of the host.

  12. Carbon fiber-ZnO nanowire hybrid structures for flexible and adaptable strain sensors.

    PubMed

    Liao, Qingliang; Mohr, Markus; Zhang, Xiaohui; Zhang, Zheng; Zhang, Yue; Fecht, Hans-Jörg

    2013-12-21

    We report the flexible piezotronic strain sensors fabricated using carbon fiber-ZnO nanowire hybrid structures by a novel and reliable method. The I-V characteristic of the sensor shows high sensitivity to external strain due to the change in Schottky barrier height (SBH), which has a linear relationship with strain. This fabricated strain sensor has a quick, real-time current response under both static and dynamic mechanical loads. The change in SBH resulted from the strain-induced piezoelectric potential is investigated by band gap theory. In this work we develop a new feasible method to fabricate a flexible strain sensor within the fabric adapted to textile structures, able to measure their strain.

  13. High Variation of Fluorescence Protein Maturation Times in Closely Related Escherichia coli Strains

    PubMed Central

    Hebisch, Elke; Knebel, Johannes; Landsberg, Janek; Frey, Erwin; Leisner, Madeleine

    2013-01-01

    Fluorescent proteins (FPs) are widely used in biochemistry, biology and biophysics. For quantitative analysis of gene expression FPs are often used as marking molecules. Therefore, sufficient knowledge of maturation times and their affecting factors is of high interest. Here, we investigate the maturation process of the FPs GFP and mCherry expressed by the three closely related Escherichia coli strains of the Colicin E2 system, a model system for colicinogenic interaction. One strain, the C strain produces Colicin, a toxin to which the S strain is sensitive, and against which the R strain is resistant. Under the growth conditions used in this study, the S and R strain have similar growth rates, as opposed to the C strain whose growth rate is significantly reduced due to the toxin production. In combination with theoretical modelling we studied the maturation kinetics of the two FPs in these strains and could confirm an exponential and sigmoidal maturation kinetic for GFP and mCherry, respectively. Our subsequent quantitative experimental analysis revealed a high variance in maturation times independent of the strain studied. In addition, we determined strain dependent maturation times and maturation behaviour. Firstly, FPs expressed by the S and R strain mature on similar average time-scales as opposed to FPs expressed by the C strain. Secondly, dependencies of maturation time with growth conditions are most pronounced in the GFP expressing C strain: Doubling the growth rate of this C strain results in an increased maturation time by a factor of 1.4. As maturation times can vary even between closely related strains, our data emphasize the importance of profound knowledge of individual strains' maturation times for accurate interpretation of gene expression data. PMID:24155882

  14. Compliant intracortical implants reduce strains and strain rates in brain tissue in vivo

    NASA Astrophysics Data System (ADS)

    Sridharan, Arati; Nguyen, Jessica K.; Capadona, Jeffrey R.; Muthuswamy, Jit

    2015-06-01

    Objective. The objective of this research is to characterize the mechanical interactions of (1) soft, compliant and (2) non-compliant implants with the surrounding brain tissue in a rodent brain. Understanding such interactions will enable the engineering of novel materials that will improve stability and reliability of brain implants. Approach. Acute force measurements were made using a load cell in n = 3 live rats, each with 4 craniotomies. Using an indentation method, brain tissue was tested for changes in force using established protocols. A total of 4 non-compliant, bare silicon microshanks, 3 non-compliant polyvinyl acetate (PVAc)-coated silicon microshanks, and 6 compliant, nanocomposite microshanks were tested. Stress values were calculated by dividing the force by surface area and strain was estimated using a linear stress-strain relationship. Micromotion effects from breathing and vascular pulsatility on tissue stress were estimated from a 5 s interval of steady-state measurements. Viscoelastic properties were estimated using a second-order Prony series expansion of stress-displacement curves for each shank. Main results. The distribution of strain values imposed on brain tissue for both compliant nanocomposite microshanks and PVAc-coated, non-compliant silicon microshanks were significantly lower compared to non-compliant bare silicon shanks. Interestingly, step-indentation experiments also showed that compliant, nanocomposite materials significantly decreased stress relaxation rates in the brain tissue at the interface (p < 0.05) compared to non-compliant silicon and PVAc-coated silicon materials. Furthermore, both PVAc-coated non-compliant silicon and compliant nanocomposite shanks showed significantly reduced (by 4-5 fold) stresses due to tissue micromotion at the interface. Significance. The results of this study showed that soft, adaptive materials reduce strains and strain rates and micromotion induced stresses in the surrounding brain tissue

  15. Strain-dependent permeability of volcanic rocks.

    NASA Astrophysics Data System (ADS)

    Farquharson, Jamie; Heap, Michael; Baud, Patrick

    2016-04-01

    the degree of strain to which is subjected. Volcanic processes such as dome extrusion, which involve progressive strain on complex fault systems, have been seen to cause fault sliding and the prolific generation of fault gouge. Our results indicate that the permeability of these faults will tend to remain constant or increase during continued extrusion, allowing magmatic gases to readily outgas through permeable fault architectures despite the generation and accumulation of gouge. On the other hand, deeper regions of the edifice that will typically be compacting due to the relatively higher confining pressures, will exhibit a continuous decrease in permeability. The interplay between permeability-increasing and permeability-decreasing processes within the edifice is likely to influence outgassing and eruptive cycles at active volcanoes.

  16. Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects

    NASA Astrophysics Data System (ADS)

    Koh, S. J. A.; Lee, H. P.; Lu, C.; Cheng, Q. H.

    2005-08-01

    Nanoscale research has been an area of active research over the past fifteen years. This is due to the overall enhanced properties of nanomaterials due to size effects, surface effects, and interface effects, which typically showed up in materials with characteristic size smaller than 100nm . This study focuses on the molecular dynamics (MD) simulation of an infinitely long, cylindrical platinum nanowire, with an approximate diameter of 1.4nm . The nanowire was subjected to uniaxial tensile strain along the [001] axis. The changes in crystal structure during deformation were analyzed and its mechanical properties were deduced from the simulation. Classical MD simulation was employed in this study, with the empirical Sutton-Chen pair functional used to describe the interatomic potential between the platinum atoms. The Berendsen loose-coupling thermostat was selected for finite-temperature control of the simulated system, with a time constant of 25% of the total relaxation time during each strain increment. The nanowire was subjected to strain rates of 0.04%, 0.4%, and 4.0%ps-1 , at simulation temperatures of 50 and 300K , in order to study the effects of different strain rates and thermal conditions on the deformation characteristics and mechanical properties of the nanowire. It was found that the stress-strain response of the nanowire showed clear periodic, stepwise dislocation-relaxation-recrystallization behavior at low temperature and strain rate, where crystal order and stability were highly preserved. The onset of amorphous crystal deformation occurred at 0.4%ps-1 , and fully amorphous deformation took place at 4.0%ps-1 , with amorphous melting detected at 300K . Due to higher entropy of the nanowire at higher temperature and strain rate, periodic stress-strain behavior became less clearly defined, and superplasticity behavior was observed. This characteristic was significantly enhanced due to the development of a single-walled helical substructure at 300K

  17. Strain characterization of embedded aerospace smart materials using shearography

    NASA Astrophysics Data System (ADS)

    Anisimov, Andrei G.; Müller, Bernhard; Sinke, Jos; Groves, Roger M.

    2015-04-01

    The development of smart materials for embedding in aerospace composites provides enhanced functionality for future aircraft structures. Critical flight conditions like icing of the leading edges can affect the aircraft functionality and controllability. Hence, anti-icing and de-icing capabilities are used. In case of leading edges made of fibre metal laminates heater elements can be embedded between composite layers. However this local heating causes strains and stresses in the structure due to the different thermal expansion coefficients of the different laminated materials. In order to characterize the structural behaviour during thermal loading full-field strain and shape measurement can be used. In this research, a shearography instrument with three spatially-distributed shearing cameras is used to measure surface displacement gradients which give a quantitative estimation of the in- and out-of-plane surface strain components. For the experimental part, two GLARE (Glass Laminate Aluminum Reinforced Epoxy) specimens with six different embedded copper heater elements were manufactured: two copper mesh shapes (straight and S-shape), three connection techniques (soldered, spot welded and overlapped) and one straight heater element with delaminations. The surface strain behaviour of the specimens due to thermal loading was measured and analysed. The comparison of the connection techniques of heater element parts showed that the overlapped connection has the smallest effect on the surface strain distribution. Furthermore, the possibility of defect detection and defect depth characterisation close to the heater elements was also investigated.

  18. The variation of the yield stress of Ti alloys with strain rate at high temperatures

    SciTech Connect

    Rosen, R.S.; Paddon, S.P.; Kassner, M.E.

    1999-06-01

    This study extended investigation on the elevated-temperature yield-strength dependence of beta-phase titanium alloys on strain rate and temperature. Yield stresses were found to increase substantially with increasing strain rate at elevated temperatures due to the high strain-rate sensitivity of titanium at high temperatures. Above 1000 C, the strain-rate sensitivities were found to increase substantially with increasing temperature and/or decreasing strain rate. The six alloys examined were TIMETAL 21S, Ti-15-3-, Ti-6-4, Ti-13-11-3, Beta C, and Beta III. There was particular interest in determining the strain-rate sensitivity of these alloys through strain-rate change tests above 1000 C. The yield stresses of all the titanium alloys at temperatures above 1093 C were less than 1% of their ambient temperature values. strain hardening was negligible in the alloys tested at these high temperatures. Extended tensile ductilities of 100 to 200% were observed due to the pronounced strain-rare sensitivity. The rate controlling mechanism for plasticity, based on activation energy and the strain-rate sensitivity measurements, is discussed.

  19. In Situ Neutron Diffraction Studies of Increasing Tension Strains of Superelastic Nitinol

    NASA Astrophysics Data System (ADS)

    Pelton, Alan R.; Clausen, Bjørn; Stebner, Aaron P.

    2015-09-01

    A micromechanical study of the effect of varying amounts of tensile strains on the microstructures and subsequent mechanical behaviors of superelastic Nitinol rods is presented. It is found that strains up to ~8-9 % develop microstructures that assist both forward and reverse transformation relative to un-strained material. This superelastic phenomenon is explained to be analogous to two-way shape memory effect in Nitinol actuation materials. These results provide understanding as to why such "pre-strains" may lead to improvements in subsequent superelastic fatigue life. Beyond 9 %, a drastic change is observed, as large amounts of martensite (75 % and more) are retained in unloaded samples. Thus, a competition between transformation, plasticity, and reorientation is found to give rise to microstructures that inhibit complete transformation. Furthermore, even though similar inelastic strain magnitudes are observed in loading and unloading plateaus, micromechanical mechanisms differ substantially from samples with less pre-strain. For example, in highly pre-strained samples at least half of the plateau strains are due to martensite reorientation, whereas, in low and moderately pre-strained samples nearly the entirety of the plateau strain is due to transformation. We also find that latent heat of plastic flow is larger than latent heat of transformation.

  20. Two interbreeding populations of Saccharomyces cerevisiae strains coexist in cachaça fermentations from Brazil.

    PubMed

    Badotti, Fernanda; Vilaça, Sibelle T; Arias, Armando; Rosa, Carlos A; Barrio, Eladio

    2014-03-01

    In this study, the phylogenetic relationships between cachaça strains of Saccharomyces cerevisiae isolated from different geographical areas in Brazil were obtained on the basis of sequences of one mitochondrial (COX2) and three nuclear (EGT2, CAT8, and BRE5) genes. This analysis allowed us to demonstrate that different types of strains coexist in cachaça fermentations: wine strains, exhibiting alleles related or identical to those present in European wine strains; native strains, containing alleles similar to those found in strains isolated from traditional fermentations from Latin America, North America, Malaysian, Japan, or West Africa; and their intraspecific hybrids or 'mestizo' strains, heterozygous for both types of alleles. Wine strains and hybrids with high proportions of wine-type alleles predominate in southern and southeastern Brazil, where cachaça production coexists with winemaking. The high frequency of 'wine-type' alleles in these regions is probably due to the arrival of wine immigrant strains introduced from Europe in the nearby wineries due to the winemaking practices. However, in north and northeastern states, regions less suited or not suited for vine growing and winemaking, wine-type alleles are much less frequent because 'mestizo' strains with intermediate or higher proportions of 'native-type' alleles are predominant.

  1. Genomic Features and Niche-Adaptation of Enterococcus faecium Strains from Korean Soybean-Fermented Foods

    PubMed Central

    Kim, Eun Bae; Jin, Gwi-Deuk; Lee, Jun-Yeong; Choi, Yun-Jaie

    2016-01-01

    Certain strains of Enterococcus faecium contribute beneficially to human health and food fermentation. However, other E. faecium strains are opportunistic pathogens due to the acquisition of virulence factors and antibiotic resistance determinants. To characterize E. faecium from soybean fermentation, we sequenced the genomes of 10 E. faecium strains from Korean soybean-fermented foods and analyzed their genomes by comparing them with 51 clinical and 52 non-clinical strains of different origins. Hierarchical clustering based on 13,820 orthologous genes from all E. faecium genomes showed that the 10 strains are distinguished from most of the clinical strains. Like non-clinical strains, their genomes are significantly smaller than clinical strains due to fewer accessory genes associated with antibiotic resistance, virulence, and mobile genetic elements. Moreover, we identified niche-associated gene gain and loss from the soybean strains. Thus, we conclude that soybean E. faecium strains might have evolved to have distinctive genomic features that may contribute to its ability to thrive during soybean fermentation. PMID:27070419

  2. Isolation of an ampicillin-resistant, non-beta-lactamase-producing strain of Haemophilus influenzae.

    PubMed Central

    Markowitz, S M

    1980-01-01

    A 79-year-old female developed endocarditis and meningitis due to an ampicillin-resistant, non-beta-lactamase-producing strain of Haemophilus influenzae. Carbenicillin and gentamicin therapy resulted in bacteriological and clinical cure. The mechanism of resistance of ampicillin-resistant, non-beta-lactamase-producing strains of H. influenzae is unknown. PMID:6965443

  3. Prediction of thermal strains in fibre reinforced plastic matrix by discretisation of the temperature exposure history

    NASA Astrophysics Data System (ADS)

    Ngoy, E. K.

    2016-07-01

    Prediction of environmental effects on fibre reinforced plastics habitually is made difficult due to the complex variability of the natural service environment. This paper suggests a method to predict thermal strain distribution over the material lifetime by discretisation of the exposure history. Laboratory results show a high correlation between predicted and experimentally measured strain distribution

  4. Draft Genome Sequence for Caulobacter sp. Strain OR37, a Bacterium Tolerant to Heavy Metals

    PubMed Central

    Utturkar, Sagar M.; Brzoska, Ryann M.; Klingeman, Dawn M.; Epstein, Slava E.; Palumbo, Anthony V.

    2013-01-01

    Caulobacter sp. strain OR37 belongs to the class Alphaproteobacteria and was isolated from subsurface sediments in Oak Ridge, TN. Strain OR37 is noteworthy due to its tolerance to high concentrations of heavy metals, such as uranium, nickel, cobalt, and cadmium, and we present its draft genome sequence here. PMID:23792749

  5. Self-Repairing Polymer Optical Fiber Strain Sensor

    NASA Astrophysics Data System (ADS)

    Song, Young Jun

    This research develops a self-repairing polymer optical fiber strain sensor for structural health monitoring applications where the sensor network must survive under extreme conditions. Inspired by recent research in self-healing material systems, this dissertation demonstrates a self-repairing strain sensor waveguide, created by self-writing in a photopolymerizable resin system. In an initial configuration, the waveguide sensor was fabricated between two multi-mode (MM) optical fibers via ultraviolet (UV) lightwaves in the UV curable resin and operated as a strain sensor by interrogation of the infrared (IR) power transmission through the waveguide. After failure of the sensor occurred due to loading, the waveguide re-bridged the gap between the two optical fibers through the UV resin. The response of the waveguide sensors was sensitive to the applied strain and repeatable during multiple loading cycles with low observed hysteresis, however was not always monotonic. The strain response of the original sensor and the self-repaired sensor showed similar behaviors. Packaging the sensor in a polymer capillary improved the performance of the sensor by removing previous "no-response" zones. The resulting sensor output was monotonic throughout the measurement range. The hysteresis in the sensor behavior between multiple loading cycles was also significantly reduced. However, a jump in sensor output voltage was observed after the sensor self-repair process, which presents challenges for calibration of the sensor. The sensor configuration was modified to a Fabry-Perot interferometer to improve the sensor response. The measurable strain range was extended through multiple sensor self-repairs, and strain measurements were demonstrated up to 150% applied tensile strain. A hybrid sensor was fabricated by splicing a short segment of MM optical fiber to the input single-mode (SM) optical fiber. The hybrid sensor provided the high quality of waveguide fabrication previously

  6. Forming limit strains of interstitial free-IF steel sheet

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo; Moreira, Luciano Pessanha; Freitas, Maria Carolina dos Santos

    2016-10-01

    behavior during the biaxial stretching of sheet metals. Theoretical predicted curves of local necking limits are plotted in the positive and negative region of MPLS for different defect values fo and λ/μ parameters. Limit strains are obtained from a software developed by the authors. Experimental results of FLC obtained from experiments for IF steel sheets were compared with the theoretical predicted curves: the correlation is reasonable good in the positive quadrant, but the predicted values are above the experimental points in the negative quadrant due to punch friction, non-linear strain path and grid measurements.

  7. Magnetic susceptibility, petrofabrics and strain

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham John

    1988-12-01

    Magnetic susceptibility is a non-destructive technique for quantifying the average fabric of a small sample of rock. The interpretation of the magnetic fabric is not always straightforward. However, the principal directions of the magnitude ellipsoid of susceptibility commonly show orientations consistent with the kinematic interpretations of folds, shear zones and other structural features. The directions may correspond with the orientations of strained objects or with the planar-linear mineral orientations. There will usually be multiple mineralogical sources of susceptibility, often involving silicates. If the sources are known, or if the susceptibility can be attributed to a single mineral species, it may be possible to establish a correlation between the strain ellipsoid and the susceptibility ellipsoid. This correlation will be of principal directions in many instances and occasionally there may be a weak correlation of strain magnitudes as well. In other circumstances it may be possible to establish a correlation between changes in susceptibility and the strain. Nevertheless magnetic fabric studies are not routine substitutes for strain analysis. Even where information on strain is not provided, the magnetic fabrics (and subfabrics) yield a measure of the preferred crystallographic orientation or preferred dimensional orientation of the minerals that may be integrated profitably with other petrofabric data. Experimental deformation of certain synthetic aggregates indicates that directions of magnetic susceptibility spin rapidly with advancing strain, especially where the matrix grains undergo crystal-plastic deformation. In certain experiments, simple shear appears to change the intensity of magnetic fabric more effectively than pure shear. Experiments indicate also that the initial anisotropy of a rock-like material is not easily overprinted by deformation whereas field studies are equivocal.

  8. Applications of strained layer superlattices

    NASA Astrophysics Data System (ADS)

    Smith, D. L.; Laurich, B. K.; Mailhiot, C.

    1990-04-01

    Because of different band edge lineups, strain conditions, and growth orientations, various strained layer superlattice (SLS) materials can exhibit qualitatively new physical behavior in their optical properties. Two examples are given of new physical behavior in SLS: strain generated electric fields in polar growth axis superlattices and strained type 2 superlattices. In SLS, large electric fields can be generated by the piezoelectric effect. The fields are largest for SLS with a (111) growth axis; they vanish for SLS with a (100) growth axis. The strain generated electric fields strongly modify the optical properties of the superlattice. Photogenerated electron-hole pairs screen the fields leading to a large nonlinear optical response. Application of an external electric field leads to a large linear electrooptical response. The absorption edge can be either red or blue shifted. Optical studies of (100), (111), and (211) oriented GaInAs/GaAs superlattices confirm the existence of the strain generated electric fields. Small band gap semiconductors are useful for making intrinsic long wavelength infrared detectors. Arbitrarily small band gaps can be reached in the type 2 superlattice InAs/GaSb. However, for band gaps less than 0.1 eV, the layer thicknesses are large and the overlap of electron and hole wavefunctions are small. Thus, the absorption coefficient is too small for useful infrared (IR) detection. Including In in the GaSb introduces strain in he InAs/GaInSb superlattice which shifts the band edges so that small band gaps can be reached in thin layer superlattices. Good absorption at long IR wavelengths is thus achieved.

  9. Growth of highly strained CeO2 ultrathin films

    DOE PAGES

    Shi, Yezhou; Lee, Sang Chul; Monti, Matteo; ...

    2016-11-07

    Large biaxial strain is a promising route to tune the functionalities of oxide thin films. However, large strain is often not fully realized due to the formation of misfit dislocations at the film/substrate interface. In this work, we examine the growth of strained ceria (CeO2) thin films on (001)-oriented single crystal yttria-stabilized zirconia (YSZ) via pulsed-laser deposition. By varying the film thickness systematically between 1 and 430 nm, we demonstrate that ultrathin ceria films are coherently strained to the YSZ substrate for thicknesses up to 2.7 nm, despite the large lattice mismatch (~5%). The coherency is confirmed by both X-raymore » diffraction and high-resolution transmission electron microscopy. This thickness is several times greater than the predicted equilibrium critical thickness. Partial strain relaxation is achieved by forming semirelaxed surface islands rather than by directly nucleating dislocations. In situ reflective high-energy electron diffraction during growth confirms the transition from 2-D (layer-by-layer) to 3-D (island) at a film thickness of ~1 nm, which is further supported by atomic force microscopy. We propose that dislocations likely nucleate near the surface islands and glide to the film/substrate interface, as evidenced by the presence of 60° dislocations. Finally, an improved understanding of growing oxide thin films with a large misfit lays the foundation to systematically explore the impact of strain and dislocations on properties such as ionic transport and redox chemistry.« less

  10. Elevated temperature stress strain behavior of beryllium powder product

    SciTech Connect

    Abeln, S.P.; Field, R.; Mataya, M.C.

    1995-09-01

    Several grades of beryllium powder product were tested under isothermal conditions in compression over a temperature range of room temperature to 1000 C and a strain rate range from 0.001 s{sup {minus}1} to 1 s{sup {minus}1}. Samples were compressed to a total strain of 1 (64% reduction in height). It is shown that all the grades are strain rate sensitive and that strain rate sensitivity increases with temperature. Yield points were exhibited by some grades up to a temperature of 500 C, and appeared to be primarily dependent on prior thermal history which determined the availability of mobile dislocations. Serrated flow in the form of stress drops was seen in all the materials tested and was most pronounced at 500 C. The appearance and magnitude of the stress drops were dependent on accumulated strain, strain rate, sample orientation, and composition. The flow stress and shape of the flow curves differed significantly from grade to grade due to variations in alloy content, the size and distribution of BeO particles, aging precipitates, and grain size. The ductile-brittle transition temperature (DBTT) was determined for each grade of material and shown to be dependent on composition and thermal treatment. Structure/property relationships are discussed using processing history, microscopy (light and transmission), and property data.

  11. Detection of homologous recombination in closely related strains.

    PubMed

    Kalinina, Anastasia S; Suvorikova, Alexandra L; Spokoiny, Vladimir G; Gelfand, Mikhail S

    2016-04-01

    Detection of recombination events in a bacterial genome is both important from the evolutionary point of view, and of practical interest. Indeed, homologous recombination (HR) plays a major role in the exchange of antigenic determinants between strains. There exist statistical methods to detect recently recombined segments in whole-genome sequences that use a high local density of substitutions as a signal of HR events with a source outside considered strains. However, it is difficult to detect the HR events within a set of strains, which represent whole species diversity, due to a low number of substitutions in recombined segments and high level of diversity of strains. Here, we analyzed HR in 20 Escherichia coli (E. coli) strains to define what fraction of segments with a high substitution rate were introduced in a genome by HR. For detection of HR, we used the segmentation, performed by the adaptive weights smoothing (AWS) algorithm. It detects sharp changes in the structure of observed data analyzing only qualitative structural information. We validated the approach on simulated data, applied it to the analysis of E. coli strains, and determined the recombination rates between phylogroups.

  12. Vaccinia virus strain differences in cell attachment and entry

    SciTech Connect

    Bengali, Zain; Townsley, Alan C.; Moss, Bernard

    2009-06-20

    Vaccinia virus (VACV) strain WR can enter cells by a low pH endosomal pathway or direct fusion with the plasma membrane at neutral pH. Here, we compared attachment and entry of five VACV strains in six cell lines and discovered two major patterns. Only WR exhibited pH 5-enhanced rate of entry following neutral pH adsorption to cells, which correlated with sensitivity to bafilomycin A1, an inhibitor of endosomal acidification. Entry of IHD-J, Copenhagen and Elstree strains were neither accelerated by pH 5 treatment nor prevented by bafilomycin A1. Entry of the Wyeth strain, although not augmented by pH 5, was inhibited by bafilomycin A1. WR and Wyeth were both relatively resistant to the negative effects of heparin on entry, whereas the other strains were extremely sensitive due to inhibition of cell binding. The relative sensitivities of individual vaccinia virus strains to heparin correlated inversely with their abilities to bind to and enter glycosaminoglycan-deficient sog9 cells but not other cell lines tested. These results suggested that that IHD-J, Copenhagen and Elstree have a more limited ability than WR and Wyeth to use the low pH endosomal pathway and are more dependent on binding to glycosaminoglycans for cell attachment.

  13. Surrogate strains of human pathogens for field release.

    PubMed

    Park, Sangjin; Kim, Chang-Hwan; Jeong, Seong Tae; Lee, Sang Yup

    2017-07-10

    Surrogate microorganisms, in short surrogates, are an essential part of pathogen research. Compared to surrogates used in controlled laboratory environments, surrogates for field release are restricted by concerns about human and environmental safety. For field research of food-borne pathogens, strains of an attenuated pathogen or strains of genetically close non-pathogenic species have been used as surrogates. Genetic modification is usually performed to attenuate virulence, through for examples deletion of genes of virulence and transcriptional regulators and removal of virulence plasmids, and to facilitate detection and monitoring through observing antibiotic resistance, fluorescence, and bioluminescence. For field research of a biological warfare agent Bacillus anthracis, strains of genetically close non-pathogenic species or strains of genetically distant non-pathogenic species have been used, mostly without any genetic modification. Recently, we constructed strains of Bacillus thuringiensis as surrogates for B. anthracis, demonstrating that strain engineering could significantly enhance the utility of surrogates, and that the application of a simple genetic circuit could significantly impact surrogate safety. Thus far, enormous potential of biotechnology has not been exploited enough due to safety concerns regarding the field release of genetically engineered microorganisms. However, synthetic biology is rapidly developing, providing new concepts for biocontainment as well as ingenious genetic circuits and devices, which should be applied in future research of field-use surrogates.

  14. Strain engineered high reflectivity DBRs in the deep UV

    NASA Astrophysics Data System (ADS)

    Franke, A.; Hoffmann, M. P.; Hernandez-Balderrama, L.; Kaess, F.; Bryan, I.; Washiyama, S.; Bobea, M.; Tweedie, J.; Kirste, R.; Gerhold, M.; Collazo, R.; Sitar, Z.

    2016-02-01

    The maximum achievable reflectivity of current III-nitride Bragg reflectors in the UV-C spectral range is limited due to plastic relaxation of thick multilayer structures. Cracking due to a large mismatch of the thermal expansion and lattice constants between AlxGa1-xN/AlyGa1-yN alloys of different composition and the substrate at the heterointerface is the common failure mode. Strain engineering and strain relaxation concepts by the growth on a strain reduced Al0.85Ga0.15N template and the implementation of low temperature interlayers is demonstrated. A significant enhancement of the maximum reflectivity above 97% at a resonance wavelength of 270 nm due to an increase of the critical thickness of our AlN/Al0.65Ga0.35N DBRs to 1.45 μm (25.5 pairs) prove their potential. By comparing the growth of identical Bragg reflectors on different pseudo-templates, the accumulated mismatch strain energy in the DBR, not the dislocation density provided by the template/substrate, was identified to limit the critical thickness. To further enhance the reflectivity low temperature interlays were implemented into the DBR to partially relief the misfit strain. Relaxation is enabled by the nucleation of small surface domains facilitating misfit dislocation injection and glide. Detailed structural and optical investigations will be conducted to prove the influence of the LT-AlN interlayers on the strain state, structural integrity and reflectivity properties. Coherent growth and no structural and optical degradation of the Bragg mirror properties was observed proving the fully applicability of the relaxation concept to fabricate thick high reflectivity DBR and vertical cavity laser structures.

  15. Experiments to study strain gage load calibrations on a wing structure at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Monaghan, R. C.; Fields, R. A.

    1973-01-01

    Laboratory experiments were performed to study changes in strain-gage bridge load calibrations on a wing structure heated to temperatures of 200 F, 400 F, and 600 F. Data were also obtained to define the experimental repeatability of strain-gage bridge outputs. Experiments were conducted to establish the validity of the superposition of bridge outputs due to thermal and mechanical loads during a heating simulation of Mach 3 flight. The strain-gage bridge outputs due to load cycle at each of the above temperature levels were very repeatable. A number of bridge calibrations were found to change significantly as a function of temperature. The sum of strain-gage bridge outputs due to individually applied thermal and mechanical loads compared well with that due to combined or superimposed loads. The validity of superposition was, therefore, established.

  16. Fabric strain sensor integrated with CNPECs for repeated large deformation

    NASA Astrophysics Data System (ADS)

    Yi, Weijing

    Flexible and soft strain sensors that can be used in smart textiles for wearable applications are much desired. They should meet the requirements of low modulus, large working range and good fatigue resistance as well as good sensing performances. However, there were no commercial products available and the objective of the thesis is to investigate fabric strain sensors based on carbon nanoparticle (CNP) filled elastomer composites (CNPECs) for potential wearing applications. Conductive CNPECs were fabricated and investigated. The introduction of silicone oil (SO) significantly decreased modulus of the composites to less than 1 MPa without affecting their deformability and they showed good stability after heat treatment. With increase of CNP concentration, a percolation appeared in electrical resistivity and the composites can be divided into three ranges. I-V curves and impedance spectra together with electro-mechanical studies demonstrated a balance between sensitivity and working range for the composites with CNP concentrations in post percolation range, and were preferred for sensing applications only if the fatigue life was improved. Due to the good elasticity and failure resist property of knitted fabric under repeated extension, it was adopted as substrate to increase the fatigue life of the conductive composites. After optimization of processing parameters, the conductive fabric with CNP concentration of 9.0CNP showed linear I-V curves when voltage is in the range of -1 V/mm and 1 V/mm and negligible capacitive behavior when frequency below 103 Hz even with strain of 60%. It showed higher sensitivity due to the combination of nonlinear resistance-strain behavior of the CNPECs and non-even strain distribution of knitted fabric under extension. The fatigue life of the conductive fabric was greatly improved. Extended on the studies of CNPECs and the coated conductive fabrics, a fabric strain sensor was designed, fabricated and packaged. The Young's modulus of

  17. High-strain-rate behavior of metal matrix composites

    NASA Astrophysics Data System (ADS)

    Guden, Mustafa

    Dynamic loading response is an important design parameter, which is critical in severe applications where impact loading occurs, but which has been little investigated to date for MMCs. Those MMCs which have been tested at high strain-rates so far have been diverse in terms of matrix alloy and reinforcement type, size and shape, making comparisons difficult. In this study, four different MMCs, SiC particulate and whisker reinforced, Alsb2Osb3 short and long fiber reinforced, representing currently available MMC groups, have been compression tested at quasi-static and high strain rates ({˜}10sp3\\ ssp{-1}). It has been shown that the strain rate sensitivity of the composite is very similar to that of the corresponding unreinforced alloy for the following composites: SiCsb{p}/2024 Al MMC, SiCsb{w}/2124-T6 Al MMC, Alsb2Osb3 (Saffil) short fiber reinforced Al-1.2wt%Cu in a direction normal to the Planar Random Fiber Plane, and Alsb2Osb3 (FP) long fiber reinforced Al-3wt%Li MMC tested in the transverse direction. In Alsb2Osb3 Saffil short fiber reinforced Al-1.2wt%Cu MMC tested in a direction parallel to the Planar Random Fiber Plane and FP-Alsb2Osb3 long fiber MMC in the longitudinal direction, the strain rate sensitivities of the flow stress or maximum stress were found to be higher than those of the monolithic alloy. The increased strain rate sensitivity in Saffil short fiber reinforced MMC was found to be a combined effect of matrix rate sensitivity and load carried by fiber until about 5% strains. The increased rate sensitivity of FP reinforced MMC in the longitudinal direction was due to the increased fiber buckling stress which scaled with matrix shear stress. Microscopic observations have shown that, in SiC whisker reinforced MMC, the failure was controlled by thermal softening and strain localization at high strain rates. In Saffil reinforced MMC, the reduced fiber fragment size at high strain rates and increased extent of matrix voiding were the dominant

  18. Strain induced novel quantum magnetotransport properties of topological insulators

    SciTech Connect

    Ma, Ning; Zhang, Shengli; Liu, Daqing

    2016-12-15

    Recent theoretical and experimental researches have revealed that the strained bulk HgTe can be regarded as a three-dimensional topological insulator (TI). Motivated by this, we explore the strain effects on the transport properties of the HgTe surface states, which are modulated by a weak 1D in-plane electrostatic periodic potential in the presence of a perpendicular magnetic field. We analytically derive the zero frequency (dc) diffusion conductivity for the case of quasielastic scattering in the Kubo formalism, and find that, in strong magnetic field regime, the Shubnikov–de Haas oscillations are superimposed on top of the Weiss oscillations due to the electric modulation for null and finite strain. Furthermore, the strain is shown to remove the degeneracy in inversion symmetric Dirac cones on the top and bottom surfaces. This accordingly gives rise to the splitting and mixture of Landau levels, and the asymmetric spectrum of the dc conductivity. These phenomena, not known in a conventional 2D electron gas and even in a strainless TI and graphene, are a consequence of the anomalous spectrum of surface states in a fully stained TI. These results should be valuable for electronic and spintronic applications of TIs, and thus we fully expect to see them in the further experiment. - Highlights: • The strain removes the degeneracy in inversion symmetric Dirac cones. • The strain gives rise to the splitting and mixture of the Landau levels. • The strain leads to the asymmetric spectrum of the dc conductivity. • Shubnikov de Haas oscillations are shown to be superimposed on Weiss oscillations. • Interplay between strain and electric field causes different occupancy of TI states.

  19. Two-strain competition in quasineutral stochastic disease dynamics

    NASA Astrophysics Data System (ADS)

    Kogan, Oleg; Khasin, Michael; Meerson, Baruch; Schneider, David; Myers, Christopher R.

    2014-10-01

    We develop a perturbation method for studying quasineutral competition in a broad class of stochastic competition models and apply it to the analysis of fixation of competing strains in two epidemic models. The first model is a two-strain generalization of the stochastic susceptible-infected-susceptible (SIS) model. Here we extend previous results due to Parsons and Quince [Theor. Popul. Biol. 72, 468 (2007), 10.1016/j.tpb.2007.04.002], Parsons et al. [Theor. Popul. Biol. 74, 302 (2008), 10.1016/j.tpb.2008.09.001], and Lin, Kim, and Doering [J. Stat. Phys. 148, 646 (2012), 10.1007/s10955-012-0479-9]. The second model, a two-strain generalization of the stochastic susceptible-infected-recovered (SIR) model with population turnover, has not been studied previously. In each of the two models, when the basic reproduction numbers of the two strains are identical, a system with an infinite population size approaches a point on the deterministic coexistence line (CL): a straight line of fixed points in the phase space of subpopulation sizes. Shot noise drives one of the strain populations to fixation, and the other to extinction, on a time scale proportional to the total population size. Our perturbation method explicitly tracks the dynamics of the probability distribution of the subpopulations in the vicinity of the CL. We argue that, whereas the slow strain has a competitive advantage for mathematically "typical" initial conditions, it is the fast strain that is more likely to win in the important situation when a few infectives of both strains are introduced into a susceptible population.

  20. Strains at the myotendinous junction predicted by a micromechanical model.

    PubMed

    Sharafi, Bahar; Ames, Elizabeth G; Holmes, Jeffrey W; Blemker, Silvia S

    2011-11-10

    The goal of this work was to create a finite element micromechanical model of the myotendinous junction (MTJ) to examine how the structure and mechanics of the MTJ affect the local micro-scale strains experienced by muscle fibers. We validated the model through comparisons with histological longitudinal sections of muscles fixed in slack and stretched positions. The model predicted deformations of the A-bands within the fiber near the MTJ that were similar to those measured from the histological sections. We then used the model to predict the dependence of local fiber strains on activation and the mechanical properties of the endomysium. The model predicted that peak micro-scale strains increase with activation and as the compliance of the endomysium decreases. Analysis of the models revealed that, in passive stretch, local fiber strains are governed by the difference of the mechanical properties between the fibers and the endomysium. In active stretch, strain distributions are governed by the difference in cross-sectional area along the length of the tapered region of the fiber near the MTJ. The endomysium provides passive resistance that balances the active forces and prevents the tapered region of the fiber from undergoing excessive strain. These model predictions lead to the following hypotheses: (i) the increased likelihood of injury during active lengthening of muscle fibers may be due to the increase in peak strain with activation and (ii) endomysium may play a role in protecting fibers from injury by reducing the strains within the fiber at the MTJ. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Variation in Biofilm Formation among Strains of Listeria monocytogenes

    PubMed Central

    Borucki, Monica K.; Peppin, Jason D.; White, David; Loge, Frank; Call, Douglas R.

    2003-01-01

    Contamination of food by Listeria monocytogenes is thought to occur most frequently in food-processing environments where cells persist due to their ability to attach to stainless steel and other surfaces. Once attached these cells may produce multicellular biofilms that are resistant to disinfection and from which cells can become detached and contaminate food products. Because there is a correlation between virulence and serotype (and thus phylogenetic division) of L. monocytogenes, it is important to determine if there is a link between biofilm formation and disease incidence for L. monocytogenes. Eighty L. monocytogenes isolates were screened for biofilm formation to determine if there is a robust relationship between biofilm formation, phylogenic division, and persistence in the environment. Statistically significant differences were detected between phylogenetic divisions. Increased biofilm formation was observed in Division II strains (serotypes 1/2a and 1/2c), which are not normally associated with food-borne outbreaks. Differences in biofilm formation were also detected between persistent and nonpersistent strains isolated from bulk milk samples, with persistent strains showing increased biofilm formation relative to nonpersistent strains. There were no significant differences detected among serotypes. Exopolysaccharide production correlated with cell adherence for high-biofilm-producing strains. Scanning electron microscopy showed that a high-biofilm-forming strain produced a dense, three-dimensional structure, whereas a low-biofilm-forming strain produced a thin, patchy biofilm. These data are consistent with data on persistent strains forming biofilms but do not support a consistent relationship between enhanced biofilm formation and disease incidence. PMID:14660383

  2. High strain-rate model for fiber-reinforced composites

    SciTech Connect

    Aidun, J.B.; Addessio, F.L.

    1995-07-01

    Numerical simulations of dynamic uniaxial strain loading of fiber-reinforced composites are presented that illustrate the wide range of deformation mechanisms that can be captured using a micromechanics-based homogenization technique as the material model in existing continuum mechanics computer programs. Enhancements to the material model incorporate high strain-rate plastic response, elastic nonlinearity, and rate-dependent strength degradation due to material damage, fiber debonding, and delamination. These make the model relevant to designing composite structural components for crash safety, armor, and munitions applications.

  3. Chemically pre-strained dielectric elastomers finite element analysis

    NASA Astrophysics Data System (ADS)

    Newell, Brittany; Krutz, Gary; Stewart, Frank; Pascal, Kevin

    2017-04-01

    The applications and feasibility of utilizing dielectric elastomer electroactive polymers in the industrial and medical sectors has drastically increased in recent years due to significant improvements in actuation potential, manufacturing, the introduction of new materials and modeling capabilities. One such development is the introduction of chemical pre-strain as a method of providing enhanced actuation. The purpose of this study was to utilize finite element analysis to analyze the mechanical actuation of an industrial fluoropolymer with chemical induced pre-strain and validate the model with experiential results. Results generated from the finite element analysis showed similar trends to results produced experimentally.

  4. Vacancy-mediated diffusion in biaxially strained Si

    NASA Astrophysics Data System (ADS)

    Caliste, Damien; Rushchanskii, Konstantin Z.; Pochet, Pascal

    2011-01-01

    We present an analysis of stress-enhanced vacancy-mediated diffusion in biaxially deformed Si (100) films as measured by the strain derivative (Q') of the activation energy. The strain dependence of Q' is demonstrated by means of a reanalysis of previously published experimental data, which both take into account the temperature dependence of and highlight the differences between tensile and compressive stress. Based on ab initio calculations, we predict that Q' in pure silicon is higher under compressive conditions due to a broken degeneracy of the split-vacancy configuration.

  5. Patterned piezoresistive silicon strain gauge devices for use in low power applications

    NASA Astrophysics Data System (ADS)

    Olson, Stephen P.

    Component monitoring systems are currently being developed to measure strain in rotating helicopter parts. The rotating nature of these parts requires the use of wireless nodes to record and transmit strain data to the rest of the component monitoring system. Power consumption is a key challenge in these systems, as they must operate for an extended period on internal or harvested energy. The focus of this work was to develop patterned piezoresistive silicon strain gauge sensors for use in low power systems. The piezoresistive properties of silicon are reviewed along with current piezoresistive strain gauge devices. First and second generation strain gauge devices are designed, fabricated and tested. An issue common to all bonded strain gauges is the strain transfer between the part and the gauge. This is especially important for bonded silicon gauges due to the transverse sensitivity of silicon and differences in mechanical properties of silicon and a metal part. Two models are developed to find the stress distribution on the surface of the silicon die when bonded to a strained part. Results from these models show the effect of Poisson ratio mismatch, die thickness, adhesive thickness and sensor location on strain sensitivity. The measured response from the second generation strain gauge is compared to the simulations. This shows that the fabricated strain gauge is working as expected.

  6. Characterization of different food-isolated Enterococcus strains by MALDI-TOF mass fingerprinting.

    PubMed

    Quintela-Baluja, Marcos; Böhme, Karola; Fernández-No, Inmaculada C; Morandi, Stefano; Alnakip, Mohammed E; Caamaño-Antelo, Sonia; Barros-Velázquez, Jorge; Calo-Mata, Pilar

    2013-08-01

    Enterococcus is a controversial genus due to its great variability; this genus includes pathogenic strains, spoilage strains, and apparently safe strains including some probiotic strains. Previous studies focused on the characterization of strains of Enterococcus spp. involved in nosocomial infections. However, little research has been conducted on Enterococcus strains in foodstuffs. In the present work, 36 strains of different species of Enterococcus have been characterized by means of MALDI-TOF MS, resulting in highly specific mass spectral fingerprints. Characteristic peak masses common to certain bacterial species of Enterococcus have been identified. Thus, a peak at m/z 4426 ± 1 was assigned as a genus-specific biomarker. In addition, phyloproteomic relationships based on the mass spectral data were compared to the results of a phylogenetic analysis based on the 16S rRNA gene sequence. A better grouping at the species level was observed in the phyloproteomic tree, especially for the Enterococcus faecium group. Presumably, the assortment of some strains or ecotypes could be related to their ecological niche specialization. The approach described in this study leads the way toward the rapid and specific identification of different strains and species of Enterococcus in food based on molecular protein markers, aiming at the early detection of pathogenic strains and strains implicated in food poisoning or food spoilage.

  7. Molecular characterization of Vibrio cholerae O1 strains isolated during cholera outbreaks in Guinea-Bissau.

    PubMed Central

    Dalsgaard, A; Mortensen, H F; Mølbak, K; Dias, F; Serichantalergs, O; Echeverria, P

    1996-01-01

    In the present study, 19 strains of Vibrio cholerae O1 biotype El Tor isolated during outbreaks of cholera in Guinea-Bissau in 1987, 1994, and 1995 were characterized to investigate a possible epidemiological relationship among the isolates. On the basis of ribotyping with the restriction enzyme BglI, 5 strains isolated in 1987 showed two closely related ribotypes, while 14 strains isolated in 1994 and 1995 showed the same ribotype that was distinct from the ribotypes of strains isolated in 1987. Southern blot hybridization of BglI-digested genomic DNA with a cholera toxin probe demonstrated that the strains isolated in 1987 showed an identical cholera toxin genotype, whereas O1 strains isolated in 1994 and 1995 showed the same genotype that was distinct from the genotype of strains isolated in 1987. These results were supported by the results of antibiotic susceptibility testing, in which strains isolated in 1987 showed resistance to polymyxin B only, while each of the strains from 1994 and 1995 showed resistance to polymyxin B, trimethoprim-sulfamethoxazole, and the vibriostatic agent O/129. Although our results are based on a limited number of V. cholerae O1 strains, they suggest that the epidemic in Guinea-Bissau in 1994 and 1995 was due to the introduction of a new strain to the country. PMID:8727901

  8. Direct in vivo strain measurements in human bone-a systematic literature review.

    PubMed

    Al Nazer, R; Lanovaz, J; Kawalilak, C; Johnston, J D; Kontulainen, S

    2012-01-03

    Bone strain is the governing stimuli for the remodeling process necessary in the maintenance of bone's structure and mechanical strength. Strain gages are the gold standard and workhorses of human bone experimental strain analysis in vivo. The objective of this systematic literature review is to provide an overview for direct in vivo human bone strain measurement studies and place the strain results within context of current theories of bone remodeling (i.e. mechanostat theory). We employed a standardized search strategy without imposing any time restriction to find English language studies indexed in PubMed and Web of Science databases that measured human bone strain in vivo. Twenty-four studies met our final inclusion criteria. Seven human bones were subjected to strain measurements in vivo including medial tibia, second metatarsal, calcaneus, proximal femur, distal radius, lamina of vertebra and dental alveolar. Peak strain magnitude recorded was 9096 με on the medial tibia during basketball rebounding and the peak strain rate magnitude was -85,500 με/s recorded at the distal radius during forward fall from standing, landing on extended hands. The tibia was the most exposed site for in vivo strain measurements due to accessibility and being a common pathologic site of stress fracture in the lower extremity. This systematic review revealed that most of the strains measured in vivo in different bones were generally within the physiological loading zone defined by the mechanostat theory, which implies stimulation of functional adaptation necessary to maintain bone mechanical integrity.

  9. Inelastic strain rate in the seismogenic layer of Kyushu Island, Japan

    NASA Astrophysics Data System (ADS)

    Matsumoto, Satoshi; Nishimura, Takuya; Ohkura, Takahiro

    2016-12-01

    Seismic activity is associated with crustal stress relaxation, creating inelastic strain in a medium due to faulting. Inelastic strain affects the stress field around a weak body and causes stress concentration around the body, because the body itself has already released stress. Therefore, the understanding of inelastic deformation is important as it generates earthquakes. We investigated average inelastic strain in a spatial bin of Kyushu Island, Japan, and obtained the inelastic strain rate distribution associated with crustal earthquakes, based on the analysis of fault plane solutions and seismic moments. Large inelastic strains (>10-7 year-1) were found in the Beppu-Shimabara area, located in the center of Kyushu Island. The strain rate tensor was similar to that of the stress tensor except the absolute value in the area, implying that the inelastic strain was controlled by the stress field. The 2016 Kumamoto earthquake sequence (maximum magnitude 7.3) occurred in the Beppu-Shimabara area, with the major earthquakes located around the high inelastic strain rate area. Inelastic strain in the volume released the stress. In addition, the inelastic strain created an increment of stress around the volume. This indicates that the spatial heterogeneity of inelastic strain might concentrate stress.[Figure not available: see fulltext.

  10. A thin film strain transducer

    NASA Technical Reports Server (NTRS)

    Rand, J. L.

    1983-01-01

    A device has been developed for the purpose of measuring longitudinal strain in thin polyethylene films. This paper describes the design, development, calibration, and application of this unique transducer in a variety of low temperature environments. This thin, ring-shaped device has a low effective modulus so as not to interfere with the strain that would naturally occur in a thin film. It has a standard 350 ohm impedance which is compatible with most available bridge balance, amplification, and telemetry instrumentation. This transducer has been successfully used for viscoelastic material characterization experiments in the laboratory, as well as in flight measurements of strain on the surface of scientific balloons during inflation, launch, ascent, and float.

  11. Measuring mine roof bolt strains

    DOEpatents

    Steblay, Bernard J.

    1986-01-01

    A mine roof bolt and a method of measuring the strain in mine roof bolts of this type are disclosed. According to the method, a flat portion on the head of the mine roof bolt is first machined. Next, a hole is drilled radially through the bolt at a predetermined distance from the bolt head. After installation of the mine roof bolt and loading, the strain of the mine roof bolt is measured by generating an ultrasonic pulse at the flat portion. The time of travel of the ultrasonic pulse reflected from the hole is measured. This time of travel is a function of the distance from the flat portion to the hole and increases as the bolt is loaded. Consequently, the time measurement is correlated to the strain in the bolt. Compensation for various factors affecting the travel time are also provided.

  12. Taxonomy of oxalotrophic Methylobacterium strains

    NASA Astrophysics Data System (ADS)

    Sahin, Nurettin; Kato, Yuko; Yilmaz, Ferah

    2008-10-01

    Most of the oxalotrophic bacteria are facultative methylotrophs and play important ecological roles in soil fertility and cycling of elements. This study gives a detailed picture of the taxonomy and diversity of these bacteria and provides new information about the taxonomical variability within the genus Methylobacterium. Twelve mesophilic, pink-pigmented, and facultatively methylotrophic oxalate-oxidizing strains were included in this work that had been previously isolated from the soil and some plant tissues by the potassium oxalate enrichment method. The isolates were characterized using biochemical tests, cellular lipid profiles, spectral characteristics of carotenoid pigments, G+C content of the DNA, and 16S rDNA sequencing. The taxonomic similarities among the strains were analyzed using the simple matching ( S SM) and Jaccard ( S J) coefficients, and the UPGMA clustering algorithm. The phylogenetic position of the strains was inferred by the neighbor-joining method on the basis of the 16S rDNA sequences. All isolates were Gram-negative, facultatively methylotrophic, oxidase and catalase positive, and required no growth factors. Based on the results of numerical taxonomy, the strains formed four closely related clusters sharing ≥85% similarity. Analysis of the 16S rDNA sequences demonstrated that oxalotrophic, pink-pigmented, and facultatively methylotrophic strains could be identified as members of the genus Methylobacterium. Except for M. variabile and M. aquaticum, all of the Methylobacterium type strains tested had the ability of oxalate utilization. Our results indicate that the capability of oxalate utilization seems to be an uncommon trait and could be used as a valuable taxonomic criterion for differentiation of Methylobacterium species.

  13. Genome Sequence of Pseudomonas chlororaphis Strain 189.

    PubMed

    Town, Jennifer; Audy, Patrice; Boyetchko, Susan M; Dumonceaux, Tim J

    2016-06-23

    Pseudomonas chlororaphis strain 189 is a potent inhibitor of the growth of the potato pathogen Phytophthora infestans We determined the complete, finished sequence of the 6.8-Mbp genome of this strain, consisting of a single contiguous molecule. Strain 189 is closely related to previously sequenced strains of P. chlororaphis. Copyright © 2016 Town et al.

  14. Quantification of muscle fiber strain during in vivo repetitive stretch-shortening cycles.

    PubMed

    Butterfield, Timothy A; Herzog, Walter

    2005-08-01

    Muscles subjected to lengthening contractions exhibit evidence of subcellular disruption, arguably a result of fiber strain magnitude. Due to the difficulty associated with measuring fiber strains during lengthening contractions, fiber length estimates have been used to formulate relationships between the magnitude of injury and mechanical measures such as fiber strain. In such protocols, the series compliance is typically minimized by removing the distal tendon and/or preactivating the muscle. These in vitro and in situ experiments do not represent physiological contractions well where fiber strain and muscle strain may be disassociated; thus the mechanisms of in vivo muscle injury remain elusive. The purpose of this paper was to quantify fiber strains during lengthening contractions in vivo and assess the potential role of fiber strain in muscle injury following repetitive stretch-shortening cycles. Using intact New Zealand White rabbit dorsiflexors, fiber strain and joint torque were measured during 50 stretch-shortening cycles. We were able to show that fiber length changes are disassociated from muscle tendon unit length changes and that complex fiber dynamics during these cycles prevent easy estimates of fiber strains. In addition, fiber strains vary, depending on how they are defined, and vary from repetition to repetition, thereby further complicating the potential relationship between muscle injury and fiber strain. We conclude from this study that, during in vivo stretch-shortening cycles, the relationship between fiber strain and muscle injury is complex. This is due, in part, to temporal effects of repeated loading on fiber strain magnitude that may be explained by an increasing compliance of the contractile element as exercise progresses.

  15. Combined diffusion and strain tensor MRI reveals a heterogeneous, planar pattern of strain development during isometric muscle contraction.

    PubMed

    Englund, Erin K; Elder, Christopher P; Xu, Qing; Ding, Zhaohua; Damon, Bruce M

    2011-05-01

    The purposes of this study were to create a three-dimensional representation of strain during isometric contraction in vivo and to interpret it with respect to the muscle fiber direction. Diffusion tensor MRI was used to measure the muscle fiber direction of the tibialis anterior (TA) muscle of seven healthy volunteers. Spatial-tagging MRI was used to measure linear strains in six directions during separate 50% maximal isometric contractions of the TA. The strain tensor (E) was computed in the TA's deep and superficial compartments and compared with the respective diffusion tensors. Diagonalization of E revealed a planar strain pattern, with one nonzero negative strain (ε(N)) and one nonzero positive strain (ε(P)); both strains were larger in magnitude (P < 0.05) in the deep compartment [ε(N) = -40.4 ± 4.3%, ε(P) = 35.1 ± 3.5% (means ± SE)] than in the superficial compartment (ε(N) = -24.3 ± 3.9%, ε(P) = 6.3 ± 4.9%). The principal shortening direction deviated from the fiber direction by 24.0 ± 1.3° and 39.8 ± 6.1° in the deep and superficial compartments, respectively (P < 0.05, deep vs. superficial). The deviation of the shortening direction from the fiber direction was due primarily to the lower angle of elevation of the shortening direction over the axial plane than that of the fiber direction. It is concluded that three-dimensional analyses of strain interpreted with respect to the fiber architecture are necessary to characterize skeletal muscle contraction in vivo. The deviation of the principal shortening direction from the fiber direction may relate to intramuscle variations in fiber length and pennation angle.

  16. Thermal stability of strained nanowires.

    PubMed

    Nisoli, Cristiano; Abraham, Douglas; Lookman, Turab; Saxena, Avadh

    2009-06-19

    Stranski-Krastanow strained islands undergo a shape anisotropy transition as they grow in size, finally evolving toward nanowires. This effect has been explained until now via simple energetic models that neglect thermodynamics. We investigate theoretically the stability of strained nanowires under thermal fluctuations of the long side. We find phase transitions from nanowires back to nanoislands as the temperature is increased and as the height of the nanostructure is raised or lowered, and we predict regions of phase coexistence. Our results are general, but explain recent data on the growth of erbium silicide on a vicinal Si surface.

  17. Pacific Plate Deformation due to Plate Motion Relative to the Spin Axis on a Nonspherical Earth

    NASA Astrophysics Data System (ADS)

    Woodworth, D.; Gordon, R. G.

    2016-12-01

    The central tenet of plate tectonics is that the plates are rigid. In the 1970s, however, it was recognized that plate motion relative to the spin axis causes intraplate deformation as a plate conforms to Earth's radius of curvature, which varies with latitude [McKenzie 1972; Turcotte & Oxburgh 1974]. Here we quantify rates of intraplate strain produced by plate motion relative to the spin axis and compare them with strain rates due to other sources of intraplate strain, such as thermal contraction of the oceanic lithosphere [Collette 1974; Kumar & Gordon 2009]. We determine recent rates of plate motion relative to the spin axis using apparent polar wander (APW) paths [e.g. Torsvik et al. 2012] combined with known relative plate angular velocities [DeMets et al. 2010; Argus et al., 2011]. We estimate average strain rates for the fifty-six plates of MORVEL56 ranging from 10-11 to 10-3 Ma-1 (3 × 10-25 to 3 × 10-18 s-1). We estimate that the plate with the highest strain rates is the Australia plate, for which we find strain rates of 10-3 Ma-1 (3 × 10-17 s-1) due to plate motion over a nonspherical Earth. These indicated rates are consistent with Australia plate strain rates of 10-7 to 10-3 Ma-1 (3 × 10-21 to 3 × 10-17 s-1) previously inferred from seismic moment release [Burbridge 2004]. For the Pacific plate we predict much lower strain rates, with an average value, 10-6 Ma-1 (3 × 10-20 s-1), similar to the intraplate strain rate inferred from globally averaged intraplate seismic moment release. Our estimated strain rates only exceed those produced by thermal contraction in the oldest oceanic lithosphere [Mishra & Gordon 2016]. For this presentation, we will also determine past strain rates of the Pacific plate from movement over a nonspherical Earth through analysis of the Pacific plate APW path. We will compare the strain rate history to the chronology of the Hawaiian-Emperor chain and other Pacific plate tectonic events.

  18. Size-dependent Strain in Epitaxial (001) Gadolinium-doped Ceria Nanoislands

    SciTech Connect

    Solovyov, V.F.; Gibert, M.; Puig, T.; Obradors, X.

    2010-12-06

    We report size-dependent strain in epitaxial gadolinium doped ceria nanoislands, which was determined by synchrotron x-ray diffraction. Reciprocal space sections of symmetric, (004) and asymmetric, (224) reflections are approximated by a model assuming size-dependent strain of the islands using real-space size distribution obtained by atomic force microscopy. We show that the islands smaller than 40 nm are subjected to a high level of lateral tensile strain and normal compression. The lateral to normal strain ratio determined from the reciprocal map analysis suggests that lateral tension is the primary stress generator, possibly due to oxygen vacancy ordering on the island-substrate interface.

  19. Size-dependent Strain in Epitaxial (001)Gadolinium-doped Ceria Nanoislands

    SciTech Connect

    V Solovyov; M Gibert; T Puig; X Obradors

    2011-12-31

    We report size-dependent strain in epitaxial gadolinium doped ceria nanoislands, which was determined by synchrotron x-ray diffraction. Reciprocal space sections of symmetric, (004) and asymmetric, (224) reflections are approximated by a model assuming size-dependent strain of the islands using real-space size distribution obtained by atomic force microscopy. We show that the islands smaller than 40 nm are subjected to a high level of lateral tensile strain and normal compression. The lateral to normal strain ratio determined from the reciprocal map analysis suggests that lateral tension is the primary stress generator, possibly due to oxygen vacancy ordering on the island-substrate interface.

  20. Size-dependent strain in epitaxial (001) gadolinium-doped ceria nanoislands

    NASA Astrophysics Data System (ADS)

    Solovyov, Vyacheslav F.; Gibert, Marta; Puig, Teresa; Obradors, Xavier

    2010-12-01

    We report size-dependent strain in epitaxial gadolinium doped ceria nanoislands, which was determined by synchrotron x-ray diffraction. Reciprocal space sections of symmetric, (004) and asymmetric, (224) reflections are approximated by a model assuming size-dependent strain of the islands using real-space size distribution obtained by atomic force microscopy. We show that the islands smaller than 40 nm are subjected to a high level of lateral tensile strain and normal compression. The lateral to normal strain ratio determined from the reciprocal map analysis suggests that lateral tension is the primary stress generator, possibly due to oxygen vacancy ordering on the island-substrate interface.

  1. Texture memory and strain-texture mapping in a NiTi shape memory alloy

    SciTech Connect

    Ye, B.; Majumdar, B. S.; Dutta, I.

    2007-08-06

    The authors report on the near-reversible strain hysteresis during thermal cycling of a polycrystalline NiTi shape memory alloy at a constant stress that is below the yield strength of the martensite. In situ neutron diffraction experiments are used to demonstrate that the strain hysteresis occurs due to a texture memory effect, where the martensite develops a texture when it is cooled under load from the austenite phase and is thereafter ''remembered.'' Further, the authors quantitatively relate the texture to the strain by developing a calculated strain-texture map or pole figure for the martensite phase, and indicate its applicability in other martensitic transformations.

  2. Genetic engineering using fungal flavohemoglobin for constructing Pseudomonas stutzeri strain emitting less nitrous oxide.

    PubMed

    Takaya, Naoki; Shoun, Hirofumi

    2002-01-01

    Most denitrifiers produce the greenhouse gas nitrous oxide (N2O) due to insufficient anaerobiosis. We constructed a recombinant Pseudomonas stutzeri strain producing Fusarium oxysporum flavohemoglobin (fhb) and found that it emitted less N2O than the wild-type strain under aerobic and anaerobic conditions. The rate of N2 production was higher than in the wild-type strain after the depletion of oxygen in culture, suggesting that fhb enhanced the reduction of N2O to N2. The strain is the first recombinant bacterial denitrifier that reduces N2O production.

  3. Flow sensor using optical fiber strain gauges

    NASA Astrophysics Data System (ADS)

    Schmitt, Nicolas F.; Morgan, R.; Scully, Patricia J.; Lewis, Elfed; Chandy, Rekha

    1995-09-01

    A novel technique for the measurement of air flow velocity using an optical fiber sensor is reported. The sensor measures the deformation of a rubber cantilever beam when subjected to the stresses induced by drag forces in the presence of the airflow. Tests performed in a wind tunnel have indicated a sensitivity of 2 (mu) /(m/s). A qualitative model based on fiber mode propagation has been developed which allows the sensor to be characterized in terms of optical losses. A single 1 mm diameter polymer fiber is mounted on the rectangular section rubber cantilever (section 14 mm by 6 mm) and six grooves are etched into the fiber which extend into the core of the fiber. As the beam deviates the surface deforms (stretches or contracts) and the fiber is subjected to strain. As the strain is increased the grooves become wider and the amount of light transmitted through the fiber is reduced due to increased losses. The sensor described has all the advantages of optical fiber sensors including electrical noise immunity and intrinsic safety for use in hazardous environments. However, its simple construction, robustness, versatility for a number of different fluid applications, as well as relatively low cost make it attractive for use in a wide variety of measurement applications e.g. wind velocity measurement where airborne moisture or chemicals are present.

  4. When you pass your due date

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000515.htm When you pass your due date To use the sharing features ... link between you and your baby. As you pass your due date, the placenta may not work ...

  5. Characterization of strains of Corynebacterium bovis.

    PubMed Central

    Brooks, B W; Barnum, D A

    1984-01-01

    The biochemical and morphological characteristics of 104 strains of Corynebacterium bovis isolated from bovine milk samples and the C. bovis reference strain were found to be uniform. Valuable criteria for identification were presence of catalase and oxidase, production of acid from glucose and fructose and a requirement for enriched basal media. Six strains of human and three strains of bovine origin were found to be inconsistent with the reference strain. PMID:6722650

  6. Photoacoustic spectroscopy of Entamoeba histolytica strains

    NASA Astrophysics Data System (ADS)

    Acosta-Avalos, D.; Alvarado-Gil, J. J.; Silva, E. F.; Orozco, E.; de Menezes, L. F.; Vargas, H.

    2005-06-01

    Pathogenic and non-pathogenic strains of E. histolytica are studied using photoacoustic spectroscopy. It is shown that the pathogenic strain presents a spectrum similar to that of iron sulfur proteins. The non-pathogenic strain does not show any relevant absorption at the studied wavelength range. The differences observed between the optical absorption spectra of both strains opens the possibility of using photoacoustic spectroscopy as a reliable and simple technique to identify different types of E. histolytica strains.

  7. Engineering Clostridium Strain to Accept Unmethylated DNA

    PubMed Central

    Dong, Hongjun; Zhang, Yanping; Dai, Zongjie; Li, Yin

    2010-01-01

    It is difficult to genetically manipulate the medically and biotechnologically important genus Clostridium due to the existence of the restriction and modification (RM) systems. We identified and engineered the RM system of a model clostridial species, C. acetobutylicum, with the aim to allow the host to accept the unmethylated DNA efficiently. A gene CAC1502 putatively encoding the type II restriction endonuclease Cac824I was identified from the genome of C. acetobutylicum DSM1731, and disrupted using the ClosTron system based on group II intron insertion. The resulting strain SMB009 lost the type II restriction endonuclease activity, and can be transformed with unmethylated DNA as efficiently as with methylated DNA. The strategy reported here makes it easy to genetically modify the clostridial species using unmethylated DNA, which will help to advance the understanding of the clostridial physiology from the molecular level. PMID:20161730

  8. 29 CFR 4007.11 - Due dates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Due dates. (a) In general. For flat-rate and variable-rate premiums, the premium filing due date for... variable-rate premium payment must be made by the last day of the sixteenth full calendar month following... payment year. (ii) The due date for the variable-rate premium required by § 4006.3(b) of this chapter for...

  9. 29 CFR 4007.11 - Due dates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Due dates. (a) In general. For flat-rate and variable-rate premiums, the premium filing due date for... variable-rate premium payment must be made by the last day of the sixteenth full calendar month following... payment year. (ii) The due date for the variable-rate premium required by § 4006.3(b) of this chapter for...

  10. 29 CFR 4007.11 - Due dates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Due dates. (a) In general. For flat-rate and variable-rate premiums, the premium filing due date for... variable-rate premium payment must be made by the last day of the sixteenth full calendar month following... payment year. (ii) The due date for the variable-rate premium required by § 4006.3(b) of this chapter for...

  11. 29 CFR 4007.11 - Due dates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Due dates. (a) In general. In general: (1) The flat-rate and variable-rate premium filing due date is... payment year. (2) If the variable-rate premium paid by the premium filing due date is estimated as described in § 4007.8(g)(1)(ii), a reconciliation filing and any required variable-rate premium payment must...

  12. Ignition, Burning, and Extinction of a Strained Fuel Strip

    NASA Technical Reports Server (NTRS)

    Selerland, T.; Karagozian, A. R.

    1996-01-01

    Flame structure and ignition and extinction processes associated with a strained fuel strip are explored numerically using detailed transport and complex kinetics for a propane-air reaction. Ignition modes are identified that are similar to those predicted by one-step activation energy asymptotics, i.e., modes in which diffusion flames can ignite as independent or dependent interfaces, and modes in which single premixed or partially premixed flames ignite. These ignition modes are found to be dependent on critical combinations of strain rate, fuel strip thickness, and initial reactant temperatures. Extinction in this configuration is seen to occur due to fuel consumption by adjacent flames, although viscosity is seen to have the effect of delaying extinction by reducing the effective strain rate and velocity field experienced by the flames.

  13. Strain-based multicore fiber optic temperature sensor

    NASA Astrophysics Data System (ADS)

    Gökbulut, Belkıs.; Inci, Mehmet Naci

    2017-05-01

    A four-core optical fiber is introduced as a strain based temperature sensor to investigate the phase shift based on the temperature variations. An interferometric fringe pattern is obtained by the coherent waveguides from the four cores. A small piece of a four-core fiber is winded around a solid stainless steel cylinder to form a tight circular loop, which is exposed to a temperature change from 50 °C to 92 °C. Shear strain due to the expansion of the steel rod at this temperature interval causes an optical path length difference between the inner and outer core pairs, resulting a total phase shift of 20.4+/-0.29 rad, which is monitored with a CMOS camera. Using the phase changes, two dimensional shear strain is determined.

  14. Strain induced by functional oxides for silicon photonics applications

    NASA Astrophysics Data System (ADS)

    Marcaud, Guillaume; Matzen, Sylvia; Alonso-Ramos, Carlos; Le Roux, Xavier; Berciano, Mathias; Damas, Pedro; Maroutian, Thomas; Agnus, Guillaume; Largeau, Ludovic; Cassan, Eric; Marris-Morini, Delphine; Lecoeur, Philippe; Vivien, Laurent

    2017-05-01

    The purpose of this work is to explore an alternative approach for high speed and low power consumption optical modulation based on the use of the Pockels effect in silicon. Unfortunately, silicon is a centro-symmetric crystal leading to a vanishing of the second order nonlinear coefficient, i.e. no Pockels effect. To overcome this limitation, on possibility would be to break the crystal symmetry by straining the silicon lattice with the epitaxial growth of crystalline functional oxides. Indeed, the induced strain due to lattice parameter mismatch and the difference in the thermal expansion coefficients between oxides and silicon are strong and may induce strong strain into silicon. Furthermore, functional oxides can exhibit very interesting multiferroicity and piezoelectricity properties that pave the way to a new route to implement silicon photonic circuits with unprecedented functionalities.

  15. Remote Strain Sensing of CFRP Using Microwave Frequency Domain Reflectometry

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote measurement of strain occurring at the first ply of a composite fiber reinforced polymer (CFRP) structure using Radio Frequency (RF) Electro-Magnetic (EM) radiation. While microwave reflectometry has been used to detect disbonds in CFRP structures, its use in detecting strain has been limited. This work will present data demonstrating the measurement of the reactance changes due to loading conditions that are indicative of strain in a CFRP structure. In addition, the basic EM signature will be presented along with an analysis of temperature and humidity effects.

  16. Photo absorption enhancement in strained silicon nanowires: An atomistic study

    NASA Astrophysics Data System (ADS)

    Shiri, Daryoush; Golam Rabbani, M.; Qi, Jianqing; Buin, Andrei K.; Anantram, M. P.

    2017-07-01

    The absorption spectra of silicon nanowires are calculated using semi-empirical sp3d5s* tight binding and Density Functional Theory methods. The roles of diameter, wave function symmetry, strain, and crystallographic direction in determining the absorption are discussed. We find that compressive strain can change the band edge absorption by more than one order of magnitude due to the change in wave function symmetry. In addition, photon polarization with respect to the nanowire axis significantly alters the band edge absorption. Overall, the band edge absorption of [110] and [100] silicon nanowires can differ by as much as three orders of magnitude. We find that compared to bulk Silicon, a strained Silicon nanowire array can absorb infrared photons (1.1 eV) approximately one hundred times better. Finally, we compare a fully numerical and a computationally efficient semi-analytical method, and find that they both yield satisfactory values of the band edge absorption.

  17. Tensile stress-strain behavior of hybrid composite laminates

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.

    1983-01-01

    A study was made of the stress-strain response of several hybrid laminates, and the damage was correlated with nonlinear stress-strain response and ultimate strength. The fibers used in the laminates were graphite, S-glass, and Kevlar. Some laminates with graphite fibers had perforated Mylar film between plies, which lowered the interlaminar bond strength. The laminate configurations were chosen to be like those of buffer strips in large panels and fracture coupons. Longitudinal and transverse specimens were loaded in tension to failure. Some specimens were radiographed to reveal damage due to edge effects. Stress-strain response is discussed in terms of damage shown by the radiographs. Ultimate strengths are compared with simple failure criteria, one of which account for damage.

  18. Observations of crustal tide strains in the Elbrus area

    NASA Astrophysics Data System (ADS)

    Milyukov, V. K.; Kopaev, A. V.; Lagutkina, A. V.; Mironov, A. P.; Myasnikov, A. V.

    2007-11-01

    Results of observations of tidal strains of the crust in the tectonically active Elbrus area of the Northern Caucasus carried out with the use of the Baksan SSAI laser interferometer strainmeter over the period from 2003 through 2006 are presented. Harmonic analysis is performed with the help of the ETERNA software package. Statistically significant time variations in the amplitudes of the main tidal waves M 2 and O 1 are revealed. The influence of the topography on tidal strains in the Baksan gorge is estimated at 22% (an increase in the measured strain values). The reduced amplitude factors of the main diurnal ( O 1) and semidiurnal ( M 2) waves are underestimated. Numerical modeling of tidal anomalies produced by regional heterogeneous inclusions is performed in a 2-D approximation. The observed anomaly of the M 2 wave (12%) is shown to be due to the influence of the main magma-controlling fault associated with the deep magma source of the Elbrus dormant volcano.

  19. Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping

    DOE PAGES

    Pekin, Thomas C.; Gammer, Christoph; Ciston, Jim; ...

    2017-01-28

    Scanning nanobeam electron diffraction strain mapping is a technique by which the positions of diffracted disks sampled at the nanoscale over a crystalline sample can be used to reconstruct a strain map over a large area. However, it is important that the disk positions are measured accurately, as their positions relative to a reference are directly used to calculate strain. Here in this study, we compare several correlation methods using both simulated and experimental data in order to directly probe susceptibility to measurement error due to non-uniform diffracted disk illumination structure. We found that prefiltering the diffraction patterns with amore » Sobel filter before performing cross correlation or performing a square-root magnitude weighted phase correlation returned the best results when inner disk structure was present. Lastly, we have tested these methods both on simulated datasets, and experimental data from unstrained silicon as well as a twin grain boundary in 304 stainless steel.« less

  20. Construction of 2D lateral pseudoheterostructures by strain engineering

    NASA Astrophysics Data System (ADS)

    Feng, Haifeng; Zhuang, Jincheng; Slattery, Ashley D.; Wang, Liang; Xu, Zhongfei; Xu, Xun; Mitchell, David; Zheng, Tian; Li, Songlin; Higgins, Michael; Ren, Long; Sun, Ziqi; Xue Dou, Shi; Du, Yi; Hao, Weichang

    2017-06-01

    Two-dimensional (2D) lateral heterostructures host unconventional physical properties due to their controllable band-offset tuning and interfacial sensitive characteristic. The lattice mismatch results in the difficulties to construct the perfect atomic interface in such 2D lateral heterostructures, which in turn limits their desirable properties and performances in applications. In this work, strain-modulated 2D lateral pseudoheterogeneous structures are designed and realized in the single-component 2D BiOBr nanosheets by taking advantage of their strain-sensitive crystal and electronic structures. The pseudoheterogeneous interface without atomic mismatch can be feasibly modulated by local strain distribution, which exhibits similar local electronic band structure of corresponding heterostructures. Significant enhancement in charge separation at the pseudoheterostructure was demonstrated under visible light irradiation, which is given rise to the controllable electronic band alignment across the interface. The construction of the lateral pseudoheterostructure offers a feasible and promising way to build unprecedented 2D systems with exciting properties.

  1. Tensile stress-strain behavior of hybrid composite laminates

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.

    1983-01-01

    A study was made of the stress-strain response of several hybrid laminates, and the damage was correlated with nonlinear stress-strain response and ultimate strength. The fibers used in the laminates were graphite, S-glass, and Kevlar. Some laminates with graphite fibers had perforated Mylar film between plies, which lowered the interlaminar bond strength. The laminate configurations were chosen to be like those of buffer strips in large panels and fracture coupons. Longitudinal and transverse specimens were loaded in tension to failure. Some specimens were radiographed to reveal damage due to edge effects. Stress-strain response is discussed in terms of damage shown by the radiographs. Ultimate strengths are compared with simple failure criteria, one of which account for damage.

  2. Finite element stress analysis of polymers at high strains

    NASA Technical Reports Server (NTRS)

    Durand, M.; Jankovich, E.

    1973-01-01

    A numerical analysis is presented for the problem of a flat rectangular rubber membrane with a circular rigid inclusion undergoing high strains due to the action of an axial load. The neo-hookean constitutive equations are introduced into the general purpose TITUS program by means of equivalent hookean constants and initial strains. The convergence is achieved after a few iterations. The method is not limited to any specific program. The results are in good agreement with those of a company sponsored photoelastic stress analysis. The theoretical and experimental deformed shapes also agree very closely with one another. For high strains it is demonstrated that using the conventional HOOKE law the stress concentration factor obtained is unreliable in the case of rubberlike material.

  3. Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites

    PubMed Central

    Alamusi; Hu, Ning; Fukunaga, Hisao; Atobe, Satoshi; Liu, Yaolu; Li, Jinhua

    2011-01-01

    In recent years, nanocomposites based on various nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a realistic alternative to conventional smart materials, largely due to their superior electrical properties. Great interest has been generated in building highly sensitive strain sensors with these new nanocomposites. This article reviews the recent significant developments in the field of highly sensitive strain sensors made from CNT/polymer nanocomposites. We focus on the following two topics: electrical conductivity and piezoresistivity of CNT/polymer nanocomposites, and the relationship between them by considering the internal conductive network formed by CNTs, tunneling effect, aspect ratio and piezoresistivity of CNTs themselves, etc. Many recent experimental, theoretical and numerical studies in this field are described in detail to uncover the working mechanisms of this new type of strain sensors and to demonstrate some possible key factors for improving the sensor sensitivity. PMID:22346667

  4. Flexible and printable paper-based strain sensors for wearable and large-area green electronics.

    PubMed

    Liao, Xinqin; Zhang, Zheng; Liao, Qingliang; Liang, Qijie; Ou, Yang; Xu, Minxuan; Li, Minghua; Zhang, Guangjie; Zhang, Yue

    2016-07-14

    Paper-based (PB) green electronics is an emerging and potentially game-changing technology due to ease of recycling/disposal, the economics of manufacture and the applicability to flexible electronics. Herein, new-type printable PB strain sensors (PPBSSs) from graphite glue (graphite powder and methylcellulose) have been fabricated. The graphite glue is exposed to thermal annealing to produce surface micro/nano cracks, which are very sensitive to compressive or tensile strain. The devices exhibit a gauge factor of 804.9, response time of 19.6 ms and strain resolution of 0.038%, all performance indicators attaining and even surpassing most of the recently reported strain sensors. Due to the distinctive sensing properties, flexibility and robustness, the PPBSSs are suitable for monitoring of diverse conditions such as structural strain, vibrational motion, human muscular movements and visual control.

  5. Bacteriocins and novel bacterial strains.

    USDA-ARS?s Scientific Manuscript database

    Poultry is thought to be a significant source of Campylobacter in human disease. We evaluated anti-Campylobacter activity among 365 Bacillus and Paenibacillus isolates from poultry. One novel antagonistic Bacillus circulans and three Paenibacillus polymyxa strains were identified and further studi...

  6. Trials with a Strain Gauge.

    ERIC Educational Resources Information Center

    Auty, Geoff

    1996-01-01

    Describes an attempt to match the goals of the practical demonstration of the use of a strain gauge and the technical applications of science and responding to student questions in early trials, while keeping within the level of electronics in advanced physics. (Author/JRH)

  7. Chronic occupational repetitive strain injury.

    PubMed

    O'Neil, B A; Forsythe, M E; Stanish, W D

    2001-02-01

    To review common repetitive strain injuries (RSIs) that occur in the workplace, emphasizing diagnosis, treatment, and etiology of these conditions. A MEDLINE search from January 1966 to June 1999 focused on articles published since 1990 because RSIs are relatively new diagnoses. MeSH headings that were explored using the thesaurus included "cumulative trauma disorder," "overuse injury," and "repetitive strain injury." The search was limited to English articles only, and preference was given to randomized controlled trials. Repetitive strain injuries result from repeated stress to the body's soft tissue structures including muscles, tendons, and nerves. They often occur in patients who perform repetitive movements either in their jobs or in extracurricular activities. Common RSIs include tendon-related disorders, such as rotator cuff tendonitis, and peripheral nerve entrapment disorders, such as carpal tunnel syndrome. A careful history and physical examination often lead to the diagnosis, but newer imaging techniques, such as magnetic resonance imaging and ultrasound, can help in refractory cases. Conservative management with medication, physiotherapy, or bracing is the mainstay of treatment. Surgery is reserved for cases that do not respond to treatment. Repetitive strain injury is common; primary care physicians must establish a diagnosis and, more importantly, its relationship to occupation. Treatment can be offered by family physicians who refer to specialists for cases refractory to conservative management.

  8. Chronic occupational repetitive strain injury.

    PubMed Central

    O'Neil, B. A.; Forsythe, M. E.; Stanish, W. D.

    2001-01-01

    OBJECTIVE: To review common repetitive strain injuries (RSIs) that occur in the workplace, emphasizing diagnosis, treatment, and etiology of these conditions. QUALITY OF EVIDENCE: A MEDLINE search from January 1966 to June 1999 focused on articles published since 1990 because RSIs are relatively new diagnoses. MeSH headings that were explored using the thesaurus included "cumulative trauma disorder," "overuse injury," and "repetitive strain injury." The search was limited to English articles only, and preference was given to randomized controlled trials. MAIN MESSAGE: Repetitive strain injuries result from repeated stress to the body's soft tissue structures including muscles, tendons, and nerves. They often occur in patients who perform repetitive movements either in their jobs or in extracurricular activities. Common RSIs include tendon-related disorders, such as rotator cuff tendonitis, and peripheral nerve entrapment disorders, such as carpal tunnel syndrome. A careful history and physical examination often lead to the diagnosis, but newer imaging techniques, such as magnetic resonance imaging and ultrasound, can help in refractory cases. Conservative management with medication, physiotherapy, or bracing is the mainstay of treatment. Surgery is reserved for cases that do not respond to treatment. CONCLUSION: Repetitive strain injury is common; primary care physicians must establish a diagnosis and, more importantly, its relationship to occupation. Treatment can be offered by family physicians who refer to specialists for cases refractory to conservative management. PMID:11228032

  9. Characterization of nanoscale local lattice strains in silicon CMOS devices by TEM/CBED

    NASA Astrophysics Data System (ADS)

    Huang, Jiang

    Strained-Si technology has become one of the leading approaches to further improve the performance of the metal-oxide-semiconductor field effect transistors (MOSFETs) as traditional device scaling faces its physical limitation. In particular, mechanical strain induced in the Si channel region is used to increase the carrier mobility and the transistor drive current. To be able to understand and engineer the local lattice strain incorporated in the nanoscale device region, a strain measurement technique with high spatial resolution and high sensitivity is essential. Currently, transmission electron microscope (TEM)/convergent beam electron diffraction (CBED) is the only method to measure local changes in lattice parameters due to strain in advanced CMOS devices, because this technique provides nanometer spatial resolution and strain sensitivity on the order of 10-4. In this study, a novel experimental methodology is developed to measure the strain effectively and efficiently. Site-specific TEM samples are prepared by focused ion beam (FIB) with controlled thickness. Zone axes such as <230>, <340>, <560> and <910> are evaluated for obtaining CBED patterns. The specimen-tilt projection and dynamical effects related to the zone axis are discussed. CBED pattern simulation and matching procedures are explained to extract the strain tensors. The accuracy of the strain measurement depends on the clarity of the CBED pattern, which can be improved by using an energy-filter or sample cooling stage. The direct strain measurements are performed in sub-100 nm CMOS devices with either structure-induced or process-induced strains. It is found that the compressive strains are induced when the shallow trench structure (STI) is filled with isolation films. The compressive strains on the order of 10 -3 are observed under the gate region in a Si <110> PMOS transistor with a 37 nm gate length. One-dimensional quantitative strain-mapping is demonstrated using the nanometer probe. The

  10. Temperature affects the morphology and calcification of Emiliania huxleyi strains

    NASA Astrophysics Data System (ADS)

    Rosas-Navarro, Anaid; Langer, Gerald; Ziveri, Patrizia

    2016-05-01

    The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. The calcification response to temperature changes reported in the literature, however, is ambiguous. The two main sources of this ambiguity are putatively differences in experimental setup and strain specificity. In this study we therefore compare three strains isolated in the North Pacific under identical experimental conditions. Three strains of Emiliania huxleyi type A were grown under non-limiting nutrient and light conditions, at 10, 15, 20 and 25 °C. All three strains displayed similar growth rate versus temperature relationships, with an optimum at 20-25 °C. Elemental production (particulate inorganic carbon (PIC), particulate organic carbon (POC), total particulate nitrogen (TPN)), coccolith mass, coccolith size, and width of the tube element cycle were positively correlated with temperature over the sub-optimum to optimum temperature range. The correlation between PIC production and coccolith mass/size supports the notion that coccolith mass can be used as a proxy for PIC production in sediment samples. Increasing PIC production was significantly positively correlated with the percentage of incomplete coccoliths in one strain only. Generally, coccoliths were heavier when PIC production was higher. This shows that incompleteness of coccoliths is not due to time shortage at high PIC production. Sub-optimal growth temperatures lead to an increase in the percentage of malformed coccoliths in a strain-specific fashion. Since in total only six strains have been tested thus far, it is presently difficult to say whether sub-optimal temperature is an important factor causing malformations in the field. The most important parameter in biogeochemical terms, the PIC : POC ratio, shows a minimum at optimum growth temperature in all investigated strains. This clarifies the ambiguous picture featuring in the literature, i.e. discrepancies between PIC : POC

  11. Invasive infection in an acute myeloblastic leukemia patient due to triazole-resistant Candida tropicalis.

    PubMed

    de Carvalho Parahym, Ana Maria Rabelo; da Silva, Carolina Maria; Leão, Mariele Porto Carneiro; Macario, Michele Chianca; Filho, Gustavo Antônio da Trindade Meira Henriques; de Oliveira, Neiva Tinti; Neves, Rejane Pereira

    2011-11-01

    Non-albicans Candida species are being increasingly reported as causes of nosocomial fungal infections. For example, invasive candidiasis caused by C. tropicalis has been associated with hematologic malignancies. In this study, we report a fatal case of fungemia and a possible urinary and pulmonary infection in a leukemia patient that was due to a strain of C. tropicalis resistant to 2 triazole antifungals.

  12. Complete genome analysis of three live attenuated Rinderpest virus vaccine strains derived through serial passages in different culture systems.

    PubMed

    Jeoung, Hye-Young; Lee, Myoung-Heon; Yeh, Jung-Yong; Lim, Ji-Ae; Lim, Seong-In; Oem, Jae-Ku; Song, Jae-Young; Lee, Won-Ha; Park, Jong-Hwan; An, Dong-Jun

    2012-12-01

    The genomes of three South Korean Rinderpest virus vaccine strains (L72, LA77, and LA96) were analyzed in order to investigate their genetic variability. These three vaccine strains were all derived from the same virus strain origin (Fusan) through repeated passages in different culture systems. The full genome length of the three strains was 15,882 nucleotides, and the sequence similarity between the three South Korean RPV strains at the nucleotide level was 98.1 to 98.9%. The genetic distance between Nakamura III, L72, LA77, LA96, and LATC06 and the Kabete strain was greater than that between the Fusan and Kabete strains for the P, V, and C genes. The difference in pathogenicity among these strains might be due to the V gene, which has a positive (>1) selection ratio based on the analysis of synonymous (dS) and nonsynonymous (dN) substitution rates (dN/dS ratio [ω]).

  13. Detection of pap-, sfa- and afa-specific DNA sequences in Escherichia coli strains isolated from extraintestinal material.

    PubMed

    Bogyiová, E; Kmetová, M; Biros, E; Siegfried, L

    2002-01-01

    P-fimbriae, S-fimbriae and AFA-adhesins are virulence factors responsible for adherence of Escherichia coli strains to extraintestinal host-cell surface. Detection of pap-, sfa- and afa-specific sequences performed by PCR revealed 74% pap+, 65% sfa+, and 8.3% afa+ strains in a group of 84 extraintestinal E. coli isolates. Detection in a group of fecal strains showed 29% pap+, 21% sfa+ and 4% afa+ strains. pap together with sfa were found as the most frequent combination (56%) among extraintestinal isolates probably due to localization of pap- and sfa-operons on a common pathogenicity island. The occurrence of afa-specific sequence among 56 urine strains was 11%, although no afa+ strain was detected among 28 gynecological isolates. No strains with detected adhesin operons were found among twenty (24%) extraintestinal E. coli strains.

  14. Electronic origin of strain effects on solute stabilities in iron

    SciTech Connect

    Liu, Wei; Li, Xiangyan; Xu, Yichun E-mail: csliu@issp.ac.cn; Liu, C. S. E-mail: csliu@issp.ac.cn; Liang, Yunfeng

    2016-08-21

    Nonuniform strain fields might induce the segregation of alloying solutes and ultimately lead to the mechanical performance degradation of body-centered-cubic (bcc) Fe based steels serving in extreme environments, which is worthy of investigation. In this paper, two typical volume-conserving strains, shear strain (SS) and normal strain (NS), are proposed to investigate the strain effects on solute stabilities in bcc iron by first-principles calculations. For solutes in each transition metal group, the calculated substitution energy change due to SS exhibits a linear dependence on the valence d radius of the solutes, and the slope decreases in an exponential manner as a function of the absolute difference between the Watson's electronegativity of iron and the averaged value of each transition metal group. This regularity is attributed to the Pauli repulsion between the solutes and the nearest neighboring Fe ions modulated by the hybridization of valence d bands and concluded to be originated from the characteristics of valence d bonding between the transition-metal solutes and Fe ions under SS. For main-group and post transition-metal solutes, the considerable drop of substitution energy change due to NS is concluded to be originated from the low-energy side shift of the widened valence s and p bands of the solutes. Our results indicate that the stabilities of substitutional solutes in iron under volume-conserving strain directly correlate with the intrinsic properties of the alloying elements, such as the valence d radius and occupancy, having or not having valence s and p bands.

  15. Strain rate orientations near the Coso Geothermal Field

    NASA Astrophysics Data System (ADS)

    Ogasa, N. T.; Kaven, J. O.; Barbour, A. J.; von Huene, R.

    2016-12-01

    Many geothermal reservoirs derive their sustained capacity for heat exchange in large part due to continuous deformation of preexisting faults and fractures that permit permeability to be maintained. Similarly, enhanced geothermal systems rely on the creation of suitable permeability from fracture and faults networks to be viable. Stress measurements from boreholes or earthquake source mechanisms are commonly used to infer the tectonic conditions that drive deformation, but here we show that geodetic data can also be used. Specifically, we quantify variations in the horizontal strain rate tensor in the area surrounding the Coso Geothermal Field (CGF) by analyzing more than two decades of high accuracy differential GPS data from a network of 14 stations from the University of Nevada Reno Geodetic Laboratory. To handle offsets in the data, from equipment changes and coseismic deformation, we segment the data, perform a piecewise linear fit and take the average of each segment's strain rate to determine secular velocities at each station. With respect to North America, all stations tend to travel northwest at velocities ranging from 1 to 10 mm/yr. The nearest station to CGF shows anomalous motion compared to regional stations, which otherwise show a coherent increase in network velocity from the northeast to the southwest. We determine strain rates via linear approximation using GPS velocities in Cartesian reference frame due to the small area of our network. Principal strain rate components derived from this inversion show maximum extensional strain rates of 30 nanostrain/a occur at N87W with compressional strain rates of 37nanostrain/a at N3E. These results generally align with previous stress measurements from borehole breakouts, which indicate the least compressive horizontal principal stress is east-west oriented, and indicative of the basin and range tectonic setting. Our results suggest that the CGF represents an anomaly in the crustal deformation field, which

  16. Electronic origin of strain effects on solute stabilities in iron

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Li, Xiangyan; Xu, Yichun; Liu, C. S.; Liang, Yunfeng

    2016-08-01

    Nonuniform strain fields might induce the segregation of alloying solutes and ultimately lead to the mechanical performance degradation of body-centered-cubic (bcc) Fe based steels serving in extreme environments, which is worthy of investigation. In this paper, two typical volume-conserving strains, shear strain (SS) and normal strain (NS), are proposed to investigate the strain effects on solute stabilities in bcc iron by first-principles calculations. For solutes in each transition metal group, the calculated substitution energy change due to SS exhibits a linear dependence on the valence d radius of the solutes, and the slope decreases in an exponential manner as a function of the absolute difference between the Watson's electronegativity of iron and the averaged value of each transition metal group. This regularity is attributed to the Pauli repulsion between the solutes and the nearest neighboring Fe ions modulated by the hybridization of valence d bands and concluded to be originated from the characteristics of valence d bonding between the transition-metal solutes and Fe ions under SS. For main-group and post transition-metal solutes, the considerable drop of substitution energy change due to NS is concluded to be originated from the low-energy side shift of the widened valence s and p bands of the solutes. Our results indicate that the stabilities of substitutional solutes in iron under volume-conserving strain directly correlate with the intrinsic properties of the alloying elements, such as the valence d radius and occupancy, having or not having valence s and p bands.

  17. Mobilomics in Saccharomyces cerevisiae strains

    PubMed Central

    2013-01-01

    Background Mobile Genetic Elements (MGEs) are selfish DNA integrated in the genomes. Their detection is mainly based on consensus–like searches by scanning the investigated genome against the sequence of an already identified MGE. Mobilomics aims at discovering all the MGEs in a genome and understanding their dynamic behavior: The data for this kind of investigation can be provided by comparative genomics of closely related organisms. The amount of data thus involved requires a strong computational effort, which should be alleviated. Results Our approach proposes to exploit the high similarity among homologous chromosomes of different strains of the same species, following a progressive comparative genomics philosophy. We introduce a software tool based on our new fast algorithm, called regender, which is able to identify the conserved regions between chromosomes. Our case study is represented by a unique recently available dataset of 39 different strains of S.cerevisiae, which regender is able to compare in few minutes. By exploring the non–conserved regions, where MGEs are mainly retrotransposons called Tys, and marking the candidate Tys based on their length, we are able to locate a priori and automatically all the already known Tys and map all the putative Tys in all the strains. The remaining putative mobile elements (PMEs) emerging from this intra–specific comparison are sharp markers of inter–specific evolution: indeed, many events of non–conservation among different yeast strains correspond to PMEs. A clustering based on the presence/absence of the candidate Tys in the strains suggests an evolutionary interconnection that is very similar to classic phylogenetic trees based on SNPs analysis, even though it is computed without using phylogenetic information. Conclusions The case study indicates that the proposed methodology brings two major advantages: (a) it does not require any template sequence for the wanted MGEs and (b) it can be applied to

  18. Tunable electronic and optical properties of monolayer silicane under tensile strain: A many-body study

    SciTech Connect

    Shu, Huabing; Wang, Shudong; Li, Yunhai; Wang, Jinlan; Yip, Joanne

    2014-08-14

    The electronic structure and optical response of silicane to strain are investigated by employing first-principles calculations based on many-body perturbation theory. The bandgap can be efficiently engineered in a broad range and an indirect to direct bandgap transition is observed under a strain of 2.74%; the semiconducting silicane can even be turned into a metal under a very large strain. The transitions derive from the persistent downward shift of the lowest conduction band at the Γ-point upon an increasing strain. The quasi-particle bandgaps of silicane are sizable due to the weak dielectric screening and the low dimension; they are rapidly reduced as strain increases while the exciton bound energy is not that sensitive. Moreover, the optical absorption edge of the strained silicane significantly shifts towards a low photon energy region and falls into the visible light range, which might serve as a promising candidate for optoelectronic devices.

  19. Lattice strains and polarized luminescence in homoepitaxial growth of a-plane ZnO

    NASA Astrophysics Data System (ADS)

    Matsui, Hiroaki; Tabata, Hitoshi

    2012-12-01

    In-plane lattice strains in a-plane zinc oxide (ZnO) homoepitaxial layers were selectively introduced by changing substrate type and growth conditions. Strain-free layers were observed when using a Crystec ZnO substrate, which resulted in atomically flat surfaces with nano-facets consisting of the m-plane (10-10) at atomic scale. In contrast, ZnO layers on Goodwill ZnO substrates possessed in-plane lattice strains due to generation of basal-plane stacking faults. The degree of lattice strains was systematically changed by the oxygen pressure, which clarified the close correlation between photoluminescence (PL) polarization and lattice strains. The polarization ratio of PL enhanced with the lattice strains.

  20. [Antibiotic resistance of Shigella strains isolated in Cádiz (author's transl)].

    PubMed

    García Martos, P; Marín Casanova, P; García Herruzo, J; Fernández Gutiérrez del Alamo, C

    1980-12-15

    The incidence of shigellosis at the Residencia Sanitaria Fernando Zamacola (Cáciz, Spain) and the antibiotic sensitivity of 94 strains of Shigella sonnei and 40 strains of Shigella flexneri, isolated during the year 1979, has been studied taking into account the present status of strain resistance to the major antibiotics. Three epidemic bouts of shigellosis were detected: one in february by Shigella sonnei (16 cases), and two others in august-september and november due to Shigella flexneri (43 and 29 cases). Children 2 to 5 years old had the highest incidence of Shigella infection. Almost all strains isolated were resistant to the sulphonamides (99.77%). Ampicillin and chloramphenicol had little efficacy against Shigella flexneri (95.00 and 92.50% resistance). The percent resistance of Shigella sonnei strains to phosphomycin was elevated (44.69%). All strains studied were sensitive to colimycin and showed little resistance to the combination trimethoprim-sulfamethoxazol (16.42%).

  1. Temperature calibration of fiber optic strain sensor for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Kesavan, K.; Ravisankar, K.; Narayanan, T.; Parivallal, S.; Sreeshylam, P.; Aravindan, P. K.

    2003-10-01

    Major civil engineering structures, such as bridges constitute a significant portion of national wealth, and the cost of maintenance of these structures is very high. Structural health monitoring is a cost effective method of maintenance, and it predicts the structural integrity by early detection of degradation of health of the structure. One of the best ways of structural health monitoring is by the use of fiber optic strain sensors, which are eminently suitable for long term monitoring. However, the apparent strain due to variations in temperature at different measurement times may be very large and has to be accounted for. The apparent strain calibration curves of fiber optic strain sensors bonded to three structural materials, namely, steel, aluminum and concrete are obtained from laboratory experiments which can be used for correcting the temperature induced apparent strain from the total strain measured in the structures.

  2. Strain-Controlled Low-Cycle Fatigue Properties of a Newly Developed Extruded Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Begum, S.; Chen, D. L.; Xu, S.; Luo, Alan A.

    2008-12-01

    To reduce fuel consumption and greenhouse gas emissions, magnesium alloys are being considered for automotive and aerospace applications due to their low density, high specific strength and stiffness, and other attractive traits. Structural applications of magnesium components require low-cycle fatigue (LCF) behavior, since cyclic loading or thermal stresses are often encountered. The aim of this article was to study the cyclic deformation characteristics and evaluate LCF behavior of a recently developed AM30 extruded magnesium alloy. This alloy exhibited a strong cyclic hardening characteristic, with a cyclic strain-hardening exponent of 0.33 compared to the monotonic strain-hardening exponent of 0.15. With increasing total strain amplitude, both plastic strain amplitude and mean stress increased and fatigue life decreased. A significant difference between the tensile and compressive yield stresses occurred, leading to asymmetric hysteresis loops at high strain amplitudes due to twinning in compression and subsequent detwinning in tension. A noticeable change in the modulus was observed due to the pseudoelastic behavior of this alloy. The Coffin-Manson law and Basquin equation could be used to describe the fatigue life. At low strain ratios the alloy showed strong cyclic hardening, which became less significant as the strain ratio increased. The lower the strain ratio, the lower the stress amplitude and mean stress but the higher the plastic strain amplitude, corresponding to a longer fatigue life. Fatigue life also increased with increasing strain rate. Fatigue crack initiation occurred from the specimen surface and crack propagation was mainly characterized by striation-like features. Multiple initiation sites at the specimen surface were observed at higher strain amplitudes.

  3. Flexible and printable paper-based strain sensors for wearable and large-area green electronics

    NASA Astrophysics Data System (ADS)

    Liao, Xinqin; Zhang, Zheng; Liao, Qingliang; Liang, Qijie; Ou, Yang; Xu, Minxuan; Li, Minghua; Zhang, Guangjie; Zhang, Yue

    2016-06-01

    Paper-based (PB) green electronics is an emerging and potentially game-changing technology due to ease of recycling/disposal, the economics of manufacture and the applicability to flexible electronics. Herein, new-type printable PB strain sensors (PPBSSs) from graphite glue (graphite powder and methylcellulose) have been fabricated. The graphite glue is exposed to thermal annealing to produce surface micro/nano cracks, which are very sensitive to compressive or tensile strain. The devices exhibit a gauge factor of 804.9, response time of 19.6 ms and strain resolution of 0.038%, all performance indicators attaining and even surpassing most of the recently reported strain sensors. Due to the distinctive sensing properties, flexibility and robustness, the PPBSSs are suitable for monitoring of diverse conditions such as structural strain, vibrational motion, human muscular movements and visual control.Paper-based (PB) green electronics is an emerging and potentially game-changing technology due to ease of recycling/disposal, the economics of manufacture and the applicability to flexible electronics. Herein, new-type printable PB strain sensors (PPBSSs) from graphite glue (graphite powder and methylcellulose) have been fabricated. The graphite glue is exposed to thermal annealing to produce surface micro/nano cracks, which are very sensitive to compressive or tensile strain. The devices exhibit a gauge factor of 804.9, response time of 19.6 ms and strain resolution of 0.038%, all performance indicators attaining and even surpassing most of the recently reported strain sensors. Due to the distinctive sensing properties, flexibility and robustness, the PPBSSs are suitable for monitoring of diverse conditions such as structural strain, vibrational motion, human muscular movements and visual control. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02172g

  4. Strain effects on thermal conductivity of nanostructured silicon by Raman piezothermography

    NASA Astrophysics Data System (ADS)

    Murphy, Kathryn Fay

    A fundamental problem facing the rational design of materials is the independent control of electrical and thermal properties, with implications for a wide range of applications including thermoelectrics, solar thermal power generation, and thermal logic. One strategy for controlling transport involves manipulating the length scales which affect it. For instance, Si thermal conductivity may be reduced with relatively little change in electrical properties when the confining dimension (e.g., nanowire diameter) is small enough that heat carriers are preferentially scattered at free surfaces. However, tailoring properties by geometry or chemistry alone does not allow for on-demand modification, precluding applications which require responsive behavior such as thermal transistors, thermoelectric modules which adapt to their environmental temperature, or switchable thermal barriers. One means of tuning transport is elastic strain, which has long been exploited to improve carrier mobility in electronic devices. Uniform strain is predicted to affect thermal conductivity primarily via changes in heat capacity and phonon velocity, and crystalline defects such as vacancies or dislocations---which induce large strain gradients---should lower thermal conductivity by decreasing the phonon mean free path. Nanowires are ideal for the study of strain and defect effects due to the availability of a range of elastic strain an order of magnitude larger than in bulk and due to their small volumes. However, experimental measurements of strain-mediated thermal conductivity in nanowires have been limited due to the complexity of simultaneously applying and measuring stress or strain, heating, and measuring temperature. In this dissertation, we measure strain effects on thermal conductivity using a novel non-contact approach which we name Raman piezothermography. We apply a uniaxial load to individual Si nanowires, Si thin films, and Si micromeshes under a confocal mu-Raman microscope and

  5. Evolution of plastic anisotropy for high-strain-rate computations

    SciTech Connect

    Schiferl, S.K.; Maudlin, P.J.

    1994-12-01

    A model for anisotropic material strength, and for changes in the anisotropy due to plastic strain, is described. This model has been developed for use in high-rate, explicit, Lagrangian multidimensional continuum-mechanics codes. The model handles anisotropies in single-phase materials, in particular the anisotropies due to crystallographic texture--preferred orientations of the single-crystal grains. Textural anisotropies, and the changes in these anisotropies, depend overwhelmingly no the crystal structure of the material and on the deformation history. The changes, particularly for a complex deformations, are not amenable to simple analytical forms. To handle this problem, the material model described here includes a texture code, or micromechanical calculation, coupled to a continuum code. The texture code updates grain orientations as a function of tensor plastic strain, and calculates the yield strength in different directions. A yield function is fitted to these yield points. For each computational cell in the continuum simulation, the texture code tracks a particular set of grain orientations. The orientations will change due to the tensor strain history, and the yield function will change accordingly. Hence, the continuum code supplies a tensor strain to the texture code, and the texture code supplies an updated yield function to the continuum code. Since significant texture changes require relatively large strains--typically, a few percent or more--the texture code is not called very often, and the increase in computer time is not excessive. The model was implemented, using a finite-element continuum code and a texture code specialized for hexagonal-close-packed crystal structures. The results for several uniaxial stress problems and an explosive-forming problem are shown.

  6. Material mechanical characterization method for multiple strains and strain rates

    SciTech Connect

    Erdmand, III, Donald L.; Kunc, Vlastimil; Simunovic, Srdjan; Wang, Yanli

    2016-01-19

    A specimen for measuring a material under multiple strains and strain rates. The specimen including a body having first and second ends and a gage region disposed between the first and second ends, wherein the body has a central, longitudinal axis passing through the first and second ends. The gage region includes a first gage section and a second gage section, wherein the first gage section defines a first cross-sectional area that is defined by a first plane that extends through the first gage section and is perpendicular to the central, longitudinal axis. The second gage section defines a second cross-sectional area that is defined by a second plane that extends through the second gage section and is perpendicular to the central, longitudinal axis and wherein the first cross-sectional area is different in size than the second cross-sectional area.

  7. High Strain, Strain Rate Behavior of PTFE/Al/W

    NASA Astrophysics Data System (ADS)

    Addiss, John; Cai, Jing; Walley, Steve; Proud, William; Nesterenko, Vitali

    2007-06-01

    Conventional dropweight technique was modified to accommodate low amplitude signals from low strength, cold isostatically pressed energetic ``heavy'' composites of polytetrafluoroethylene (PTFE)/AL/W. The fracture strength, strain and post-critical behaviour of fractured samples were measured for samples of different porosity and W grain size (the masses of each component being the same in each case). Unusual phenomenon of significantly higher strength (55 MPa) of porous composites (density 5.9 g/cc) with small tungsten particles (1 micron) in comparison with strength (32 MPa) of dense composites (7.1 g/cc) with larger tungsten particles (20 micron) was observed. This is attributed to force chains created by a network of small tungsten particles. Interrupted tests at the different level of strains revealed mechanism of fracture under dynamic compression.

  8. A NEW STRAIN OF TRANSMISSIBLE LEUCEMIA IN FOWLS (STRAIN H).

    PubMed

    Ellermann, V

    1921-03-31

    1. A new strain of fowl leucosis has been transmitted through twelve generations of fowls. 2. An increase in virulence was observed during its passage. This was shown in a shortening of the interval between inoculation and death. The increase in virulence does not affect the number of successful inoculations, which remains approximately constant in from 20 to 40 per cent of the birds employed. 3. As with former strains, the disease manifests itself in various forms; i.e., myeloid and intravascular lymphoid types. A single lymphatic case was observed. 4. In several intravascular cases a diminution in the hemolytic power of the serum was established. This phenomenon was absent in a number of myeloid cases. 5. Active immunization cannot be produced by means of the subcutaneous injection of virulent material. 6. The finding of previous experiments that the virus is filterable has been confirmed. 7. The inoculation of human leucemic material into fowls gave negative results.

  9. Continuum elasticity modeling of nanostructure evolution in strained film epitaxy

    NASA Astrophysics Data System (ADS)

    Gamage, Champika G.

    The formation of surface nanostructures such as islands or quantum dots during strained film epitaxy has attracted great interest in recent years. The underlying mechanisms have been attributed to the occurrence of morphological instabilities of the strained films, for which the coupling between film-substrate material properties and growth conditions play a major role. Morphological properties of an epitaxially grown film and the self-organization process of coherent strained islands are analyzed via the development of a continuum elasticity model based on the 2nd order perturbation method. Effects of wetting stress due to film-substrate interactions have been incorporated in the resulting nonlinear dynamic equation governing the film morphological profile. We study the formation and evolution of surface strained islands or quantum dots for different film/substrate misfit strains, via analyzing the time-dependent behavior of the structure factor for surface heights, its various moments, and the surface roughness. Three regimes of island array evolution have been identified, including a film instability regime at early stage, a slow power-law-type coarsening at intermediate time, and the crossover to a saturated state, with detailed behavior dependent on misfit strains but not qualitatively on finite system sizes. It is found to be controlled by the strength of film-substrate wetting interaction which would constrain the valley-to-peak mass transport and hence the growth of island height, and also determined by the effect of elastic interaction between surface islands and the high-order strain energy of individual islands at late evolution stage. The results are compared to previous experimental and theoretical efforts on quantum dots coarsening and saturation. We also study the formation of these nanostructures on a nonplanar patterned substrate. The properties of islands formed are highly affected and controlled by the periodicity and amplitude of the pre

  10. Pathogenic Potential of Saccharomyces Strains Isolated from Dietary Supplements

    PubMed Central

    Monteoliva, Lucía; Querol, Amparo; Molina, María; Fernández-Espinar, María T.

    2014-01-01

    Saccharomyces cerevisiae plays a beneficial role in health because of its intrinsic nutritional value and bio-functional properties, which is why it is also used as a dietary supplement. However, the perception that S. cerevisiae is harmless has changed due to an increasing number of infections caused by this yeast. Given this scenario, we have tested whether viable strains contained in dietary supplements displayed virulence-associated phenotypic traits that could contribute to virulence in humans. We have also performed an in vivo study of the pathogenic potential of these strains using a murine model of systemic infection by intravenous inoculation. A total of 5 strains were isolated from 22 commercial products and tested. Results highlight one strain (D14) in terms of burden levels in brains and kidneys and ability to cause death, whereas the other two strains (D2 and D4) were considered of low virulence. Our results suggest a strong relationship between some of the virulence-associated phenotypic traits (ability to grow at 39°C and pseudohyphal growth) and the in vivo virulence in a mouse model of intravenous inoculation for isolates under study. The isolate displaying greatest virulence (D14) was evaluated in an experimental murine model of gastrointestinal infection with immunosuppression and disruption of mucosal integrity, which are common risk factors for developing infection in humans, and results were compared with an avirulent strain (D23). We showed that D14 was able to spread to mesenteric nodes and distant organs under these conditions. Given the widespread consumption of dietary supplements, we recommend only safe strains be used. PMID:24879417

  11. Pre-Peak and Post-Peak Rock Strain Characteristics During Uniaxial Compression by 3D Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-07-01

    A non-contact optical method for strain measurement applying three-dimensional digital image correlation (3D DIC) in uniaxial compression is presented. A series of monotonic uniaxial compression tests under quasi-static loading conditions on Hawkesbury sandstone specimens were conducted. A prescribed constant lateral-strain rate to control the applied axial load in a closed-loop system allowed capturing the complete stress-strain behaviour of the rock, i.e. the pre-peak and post-peak stress-strain regimes. 3D DIC uses two digital cameras to acquire images of the undeformed and deformed shape of an object to perform image analysis and provides deformation and motion measurements. Observations showed that 3D DIC provides strains free from bedding error in contrast to strains from LVDT. Erroneous measurements due to the compliance of the compressive machine are also eliminated. Furthermore, by 3D DIC technique relatively large strains developed in the post-peak regime, in particular within localised zones, difficult to capture by bonded strain gauges, can be measured in a straight forward manner. Field of strains and eventual strain localisation in the rock surface were analysed by 3D DIC method, coupled with the respective stress levels in the rock. Field strain development in the rock samples, both in axial and shear strain domains suggested that strain localisation takes place progressively and develops at a lower rate in pre-peak regime. It is accelerated, otherwise, in post-peak regime associated with the increasing rate of strength degradation. The results show that a major failure plane, due to strain localisation, becomes noticeable only long after the peak stress took place. In addition, post-peak stress-strain behaviour was observed to be either in a form of localised strain in a shearing zone or inelastic unloading outside of the shearing zone.

  12. Strain glass state as the boundary of two phase transitions

    PubMed Central

    Zhou, Zhijian; Cui, Jian; Ren, Xiaobing

    2015-01-01

    A strain glass state was found to be located between B2-B19’ (cubic to monoclinic) phase transition and B2-R (cubic to rhombohedral) phase transition in Ti49Ni51 alloys after aging process. After a short time aging, strong strain glass transition was observed, because the size of the precipitates is small, which means the strain field induced by the precipitates is isotropic and point-defect-like, and the distribution of the precipitates is random. After a long time aging, the average size of the precipitates increases. The strong strain field induced by the precipitates around them forces the symmetry of the matrix materials to conform to the symmetry of the crystalline structure of the precipitates, which results in the new phase transition. The experiment shows that there exists no well-defined boundary in the evolution from the strain glass transition to the new phase transition. Due to its generality, this glass mediated phase transition divergence scheme can be applied to other proper material systems to induce a more important new phase transition path, which can be useful in the field of phase transition engineering. PMID:26307500

  13. Time-dependent strains and stresses in a pumpkin balloon

    NASA Technical Reports Server (NTRS)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2006-01-01

    This paper presents a study of pumpkin-shaped superpressure balloons, consisting of gores made from a thin polymeric film attached to high stiffness, meridional tendons. This type of design is being used for the NASA ULDB balloons. The gore film shows considerable time-dependent stress relaxation, whereas the behaviour of the tendons is essentially time-independent. Upon inflation and pressurization, the "instantaneous", i.e. linear-elastic strain and stress distribution in the film show significantly higher values in the meridional direction. However, over time, and due to the biaxial visco-elastic stress relaxation of the the material, the hoop strains increase and the meridional stresses decrease, whereas the remaining strain and stress components remain substantially unchanged. These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission, both in terms of the material performance and the overall stability of the shape of the balloon. An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter, 48 gore pumpkin balloon is presented. The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature. The results show good correlation with a numerical study, using the ABAQUS finite-element package, that includes a widely used model of the visco-elastic response of the gore material:

  14. Variation of Shrinkage Strain within the Depth of Concrete Beams

    PubMed Central

    Jeong, Jong-Hyun; Park, Yeong-Seong; Lee, Yong-Hak

    2015-01-01

    The variation of shrinkage strain within beam depth was examined through four series of time-dependent laboratory experiments on unreinforced concrete beam specimens. Two types of beam specimens, horizontally cast and vertically cast, were tested; shrinkage variation was observed in the horizontally cast specimens. This indicated that the shrinkage variation within the beam depth was due to water bleeding and tamping during the placement of the fresh concrete. Shrinkage strains were measured within the beam depth by two types of strain gages, surface-attached and embedded. The shrinkage strain distribution within the beam depth showed a consistent tendency for the two types of gages. The test beams were cut into four sections after completion of the test, and the cutting planes were divided into four equal sub-areas to measure the aggregate concentration for each sub-area of the cutting plane. The aggregate concentration increased towards the bottom of the beam. The shrinkage strain distribution was estimated by Hobbs’ equation, which accounts for the change of aggregate volume concentration. PMID:28793677

  15. Tuning nanoparticle structure and surface strain for catalysis optimization.

    PubMed

    Zhang, Sen; Zhang, Xu; Jiang, Guangming; Zhu, Huiyuan; Guo, Shaojun; Su, Dong; Lu, Gang; Sun, Shouheng

    2014-05-28

    Controlling nanoparticle (NP) surface strain, i.e. compression (or stretch) of surface atoms, is an important approach to tune NP surface chemistry and to optimize NP catalysis for chemical reactions. Here we show that surface Pt strain in the core/shell FePt/Pt NPs with Pt in three atomic layers can be rationally tuned via core structural transition from cubic solid solution [denoted as face centered cubic (fcc)] structure to tetragonal intermetallic [denoted as face centered tetragonal (fct)] structure. The high activity observed from the fct-FePt/Pt NPs for oxygen reduction reaction (ORR) is due to the release of the overcompressed Pt strain by the fct-FePt as suggested by quantum mechanics-molecular mechanics (QM-MM) simulations. The Pt strain effect on ORR can be further optimized when Fe in FePt is partially replaced by Cu. As a result, the fct-FeCuPt/Pt NPs become the most efficient catalyst for ORR and are nearly 10 times more active in specific activity than the commercial Pt catalyst. This structure-induced surface strain control opens up a new path to tune and optimize NP catalysis for ORR and many other chemical reactions.

  16. Time-dependent strains and stresses in a pumpkin balloon

    NASA Astrophysics Data System (ADS)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    This paper presents a study of pumpkin-shaped superpressure balloons consisting of gores made from a thin polymeric film attached to high stiffness meridional tendons This type of design is being used for the NASA ULDB balloons The gore film shows considerable time-dependent stress relaxation whereas the behaviour of the tendons is essentially time-independent Upon inflation and pressurization the instantaneous i e linear-elastic strain and stress distributions in the film show significantly higher values in the meridional direction However over time and due to the biaxial visco-elastic stress relaxation of the the gore material the em hoop strains increase and the em meridional stresses decrease whereas the em remaining strain and stress components remain substantially unchanged These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission both in terms of the material performance and the overall stability of the shape of the balloon An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter 48 gore pumpkin balloon is presented The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature The results show good correlation with a numerical study using the ABAQUS finite-element package that includes a widely used model of

  17. Guiding Spin Spirals by Local Uniaxial Strain Relief

    NASA Astrophysics Data System (ADS)

    Hsu, Pin-Jui; Finco, Aurore; Schmidt, Lorenz; Kubetzka, André; von Bergmann, Kirsten; Wiesendanger, Roland

    2016-01-01

    We report on the influence of uniaxial strain relief on the spin spiral state in the Fe double layer grown on Ir(111). Scanning tunneling microscopy (STM) measurements reveal areas with reconstruction lines resulting from uniaxial strain relief due to the lattice mismatch of Fe and Ir atoms, as well as pseudomorphic strained areas. Magnetic field-dependent spin-polarized STM measurements of the reconstructed Fe double layer reveal cycloidal spin spirals with a period on the nm scale. Globally, the spin spiral wave fronts are guided along symmetry-equivalent [11 2 ¯ ] crystallographic directions of the fcc(111) substrate. On an atomic scale the spin spiral propagation direction is linked to the [001] direction of the bcc(110)-like Fe, leading to a zigzag shaped wave front. The isotropically strained pseudomorphic areas also exhibit a preferred magnetic periodicity on the nm scale but no long-range order. We find that already for local strain relief with a single set of reconstruction lines a strict guiding of the spin spiral is realized.

  18. Thermoelectric transport in strained Si and Si/Ge heterostructures.

    PubMed

    Hinsche, N F; Mertig, I; Zahn, P

    2012-07-11

    The anisotropic thermoelectric transport properties of bulk silicon strained in the [111]-direction were studied by detailed first-principles calculations focusing on a possible enhancement of the power factor. Electron and hole doping were examined in a broad doping and temperature range. At low temperature and low doping an enhancement of the power factor was obtained for compressive and tensile strain in the electron-doped case and for compressive strain in the hole-doped case. For the thermoelectrically more important high-temperature and high-doping regime a slight enhancement of the power factor was only found under small compressive strain with the power factor overall being robust against applied strain. To extend our findings the anisotropic thermoelectric transport of a [111]-oriented Si/Ge superlattice was investigated. Here, the cross-plane power factor under hole doping was drastically suppressed due to quantum-well effects, while under electron doping an enhanced power factor was found. For this, we state figures of merit of ZT = 0.2 and 1.4 at T = 300 and 900 K for the electron-doped [111]-oriented Si/Ge superlattice. All results are discussed in terms of band structure features.

  19. In-plane strain capability of cellulose EAPap material

    NASA Astrophysics Data System (ADS)

    Kim, Jaehwan; Jung, Woochul; Kang, Yukeun; Jang, Sang-Dong

    2006-03-01

    Electro-Active Paper (EAPap) has been interested in due to its merits in terms of lightweight, dry condition, large displacement output, low actuation voltage, low power consumption and biodegradability. EAPap actuator has been made with cellulose material. Cellulose fibers are dissolved into a solution and extruded in a sheet form, and thin gold electrodes are made on it. This out-of-plane bending deformation is useful for achieving flapping wings, micro-insect robots, and smart wall papers. On the other hand, in-plane strains, such as extension and contraction of EAPap materials are also promising for artificial muscle applications since the Young's modulus of EAPap materials is large. Therefore, we intended to investigate the in-plane strain of EAPap materials in the presence of electric fields. The EAPap samples preparation and the in-plane strain measurement are explained. The test results are shown in terms of electric field, frequency and the orientation of the samples. The power consumption and the strain energy of EAPap samples are discussed. Although there are still unknown facts in EAPap materials, this in-plane strain may be useful for artificial muscle applications.

  20. Highly tensile-strained Ge/InAlAs nanocomposites

    PubMed Central

    Jung, Daehwan; Faucher, Joseph; Mukherjee, Samik; Akey, Austin; Ironside, Daniel J.; Cabral, Matthew; Sang, Xiahan; Lebeau, James; Bank, Seth R.; Buonassisi, Tonio; Moutanabbir, Oussama; Lee, Minjoo Larry

    2017-01-01

    Self-assembled nanocomposites have been extensively investigated due to the novel properties that can emerge when multiple material phases are combined. Growth of epitaxial nanocomposites using lattice-mismatched constituents also enables strain-engineering, which can be used to further enhance material properties. Here, we report self-assembled growth of highly tensile-strained Ge/In0.52Al0.48As (InAlAs) nanocomposites by using spontaneous phase separation. Transmission electron microscopy shows a high density of single-crystalline germanium nanostructures coherently embedded in InAlAs without extended defects, and Raman spectroscopy reveals a 3.8% biaxial tensile strain in the germanium nanostructures. We also show that the strain in the germanium nanostructures can be tuned to 5.3% by altering the lattice constant of the matrix material, illustrating the versatility of epitaxial nanocomposites for strain engineering. Photoluminescence and electroluminescence results are then discussed to illustrate the potential for realizing devices based on this nanocomposite material. PMID:28128282