Sample records for macrocyclic ligand synthesis

  1. Synthesis of novel macrocycles carrying pincer-type ligands as future candidates for potential applications in size-selective, stereochemical and recyclable catalysts

    NASA Astrophysics Data System (ADS)

    Khan, Burhan; Shah, Muhammad Raza; Rabnawaz, Muhammad

    2018-03-01

    Macrocycles with ultra dense functionalities are very useful but are difficult to synthesize. In this study, we report six novel macrocycles bearing a pincer ligand alone or a combination of pincer-calixarenes, and pincer-fluorene moieties. Click chemistry was utilized to synthesize the desired macrocycles in good yields. These macrocycles were fully characterized using mass spectrometry (EI-MS, ESI-MS, and MALDI-TOF MS), and NMR spectroscopy. These macrocycles are under investigations as size-selective and recyclable catalysts for various chemical transformations.

  2. Macrocyclic drugs and synthetic methodologies toward macrocycles

    PubMed Central

    Yu, Xufen; Sun, Dianqing

    2015-01-01

    Macrocyclic scaffolds are commonly found in bioactive natural products and pharmaceutical molecules. So far, a large number of macrocyclic natural products have been isolated and synthesized. The construction of macrocycles is generally considered as a crucial and challenging step in the synthesis of macrocyclic natural products. Over the last several decades, numerous efforts have been undertaken toward the synthesis of complex naturally occurring macrocycles and great progresses have been made to advance the field of total synthesis. The commonly used synthetic methodologies toward macrocyclization include macrolactonization, macrolactamization, transition metal-catalyzed cross coupling, ring-closing metathesis, and click reaction, among others. Selected recent examples of macrocyclic synthesis of natural products and druglike macrocycles with significant biological relevance are highlighted in each class. The primary goal of this review is to summarize currently used macrocyclic drugs, highlight the therapeutic potential of this underexplored drug class and outline the general synthetic methodologies for the synthesis of macrocycles. PMID:23708234

  3. Polymers containing nickel(II) complexes of Goedken's macrocycle: optimized synthesis and electrochemical characterization.

    PubMed

    Paquette, Joseph A; Sauvé, Ethan R; Gilroy, Joe B

    2015-04-01

    The synthesis and characterization of a new class of nickel-containing polymers is described. The optimized copolymerization of alkyne-bearing nickel(II) complexes of Goedken's macrocycle (4,11-dihydro-5,7,12,14-tetramethyldibenzo[b,i][1,4,8,11]tetraazacyclotetradecine) and brominated 9,9-dihexylfluorene produced polymers with potential application as functional redox-active materials. The title polymers exhibit electrochemically reversible, ligand-centered oxidation events at 0.24 and 0.73 V versus the ferrocene/ferrocenium redox couple. They also display exceptional thermal stability and interesting absorption properties due to the presence of the macrocyclic nickel(II) complexes and π-conjugated units incorporated in their backbones. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Direct comparison of linear and macrocyclic compound libraries as a source of protein ligands.

    PubMed

    Gao, Yu; Kodadek, Thomas

    2015-03-09

    There has been much discussion of the potential desirability of macrocyclic molecules for the development of tool compounds and drug leads. But there is little experimental data comparing otherwise equivalent macrocyclic and linear compound libraries as a source of protein ligands. In this Letter, we probe this point in the context of peptoid libraries. Bead-displayed libraries of macrocyclic and linear peptoids containing four variable positions and 0-2 fixed residues, to vary the ring size, were screened against streptavidin and the affinity of every hit for the target was measured. The data show that macrocyclization is advantageous, but only when the ring contains 17 atoms, not 20 or 23 atoms. This technology will be useful for conducting direct comparisons between many different types of chemical libraries to determine their relative utility as a source of protein ligands.

  5. A Multidimensional Diversity‐Oriented Synthesis Strategy for Structurally Diverse and Complex Macrocycles

    PubMed Central

    Nie, Feilin; Kunciw, Dominique L.; Wilcke, David; Stokes, Jamie E.; Galloway, Warren R. J. D.; Bartlett, Sean; Sore, Hannah F.

    2016-01-01

    Abstract Synthetic macrocycles are an attractive area in drug discovery. However, their use has been hindered by a lack of versatile platforms for the generation of structurally (and thus shape) diverse macrocycle libraries. Herein, we describe a new concept in library synthesis, termed multidimensional diversity‐oriented synthesis, and its application towards macrocycles. This enabled the step‐efficient generation of a library of 45 novel, structurally diverse, and highly‐functionalized macrocycles based around a broad range of scaffolds and incorporating a wide variety of biologically relevant structural motifs. The synthesis strategy exploited the diverse reactivity of aza‐ylides and imines, and featured eight different macrocyclization methods, two of which were novel. Computational analyses reveal a broad coverage of molecular shape space by the library and provides insight into how the various diversity‐generating steps of the synthesis strategy impact on molecular shape. PMID:27484830

  6. Aza-macrocyclic Triphenylamine Ligands for G-Quadruplex Recognition.

    PubMed

    García-España, Enrique Victor; Pont, Isabel; González-García, Jorge; Inclán, Mario; Reynolds, Matthew; Delgado-Pinar, Estefanía; Albelda, M Teresa; Vilar, Ramon

    2018-05-16

    A new series of triphenylamine-based ligands with one (TPA1PY), two (TPA2PY) or three pending aza-macrocycle(s) (TPA3PY) have been synthesised and studied by means of pH-metric titrations, UV/Vis spectroscopy and fluorescence experiments. The affinity of these ligands for G-quadruplex (G4) DNA and its selectivity over duplex DNA were investigated by FRET melting assays, fluorimetric titrations and circular dichroism (CD) spectroscopy. Interestingly, the interaction of the bi- and specially the tri-branched ligand with G4 leads to a very intense red-shifted fluorescence emission band which may be associated with intermolecular aggregation between the molecule and the DNA. This light-up effect allows the application of the ligands as fluorescence probes to selectivity detect G4. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Design, synthesis, X-ray studies, and biological evaluation of novel macrocyclic HIV-1 protease inhibitors involving the P1'-P2' ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Arun K.; Sean Fyvie, W.; Brindisi, Margherita

    Design, synthesis, and evaluation of a new class of HIV-1 protease inhibitors containing diverse flexible macrocyclic P1'-P2' tethers are reported. Inhibitor 5a with a pyrrolidinone-derived macrocycle exhibited favorable enzyme inhibitory and antiviral activity (Ki = 13.2 nM, IC50 = 22 nM). Further incorporation of heteroatoms in the macrocyclic skeleton provided macrocyclic inhibitors 5m and 5o. These compounds showed excellent HIV-1 protease inhibitory (Ki = 62 pM and 14 pM, respectively) and antiviral activity (IC50 = 5.3 nM and 2.0 nM, respectively). Inhibitor 5o also remained highly potent against a DRV-resistant HIV-1 variant.

  8. Synthesis of N₄ donor macrocyclic Schiff base ligands and their Ru (II), Pd (II), Pt (II) metal complexes for biological studies and catalytic oxidation of didanosine in pharmaceuticals.

    PubMed

    Ravi Krishna, E; Muralidhar Reddy, P; Sarangapani, M; Hanmanthu, G; Geeta, B; Shoba Rani, K; Ravinder, V

    2012-11-01

    A series of tetraaza (N(4) donor) macrocyclic ligands (L(1)-L(4)) were derived from the condensation of o-phthalaldehyde (OPA) with some substituted aromatic amines/azide, and subsequently used to synthesize the metal complexes of Ru(II), Pd(II) and Pt(II). The structures of macrocyclic ligands and their metal complexes were characterized by elemental analyses, IR, (1)H &(13)C NMR, mass and electronic spectroscopy, thermal, magnetic and conductance measurements. Both the ligands and their complexes were screened for their antibacterial activities against Gram positive and Gram negative bacteria by MIC method. Besides, these macrocyclic complexes were investigated as catalysts in the oxidation of pharmaceutical drug didanosine. The oxidized products were further treated with sulphanilic acid to develop the colored products to determine by spectrophotometrically. The current oxidation method is an environmentally friendly, simple to set-up, requires short reaction time, produces high yields and does not require co-oxidant. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Strained Cyclophane Macrocycles: Impact of Progressive Ring Size Reduction on Synthesis and Structure

    PubMed Central

    Bogdan, Andrew R.; Jerome, Steven V.; Houk, K. N.; James, Keith

    2012-01-01

    The synthesis, X-ray crystal structures, and calculated strain energies are reported for a homologous series of 11- to 14-membered drug-like cyclophane macrocycles, representing an unusual region of chemical space that can be difficult to access synthetically. The ratio of macrocycle to dimer, generated via a copper catalyzed azide-alkyne cycloaddition macrocyclization in flow at elevated temperature, could be rationalized in terms of the strain energy in the macrocyclic product. The progressive increase in strain resulting from reduction in macrocycle ring size, or the introduction of additional conformational constraints, results in marked deviations from typical geometries. These strained cyclophane macrocyclic systems provide access to spatial orientations of functionality that would not be readily available in unstrained or acyclic analogs. The most strained system prepared represents the first report of an 11-membered cyclophane containing a 1,4-disubstituted 1,2,3-triazole ring, and establishes a limit to the ring strain that can be generated using this macrocycle synthesis methodology. PMID:22133103

  10. Ru(II) complexes of N 4 and N 2O 2 macrocyclic Schiff base ligands: Their antibacterial and antifungal studies

    NASA Astrophysics Data System (ADS)

    Shanker, Kanne; Rohini, Rondla; Ravinder, Vadde; Reddy, P. Muralidhar; Ho, Yen-Peng

    2009-07-01

    Reactions of [RuCl 2(DMSO) 4] with some of the biologically active macrocyclic Schiff base ligands containing N 4 and N 2O 2 donor group yielded a number of stable complexes, effecting complete displacement of DMSO groups from the complex. The interaction of tetradentate ligand with [RuCl 2(DMSO) 4] gave neutral complexes of the type [RuCl 2(L)] [where L = tetradentate macrocyclic ligand]. These complexes were characterized by elemental, IR, 1H, 13C NMR, mass, electronic, thermal, molar conductance and magnetic susceptibility measurements. An octahedral geometry has been proposed for all complexes. All the macrocycles and macrocyclic Ru(II) complexes along with existing antibacterial drugs were screened for antibacterial activity against Gram +ve ( Bacillus subtilis, Staphylococcus aureus) and Gram -ve ( Escherichia coli, Klebsiella pneumonia) bacteria. All these compounds were found to be more active when compared to streptomycin and ampicillin. The representative macrocyclic Schiff bases and their complexes were also tested in vitro to evaluate their activity against fungi, namely, Aspergillus flavus and Fusarium species.

  11. Synthesis, spectral, thermal and antimicrobial studies of transition metal complexes of 14-membered tetraaza[N4] macrocyclic ligand

    NASA Astrophysics Data System (ADS)

    Shankarwar, Sunil G.; Nagolkar, Bhagwat B.; Shelke, Vinod A.; Chondhekar, Trimbak K.

    2015-06-01

    A series of metal complexes of Mn(II), Co(II), Ni(II), Cu(II), have been synthesized with newly synthesized biologically active macrocyclic ligand. The ligand was synthesized by condensation of β-diketone 1-(4-chlorophenyl)-3-(2-hydroxyphenyl)propane-1,3-dione and o-phenylene diamine. All the complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV-Vis spectroscopy and mass spectroscopy. From the analytical data, stoichiometry of the complexes was found to be 1:2 (metal:ligand). Thermal behavior (TG/DTA) and kinetic parameters suggest more ordered activated state in complex formation. All the complexes are of high spin type and six coordinated. On the basis of IR, electronic spectral studies and magnetic behavior, an octahedral geometry has been assigned to these complexes. The antibacterial and antifungal activities of the ligand and its metal complexes, has been screened in vitro against Staphylococcus aureus, Escherichia coli and Aspergillus niger, Trichoderma respectively.

  12. Photochemistry of copper(II) complexes with macrocyclic amine ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muralidharan, S.; Ferraudi, G.

    1981-07-01

    The photochemical properties of Cu(dl-Me/sub 6/(14)aneN/sub 4/)/sup 2 +/ and Cu(rac-Me/sub 6/(14)aneN/sub 4/)/sup 2 +/ in the presence and absence of axially coordinated ligands have been investigated by continuous and flash irradiations. Flash photolysis of the complexes in deaerated aqueous solutions revealed the presence of copper-ligand radical complexes with closed- and open-cycle ligands. Flash photolysis of methanolic solutions of the complexes, in the presence of halides and pseudohalides, shows Cu(III) macrocyclic intermediates. The experimental observations can be explained in terms of two primary photoprocesses with origins in distinctive charge transfer to metal states. These states have been assigned as aminomore » to copper(II) charge-transfer state and acido to copper(II) charge-transfer state.« less

  13. Potent Inhibitors of the Hepatitis C Virus NS3 Protease: Design and Synthesis of Macrocyclic Substrate-Based [beta]-Strand Mimics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudreau, Nathalie; Brochu, Christian; Cameron, Dale R.

    2008-06-30

    The virally encoded NS3 protease is essential to the life cycle of the hepatitis C virus (HCV), an important human pathogen causing chronic hepatitis, cirrhosis of the liver, and hepatocellular carcinoma. The design and synthesis of 15-membered ring {beta}-strand mimics which are capable of inhibiting the interactions between the HCV NS3 protease enzyme and its polyprotein substrate will be described. The binding interactions between a macrocyclic ligand and the enzyme were explored by NMR and molecular dynamics, and a model of the ligand/enzyme complex was developed.

  14. Preparation of macrocycles with high carbon content: Toward the synthesis of endohedral metal fullerene complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, T.C.; Rubin, Y.

    1995-12-31

    This research is focused on the synthesis of macrocycles with high carbon content for the purpose of total synthesis of fullerenes or fullerene-like structures with the ultimate goal of obtaining endohedral metal complexes of fullerene C{sub 60}. Toward this goal, the authors have utilized organometallic chemistry to synthesize novel cyclophanes such as 1 which are constituted primarily of acetylenic units. The authors believe such macrocycles may be C{sub 60} precursors since studies have shown that acetylenic macrocycles form fullerenes in the gas phase. The authors have synthesized macrocycle 1 using a highly convergent route from commercially available starting materials. Themore » macrocycle 1 is produced from copper (I) catalyzed coupling of 2 which is obtained in turn by the coupling of the copper acetylide 3 with 4. The suitability of macrocycles such as 1 for fullerene precursors is currently under investigation.« less

  15. Synthesis, characterization and anti-microbial activity of a novel macrocyclic ligand derived from the reaction of 2,6-pyridinedicarboxylic acid with homopiperazine and its Co(II), Ni(II), Cu(II), and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Soleimani, Esmaiel

    2011-05-01

    The preparation of a novel macrocyclic ligand ( 1), N,N'-diethylhomopiperazinyl,2,6-pyridinedicarboxylate and its Co(II), Ni(II), Cu(II), and Zn(II) complexes are described. The ligand was prepared in EtOH from the reaction of dipotassium salt of 2,6-pyridinedicarboxylic acid with 1,2-dibromoethane in the presence of homopiperazine. Reaction of macrocyclic ligand ( 1) in EtOH with CoCl 2.6H 2O, NiCl 2.6H 2O, CuCl 2.2H 2O, and ZnCl 2·2H 2O yielded the complexes with the general formula [M(L)Cl 2] {where M = Co(II) ( 2), Ni(II) ( 3), Cu(II) ( 4), Zn ( 5), respectively}. The analysis of IR, 1H and 13C NMR spectral data of macrocyclic ligand ( 1) and its Zn(II) complex ( 5) together with their molar conductivity values, and the magnetic moments of the complexes suggest that the macrocyclic ligand ( 1) is bonded to metal(II) ions through two oxygen atoms of ester moiety and the two nitrogen atoms of homopiperazine ring. The electronic spectral data of these complexes in DMSO are in good agreement with the octahedral coordination of M(II) ions. The ligand field parameters for these complexes, i.e. splitting energy and Racah parameter were calculated to be 14,945 and 673 cm -1 for the Co(II) ( 2), 16,260 and 774 cm -1 for the Ni(II) ( 3) complexes respectively. The spliting energy of 17,262 cm -1 was obtained for the Cu(II) complex ( 4).

  16. On-Surface Synthesis and Characterization of Honeycombene Oligophenylene Macrocycles.

    PubMed

    Chen, Min; Shang, Jian; Wang, Yongfeng; Wu, Kai; Kuttner, Julian; Hilt, Gerhard; Hieringer, Wolfgang; Gottfried, J Michael

    2017-01-24

    We report the on-surface formation and characterization of [30]-honeycombene, a cyclotriacontaphenylene, which consists of 30 phenyl rings (C 180 H 120 ) and has a diameter of 4.0 nm. This shape-persistent, conjugated, and unsubstituted hexagonal hydrocarbon macrocycle was obtained by solvent-free synthesis on a silver (111) single-crystal surface, making solubility-enhancing alkyl side groups unnecessary. Side products include strained macrocycles with square, pentagonal, and heptagonal shape. The molecules were characterized by scanning tunneling microscopy and density functional theory (DFT) calculations. On the Ag(111) surface, the macrocycles act as molecular quantum corrals and lead to the confinement of surface-state electrons inside the central cavity. The energy of the confined surface state correlates with the size of the macrocycle and is well described by a particle-in-the-box model. Tunneling spectroscopy suggests conjugation within the planar rings and reveals influences of self-assembly on the electronic structure. While the adsorbed molecules appear to be approximately planar, the free molecules have nonplanar conformation, according to DFT.

  17. One-Bead-Two-Compound Thioether Bridged Macrocyclic γ-AApeptide Screening Library against EphA2.

    PubMed

    Shi, Yan; Challa, Sridevi; Sang, Peng; She, Fengyu; Li, Chunpu; Gray, Geoffrey M; Nimmagadda, Alekhya; Teng, Peng; Odom, Timothy; Wang, Yan; van der Vaart, Arjan; Li, Qi; Cai, Jianfeng

    2017-11-22

    Identification of molecular ligands that recognize peptides or proteins is significant but poses a fundamental challenge in chemical biology and biomedical sciences. Development of cyclic peptidomimetic library is scarce, and thus discovery of cyclic peptidomimetic ligands for protein targets is rare. Herein we report the unprecedented one-bead-two-compound (OBTC) combinatorial library based on a novel class of the macrocyclic peptidomimetics γ-AApeptides. In the library, we utilized the coding peptide tags synthesized with Dde-protected α-amino acids, which were orthogonal to solid phase synthesis of γ-AApeptides. Employing the thioether linkage, the desired macrocyclic γ-AApeptides were found to be effective for ligand identification. Screening the library against the receptor tyrosine kinase EphA2 led to the discovery of one lead compound that tightly bound to EphA2 (K d = 81 nM) and potently antagonized EphA2-mediated signaling. This new approach of macrocyclic peptidomimetic library may lead to a novel platform for biomacromolecular surface recognition and function modulation.

  18. Zn and Fe complexes containing a redox active macrocyclic biquinazoline ligand.

    PubMed

    Banerjee, Priyabrata; Company, Anna; Weyhermüller, Thomas; Bill, Eckhard; Hess, Corinna R

    2009-04-06

    A series of iron and zinc complexes has been synthesized, coordinated by the macrocyclic biquinazoline ligand, 2-4:6-8-bis(3,3,4,4-tetramethyldihydropyrrolo)-10-15-(2,2'-biquinazolino)-[15]-1,3,5,8,10,14-hexaene-1,3,7,9,11,14-N(6) (Mabiq). The Mabiq ligand consists of a bipyrimidine moiety and two dihydropyrrole units. The electronic structures of the metal-Mabiq complexes have been characterized using spectroscopic and density-functional theory (DFT) computational methods. The parent zinc complex exhibits a ligand-centered reduction to generate the metal-coordinated Mabiq radical dianion, establishing the redox non-innocence of this ligand. Iron-Mabiq complexes have been isolated in three oxidation states. This redox series includes low-spin ferric and low-spin ferrous species, as well as an intermediate-spin Fe(II) compound. In the latter complex, the iron ion is antiferromagnetically coupled to a Mabiq-centered pi-radical. The results demonstrate the rich redox chemistry and electronic properties of metal complexes coordinated by the Mabiq ligand.

  19. A diversity-oriented synthesis strategy enabling the combinatorial-type variation of macrocyclic peptidomimetic scaffolds.

    PubMed

    Isidro-Llobet, Albert; Hadje Georgiou, Kathy; Galloway, Warren R J D; Giacomini, Elisa; Hansen, Mette R; Méndez-Abt, Gabriela; Tan, Yaw Sing; Carro, Laura; Sore, Hannah F; Spring, David R

    2015-04-21

    Macrocyclic peptidomimetics are associated with a broad range of biological activities. However, despite such potentially valuable properties, the macrocyclic peptidomimetic structural class is generally considered as being poorly explored within drug discovery. This has been attributed to the lack of general methods for producing collections of macrocyclic peptidomimetics with high levels of structural, and thus shape, diversity. In particular, there is a lack of scaffold diversity in current macrocyclic peptidomimetic libraries; indeed, the efficient construction of diverse molecular scaffolds presents a formidable general challenge to the synthetic chemist. Herein we describe a new, advanced strategy for the diversity-oriented synthesis (DOS) of macrocyclic peptidomimetics that enables the combinatorial variation of molecular scaffolds (core macrocyclic ring architectures). The generality and robustness of this DOS strategy is demonstrated by the step-efficient synthesis of a structurally diverse library of over 200 macrocyclic peptidomimetic compounds, each based around a distinct molecular scaffold and isolated in milligram quantities, from readily available building-blocks. To the best of our knowledge this represents an unprecedented level of scaffold diversity in a synthetically derived library of macrocyclic peptidomimetics. Cheminformatic analysis indicated that the library compounds access regions of chemical space that are distinct from those addressed by top-selling brand-name drugs and macrocyclic natural products, illustrating the value of our DOS approach to sample regions of chemical space underexploited in current drug discovery efforts. An analysis of three-dimensional molecular shapes illustrated that the DOS library has a relatively high level of shape diversity.

  20. Spectroscopic and electrochemical investigation with coordination stabilities: Mononuclear manganese(II) complexes derived from different constituents macrocyclic ligands

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Chnadra, S.; Mishra, Parashuram

    2007-12-01

    Since the manganese(II) complexes are known as having a high degree of stability, some of them may be able to play a very important role in biosystems. We prepared manganese(II) complexes with different chromospheres containing macrocyclic ligands bearing N, S and O like functional donor atoms in order to obtain different models of compounds. So these new manganese(II) complexes were derived from macrocyclic ligands by chelating them with metal ions. Thus, two macrocyclic ligands, L 1: 2,4-diphenyl-1,5-diaza-8,12-dioxo-6,7:13,14-dibenzocyclo tetradeca-1,4-diene[N 2O 2]ane; L 2: 2,4,9,11-tetraphenyl-6,13-dimethyl-1,5,8,12-traazacyclotertr-adeca-1,4,8,11-tetraene[N 4]ane; and two more different form first one viz.—L 3: 1,7-diaza-4-monothia-10,14-dioxo-8,9:15,16-cyclohexadecane[N 2O 2S]ane and L 4: 4,13-diaoxa-1,7,10,16-hexazacyclooctadecane[N 4O 2]ane were prepared and their capacity to retain the manganese(II) ion in solid as well as aqueous solution was determined from various physiochemical techniques viz: characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, IR, electronic, ESR spectral studies and cyclic voltammetric measurements.

  1. Synthesis of 5-iodo-1,2,3-triazole-containing macrocycles using copper flow reactor technology.

    PubMed

    Bogdan, Andrew R; James, Keith

    2011-08-05

    A new macrocyclization strategy to synthesize 12- to 31-membered 5-iodo-1,2,3-triazole-containing macrocycles is described. The macrocycles have been generated using a simple and efficient copper-catalyzed cycloaddition in flow under environmentally friendly conditions. This methodology also permits the facile, regioselective synthesis of 1,4,5-trisubstituted-1,2,3-triazole-containing macrocyles using palladium-catalyzed cross-coupling reactions. © 2011 American Chemical Society

  2. Design and synthesis of binucleating macrocyclic clefts derived from Schiff-base calixpyrroles.

    PubMed

    Givaja, Gonzalo; Volpe, Manuel; Leeland, James W; Edwards, Michael A; Young, Thomas K; Darby, S Barnie; Reid, Stuart D; Blake, Alexander J; Wilson, Claire; Wolowska, Joanna; McInnes, Eric J L; Schröder, Martin; Love, Jason B

    2007-01-01

    The syntheses, characterisation and complexation reactions of a series of binucleating Schiff-base calixpyrrole macrocycles are described. The acid-templated [2+2] condensations between meso-disubstituted diformyldipyrromethanes and o-phenylenediamines generate the Schiff-base pyrrolic macrocycles H(4)L(1) to H(4)L(6) upon basic workup. The single-crystal X-ray structures of both H(4)L(3).2 EtOH and H(4)L(6).H2O confirm that [2+2] cyclisation has occurred, with either EtOH or H2O hydrogen-bonded within the macrocyclic cleft. A series of complexation reactions generate the dipalladium [Pd2(L)] (L=L(1) to L(5)), dinickel [Ni2(L(1))] and dicopper [Cu2(L)] (L=L(1) to L(3)) complexes. All of these complexes have been structurally characterised in the solid state and are found to adopt wedged structures that are enforced by the rigidity of the aryl backbone to give a cleft reminiscent of the structures of Pacman porphyrins. The binuclear nickel complexes [Ni2(mu-OMe)2Cl2(HOMe)2(H(4)L(1))] and [Ni2(mu-OH)2Cl2(HOMe)(H(4)L(5))] have also been prepared, although in these cases the solid-state structures show that the macrocyclic ligand remains protonated at the pyrrolic nitrogen atoms, and the Ni(II) cations are therefore co-ordinated by the imine nitrogen atoms only to give an open conformation for the complex. The dicopper complex [Cu2(L(3))] was crystallised in the presence of pyridine to form the adduct [Cu2(py)(L(3))], in which, in the solid state, the pyridine ligand is bound within the binuclear molecular cleft. Reaction between H(4)L(1) and [Mn(thf){N(SiMe(3))2}2] results in clean formation of the dimanganese complex [Mn2(L(1))], which, upon crystallisation, formed the mixed-valent complex [Mn2(mu-OH)(L(1))] in which the hydroxo ligand bridges the metal centres within the molecular cleft.

  3. Concerted ligand exchange and the roles of counter anions in the reversible structural switching of crystalline peptide metallo-macrocycles.

    PubMed

    Miyake, Ryosuke; Shionoya, Mitsuhiko

    2014-06-02

    To understand reversible structural switching in crystalline materials, we studied the mechanism of reversible crystal-to-crystal transformation of a tetranuclear Ni(II) macrocycle consisting of artificial β-dipeptides. On the basis of detailed structural analyses and thermodynamic measurements made in a comparison of pseudo-isostructural crystals (NO3 and BF4 salts), we herein discuss how ligand-exchange reactions take place in the crystal due to changes in water content and temperature. Observations of the structural transformation of NO3 salt indicated that a pseudo crystalline phase transformation takes place through concerted ligand-exchange reactions at the four Ni(II) centers of the macrocycle with hydrogen bond switching. A mechanism for this ligand exchange was supported by IR spectroscopy. Thermodynamic measurements suggested that the favorable compensation relationship of the enthalpy changes due to water uptake and structural changes are keys to the reversible structural transformation. On the basis of a comparison with the pseudo-isostructural crystals, it is apparent that the crystal packing structure and the types of counter anions are important factors for facilitating reversible ligand exchange with single crystallinity.

  4. Spectroscopic, cyclic voltammetric and biological studies of transition metal complexes with mixed nitrogen-sulphur (NS) donor macrocyclic ligand derived from thiosemicarbazide

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gupta, Lokesh Kumar; Sangeetika

    2005-11-01

    The complexation of new mixed thia-aza-oxa macrocycle viz., 2,12-dithio-5,9,14,18-tetraoxo-7,16-dithia-1,3,4,10,11,13-hexaazacyclooctadecane containing thiosemicarba-zone unit with a series of transition metals Co(II), Ni(II) and Cu(II) has been investigated, by different spectroscopic techniques. The structural features of the ligand have been studied by EI-mass, 1H NMR and IR spectral techniques. Elemental analyses, magnetic moment susceptibility, molar conductance, IR, electronic, and EPR spectral studies characterized the complexes. Electronic absorption and IR spectra of the complexes indicate octahedral geometry for chloro, nitrato, thiocyanato or acetato complexes. The dimeric and neutral nature of the sulphato complexes are confirmed from magnetic susceptibility and low conductance values. Electronic spectra suggests square-planar geometry for all sulphato complexes. The redox behaviour was studied by cyclic voltammetry, show metal-centered reduction processes for all complexes. The complexes of copper show both oxidation and reduction process. The redox potentials depend on the conformation of central atom in the macrocyclic complexes. Newly synthesized macrocyclic ligand and its transition metal complexes show markedly growth inhibitory activity against pathogenic bacterias and plant pathogenic fungi under study. Most of the complexes have higher activity than that of the metal free ligand.

  5. A General Synthetic Approach for Designing Epitope Targeted Macrocyclic Peptide Ligands.

    PubMed

    Das, Samir; Nag, Arundhati; Liang, JingXin; Bunck, David N; Umeda, Aiko; Farrow, Blake; Coppock, Matthew B; Sarkes, Deborah A; Finch, Amethist S; Agnew, Heather D; Pitram, Suresh; Lai, Bert; Yu, Mary Beth; Museth, A Katrine; Deyle, Kaycie M; Lepe, Bianca; Rodriguez-Rivera, Frances P; McCarthy, Amy; Alvarez-Villalonga, Belen; Chen, Ann; Heath, John; Stratis-Cullum, Dimitra N; Heath, James R

    2015-11-02

    We describe a general synthetic strategy for developing high-affinity peptide binders against specific epitopes of challenging protein biomarkers. The epitope of interest is synthesized as a polypeptide, with a detection biotin tag and a strategically placed azide (or alkyne) presenting amino acid. This synthetic epitope (SynEp) is incubated with a library of complementary alkyne or azide presenting peptides. Library elements that bind the SynEp in the correct orientation undergo the Huisgen cycloaddition, and are covalently linked to the SynEp. Hit peptides are tested against the full-length protein to identify the best binder. We describe development of epitope-targeted linear or macrocycle peptide ligands against 12 different diagnostic or therapeutic analytes. The general epitope targeting capability for these low molecular weight synthetic ligands enables a range of therapeutic and diagnostic applications, similar to those of monoclonal antibodies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Macrocyclic β-Iodoallenolate Intermediate is Key: Synthesis of the ABD Core of Phomactin A

    PubMed Central

    Ciesielski, Jennifer; Cariou, Kevin

    2012-01-01

    An enantioselective strategy for the synthesis of phomactin natural products is described. The Lewis acid-triggered cyclization of a β-iodoallenolate embedded in a 12-membered macrocycle was used to obtain a highly functionalized bicyclo[9.3.1]pentadecane in good yield and high diastereoselectivity. This iodoenone contains the substituents of the AD ring system of the phomactin family of natural products, appropriate for further functionalization. Synthesis of the oxadecalin core of phomactin A from the AD iodoenone intermediate was achieved. In this unusual strategy, rings A and B are both fashioned within a macrocyclic precursor. PMID:22853449

  7. Total synthesis of complestatin: development of a Pd(0)-mediated indole annulation for macrocyclization.

    PubMed

    Shimamura, Hiroyuki; Breazzano, Steven P; Garfunkle, Joie; Kimball, F Scott; Trzupek, John D; Boger, Dale L

    2010-06-09

    Full details of the initial development and continued examination of a powerful intramolecular palladium(0)-mediated indole annulation for macrocyclization closure of the strained 16-membered biaryl ring system found in complestatin (1, chloropeptin II) and the definition of factors impacting its intrinsic atropodiastereoselectivity are described. Its examination and use in an alternative, second-generation total synthesis of complestatin are detailed in which the order of the macrocyclization reactions was reversed from our first-generation total synthesis. In this approach and with the ABCD biaryl ether ring system in place, the key Larock cyclization was conducted with substrate 36 (containing four phenols, five secondary amides, one carbamate, and four labile aryl chlorides) and provided the product 37 (56%) exclusively as a single atropisomer (>20:1, detection limits) possessing the natural (R)-configuration. In this instance, the complexity of the substrate and the reverse macrocyclization order did not diminish the atropodiastereoselectivity; rather, it provided an improvement over the 4:1 selectivity that was observed with the analogous substrate used to provide the isolated DEF ring system in our first-generation approach. Just as significant, the atroposelectivity represents a complete reversal of the diasteroselectivity observed with analogous macrocyclizations conducted using a Suzuki biaryl coupling.

  8. Synthesis and Biological Evaluation of Macrocyclized Betulin Derivatives as a Novel Class of Anti-HIV-1 Maturation Inhibitors.

    PubMed

    Tang, Jun; Jones, Stacey A; Jeffery, Jerry L; Miranda, Sonia R; Galardi, Cristin M; Irlbeck, David M; Brown, Kevin W; McDanal, Charlene B; Han, Nianhe; Gao, Daxin; Wu, Yongyong; Shen, Bin; Liu, Chunyu; Xi, Caiming; Yang, Heping; Li, Rui; Yu, Yajun; Sun, Yufei; Jin, Zhimin; Wang, Erjuan; Johns, Brian A

    2014-01-01

    A macrocycle provides diverse functionality and stereochemical complexity in a conformationally preorganized ring structure, and it occupies a unique chemical space in drug discovery. However, the synthetic challenge to access this structural class is high and hinders the exploration of macrocycles. In this study, efficient synthetic routes to macrocyclized betulin derivatives have been established. The macrocycle containing compounds showed equal potency compared to bevirimat in multiple HIV-1 antiviral assays. The synthesis and biological evaluation of this novel series of HIV-1 maturation inhibitors will be discussed.

  9. On-Surface Pseudo-High-Dilution Synthesis of Macrocycles: Principle and Mechanism.

    PubMed

    Fan, Qitang; Wang, Tao; Dai, Jingya; Kuttner, Julian; Hilt, Gerhard; Gottfried, J Michael; Zhu, Junfa

    2017-05-23

    Macrocycles have attracted much attention due to their specific "endless" topology, which results in extraordinary properties compared to related linear (open-chain) molecules. However, challenges still remain in their controlled synthesis with well-defined constitution and geometry. Here, we report the successful application of the (pseudo-)high-dilution method to the conditions of on-surface synthesis in ultrahigh vacuum. This approach leads to high yields (up to 84%) of cyclic hyperbenzene ([18]-honeycombene) via an Ullmann-type reaction from 4,4″-dibromo-meta-terphenyl (DMTP) as precursor on a Ag(111) surface. The mechanism of macrocycle formation was explored in detail using scanning tunneling microscopy and X-ray photoemission spectroscopy. We propose that the dominant pathway for hyperbenzene (MTP) 6 formation is the stepwise desilverization of an organometallic (MTP-Ag) 6 macrocycle, which forms via cyclization of (MTP-Ag) 6 chains under pseudo-high-dilution conditions. The high probability of cyclization on the stage of the organometallic phase results from the reversibility of the C-Ag bond. The case is different from that in solution, in which cyclization typically occurs on the stage of a covalently bonded open-chain precursor. This difference in the cyclization mechanism on a surface compared to that in solution stems mainly from the 2D confinement exerted by the surface template, which hinders the flipping of chain segments necessary for cyclization.

  10. Synthesis and Characterization of Macrocyclic Polyether N,N'-Diallyl-7,16-diaza-1,4,10,13-tetraoxa-dibenzo-18-crown-6.

    PubMed

    Toeri, Julius; Laborie, Marie-Pierre

    2016-01-29

    In this study an efficient and direct production procedure for a macrocyclic polyether N,N'-diallyl-7,16-diaza-1,4,10,13-tetraoxa-dibenzo-18-crown-6 from the reaction of catechol and N,N-bis(2-chloroethyl)prop-2-en-1-amine in n-butanol in the presence of a strong base is reported. The synthesis involves a two-step addition of sodium hydroxide to enhance the cyclization process, and at the end of the reaction, the reaction mixture is neutralized and the solvent replaced with water in-situ through distillation to afford a relatively pure precipitate that is easily recrystallized from acetone. The yield of the macrocycle was 36%-45% and could be scaled-up to one-mole quantities. The structure and purity of this compound was verified on the basis of elemental analysis, IR, UV-Vis, ¹H-, (13)C-NMR, 2D-NMR, mass spectroscopy, and thermal analysis. The white crystalline compound has a sharp melting point of 124 °C and a crystallization temperature of 81.4 °C determined by differential scanning calorimetry. Our motivation behind the synthesis of the bibracchial lariat azacrown polyether ligand was to examine its possible applications in ion-selective polymer-supported materials.

  11. Design, synthesis and characterization of macrocyclic ligand based transition metal complexes of Ni(II), Cu(II) and Co(II) with their antimicrobial and antioxidant evaluation

    NASA Astrophysics Data System (ADS)

    Gull, Parveez; Malik, Manzoor Ahmad; Dar, Ovas Ahmad; Hashmi, Athar Adil

    2017-04-01

    Three new complexes Ni(II), Cu(II) and Co(II) were synthesized of macrocyclic ligand derived from 1, 4-dicarbonyl-phenyl-dihydrazide and O-phthalaldehyde in the ratio of 2:2. The synthesized compounds were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV-Vis., Mass and 1H NMR spectral studies. The electronic spectra of the metal complexes indicate a six coordinate octahedral geometry of the central metal ion. These metal complexes and the ligand were evaluated for antimicrobial activity against bacteria (E. coli, B. subtilis, S. aureus) and fungi (A. niger, A. flavus, C. albicans) and compared against standard drugs chloramphenicol and nystatin respectively. In addition, the antioxidant activity of the compounds was also investigated through scavenging effect on DPPH radicals.

  12. Synthesis of highly functionalized macrocycles by the peripheral functionalization of macrocyclic diimines.

    PubMed

    Sierra, Miguel A; Pellico, Daniel; Gómez-Gallego, Mar; Mancheño, María José; Torres, Rosario

    2006-11-10

    The easily available macrocyclic diimines 4-7 can be stereoselectively transformed to macrocyclic bis-beta-amino acids 13-17, macrocyclic bisazetidines 18-20, and macrocyclic bisamides 21 and 22 by means of the corresponding bis-beta-lactam scaffolds 8-12. These key intermediates are available through standard Staudinger reaction and obtained as the cis-cis diastereomers, exclusively. An interesting relation between the proximity of the reactive C=N bonds and the selectivity in the formation of the bis-beta-lactams 8-12 is observed. Thus, diimine 4 leads to low selectivities, producing a 1:1 mixture of cis-syn-cis and cis-anti-cis diastereomers, while diimines 5-7 having the diimine sites more separated lead almost exclusively to the cis-anti-cis diastereomers. The stereochemistry of all the products was unambiguously assigned by X-ray diffraction analysis of compounds cis-syn-cis 8 and cis-anti-cis 12-Co2CO6 complex.

  13. An eco-compatible strategy for the diversity-oriented synthesis of macrocycles exploiting carbohydrate-derived building blocks.

    PubMed

    Maurya, Sushil K; Rana, Rohit

    2017-01-01

    An efficient, eco-compatible diversity-oriented synthesis (DOS) approach for the generation of library of sugar embedded macrocyclic compounds with various ring size containing 1,2,3-triazole has been developed. This concise strategy involves the iterative use of readily available sugar-derived alkyne/azide-alkene building blocks coupled through copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction followed by pairing of the linear cyclo-adduct using greener reaction conditions. The eco-compatibility, mild reaction conditions, greener solvents, easy purification and avoidance of hazards and toxic solvents are advantages of this protocol to access this important structural class. The diversity of the macrocycles synthesized (in total we have synthesized 13 macrocycles) using a set of standard reaction protocols demonstrate the potential of the new eco-compatible approach for the macrocyclic library generation.

  14. Evaluation of nitrogen-rich macrocyclic ligands for the chelation of therapeutic bismuth radioisotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Justin J.; Ferrier, Maryline; Radchenko, Valery

    The use of α-emitting isotopes for radionuclide therapy is a promising treatment strategy for small micro-metastatic disease. The radioisotope ²¹³Bi is a nuclide that has found substantial use for targeted α-therapy (TAT). The relatively unexplored aqueous chemistry of Bi³⁺, however, hinders the development of bifunctional chelating agents that can successfully deliver these Bi radioisotopes to the tumor cells. Here, a novel series of nitrogen-rich macrocyclic ligands is explored for their potential use as Bi-selective chelating agents. The ligands, 1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane (L py), 1,4,7,10-tetrakis(3-pyridazylmethyl)-1,4,7,10-tetraazacyclododecane (L pyd), 1,4,7,10-tetrakis(4-pyrimidylmethyl)-1,4,7,10-tetraazacyclododecane (L pyr), and 1,4,7,10-tetrakis(2-pyrazinylmethyl)-1,4,7,10-tetraazacyclododecane (L pz), were prepared by a previously reported method and investigatedmore » here for their abilities to bind Bi radioisotopes. The commercially available and commonly used ligands 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and N-[ (R)-2-amino-3-( p-isothiocyanato-phenyl)propyl]- trans-(S,S)- cyclohexane-1,2-diamine- N,N,N',N",N"-pentaacetic acid (CHX-A''-DTPA) were also explored for comparative purposes. Radio-thin-layer chromatography (TLC) was used to measure the binding kinetics and stabilities of the complexes formed. The long-lived isotope, ²⁰⁷Bi (t 1/2 = 32 years), was used for these studies. Density functional theory (DFT) calculations were also employed to probe the ligand interactions with Bi³⁺ and the generator parent ion Ac³⁺.In contrast to DOTA and CHX-A''-DTPA, these nitrogen-rich macrocycles selectively chelate Bi³⁺ in the presence of the parent isotope Ac³⁺. Among the four tested, L py was found to exhibit optimal Bi³⁺-binding kinetics and complex stability. L py complexes Bi³⁺ more rapidly than DOTA, yet the resulting complexes are of similar stability

  15. Evaluation of nitrogen-rich macrocyclic ligands for the chelation of therapeutic bismuth radioisotopes

    DOE PAGES

    Wilson, Justin J.; Ferrier, Maryline; Radchenko, Valery; ...

    2015-05-01

    The use of α-emitting isotopes for radionuclide therapy is a promising treatment strategy for small micro-metastatic disease. The radioisotope ²¹³Bi is a nuclide that has found substantial use for targeted α-therapy (TAT). The relatively unexplored aqueous chemistry of Bi³⁺, however, hinders the development of bifunctional chelating agents that can successfully deliver these Bi radioisotopes to the tumor cells. Here, a novel series of nitrogen-rich macrocyclic ligands is explored for their potential use as Bi-selective chelating agents. The ligands, 1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane (L py), 1,4,7,10-tetrakis(3-pyridazylmethyl)-1,4,7,10-tetraazacyclododecane (L pyd), 1,4,7,10-tetrakis(4-pyrimidylmethyl)-1,4,7,10-tetraazacyclododecane (L pyr), and 1,4,7,10-tetrakis(2-pyrazinylmethyl)-1,4,7,10-tetraazacyclododecane (L pz), were prepared by a previously reported method and investigatedmore » here for their abilities to bind Bi radioisotopes. The commercially available and commonly used ligands 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and N-[ (R)-2-amino-3-( p-isothiocyanato-phenyl)propyl]- trans-(S,S)- cyclohexane-1,2-diamine- N,N,N',N",N"-pentaacetic acid (CHX-A''-DTPA) were also explored for comparative purposes. Radio-thin-layer chromatography (TLC) was used to measure the binding kinetics and stabilities of the complexes formed. The long-lived isotope, ²⁰⁷Bi (t 1/2 = 32 years), was used for these studies. Density functional theory (DFT) calculations were also employed to probe the ligand interactions with Bi³⁺ and the generator parent ion Ac³⁺.In contrast to DOTA and CHX-A''-DTPA, these nitrogen-rich macrocycles selectively chelate Bi³⁺ in the presence of the parent isotope Ac³⁺. Among the four tested, L py was found to exhibit optimal Bi³⁺-binding kinetics and complex stability. L py complexes Bi³⁺ more rapidly than DOTA, yet the resulting complexes are of similar stability

  16. Cascade Cyclizations of Acyclic and Macrocyclic Alkynones: Studies toward the Synthesis of Phomactin A

    PubMed Central

    Ciesielski, Jennifer; Gandon, Vincent; Frontier, Alison J.

    2013-01-01

    A study of the reactivity and diastereoselectivity of the Lewis acid-promoted cascade cyclizations of both acyclic and macrocyclic alkynones is described. In these reactions, a β-iodoallenolate intermediate is generated via conjugate addition of iodide to an alkynone, followed by an intramolecular aldol reaction with a tethered aldehyde to afford a cyclohexenyl alcohol. The Lewis acid magnesium iodide (MgI2) was found to promote irreversible ring closure, while cyclizations using BF3·OEt2 as promoter occurred reversibly. For both acyclic and macrocyclic ynones, high diastereoselectivity was observed in the intramolecular aldol reaction. The MgI2 protocol for cyclization was applied to the synthesis of advanced intermediates relevant to the synthesis of phomactin natural products, during which a novel transannular cation-olefin cyclization was observed. DFT calculations were conducted to analyze the mechanism of this unusual MgI2-promoted process. PMID:23724905

  17. Luminescent macrocyclic lanthanide complexes

    DOEpatents

    Raymond, Kenneth N; Corneillie, Todd M; Xu, Jide

    2014-05-20

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  18. Luminescence of five-coordinated nickel(ii) complexes with substituted-8-hydroxyquinolines and macrocyclic ligands.

    PubMed

    Santana, M Dolores; García-Bueno, Rocío; García, Gabriel; Pérez, José; García, Luis; Monge, Miguel; Laguna, Antonio

    2010-02-21

    A series of heteroleptic quinolinolate pentacoordinated nickel(ii) complexes, [Ni(mcN(3))(R(1),R(2),R(3)-8-hq)](PF(6)), were synthesized and characterized by spectroscopic methods. Single-crystal X-ray diffraction studies for [(Me(3)-mcN(3))Ni(N,O-2-CN-8-hq)][PF(6)] (6a), [(Me(4)-mcN(3))Ni(N,O-8-hq)][PF(6)] (2b) and [(Me(4)-mcN(3))Ni(N,O-5,7-I(2)-8-hq)][PF(6)] (5b) indicate that these complexes consist of a square-pyramidal ligand arrangement containing one chelating quinolinolate and one macrocyclic ligand (mcN(3)). Variation of the substituents on quinolinolate ligands imposes obvious electronic or structural effects on the nickel atom. These chromophores absorb moderately in the visible region and emit in the yellowish-green spectral region from a quinolinolate-centered intraligand charge-transfer excited state. The emission maxima are in the range 520-548 nm, with quantum yields between 0.11 and 1.63%, in deoxygenated organic solvents at room temperature. TD-DFT calculations allow exploration of the photophysical properties of complex [(Me(4)-mcN(3))Ni(N,O-8-hq)][PF(6)] and reveal the influence of the quinolinolate ligand on the HOMO/LUMO energies and oscillator strengths.

  19. Syntheses, solid state and solution structures of the palladium(II) complexes of malonamide-derived open-chain and macrocyclic ligands.

    PubMed

    Gavrish, Sergey P; Lampeka, Yaroslaw D; Pritzkow, Hans; Lightfoot, Philip

    2010-09-07

    The crystal structures of the palladium(II) complexes of the open-chain and macrocyclic ligands PdL(1).3H(2)O, PdL(2).6H(2)O and PdL(3).5H(2)O have been determined (H(2)L(1) = 1,4,8,11-tetraazaundecane-5,7-dione, H(2)L(2) = 1,4,8,11-tetraazacyclotetradecane-5,7-dione, H(2)L(3) = 1,4,8,11-tetraazacyclotridecane-5,7-dione). The coordination polyhedra of the palladium(II) ions in all complexes are formed by two deprotonated amide and two amine donors with Pd-N distances being similar in PdL(1) and PdL(2) and substantially shorter in PdL(3). A detailed analysis of the (1)H NMR spectra of the macrocyclic complexes supports the formation in aqueous solution of only N-meso isomers of both compounds in agreement with the X-ray data. The spectra of the palladium(II) macrocyclic complexes are shifted downfield as a whole as compared to those of the nickel(II) analogues with the shifts being essentially non-uniform. The latter feature can be related to the differences in magnetic anisotropy of the M-N bonds. The maxima of d-d absorption bands of the palladium(II) complexes demonstrate weaker dependence on the macrocycle size as compared to those of the nickel(II) analogues. Both macrocyclic compounds PdL(2).6H(2)O and PdL(3).5H(2)O are characterized by lamellar crystal structures consisting of interleaved layers formed by macrocyclic units and by water molecules with similar metal complex layers and different 2D water sheets. A columnar crystal structure is inherent for PdL(1).3H(2)O with the water molecules present as discrete (H(2)O)(3) clusters.

  20. Sustainable metal alkynyl chemistry: 3d metals and polyaza macrocyclic ligands.

    PubMed

    Ren, Tong

    2016-02-25

    We describe the chemistry of 3d metal alkynyls based on polyaza macrocyclic ligands, an emerging area of alkynyl chemistry that has previously been dominated by 4d and 5d metals with soft ligands. The abundance of 3d metals and low cost of tetraazacyclotetradecane ligands make these compounds more affordable, sustainable alternatives to metal alkynyls based on precious metals. Taking advantage of the rich variety of starting materials available in the literature, trans-[M(cyclam)(C2R)2]X (cyclam = 1,4,8,11-tetraazacyclotetradecane) compounds have been prepared from the reactions between [M(cyclam)X2]X (M = Cr, Fe and Co; X = Cl or OTf) and LiC2R. With [Co(cyclam)Cl2](+), both the {trans-[Co(cyclam)Cl]2(μ-(C≡C)n)}(2+) and trans-[Co(cyclam)(C2R)Cl](+) compounds have been prepared by a dehydrohalogenation reaction. The latter compounds undergo the second alkynylation reaction to afford dissymmetric trans-[Co(cyclam)(C2R)(C2R')](+) compounds. Similar alkynylation chemistry with complexes of the cyclam derivatives TMC (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) and HMC (5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) has been demonstrated in studies of [Ni(TMC)(C2R)](+) and trans-/cis-[Cr(HMC)(C2R)2](+). Me3TACN (1,4,7-N,N',N''-trimethyl-1,4,7-triazacyclononane) is also a supporting ligand that has been observed in transition metal alkynyls. The trans-[M(cyclam)(C2D)(C2A)](+) compounds (D = donor chromophore, A = acceptor chromophore) are excellent candidates for probing photoinduced electron transfer and related photophysical and photochemical processes. 3d Metal ions are often in high-spin ground states, which make these alkynyl compounds promising building blocks for magnetic materials.

  1. Macrocycle peptides delineate locked-open inhibition mechanism for microorganism phosphoglycerate mutases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hao; Dranchak, Patricia; Li, Zhiru

    Glycolytic interconversion of phosphoglycerate isomers is catalysed in numerous pathogenic microorganisms by a cofactor-independent mutase (iPGM) structurally distinct from the mammalian cofactor-dependent (dPGM) isozyme. The iPGM active site dynamically assembles through substrate-triggered movement of phosphatase and transferase domains creating a solvent inaccessible cavity. Here we identify alternate ligand binding regions using nematode iPGM to select and enrich lariat-like ligands from an mRNA-display macrocyclic peptide library containing >1012 members. Functional analysis of the ligands, named ipglycermides, demonstrates sub-nanomolar inhibition of iPGM with complete selectivity over dPGM. The crystal structure of an iPGM macrocyclic peptide complex illuminated an allosteric, locked-open inhibition mechanismmore » placing the cyclic peptide at the bi-domain interface. This binding mode aligns the pendant lariat cysteine thiolate for coordination with the iPGM transition metal ion cluster. The extended charged, hydrophilic binding surface interaction rationalizes the persistent challenges these enzymes have presented to small-molecule screening efforts highlighting the important roles of macrocyclic peptides in expanding chemical diversity for ligand discovery.« less

  2. Macrocyclic metal complexes for metalloenzyme mimicry and sensor development.

    PubMed

    Joshi, Tanmaya; Graham, Bim; Spiccia, Leone

    2015-08-18

    Examples of proteins that incorporate one or more metal ions within their structure are found within a broad range of classes, including oxidases, oxidoreductases, reductases, proteases, proton transport proteins, electron transfer/transport proteins, storage proteins, lyases, rusticyanins, metallochaperones, sporulation proteins, hydrolases, endopeptidases, luminescent proteins, iron transport proteins, oxygen storage/transport proteins, calcium binding proteins, and monooxygenases. The metal coordination environment therein is often generated from residues inherent to the protein, small exogenous molecules (e.g., aqua ligands) and/or macrocyclic porphyrin units found, for example, in hemoglobin, myoglobin, cytochrome C, cytochrome C oxidase, and vitamin B12. Thus, there continues to be considerable interest in employing macrocyclic metal complexes to construct low-molecular weight models for metallobiosites that mirror essential features of the coordination environment of a bound metal ion without inclusion of the surrounding protein framework. Herein, we review and appraise our research exploring the application of the metal complexes formed by two macrocyclic ligands, 1,4,7-triazacyclononane (tacn) and 1,4,7,10-tetraazacyclododecane (cyclen), and their derivatives in biological inorganic chemistry. Taking advantage of the kinetic inertness and thermodynamic stability of their metal complexes, these macrocyclic scaffolds have been employed in the development of models that aid the understanding of metal ion-binding natural systems, and complexes with potential applications in biomolecule sensing, diagnosis, and therapy. In particular, the focus has been on "coordinatively unsaturated" metal complexes that incorporate a kinetically inert and stable metal-ligand moiety, but which also contain one or more weakly bound ligands, allowing for the reversible binding of guest molecules via the formation and dissociation of coordinate bonds. With regards to mimicking

  3. Synthesis and Mossbauer spectroscopy of macrocyclic complexes of iron(III)

    NASA Astrophysics Data System (ADS)

    Mishra, A.; Sura, Kamaljeet S.; Sharma, P.

    2016-10-01

    The article deals with a fresh series of the complexes of the type: [Fe(III)(TML)Cl]Cl2; where TML is a tetra-dentate macrocyclic ligand; has been synthesized by condensation of o-phenylenediamine, diethyl malonate and diazonium ion in the ethanolic medium, through refluxing with FeCl3.The synthesized metal complexes were characterized by Mossbauer spectroscopy. Mossbauer measurements were carried out using standard PC-based spectrometer equipped with Weissel velocity drive operating in the constant acceleration mode. Mossbauer study interprets paramagnetic nature of complexes. Mossbauer measurement of complex 1 and 2 has been taken to find out the value of isomer shift and quadrapole splitting and oxidation state after complaxsation.

  4. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89

    PubMed Central

    Xu, Jide; Tatum, David; Magda, Darren

    2017-01-01

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation. PMID:28575044

  5. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89.

    PubMed

    Bhatt, Nikunj B; Pandya, Darpan N; Xu, Jide; Tatum, David; Magda, Darren; Wadas, Thaddeus J

    2017-01-01

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation.

  6. Molecular mechanics approach for design and conformational studies of macrocyclic ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohini,; Akbar, Rifat; Kanungo, B. K., E-mail: b.kanungo@gmail.com

    2015-08-28

    Computational Chemistry has revolutionized way of viewing molecules at the quantum mechanical scale by allowing simulating various chemical scenarios that are not possible to study in a laboratory. The remarkable applications of computational chemistry have promoted to design and test of the effectiveness of various methods for searching the conformational space of highly flexible molecules. In this context, we conducted a series of optimization and conformational searches on macrocyclic based ligands, 9N3Me5Ox, (1,4,7-tris(5-methyl-8-hydroxyquinoline)-1,4,7-triazacyclononane) and 12N3Me5Ox, (1,5,9-tris(5-methyl-8-hydroxyquinoline)-1,5,9-triazacyclododecane) and studied their selectivity and coordination behavior with some lanthanide metal ions in molecular mechanics and semiempirical methods. The methods include both systematic andmore » random conformational searches for dihedral angles, torsion angles and Cartesian coordinates. Structural studies were carried out by using geometry optimization, coordination scans and electronic properties were evaluated. The results clearly show that chair-boat conformational isomer of 9N3Me5Ox ligand is more stable due to lower eclipsing ethane interaction and form stronger adduct complexes with lanthanide metal ion. This is because of the fact that, in a central unit of 9N3 of the ligand form six endo type bonds out of nine. The rest of bonds have trans conformation. In contrast, for the adduct of 12N3Me5Ox, two C-C bonds have on eclipsed conformation, and others have synclinal and antiperiplanar confirmations. The distortion of the two eclipsed conformations may affect the yields and the stability of the complexes.« less

  7. ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs

    NASA Astrophysics Data System (ADS)

    Cleves, Ann E.; Jain, Ajay N.

    2017-05-01

    We introduce the ForceGen method for 3D structure generation and conformer elaboration of drug-like small molecules. ForceGen is novel, avoiding use of distance geometry, molecular templates, or simulation-oriented stochastic sampling. The method is primarily driven by the molecular force field, implemented using an extension of MMFF94s and a partial charge estimator based on electronegativity-equalization. The force field is coupled to algorithms for direct sampling of realistic physical movements made by small molecules. Results are presented on a standard benchmark from the Cambridge Crystallographic Database of 480 drug-like small molecules, including full structure generation from SMILES strings. Reproduction of protein-bound crystallographic ligand poses is demonstrated on four carefully curated data sets: the ConfGen Set (667 ligands), the PINC cross-docking benchmark (1062 ligands), a large set of macrocyclic ligands (182 total with typical ring sizes of 12-23 atoms), and a commonly used benchmark for evaluating macrocycle conformer generation (30 ligands total). Results compare favorably to alternative methods, and performance on macrocyclic compounds approaches that observed on non-macrocycles while yielding a roughly 100-fold speed improvement over alternative MD-based methods with comparable performance.

  8. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Nikunj B.; Pandya, Darpan N.; Xu, Jide

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. We report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. And while both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. The differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimizationmore » is necessary to enhance 89Zr chelation.« less

  9. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89

    DOE PAGES

    Bhatt, Nikunj B.; Pandya, Darpan N.; Xu, Jide; ...

    2017-06-02

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. We report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. And while both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. The differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimizationmore » is necessary to enhance 89Zr chelation.« less

  10. Size-Selective Detection of Picric Acid by Fluorescent Palladium Macrocycles.

    PubMed

    Kumar, Sushil; Kishan, Ram; Kumar, Pramod; Pachisia, Sanya; Gupta, Rajeev

    2018-02-19

    This work presents the synthesis and characterization of two palladium-based fluorescent macrocycles offering hydrogen-bonding cavities of contrasting dimensions. Both palladium macrocycles function as chemosensors for the detection of nitroaromatics, whereas the larger macrocycle not only illustrates nanomolar detection of picric acid but also transports its significant amount from an aqueous to an organic phase.

  11. Synthesis, antimicrobial, antioxidant and molecular docking studies of thiophene based macrocyclic Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Rathi, Parveen; Singh, D. P.

    2015-11-01

    The macrocyclic complexes of pharmaceutical importance with trivalent transition metals have been synthesized by [1 + 1] condensation of succinyldihydrazide and thiophenedicarboxaldehyde, via template method, resulting in the formation of the complex [MLX] X2; where L is (C10H10N4O2S), a macrocyclic ligand, M = Cr (III) and Fe (III) and X = Cl-, CH3COO- or NO3- . These complexes have been characterized with the help of elemental analyses, molar conductance measurements, magnetic susceptibility measurements, ultraviolet, infrared, far infrared, electron spin resonance, mass spectral studies and powder x-ray diffraction analysis. On the basis of all these studies, mononuclear complexes having 1:2 electrolytic nature with a five coordinated square pyramidal geometry have been proposed. Powder diffraction XRD indicates the presence of triclinic crystal system with p bravais lattice for the representative complex. All the metal complexes have also been explored for their in vitro antimicrobial and antioxidant activities.

  12. Reactions of copper macrocycles with antioxidants and HOCl: potential for biological redox sensing.

    PubMed

    Sowden, Rebecca J; Trotter, Katherine D; Dunbar, Lynsey; Craig, Gemma; Erdemli, Omer; Spickett, Corinne M; Reglinski, John

    2013-02-01

    A series of simple copper N(2)S(2) macrocycles were examined for their potential as biological redox sensors, following previous characterization of their redox potentials and crystal structures. The divalent species were reduced by glutathione or ascorbate at a biologically relevant pH in aqueous buffer. A less efficient reduction was also achieved by vitamin E in DMSO. Oxidation of the corresponding univalent copper species by sodium hypochlorite resulted in only partial (~65 %) recovery of the divalent form. This was concluded to be due to competition between metal oxidation and ligand oxidation, which is believed to contribute to macrocycle demetallation. Electrospray mass spectrometry confirmed that ligand oxidation had occurred. Moreover, the macrocyclic complexes could be demetallated by incubation with EDTA and bovine serum albumin, demonstrating that they would be inappropriate for use in biological systems. The susceptibility to oxidation and demetallation was hypothesized to be due to oxidation of the secondary amines. Consequently these were modified to incorporate additional oxygen donor atoms. This modification led to greater resistance to demetallation and ligand oxidation, providing a better platform for further development of copper macrocycles as redox sensors for use in biological systems.

  13. Bambus[n]urils: a new family of macrocyclic anion receptors.

    PubMed

    Havel, Vaclav; Svec, Jan; Wimmerova, Michaela; Dusek, Michal; Pojarova, Michaela; Sindelar, Vladimir

    2011-08-05

    A recently discovered anion receptor is jointed by three related macrocycles differing in the number of glycoluril units and type of substitution. The synthesis is carried out in nonpolar solvents compared to aqueous media used in the case of the original macrocycle. The size of macrocycle is controlled by a template. A hexameric macrocycle with benzyl substitution binds halide anions with an affinity exceeding 10(9) M(-1) while a tetrameric analog does not bind any of the investigated anions. © 2011 American Chemical Society

  14. Synthesis, spectroscopic and biological activities studies of acyclic and macrocyclic mono and binuclear metal complexes containing a hard-soft Schiff base

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, Azza A. A.; Linert, Wolfgang

    Mono- and bi-nuclear acyclic and macrocyclic complexes with hard-soft Schiff base, H2L, ligand derived from the reaction of 4,6-diacetylresorcinol and thiocabohydrazide, in the molar ratio 1:2 have been prepared. The H2L ligand reacts with Co(II), Ni(II), Cu(II), Zn(II), Mn(II) and UO2(VI) nitrates, VO(IV) sulfate and Ru(III) chloride to get acyclic binuclear complexes except for VO(IV) and Ru(III) which gave acyclic mono-nuclear complexes. Reaction of the acyclic mono-nuclear VO(IV) and Ru(III) complexes with 4,6-diacetylresorcinol afforded the corresponding macrocyclic mono-nuclear VO(IV) and Ru(IIII) complexes. Template reactions of the 4,6-diacetylresorcinol and thiocarbohydrazide with either VO(IV) or Ru(III) salts afforded the macrocyclic binuclear VO(IV) and Ru(III) complexes. The Schiff base, H2L, ligand acts as dibasic with two NSO-tridentate sites and can coordinate with two metal ions to form binuclear complexes after the deprotonation of the hydrogen atoms of the phenolic groups in all the complexes, except in the case of the acyclic mononuclear Ru(III) and VO(IV) complexes, where the Schiff base behaves as neutral tetradentate chelate with N2S2 donor atoms. The ligands and the metal complexes were characterized by elemental analysis, IR, UV-vis 1H-NMR, thermal gravimetric analysis (TGA) and ESR, as well as the measurements of conductivity and magnetic moments at room temperature. Electronic spectra and magnetic moments of the complexes indicate the geometries of the metal centers are either tetrahedral, square planar or octahedral. Kinetic and thermodynamic parameters were calculated using Coats-Redfern equation, for the different thermal decomposition steps of the complexes. The ligands and the metal complexes were screened for their antimicrobial activity against Staphylococcus aureus as Gram-positive bacteria, and Pseudomonas fluorescens as Gram-negative bacteria in addition to Fusarium oxysporum fungus. Most of the complexes exhibit mild

  15. Synthesis, spectroscopic and biological activities studies of acyclic and macrocyclic mono and binuclear metal complexes containing a hard-soft Schiff base.

    PubMed

    Abou-Hussein, Azza A A; Linert, Wolfgang

    2012-09-01

    Mono- and bi-nuclear acyclic and macrocyclic complexes with hard-soft Schiff base, H(2)L, ligand derived from the reaction of 4,6-diacetylresorcinol and thiocabohydrazide, in the molar ratio 1:2 have been prepared. The H(2)L ligand reacts with Co(II), Ni(II), Cu(II), Zn(II), Mn(II) and UO(2)(VI) nitrates, VO(IV) sulfate and Ru(III) chloride to get acyclic binuclear complexes except for VO(IV) and Ru(III) which gave acyclic mono-nuclear complexes. Reaction of the acyclic mono-nuclear VO(IV) and Ru(III) complexes with 4,6-diacetylresorcinol afforded the corresponding macrocyclic mono-nuclear VO(IV) and Ru(IIII) complexes. Template reactions of the 4,6-diacetylresorcinol and thiocarbohydrazide with either VO(IV) or Ru(III) salts afforded the macrocyclic binuclear VO(IV) and Ru(III) complexes. The Schiff base, H(2)L, ligand acts as dibasic with two NSO-tridentate sites and can coordinate with two metal ions to form binuclear complexes after the deprotonation of the hydrogen atoms of the phenolic groups in all the complexes, except in the case of the acyclic mononuclear Ru(III) and VO(IV) complexes, where the Schiff base behaves as neutral tetradentate chelate with N(2)S(2) donor atoms. The ligands and the metal complexes were characterized by elemental analysis, IR, UV-vis (1)H-NMR, thermal gravimetric analysis (TGA) and ESR, as well as the measurements of conductivity and magnetic moments at room temperature. Electronic spectra and magnetic moments of the complexes indicate the geometries of the metal centers are either tetrahedral, square planar or octahedral. Kinetic and thermodynamic parameters were calculated using Coats-Redfern equation, for the different thermal decomposition steps of the complexes. The ligands and the metal complexes were screened for their antimicrobial activity against Staphylococcus aureus as Gram-positive bacteria, and Pseudomonas fluorescens as Gram-negative bacteria in addition to Fusarium oxysporum fungus. Most of the complexes exhibit

  16. High Valent Manganese and Cobalt Complexes of Oxidatively Robust Nitrogen and Oxygen Donor Ligands.

    NASA Astrophysics Data System (ADS)

    Gordon-Wylie, Scott Wallace

    1995-01-01

    The focus of this thesis is to extend the range of ligands that satisfy the Collins criteria through a program of organic synthesis, and to apply the resulting high valent metal ligand complexes to the solution of current problems in structural inorganic chemistry, solid state chemistry (with a particular emphasis on magnetic interactions in solids) and to homogeneous and heterogeneous catalysis. Notable achievements along these directions to date are: (i) A streamlined synthesis of diamide dialkoxide and diamide diphenoxide acyclic ligands which allows for a wide range of both electron withdrawing and electron donating substituents to be incorporated into the ligand framework. (ii) The first example of a LMn(V)O species stable enough to be crystallographically characterized was obtained, utilizing the acyclic ligands of (i). (iii) Catalytic O-atom transfer oxidations utilizing acyclic ligands from (i) have been performed. Planar Co(III) complexes of these ligands can catalyze O-atom transfers, ^1 with 30-50 turnovers, including enantioselective ones,^2 implicating that the ligands remain at least partially intact during the catalytic process. (iv) Unusual magnetic ordering has been observed in an infinite linear chain of S = 2 LMn(III) centers, in collaboration with Edmund P. Day. (v) Ferromagnetic exchange has been obtained in a ((LCo(III)) _3Co(II)) ^{-} complex^4 Magnetic model building in collaboration with Gordon Yee and Emile Bominaar has led to an understanding of the magnetic data suitable for publication.^5 (vi) Adaptation of a range of electronic substituents (see (i)) into a macrocyclic framework^7 allows for the preparation of hydrolytically and oxidatively stable high valent metal complexes. The presence of a range of electronic substituents further allows redox potentials for a single (LM) ^{rm n+}/(LM) ^{(rm n+1)+ } oxidation process to be tuned over a range that spans ca. 1 V. (vii) Initial linear syntheses for these macrocycles involved the use of

  17. A novel complexity-to-diversity strategy for the diversity-oriented synthesis of structurally diverse and complex macrocycles from quinine.

    PubMed

    Ciardiello, J J; Stewart, H L; Sore, H F; Galloway, W R J D; Spring, D R

    2017-06-01

    Recent years have witnessed a global decline in the productivity and advancement of the pharmaceutical industry. A major contributing factor to this is the downturn in drug discovery successes. This can be attributed to the lack of structural (particularly scaffold) diversity and structural complexity exhibited by current small molecule screening collections. Macrocycles have been shown to exhibit a diverse range of biological properties, with over 100 natural product-derived examples currently marketed as FDA-approved drugs. Despite this, synthetic macrocycles are widely considered to be a poorly explored structural class within drug discovery, which can be attributed to their synthetic intractability. Herein we describe a novel complexity-to-diversity strategy for the diversity-oriented synthesis of novel, structurally complex and diverse macrocyclic scaffolds from natural product starting materials. This approach exploits the inherent structural (including functional) and stereochemical complexity of natural products in order to rapidly generate diversity and complexity. Readily-accessible natural product-derived intermediates serve as structural templates which can be divergently functionalized with different building blocks to generate a diverse range of acyclic precursors. Subsequent macrocyclisation then furnishes compounds that are each based around a distinct molecular scaffold. Thus, high levels of library scaffold diversity can be rapidly achieved. In this proof-of-concept study, the natural product quinine was used as the foundation for library synthesis, and six novel structurally diverse, highly complex and functionalized macrocycles were generated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Predicting bioactive conformations and binding modes of macrocycles

    NASA Astrophysics Data System (ADS)

    Anighoro, Andrew; de la Vega de León, Antonio; Bajorath, Jürgen

    2016-10-01

    Macrocyclic compounds experience increasing interest in drug discovery. It is often thought that these large and chemically complex molecules provide promising candidates to address difficult targets and interfere with protein-protein interactions. From a computational viewpoint, these molecules are difficult to treat. For example, flexible docking of macrocyclic compounds is hindered by the limited ability of current docking approaches to optimize conformations of extended ring systems for pose prediction. Herein, we report predictions of bioactive conformations of macrocycles using conformational search and binding modes using docking. Conformational ensembles generated using specialized search technique of about 70 % of the tested macrocycles contained accurate bioactive conformations. However, these conformations were difficult to identify on the basis of conformational energies. Moreover, docking calculations with limited ligand flexibility starting from individual low energy conformations rarely yielded highly accurate binding modes. In about 40 % of the test cases, binding modes were approximated with reasonable accuracy. However, when conformational ensembles were subjected to rigid body docking, an increase in meaningful binding mode predictions to more than 50 % of the test cases was observed. Electrostatic effects did not contribute to these predictions in a positive or negative manner. Rather, achieving shape complementarity at macrocycle-target interfaces was a decisive factor. In summary, a combined computational protocol using pre-computed conformational ensembles of macrocycles as a starting point for docking shows promise in modeling binding modes of macrocyclic compounds.

  19. Characterization of a potentially axially symmetric europium(III) complex of a tetraacetate,tetraaza, macrocyclic ligand by luminescence excitation, emission and lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Albin, Michael; de, William; Horrocks, W., Jr.; Liotta, Frank J.

    1982-01-01

    The Eu(III) complex of the octadentate macrocyclic ligand, 1,4,7,10-tetraazacyclododecane-N,N',N'',N''' -tetraacetate, DOTA, has been examined by luminescence excitation, emission, and lifetime spectroscopy using pulsed dye laser techniques. The results confirm the expected axially symmetric nature of the major component in solution and reveal that 1.2 ± 0.4 water molecules arc coordinatcd to the Eu(III) ion in the complex.

  20. Adaptive self-assembly and induced-fit transformations of anion-binding metal-organic macrocycles

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Zhou, Li-Peng; Guo, Xiao-Qing; Cai, Li-Xuan; Sun, Qing-Fu

    2017-06-01

    Container-molecules are attractive to chemists due to their unique structural characteristics comparable to enzymes and receptors in nature. We report here a family of artificial self-assembled macrocyclic containers that feature induced-fit transformations in response to different anionic guests. Five metal-organic macrocycles with empirical formula of MnL2n (M=Metal L=Ligand n=3, 4, 5, 6, 7) are selectively obtained starting from one simple benzimidazole-based ligand and square-planar palladium(II) ions, either by direct anion-adaptive self-assembly or induced-fit transformations. Hydrogen-bonding interactions between the inner surface of the macrocycles and the anionic guests dictate the shape and size of the product. A comprehensive induced-fit transformation map across all the MnL2n species is drawn, with a representative reconstitution process from Pd7L14 to Pd3L6 traced in detail, revealing a gradual ring-shrinking mechanism. We envisage that these macrocyclic molecules with adjustable well-defined hydrogen-bonding pockets will find wide applications in molecular sensing or catalysis.

  1. Hyperpolarized 89Y NMR spectroscopic detection of yttrium ion and DOTA macrocyclic ligand complexation: pH dependence and Y-DOTA intermediates

    NASA Astrophysics Data System (ADS)

    Ferguson, Sarah; Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Kovacs, Zoltan; Lumata, Lloyd

    Dissolution dynamic nuclear polarization (DNP) is a rapidly emerging physics technique used to enhance the signal strength in nuclear magnetic resonance (NMR) and imaging (MRI) experiments for nuclear spins such as yttrium-89 by >10,000-fold. One of the most common and stable MRI contrast agents used in the clinic is Gd-DOTA. In this work, we have investigated the binding of the yttrium and DOTA ligand as a model for complexation of Gd ion and DOTA ligand. The macrocyclic ligand DOTA is special because its complexation with lanthanide ions such as Gd3+ or Y3+ is highly pH dependent. Using this physics technology, we have tracked the complexation kinetics of hyperpolarized Y-triflate and DOTA ligand in real-time and detected the Y-DOTA intermediates. Different kinds of buffers were used (lactate, acetate, citrate, oxalate) and the pseudo-first order complexation kinetic calculations will be discussed. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  2. Synthesis, characterization, nano-sized binuclear nickel complexes, DFT calculations and antibacterial evaluation of new macrocyclic Schiff base compounds

    NASA Astrophysics Data System (ADS)

    Parsaee, Zohreh; Mohammadi, Khosro

    2017-06-01

    Some new macrocyclic bridged dianilines tetradentate with N4coordination sphere Schiff base ligands and their nickel(II)complexes with general formula [{Ni2LCl4} where L = (C20H14N2X)2, X = SO2, O, CH2] have been synthesized. The compounds have been characterized by FT-IR, 1H and 13C NMR, mass spectroscopy, TGA, elemental analysis, molar conductivity and magnetic moment techniques. Scanning electron microscopy (SEM) shows nano-sized structures under 100 nm for nickel (II) complexes. NiO nanoparticle was achieved via the thermal decomposition method and analyzed by FT-IR, SEM and X-ray powder diffraction which indicates closeaccordance to standard pattern of NiO nanoparticle. All the Schiff bases and their complexes have been detected in vitro both for antibacterial activity against two gram-negative and two gram-positive bacteria. The nickel(II) complexes were found to be more active than the free macrocycle Schiff bases. In addition, computational studies of three ligands have been carried out at the DFT-B3LYP/6-31G+(d,p) level of theory on the spectroscopic properties, including IR, 1HNMR and 13CNMR spectroscopy. The correlation between the theoretical and the experimental vibrational frequencies, 1H NMR and 13C NMR of the ligands were 0.999, 0.930-0.973 and 0.917-0.995, respectively. Also, the energy gap was determined and by using HOMO and LUMO energy values, chemical hardness-softness, electronegativity and electrophilic index were calculated.

  3. Palladium-Catalyzed Oxidative Couplings and Applications to the Synthesis of Macrocycles and Strained Cyclic Dienes

    NASA Astrophysics Data System (ADS)

    Boon, Byron Adrian

    The palladium(II)-catalyzed oxidative macrocyclization of bis(vinylboronate esters) is demonstrated as an efficient method for the synthesis of macrocyclic dienes. The macrocyclization reactions feature mild conditions due to a palladium(II) catalytic cycle which obviates the need for a high energy oxidative addition step of standard palladium(0) catalytic cycles. Instead, this oxidative coupling is promoted by chloroacetone as a terminal re-oxidant in the catalytic cycle. An extension of the oxidative coupling/macrocyclization strategy is highlighted where molecular oxygen may be used in place of chloroacetone as the terminal re-oxidant. Homocoupling reactions of vinylboronate esters served as a template to screen reaction conditions for this method. From these experiments, multiple reaction conditions gave the oxidative homocoupling product in high yield. These reaction conditions were successfully applied to the oxidative macrocyclization of a bis(vinylboronate ester) using molecular oxygen as a re-oxidant. Syntheses of strained cyclic dienes were accomplished via the palladium(II)-catalyzed oxidative cyclizations of terminal bis(vinylboronate esters). The reactions generated strained (E,E)-1,3-dienes that underwent spontaneous 4?-electrocyclizations to form bicyclic cyclobutenes. Formation of the cyclobutenes is driven by strain in the medium-ring (E,E)-1,3-diene intermediates. Thermal ring openings of the cyclobutenes give (Z,Z)-1,3-diene products, again for thermodynamic reasons. These results are in contrast with typical acyclic trans-3,4-dialkyl cyclobutenes, which favor outward torquoselective ring-openings to give (E,E)-1,3-dienes. DFT calculations verified the thermodynamic versus kinetic control of the reactions and kinetic studies are in excellent agreement with the calculated energy changes. Investigations on the transannular Pauson-Khand reaction are also highlighted. The Pauson-Khand reaction is a powerful tool for the synthesis of cyclopentenones

  4. Synthesis and physico-chemical studies on neodymium(III) and samarium(III) complexes with tetraaza macrocyclic ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goel, S.; Pandey, U.K.; Pandey, O.P.

    1988-05-01

    Reactions of neodymium trichloride and samarium trichloride with 6,7,13,14-R/sub 4/ - 3,10-X/sub 2/-(14)-5,7,12,14-tetraene-1,5,8,12-N/sub 4/-(2,4,9,11-N/sub 4/) (R = CH/sub 3/, X = 0 (L/sub 1//sup (1)/); R = C/sub 6/H/sub 5/, X = O (L/sub 1//sup (2)/); R = CH/sub 3/, X = S(L/sub 2//sup (1)/)) and R = C/sub 6/H/sub 5/, X = S(/sub 2//sup (2)/)) have been studied in ethanol and complexes of the type (M(L/sub 1//sup (1)/ or L/sub 1//sup (2)/))Cl/sub 3/ and (M(L/sub 2//sup (1)/ or L/sub 2//sup (2)/)(H/sub 2/O)/sub 2/)Cl/sub 3/ (M = Nd(III) and Sm(III)) have been isolated. In addition, macrocyclic complexes of Nd(III) andmore » Sm(III) with another series of tetraaza ligands, viz, 5,6,11,12-R/sub 4/-3,8-X/sub 2/-(12)-4,6,10,12-tetraene-1,4,7,10-N/sub 4/-(2,9-N/sub 2/) (R = CH/sub 3/, X = O (L/sub 3//sup (1)/); R = C/sub 6/H/sub 5/, X = O(L/sub 3//sup (2)/); R = CH/sub 3/, X = S(L/sub 4//sup (1)/); R = C/sub 6/H/sub 5/, X = S(L/sub 4//sup (2)/)), formulated as (M(L/sub 3//sup (1)/, L/sub 3//sup (2)/, L/sub 4//sup (1)/ or L/sub 4//sup (2)/)(H/sub 2/O)/sub 2/)Cl/sub 3/ (M = Nd(III) and Sm(III)) have been prepared by template condensation of Nd(III) and Sm(III) complexes of diacetylbis(semicarbazonethiosemicarbazone) or benzilibis(semicarbazonethiosemicarbazone) with diacetyl or benzil. The complexes have been identified by elemental analysis, electrical conductance, spectral and thermal measurements.« less

  5. Metal-templated synthesis of macrocyclic (triphosphine)molybdenum complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diel, B.N.; Brandt, P.F.; Haltiwanger, R.C.

    1989-07-12

    Reaction of CH{sub 2}=CHCH{sub 2}PH{sub 2}, CH{sub 2}=CHCH{sub 2}CH{sub 2}PH{sub 2}, and CH{equivalent to}CCH{sub 2}PPH{sub 2} with (mesitylene)Mo(CO){sub 3} or (cycloheptatriene)Mo(CO){sub 3} yields the complexes (CH{sub 2}=CHCH{sub 2}PH{sub 2}){sub 3} (1), (CH{sub 2}=CHCH{sub 2}CH{sub 2}PH{sub 2}){sub 3}Mo(CO){sub 3} (2), and (CH{equivalent to}CCH{sub 2}PH{sub 2}){sub 3}Mo(CO){sub 3}, (3), respectively. Reaction of CH{sub 2}=CHCH{sub 2}PH{sub 2} and CH{equivalent to}CCH{sub 2}PH{sub 2} with cis-(piperidine){sub 2}Mo(CO){sub 4} yields cis-(CH{sub 2}=CHCH{sub 2}PH{sub 2}){sub 2}Mo(CO){sub 4} (4) and cis-(CH{equivalent to}CCH{sub 2}PH{sub 2}){sub 2}Mo(CO){sub 4} (5). Free-radical-initiated cyclooligomerization of 1 and 2 yields the triligated macrocyclic secondary-phosphine complexes fac-(HP(CH{sub 2}){sub 3}){sub 3}Mo(CO){sub 3} (6) and fac-(HP-(CH{sub 2}){submore » 4}){sub 3}Mo(CO){sub 3} (7). Under similar conditions, reaction of 4 yields an acyclic diphosphine complex characterized tentatively as cis-(H{sub 2}P(CH{sub 2}){sub 3}PH(CH{sub 2}CH=CH{sub 2}))Mo(CO){sub 4} (8). Compounds 1-7 and 10 have been characterized by spectral ({sup 31}P, {sup 13}C, and {sup 1}H, NMR and IR and mass) data. 6 has been characterized in the solid state by single-crystal x-ray analysis, and the results are reported. {sup 31}P NMR spectra studies of the cyclooligomerization of 1 show the partially cyclized intermediates formed prior to 6. The macrocyclic complexes 6 and 7 are kinetically stable, showing no sign of ligand displacement in reactions with pH{sub 3}P, PF{sub 3}, KCN, or P(OMe){sub 3}. 44 refs., 4 figs., 4 tabs.« less

  6. Structural basis for precursor protein-directed ribosomal peptide macrocyclization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kunhua; Condurso, Heather L.; Li, Gengnan

    Macrocyclization is a common feature of natural product biosynthetic pathways including the diverse family of ribosomal peptides. Microviridins are architecturally complex cyanobacterial ribosomal peptides that target proteases with potent reversible inhibition. The product structure is constructed via three macrocyclizations catalyzed sequentially by two members of the ATP-grasp family, a unique strategy for ribosomal peptide macrocyclization. Here we describe in detail the structural basis for the enzyme-catalyzed macrocyclizations in the microviridin J pathway of Microcystis aeruginosa. The macrocyclases MdnC and MdnB interact with a conserved α-helix of the precursor peptide using a novel precursor-peptide recognition mechanism. The results provide insight intomore » the unique protein–protein interactions that are key to the chemistry, suggest an origin for the natural combinatorial synthesis of microviridin peptides, and provide a framework for future engineering efforts to generate designed compounds.« less

  7. Mössbauer and electronic spectral characterization of homo-bimetallic Fe(III) complexes of unsymmetrical [N10] and [N12] macrocyclic ligands.

    PubMed

    Siddiqi, Zafar Ahmad; Arif, Razia; Kumar, Sarvendra; Khalid, Mohd

    2008-10-01

    The homo-bimetallic complexes of stoichiometry Fe2(L)ClO4(ClO4)2 where L are novel unsymmetrical [N10] (L1.2HClO4) and [N12] (L2.2HClO4) macrocyclic ligands, have been prepared. The ligands were obtained from an in situ capping reaction of the reactive substrate, N,N'-bis(N-ethylaniline)hydrazine-1,2-diimine with a mixture of aniline or 1,3-diaminopropane and HCHO in presence of HClO4. The compounds have been characterized by elemental analyses, conductometric, IR, FAB-mass and electronic spectral studies. IR data of complexes suggest coordination from unsymmetrical aza sites as a tridentate (N,N,N) or tetradentate (N,N,N,N) ligand. mu(eff) values of the complexes suggest presence of antiferromagnetically coupled (Fe3+-Fe3+=S5/2-S5/2) spin exchange. Mössbauer parameters of the complexes support (+/-3/2)-->(+/-1/2) nuclear transition in high-spin configurations of Fe(III) nuclei of the homo-bimetallic complexes with the presence of Kramer's double degeneracy.

  8. Synthesis, characterization and in vitro antimicrobial studies of Co(II), Ni(II) and Cu(II) complexes derived from macrocyclic compartmental ligand

    NASA Astrophysics Data System (ADS)

    El-Gammal, O. A.; Bekheit, M. M.; El-Brashy, S. A.

    2015-02-01

    New Co(II), Ni(II) and Cu(II) complexes derived from tetradentate macrocyclic nitrogen ligand, (1E,4E,8E,12E)-5,8,13,16-tetramethyl-1,4,9,12-tetrazacyclohexadeca-4,8,12,16-tetraene (EDHDH) have been synthesized. The complexes have been characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR and ESR (for Cu(II) complex)) mass, and magnetic as well as thermal analysis measurements. The complexes afforded the formulae: [Cu(EDHDH)Cl2]·2EtOH and [M(EDHDH)X2]·nH2O where M = Co(II) and Ni(II), X = Cl- or OH-, n = 1,0, respectively. The data revealed an octahedral arrangement with N4 tetradentate donor sites in addition to two Cl atoms occupying the other two sites. ESR spectrum of Cu2+ complex confirmed the suggested geometry with values of a α2and β2 indicating that the in-plane σ-bonding and in-plane π-bonding are appreciably covalent, and are consistent with very strong σ-in-plane bonding in the complexes. The molecular modeling is drawn and showed the bond length, bond angle, chemical reactivity, energy components (kcal/mol) and binding energy (kcal/mol) for all the title compounds using DFT method. Also, the thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. Moreover, the in vitro antibacterial studies of all compounds screened against pathogenic bacteria (two Gram +ve and two Gram -ve) to assess their inhibiting potential. The assay indicated that the inhibition potential is metal ion dependent. The ligand, EDHDH, Co(II) and Cu(II) complexes exhibited a remarkable antibacterial activity against Streptococcus Pyogenes as Gram +ve and Proteus vulgaris as Gram -ve bacterial strains. On the other hand, Ni(II) complex revealed a moderate antibacterial activity against both Gram +ve organisms and no activity against Gram -ve bacterial strain.

  9. Sensitized terbium(III) macrocyclic-phthalimide complexes as luminescent pH switches.

    PubMed

    Chen, Gaoyun; Wardle, Nicholas J; Sarris, Jason; Chatterton, Nicholas P; Bligh, S W Annie

    2013-10-21

    Four new macrocyclic-phthalimide ligands were synthesised via the coupling of N-(3-bromopropyl)phthalimide either to cyclen (1,4,7,10-tetraazacyclododecane) itself or its carboxylate-functionalized analogues, and photophysical studies were carried out on their corresponding Tb(III) complexes in aqueous media as a function of pH. Luminescence intensities of Tb·L1a–Tb·L3a were in ‘switched off’ mode under acidic conditions (pH < 4), and were activated on progression to basic conditions as the phthalimido functions therein were hydrolysed to their corresponding phthalamates Tb·L1b–Tb·L3b. Emission of phthalamate-based macrocyclic Tb(III) complexes Tb·L1b–Tb·L3b was in ‘switched on’ mode between pH 4 and 11, exhibiting high quantum yields (Φ) and long lifetimes (τ) of the order of milliseconds at pH ~ 6. Tb(III) emissions were found to decline with increasing number of chromophores. The values of Φ and τ were 46% and 2.4 ms respectively for Tb·L1b at pH ~ 6 when activated. This is the best pH-dependent sensor based on a Tb(III) complex reported to date, benefiting from the macrocyclic architecture of the ligand.

  10. Improving the reactivity of phenylacetylene macrocycles toward topochemical polymerization by side chains modification

    PubMed Central

    Daigle, Maxime; Cantin, Katy

    2014-01-01

    Summary The synthesis and self-assembly of two new phenylacetylene macrocycle (PAM) organogelators were performed. Polar 2-hydroxyethoxy side chains were incorporated in the inner part of the macrocycles to modify the assembly mode in the gel state. With this modification, it was possible to increase the reactivity of the macrocycles in the xerogel state to form polydiacetylenes (PDAs), leading to a significant enhancement of the polymerization yields. The organogels and the PDAs were characterized using Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). PMID:25161718

  11. Accurate and Reliable Prediction of the Binding Affinities of Macrocycles to Their Protein Targets.

    PubMed

    Yu, Haoyu S; Deng, Yuqing; Wu, Yujie; Sindhikara, Dan; Rask, Amy R; Kimura, Takayuki; Abel, Robert; Wang, Lingle

    2017-12-12

    Macrocycles have been emerging as a very important drug class in the past few decades largely due to their expanded chemical diversity benefiting from advances in synthetic methods. Macrocyclization has been recognized as an effective way to restrict the conformational space of acyclic small molecule inhibitors with the hope of improving potency, selectivity, and metabolic stability. Because of their relatively larger size as compared to typical small molecule drugs and the complexity of the structures, efficient sampling of the accessible macrocycle conformational space and accurate prediction of their binding affinities to their target protein receptors poses a great challenge of central importance in computational macrocycle drug design. In this article, we present a novel method for relative binding free energy calculations between macrocycles with different ring sizes and between the macrocycles and their corresponding acyclic counterparts. We have applied the method to seven pharmaceutically interesting data sets taken from recent drug discovery projects including 33 macrocyclic ligands covering a diverse chemical space. The predicted binding free energies are in good agreement with experimental data with an overall root-mean-square error (RMSE) of 0.94 kcal/mol. This is to our knowledge the first time where the free energy of the macrocyclization of linear molecules has been directly calculated with rigorous physics-based free energy calculation methods, and we anticipate the outstanding accuracy demonstrated here across a broad range of target classes may have significant implications for macrocycle drug discovery.

  12. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes.

    PubMed

    Liu, Kexi; Lei, Yinkai; Wang, Guofeng

    2013-11-28

    Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O2 adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N4 chelation, as well as the molecular and electronic structures for the O2 adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O2 on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d(z(2)), d(xy), d(xz), and d(yz)) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O2 adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.

  13. MacroEvoLution: A New Method for the Rapid Generation of Novel Scaffold-Diverse Macrocyclic Libraries.

    PubMed

    Saupe, Jörn; Kunz, Oliver; Haustedt, Lars Ole; Jakupovic, Sven; Mang, Christian

    2017-09-04

    Macrocycles are a structural class bearing great promise for future challenges in medicinal chemistry. Nevertheless, there are few flexible approaches for the rapid generation of structurally diverse macrocyclic compound collections. Here, an efficient method for the generation of novel macrocyclic peptide-based scaffolds is reported. The process, named here as "MacroEvoLution", is based on a cyclization screening approach that gives reliable access to novel macrocyclic architectures. Classification of building blocks into specific pools ensures that scaffolds with orthogonally addressable functionalities are generated, which can easily be used for the generation of structurally diverse compound libraries. The method grants rapid access to novel scaffolds with scalable synthesis (multi gram scale) and the introduction of further diversity at a late stage. Despite being developed for peptidic systems, the approach can easily be extended for the synthesis of systems with a decreased peptidic character. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  14. Acetone-Linked Peptides: A Convergent Approach for Peptide Macrocyclization and Labeling.

    PubMed

    Assem, Naila; Ferreira, David J; Wolan, Dennis W; Dawson, Philip E

    2015-07-20

    Macrocyclization is a broadly applied approach for overcoming the intrinsically disordered nature of linear peptides. Herein, it is shown that dichloroacetone (DCA) enhances helical secondary structures when introduced between peptide nucleophiles, such as thiols, to yield an acetone-linked bridge (ACE). Aside from stabilizing helical structures, the ketone moiety embedded in the linker can be modified with diverse molecular tags by oxime ligation. Insights into the structure of the tether were obtained through co-crystallization of a constrained S-peptide in complex with RNAse S. The scope of the acetone-linked peptides was further explored through the generation of N-terminus to side chain macrocycles and a new approach for generating fused macrocycles (bicycles). Together, these studies suggest that acetone linking is generally applicable to peptide macrocycles with a specific utility in the synthesis of stabilized helices that incorporate functional tags. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. How Proteins Bind Macrocycles

    PubMed Central

    Villar, Elizabeth A.; Beglov, Dmitri; Chennamadhavuni, Spandan; Porco, John A.; Kozakov, Dima; Vajda, Sandor; Whitty, Adrian

    2014-01-01

    The potential utility of synthetic macrocycles as drugs, particularly against low druggability targets such as protein-protein interactions, has been widely discussed. There is little information, however, to guide the design of macrocycles for good target protein-binding activity or bioavailability. To address this knowledge gap we analyze the binding modes of a representative set of macrocycle-protein complexes. The results, combined with consideration of the physicochemical properties of approved macrocyclic drugs, allow us to propose specific guidelines for the design of synthetic macrocycles libraries possessing structural and physicochemical features likely to favor strong binding to protein targets and also good bioavailability. We additionally provide evidence that large, natural product derived macrocycles can bind to targets that are not druggable by conventional, drug-like compounds, supporting the notion that natural product inspired synthetic macrocycles can expand the number of proteins that are druggable by synthetic small molecules. PMID:25038790

  16. Zn2+ -Ion Sensing by Fluorescent Schiff Base Calix[4]arene Macrocycles.

    PubMed

    Ullmann, Steve; Schnorr, René; Handke, Marcel; Laube, Christian; Abel, Bernd; Matysik, Jörg; Findeisen, Matthias; Rüger, Robert; Heine, Thomas; Kersting, Berthold

    2017-03-17

    A macrocyclic ligand (H 2 L) containing two o,o'-bis(iminomethyl)phenol and two calix[4]arene head units has been synthesized and its coordination chemistry towards divalent Ni and Zn investigated. The new macrocycle forms complexes of composition [ML] (M=Zn, M=Ni) and [ZnL(py) 2 ], which were characterized by elemental analysis; IR, UV/Vis, and NMR spectroscopy; electrospray ionization mass spectrometry (ESI-MS); and X-ray crystallography (for [ZnL(py) 2 ] and [NiL]). H 2 L allows the sensitive optical detection of Zn 2+ among a series of biologically relevant metal ions by a dual fluorescence enhancement/quenching effect in solution. The fluorescence intensity of the macrocycle increases by a factor of ten in the presence of Zn 2+ with a detection limit in the lower nanomolar region. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Copper(II)-catalyzed amidations of alkynyl bromides as a general synthesis of ynamides and Z-enamides. An intramolecular amidation for the synthesis of macrocyclic ynamides.

    PubMed

    Zhang, Xuejun; Zhang, Yanshi; Huang, Jian; Hsung, Richard P; Kurtz, Kimberly C M; Oppenheimer, Jossian; Petersen, Matthew E; Sagamanova, Irina K; Shen, Lichun; Tracey, Michael R

    2006-05-26

    A general and efficient method for the coupling of a wide range of amides with alkynyl bromides is described here. This novel amidation reaction involves a catalytic protocol using copper(II) sulfate-pentahydrate and 1,10-phenanthroline to direct the sp-C-N bond formation, leading to a structurally diverse array of ynamides including macrocyclic ynamides via an intramolecular amidation. Given the surging interest in ynamide chemistry, this atom economical synthesis of ynamides should invoke further attention from the synthetic organic community.

  18. Synthesis, spectroscopic studies and electrochemistry of palladium (II) macrocyclic complexes derived from a new tetraazahalogen substituted ligands by template method and their antimicrobial and pesticidal activities

    NASA Astrophysics Data System (ADS)

    Masih, Iffat; Fahmi, Nighat

    2011-09-01

    A new series of Pd(II) macrocyclic complexes have been synthesized by template condensation of bis(benzil)4-chloro 1,2-phenylenediamine (ML 1) and bis(benzil)4-fluro 1,2-phenylenediamine (ML 2) respectively, with appropriate diamine i.e. 1,2-phenylenediamine, 4-chloro 1,2-phenylenediamine and 4-fluro 1,2-phenylenediamine in the presence of PdCl 2 to form complexes of the type [Pd(C 40H 26N 4ClF)]Cl 2, [Pd(C 40H 27N 4X)]Cl 2 and [Pd(C 40H 26N 4X 2)]Cl 2, where X = Cl, F. The complexes have been characterized with the help of elemental analysis, IR, 1H NMR, electronic spectra, conductance measurement, magnetic susceptibility, cyclic voltammetry and X-ray powder diffraction studies. On the basis of these studies a square planar geometry has been proposed around the metal ion. The newly synthesized ligands and their complexes have been screened for antimicrobial and pesticidal activities. The results obtained from bioassays indicate that this class of compounds can be utilized for the design of new substance with pesticidal activity and promising antimicrobial activity.

  19. Synthesis of macrocyclic polyaminocarboxylates and their use for preparing stable radiometal antibody immunoconjugates for therapy, spect and pet imaging

    DOEpatents

    Mease, Ronnie C.; Mausner, Leonard F.; Srivastava, Suresh C.

    1995-06-27

    A simple method for the synthesis of 1,4,7,10-tetraazacyclododecane N,N'N",N'"-tetraacetic acid and 1,4,8,11-tetraazacyclotetradecane N,N',N",N'"-tetraacetic acid involves cyanomethylating 1,4,7,10-tetraazacyclododecane or 1,4,8,11-tetraazacyclotetradecane to form a tetranitrile and hydrolyzing the tetranitrile. These macrocyclic compounds are functionalized through one of the carboxylates and then conjugated to various biological molecules including monoclonal antibodies. The resulting conjugated molecules are labeled with radiometals for SPECT and PET imaging and for radiotherapy.

  20. A diversity-oriented synthesis strategy enabling the combinatorial-type variation of macrocyclic peptidomimetic scaffolds† †Electronic supplementary information (ESI) available: Experimental procedures, characterization data and details of the computational analyses. See DOI: 10.1039/c5ob00371g Click here for additional data file.

    PubMed Central

    Isidro-Llobet, Albert; Hadje Georgiou, Kathy; Galloway, Warren R. J. D.; Giacomini, Elisa; Hansen, Mette R.; Méndez-Abt, Gabriela; Tan, Yaw Sing; Carro, Laura; Sore, Hannah F.

    2015-01-01

    Macrocyclic peptidomimetics are associated with a broad range of biological activities. However, despite such potentially valuable properties, the macrocyclic peptidomimetic structural class is generally considered as being poorly explored within drug discovery. This has been attributed to the lack of general methods for producing collections of macrocyclic peptidomimetics with high levels of structural, and thus shape, diversity. In particular, there is a lack of scaffold diversity in current macrocyclic peptidomimetic libraries; indeed, the efficient construction of diverse molecular scaffolds presents a formidable general challenge to the synthetic chemist. Herein we describe a new, advanced strategy for the diversity-oriented synthesis (DOS) of macrocyclic peptidomimetics that enables the combinatorial variation of molecular scaffolds (core macrocyclic ring architectures). The generality and robustness of this DOS strategy is demonstrated by the step-efficient synthesis of a structurally diverse library of over 200 macrocyclic peptidomimetic compounds, each based around a distinct molecular scaffold and isolated in milligram quantities, from readily available building-blocks. To the best of our knowledge this represents an unprecedented level of scaffold diversity in a synthetically derived library of macrocyclic peptidomimetics. Cheminformatic analysis indicated that the library compounds access regions of chemical space that are distinct from those addressed by top-selling brand-name drugs and macrocyclic natural products, illustrating the value of our DOS approach to sample regions of chemical space underexploited in current drug discovery efforts. An analysis of three-dimensional molecular shapes illustrated that the DOS library has a relatively high level of shape diversity. PMID:25778821

  1. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions.

    PubMed

    Park, Yongho; Harper, Kaid C; Kuhl, Nadine; Kwan, Eugene E; Liu, Richard Y; Jacobsen, Eric N

    2017-01-13

    Carbohydrates are involved in nearly all aspects of biochemistry, but their complex chemical structures present long-standing practical challenges to their synthesis. In particular, stereochemical outcomes in glycosylation reactions are highly dependent on the steric and electronic properties of coupling partners; thus, carbohydrate synthesis is not easily predictable. Here we report the discovery of a macrocyclic bis-thiourea derivative that catalyzes stereospecific invertive substitution pathways of glycosyl chlorides. The utility of the catalyst is demonstrated in the synthesis of trans-1,2-, cis-1,2-, and 2-deoxy-β-glycosides. Mechanistic studies are consistent with a cooperative mechanism in which an electrophile and a nucleophile are simultaneously activated to effect a stereospecific substitution reaction. Copyright © 2017, American Association for the Advancement of Science.

  2. Multicomponent Macrocyclization Reactions (MCMRs) Employing Highly Reactive Acyl Ketene and Nitrile Oxide Intermediates

    PubMed Central

    Knapp, John M.; Fettinger, James C.; Kurth, Mark J.

    2011-01-01

    An efficient synthesis of spiro-fused macrolactams by a multicomponent macrocyclization reaction (MCMR) is reported. The use of highly reactive, transient intermediates in this MCMR permits short reaction times, even at high dilution. The methods employed for this MCMR were first developed as a four component strategy for the synthesis of β-ketoamide isoxazolines. PMID:21827181

  3. Two Macrocycles in One Shot: Synthesis, Spectroscopy, Photophysics, and Tautomerism of 23-Oxahemiporphycene and 21-Oxacorrole-5-carbaldehyde.

    PubMed

    Ostapko, Jakub; Kelm, Anna; Kijak, Michał; Leśniewska, Barbara; Waluk, Jacek

    2018-04-19

    The synthesis of 23-oxahemiporphycene, the first monooxa analogue of hemiporphycene, a structural isomer of porphyrin, is reported. Its generation under McMurry reaction conditions is surprisingly accompanied by the appearance of a formyl derivative of oxacorrole, 21-oxacorrole-5-carbaldehyde. A mechanism for the formation of the latter is proposed, relying on pinacol rearrangement of titanium pinacolate. The structures of the most stable tautomeric forms are established for both compounds based on IR and NMR spectra combined with DFT calculations. Spectral and photophysical characteristics are compared with those of structurally similar macrocycles. Replacement of one nitrogen by oxygen in hemiporphycene has only a minor impact. In contrast, for corrole it leads to the enhancement of stability and to strongly reduced rates of nonradiative deactivation of the lowest excited singlet state. This is explained by the planarity of oxacorroles, achieved by removing one of the inner hydrogen atoms from the inner cavity. Unusual crystal packing is observed for the protonated form of 23-oxahemiporphycene, which exhibits a π-π stacked columnar alignment of positively charged macrocycle units. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cycloaddition Reactions of Cobalt-Complexed Macrocyclic Alkynes: The Transannular Pauson-Khand Reaction.

    PubMed

    Karabiyikoglu, Sedef; Boon, Byron A; Merlic, Craig A

    2017-08-04

    The Pauson-Khand reaction is a powerful tool for the synthesis of cyclopentenones through the efficient [2 + 2 + 1] cycloaddition of dicobalt alkyne complexes with alkenes. While intermolecular and intramolecular variants are widely known, transannular versions of this reaction are unknown and the basis of this study. Macrocyclic enyne and dienyne complexes were readily synthesized by palladium(II)-catalyzed oxidative macrocyclizations of bis(vinyl boronate esters) or ring-closing metathesis reactions followed by complexation with dicobalt octacarbonyl. Several reaction modalities of these macrocyclic complexes were uncovered. In addition to the first successful transannular Pauson-Khand reactions, other intermolecular and transannular cycloaddition reactions included intermolecular Pauson-Khand reactions, transannular [4 + 2] cycloaddition reactions, intermolecular [2 + 2 + 2] cycloaddition reactions, and intermolecular [2 + 2 + 1 + 1] cycloaddition reactions. The structural and reaction requirements for each process are presented.

  5. Repurposing a Library of Human Cathepsin L Ligands: Identification of Macrocyclic Lactams as Potent Rhodesain and Trypanosoma brucei Inhibitors.

    PubMed

    Giroud, Maude; Dietzel, Uwe; Anselm, Lilli; Banner, David; Kuglstatter, Andreas; Benz, Jörg; Blanc, Jean-Baptiste; Gaufreteau, Delphine; Liu, Haixia; Lin, Xianfeng; Stich, August; Kuhn, Bernd; Schuler, Franz; Kaiser, Marcel; Brun, Reto; Schirmeister, Tanja; Kisker, Caroline; Diederich, François; Haap, Wolfgang

    2018-04-26

    Rhodesain (RD) is a parasitic, human cathepsin L (hCatL) like cysteine protease produced by Trypanosoma brucei ( T. b.) species and a potential drug target for the treatment of human African trypanosomiasis (HAT). A library of hCatL inhibitors was screened, and macrocyclic lactams were identified as potent RD inhibitors ( K i < 10 nM), preventing the cell-growth of Trypanosoma brucei rhodesiense (IC 50 < 400 nM). SARs addressing the S2 and S3 pockets of RD were established. Three cocrystal structures with RD revealed a noncovalent binding mode of this ligand class due to oxidation of the catalytic Cys25 to a sulfenic acid (Cys-SOH) during crystallization. The P-glycoprotein efflux ratio was measured and the in vivo brain penetration in rats determined. When tested in vivo in acute HAT model, the compounds permitted up to 16.25 (vs 13.0 for untreated controls) mean days of survival.

  6. Polycatenar Ligand Control of the Synthesis and Self-Assembly of Colloidal Nanocrystals.

    PubMed

    Diroll, Benjamin T; Jishkariani, Davit; Cargnello, Matteo; Murray, Christopher B; Donnio, Bertrand

    2016-08-24

    Hydrophobic colloidal nanocrystals are typically synthesized and manipulated with commercially available ligands, and surface functionalization is therefore typically limited to a small number of molecules. Here, we report the use of polycatenar ligands derived from polyalkylbenzoates for the direct synthesis of metallic, chalcogenide, pnictide, and oxide nanocrystals. Polycatenar molecules, branched structures bearing diverging chains in which the terminal substitution pattern, functionality, and binding group can be independently modified, offer a modular platform for the development of ligands with targeted properties. Not only are these ligands used for the direct synthesis of monodisperse nanocrystals, but nanocrystals coated with polycatenar ligands self-assemble into softer bcc superlattices that deviate from conventional harder close-packed structures (fcc or hcp) formed by the same nanocrystals coated with commercial ligands. Self-assembly experiments demonstrate that the molecular structure of polycatenar ligands encodes interparticle spacings and attractions, engineering self-assembly, which is tunable from hard sphere to soft sphere behavior.

  7. Synthesis of Strained 1,3-Diene Macrocycles via Copper-Mediated Castro-Stephens Coupling/Alkyne Reduction Tandem Reactions.

    PubMed

    Li, Wei; Schneider, Christopher M; Georg, Gunda I

    2015-08-07

    A copper-mediated macrocyclization involving the reaction of a vinyl iodide and a terminal alkyne followed by an in situ reduction of the enyne intermediate is reported. The reaction generates a conjugated Z-double bond within a strained medium-size lactone, lactam, or ether macrocycle. A variety of macrocyclic compounds bearing different ring sizes and functionalities were synthesized. A complementary stepwise procedure was also developed for less strained ring systems.

  8. Catalytic reduction of pralidoxime in pharmaceuticals by macrocyclic Ni(II) compounds derived from orthophthalaldehyde.

    PubMed

    Reddy, P Muralidhar; Prasad, Adapa V S S; Rohini, Rondla; Ravinder, Vadde

    2008-08-01

    Efficient catalytic method for the reduction of pralidoxime to its amine derivative by macrocyclic Ni(II) compounds has been developed. Ten macrocyclic Schiff base Ni(II) compounds were synthesized via non-template synthesis by treating the corresponding macrocycles with nickel chloride in 1:1 ratio. The resulting compounds were characterized by elemental, IR, (1)H NMR, (13)C NMR, mass, electronic spectra, conductance, magnetic, thermal studies and their structures have been proposed. These compounds were used as catalysts for the reduction of pralidoxime to its amino derivative. The reduced pralidoxime was also characterized by spectral analysis and catalytic cycle has been established. The reduced product was determined spectrophotometrically by treating with ninhydrin reagent and the percent yields were found to be in the range of 75.12-82.36%.

  9. Synthesis of macrocyclic polyaminocarboxylates and their use for preparing stable radiometal antibody immunoconjugates for therapy, SPECT and PET imaging

    DOEpatents

    Mease, R.C.; Mausner, L.F.; Srivastava, S.C.

    1995-06-27

    A simple method for the synthesis of 1,4,7,10-tetraazacyclododecane N,N{prime}N{double_prime},N{prime}{double_prime}-tetraacetic acid and 1,4,8,11-tetraazacyclotetradecane N,N{prime},N{double_prime},N{prime}{double_prime}-tetraacetic acid involves cyanomethylating 1,4,7,10-tetraazacyclododecane or 1,4,8,11-tetraazacyclotetradecane to form a tetranitrile and hydrolyzing the tetranitrile. These macrocyclic compounds are functionalized through one of the carboxylates and then conjugated to various biological molecules including monoclonal antibodies. The resulting conjugated molecules are labeled with radiometals for SPECT and PET imaging and for radiotherapy. 4 figs.

  10. Synthesis and binding studies of Alzheimer ligands on solid support.

    PubMed

    Rzepecki, Petra; Geib, Nina; Peifer, Manuel; Biesemeier, Frank; Schrader, Thomas

    2007-05-11

    Aminopyrazole derivatives constitute the first class of nonpeptidic rationally designed beta-sheet ligands. Here we describe a double solid-phase protocol for both synthesis and affinity testing. The presented solid-phase synthesis of four types of hybrid compounds relies on the Fmoc strategy and circumvents subsequent HPLC purification by precipitating the final product from organic solution in pure form. Hexa- and octapeptide pendants with internal di- and tetrapeptide bridges are now amenable in high yields to combinatorial synthesis of compound libraries for high-throughput screening purposes. Solid-phase peptide synthesis (SPPS) on an acid-resistant PAM allows us, after PMB deprotection, to subject the free aminopyrazole binding sites in an immobilized state to on-bead assays with fluorescence-labeled peptides. From the fluorescence emission intensity decrease, individual binding constants can be calculated via reference curves by simple application of the law of mass action. Gratifyingly, host/guest complexation can be monitored quantitatively even for those ligands, which are almost insoluble in water.

  11. Methods and intermediates for the synthesis of dipyrrin-substituted porphyrinic macrocycles

    DOEpatents

    Yu, Lianhe; Muthukumaran, Kannan; Sreedharan, Prathapan; Lindsey, Jonathan S.

    2010-05-25

    The present invention provides dipyrrin substituted porphyrinic macrocycles, intermediates useful for making the same, and methods of making the same. Such compounds may be used for purposes including the making of molecular memory devices, solar cells and light harvesting arrays.

  12. Lanthanide complexes of macrocyclic polyoxovanadates by VO4 units: synthesis, characterization, and structure elucidation by X-ray crystallography and EXAFS spectroscopy.

    PubMed

    Nishio, Masaki; Inami, Shinnosuke; Katayama, Misaki; Ozutsumi, Kazuhiko; Hayashi, Yoshihito

    2012-01-16

    Reactions of a tetravanadate anion, [V(4)O(12)](4-), with a series of lanthanide(III) salts yield three types of lanthanide complexes of macrocyclic polyoxovanadates: (Et(4)N)(6)[Ln(III)V(9)O(27)] [Ln = Nd (1), Sm (2), Eu (3), Gd (4), Tb (5), Dy (6)], (Et(4)N)(5)[(H(2)O)Ho(III)(V(4)O(12))(2)] (7), and (Et(4)N)(7)[Ln(III)V(10)O(30)] [Ln = Er (8), Tm (9), Yb (10), Lu (11)]. Lanthanide complexes 1-11 are isolated and characterized by IR, elemental analysis, single-crystal X-ray diffraction, and extended X-ray absorption fine structure spectroscopy (EXAFS). Lanthanide complexes 1-6 are composed of a square-antiprism eight-coordinated Ln(III) center with a macrocyclic polyoxovanadate that is constructed from nine VO(4) tetrahedra through vertex sharing. The structure of 7 is composed of a seven-coordinated Ho(III) center, which exhibits a capped trigonal-prism coordination environment by the sandwiching of two cyclic tetravanadates with a capping H(2)O ligand. Lanthanide complexes 8-11 have a six-coordinated Ln(III) center with a 10-membered vanadate ligand. The structural trend to adopt a larger coordination number for a larger lanthanide ion among the three types of structures is accompanied by a change in the vanadate ring sizes. These lanthanide complexes are examined by EXAFS spectroscopies on lanthanide L(III) absorption edges, and the EXAFS oscillations of each of the samples in the solid state and in acetonitrile are identical. The Ln-O and Ln···V bond lengths obtained from fits of the EXAFS data are consistent with the data from the single-crystal X-ray studies, reflecting retention of the structures in acetonitrile.

  13. Solar Thermal Energy Storage in a Photochromic Macrocycle.

    PubMed

    Vlasceanu, Alexandru; Broman, Søren L; Hansen, Anne S; Skov, Anders B; Cacciarini, Martina; Kadziola, Anders; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted

    2016-07-25

    The conversion and efficient storage of solar energy is recognized to hold significant potential with regard to future energy solutions. Molecular solar thermal batteries based on photochromic systems exemplify one possible technology able to harness and apply this potential. Herein is described the synthesis of a macrocycle based on a dimer of the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermal couple. By taking advantage of conformational strain, this DHA-DHA macrocycle presents an improved ability to absorb and store incident light energy in chemical bonds (VHF-VHF). A stepwise energy release over two sequential ring-closing reactions (VHF→DHA) combines the advantages of an initially fast discharge, hypothetically addressing immediate energy consumption needs, followed by a slow process for consistent, long-term use. This exemplifies another step forward in the molecular engineering and design of functional organic materials towards solar thermal energy storage and release. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Screening of ligands for the Ullmann synthesis of electron-rich diaryl ethers.

    PubMed

    Otto, Nicola; Opatz, Till

    2012-01-01

    In the search for new ligands for the Ullmann diaryl ether synthesis, permitting the coupling of electron-rich aryl bromides at relatively low temperatures, 56 structurally diverse multidentate ligands were screened in a model system that uses copper iodide in acetonitrile with potassium phosphate as the base. The ligands differed largely in their performance, but no privileged structural class could be identified.

  15. Next generation macrocyclic and acyclic cationic lipids for gene transfer: Synthesis and in vitro evaluation.

    PubMed

    Jubeli, Emile; Maginty, Amanda B; Abdul Khalique, Nada; Raju, Liji; Abdulhai, Mohamad; Nicholson, David G; Larsen, Helge; Pungente, Michael D; Goldring, William P D

    2015-10-01

    Previously we reported the synthesis and in vitro evaluation of four novel, short-chain cationic lipid gene delivery vectors, characterized by acyclic or macrocyclic hydrophobic regions composed of, or derived from, two 7-carbon chains. Herein we describe a revised synthesis of an expanded library of related cationic lipids to include extended chain analogues, their formulation with plasmid DNA (pDNA) and in vitro delivery into Chinese hamster ovarian (CHO-K1) cells. The formulations were evaluated against each other based on structural differences in the hydrophobic domain and headgroup. Structurally the library is divided into four sets based on lipids derived from two 7- or two 11-carbon hydrophobic chains, C7 and C11 respectively, which possess either a dimethylamine or a trimethylamine derived headgroup. Each set includes four cationic lipids based on an acyclic or macrocyclic, saturated or unsaturated hydrophobic domain. All lipids were co-formulated with the commercial cationic lipid 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC) in a 1:1 molar ratio, along with one of two distinct neutral co-lipids, cholesterol or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in an overall cationic-to-neutral lipid molar ratio of 3:2. Binding of lipid formulations with DNA, and packing morphology associated with the individual lipid-DNA complexes were characterized by gel electrophoresis and small angle X-ray diffraction (SAXD), respectively. As a general trend, lipoplex formulations based on mismatched binary cationic lipids, composed of a shorter C7 lipid and the longer lipid EPC (C14), were generally associated with higher transfection efficiency and lower cytotoxicity than their more closely matched C11/EPC binary lipid formulation counterparts. Furthermore, the cyclic lipids gave transfection levels as high as or greater than their acyclic counterparts, and formulations with cholesterol exhibited higher transfection and lower cytotoxicity than those

  16. Synthesis and hydrogenation application of Pt-Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer

    NASA Astrophysics Data System (ADS)

    Jin, Zhijun; Xiao, Haiyan; Zhou, Wei; Zhang, Dongqiao; Peng, Xiaohong

    2017-12-01

    Different generations of poly(propylene imine) (Gn-PPI) terminated with N-containing 15-membered triolefinic macrocycle (GnM) (n = 2, 3, 4, 5) were prepared. The bimetallic nanoparticle catalysts GnM-(Ptx/Pd10-x) (x = 0, 3, 5, 7, 10) were prepared by the synchronous ligand-exchange reaction between GnM and the complexes of Pt(PPh3)4 and Pd(PPh3)4. The structure and catalytic properties of GnM-(Ptx/Pd10-x) were characterized via Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy and inductively coupled plasma atomic emission spectroscopy. The novel bimetallic Pd-Pt nanoparticle catalysts stabilized by dendrimers (DSNs) present higher catalytic activities for the hydrogenation of dimeric acid (DA) than that of nitrile butadiene rubber (NBR). It can be concluded that bimetallic Pd-Pt DSNs possess alloying and synergistic electronic effects on account of the hydrogenation degree (HD) of DA and NBR. Furthermore, the HD of DA and NBR shows a remarkable decrease with the incremental generations (n) of GnM-(Pt3/Pd7) (n = 2, 3, 4, 5).

  17. Synthetic approaches to aromatic belts: building up strain in macrocyclic polyarenes.

    PubMed

    Eisenberg, David; Shenhar, Roy; Rabinovitz, Mordecai

    2010-08-01

    This tutorial review discusses synthetic strategies towards aromatic belts, defined here as double-stranded conjugated macrocycles, such as [n]cyclacenes, [n]cyclophenacenes, Schlüter belt, and Vögtle belt. Their appeal stems, firstly, from the unique nature of their conjugation, having p orbitals oriented radially rather than perpendicular to the plane of the macrocycle. Secondly, as aromatic belts are model compounds of carbon nanotubes of different chiralities, a synthetic strategy towards the buildup of structural strain in these compounds could finally open a route towards rational chemical synthesis of carbon nanotubes. The elusiveness of these compounds has stimulated fascinating and ingenious synthetic strategies over the last decades. The various strategies are classified here by their approach to the buildup of structural strain, which is the main obstacle in the preparation of these curved polyarenes.

  18. Photoswitchable Dihydroazulene Macrocycles for Solar Energy Storage: The Effects of Ring Strain.

    PubMed

    Vlasceanu, Alexandru; Frandsen, Benjamin N; Skov, Anders B; Hansen, Anne Schou; Rasmussen, Mads Georg; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted

    2017-10-06

    Efficient energy storage and release are two major challenges of solar energy harvesting technologies. The development of molecular solar thermal systems presents one approach to address these issues by tuning the isomerization reactions of photo/thermoswitches. Here we show that the incorporation of photoswitches into macrocyclic structures is a particularly attractive solution for increasing the storage time. We present the synthesis and properties of a series of macrocycles incorporating two dihydroazulene (DHA) photoswitching subunits, bridged by linkers of varying chain length. Independent of ring size, all macrocycles exhibit stepwise, light-induced, ring-opening reactions (DHA-DHA to DHA-VHF to VHF-VHF; VHF = vinylheptafulvene) with the first DHA undergoing isomerization with a similar efficiency as the uncyclized parent system while the second (DHA-VHF to VHF-VHF) is significantly slower. The energy-releasing, VHF-to-DHA, ring closures also occur in a stepwise manner and are systematically found to proceed slower in the more strained (smaller) cycles, but in all cases with a remarkably slow conversion of the second VHF to DHA. We managed to increase the half-life of the second VHF-to-DHA conversion from 65 to 202 h at room temperature by simply decreasing the ring size. A computational study reveals the smallest macrocycle to have the most energetic VHF-VHF state and hence highest energy density.

  19. Macrocycles

    DOEpatents

    Raymond, Kenneth N.; Xu, Jide; Pham, Tiffany A.

    2016-09-13

    The invention provides macrocycles useful in chelating metal ions, particularly radionuclides, to provide metal ion complexes. The invention also provides methods of using the compounds and complexes of the invention, such as in therapeutic and diagnostic applications.

  20. Synthesis, Characterization and Antifertility Activity of New Unsymmetrical Macrocyclic Complexes of Tin(II)

    PubMed Central

    Sharma, Kripa; Joshi, S. C.

    2000-01-01

    A new series of unsymmetrical macrocyclic complexes of tin(ll) has been prepared by the template process using bis(3-oxo-2-butylidene)propane-1,3-diamine as precursor. This affords a method to synthesize these complexes with various ring sizes. The tetradentate macrocyclic precursor [N4mL] reacts with SnCl2 and different diamines in a 1:1:1 molar ratio in refluxing methanol to give complexes of the type [Sn(N4mL)Cl2]. The ring expansion has been achieved by varying the diamine between the two diacetyl amino nitrogen atoms. The macrocyclic precursor and its metal complexes have been characterized on the basis of elemental analysis, molar conductance, molecular weight determinations, IR, 1H NMR,13C NMR, 119Sn NMR and electronic spectral studies. An octahedral geometry around the metal ion is suggested for these complexes. On the basis of molecular weights and conductivity measurements, their monomeric and non-electrolytic nature has been confirmed. The precursor and complexes have been screened in vitro against a number of pathogenic fungi and bacteria to assess their growth inhibiting potential. The testicular sperm density and testicular sperm morphology, sperm motility, density of cauda epididymal spermatozoa and fertility in mating trails and biochemicals parameters of reproductive organs have been examined and discussed. PMID:18475951

  1. Structural and kinetic study of reversible CO2 fixation by dicopper macrocyclic complexes. From intramolecular binding to self-assembly of molecular boxes.

    PubMed

    Company, Anna; Jee, Joo-Eun; Ribas, Xavi; Lopez-Valbuena, Josep Maria; Gómez, Laura; Corbella, Montserrat; Llobet, Antoni; Mahía, José; Benet-Buchholz, Jordi; Costas, Miquel; van Eldik, Rudi

    2007-10-29

    A study of the reversible CO2 fixation by a series of macrocyclic dicopper complexes is described. The dicopper macrocyclic complexes [Cu2(OH)2(Me2p)](CF3SO3)2, 1(CF3SO3)2, and [Cu2(mu-OH)2(Me2m)](CF3SO3)2, 2(CF3SO3)2, (Scheme 1) containing terminally bound and bridging hydroxide ligands, respectively, promote reversible inter- and intramolecular CO2 fixation that results in the formation of the carbonate complexes [{Cu2(Me2p)}2(mu-CO3)2](CF3SO3)4, 4(CF3SO3)4, and [Cu2(mu-CO3)(Me2m)](CF3SO3)2, 5(CF3SO3)2. Under a N2 atmosphere the complexes evolve CO2 and revert to the starting hydroxo complexes 1(CF3SO3)2 and 2(CF3SO3)2, a reaction the rate of which linearly depends on [H2O]. In the presence of water, attempts to crystallize 5(CF3SO3)2 afford [{Cu2(Me2m)(H2O)}2(mu-CO3)2](CF3SO3)4, 6(CF3SO3)4, which appears to rapidly convert to 5(CF3SO3)2 in acetonitrile solution. [Cu2(OH)2(H3m)]2+, 7, which contains a larger macrocyclic ligand, irreversibly reacts with atmospheric CO2 to generate cagelike [{Cu2(H3m)}2(mu-CO3)2](ClO4)4, 8(ClO4)4. However, addition of 1 equiv of HClO4 per Cu generates [Cu2(H3m)(CH3CN)4]4+ (3), and subsequent addition of Et3N under air reassembles 8. The carbonate complexes 4(CF3SO3)4, 5(CF3SO3)2, 6(CF3SO3)4, and 8(ClO4)4 have been characterized in the solid state by X-ray crystallography. This analysis reveals that 4(CF3SO3)4, 6(CF3SO3)4, and 8(ClO4)4 consist of self-assembled molecular boxes containing two macrocyclic dicopper complexes, bridged by CO32- ligands. The bridging mode of the carbonate ligand is anti-anti-mu-eta1:eta1 in 4(CF3SO3)4, anti-anti-mu-eta2:eta1 in 6(CF3SO3)4 and anti-anti-mu-eta2:eta2 in 5(CF3SO3)2 and 8(ClO4)4. Magnetic susceptibility measurements on 4(CF3SO3)4, 6(CF3SO3)4, and 8(ClO4)4 indicate that the carbonate ligands mediate antiferromagnetic coupling between each pair of bridged CuII ions (J = -23.1, -108.3, and -163.4 cm-1, respectively, H = -JS1S2). Detailed kinetic analyses of the reaction between carbon dioxide

  2. Synthesis and hydrogenation application of Pt–Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer

    PubMed Central

    Xiao, Haiyan; Zhou, Wei; Zhang, Dongqiao; Peng, Xiaohong

    2017-01-01

    Different generations of poly(propylene imine) (Gn-PPI) terminated with N-containing 15-membered triolefinic macrocycle (GnM) (n = 2, 3, 4, 5) were prepared. The bimetallic nanoparticle catalysts GnM-(Ptx/Pd10−x) (x = 0, 3, 5, 7, 10) were prepared by the synchronous ligand-exchange reaction between GnM and the complexes of Pt(PPh3)4 and Pd(PPh3)4. The structure and catalytic properties of GnM-(Ptx/Pd10−x) were characterized via Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy and inductively coupled plasma atomic emission spectroscopy. The novel bimetallic Pd–Pt nanoparticle catalysts stabilized by dendrimers (DSNs) present higher catalytic activities for the hydrogenation of dimeric acid (DA) than that of nitrile butadiene rubber (NBR). It can be concluded that bimetallic Pd–Pt DSNs possess alloying and synergistic electronic effects on account of the hydrogenation degree (HD) of DA and NBR. Furthermore, the HD of DA and NBR shows a remarkable decrease with the incremental generations (n) of GnM-(Pt3/Pd7) (n = 2, 3, 4, 5). PMID:29308263

  3. Synthesis and hydrogenation application of Pt-Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer.

    PubMed

    Jin, Zhijun; Xiao, Haiyan; Zhou, Wei; Zhang, Dongqiao; Peng, Xiaohong

    2017-12-01

    Different generations of poly(propylene imine) (G n -PPI) terminated with N-containing 15-membered triolefinic macrocycle (G n M) ( n  = 2, 3, 4, 5) were prepared. The bimetallic nanoparticle catalysts G n M-(Pt x /Pd 10- x ) ( x  = 0, 3, 5, 7, 10) were prepared by the synchronous ligand-exchange reaction between G n M and the complexes of Pt(PPh 3 ) 4 and Pd(PPh 3 ) 4 . The structure and catalytic properties of G n M-(Pt x /Pd 10- x ) were characterized via Fourier transform infrared spectroscopy, 1 H nuclear magnetic resonance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy and inductively coupled plasma atomic emission spectroscopy. The novel bimetallic Pd-Pt nanoparticle catalysts stabilized by dendrimers (DSNs) present higher catalytic activities for the hydrogenation of dimeric acid (DA) than that of nitrile butadiene rubber (NBR). It can be concluded that bimetallic Pd-Pt DSNs possess alloying and synergistic electronic effects on account of the hydrogenation degree (HD) of DA and NBR. Furthermore, the HD of DA and NBR shows a remarkable decrease with the incremental generations ( n ) of G n M-(Pt 3 /Pd 7 ) ( n  = 2, 3, 4, 5).

  4. Hydrolysis of Letrozole catalyzed by macrocyclic Rhodium (I) Schiff-base complexes.

    PubMed

    Reddy, P Muralidhar; Shanker, K; Srinivas, V; Krishna, E Ravi; Rohini, R; Srikanth, G; Hu, Anren; Ravinder, V

    2015-03-15

    Ten mononuclear Rhodium (I) complexes were synthesized by macrocyclic ligands having N4 and N2O2 donor sites. Square planar geometry is assigned based on the analytical and spectral properties for all complexes. Rh(I) complexes were investigated as catalysts in hydrolysis of Nitrile group containing pharmaceutical drug Letrozole. A comparative study showed that all the complexes are efficient in the catalysis. The percent yields of all the catalytic reaction products viz. drug impurities were determined by spectrophotometric procedures and characterized by spectral studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Epitope targeting of tertiary protein structure enables target-guided synthesis of a potent in-cell inhibitor of botulinum neurotoxin.

    PubMed

    Farrow, Blake; Wong, Michelle; Malette, Jacquie; Lai, Bert; Deyle, Kaycie M; Das, Samir; Nag, Arundhati; Agnew, Heather D; Heath, James R

    2015-06-08

    Botulinum neurotoxin (BoNT) serotype A is the most lethal known toxin and has an occluded structure, which prevents direct inhibition of its active site before it enters the cytosol. Target-guided synthesis by in situ click chemistry is combined with synthetic epitope targeting to exploit the tertiary structure of the BoNT protein as a landscape for assembling a competitive inhibitor. A substrate-mimicking peptide macrocycle is used as a direct inhibitor of BoNT. An epitope-targeting in situ click screen is utilized to identify a second peptide macrocycle ligand that binds to an epitope that, in the folded BoNT structure, is active-site-adjacent. A second in situ click screen identifies a molecular bridge between the two macrocycles. The resulting divalent inhibitor exhibits an in vitro inhibition constant of 165 pM against the BoNT/A catalytic chain. The inhibitor is carried into cells by the intact holotoxin, and demonstrates protection and rescue of BoNT intoxication in a human neuron model. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Comprehensive computational design of ordered peptide macrocycles

    PubMed Central

    Hosseinzadeh, Parisa; Bhardwaj, Gaurav; Mulligan, Vikram Khipple; Shortridge, Matthew D.; Craven, Timothy W.; Pardo-Avila, Fátima; Rettie, Stephen A.; Kim, David E.; Silva, Daniel-Adriano; Ibrahim, Yehia M.; Webb, Ian K.; Cort, John R.; Adkins, Joshua N.; Varani, Gabriele; Baker, David

    2018-01-01

    Mixed-chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics identified to date, but there is currently no way to systematically search the structural space spanned by such compounds. Natural proteins do not provide a useful guide: Peptide macrocycles lack regular secondary structures and hydrophobic cores, and can contain local structures not accessible with L-amino acids. Here, we enumerate the stable structures that can be adopted by macrocyclic peptides composed of L- and D-amino acids by near-exhaustive backbone sampling followed by sequence design and energy landscape calculations. We identify more than 200 designs predicted to fold into single stable structures, many times more than the number of currently available unbound peptide macrocycle structures. Nuclear magnetic resonance structures of 9 of 12 designed 7- to 10-residue macrocycles, and three 11- to 14-residue bicyclic designs, are close to the computational models. Our results provide a nearly complete coverage of the rich space of structures possible for short peptide macrocycles and vastly increase the available starting scaffolds for both rational drug design and library selection methods. PMID:29242347

  7. FerriCast: a macrocyclic photocage for Fe3+.

    PubMed

    Kennedy, Daniel P; Incarvito, Christopher D; Burdette, Shawn C

    2010-02-01

    The non-siderophoric Fe(3+) photocage FerriCast (4,5-dimethoxy-2-nitrophenyl)-[4-(1-oxa-4,10-dithia-7-aza-cyclododec-7-yl)phenyl] methanol (2) has been prepared in high yield using an optimized two-step reaction sequence that utilizes a trimethylsilyl trifluoromethanesulfonate (TMSOTf) assisted electrophilic aromatic substitution as the key synthetic step. Spectrophotometric assessment of Fe(3+) binding to FerriCast revealed a binding stoichiometry and metal ion affinity dependent on the nature of the counterion. Exposure of FerriCast to 350 nm light initiates a photoreaction that converts FerriCast into FerriUnc (4,5-dimethoxy-2-nitrosophenyl)-[4-(1-oxa-4,10-dithia-7-aza-cyclododec-7-yl)phenyl]-methanone), which binds Fe(3+) less strongly owing to resonance delocalization of the anilino lone pair into the benzophenone pi-system. The release of Fe(3+) upon photolysis of FerriCast also was evaluated using a previously reported turn-on fluorescent sensor that utilizes the same macrocyclic ligand (4-(1-oxa-4,10-dithia-7-aza-cyclododec-7-yl)phenyl, AT(2)12C4). In contrast to the original reports on AT(2)12C4-based Fe(3+) sensors, FerriCast does not interact with ferric iron in aqueous solution. Introduction of oxygen containing solvents (MeOH, H(2)O, DMSO, MES, and phosphate buffers) to CH(3)CN solutions of metalated FerriCast lead to rapid decomplexation as measured by UV-visible spectroscopy. Further investigations contradicted the published conclusions on the aqueous coordination chemistry of AT(2)12C4, but also confirmed the unique and unexpected selectivity of the macrocycle for Fe(3+) in nonaqueous solvents. The crystallographic analysis of [Cu(AT(2)12C4)Cl](+) provides a rare example of a bifurcated hydrogen bond, and evidence for redox chemistry with the ligand. Spectrophotometric analysis of the model ligand with redox active metal ions provide evidence for AT(2)12C4(*+), a quasi-stable species the presence of which suggests caution should be taken when

  8. Synthesis, Structure, and Molecular Recognition of S6 - and (SO2 )6 -Corona[6](het)arenes: Control of Macrocyclic Conformation and Properties by the Oxidation State of the Bridging Heteroatoms.

    PubMed

    Guo, Qing-Hui; Zhao, Liang; Wang, Mei-Xiang

    2016-05-10

    We report herein the synthesis, structure, and molecular recognition of S6 - and (SO2 )6 -corona[6](het)arenes, and demonstrate a unique and efficient strategy of regulating macrocyclic conformation and properties by adjusting the oxidation state of the heteroatom linkages. The one-pot nucleophilic aromatic substitution reaction of 1,4-benzenedithiol derivatives, biphenyl-4,4'-dithiol and 9,9-dipropyl-9H-fluorene-2,7-dithiol with 3,6-dichlorotetrazine afforded S6 -corona[3]arene[3]tetrazines. These compounds underwent inverse-electron-demand Diels-Alder reaction with enamines and norbornadiene to produce S6 -corona[3]arene[3]pyridazines. Facile oxidation of sulfide linkages yielded (SO2 )6 -corona[3]arene[3]pyridazines. All corona[6](het)arenes adopted generally hexagonal macrocyclic ring structures; however, their electronic properties and conformation could be fine-tuned by altering the oxidation state of the sulfur linkages. Whereas (SO2 )6 -corona[3]arene[3]pyridazines were electron-deficient, S6 -corona[3]arene[3]pyridazines acted as electron-rich macrocyclic hosts that recognized various organic cations in both aqueous and organic solutions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Squaraine rotaxanes with boat conformation macrocycles.

    PubMed

    Fu, Na; Baumes, Jeffrey M; Arunkumar, Easwaran; Noll, Bruce C; Smith, Bradley D

    2009-09-04

    Mechanical encapsulation of fluorescent, deep-red bis(anilino)squaraine dyes inside Leigh-type tetralactam macrocycles produces interlocked squaraine rotaxanes. The surrounding macrocycles are flexible and undergo rapid exchange of chair and boat conformations in solution. A series of X-ray crystal structures show how the rotaxane co-conformational exchange process involves simultaneous lateral oscillation of the macrocycle about the center of the encapsulated squaraine thread. Rotaxane macrocycles with 1,4-phenylene sidewalls and 2,6-pyridine dicarboxamide bridging units are more likely to adopt boat conformations in the solid state than analogous squaraine rotaxane systems with isophthalamide-containing macrocycles. A truncated squaraine dye, with a secondary amine attached directly to the central C(4)O(2) core, is less electrophilic than the extended bis(anilino)squaraine analogue, but it is still susceptible to chemical and photochemical bleaching. Its stability is greatly enhanced when it is encapsulated as an interlocked squaraine rotaxane. An X-ray crystal structure of this truncated squaraine rotaxane shows the macrocycle in a boat conformation, and NMR studies indicate that the boat is maintained in solution. Encapsulation as a rotaxane increases the dye's brightness by a factor of 6. The encapsulation process appears to constrain the dye and reduce deformation of the chromophore from planarity. This study shows how mechanical encapsulation as a rotaxane can be used as a rational design parameter to fine-tune the chemical and photochemical properties of squaraine dyes.

  10. Squaraine Rotaxanes with Boat Conformation Macrocycles

    PubMed Central

    Fu, Na; Baumes, Jeffrey M.; Arunkumar, Easwaran; Noll, Bruce C.; Smith, Bradley D.

    2010-01-01

    Mechanical encapsulation of fluorescent, deep-red bis(anilino)squaraine dyes inside Leigh-type tetralactam macrocycles produces interlocked squaraine rotaxanes. The surrounding macrocycles are flexible and undergo rapid exchange of chair and boat conformations in solution. A series of X-ray crystal structures show how the rotaxane co-conformational exchange process involves simultaneous lateral oscillation of the macrocycle about the center of the encapsulated squaraine thread. Rotaxane macrocycles with 1,4-phenylene-sidewalls and 2,6-pyridine dicarboxamide bridging units are more likely to adopt boat conformations in the solid-state than analogous squaraine rotaxane systems with isophthalamide-containing macrocycles. A truncated squaraine dye, with a secondary amine attached directly to the central C4O2 core, is less electrophilic than the extended bis(anilino)squaraine analogue, but it is still susceptible to chemical and photochemical bleaching. Its stability is greatly enhanced when it is encapsulated as an interlocked squaraine rotaxane. An X-ray crystal structure of this truncated squaraine rotaxane shows the macrocycle in a boat conformation, and NMR studies indicate that the boat is maintained in solution. Encapsulation as a rotaxane increases the dye’s brightness by a factor of six. The encapsulation process appears to constrain the dye and reduce deformation of the chromophore from planarity. This study shows how mechanical encapsulation as a rotaxane can be used as a rational design parameter to fine-tune the chemical and photochemical properties of squaraine dyes. PMID:19639940

  11. Dissociation kinetics of open-chain and macrocyclic gadolinium(III)-aminopolycarboxylate complexes related to magnetic resonance imaging: catalytic effect of endogenous ligands.

    PubMed

    Baranyai, Zsolt; Pálinkás, Zoltán; Uggeri, Fulvio; Maiocchi, Alessandro; Aime, Silvio; Brücher, Ernő

    2012-12-14

    The kinetics of the metal exchange reactions between open-chain Gd(DTPA)(2-) and Gd(DTPA-BMA), macrocyclic Gd(DOTA)(-) and Gd(HP-DO3A) complexes, and Cu(2+)  ions were investigated in the presence of endogenous citrate, phosphate, carbonate and histidinate ligands in the pH range 6-8 in NaCl (0.15 M) at 25 °C. The rates of the exchange reactions of Gd(DTPA)(2-) and Gd(DTPA-BMA) are independent of the Cu(2+) concentration in the presence of citrate and the reactions occur via the dissociation of Gd(3+)  complexes catalyzed by the citrate ions. The HCO(3)(-)/CO(3)(2-) and H(2)PO(4)(-) ions also catalyze the dissociation of complexes. The rates of the dissociation of Gd(DTPA-BMA), catalyzed by the endogenous ligands, are about two orders of magnitude higher than those of the Gd(DTPA)(2-). In fact near to physiological conditions the bicarbonate and carbonate ions show the largest catalytic effect, that significantly increase the dissociation rate of Gd(DTPA-BMA) and make the higher pH values (when the carbonate ion concentration is higher) a risk-factor for the dissociation of complexes in body fluids. The exchange reactions of Gd(DOTA)(-) and Gd(HP-DO3A) with Cu(2+) occur through the proton assisted dissociation of complexes in the pH range 3.5-5 and the endogenous ligands do not affect the dissociation rates of complexes. More insights into the interaction scheme between Gd(DTPA-BMA) and Gd(DTPA)(2-) and endogenous ligands have been obtained by acquiring the (13)C NMR spectra of the corresponding diamagnetic Y(III)-complexes, indicating the increase of the rates of the intramolecular rearrangements in the presence of carbonate and citrate ions. The herein reported results may have implications in the understanding of the etiology of nephrogenic systemic fibrosis, a rare disease that has been associated to the administration of Gd-containing agents to patients with impaired renal function. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Comprehensive computational design of ordered peptide macrocycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosseinzadeh, Parisa; Bhardwaj, Gaurav; Mulligan, Vikram Khipple

    Mixed chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics identified to-date, but there is currently no way to systematically search through the structural space spanned by such compounds for new drug candidates. Natural proteins do not provide a useful guide: peptide macrocycles lack regular secondary structures and hydrophobic cores and have different backbone torsional constraints. Hence the development of new peptide macrocycles has been approached by modifying natural products or using library selection methods; the former is limited by the small number of known structures, and the latter by the limited size and diversity accessible throughmore » library-based methods. To overcome these limitations, here we enumerate the stable structures that can be adopted by macrocyclic peptides composed of L and D amino acids. We identify more than 200 designs predicted to fold into single stable structures, many times more than the number of currently available unbound peptide macrocycle structures. We synthesize and characterize by NMR twelve 7-10 residue macrocycles, 9 of which have structures very close to the design models in solution. NMR structures of three 11-14 residue bicyclic designs are also very close to the computational models. Our results provide a nearly complete coverage of the rich space of structures possible for short peptide based macrocycles unparalleled for other molecular systems, and vastly increase the available starting scaffolds for both rational drug design and library selection methods.« less

  13. Fabrication of reduced graphene oxide/macrocyclic cobalt complex nanocomposites as counter electrodes for Pt-free dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Tsai, Chih-Hung; Shih, Chun-Jyun; Wang, Wun-Shiuan; Chi, Wen-Feng; Huang, Wei-Chih; Hu, Yu-Chung; Yu, Yuan-Hsiang

    2018-03-01

    In this study, macrocyclic Co complexes were successfully grafted onto graphene oxide (GO) to produce GO/Co nanocomposites with a large surface area, high electrical conductivity, and excellent catalytic properties. The novel GO/Co nanocomposites were applied as counter electrodes for Pt-free dye-sensitized solar cells (DSSCs). Various ratios of macrocyclic Co complexes were used as the reductant to react with the GO, with which the surface functional groups of the GO were reduced and the macrocyclic ligand of the Co complexes underwent oxidative dehydrogenation, after which the conjugated macrocyclic Co systems were grafted onto the surface of the reduced GO to form GO/Co nanocomposites. The surface morphology, material structure, and composition of the GO/Co composites and their influences on the power-conversion efficiency of DSSC devices were comprehensively investigated. The results showed that the GO/Co (1:10) counter electrode (CE) exhibited an optimal power conversion efficiency of 7.48%, which was higher than that of the Pt CE. The GO/Co (1:10) CE exhibited superior electric conductivity, catalytic capacity, and redox capacity. Because GO/Co (1:10) CEs are more efficient and cheaper than Pt CEs, they could potentially be used as a replacement for Pt electrodes.

  14. Covalent lanthanide(III) macrocyclic complexes: the bonding nature and optical properties of a promising single antenna molecule.

    PubMed

    Rabanal-León, Walter A; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2014-12-21

    The present work is focused on the elucidation of the electronic structure, bonding nature and optical properties of a series of low symmetry (C2) coordination compounds of type [Ln(III)HAM](3+), where "Ln(III)" are the trivalent lanthanide ions: La(3+), Ce(3+), Eu(3+) and Lu(3+), while "HAM" is the neutral six-nitrogen donor macrocyclic ligand [C22N6H26]. This systematic study has been performed in the framework of the Relativistic Density Functional Theory (R-DFT) and also using a multi-reference approach via the Complete Active Space (CAS) wavefunction treatment with the aim of analyzing their ground state and excited state electronic structures as well as electronic correlation. Furthermore, the use of the energy decomposition scheme proposed by Morokuma-Ziegler and the electron localization function (ELF) allows us to characterize the bonding between the lanthanide ions and the macrocyclic ligand, obtaining as a result a dative-covalent interaction. Due to a great deal of lanthanide optical properties and their technological applications, the absorption spectra of this set of coordination compounds were calculated using the time-dependent density functional theory (TD-DFT), where the presence of the intense Ligand to Metal Charge Transfer (LMCT) bands in the ultraviolet and visible region and the inherent f-f electronic transitions in the Near-Infra Red (NIR) region for some lanthanide ions allow us to propose these systems as "single antenna molecules" with potential applications in NIR technologies.

  15. Arg-Phe-Phe D-Amino Acid Stereochemistry Scan in the Macrocyclic Agouti-Related Protein Antagonist Scaffold c[Pro-Arg-Phe-Phe-Xaa-Ala-Phe-DPro] Results in Unanticipated Melanocortin-1 Receptor Agonist Profiles.

    PubMed

    Ericson, Mark D; Koerperich, Zoe M; Freeman, Katie T; Fleming, Katlyn A; Haskell-Luevano, Carrie

    2018-06-20

    The melanocortin-3 and melanocortin-4 receptors (MC3R and MC4R), endogenous agonists derived from the proopiomelanocortin gene transcript, and naturally-occurring antagonists agouti and agouti-related protein (AGRP) have been linked to biological pathways associated with energy homeostasis. The active tripeptide sequence of AGRP, Arg111-Phe112-Phe113, is located on a hypothesized β-hairpin loop. Herein, stereochemical modifications of the Arg-Phe-Phe sequence were examined in the octapeptide AGRP-derived macrocyclic scaffold c[Pro-Arg-Phe-Phe-Xxx-Ala-Phe-DPro], where Xxx was Asn or diaminopropionic acid (Dap). Macrocyclic peptides were synthesized with one, two, or three residues of the Arg-Phe-Phe sequence substituted with the corresponding D-isomer(s), generating a 14 compound library. While L-to-D inversions of the Arg-Phe-Phe sequence in a 20-residue AGRP-derived ligand previously resulted in agonist activity at the MC1R, MC3R, MC4R, and MC5R, only the MC1R was consistently stimulated by the macrocyclic ligands in the present study, with varying ligand potencies and efficacies observed at the MC1R. A general trend of increased MC4R antagonist potency was observed for Dap-containing compounds, while MC5R inverse agonist activity was observed for select ligands. It was observed that stereochemical modification of the Arg-Phe-Phe active tripeptide sequence was insufficient to convert melanocortin antagonist into agonists. Overall, these observations are important in the design of melanocortin ligands possessing potent and selective agonist and antagonist activities.

  16. Synthesis of heterocycles: Indolo (2,1-a) isoquinolines, renewables, and aptamer ligands for cellular imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beasley, Jonathan

    2013-01-01

    In this thesis, we explore both total syntheses and methodologies of several aromatic heterocyclic molecules. Extensions of the Kraus indole synthesis toward 2-substituted and 2,3-disubstituted indoles, as well as biologically attractive indolo[2,1-a]isoquinolines are described. Recent renewable efforts directed to commodity maleic acid and the first reported furan-based ionic liquids are described. Our total synthesis of mRNA aptamer ligand PDC-Gly, and its dye coupled forms, plus aminoglycoside dye coupled ligands used in molecular imaging, are described.

  17. Structural and conformational determinants of macrocycle cell permeability.

    PubMed

    Over, Björn; Matsson, Pär; Tyrchan, Christian; Artursson, Per; Doak, Bradley C; Foley, Michael A; Hilgendorf, Constanze; Johnston, Stephen E; Lee, Maurice D; Lewis, Richard J; McCarren, Patrick; Muncipinto, Giovanni; Norinder, Ulf; Perry, Matthew W D; Duvall, Jeremy R; Kihlberg, Jan

    2016-12-01

    Macrocycles are of increasing interest as chemical probes and drugs for intractable targets like protein-protein interactions, but the determinants of their cell permeability and oral absorption are poorly understood. To enable rational design of cell-permeable macrocycles, we generated an extensive data set under consistent experimental conditions for more than 200 non-peptidic, de novo-designed macrocycles from the Broad Institute's diversity-oriented screening collection. This revealed how specific functional groups, substituents and molecular properties impact cell permeability. Analysis of energy-minimized structures for stereo- and regioisomeric sets provided fundamental insight into how dynamic, intramolecular interactions in the 3D conformations of macrocycles may be linked to physicochemical properties and permeability. Combined use of quantitative structure-permeability modeling and the procedure for conformational analysis now, for the first time, provides chemists with a rational approach to design cell-permeable non-peptidic macrocycles with potential for oral absorption.

  18. Ligand placement based on prior structures: the guided ligand-replacement method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klei, Herbert E.; Bristol-Myers Squibb, Princeton, NJ 08543-4000; Moriarty, Nigel W., E-mail: nwmoriarty@lbl.gov

    2014-01-01

    A new module, Guided Ligand Replacement (GLR), has been developed in Phenix to increase the ease and success rate of ligand placement when prior protein-ligand complexes are available. The process of iterative structure-based drug design involves the X-ray crystal structure determination of upwards of 100 ligands with the same general scaffold (i.e. chemotype) complexed with very similar, if not identical, protein targets. In conjunction with insights from computational models and assays, this collection of crystal structures is analyzed to improve potency, to achieve better selectivity and to reduce liabilities such as absorption, distribution, metabolism, excretion and toxicology. Current methods formore » modeling ligands into electron-density maps typically do not utilize information on how similar ligands bound in related structures. Even if the electron density is of sufficient quality and resolution to allow de novo placement, the process can take considerable time as the size, complexity and torsional degrees of freedom of the ligands increase. A new module, Guided Ligand Replacement (GLR), was developed in Phenix to increase the ease and success rate of ligand placement when prior protein–ligand complexes are available. At the heart of GLR is an algorithm based on graph theory that associates atoms in the target ligand with analogous atoms in the reference ligand. Based on this correspondence, a set of coordinates is generated for the target ligand. GLR is especially useful in two situations: (i) modeling a series of large, flexible, complicated or macrocyclic ligands in successive structures and (ii) modeling ligands as part of a refinement pipeline that can automatically select a reference structure. Even in those cases for which no reference structure is available, if there are multiple copies of the bound ligand per asymmetric unit GLR offers an efficient way to complete the model after the first ligand has been placed. In all of these applications

  19. Trivalent scandium, yttrium and lanthanide complexes with thia-oxa and selena-oxa macrocycles and crown ether coordination.

    PubMed

    Champion, Martin J D; Farina, Paolo; Levason, William; Reid, Gillian

    2013-09-28

    Complexes of the oxa-thia macrocycles [18]aneO4S2, [15]aneO3S2 and the oxa-selena macrocycle [18]aneO4Se2 (L) of types [MCl2(L)]FeCl4 (M = Sc or Y) were prepared from [ScCl3(thf)3] or [YCl2(THF)5][YCl4(THF)2] and the ligand in anhydrous MeCN, using FeCl3 as a chloride abstractor. The [MI2(L)]I, [LaI3(L)] and [LuI2(L)]I have been prepared from the ligands and the appropriate anhydrous metal triiodide in MeCN. Complexes of type [LaI3(crown)] and [LuI2(crown)]I (crown = 18-crown-6, 15-crown-5) were made for comparison. Use of the metal iodide results in complexes with high solubility compared to the corresponding chlorides, although also with increased sensitivity to moisture. All complexes were characterised by microanalysis, IR, (1)H, (45)Sc and (77)Se NMR spectroscopy as appropriate. X-ray crystal structures are reported for [ScCl2([18]aneO4S2)][FeCl4], [ScI2([18]aneO4S2)]I, [YCl2(18-crown-6)]3[Y2Cl9], [YCl2([18]aneO4S2)][FeCl4], [LaI3(15-crown-5)], [LaI2(18-crown-6)(MeCN)]I, [LuI(18-crown-6)(MeCN)2]I2, [Lu(15-crown-5)(MeCN)2(OH2)]I3, [LaI3([18]aneO4S2)], [LaI([18]aneO4S2)(OH2)]I2, [LaI3([18]aneO4Se2)] and [LuI2([18]aneO4Se2)]I. In each complex all the neutral donor atoms of the macrocycles are coordinated to the metal centre, showing very rare examples of these oxophilic metal centres coordinated to thioether groups, and the first examples of coordinated selenoether donors. In some cases MeCN or adventitious water displaces halide ligands, but not the S/Se donors from La or Lu complexes. A complex of the oxa-tellura macrocycle [18]aneO4Te2, [ScCl2([18]aneO4Te2)][FeCl4] was isolated, but is unstable in MeCN solution, depositing elemental Te. YCl3 and 18-crown-6 produced [YCl2(18-crown-6)]3[Y2Cl9], the asymmetric unit of which contains two cations with a trans-YCl2 arrangement and a third with a cis-YCl2 group.

  20. Synthesis, structure and property of diorganotin complexes with chiral N-(5-chlorosalicylidene)valinate ligand

    NASA Astrophysics Data System (ADS)

    Tian, Laijin; Yao, Yanze; Wang, Yuhua; Liu, Jin

    2018-03-01

    Six new diorganotin N-[(5-chloro-2-oxyphenyl)methylene]valinates, R2SnL (R = Me, 1; Et, 2; L = 5-Cl-2-OC6H3CH = NCH(i-Pr)COO: (S)-, a; (R)-, b; (RS)-, c), have been synthesized from the reaction of R2SnCl2 with the chiral ligand KHL (potassium salt of HL) in different solvents and characterized by elemental analysis, IR, NMR (1H, 13C and 119Sn) spectra. In benzene, the configuration of the chiral ligand was retained. (S)-Enantiomers (1a and 2a) and (R)-enantiomers (1b and 2b) display discrete molecular structures with distorted trigonal bipyramidal geometries in which two C atoms of organic groups (R) and the imino N atom occupy the equatorial positions and a phenoxide O and an unidentate carboxylate group O atom are in the axial orientation. In the methanol, the chiral ligand was racemized. 1cṡMeOH is a centrosymmetric dimers formed by (R)- and (S)- enantiomers through two Snsbnd OṡṡṡSn bridges. The coordination geometry of the Sn atom can be described as a distorted pentagonal bipyramid with two methyl groups in axial positions. The crystal of 2c is composed of two threefold symmetric trimers, a [Et2SnL-(R)]3 and a [Et2SnL-(S)]3, with a macrocyclic 12-membered ring structure formed by the bidenate bridging coordination of carboxylate group to tin atoms. Each tin atom is six-coordinated in distorted [SnC2NO3] octahedron geometry. The fluorescence properties of ligand KHL and complexes 1 (1a-1c) and 2 (2a-2c) have been measured. The results show the complexes may be explored for potential luminescent materials.

  1. Syntheses, structures, and properties of imidazolate-bridged Cu(II)-Cu(II) and Cu(II)-Zn(II) dinuclear complexes of a single macrocyclic ligand with two hydroxyethyl pendants.

    PubMed

    Li, Dongfeng; Li, Shuan; Yang, Dexi; Yu, Jiuhong; Huang, Jin; Li, Yizhi; Tang, Wenxia

    2003-09-22

    The imidazolate-bridged homodinuclear Cu(II)-Cu(II) complex, [(CuimCu)L]ClO(4).0.5H(2)O (1), and heterodinuclear Cu(II)-Zn(II) complex, [(CuimZnL(-)(2H))(CuimZnL(-)(H))](ClO(4))(3) (2), of a single macrocyclic ligand with two hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22,2,2,2(11,14)]triaconta-1,11,13,24,27,29-hexaene), have been synthesized as possible models for copper-zinc superoxide dismutase (Cu(2),Zn(2)-SOD). Their crystal structures analyzed by X-ray diffraction methods have shown that the structures of the two complexes are markedly different. Complex 1 crystallizes in the orthorhombic system, containing an imidazolate-bridged dicopper(II) [Cu-im-Cu](3+) core, in which the two copper(II) ions are pentacoordinated by virtue of an N4O environment with a Cu.Cu distance of 5.999(2) A, adopting the geometry of distorted trigonal bipyramid and tetragonal pyramid, respectively. Complex 2 crystallizes in the triclinic system, containing two similar Cu-im-Zn cores in the asymmetric unit, in which both the Cu(II) and Zn(II) ions are pentacoordinated in a distorted trigonal bipyramid geometry, with the Cu.Zn distance of 5.950(1)/5.939(1) A, respectively. Interestingly, the macrocyclic ligand with two arms possesses a chairlike (anti) conformation in complex 1, but a boatlike (syn) conformation in complex 2. Magnetic measurements and ESR spectroscopy of complex 1 have revealed the presence of an antiferromagnetic exchange interaction between the two Cu(II) ions. The ESR spectrum of the Cu(II)-Zn(II) heterodinuclear complex 2 displayed a typical signal for mononuclear trigonal bipyramidal Cu(II) complexes. From pH-dependent ESR and electronic spectroscopic studies, the imidazolate bridges in the two complexes have been found to be stable over broad pH ranges. The cyclic voltammograms of the two complexes have been investigated. Both of the two complexes can catalyze the dismutation of superoxide and show rather high activity.

  2. Mutual control of axial and equatorial ligands: model studies with [Ni]-bacteriochlorophyll-a.

    PubMed

    Yerushalmi, Roie; Noy, Dror; Baldridge, Kim K; Scherz, Avigdor

    2002-07-17

    Modification of the metal's electronic environment by ligand association and dissociation in metalloenzymes is considered cardinal to their catalytic activity. We have recently presented a novel system that utilizes the bacteriochlorophyll (BChl) macrocycle as a ligand and reporter. This system allows for charge mobilization in the equatorial plane and experimental estimate of changes in the electronic charge density around the metal with no modification of the metal's chemical environment. The unique spectroscopy, electrochemistry and coordination chemistry of [Ni]-bacteriochlorophyll ([Ni]-BChl) enable us to follow directly fine details and steps involved in the function of the metal redox center. This approach is utilized here whereby electro-chemical reduction of [Ni]-BChl to the monoanion [Ni]-BChl(-) results in reversible dissociation of biologically relevant axial ligands. Similar ligand dissociation was previously detected upon photoexcitation of [Ni]-BChl (Musewald, C.; Hartwich, G.; Lossau, H.; Gilch, P.; Pollinger-Dammer, F.; Scheer, H.; Michel-Beyerle, M. E. J. Phys. Chem. B 1999, 103, 7055-7060 and Noy, D.; Yerushalmi, R.; Brumfeld, V.; Ashur, I.; Baldridge, K. K.; Scheer, H.; Scherz, A. J. Am. Chem. Soc. 2000, 122, 3937-3944). The electrochemical measurements and quantum mechanical (QM) calculations performed here for the neutral, singly reduced, monoligated, and singly reduced, monoligated [Ni]-BChl suggest the following: (a) Electroreduction, although resulting in a pi anion [Ni]-BChl(-) radical, causes electron density migration to the [Ni]-BChl core. (b) Reduction of nonligated [Ni]-BChl does not change the macrocycle conformation, whereas axial ligation results in a dramatic expansion of the metal core and a flattening of the highly ruffled macrocycle conformation. (c) In both the monoanion and singly excited [Ni]-BChl ([Ni]-BChl*), the frontier singly occupied molecular orbital (SOMO) has a small but nonnegligible metal character. Finally, (d

  3. A macrocyclic ligand as receptor and Zn(II)-complex receptor for anions in water: binding properties and crystal structures.

    PubMed

    Ambrosi, Gianluca; Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Macedi, Eleonora; Micheloni, Mauro; Paoli, Paola; Pontellini, Roberto; Rossi, Patrizia

    2011-02-01

    Binding properties of 24,29-dimethyl-6,7,15,16-tetraoxotetracyclo[19.5.5.0(5,8).0(14,17)]-1,4,9,13,18,21,24,29-octaazaenatriaconta-Δ(5,8),Δ(14,17)-diene ligand L towards Zn(II) and anions, such as the halide series and inorganic oxoanions (phosphate (Pi), sulfate, pyrophosphate (PPi), and others), were investigated in aqueous solution; in addition, the Zn(II)/L system was tested as a metal-ion-based receptor for the halide series. Ligand L is a cryptand receptor incorporating two squaramide functions in an over-structured chain that connects two opposite nitrogen atoms of the Me(2)[12]aneN(4) polyaza macrocyclic base. It binds Zn(II) to form mononuclear species in which the metal ion, coordinated by the Me(2)[12]aneN(4) moiety, lodges inside the three-dimensional cavity. Zn(II)-containing species are able to bind chloride and fluoride at the physiologically important pH value of 7.4; the anion is coordinated to the metal center but the squaramide units play the key role in stabilizing the anion through a hydrogen-bonding network; two crystal structures reported here clearly show this aspect. Free L is able to bind fluoride, chloride, bromide, sulfate, Pi, and PPi in aqueous solution. The halides are bound at acidic pH, whereas the oxoanions are bound in a wide range of pH values ranging from acidic to basic. The cryptand cavity, abundant in hydrogen-bonding sites at all pH values, allows excellent selectivity towards Pi to be achieved mainly at physiological pH 7.4. By joining amine and squaramide moieties and using this preorganized topology, it was possible, with preservation of the solubility of the receptor, to achieve a very wide pH range in which oxoanions can be bound. The good selectivity towards Pi allows its discrimination in a manner not easily obtainable with nonmetallic systems in aqueous environment. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Supramolecular Organocatalysis in Water Mediated by Macrocyclic Compounds

    NASA Astrophysics Data System (ADS)

    De Rosa, Margherita; La Manna, Pellegrino; Talotta, Carmen; Soriente, Annunziata; Gaeta, Carmine; Neri, Placido

    2018-04-01

    In the last decades many efforts have been devoted to design supramolecular organocatalysts able to work in water as the reaction medium. The use of water as solvent provides promising benefits with respect to environmental impact. In this context, macrocyclic compounds played a role of primary importance thanks to their ease of synthesis and their molecular recognition abilities toward the reactants. The aim of this review is to give an overview of the recent advances in the field of supramolecular organocatalysis in water, focusing the attention on calixarene and cyclodextrins derivatives. Calixarenes and cyclodextrins, thanks to their hydrophobic cavities, are able to host selectively the substrates isolating they from the reaction environment. In addition, the synthetic versatilities of these macrocycles permits to introduce useful functional groups in close proximity of the hydrophobic binding sites. Regarding the cyclodextrins (CDs), we have here reviewed the their most recent uses as organocatalysts for the synthesis of heterocyclic compounds, in multi-component reactions and in carbon-carbon bond forming reactions. Examples have been reported in which CD catalysts are able to drive the regiochemistry of common organic reactions. In addition, cyclodextrins bearing catalytically active chiral groups, have shown excellent enantioselectivity in the catalysis of organic reactions. Recently reported results have shown that calixarene derivatives are able to accelerate organic reaction under "on-water" conditions with a significant selectivity toward the reactants. Under "on-water conditions" the hydrophobic effect, induced by insoluble calixarene derivatives, forces the reactants and the catalyst to aggregate and thus accelerating the reaction between them thanks to an amplification of weak secondary interactions. Regarding the use of water-soluble calixarene organocatalysts, we have here reviewed their role in the acceleration of common organic reactions.

  5. Cadmium (II) macrocyclic Schiff-base complexes containing piperazine moiety: Synthesis, spectroscopic, X-ray structure, theoretical and antibacterial studies

    NASA Astrophysics Data System (ADS)

    Keypour, Hassan; Mahmoudabadi, Masoumeh; Shooshtari, Amir; Bayat, Mehdi; Mohsenzadeh, Fariba; Gable, Robert William

    2018-03-01

    The new Cd(II) macrocyclic Schiff-base complexes were prepared via the metal templated [1 + 1] cyclocondensation of 2,2'-(piperazine-1,4-diylbis (methylene))dianiline (A) and 2,6-pyridinedicarbaldehyde or 2,6-diacetylpyridine. The products were characterized by elemental analysis, mass spectrometry and spectroscopic methods such as: FT-IR, 1H and 13C-NMR, the crystal structure of [CdL1(ClO4)2](CH3CN) (1) complex was also obtained by single-crystal X-ray crystallography. The complexes were tested for in vitro antibacterial properties against some bacteria. The complexes had antibacterial properties and in some cases were active even more than standards. The geometries of the [CdLn (ClO4)2], (n = 1,2) complexes have been optimized at the BP86/def2-SVP level of theory. Also the nature of Cd←Ln (n = 1, 2) bonds in [CdLn (ClO4)2], (n = 1,2) complexes are studied with the help of NBO and Energy decomposition analysis (EDA). Results showed that the nature of metal-ligand bond in the complexes is slightly more electrostatic with a contribution of about 52% in total interaction energy.

  6. Highly Potent HIV-1 Protease Inhibitors with Novel Tricyclic P2-ligands: Design, Synthesis, and Protein-ligand X-Ray Studies

    PubMed Central

    Ghosh, Arun K.; Parham, Garth L.; Martyr, Cuthbert D.; Nyalapatla, Prasanth R.; Osswald, Heather L.; Agniswamy, Johnson; Wang, Yuan-Fang; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2013-01-01

    The design, synthesis, and biological evaluation of a series of HIV-1 protease inhibitors incorporating stereochemically defined fused tricyclic P2-ligands are described. Various substituent effects were investigated in order to maximize the ligand-binding site interactions in the protease active site. Inhibitors 16a and 16f showed excellent enzyme inhibitory and antiviral activity while incorporation of sulfone functionality resulted in a decrease in potency. Both inhibitors 16a and 16f have maintained activity against a panel of multidrug resistant HIV-1 variants. A high-resolution X-ray crystal structure of 16a-bound HIV-1 protease revealed important molecular insights into the ligand-binding site interactions which may account for the inhibitor’s potent antiviral activity and excellent resistance profiles. PMID:23947685

  7. A bambusuril macrocycle that binds anions in water with high affinity and selectivity.

    PubMed

    Yawer, Mirza Arfan; Havel, Vaclav; Sindelar, Vladimir

    2015-01-02

    Synthetic receptors that function in water are important for the qualitative and quantitative detection of anions, which may act as pollutants in the environment or play important roles in biological processes. Neutral receptors are particularly appealing because they are often more selective than positively charged receptors; however, their affinity towards anions in pure water is only in range of 1-10(3)  L mol(-1) . The anion-templated synthesis of a water-soluble bambusuril derivative is shown to be an outstanding receptor for various inorganic anions in pure water, with association constants of up to 10(7)  L mol(-1) . Furthermore, the macrocycle discriminates between anions with unprecedented selectivity (up to 500 000-fold). We anticipate that the combination of remarkable affinity and selectivity of this macrocycle will enable the efficient detection and isolation of diverse anions in aqueous solutions, which is not possible with current supramolecular systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A general strategy for synthesis of cyclophane-braced peptide macrocycles via palladium-catalysed intramolecular sp3 C-H arylation

    NASA Astrophysics Data System (ADS)

    Zhang, Xuekai; Lu, Gang; Sun, Meng; Mahankali, Madhu; Ma, Yanfei; Zhang, Mingming; Hua, Wangde; Hu, Yuting; Wang, Qingbing; Chen, Jinghuo; He, Gang; Qi, Xiangbing; Shen, Weijun; Liu, Peng; Chen, Gong

    2018-05-01

    New methods capable of effecting cyclization, and forming novel three-dimensional structures while maintaining favourable physicochemical properties are needed to facilitate the development of cyclic peptide-based drugs that can engage challenging biological targets, such as protein-protein interactions. Here, we report a highly efficient and generally applicable strategy for constructing new types of peptide macrocycles using palladium-catalysed intramolecular C(sp3)-H arylation reactions. Easily accessible linear peptide precursors of simple and versatile design can be selectively cyclized at the side chains of either aromatic or modified non-aromatic amino acid units to form various cyclophane-braced peptide cycles. This strategy provides a powerful tool to address the long-standing challenge of size- and composition-dependence in peptide macrocyclization, and generates novel peptide macrocycles with uniquely buttressed backbones and distinct loop-type three-dimensional structures. Preliminary cell proliferation screening of the pilot library revealed a potent lead compound with selective cytotoxicity toward proliferative Myc-dependent cancer cell lines.

  9. A one pot organic/CdSe nanoparticle hybrid material synthesis with in situ π-conjugated ligand functionalization.

    PubMed

    Mazzio, Katherine A; Okamoto, Ken; Li, Zhi; Gutmann, Sebastian; Strein, Elisabeth; Ginger, David S; Schlaf, Rudy; Luscombe, Christine K

    2013-02-14

    A one pot method for organic/colloidal CdSe nanoparticle hybrid material synthesis is presented. Relative to traditional ligand exchange processes, these materials require smaller amounts of the desired capping ligand, shorter syntheses and fewer processing steps, while maintaining nanoparticle morphology.

  10. A very simple, highly stereoselective and modular synthesis of ferrocene-based P-chiral phosphine ligands.

    PubMed

    Chen, Weiping; Mbafor, William; Roberts, Stanley M; Whittall, John

    2006-03-29

    A very simple, highly stereoselective and modular synthesis of ferrocene-based P-chiral phosphine ligands has been developed. On the basis of this new methodology, several new families of ferrocene-based phosphine ligands have been prepared coupling chirality at phosphorus with other, more standard stereogenic features. The introduction of P-chirality into ferrocene-based phosphine ligands enhances the enantioselective discrimination produced by the corresponding Rh catalyst when a matching among the planar chirality, carbon chirality, and the chirality of phosphorus is achieved.

  11. Photochemical Synthesis and Ligand Exchange Reactions of Ru(CO)[subscript 4] (Eta[superscript 2]-Alkene) Compounds

    ERIC Educational Resources Information Center

    Cooke, Jason; Berry, David E.; Fawkes, Kelli L.

    2007-01-01

    The photochemical synthesis and subsequent ligand exchange reactions of Ru(CO)[subscript 4] (eta[superscript2]-alkene) compounds has provided a novel experiment for upper-level inorganic chemistry laboratory courses. The experiment is designed to provide a system in which the changing electronic properties of the alkene ligands could be easily…

  12. Corona[5]arenes Accessed by a Macrocycle-to-Macrocycle Transformation Route and a One-Pot Three-Component Reaction.

    PubMed

    Wu, Zhi-Chen; Guo, Qing-Hui; Wang, Mei-Xiang

    2017-06-12

    Corona[5]arenes, a novel type of macrocyclic compound that is composed of alternating heteroatoms and para-arylenes, were synthesized efficiently by two distinct methods. In a macrocycle-to-macrocycle transformation approach, S 6 -corona[3]arene[3]tetrazine underwent sequential S N Ar reactions with HS-C 6 H 4 -X-C 6 H 4 -SH (X=S, CH 2 , CMe 2 , SO 2 , and O) to produce the corresponding corona[3]arene[2]tetrazines. Different corona[3]arene[2]tetrazine compounds were also constructed in a straightforward manner by a one-pot three-component reaction of HS-C 6 H 4 -X-C 6 H 4 -SH (X=S, CH 2 , CMe 2 , SO 2 , and O) with diethyl 2,5-dimercaptoterephthalate and 2 equiv of 3,6-dichlorotetrazine under very mild conditions. All corona[5]arenes adopted 1,2,4-alternate conformational structures in the crystalline state yielding similar nearly regular pentagonal cavities. Both the cavity size and the electronic property of the acquired macrocycles were fine-tuned by the nature of the bridging element X. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. meso-Octamethylcalix[4]pyrrole as an effective macrocyclic receptor for the univalent thallium cation in the gas phase: Experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Polášek, Miroslav; Makrlík, Emanuel; Kvíčala, Jaroslav; Křížová, Věra; Vaňura, Petr

    2018-02-01

    By using electrospray ionization mass spectrometry (ESI-MS), it was proven experimentally that the univalent thallium cation (Tl+) forms with meso-octamethylcalix[4]pyrrole (1) the cationic complex species 1 Tl+. When this kinetically stable cation-π complex 1 Tl+ is collisionally activated, it decomposes by elimination of the whole ligand 1 or small meso-octamethylcalix[4]pyrrole fragments. Further, applying quantum chemical DFT calculations, four different conformations of the resulting complex 1 Tl+ were derived. It means that under the present experimental conditions, this ligand 1 can be considered as a very effective macrocyclic receptor for the thallium cation.

  14. Lead Diversification through a Prins-Driven Macrocyclization Strategy: Application to C13-Diversified Bryostatin Analogues.

    PubMed

    Wender, Paul A; Billingsley, Kelvin L

    2013-01-01

    The design, synthesis, and biological evaluation of a novel class of C13-diversified bryostatin analogues are described. An innovative and general strategy based on a Prins macrocyclization-nucleophilic trapping cascade was used to achieve late-stage diversification. In vitro analysis of selected library members revealed that modification at the C13 position of the bryostatin scaffold can be used as a diversification handle to regulate biological activity.

  15. Macrocyclic fragrance materials--a screening-level environmental assessment using chemical categorization.

    PubMed

    Salvito, Daniel; Lapczynski, Aurelia; Sachse-Vasquez, Christen; McIntosh, Colin; Calow, Peter; Greim, Helmut; Escher, Beate

    2011-09-01

    A screening-level aquatic environmental risk assessment for macrocyclic fragrance materials using a "group approach" is presented using data for 30 macrocyclic fragrance ingredients. In this group approach, conservative estimates of environmental exposure and ecotoxicological effects thresholds for compounds within two subgroups (15 macrocyclic ketones and 15 macrocyclic lactones/lactides) were used to estimate the aquatic ecological risk potential for these subgroups. It is reasonable to separate these fragrance materials into the two subgroups based on the likely metabolic pathway required for biodegradation and on expected different ecotoxicological modes of action. The current volumes of use for the macrocyclic ketones in both Europe and North America ranges from <1 (low kg quantities) to no greater than 50 metric tonnes in either region and for macrocyclic lactones/lactides the volume of use range for both regions is <1 to no greater than 1000 metric tonnes in any one region. Based on these regional tonnages, biodegradability of these two subgroups of materials, and minimal in stream dilution (3:1), the conservatively predicted exposure concentrations for macrocyclic ketones would range from <0.01 to 0.05 μg/L in Europe and from <0.01 to 0.03 μg/L in North America. For macrocyclic lactones/lactides, the concentration within the mixing zone would range from <0.01 to 0.7 μg/L in Europe and from <0.01 to 1.0 μg/L in North America. The PNECs derived for the macrocyclic ketones is 0.22 μg/L and for macrocyclic lactones/lactides is 2.7 μg/L. The results of this screening-level aquatic ecological risk assessment indicate that at their current tonnage, often referred to as volumes of use, macrocyclic fragrance materials in Europe and North America, pose a negligible risk to aquatic biota; with no PEC/PNEC ratio exceeding 1 for any material in any subgroup. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Cationic aza-macrocyclic complexes of germanium(II) and silicon(IV).

    PubMed

    Everett, Matthew; Jolleys, Andrew; Levason, William; Light, Mark E; Pugh, David; Reid, Gillian

    2015-12-28

    [GeCl2(dioxane)] reacts with the neutral aza-macrocyclic ligands L, L = Me3tacn (1,4,7-trimethyl-1,4,7-triazacyclononane), Me4cyclen (1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane) or Me4cyclam (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) and two mol. equiv. of Me3SiO3SCF3 in thf solution to yield the unusual and hydrolytically very sensitive [Ge(L)][O3SCF3]2 as white solids in moderate yield. Using shorter reaction times [Ge(Me3tacn)]Cl2 and [Ge(Me3tacn)]Cl[O3SCF3] were also isolated; the preparation of [Ge(Me4cyclen)][GeCl3]2 is also described. The structures of the Me3tacn complexes show κ(3)-coordination of the macrocycle, with the anions interacting only weakly to produce very distorted five- or six-coordination at germanium. In contrast, the structure of [Ge(Me4cyclen)][O3SCF3]2 shows no anion interactions, and a distorted square planar geometry at germanium from coordination to the tetra-aza macrocycle. Crystal structures of the Si(iv) complexes, [SiCl3(Me3tacn)]Y (Y = O3SCF3, BAr(F); [B{3,5-(CF3)2C6H3}4]) and [SiHCl2(Me3tacn)][BAr(F)], obtained from reaction of SiCl4 or SiHCl3 with Me3tacn, followed by addition of either Me3SiO3SCF3 or Na[BAr(F)], contain distorted octahedral cations, with facialκ(3)-coordinated Me3tacn. The open-chain triamine, Me2NCH2CH2N(Me)CH2CH2NMe2 (pmdta), forms [SiCl3(pmdta)][BAr(F)] and [SiBr3(pmdta)][BAr(F)] under similar conditions, containing mer-octahedral cations.

  17. Advances in macrocyclic peptide-based antibiotics.

    PubMed

    Luther, Anatol; Bisang, Christian; Obrecht, Daniel

    2018-06-01

    Macrocyclic peptide-based natural products have provided powerful new antibiotic drugs, drug candidates, and scaffolds for medicinal chemists as a source of inspiration to design novel antibiotics. While most of those natural products are active mainly against Gram-positive pathogens, novel macrocyclic peptide-based compounds have recently been described, which exhibit potent and specific activity against some of the most problematic Gram-negative ESKAPE pathogens. This mini-review gives an up-date on recent developments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Heterodinuclear titanium/zinc catalysis: synthesis, characterization and activity for CO2/epoxide copolymerization and cyclic ester polymerization.

    PubMed

    Garden, Jennifer A; White, Andrew J P; Williams, Charlotte K

    2017-02-21

    The preparation of heterodinuclear complexes, especially those comprising early-late transition metals coordinated by a simple or symmetrical ancillary ligand, represents a fundamental challenge and an opportunity to prepare catalysts benefitting from synergic properties. Here, two new mixed titanium(iv)-zinc(ii) complexes, [LTi(O i Pr) 2 ZnEt] and [LTi(O i Pr) 2 ZnPh], both coordinated by a diphenolate tetra(amine) macrocyclic ligand (L), are prepared. The synthesis benefits from the discovery that reaction of the ligand with a single equivalent of titanium tetrakis(iso-propoxide) allows the efficient formation of a mono-Ti(iv) complex, [LTi(O i Pr) 2 ]. All new complexes are characterized by a combination of single crystal X-ray diffraction, multinuclear NMR spectroscopy and mass spectrometry techniques. The two heterobimetallic complexes, [LTi(O i Pr) 2 ZnEt] and [LTi(O i Pr) 2 ZnPh], feature trianionic coordination by the macrocyclic ligand and bridging alkoxide groups coordinate to both the different metal centres. The heterodinuclear catalysts are compared to the mono-titanium analogue, [LTi(O i Pr) 2 ], in various polymerization reactions. In the alternating copolymerizations of carbon dioxide and cyclohexene oxide, the mono-titanium complex is totally inactive whilst the heterodinuclear complexes show moderate activity (TOF = 3 h -1 ); it should be noted the activity is measured using just 1 bar pressure of carbon dioxide. In the ring opening polymerization of lactide and ε-caprolactone, the mono-Ti(iv) complex is totally inactive whilst the heterodinuclear complexes show moderate-high activities, qualified by comparison to other known titanium polymerization catalysts (l-lactide, k obs = 11 × 10 -4 s -1 at 70 °C, 1 M in [lactide]) and ε-caprolactone (k obs = 5 × 10 -4 s -1 at 70 °C, 0.9 M in [ε-caprolactone]).

  19. Diels-Alder active-template synthesis of rotaxanes and metal-ion-switchable molecular shuttles.

    PubMed

    Crowley, James D; Hänni, Kevin D; Leigh, David A; Slawin, Alexandra M Z

    2010-04-14

    A synthesis of [2]rotaxanes in which Zn(II) or Cu(II) Lewis acids catalyze a Diels-Alder cycloaddition to form the axle while simultaneously acting as the template for the assembly of the interlocked molecules is described. Coordination of the Lewis acid to a multidentate endotopic 2,6-di(methyleneoxymethyl)pyridyl- or bipyridine-containing macrocycle orients a chelated dienophile through the macrocycle cavity. Lewis acid activation of the double bond causes it to react with an incoming "stoppered" diene, affording the [2]rotaxane in up to 91% yield. Unusually for an active-template synthesis, the metal binding site "lives on" in these rotaxanes. This was exploited in the synthesis of a molecular shuttle containing two different ligating sites in which the position of the macrocycle could be switched by complexation with metal ions [Zn(II) and Pd(II)] with different preferred coordination geometries.

  20. Macrocyclic polyaminocarboxylates for stable radiometal antibody conjugates for therapy, spect and pet imaging

    DOEpatents

    Mease, Ronnie C.; Mausner, Leonard F.; Srivastava, Suresh C.

    1997-06-17

    A simple method for the synthesis of 1,4,7, 10-tetraazacyclododecane N,N'N",N'"-tetraacetic acid and 1,4,8,11-tetraazacyclotetradecane N,N',N",N'"-tetraacetic acid involves cyanomethylating 1,4,7, 10-tetraazacyclododecane or 1,4,8,11-tetraazacyclotetradecane to form a tetranitrile and hydrolyzing the tetranitrile. These macrocyclic compounds are functionalized through one of the carboxylates and then conjugated to various biological molecules including monoclonal antibodies. The resulting conjugated molecules are labeled with radiometals for SPECT and PET imaging and for radiotherapy.

  1. Treatment of MDR1 Mutant Dogs with Macrocyclic Lactones

    PubMed Central

    Geyer, Joachim; Janko, Christina

    2012-01-01

    P-glycoprotein, encoded by the multidrug resistance gene MDR1, is an ATP-driven drug efflux pump which is highly expressed at the blood-brain barrier of vertebrates. Drug efflux of macrocyclic lactones by P-glycoprotein is highly relevant for the therapeutic safety of macrocyclic lactones, as thereby GABA-gated chloride channels, which are confined to the central nervous system in vertebrates, are protected from high drug concentrations that otherwise would induce neurological toxicity. A 4-bp deletion mutation exists in the MDR1 gene of many dog breeds such as the Collie and the Australian Shepherd, which results in the expression of a non-functional P-glycoprotein and is associated with multiple drug sensitivity. Accordingly, dogs with homozygous MDR1 mutation are in general prone to neurotoxicity by macrocyclic lactones due to their increased brain penetration. Nevertheless, treatment of these dogs with macrocyclic lactones does not inevitably result in neurological symptoms, since, the safety of treatment highly depends on the treatment indication, dosage, route of application, and the individual compound used as outlined in this review. Whereas all available macrocyclic lactones can safely be administered to MDR1 mutant dogs at doses usually used for heartworm prevention, these dogs will experience neurological toxicity following a high dose regimen which is common for mange treatment in dogs. Here, we review and discuss the neurotoxicological potential of different macrocyclic lactones as well as their treatment options in MDR1 mutant dogs. PMID:22039792

  2. Rapid fixation of methylene chloride by a macrocyclic amine.

    PubMed

    Lee, Jung-Jae; Stanger, Keith J; Noll, Bruce C; Gonzalez, Carlos; Marquez, Manuel; Smith, Bradley D

    2005-03-30

    A simple macrocyclic amine is alkylated by methylene chloride to give a quaternary ammonium chloride salt. When methylene chloride is the solvent, the reaction exhibits pseudo-first-order kinetics, and the reaction half-life at 25.0 degrees C is 2.0 min. The reaction half-life for a structurally related, acyclic amine is approximately 50 000 times longer. Detailed calculations favor a mechanism where the methylene chloride associates with the macrocycle to form an activated prereaction complex. The macrocyclic nitrogen subsequently attacks the methylene chloride with a classic SN2 trajectory, and although the carbon-chlorine bond breaks, the chloride leaving group does not separate from the newly formed cationic macrocycle, such that the product is a tightly associated ion-pair. X-ray crystal structures of the starting amine and the product salt, as well as kinetic data, support this mechanism.

  3. Synthesis of Schiff base 24-membered trivalent transition metal derivatives with their anti-inflammation and antimicrobial evaluation

    NASA Astrophysics Data System (ADS)

    Kumar, Gajendra; Devi, Shoma; Kumar, Dharmendra

    2016-03-01

    The paper presents the synthesis of macrocyclic complexes [{M(C52H36N12O4)X}X2] of Cr(III), Mn(III) and Fe(III) with Schiff base ligand (C52H36N12O4) obtained through the condensation of 1,4-dicarbonyl phenyl dihydrazide with 1,2-di(1H-indol-1-yl)ethane-1,2-dione. The newly formed Schiff base and its complexes have been characterized with the help of elemental analysis, condensation measurements, magnetic measurements and their structure configuration have been determined by various spectroscopic (electronic, IR, 1H NMR, 13C NMR, GCMS) techniques. The electronic spectra of the complexes indicate a five coordinate square pyramidal geometry of the center metal ion. These metal complexes and ligand were tested for their anti-inflammation and antimicrobial inhibiting potential and compared with standard drugs Phenyl butazone (anti-inflammation), Imipenem (antibacterial) and Miconazole (antifungal).

  4. Cytotoxic Activity and Structure-Activity Relationship of Triazole-Containing Bis(Aryl Ether) Macrocycles.

    PubMed

    Hernández-Vázquez, Eduardo; Chávez-Riveros, Alejandra; Romo-Pérez, Adriana; Ramírez-Apán, María Teresa; Chávez-Blanco, Alma D; Morales-Bárcenas, Rocío; Dueñas-González, Alfonso; Miranda, Luis D

    2018-05-17

    Cancer continues to be a worldwide health problem. Certain macrocyclic molecules have become attractive therapeutic alternatives for this disease because of their efficacy and, frequently, their novel mechanisms of action. Herein, we report the synthesis of a series of 20-, 21-, and 22-membered macrocycles containing triazole and bis(aryl ether) moieties. The compounds were prepared by a multicomponent approach from readily available commercial substrates. Notably, some of the compounds displayed interesting cytotoxicity against cancer (PC-3) and breast (MCF-7) cell lines, especially those bearing an aliphatic or a trifluoromethyl substituent on the N-phenyl moiety (IC 50 <13 μm). Additionally, some of the compounds were able to induce apoptosis relative to the solvent control; in particular, (Z)-N-cyclohexyl-7-oxo-6-[4-(trifluoromethyl)phenyl]-1 1 H-3,10-dioxa-6-aza-1(4,1)-triazola-4(1,3),9(1,4)-dibenzenacyclotridecaphane-5-carboxamide (12 f) was the most potent in this regard (22.7 % of apoptosis). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Separation of Arylenevinylene Macrocycles with a Surface-Confined Two-Dimensional Covalent Organic Framework.

    PubMed

    Liu, Chunhua; Park, Eunsol; Jin, Yinghua; Liu, Jie; Yu, Yanxia; Zhang, Wei; Lei, Shengbin; Hu, Wenping

    2018-05-31

    A two-dimensional surface covalent organic framework, prepared by a surface-confined synthesis using 4,4'-azodianiline and benzene-1,3,5-tricarbaldehyde as the precursors, was used as a host network to effectively immobilize arylenevinylene macrocycles (AVMs). Thus AVMs could be separated from their linear polymer analogues, which are the common side-products in the cyclooligomerization process. Scanning tunneling microscopy investigations revealed efficient removal of linear polymers by a simple surface binding and solvent washing process. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Oxidative Carbocation Formation in Macrocycles: Synthesis of the Neopeltolide Macrocycle**

    PubMed Central

    Tu, Wangyang

    2009-01-01

    Processes for the functionalization of carbon–hydrogen bonds are the focus of significant attention in organic synthesis[1] in response to the need to streamline molecular assembly. As a continuation of our efforts to generate carbocations through single-electron oxidation reactions,[2] we recently reported[3] DDQ-mediated cyclization reactions of benzylic and allylic ethers (Scheme 1; DDQ =2,3-dichloro-4,5-dicyanoquinone). PMID:19455526

  7. [Tl(III)(dota)](-): An Extraordinarily Robust Macrocyclic Complex.

    PubMed

    Fodor, Tamás; Bányai, István; Bényei, Attila; Platas-Iglesias, Carlos; Purgel, Mihály; Horváth, Gábor L; Zékány, László; Tircsó, Gyula; Tóth, Imre

    2015-06-01

    The X-ray structure of {C(NH2)3}[Tl(dota)]·H2O shows that the Tl(3+) ion is deeply buried in the macrocyclic cavity of the dota(4-) ligand (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate) with average Tl-N and Tl-O distances of 2.464 and 2.365 Å, respectively. The metal ion is directly coordinated to the eight donor atoms of the ligand, which results in a twisted square antiprismatic (TSAP') coordination around Tl(3+). A multinuclear (1)H, (13)C, and (205)Tl NMR study combined with DFT calculations confirmed the TSAP' structure of the complex in aqueous solution, which exists as the Λ(λλλλ)/Δ(δδδδ) enantiomeric pair. (205)Tl NMR spectroscopy allowed the protonation constant associated with the protonation of the complex according to [Tl(dota)](-) + H(+) ⇆ [Tl(Hdota)] to be determined, which turned out to be pK(H)Tl(dota) = 1.4 ± 0.1. [Tl(dota)](-) does not react with Br(-), even when using an excess of the anion, but it forms a weak mixed complex with cyanide, [Tl(dota)](-) + CN(-) ⇆ [Tl(dota)(CN)](2-), with an equilibrium constant of Kmix = 6.0 ± 0.8. The dissociation of the [Tl(dota)](-) complex was determined by UV-vis spectrophotometry under acidic conditions using a large excess of Br(-), and it was found to follow proton-assisted kinetics and to take place very slowly (∼10 days), even in 1 M HClO4, with the estimated half-life of the process being in the 10(9) h range at neutral pH. The solution dynamics of [Tl(dota)](-) were investigated using (13)C NMR spectroscopy and DFT calculations. The (13)C NMR spectra recorded at low temperature (272 K) point to C4 symmetry of the complex in solution, which averages to C4v as the temperature increases. This dynamic behavior was attributed to the Λ(λλλλ) ↔ Δ(δδδδ) enantiomerization process, which involves both the inversion of the macrocyclic unit and the rotation of the pendant arms. According to our calculations, the arm-rotation process limits the Λ(λλλλ) ↔

  8. Volume-confined synthesis of ligand-free gold nanoparticles with tailored sizes for enhanced catalytic activity

    NASA Astrophysics Data System (ADS)

    Shaik, Firdoz; Zhang, Weiqing; Niu, Wenxin; Lu, Xianmao

    2014-10-01

    Ligand-free Au nanoparticles with controlled sizes are synthesized via a volume-confined method. In this synthesis, mesoporous hollow silica shells (mHSS) are used as nano-containers for the impregnation of HAuCl4 solution before they are separated from the bulk solution. With a simple heating process, the Au precursor confined within the cavity of the isolated hollow shells is converted into ligand-free Au nanoparticles. The size of the Au nanoparticles can be tuned precisely by loading HAuCl4 solution of different concentrations, or by using mHSS with different cavity volumes. The ligand-free Au nanoparticles demonstrate superior catalytic activity than sodium citrate-capped Au nanoparticles.

  9. Influence of the redox active ligand on the reactivity and electronic structure of a series of Fe(TIM) complexes.

    PubMed

    Hess, Corinna R; Weyhermüller, Thomas; Bill, Eckhard; Wieghardt, Karl

    2010-06-21

    The redox properties of Fe and Zn complexes coordinated by an alpha-diimine based N(4)-macrocyclic ligand (TIM) have been examined using spectroscopic methods and density functional theory (DFT) computational analysis. DFT results on the redox series of [Zn(TIM*)](n) and [Fe(TIM*)](n) molecules indicate the preferential reduction of the alpha-diimine ligand moiety. In addition to the previously reported [Fe(TIM*)](2) dimer, we have now synthesized and characterized a further series of monomeric and dimeric complexes coordinated by the TIM ligand. This includes the five-coordinate monomeric [Fe(TIM*)I], the neutral and cationic forms of a monomeric phosphite adduct, [Fe(TIM*)(P(OPh)(3))] and [Fe(TIM*)(P(OPh)(3))](PF(6)), as well as a binuclear hydroxy-bridged complex, [{Fe(TIM*)}(2)(mu-OH)](PF(6)). Experimental and computational data for these synthetic compounds denote the presence of ferrous and ferric species, suggesting that the alpha-diimine based macrocycles do not readily support the formation of formally low-valent (M(0) or M(I)) metal complexes as previously speculated. Magnetochemical, Mossbauer, electron paramagnetic resonance (EPR), and electronic spectral data have been employed to experimentally determine the oxidation state of the central metal ion and of the macrocyclic ligand (TIM*) in each compound. The series of compounds is described as follows: [Fe(II)(TIM(0))(CH(3)CN(2))](2+), S(Fe) = S(T) = 0; [Fe(2.5)(TIM(2.5-))](2), S(T) = 1; [{Fe(III)(TIM(2-))}(2)(mu-OH)](+), S(Fe) = 3/2, S(T) = 0; [Fe(III)(TIM(2-))I], S(Fe) = 3/2, S(T) = 1/2; [Fe(II)(TIM(2-))(P(OPh(3)))], S(Fe) = S(T) = 0; and [Fe(II)(TIM(1-))(P(OPh(3)))](1+)/[Fe(I)(TIM(0))(P(OPh(3)))](1+), S(T) = 1/2. The results have been corroborated by DFT calculations.

  10. Element specific determination of the magnetic properties of two macrocyclic tetranuclear 3d-4f complexes with a Cu3Tb core by means of X-ray magnetic circular dichroism (XMCD).

    PubMed

    Balinski, K; Schneider, L; Wöllermann, J; Buling, A; Joly, L; Piamonteze, C; Feltham, H L C; Brooker, S; Powell, A K; Delley, B; Kuepper, K

    2018-06-20

    We apply X-ray magnetic circular dichroism to study the internal magnetic structure of two very promising star shaped macrocyclic complexes with a CuII3TbIII core. These complexes are rare examples prepared with a macrocyclic ligand that show indications of SMM (Single Molecule Magnet) behavior, and they differ only in ring size: one has a propylene linked macrocycle, [CuII3TbIII(LPr)(NO3)2(MeOH)(H2O)2](NO3)·3H2O (nickname: Cu3Tb(LPr)), and the other has the butylene linked analogue, [CuII3TbIII(LBu)(NO3)2(MeOH)(H2O)](NO3)·3H2O (nickname: Cu3Tb(LBu)). We analyze the orbital and spin contributions to the Cu and Tb ions quantitatively by applying the spin and orbital sum rules concerning the L2 (M4)/L3 (M5) edges. In combination with appropriate ligand field simulations, we demonstrate that the Tb(iii) ions contribute with high orbital magnetic moments to the magnetic anisotropy, whereas the ligand field determines the easy axis of magnetization. Furthermore, we confirm that the Cu(ii) ions in both molecules are in a divalent valence state, the magnetic moments of the three Cu ions appear to be canted due to 3d-3d intramolecular magnetic interactions. For Cu3Tb(LPr), the corresponding element specific magnetization loops reflect that the Cu(ii) contribution to the overall magnetic picture becomes more important as the temperature is lowered. This implies a low value for the 3d-4f coupling.

  11. Synthesis and evaluation of nanoglobular macrocyclic Mn(II) chelate conjugates as non-gadolinium(III) MRI contrast agents.

    PubMed

    Tan, Mingqian; Ye, Zhen; Jeong, Eun-Kee; Wu, Xueming; Parker, Dennis L; Lu, Zheng-Rong

    2011-05-18

    Because of the recent observation of the toxic side effects of Gd(III) based MRI contrast agents in patients with impaired renal function, there is strong interest on developing alternative contrast agents for MRI. In this study, macrocyclic Mn(II) chelates were conjugated to nanoglobular carriers, lysine dendrimers with a silsesquioxane core, to synthesize non-Gd(III) based MRI contrast agents. A generation 3 nanoglobular conjugate of Mn(II)-1,4,7-triaazacyclononane-1,4,7-triacetate-GA amide (G3-NOTA-Mn) was also synthesized and evaluated. The per ion T(1) and T(2) relaxivities of G2, G3, G4 nanoglobular Mn(II)-DOTA monoamide conjugates decreased with increasing generation of the carriers. The T(1) relaxivities of G2, G3, and G4 nanoglobular Mn(II)-DOTA conjugates were 3.3, 2.8, and 2.4 mM(-1) s(-1) per Mn(II) chelate at 3 T, respectively. The T(1) relaxivity of G3-NOTA-Mn was 3.80 mM(-1) s(-1) per Mn(II) chelate at 3 T. The nanoglobular macrocyclic Mn(II) chelate conjugates showed good in vivo stability and were readily excreted via renal filtration. The conjugates resulted in much less nonspecific liver enhancement than MnCl(2) and were effective for contrast-enhanced tumor imaging in nude mice bearing MDA-MB-231 breast tumor xenografts at a dose of 0.03 mmol Mn/kg. The nanoglobular macrocyclic Mn(II) chelate conjugates are promising nongadolinium based MRI contrast agents.

  12. On the positronium spin conversion reactions caused by some macrocyclic Co II complexes

    NASA Astrophysics Data System (ADS)

    Fantola-Lazzarini, Anna L.; Lazzarini, Ennio

    2002-08-01

    The rate constants, kCR, of ortho- into para-positronium ( o-Ps→ p-Ps) spin conversion reactions, CR, caused by the high-spin [Co IIsep] 2+, [Co IIdinosar] 2+ and [Co IIdiamsar] 2+ macrocyclic complexes and also by high-spin [Co II sen] 2+ tripod complex were measured at several temperatures. The delocalizations, β, of Co II unpaired electrons, promoted by the mentioned ligands, were determined by using the previously established correlations between kCR and the electron delocalization β of unpaired metal electrons. β is given by the ratio between the Racah inter-electronic repulsion parameters of complexes, B, and that of the free ions, B0. The β values are compared with those of the Co II complexes with en (1,2-ethanediamine), pn (1,2 propanediamine) and dien (2,2' diamino diethylamine) ligands. The kCR rate constants are also compared with those of the Ps oxidation reactions, OR, promoted by the corresponding Co III complexes. It is concluded that, unlike OR's, the CR's do not occur by formation of hepta-coordinate adducts with Ps atoms.

  13. Formal Synthesis of (±)-Roseophilin

    PubMed Central

    Bitar, Abdallah Y.; Frontier, Alison J.

    2009-01-01

    A formal synthesis of (±)-roseophilin is described. Scandium(III)-catalyzed Nazarov cyclization of 2,5-disubstituted N-tosylpyrrole 19 gives a 5,5’-fused ketopyrrole, and ansa-bridge formation via π-allyl palladium macrocyclization gives 21. PMID:19053717

  14. Second-generation DNA-templated macrocycle libraries for the discovery of bioactive small molecules.

    PubMed

    Usanov, Dmitry L; Chan, Alix I; Maianti, Juan Pablo; Liu, David R

    2018-07-01

    DNA-encoded libraries have emerged as a widely used resource for the discovery of bioactive small molecules, and offer substantial advantages compared with conventional small-molecule libraries. Here, we have developed and streamlined multiple fundamental aspects of DNA-encoded and DNA-templated library synthesis methodology, including computational identification and experimental validation of a 20 × 20 × 20 × 80 set of orthogonal codons, chemical and computational tools for enhancing the structural diversity and drug-likeness of library members, a highly efficient polymerase-mediated template library assembly strategy, and library isolation and purification methods. We have integrated these improved methods to produce a second-generation DNA-templated library of 256,000 small-molecule macrocycles with improved drug-like physical properties. In vitro selection of this library for insulin-degrading enzyme affinity resulted in novel insulin-degrading enzyme inhibitors, including one of unusual potency and novel macrocycle stereochemistry (IC 50  = 40 nM). Collectively, these developments enable DNA-templated small-molecule libraries to serve as more powerful, accessible, streamlined and cost-effective tools for bioactive small-molecule discovery.

  15. Synthesis and P1' SAR exploration of potent macrocyclic tissue factor-factor VIIa inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladziata, Vladimir; Glunz, Peter W.; Zou, Yan

    Selective tissue factor-factor VIIa complex (TF-FVIIa) inhibitors are viewed as promising compounds for treating thrombotic disease. In this contribution, we describe multifaceted exploratory SAR studies of S1'-binding moieties within a macrocyclic chemotype aimed at replacing cyclopropyl sulfone P1' group. Over the course of the optimization efforts, the 1-(1H-tetrazol-5-yl)cyclopropane P1' substituent emerged as an improved alternative, offering increased metabolic stability and lower clearance, while maintaining excellent potency and selectivity.

  16. Macrocyclic polyaminocarboxylates for stable radiometal antibody conjugates for therapy, SPECT and PET imaging

    DOEpatents

    Mease, R.C.; Mausner, L.F.; Srivastava, S.C.

    1997-06-17

    A simple method for the synthesis of 1,4,7, 10-tetraazacyclododecane N,N{prime}N{double_prime},N{prime}{double_prime}-tetraacetic acid and 1,4,8,11-tetraazacyclotetradecane N,N{prime},N{double_prime},N{prime}{double_prime}-tetraacetic acid involves cyanomethylating 1,4,7,10-tetraazacyclododecane or 1,4,8,11-tetraazacyclotetradecane to form a tetranitrile and hydrolyzing the tetranitrile. These macrocyclic compounds are functionalized through one of the carboxylates and then conjugated to various biological molecules including monoclonal antibodies. The resulting conjugated molecules are labeled with radiometals for SPECT and PET imaging and for radiotherapy. 4 figs.

  17. Structural, spectral, DFT and biological studies on macrocyclic mononuclear ruthenium (II) complexes

    NASA Astrophysics Data System (ADS)

    Muthukkumar, M.; Kamal, C.; Venkatesh, G.; Kaya, C.; Kaya, S.; Enoch, Israel V. M. V.; Vennila, P.; Rajavel, R.

    2017-11-01

    Macrocyclic mononuclear ruthenium (II) complexes have been synthesized by condensation method [Ru (L1, L2, L3) Cl2] L1 = (C36 H31 N9), L2= (C42H36N8), L3= (C32H32 N8)]. These ruthenium complexes have been established by elemental analyses and spectroscopic techniques (Fourier transform infrared spectroscopy (FT-IR), 1H- nuclear magnetic resonance (NMR), 13C- NMR and Electrospray ionization mass spectrometry (ESI-MS)). The coordination mode of the ligand has been confirmed and the octahedral geometry around the ruthenium ion has been revealed. Binding affinity and binding mode of ruthenium (II) complexes with Bovine serum Albumin (BSA) have been characterized by Emission spectra analysis. UV-Visible and fluorescence spectroscopic techniques have also been utilized to examine the interaction between ligand and its complexes L1, L2, & L3 with BSA. Chemical parameters and molecular structure of Ru (II) complexes L1H, L2H, & L3H have been determined by DFT coupled with B3LYP/6-311G** functional in both the gaseous and aqueous phases.

  18. Kinetically E-selective macrocyclic ring-closing metathesis

    NASA Astrophysics Data System (ADS)

    Shen, Xiao; Nguyen, Thach T.; Koh, Ming Joo; Xu, Dongmin; Speed, Alexander W. H.; Schrock, Richard R.; Hoveyda, Amir H.

    2017-01-01

    Macrocyclic compounds are central to the development of new drugs, but preparing them can be challenging because of the energy barrier that must be surmounted in order to bring together and fuse the two ends of an acyclic precursor such as an alkene (also known as an olefin). To this end, the catalytic process known as ring-closing metathesis (RCM) has allowed access to countless biologically active macrocyclic organic molecules, even for large-scale production. Stereoselectivity is often critical in such cases: the potency of a macrocyclic compound can depend on the stereochemistry of its alkene; alternatively, one isomer of the compound can be subjected to stereoselective modification (such as dihydroxylation). Kinetically controlled Z-selective RCM reactions have been reported, but the only available metathesis approach for accessing macrocyclic E-olefins entails selective removal of the Z-component of a stereoisomeric mixture by ethenolysis, sacrificing substantial quantities of material if E/Z ratios are near unity. Use of ethylene can also cause adventitious olefin isomerization—a particularly serious problem when the E-alkene is energetically less favoured. Here, we show that dienes containing an E-alkenyl-B(pinacolato) group, widely used in catalytic cross-coupling, possess the requisite electronic and steric attributes to allow them to be converted stereoselectively to E-macrocyclic alkenes. The reaction is promoted by a molybdenum monoaryloxide pyrrolide complex and affords products at a yield of up to 73 per cent and an E/Z ratio greater than 98/2. We highlight the utility of the approach by preparing recifeiolide (a 12-membered-ring antibiotic) and pacritinib (an 18-membered-ring enzyme inhibitor), the Z-isomer of which is less potent than the E-isomer. Notably, the 18-membered-ring moiety of pacritinib—a potent anti-cancer agent that is in advanced clinical trials for treating lymphoma and myelofibrosis—was prepared by RCM carried out at a

  19. Mechanistics and photo-energetics of macrocycles and photodynamic therapy: An overview of aspects to consider for research.

    PubMed

    Horne, Tamarisk K; Cronjé, Marianne J

    2017-02-01

    Research within the field of photodynamic therapy has escalated over the past 20 years. The required conjunctional use of photosensitizers, particularly of the macrocycle structure, has lead to a vast repertoire of derivatives that branch classes and subclasses thereof. Each exhibits a differential range of physiochemical properties that influence their potential applications within the larger phototherapy field for use in either diagnostics, photodynamic therapy, both or none. Herein, we provide an overview of these properties as they relate to photodynamic therapy and to a lesser extent diagnostics. By summarizing the mechanistics of photodynamic therapy coupled to the photo-energetics displayed by macrocycle photosensitizers, we aimed to highlight the critical aspects any researcher should be aware of and consider when selecting and performing research for therapeutic application purposes. These include photosensitizer, photophysical and structural properties, synthesis design and subsequent attributes, main applications within research, common shortcomings exhibited and the current methods practiced to overcome them. © 2017 John Wiley & Sons A/S.

  20. Interference of interchromophoric energy-transfer pathways in π-conjugated macrocycles

    DOE PAGES

    Alfonso Hernandez, Laura; Nelson, Tammie Renee; Gelin, Maxim F.; ...

    2016-11-10

    The interchromophoric energy-transfer pathways between weakly coupled units in a π-conjugated phenylene–ethynylene macrocycle and its half-ring analogue have been investigated using the nonadiabatic excited-state molecular dynamics approach. To track the flow of electronic transition density between macrocycle units, we formulate a transition density flux analysis adapted from the statistical minimum flow method previously developed to investigate vibrational energy flow. Following photoexcitation, transition density is primarily delocalized on two chromophore units and the system undergoes ultrafast energy transfer, creating a localized excited state on a single unit. In the macrocycle, distinct chromophore units donate transition density to a single acceptor unitmore » but do not interchange transition density among each other. We find that energy transfer in the macrocycle is slower than in the corresponding half ring because of the presence of multiple interfering energy-transfer pathways. Finally, simulation results are validated by modeling the fluorescence anisotropy decay.« less

  1. Host-guest capability of a three-dimensional heterometallic macrocycle.

    PubMed

    Fan, Qi-Jia; Lin, Yue-Jian; Hahn, F Ekkehardt; Jin, Guo-Xin

    2018-02-13

    A three-dimensional heterometallic coordination macrocycle is found to be capable of encapsulating planar pyrene (G1), coronene (G4) and non-planar corannulene (G2) guest molecules in high yields, giving rise to 1 : 1 host-guest complexes. The bowl-shaped guest corannulene is found to be significantly flattened upon inclusion within the cavity. However, macrocyclic compounds with larger cavity sizes, which form 1 : 1 stoichiometry assemblies with a naphthalene bisimide planar molecule (G3), are more inclined to form infinite sandwich structures. Furthermore, these heterometallic coordination macrocycles can be destroyed in the presence of a soft base to form hexanuclear triangular prism complexes. These structures are unambiguously revealed by single-crystal X-ray analysis.

  2. Gd-complexes of macrocyclic DTPA conjugates of 1,1'-bis(amino)ferrocenes as high relaxivity MRI blood-pool contrast agents (BPCAs).

    PubMed

    Kim, Hee-Kyung; Park, Ji-Ae; Kim, Kyeong Min; Nasiruzzaman, Sk Md; Kang, Duk-Sik; Lee, Jongmin; Chang, Yongmin; Kim, Tae-Jeong

    2010-11-28

    We report the synthesis of macrocyclic DTPA conjugates of 1,1'-bis(amino)ferrocenes (1a-b) and their Gd-complexes [Gd(L)(H(2)O)] (2a-b, L = 1a-b) for use as new MRI blood-pool contrast agents. High R(1) relaxivity in HSA as well as high thermodynamic and kinetic stabilities is observed for 2a.

  3. Coordination Chemistry of Alkali and Alkaline-Earth Cations with Macrocyclic Ligands.

    ERIC Educational Resources Information Center

    Dietrich, Bernard

    1985-01-01

    Discusses: (l) alkali and alkaline-earth cations in biology (considering naturally occurring lonophores, their X-ray structures, and physiochemical studies); (2) synthetic complexing agents for groups IA and IIA; and (3) ion transport across membranes (examining neutral macrobicyclic ligands as metal cation carriers, transport by anionic carriers,…

  4. Peptidic Macrocycles - Conformational Sampling and Thermodynamic Characterization

    PubMed Central

    2018-01-01

    Macrocycles are of considerable interest as highly specific drug candidates, yet they challenge standard conformer generators with their large number of rotatable bonds and conformational restrictions. Here, we present a molecular dynamics-based routine that bypasses current limitations in conformational sampling and extensively profiles the free energy landscape of peptidic macrocycles in solution. We perform accelerated molecular dynamics simulations to capture a diverse conformational ensemble. By applying an energetic cutoff, followed by geometric clustering, we demonstrate the striking robustness and efficiency of the approach in identifying highly populated conformational states of cyclic peptides. The resulting structural and thermodynamic information is benchmarked against interproton distances from NMR experiments and conformational states identified by X-ray crystallography. Using three different model systems of varying size and flexibility, we show that the method reliably reproduces experimentally determined structural ensembles and is capable of identifying key conformational states that include the bioactive conformation. Thus, the described approach is a robust method to generate conformations of peptidic macrocycles and holds promise for structure-based drug design. PMID:29652495

  5. Peptidic Macrocycles - Conformational Sampling and Thermodynamic Characterization.

    PubMed

    Kamenik, Anna S; Lessel, Uta; Fuchs, Julian E; Fox, Thomas; Liedl, Klaus R

    2018-05-29

    Macrocycles are of considerable interest as highly specific drug candidates, yet they challenge standard conformer generators with their large number of rotatable bonds and conformational restrictions. Here, we present a molecular dynamics-based routine that bypasses current limitations in conformational sampling and extensively profiles the free energy landscape of peptidic macrocycles in solution. We perform accelerated molecular dynamics simulations to capture a diverse conformational ensemble. By applying an energetic cutoff, followed by geometric clustering, we demonstrate the striking robustness and efficiency of the approach in identifying highly populated conformational states of cyclic peptides. The resulting structural and thermodynamic information is benchmarked against interproton distances from NMR experiments and conformational states identified by X-ray crystallography. Using three different model systems of varying size and flexibility, we show that the method reliably reproduces experimentally determined structural ensembles and is capable of identifying key conformational states that include the bioactive conformation. Thus, the described approach is a robust method to generate conformations of peptidic macrocycles and holds promise for structure-based drug design.

  6. Structural basis of nonribosomal peptide macrocyclization in fungi.

    PubMed

    Zhang, Jinru; Liu, Nicholas; Cacho, Ralph A; Gong, Zhou; Liu, Zhu; Qin, Wenming; Tang, Chun; Tang, Yi; Zhou, Jiahai

    2016-12-01

    Nonribosomal peptide synthetases (NRPSs) in fungi biosynthesize important pharmaceutical compounds, including penicillin, cyclosporine and echinocandin. To understand the fungal strategy of forging the macrocyclic peptide linkage, we determined the crystal structures of the terminal condensation-like (C T ) domain and the holo thiolation (T)-C T complex of Penicillium aethiopicum TqaA. The first, to our knowledge, structural depiction of the terminal module in a fungal NRPS provides a molecular blueprint for generating new macrocyclic peptide natural products.

  7. Spectroscopic and biological approach in the characterization of a novel 14-membered [N4] macrocyclic ligand and its palladium(II), platinum(II), ruthenium(III) and iridium(III) complexes.

    PubMed

    Rani, Soni; Kumar, Sumit; Chandra, Sulekh

    2014-01-24

    A novel, tetradentate nitrogen donor [N4] macrocyclic ligand, i.e. 3,5,14,16-tetramethyl-2,6,13,17-tetraazatricyclo[12,0,0(7-12)] cosa-1(22),2,5,7,9,11,13,16,18,20-decaene(L), has been synthesized and characterized by elemental analyses, IR, Mass, and (1)H NMR spectral studies. Complexes of Pd(II), Pt(II), Ru(III) and Ir(III) have been prepared and characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, Mass, electronic spectral and thermal studies. On the basis of molar conductance the complexes may be formulated as [PdL]Cl2, [PtL]Cl2, [Ru(L)Cl2]Cl and [Ir(L)Cl2]Cl. The complexes are insoluble in most common solvents, including water, ethanol, carbon tetrachloride and acetonitrile, but soluble in DMF/DMSO. The value of magnetic moment indicates that all the complexes are diamagnetic except Ru(III) complex which shows magnetic moment corresponding to one unpaired electron. The magnetic moment of Ru(III) complex is 1.73 B.M. at room temperature. The antimicrobial activities of ligand and its complexes have been screened in vitro, as growth inhibiting agents. The antifungal and antibacterial screening were carried out using Food Poison and Disc Diffusion Method against plant pathogenic fungi and bacteria Alternaria porri, Fusarium oxysporum, Xanthomonas compestris and Pseudomonas aeruginosa respectively. The compounds were dissolved in DMSO to get the required solutions. The required medium used for these activities was PDA and nutrient agar. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Spectroscopic and biological approach in the characterization of a novel 14-membered [N4] macrocyclic ligand and its Palladium(II), Platinum(II), Ruthenium(III) and Iridium(III) complexes

    NASA Astrophysics Data System (ADS)

    Rani, Soni; Kumar, Sumit; Chandra, Sulekh

    2014-01-01

    A novel, tetradentate nitrogen donor [N4] macrocyclic ligand, i.e. 3,5,14,16-tetramethyl-2,6,13,17-tetraazatricyclo[12,0,07-12] cosa-1(22),2,5,7,9,11,13,16,18,20-decaene(L), has been synthesized and characterized by elemental analyses, IR, Mass, and 1H NMR spectral studies. Complexes of Pd(II), Pt(II), Ru(III) and Ir(III) have been prepared and characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, Mass, electronic spectral and thermal studies. On the basis of molar conductance the complexes may be formulated as [PdL]Cl2, [PtL]Cl2, [Ru(L)Cl2]Cl and [Ir(L)Cl2]Cl. The complexes are insoluble in most common solvents, including water, ethanol, carbon tetrachloride and acetonitrile, but soluble in DMF/DMSO. The value of magnetic moment indicates that all the complexes are diamagnetic except Ru(III) complex which shows magnetic moment corresponding to one unpaired electron. The magnetic moment of Ru(III) complex is 1.73 B.M. at room temperature. The antimicrobial activities of ligand and its complexes have been screened in vitro, as growth inhibiting agents. The antifungal and antibacterial screening were carried out using Food Poison and Disc Diffusion Method against plant pathogenic fungi and bacteria Alternaria porri, Fusarium oxysporum, Xanthomonas compestris and Pseudomonas aeruginosa respectively. The compounds were dissolved in DMSO to get the required solutions. The required medium used for these activities was PDA and nutrient agar.

  9. Concurrent treatment with a macrocyclic lactone and benzimidazole provides season long performance advantages in grazing cattle harboring macrocyclic lactone resistant nematodes.

    PubMed

    Edmonds, M D; Vatta, A F; Marchiondo, A A; Vanimisetti, H B; Edmonds, J D

    2018-03-15

    In 2013, a 118-day study was initiated to investigate the efficacy of concurrent treatment at pasture turnout with an injectable macrocyclic lactone with activity up to 28 days and an oral benzimidazole, referred to as "conventional" anthelmintics, when compared to treatment with conventional macrocyclic lactone alone or an injectable macrocyclic lactone with extended activity of 100 days or longer. A group of 210 steers were obtained from a ranch in California and transported to Idaho, USA. A total of 176 steers with the highest fecal egg counts were blocked by pre-treatment body weights and pasture location. A total of 44 pasture paddocks were assigned with 4 steers per paddock with 12 paddocks per therapeutic treatment group and 8 paddocks per controls. The four treatments were injectable doramectin (Dectomax ® , Zoetis Inc., 0.2 mg kg -1 BW, SC), injectable doramectin concurrently with oral albendazole (Valbazen ® , Zoetis Inc., 10 mg kg -1 BW, PO), extended release injectable eprinomectin (LongRange™, Merial Limited, 1 mg kg -1 BW, SC) or saline. Cattle were individually weighed and sampled for fecal egg count on Days 0, 31/32, 61, 88, and 117/118 with an additional fecal sample on Day 14. At conclusion, one steer per paddock was euthanized for nematode recovery. The results from the first 32 days found evidence of macrocyclic lactone resistance against injectable doramectin and extended release eprinomectin. During this period the concurrent therapy provided nearly 100% efficacy based on fecal egg count reduction and a 19.98% improvement in total weight gain compared to controls (P = 0.039). At the conclusion of the 118-day study and past the approved efficacy for the conventional anthelmintics, the concurrent therapy with conventional anthelmintics provided a 22.98% improvement in total weight gain compared to controls (P = 0.004). The 118-day improvement in weight gain for the extended release eprinomectin group (29.06% compared to

  10. Macrocyclic Receptor for Precious Gold, Platinum, or Palladium Coordination Complexes.

    PubMed

    Liu, Wenqi; Oliver, Allen G; Smith, Bradley D

    2018-06-06

    Two macrocyclic tetralactam receptors are shown to selectively encapsulate anionic, square-planar chloride and bromide coordination complexes of gold(III), platinum(II), and palladium(II). Both receptors have a preorganized structure that is complementary to its precious metal guest. The receptors do not directly ligate the guest metal center but instead provide an array of arene π-electron donors that interact with the electropositive metal and hydrogen-bond donors that interact with the outer electronegative ligands. This unique mode of supramolecular recognition is illustrated by six X-ray crystal structures showing receptor encapsulation of AuCl 4 - , AuBr 4 - , PtCl 4 -2 , or Pd 2 Cl 6 -2 . In organic solution, the 1:1 association constants correlate with specific supramolecular features identified in the solid state. Technical applications using these receptors are envisioned in a wide range of fields that involve precious metals, including mining, recycling, catalysis, nanoscience, and medicine.

  11. Immobilized copper(II) macrocyclic complex on MWCNTs with antibacterial activity

    NASA Astrophysics Data System (ADS)

    Tarlani, Aliakbar; Narimani, Khashayar; Mohammadipanah, Fatemeh; Hamedi, Javad; Tahermansouri, Hasan; Amini, Mostafa M.

    2015-06-01

    In a new approach, a copper(II) tetraaza macrocyclic complex (CuTAM) was covalently bonded on modified multi-walled carbon nanotubes (MWCNTs). To achieve this purpose, MWCNTs were converted to MWCNT-COCl and then reacted to NH groups of TAM ligand. The prepared material was characterized by Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), and FESEM (field emission scanning electron microscopy). FT-IR and TGA demonstrated the presence of the organic moieties, and XRD proved that the structure of MWCNTs remained intact during the three modification steps. An increase in the ID/IG ratio in Raman spectra confirmed the surface modifications. Finally, the samples were subjected to an antibacterial assessment to compare their biological activity. The antibacterial test showed that the grafted complex on the surface of the nanotube (MWCNT-CO-CuTAM) has higher antibacterial activity against Bacillus subtilis ATCC 6633 than the MWCNT-COOH and CuTAM with 1000 and 2000 μg/mL.

  12. Synthesis, spectral and electrochemical studies of binuclear Ru(III) complexes containing dithiosemicarbazone ligand

    NASA Astrophysics Data System (ADS)

    Kanchana Devi, A.; Ramesh, R.

    2014-01-01

    Synthesis of several new octahedral binuclear ruthenium(III) complexes of the general composition [(EPh3)2(X)Ru-L-Ru(X)(EPh3)2] containing benzene dithiosemicarbazone ligands (where E = P or As; X = Cl or Br; L = binucleating ligands) is presented. All the complexes have been fully characterized by elemental analysis, FT-IR, UV-vis and EPR spectroscopy together with magnetic susceptibility measurements. IR study shows that the dithiosemicarbazone ligands behave as dianionic tridentate ligands coordinating through the oxygen atom of the deprotonated phenolic group, nitrogen atom of the azomethine group and thiolate sulphur. In DMF solution, all the complexes exhibit intense d-d transition and ligand-to-metal charge transfer (LMCT) transition in the visible region. The magnetic moment values of the complexes are in the range 1.78-1.82 BM, which reveals the presence of one unpaired electron on each metal ion. The EPR spectra of the liquid samples at LNT show the presence of three different 'g' values (gx ≠ gy ≠ gz) indicate a rhombic distortion around the ruthenium ion. All the complexes exhibit two quasi-reversible one electron oxidation responses (RuIII-RuIII/RuIII-RuIV; RuIII-RuIV/RuIV-RuIV) within the E1/2 range of 0.61-0.74 V and 0.93-0.98 V respectively, versus Ag/AgCl.

  13. Tiered analytics for purity assessment of macrocyclic peptides in drug discovery: Analytical consideration and method development.

    PubMed

    Qian Cutrone, Jingfang Jenny; Huang, Xiaohua Stella; Kozlowski, Edward S; Bao, Ye; Wang, Yingzi; Poronsky, Christopher S; Drexler, Dieter M; Tymiak, Adrienne A

    2017-05-10

    Synthetic macrocyclic peptides with natural and unnatural amino acids have gained considerable attention from a number of pharmaceutical/biopharmaceutical companies in recent years as a promising approach to drug discovery, particularly for targets involving protein-protein or protein-peptide interactions. Analytical scientists charged with characterizing these leads face multiple challenges including dealing with a class of complex molecules with the potential for multiple isomers and variable charge states and no established standards for acceptable analytical characterization of materials used in drug discovery. In addition, due to the lack of intermediate purification during solid phase peptide synthesis, the final products usually contain a complex profile of impurities. In this paper, practical analytical strategies and methodologies were developed to address these challenges, including a tiered approach to assessing the purity of macrocyclic peptides at different stages of drug discovery. Our results also showed that successful progression and characterization of a new drug discovery modality benefited from active analytical engagement, focusing on fit-for-purpose analyses and leveraging a broad palette of analytical technologies and resources. Copyright © 2017. Published by Elsevier B.V.

  14. An efficient and highly stereoselective synthesis of new P-chiral 1,5-diphosphanylferrocene ligands and their use in enantioselective hydrogenation.

    PubMed

    Chen, Weiping; Roberts, J Stanley M; Whittall, John; Steiner, Alexander

    2006-07-21

    An efficient and highly stereoselective synthesis of P-chiral 1,5-diphosphanylferrocene ligands has been developed, and the introduction of P-chirality in ferrocene-based phosphine ligands enhances the enantioselective discrimination produced by the corresponding catalyst when matching of the planar chirality, the chirality at carbon and the chirality at phosphorus occurs.

  15. Dynamically analyte-responsive macrocyclic host-fluorophore systems.

    PubMed

    Ghale, Garima; Nau, Werner M

    2014-07-15

    CONSPECTUS: Host-guest chemistry commenced to a large degree with the work of Pedersen, who in 1967 first reported the synthesis of crown ethers. The past 45 years have witnessed a substantial progress in the field, from the design of highly selective host molecules as receptors to their application in drug delivery and, particularly, analyte sensing. Much effort has been expended on designing receptors and signaling mechanism for detecting compounds of biological and environmental relevance. Traditionally, the design of a chemosensor comprises one component for molecular recognition, frequently macrocycles of the cyclodextrin, cucurbituril, cyclophane, or calixarene type. The second component, used for signaling, is typically an indicator dye which changes its photophysical properties, preferably its fluorescence, upon analyte binding. A variety of signal transduction mechanisms are available, of which displacement of the dye from the macrocyclic binding site is one of the simplest and most popular ones. This constitutes the working principle of indicator displacement assays. However, indicator displacement assays have been predominantly exploited in a static fashion, namely, to determine absolute analyte concentrations, or, by using combinations of several reporter pairs, to achieve a differential sensing and, thus, identification of specific food products or brands. In contrast, their use in biological systems, for example, with membranes, cells, or with enzymes has been comparably less explored, which led us to the design of the so-called tandem assays, that is, dynamically analyte-responsive host-dye systems, in which the change in analyte concentrations is induced by a biological reaction or process. This methodological variation has practical application potential, because the ability to monitor these biochemical pathways or to follow specific molecules in real time is of paramount interest for both biochemical laboratories and the pharmaceutical industry

  16. Catalytic "active-metal" template synthesis of [2]rotaxanes, [3]rotaxanes, and molecular shuttles, and some observations on the mechanism of the cu(i)-catalyzed azide-alkyne 1,3-cycloaddition.

    PubMed

    Aucagne, Vincent; Berna, José; Crowley, James D; Goldup, Stephen M; Hänni, Kevin D; Leigh, David A; Lusby, Paul J; Ronaldson, Vicki E; Slawin, Alexandra M Z; Viterisi, Aurélien; Walker, D Barney

    2007-10-03

    A synthetic approach to rotaxane architectures is described in which metal atoms catalyze covalent bond formation while simultaneously acting as the template for the assembly of the mechanically interlocked structure. This "active-metal" template strategy is exemplified using the Huisgen-Meldal-Fokin Cu(I)-catalyzed 1,3-cycloaddition of azides with terminal alkynes (the CuAAC "click" reaction). Coordination of Cu(I) to an endotopic pyridine-containing macrocycle allows the alkyne and azide to bind to metal atoms in such a way that the metal-mediated bond-forming reaction takes place through the cavity of the macrocycle--or macrocycles--forming a rotaxane. A variety of mono- and bidentate macrocyclic ligands are demonstrated to form [2]rotaxanes in this way, and by adding pyridine, the metal can turn over during the reaction, giving a catalytic active-metal template assembly process. Both the stoichiometric and catalytic versions of the reaction were also used to synthesize more complex two-station molecular shuttles. The dynamics of the translocation of the macrocycle by ligand exchange in these two-station shuttles could be controlled by coordination to different metal ions (rapid shuttling is observed with Cu(I), slow shuttling with Pd(II)). Under active-metal template reaction conditions that feature a high macrocycle:copper ratio, [3]rotaxanes (two macrocycles on a thread containing a single triazole ring) are also produced during the reaction. The latter observation shows that under these conditions the mechanism of the Cu(I)-catalyzed terminal alkyne-azide cycloaddition involves a reactive intermediate that features at least two metal ions.

  17. Promoted Iron Nanocrystals Obtained via Ligand Exchange as Active and Selective Catalysts for Synthesis Gas Conversion

    PubMed Central

    2017-01-01

    Colloidal synthesis routes have been recently used to fabricate heterogeneous catalysts with more controllable and homogeneous properties. Herein a method was developed to modify the surface composition of colloidal nanocrystal catalysts and to purposely introduce specific atoms via ligands and change the catalyst reactivity. Organic ligands adsorbed on the surface of iron oxide catalysts were exchanged with inorganic species such as Na2S, not only to provide an active surface but also to introduce controlled amounts of Na and S acting as promoters for the catalytic process. The catalyst composition was optimized for the Fischer–Tropsch direct conversion of synthesis gas into lower olefins. At industrially relevant conditions, these nanocrystal-based catalysts with controlled composition were more active, selective, and stable than catalysts with similar composition but synthesized using conventional methods, possibly due to their homogeneity of properties and synergic interaction of iron and promoters. PMID:28824820

  18. Ligand-protected gold clusters: the structure, synthesis and applications

    NASA Astrophysics Data System (ADS)

    Pichugina, D. A.; Kuz'menko, N. E.; Shestakov, A. F.

    2015-11-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Aun with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au15 and Au25) and on anchorage to a support surface (Au25/SiO2, Au20/C, Au10/FeOx) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR)n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters MxAunLm (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR)x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites. The bibliography includes 345 references.

  19. Synthesis and structural characterization of two half-sandwich nickel(II) complexes with the scorpionate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.-F., E-mail: wgf1979@126.com, E-mail: s-shuwen@163.com; Zhang, X., E-mail: zhangx@hit.edu.cn; Sun, S.-W.

    The synthesis and characterization of two new halfsandwich mononuclear nickel(II) complexes with the scorpionate ligands, [k{sup 3}-N, N',N''-Tp{sup t-Bu}, {sup Me}NiI] (1) and [k{sup 3}-N,N',N''-Tp{sup t-Bu}, {sup Me}NiNO{sub 3}] (2), are reported. These complexes have been fully characterized by elemental analyses and infrared spectra. Their molecular structures were determined by single crystal X-ray diffraction. The nickel(II) ion of complex 1 is in a four-coordinate environment, in which the donor atoms are provided by three nitrogen atoms of a hydrotris(pyrazolyl) borate ligand and one iodide atom, while that of complex 2 is in a five-coordinate environment with three nitrogen atoms frommore » a hydrotris(pyrazolyl)borate ligand and two oxygen atoms from a nitrate ion.« less

  20. Oxoiron(IV) Tetramethylcyclam Complexes with Axial Carboxylate Ligands: Effect of Tethering the Carboxylate on Reactivity.

    PubMed

    Bigelow, Jennifer O; England, Jason; Klein, Johannes E M N; Farquhar, Erik R; Frisch, Jonathan R; Martinho, Marlène; Mandal, Debasish; Münck, Eckard; Shaik, Sason; Que, Lawrence

    2017-03-20

    Oxoiron(IV) species are implicated as reactive intermediates in nonheme monoiron oxygenases, often acting as the agent for hydrogen-atom transfer from substrate. A histidine is the most likely ligand trans to the oxo unit in most enzymes characterized thus far but is replaced by a carboxylate in the case of isopenicillin N synthase. As the effect of a trans carboxylate ligand on the properties of the oxoiron(IV) unit has not been systematically studied, we have synthesized and characterized four oxoiron(IV) complexes supported by the tetramethylcyclam (TMC) macrocycle and having a carboxylate ligand trans to the oxo unit. Two complexes have acetate or propionate axial ligands, while the other two have the carboxylate functionality tethered to the macrocyclic ligand framework by one or two methylene units. Interestingly, these four complexes exhibit substrate oxidation rates that differ by more than 100-fold, despite having E p,c values for the reduction of the Fe═O unit that span a range of only 130 mV. Eyring parameters for 1,4-cyclohexadiene oxidation show that reactivity differences originate from differences in activation enthalpy between complexes with tethered carboxylates and those with untethered carboxylates, in agreement with computational results. As noted previously for the initial subset of four complexes, the logarithms of the oxygen atom transfer rates of 11 complexes of the Fe IV (O)TMC(X) series increase linearly with the observed E p,c values, reflecting the electrophilicity of the Fe═O unit. In contrast, no correlation with E p,c values is observed for the corresponding hydrogen atom transfer (HAT) reaction rates; instead, the HAT rates increase as the computed triplet-quintet spin state gap narrows, consistent with Shaik's two-state-reactivity model. In fact, the two complexes with untethered carboxylates are among the most reactive HAT agents in this series, demonstrating that the axial ligand can play a key role in tuning the HAT

  1. A Mixed-Ligand Chiral Rhodium(II) Catalyst Enables the Enantioselective Total Synthesis of Piperarborenine B.

    PubMed

    Panish, Robert A; Chintala, Srinivasa R; Fox, Joseph M

    2016-04-11

    A novel, mixed-ligand chiral rhodium(II) catalyst, Rh2(S-NTTL)3(dCPA), has enabled the first enantioselective total synthesis of the natural product piperarborenine B. A crystal structure of Rh2(S-NTTL)3(dCPA) reveals a "chiral crown" conformation with a bulky dicyclohexylphenyl acetate ligand and three N-naphthalimido groups oriented on the same face of the catalyst. The natural product was prepared on large scale using rhodium-catalyzed bicyclobutanation/ copper-catalyzed homoconjugate addition chemistry in the key step. The route proceeds in ten steps with an 8% overall yield and 92% ee. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Comparison of classic and microwave-assisted synthesis of benzo-thio crown ethers, and investigation of their ion pair extractions

    NASA Astrophysics Data System (ADS)

    Calisir, Umit; Çiçek, Baki

    2017-11-01

    Macrocyclic benzo-thio crown ethers and benzo-oxo crown ethers were prepared using an esterification-ring closing method. These compounds were synthesised using 2,2‧-dithiodibenzoyl chloride, and various glycols and dithiols, in the presence of pyridine base under a nitrogen atmosphere in chloroform. All reactions were performed under reflux condition with conventional heating and microwave (MW) irradiation. The synthesised macrocycles were characterised by FT-IR, 1H NMR, 13C NMR, LC-MS, and elemental analysis methods. Extraction studies have been performed on these original macrocycles using liquid-liquid ion-pair extraction with Li+, Na+, K+, Ni2+, Ca2+, Mg2+, Zn2+, Fe2+,Fe3+, Co3+, Pb2+, Cr3+, Ag+, and Cd2+.The KD, ext.%, ΔG and log KExt values were also calculated. While (U1-U7) ligands exhibits selectivity for Zn2+, Ag+, Ca2+, Pb2+, Fe3+, Cr3+, Co2+, Mg2+, Cd2+, and Ni2+ metal salts, they showed no selectivity for Li+, K+ and Na+ metal salts. Furthermore, Fe3+is the most selective cation for all ligands for competitive extraction. We also observed that microwave heating can have certain benefits over conventional ovens: reaction rate acceleration, milder reaction conditions, higher chemical yield, and lower energy usage. These ligands could be used as metal sensors, enzyme inhibitors, antimicrobial/antifungal agents, and in biological applications.

  3. Design, synthesis and photoelectrochemical properties of hexagonal metallomacrocycles based on triphenylamine: [M6(4,4'-bis(2,2':6',2''-terpyridinyl)triphenylamine)6(X)12]; [M = Fe(II), PF6- and Zn(II), BF4-].

    PubMed

    Hwang, Seok-Ho; Moorefield, Charles N; Wang, Pingshan; Fronczek, Frank R; Courtney, Brandy H; Newkome, George R

    2006-08-07

    Synthesis of a novel bis(terpyridine) ligand, 4,4'-bis(2,2':6',2''-terpyridinyl)triphenylamine, utilizing triphenylamine, as a specific angle controller, has led to the self-assembly of a unique hexagonal metallomacrocycle family, [Fe6(2)6(PF6)12] and [Zn6(2)6(BF4)12], utilizing terpyridine-metal(II)-terpyridine connectivity. The crystal structure of the novel ligand shows that the angle between the two terpyridinyl moieties is 119.69 degrees , which enabled the formation of the hexagonal-shaped macrocycles. The crystal packing architectures of this starting ligand revealed channels induced by solvent encapsulation. Following complexation of this ligand with transition metals [Fe(II) or Zn(II)] in a one-pot reaction, the resultant structures were characterized by (1)H and (13)C NMR, UV/Vis and mass spectroscopies. The expected metal-to-ligand charge transfer (MLCT; lambda(max) = 582 nm) and emission (lambda(em) = 575 nm) characteristics were exhibited by both [Fe6(2)6(PF6)12] and[Zn6(2)6(BF4)12]. The photoelectrochemical characteristics of these hexagonal metallomacrocycles demonstrate that they can be used as sensitizers in dye-sensitized solar cells.

  4. Recent Advances in Macrocyclic Fluorescent Probes for Ion Sensing.

    PubMed

    Wong, Joseph K-H; Todd, Matthew H; Rutledge, Peter J

    2017-01-25

    Small-molecule fluorescent probes play a myriad of important roles in chemical sensing. Many such systems incorporating a receptor component designed to recognise and bind a specific analyte, and a reporter or transducer component which signals the binding event with a change in fluorescence output have been developed. Fluorescent probes use a variety of mechanisms to transmit the binding event to the reporter unit, including photoinduced electron transfer (PET), charge transfer (CT), Förster resonance energy transfer (FRET), excimer formation, and aggregation induced emission (AIE) or aggregation caused quenching (ACQ). These systems respond to a wide array of potential analytes including protons, metal cations, anions, carbohydrates, and other biomolecules. This review surveys important new fluorescence-based probes for these and other analytes that have been reported over the past five years, focusing on the most widely exploited macrocyclic recognition components, those based on cyclam, calixarenes, cyclodextrins and crown ethers; other macrocyclic and non-macrocyclic receptors are also discussed.

  5. Disulphide bond exchange inhibited by air - kinetic and thermodynamic products in a library of macrocyclic cysteine derivatives.

    PubMed

    Cholewiak, Agnieszka; Dobrzycki, Łukasz; Jurczak, Janusz; Ulatowski, Filip

    2018-04-04

    In this paper we present the synthesis and reactivity of dithiols comprising of two cysteine moieties attached to a dipicolinic acid core. Oxidation of these thiols provides oligomeric macrocycles. Monomers with 13-membered rings are kinetic products which are, however, strained and readily transform into higher oligomers under basic conditions or elevated temperature via a disulphide exchange reaction. Dimers, which are the most stable thermodynamic products, equilibrate only under inert conditions with thiolate as a catalyst. Under aerobic conditions, the thiols are oxidised before the equilibrium is reached.

  6. One-Pot Approach to Organo-Phosphorus-Chalcogen Macrocycles Incorporating Double OP(S)SCn or OP(Se)SeCn Scaffolds: A Synthetic and Structural Study.

    PubMed

    Hua, Guoxiong; Du, Junyi; Slawin, Alexandra M Z; Woollins, J Derek

    2016-06-01

    The development of new methodology for the preparation of functional macrocycles with practical applications is an important research area in macromolecular science. In this study, we report a new one-pot route for the synthesis of a series of macro-heterocycles by incorporating two phosphorus atoms and two chalcogen atoms and two oxygen atoms (double OP(S)SCn or OP(Se)SeCn scaffolds). The three-component condensation reactions of 2,4-diferrocenyl-1,3,2,4-diathiadiphosphetane 2,4-disulfide (FcLR, a ferrocene analogue of Lawesson's reagent) or 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane 2,4-disulfide (LR, Lawesson's reagent), or 2,4-diphenyl-1,3,2,4-diselenadiphosphetane 2,4-diselenide (WR, Woollins' reagent), disodium alkenyl-diols, and dihalogenated alkanes are performed, giving rise to soluble and air or moisture-stable macrocycles in good-to-excellent yields (up to 92 %). This is the first systemically preparative and readily scalable example of one-pot ring opening/ring extending reaction of three-components to prepare phosphorus-chalcogen containing macrocycles. We also provide a systematic crystallographic study. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis and characterization β-ketoamine ligands

    NASA Astrophysics Data System (ADS)

    Zaid, Nurzati Amani Mohamed; Hassan, Nur Hasyareeda; Karim, Nurul Huda Abd

    2018-04-01

    β-ketoamine ligands are important members of heterodonor ligand because of their ease of preparation and modification of both steric and/or electronic effects. Complexes with β-ketoamine has received much less attention and there has been no study about this complex with β-ketoamine in ionic liquid reported. Two type of β-ketoamine ligands which are 4-amino-3-pentene-2-onato (A) and 3-amino-2-butenoic acid methyl ester (B) have been synthesized in this work. The resulting compound formed was characterized using standard spectroscopic and structural techniques which includes 1H and 13C, NMR spectroscopy and FTIR spectroscopy. The 1H and 13C NMR spectrum displayed all the expected signals with correct integration and multiplicity. And it is proved that there are some differences between two ligands as observed in NMR and FTIR spectrum.

  8. Metal–organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Bo-Wen, E-mail: bowenhu@hit.edu.cn; Zheng, Xiang-Yu; Ding, Cheng

    2015-12-15

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L){sub 2}]{sub n} (1) and [Co{sub 3}(L){sub 4}(N{sub 3}){sub 2}·2MeOH]{sub n} (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 8}.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co{sub 3}] units. And the magnetic properties of 1 and 2 have been studied. - Graphical abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with tetrazole heterocycle ligands bearing acetate groupsmore » are reported. - Highlights: • Two novel Cobalt(II) complexes with tetrazole acetate ligands were synthesized. • The magnetic properties of two complexes were studied. • Azide as co-ligand resulted in different structures and magnetic properties. • The new coordination mode of tetrazole acetate ligand was obtained.« less

  9. Monodisperse hexagonal silver nanoprisms: synthesis via thiolate-protected cluster precursors and chiral, ligand-imprinted self-assembly.

    PubMed

    Cathcart, Nicole; Kitaev, Vladimir

    2011-09-27

    Silver nanoprisms of a predominantly hexagonal shape have been prepared using a ligand combination of a strongly binding thiol, captopril, and charge-stabilizing citrate together with hydrogen peroxide as an oxidative etching agent and a strong base that triggered nanoprism formation. The role of the reagents and their interplay in the nanoprism synthesis is discussed in detail. The beneficial role of chloride ions to attain a high degree of reproducibility and monodispersity of the nanoprisms is elucidated. Control over the nanoprism width, thickness, and, consequently, plasmon resonance in the system has been demonstrated. One of the crucial factors in the nanoprism synthesis was the slow, controlled aggregation of thiolate-stabilized silver nanoclusters as the intermediates. The resulting superior monodispersity (better than ca. 10% standard deviation in lateral size and ca. 15% standard deviation in thickness (<1 nm variation)) and charge stabilization of the produced silver nanoprisms enabled the exploration of the rich diversity of the self-assembled morphologies in the system. Regular columnar assemblies of the self-assembled nanoprisms spanning 2-3 μm in length have been observed. Notably, the helicity of the columnar phases was evident, which can be attributed to the chirality of the strongly binding thiol ligand. Finally, the enhancement of Raman scattering has been observed after oxidative removal of thiolate ligands from the AgNPR surface. © 2011 American Chemical Society

  10. New synthetic routes toward enantiopure nitrogen donor ligands.

    PubMed

    Sala, Xavier; Rodríguez, Anna M; Rodríguez, Montserrat; Romero, Isabel; Parella, Teodor; von Zelewsky, Alexander; Llobet, Antoni; Benet-Buchholz, Jordi

    2006-12-08

    New polypyridylic chiral ligands, having either C3 or lower symmetry, have been prepared via a de novo construction of the pyridine nucleus by means of Kröhnke methodology in the key step. The chiral moieties of these ligands originate from the monoterpen chiral pool, namely (-)-alpha-pinene ((-)-14, (-)-15) and (-)-myrtenal ((-)-9, (-)-10). Extension of the above-mentioned asymmetric synthesis procedure to the preparation of enantiopure derivatives of some commonly used polypyridylic ligands has been achieved through a new aldehyde building block ((-)-16). As an example, the synthesis of a chiral derivative of N,N-bis(2-pyridylmethyl)ethylamine (bpea) ligand, (-)-19, has been performed to illustrate the viability of the method. The coordinative ability of the ligands has been tested through the synthesis and characterization of complexes [Mn((-)-19)Br2], (-)-20, and [RuCl((-)-10)(bpy)](BF4), (-)-21. Some preliminary results related to the enantioselective catalytic epoxidation of styrene with the ruthenium complex are also presented.

  11. Catalytic Silylation of N 2 and Synthesis of NH 3 and N 2H 4 by Net Hydrogen Atom Transfer Reactions Using a Chromium P 4 Macrocycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendall, Alexander J.; Johnson, Samantha I.; Bullock, R. Morris

    We report the first discrete molecular Cr-based catalysts for the reduction of N2. This study is focused on the reactivity of the Cr-N2 complex, trans-[Cr(N2)2(PPh4NBn4)] P4Cr(N2)2, bearing a 16-membered tetraphosphine macrocycle. The architecture of the [16]-PPh4NBn4 ligand is critical to preserve the structural integrity of the catalyst. P4Cr(N2)2 was found to mediate the reduction of N2 by three complementary reaction pathways: (1) Cr-catalyzed reduction of N2 to N(SiMe3)3 by Na and Me3SiCl affording up to 34 equiv N(SiMe3)3; (2) stoichiometric reduction of N2 by protons and electrons. For example, the reaction of cobaltocene (CoCp2) and collidinium triflate (ColH[OTf]) at roommore » temperature to afforded 1.9 equiv of NH3, or at -78 °C to afforded a mixture of NH3 and N2H4; (3) the first example of NH3 formation from the reaction of a terminally bound N2 ligand with a traditional H atom source, TEMPOH, (2,2,6,6-tetramethylpiperidine-1-ol). We found that trans-[Cr(15N2)2(PPh4NBn4)] reacts with excess TEMPOH to afford a 1.4 equiv of 15NH3.« less

  12. Total synthesis and structure-activity investigation of the marine natural product neopeltolide.

    PubMed

    Custar, Daniel W; Zabawa, Thomas P; Hines, John; Crews, Craig M; Scheidt, Karl A

    2009-09-02

    The total synthesis and biological evaluation of neopeltolide and analogs are reported. The key bond-forming step utilizes a Lewis acid-catalyzed intramolecular macrocyclization that installs the tetrahydropyran ring and macrocycle simultaneously. Independent of each other, neither the macrolide nor the oxazole side chain substituents of neopeltolide can inhibit the growth of cancer cell lines. The biological data of the analogs indicate that alterations to either the ester side chain or the stereochemistry of the macrolide result in a loss of biological activity.

  13. Can a proton be encapsulated in tetraamido/diamino quaternized macrocycles in aqueous solution and electric field?

    PubMed

    Jiang, Nan; Ma, Jing

    2011-09-12

    The proton-binding behavior of solvated tetraamido/diamino quaternized macrocyclic compounds with rigid phenyl and flexible phenyl bridges in the absence or presence of an external electric field is investigated by molecular dynamics simulation. The proton can be held through H-bonding interactions with the two carbonyl oxygen atoms in macrocycles containing rigid (phenyl) and flexible (propyl) bridges. The solute-solvent H-bonding interactions cause the macrocyclic backbones to twist to different extents, depending on the different bridges. The macrocycle with the rigid phenyl linkages folds into a cuplike shape due to π-π interaction, while the propyl analogue still maintains the ellipsoidal ringlike shape with just a slight distortion. The potential energy required for proton transfer is larger in the phenyl-containing macrocycle than in the compound with propyl units. When an external electric field with a strength of 2.5 V nm(-1) is exerted along the carbonyl oxygen atoms, a difference in proton encircling is exhibited for macrocycles with rigid and flexible bridges. In contrast to encapsulation of a proton in the propyl analogue, the intermolecular solute-solvent H-bonding and intramolecular π-π stacking between the two rigid phenyl spacers leads to loss of the proton from the highly distorted cuplike macrocycle with phenyl bridges. The competition between intra- and intermolecular interactions governs the behavior of proton encircling in macrocycles. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chiral Recognition with Macrocyclic Glycopeptides: Mechanisms and Applications

    NASA Astrophysics Data System (ADS)

    Berthod, Alain; Qiu, Hai Xiao; Staroverov, Sergey M.; Kuznestov, Mikhail A.; Armstrong, Daniel W.

    The macrocyclic glycopeptide chiral selectors are natural molecules produced by bacterial fermentation. Purified and bonded to silica particles, they make very useful chiral stationary phases (CSP) with a broad spectrum of applicability in enantiomeric separation. The macrocyclic glycopeptide CSPs are multimodal, the same column being able to work in normal phase mode with apolar mobile phase, in reversed-phase mode, or in polar ionic mode with 100% alcoholic mobile phase of adjusted pH. The role of the carbohydrate units is described as well as the critical charge-charge docking interaction responsible for the amino acid enantiomer recognition. The complimentary phenomenon is also exposed.

  15. Synthesis, X-ray structure and cytotoxic effect of nickel(II) complexes with pyrazole ligands.

    PubMed

    Sobiesiak, Marta; Lorenz, Ingo-Peter; Mayer, Peter; Woźniczka, Magdalena; Kufelnicki, Aleksander; Krajewska, Urszula; Rozalski, Marek; Budzisz, Elzbieta

    2011-12-01

    Here we present the synthesis of the new Ni(II) complexes with chelating ligands 1-benzothiazol-2-yl-3,5-dimethyl-1H-pyrazole (a), 5-(2-hydroxyphenyl)-3-methyl-1-(2-pyridylo)-1H-pyrazole-4-carboxylic acid methyl ester (b) and 1-benzothiazol-2-yl-5-(2-hydroxyphenyl)-3-methyl-1H-pyrazole-4-carboxylic acid methyl ester (c). These ligands a-c create solid complexes with Ni(II). The crystal and molecular structures of two complexes were determined by X-ray diffraction method. Thermal stability of two complexes with ligand c by TG/DTG and DSC methods were also shown. Cytotoxic activity of all the complexes against three tumour cell lines and to normal endothelial cells (HUVEC) was also estimated. Complexes with ligand c exhibited relatively high cytotoxic activity towards HL-60 and NALM-6 leukaemia cells and WM-115 melanoma cells. Cytotoxic effectiveness of one of these complexes against melanoma WM-115 cells was two times higher than that of cisplatin. The protonation constant log K=9.63 of ligand b corresponding to the phenol 2-hydroxy group has been determined in 10% (v/v) DMSO/water solution (25°C). The coordination modes (formation of two monomeric species: NiL and NiL(2)) in the complexes with Ni(II) are discussed for b on the basis of the potentiometric and UV/Vis data. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  16. m-Diethynylbenzene macrocycles: syntheses and self-association behavior in solution.

    PubMed

    Tobe, Yoshito; Utsumi, Naoto; Kawabata, Kazuya; Nagano, Atsushi; Adachi, Kiyomi; Araki, Shunji; Sonoda, Motohiro; Hirose, Keiji; Naemura, Koichiro

    2002-05-15

    m-Diethynylbenzene macrocycles (DBMs), buta-1,3-diyne-bridged [4(n)]metacyclophanes, have been synthesized and their self-association behaviors in solution were investigated. Cyclic tetramers, hexamers, and octamers of DBMs having exo-annular octyl, hexadecyl, and 3,6,9-trioxadecyl ester groups were prepared by intermolecular oxidative coupling of dimer units or intramolecular cyclization of the corresponding open-chain oligomers. The aggregation properties were investigated by two methods, the (1)H NMR spectra and the vapor pressure osmometry (VPO). Although some discrepancies were observed between the association constants obtained from the two methods, the qualitative view was consistent with each other. The analysis of self-aggregation by VPO revealed unique aggregation behavior of DBMs in acetone and toluene, which was not elucidated by the NMR method. Namely, the association constants for infinite association are several times larger than the dimerization constant, suggesting that the aggregation is enhanced by the formation of dimers (a nucleation mechanism). In polar solvents, DBMs aggregate more strongly than in chloroform due to the solvophobic interactions between the macrocyclic framework and the solvents. Moreover, DBMs self-associate in aromatic solvents such as toluene and o-xylene more readily than in chloroform. In particular, the hexameric DBM having a large macrocyclic cavity exhibits extremely large association constants in aromatic solvents. By comparing the aggregation properties of DBMs with the corresponding acyclic oligomers, the effect of the macrocyclic structure on the aggregation propensity was clarified. Finally, it turned out that DBMs tend to aggregate more readily than the corresponding phenylacetylene macrocycles, acetylene-bridged [2(n)]metacyclophanes, owing to the withdrawal of the electron density from the aromatic rings by the butadiyne linkages which facilitates pi-pi stacking interactions.

  17. Kinetic Analysis for Macrocyclizations Involving Anionic Template at the Transition State

    PubMed Central

    Martí-Centelles, Vicente; Burguete, M. Isabel; Luis, Santiago V.

    2012-01-01

    Several kinetic models for the macrocyclization of a C2 pseudopeptide with a dihalide through a SN2 reaction have been developed. These models not only focus on the kinetic analysis of the main macrocyclization reaction, but also consider the competitive oligomerization/polymerization processes yielding undesired oligomeric/polymeric byproducts. The effect of anions has also been included in the kinetic models, as they can act as catalytic templates in the transition state reducing and stabilizing the transition state. The corresponding differential equation systems for each kinetic model can be solved numerically. Through a comprehensive analysis of these results, it is possible to obtain a better understanding of the different parameters that are involved in the macrocyclization reaction mechanism and to develop strategies for the optimization of the desired processes. PMID:22666148

  18. Total Synthesis and Structure-Activity Investigation of the Marine Natural Product Neopeltolide

    PubMed Central

    Custar, Daniel W.; Zabawa, Thomas P.; Hines, John; Crews, Craig M.; Scheidt, Karl A.

    2009-01-01

    The total synthesis and biological evaluation of neopeltolide and analogs are reported. The key bond-forming step utilizes a Lewis acid-catalyzed intramolecular macrocyclization that installs the tetrahydropyran ring and macrocycle simultaneously. Independent of each other, neither the macrolide nor the oxazole side chain substituents of neopeltolide can inhibit the growth of cancer cell lines. The biological data of the analogs indicate that alterations to either the ester side chain or the stereochemistry of the macrolide result in a loss of biological activity. PMID:19663512

  19. Syntheses and Functionalizations of Porphyrin Macrocycles

    PubMed Central

    Vicente, Maria da G.H.; Smith, Kevin M.

    2014-01-01

    Porphyrin macrocycles have been the subject of intense study in the last century because they are widely distributed in nature, usually as metal complexes of either iron or magnesium. As such, they serve as the prosthetic groups in a wide variety of primary metabolites, such as hemoglobins, myoglobins, cytochromes, catalases, peroxidases, chlorophylls, and bacteriochlorophylls; these compounds have multiple applications in materials science, biology and medicine. This article describes current methodology for preparation of simple, symmetrical model porphyrins, as well as more complex protocols for preparation of unsymmetrically substituted porphyrin macrocycles similar to those found in nature. The basic chemical reactivity of porphyrins and metalloporphyrin is also described, including electrophilic and nucleophilic reactions, oxidations, reductions, and metal-mediated cross-coupling reactions. Using the synthetic approaches and reactivity profiles presented, eventually almost any substituted porphyrin system can be prepared for applications in a variety of areas, including in catalysis, electron transport, model biological systems and therapeutics. PMID:25484638

  20. Chemical Editing of Macrocyclic Natural Products and Kinetic Profiling Reveal Slow, Tight-Binding Histone Deacetylase Inhibitors with Picomolar Affinities.

    PubMed

    Kitir, Betül; Maolanon, Alex R; Ohm, Ragnhild G; Colaço, Ana R; Fristrup, Peter; Madsen, Andreas S; Olsen, Christian A

    2017-09-26

    Histone deacetylases (HDACs) are validated targets for treatment of certain cancer types and play numerous regulatory roles in biology, ranging from epigenetics to metabolism. Small molecules are highly important as tool compounds for probing these mechanisms as well as for the development of new medicines. Therefore, detailed mechanistic information and precise characterization of the chemical probes used to investigate the effects of HDAC enzymes are vital. We interrogated Nature's arsenal of macrocyclic nonribosomal peptide HDAC inhibitors by chemical synthesis and evaluation of more than 30 natural products and analogues. This furnished surprising trends in binding affinities for the various macrocycles, which were then exploited for the design of highly potent class I and IIb HDAC inhibitors. Furthermore, thorough kinetic investigation revealed unexpected inhibitory mechanisms of important tool compounds as well as the approved drug Istodax (romidepsin). This work provides novel inhibitors with varying potencies, selectivity profiles, and mechanisms of inhibition and, importantly, affords insight into known tool compounds that will improve the interpretation of their effects in biology and medicine.

  1. Macrocyclic BACE inhibitors: Optimization of a micromolar hit to nanomolar leads.

    PubMed

    Huang, Yifang; Strobel, Eric D; Ho, Chih Y; Reynolds, Charles H; Conway, Kelly A; Piesvaux, Jennifer A; Brenneman, Douglas E; Yohrling, George J; Moore Arnold, H; Rosenthal, Daniel; Alexander, Richard S; Tounge, Brett A; Mercken, Marc; Vandermeeren, Marc; Parker, Michael H; Reitz, Allen B; Baxter, Ellen W

    2010-05-15

    We have identified macrocyclic inhibitors of the aspartic protease BACE, implicated in the etiology of Alzheimer's disease. An X-ray structure of screening hit 1 in the BACE active site revealed a hairpin conformation suggesting that constrained macrocyclic derivatives may also bind there. Several of the analogs we prepared were >100x more potent than 1, such as 7 (5 nM K(i)). Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89

    DOE PAGES

    Pandya, Darpan N.; Pailloux, Sylvie; Tatum, David; ...

    2014-12-18

    The development of bifunctional chelators (BFCs) which can stably chelate zirconium-89 ((89)Zr) while being conjugated to targeting molecules is an area of active research. Herein we report the first octadentate terephthalamide ligands, which are easily radiolabeled with (89)Zr and are highly stable in vitro. Lastly, they represent a novel class of chelators, which are worthy of further development as BFCs for (89)Zr.

  3. Selective synthesis of a series of isostructural MIICuI heterobimetallic complexes spontaneously assembled by an unsymmetrical naphthyridine-based ligand.

    PubMed

    Nicolay, Amélie; Tilley, T Don

    2018-05-31

    Metal-metal cooperation is integral to the function of many enzymes and materials, and model complexes hold enormous potential for providing insights into the capabilities of analogous multimetallic cores. However, the selective synthesis of heterobimetallic complexes still presents a significant challenge, especially for systems that hold the metals in close proximity and feature open or reactive coordination sites for both metals. To address this issue, a rigid, naphthyridine-based dinucleating ligand featuring distinct binding environments was synthesized. This ligand enables the selective synthesis of a series of MIICuI bimetallic complexes (M = Mn, Fe, Co, Ni, Cu, Zn), in which each metal center exclusively occupies its preferred binding pocket, from simple chloride salts. The precision of this selectivity is evident from cyclic voltammetry, ESI-MS and anomalous X-ray diffraction measurements. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Catalytic Silylation of N2 and Synthesis of NH3 and N2H4 by Net Hydrogen Atom Transfer Reactions Using a Chromium P4 Macrocycle.

    PubMed

    Kendall, Alexander J; Johnson, Samantha I; Bullock, R Morris; Mock, Michael T

    2018-02-21

    We report the first discrete molecular Cr-based catalysts for the reduction of N 2 . This study is focused on the reactivity of the Cr-N 2 complex, trans-[Cr(N 2 ) 2 (P Ph 4 N Bn 4 )] (P 4 Cr(N 2 ) 2 ), bearing a 16-membered tetraphosphine macrocycle. The architecture of the [16]-P Ph 4 N Bn 4 ligand is critical to preserve the structural integrity of the catalyst. P 4 Cr(N 2 ) 2 was found to mediate the reduction of N 2 at room temperature and 1 atm pressure by three complementary reaction pathways: (1) Cr-catalyzed reduction of N 2 to N(SiMe 3 ) 3 by Na and Me 3 SiCl, affording up to 34 equiv N(SiMe 3 ) 3 ; (2) stoichiometric reduction of N 2 by protons and electrons (for example, the reaction of cobaltocene and collidinium triflate at room temperature afforded 1.9 equiv of NH 3 , or at -78 °C afforded a mixture of NH 3 and N 2 H 4 ); and (3) the first example of NH 3 formation from the reaction of a terminally bound N 2 ligand with a traditional H atom source, TEMPOH (2,2,6,6-tetramethylpiperidine-1-ol). We found that trans-[Cr( 15 N 2 ) 2 (P Ph 4 N Bn 4 )] reacts with excess TEMPOH to afford 1.4 equiv of 15 NH 3 . Isotopic labeling studies using TEMPOD afforded ND 3 as the product of N 2 reduction, confirming that the H atoms are provided by TEMPOH.

  5. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-affinity γ-Hydroxybutyrate (GHB) Binding Sites

    PubMed Central

    Vogensen, Stine B.; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H.F.; Clausen, Rasmus P.

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affinity GHB binding sites. PMID:24053696

  6. Synthesis and reactivity of mononuclear iron models of [Fe]-hydrogenase that contain an acylmethylpyridinol ligand.

    PubMed

    Hu, Bowen; Chen, Dafa; Hu, Xile

    2014-02-03

    [Fe]-hydrogenase has a single iron-containing active site that features an acylmethylpyridinol ligand. This unique ligand environment had yet to be reproduced in synthetic models; however the synthesis and reactivity of a new class of small molecule mimics of [Fe]-hydrogenase in which a mono-iron center is ligated by an acylmethylpyridinol ligand has now been achieved. Key to the preparation of these model compounds is the successful C-O cleavage of an alkyl ether moiety to form the desired pyridinol ligand. Reaction of solvated complex [(2-CH2CO-6-HOC5H3N)Fe(CO)2(CH3CN)2](+)(BF4)(-) with thiols or thiophenols in the presence of NEt3 yielded 5-coordinate iron thiolate complexes. Further derivation produced complexes [(2-CH2CO-6-HOC5H3N)Fe(CO)2(SCH2CH2OH)] and [(2-CH2CO-6-HOC5H3N)Fe(CO)2(CH3COO)], which can be regarded as models of FeGP cofactors of [Fe]-hydrogenase extracted by 2-mercaptoethanol and acetic acid, respectively. When the derivative complexes were treated with HBF4 ⋅Et2O, the solvated complex was regenerated by protonation of the thiolate ligands. The reactivity of several models with CO, isocyanide, cyanide, and H2 was also investigated. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Combining on-chip synthesis of a focused combinatorial library with computational target prediction reveals imidazopyridine GPCR ligands.

    PubMed

    Reutlinger, Michael; Rodrigues, Tiago; Schneider, Petra; Schneider, Gisbert

    2014-01-07

    Using the example of the Ugi three-component reaction we report a fast and efficient microfluidic-assisted entry into the imidazopyridine scaffold, where building block prioritization was coupled to a new computational method for predicting ligand-target associations. We identified an innovative GPCR-modulating combinatorial chemotype featuring ligand-efficient adenosine A1/2B and adrenergic α1A/B receptor antagonists. Our results suggest the tight integration of microfluidics-assisted synthesis with computer-based target prediction as a viable approach to rapidly generate bioactivity-focused combinatorial compound libraries with high success rates. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High Affinity Macrocycle Threading by a Near-Infrared Croconaine Dye with Flanking Polymer Chains

    PubMed Central

    Liu, Wenqi; Peck, Evan M.; Smith, Bradley D.

    2016-01-01

    Croconaine dyes have narrow and intense absorption bands at ~800 nm, very weak fluorescence, and high photostabilities, which combine to make them very attractive chromophores for absorption-based imaging or laser heating technologies. The physical supramolecular properties of croconaine dyes have rarely been investigated, especially in water. This study focuses on a molecular threading process that encapsulates a croconaine dye inside a tetralactam macrocycle in organic or aqueous solvent. Macrocycle association and rate constant data are reported for a series of croconaine structures with different substituents attached to the ends of the dye. The association constants were highest in water (Ka ~109 M−1), and the threading rate constants (kon) increased in the solvent order H2O > MeOH > CHCl3. Systematic variation of croconaine substituents located just outside the croconaine/macrocycle complexation interface hardly changed Ka but had a strong influence on kon. A croconaine dye with N-propyl groups at each end of the structure exhibited a desirable mixture of macrocycle threading properties; that is, there was rapid and quantitative croconaine/macrocycle complexation at relatively high concentrations in water, and no dissociation of the pre-assembled complex when it was diluted into a solution of fetal bovine serum, even after laser induced photothermal heating of the solution. The combination of favorable near-infrared absorption properties and tunable mechanical stability makes threaded croconaine/macrocycle complexes very attractive as molecular probes or as supramolecular composites for various applications in absorption-based imaging or photothermal therapy. PMID:26807599

  9. Convenient divergent strategy for the synthesis of TunePhos-type chiral diphosphine ligands and their applications in highly enantioselective Ru-catalyzed hydrogenations.

    PubMed

    Sun, Xianfeng; Zhou, Le; Li, Wei; Zhang, Xumu

    2008-02-01

    A convenient, divergent strategy for the synthesis of a series of modular and fine-tunable C3-TunePhos-type chiral diphosphine ligands and their applications in highly efficient Ru-catalyzed asymmetric hydrogenations were explored. Up to 97 and 99% ee values were achieved for the enantioselective synthesis of beta-methyl chiral amines and alpha-hydroxy acid derivatives, respectively.

  10. Self-assembly of metal-organic supramolecules: from a metallamacrocycle and a metal-organic coordination cage to 1D or 2D coordination polymers based on flexible dicarboxylate ligands.

    PubMed

    Dai, Fangna; Dou, Jianmin; He, Haiyan; Zhao, Xiaoliang; Sun, Daofeng

    2010-05-03

    To assemble metal-organic supramolecules such as a metallamacrocycle and metal-organic coordination cage (MOCC), a series of flexible dicarboxylate ligands with the appropriate angle, 2,2'-(2,3,5,6-tetramethyl-1,4-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(1)), 2,2'-(2,5-dimethyl-1,4-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(2)), 2,2'-(2,4,6-trimethyl-1,3-phenylene)bis(methylene)bis(sulfanediyl)dinicotinic acid (H(2)L(3)), and 2,2'-(2,4,6-trimethyl-1,3-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(4)), have been designed and synthesized. Using these flexible ligands to assemble with metal ions, six metal-organic supramolecules, Cd(2)(L(1))(2)(dmf)(4)(H(2)O)(2).H(2)O (1), Mn(3)((1)L(2))(2)((2)L(2))(dmf)(2)(H(2)O)(2).5dmf (2), Cu(4)(L(3))(4)(H(2)O)(4).3dmf (3), Cu(4)(L(4))(4)(dmf)(2)(EtOH)(2).8dmf.6H(2)O (4), Mn(4)(L(4))(4)(dmf)(4)(H(2)O)(4).6dmf.H(2)O (5), and Mn(3)(L(4))(3)(dmf)(4).2dmf.3H(2)O (6), possessing a rectangular macrocycle, MOCCs or their extensions, and 1D or 2D coordination polymers, have been isolated. All complexes have been characterized by single-crystal X-ray diffraction, elemental analysis, and thermogravimetric analysis. Complex 1 is a discrete rectangular macrocycle, while complex 2 is a 2D macrocycle-based coordination polymer in which the L(2) ligand adopts both syn and anti conformations. Complexes 3-5 are discrete MOCCs in which two binuclear metal clusters are engaged by four organic ligands. The different geometries of the secondary building units (SBUs) and the axial coordinated solvates on the SBUs result in their different symmetries. Complex 6 is a 1D coordination polymer, extended from a MOCC made up of two metal ions and three L(4) ligands. All of the flexible dicarboxylate ligands adopt a syn conformation except that in complex 2, indicating that the syn conformational ligand is helpful for the formation of a metallamacrocycle and a MOCC. The magnetic properties of complexes 5

  11. Modular assembly of metal-organic super-containers incorporating calixarenes

    DOEpatents

    Wang, Zhenqiang; Dai, Feng-Rong

    2018-01-16

    A new strategy to design container molecules is presented. Sulfonylcalix[4]arenes, which are synthetic macrocyclic containers, are used as building blocks that are combined with various metal ions and tricarboxylate ligands to construct metal-organic `super-containers` (MOSCs). These MOSCs possess both endo and exo cavities and thus mimic the structure of viruses. The synthesis of MOSCs is highly modular, robust, and predictable.

  12. Design and Synthesis of Novel Arylketo-containing P1-P3 Linked Macro-cyclic BACE-1 Inhibitors

    PubMed Central

    Sandgren, Veronica; Belda, Oscar; Kvarnström, Ingemar; Lindberg, Jimmy; Samuelsson, Bertil; Dahlgren, Anders

    2015-01-01

    A series of arylketo-containing P1-P3 linked macrocyclic BACE-1 inhibitors were designed, synthesized, and compared with compounds with a previously known and extensively studied corresponding P2 isophthalamide moiety with the aim to improve on permeability whilst retaining the enzyme- and cell-based activities. Several inhibitors displayed substantial increases in Caco-2 cell-based permeability compared to earlier synthesized inhibitors and notably also with retained activities, showing that this approach might yield BACE-1 inhibitors with improved properties. PMID:25937848

  13. The addition of a second lanthanide ion to increase the luminescence of europium(III) macrocyclic complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromm, A.J. Jr.; Vallarino, L.M.; Leif, R.C.

    At present, the microscopic visualization of luminescent labels containing lanthanide(III) ions, primarily europium(III), as light-emitting centers is best performed with time-gated instrumentation, which by virtually eliminating the background fluorescence results in an improved signal to noise ratio. However, the use of the europium(III) macrocycle, Quantum Dye{trademark}, in conjunction with the strong luminescence enhancing effect (cofluorescence) of yttrium(III) or gadolinium(III), can eliminate the need for such specialized instrumentation. In the presence of Gd(III), the luminescence of the Eu(III)-macrocycles can be conveniently observed with conventional fluorescence instrumentation at previously unattainable low levels. The Eu(III) {sup 5}D{sub 0} {r_arrow} {sup 7}F{sub 2} emissionmore » of the Eu(III)-macrocycles was observed as an extremely sharp band with a maximum at 619 nm and a clearly resolved characteristic pattern. At very low Eu(III)-macrocycle concentrations, another sharp emission was detected at 614 nm, arising from traces of Eu(III) present in even the purest commercially available gadolinium products. Discrimination of the resolved emissions of the Eu(III)-macrocycle and Eu(III) contaminant should provide a means to further lower the limit of detection of the Eu(III)-macrocycle.« less

  14. Gold(III) complexes with hydroxyquinoline, aminoquinoline and quinoline ligands: Synthesis, cytotoxicity, DNA and protein binding studies.

    PubMed

    Martín-Santos, Cecilia; Michelucci, Elena; Marzo, Tiziano; Messori, Luigi; Szumlas, Piotr; Bednarski, Patrick J; Mas-Ballesté, Rubén; Navarro-Ranninger, Carmen; Cabrera, Silvia; Alemán, José

    2015-12-01

    In this article, we report on the synthesis and the chemical and biological characterization of novel gold(III) complexes based on hydroxyl- or amino-quinoline ligands that are evaluated as prospective anticancer agents. To gain further insight into their reactivity and possible mode of action, their interactions with model proteins and standard nucleic acid molecules were investigated. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. How to synthesize macrocycles efficiently by using virtual combinatorial libraries.

    PubMed

    Storm, Ole; Lüning, Ulrich

    2002-02-15

    The selection of different diimines 4 a-c by alkaline earth ions from a virtual combinatorial library (VCL) is described. The products were stabilized by reduction to the diamines 6 a-c; this allowed easy analysis. The library can be directed toward different target molecules 6 a-c upon addition of alkaline earth ions with different radii. Competition experiments show the possibility of synthesizing the macrocycles 6 a, 6 b, and 6 c simultaneously when using Mg(2+), Ca(2+), and Ba(2+) as template ions. The scope of this thermodynamically controlled, reversible approach for macrocycle syntheses is illustrated.

  16. Clinical, biological, and skin histopathologic effects of ionic macrocyclic and nonionic linear gadolinium chelates in a rat model of nephrogenic systemic fibrosis.

    PubMed

    Fretellier, Nathalie; Idée, Jean-Marc; Guerret, Sylviane; Hollenbeck, Claire; Hartmann, Daniel; González, Walter; Robic, Caroline; Port, Marc; Corot, Claire

    2011-02-01

    the purpose of this study was to compare the clinical, pathologic, and biochemical effects of repeated administrations of ionic macrocyclic or nonionic linear gadolinium chelates (GC) in rats with impaired renal function. rats submitted to subtotal nephrectomy were allocated to single injections of 2.5 mmol/kg of gadodiamide (nonionic linear chelate), nonformulated gadodiamide (ie, without the free ligand caldiamide), gadoterate (ionic macrocyclic chelate), or saline for 5 consecutive days. Blinded semi-quantitative histopathologic and immunohistochemical examinations of the skin were performed, as well as clinical, hematological, and biochemical follow-up. Rats were killed at day 11. Long-term (up to day 32) follow-up of rats was also performed in an auxiliary study. epidermal lesions (ulcerations and scabs) were found in 4 of the 10 rats treated with nonformulated gadodiamide. Two rats survived the study period. Inflammatory signs were observed in this group. No clinical, hematological, or biochemical signs were observed in the saline and gadoterate- or gadodiamide-treated groups. Plasma fibroblast growth factor-23 levels were significantly higher in the gadodiamide group than in the gadoterate group (day 11). Decreased plasma transferrin-bound iron levels were measured in the nonformulated gadodiamide group. Histologic lesions were in the range: nonformulated gadodiamide (superficial epidermal lesions, inflammation, necrosis, and increased cellularity in papillary dermis) > gadodiamide (small superficial epidermal lesions and signs of degradation of collagen fibers in the dermis) > gadoterate (very few pathologic lesions, similar to control rats). repeated administration of the nonionic linear GC gadodiamide to renally impaired rats is associated with more severe histologic lesions and higher FGF-23 plasma levels than the macrocyclic GC gadoterate.

  17. Final Technical Report: Targeting DOE-Relevant Ions with Supramolecular Strategies, DE-SC0010555

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman-James, Kristin

    The effectiveness of three popular supramolecular strategies to selectively target negatively charged ions (anions) was evaluated. Ions of interest included oxo anions, particularly sulfate, that hamper nuclear waste remediation. Three objectives were pursued using a simple building block strategies and by strategically placing anion-binding sites at appropriate positions on organic host molecules. The goal of the first objective was to assess the influence of secondary, tertiary and quaternized amines on binding tetrahedral anions using mixed amide/amine macrocyclic and urea/amine hosts containing aromatic or heteroaromatic spacers. Objective 2 focused on the design of ion pair hosts, using mixed macrocyclic anion hostsmore » joined through polyether linkages. Objective 3 was to explore the synthesis of new metal-linked extended macrocyclic frameworks to leverage anion binding. Key findings were that smaller 24-membered macrocycles provided the most complementary binding for sulfate ion and mixed urea/amine chelates showed enhanced binding over amide corollaries in addition to being highly selective for SO 4 2- in the presence of small quantities of water. In addition to obtaining prototype metal-linked macrocyclic anion hosts, a new dipincer ligand was designed that can be used to link macrocyclic or other supramolecular hosts in extended frameworks. When the tetraamide-based pincers are bound to two metal ions, an interesting phenomenon occurs. Upon deprotonation of the amides, two new protons appear between adjacent carbonyl pairs on the ligand, which may modify the chemistry, and metal-metal interactions in the complexes. Gel formation occurred for some of these extended hosts, and the physical properties are currently under investigation. The new tetracarboxamide-based pincers can also provide basic frameworks for double macrocycles capable of binding ion pairs as well as for binding metal ions and exploring intermetallic interactions through the pyrazine

  18. Development of inexpensive metal macrocyclic complexes for use in fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doddapaneni, N.; Ingersoll, D.; Kosek, J.A.

    Several metal macrocyclic complexes were synthesized for use as catalysts in fuel cells. An initial evaluation of their ability to catalyze the fuel cell reactions were completed. Based on this initial evaluation, one metal macrocyclic catalyst was selected and long-term stability testing in a fuel cell was initiated. The fuel cell employing this catalyst was operated continuously for one year with little signs of catalyst degradation. The effect of synthetic reformates on the performance of the catalyst in the fuel cell environment also demonstrated high tolerance of this catalyst for common contaminants and poisons.

  19. Application of a novel design paradigm to generate general nonpeptide combinatorial templates mimicking beta-turns: synthesis of ligands for melanocortin receptors.

    PubMed

    Webb, Thomas R; Jiang, Luyong; Sviridov, Sergey; Venegas, Ruben E; Vlaskina, Anna V; McGrath, Douglas; Tucker, John; Wang, Jian; Deschenes, Alain; Li, Rongshi

    2007-01-01

    We report the further application of a novel approach to template and ligand design by the synthesis of agonists of the melanocortin receptor. This design method uses the conserved structural data from the three-dimensional conformations of beta-turn peptides to design rigid nonpeptide templates that mimic the orientation of the main chain C-alpha atoms in a peptide beta-turn. We report details on a new synthesis of derivatives of template 1 that are useful for the synthesis of exploratory libraries. The utility of this technique is further exemplified by several iterative rounds of high-throughput synthesis and screening, which result in new partially optimized nonpeptide agonists for several melanocortin receptors.

  20. Photochemical Dual-Catalytic Synthesis of Alkynyl Sulfides.

    PubMed

    Santandrea, Jeffrey; Minozzi, Clémentine; Cruché, Corentin; Collins, Shawn K

    2017-09-25

    A photochemical dual-catalytic cross-coupling to form alkynyl sulfides via C(sp)-S bond formation is described. The cross-coupling of thiols and bromoalkynes is promoted by a soluble organic carbazole-based photocatalyst using continuous flow techniques. Synthesis of alkynyl sulfides bearing a wide range of electronically and sterically diverse aromatic alkynes and thiols can be achieved in good to excellent yields (50-96 %). The simple continuous flow setup also allows for short reaction times (30 min) and high reproducibility on gram scale. In addition, we report the first application of photoredox/nickel dual catalysis towards macrocyclization, as well as the first example of the incorporation of an alkynyl sulfide functional group into a macrocyclic scaffold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis, structure, and excited state kinetics of heteroleptic Cu(i) complexes with a new sterically demanding phenanthroline ligand

    DOE PAGES

    Kohler, Lars; Hadt, Ryan G.; Hayes, Dugan; ...

    2017-09-25

    In this paper we describe the synthesis of a new phenanthroline ligand, 2,9-di(2,4,6-tri-isopropyl-phenyl)-1,10-phenanthroline (bL2) and its use as the blocking ligand in the preparation of two new heteroleptic Cu(I)diimine complexes. Analysis of the CuHETPHEN single crystal structures shows a distinct distortion from an ideal tetrahedral geometry around the Cu(I) center, forced by the secondary phenanthroline ligand rotating to accommodate the isopropyl groups of bL2. The increased steric bulk of bL2 as compared to the more commonly used 2,9-dimesityl-1,10-phenanthroline blocking ligand prohibits intramolecular ligand–ligand interaction, which is unique among CuHETPHEN complexes. The ground state optical and redox properties of CuHETPHEN complexesmore » are responsive to the substitution on the blocking ligand even though the differences in structure are far removed from the Cu(I) center. Transient optical spectroscopy was used to understand the excited state kinetics in both coordinating and non-coordinating solvents following visible excitation. Substitution of the blocking phenanthroline ligand has a significant impact on the 3MLCT decay and can be used to increase the excited state lifetime by 50%. Electronic structure calculations established relationships between ground and excited state properties, and general entatic state concepts are discussed for copper photosensitizers. This work contributes to the growing library of CuHETPHEN complexes and broadens the fundamental understanding of their ground and excited state properties.« less

  2. Self-assembled monolayers of shape-persistent macrocycles on graphite: interior design and conformational polymorphism.

    PubMed

    Vollmeyer, Joscha; Eberhagen, Friederike; Höger, Sigurd; Jester, Stefan-S

    2014-01-01

    Three shape-persistent naphthylene-phenylene-acetylene macrocycles of identical backbone structures and extraannular substitution patterns but different (empty, apolar, polar) nanopore fillings are self-assembled at the solid/liquid interface of highly oriented pyrolytic graphite and 1,2,4-trichlorobenzene. Submolecularly resolved images of the resulting two-dimensional (2D) crystalline monolayer patterns are obtained by in situ scanning tunneling microscopy. A concentration-dependent conformational polymorphism is found, and open and more dense packing motifs are observed. For all three compounds alike lattice parameters are found, therefore the intermolecular macrocycle distances are mainly determined by their size and symmetry. This is an excellent example that the graphite acts as a template for the macrocycle organization independent from their specific interior.

  3. Total synthesis of the cyclopeptide alkaloid abyssenine A. Application of inter- and intramolecular copper-mediated coupling reactions in organic synthesis.

    PubMed

    Toumi, Mathieu; Couty, François; Evano, Gwilherm

    2007-11-23

    The first total synthesis of the 15-membered ring cyclopeptide alkaloid abyssenine A 1 has been achieved with a longest linear sequence of 15 steps. Central to the synthetic approach was an efficient copper-mediated Ullmann coupling/Claisen rearrangement sequence allowing for both ipso and ortho functionalization of aromatic iodide 4. This sequence was used for the synthesis of the aromatic core. The synthetic utility of copper-catalyzed coupling reactions was further demonstrated to install the enamide with a concomitant straightforward macrocyclization starting from acyclic alpha-amido-omega-vinyl iodide 13.

  4. Preparation and Characterization of Organic-Inorganic Hybrid Macrocyclic Compounds: Cyclic Ladder-like Polyphenylsilsesquioxanes.

    PubMed

    Zhang, Wenchao; Wang, Xiaoxia; Wu, Yiwei; Qi, Zhi; Yang, Rongjie

    2018-04-02

    Organic-inorganic hybrid macrocyclic compounds, cyclic polyphenylsilsesquioxanes (cyc-PSQs), have been synthesized through hydrolysis and condensation reactions of phenyltrichlorosilane. Structural characterization has revealed that cyc-PSQs consist of a closed-ring double-chain siloxane inorganic backbone bearing organic phenyl groups. The cyc-PSQ molecules have been simulated and structurally optimized using the Forcite tool as implemented in Materials Studio. Structurally optimized cyc-PSQs are highly symmetrical and regular with high stereoregularity, consistent with the dimensions of their experimentally derived structures. Thermogravimetric analysis showed that these macrocyclic compounds have excellent thermal stability. In addition to these perfectly structured compounds, macrocyclic compounds with the same ring ladder structure but bearing an additional Si-OH group, cyc-PSQs-OH, have also been synthesized. A possible mechanism for the formation of the closed-ring molecular structures of cyc-PSQs and cyc-PSQs-OH is proposed.

  5. Aureoverticillactam, a novel 22-atom macrocyclic lactam from the marine actinomycete Streptomyces aureoverticillatus.

    PubMed

    Mitchell, Scott S; Nicholson, Benjamin; Teisan, Sy; Lam, Kin S; Potts, Barbara C M

    2004-08-01

    During the course of our screening program designed to discover novel anticancer and anti-infective agents from marine microorganisms, a strain of Streptomyces aureoverticillatus (NPS001583) isolated from a marine sediment was found to produce a novel macrocyclic lactam with cytotoxicity against various tumor cell lines. Using extensive MS, UV, and NMR spectral analyses, the structure has been established as compound 1, aureoverticillactam, a 22-atom macrocyclic lactam incorporating both triene and tetraene conjugated olefins.

  6. Asymmetric Synthesis of Apratoxin E.

    PubMed

    Mao, Zhuo-Ya; Si, Chang-Mei; Liu, Yi-Wen; Dong, Han-Qing; Wei, Bang-Guo; Lin, Guo-Qiang

    2016-10-21

    An efficient method for asymmetric synthesis of apratoxin E 2 is described in this report. The chiral lactone 8, recycled from the degradation of saponin glycosides, was utilized to prepare the non-peptide fragment 6. In addition to this "from nature to nature" strategy, olefin cross-metathesis (CM) was applied as an alternative approach for the formation of the double bond. Moreover, pentafluorophenyl diphenylphosphinate was found to be an efficient condensation reagent for the macrocyclization.

  7. Tackling the conformational sampling of larger flexible compounds and macrocycles in pharmacology and drug discovery.

    PubMed

    Chen, I-Jen; Foloppe, Nicolas

    2013-12-15

    Computational conformational sampling underpins much of molecular modeling and design in pharmaceutical work. The sampling of smaller drug-like compounds has been an active area of research. However, few studies have tested in details the sampling of larger more flexible compounds, which are also relevant to drug discovery, including therapeutic peptides, macrocycles, and inhibitors of protein-protein interactions. Here, we investigate extensively mainstream conformational sampling methods on three carefully curated compound sets, namely the 'Drug-like', larger 'Flexible', and 'Macrocycle' compounds. These test molecules are chemically diverse with reliable X-ray protein-bound bioactive structures. The compared sampling methods include Stochastic Search and the recent LowModeMD from MOE, all the low-mode based approaches from MacroModel, and MD/LLMOD recently developed for macrocycles. In addition to default settings, key parameters of the sampling protocols were explored. The performance of the computational protocols was assessed via (i) the reproduction of the X-ray bioactive structures, (ii) the size, coverage and diversity of the output conformational ensembles, (iii) the compactness/extendedness of the conformers, and (iv) the ability to locate the global energy minimum. The influence of the stochastic nature of the searches on the results was also examined. Much better results were obtained by adopting search parameters enhanced over the default settings, while maintaining computational tractability. In MOE, the recent LowModeMD emerged as the method of choice. Mixed torsional/low-mode from MacroModel performed as well as LowModeMD, and MD/LLMOD performed well for macrocycles. The low-mode based approaches yielded very encouraging results with the flexible and macrocycle sets. Thus, one can productively tackle the computational conformational search of larger flexible compounds for drug discovery, including macrocycles. Copyright © 2013 Elsevier Ltd. All

  8. Synthesis, physico-chemical properties and complexing abilities of new amphiphilic ligands from D-galacturonic acid.

    PubMed

    Allam, Anas; Behr, Jean-Bernard; Dupont, Laurent; Nardello-Rataj, Véronique; Plantier-Royon, Richard

    2010-04-19

    This paper describes a convenient and efficient synthesis of new complexing surfactants from d-galacturonic acid and n-octanol as renewable raw materials in a two-step sequence. In the first step, simultaneous O-glycosidation-esterification under Fischer conditions was achieved. The anomeric ratio of the products was studied based on the main experimental parameters and the activation mode (thermal or microwave). In the second step, aminolysis of the n-octyl ester was achieved with various functionalized primary amines under standard thermal or microwave activation. The physico-chemical properties of these new amphiphilic ligands were measured and these compounds were found to exhibit interesting surface properties. Complexing abilities of one uronamide ligand functionalized with a pyridine moiety toward Cu(II) ions was investigated in solution by EPR titrations. A solid compound was also synthesized and characterized, its relative structure was deduced from spectroscopic data. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. On-bead combinatorial synthesis and imaging of europium(III)-based paraCEST agents aids in identification of chemical features that enhance CEST sensitivity.

    PubMed

    Singh, Jaspal; Rustagi, Vineeta; Zhang, Shanrong; Sherry, A Dean; Udugamasooriya, D Gomika

    2017-08-01

    The rate of water exchange between the inner sphere of a paramagnetic ion and bulk water is an important parameter in determining the magnitude of the chemical exchange saturation transfer signal from paramagnetic CEST agents (paraCEST). This is governed by various geometric, steric and ligand field factors created by macrocyclic ligands surrounding the paramagnetic metal ion. Our previous on-bead combinatorial studies of di-peptoid-europium(III)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-tetraamide complexes revealed that negatively charged groups in the immediate vicinity of the metal center strongly enhances the CEST signal. Here, we report a solid phase synthesis and on-bead imaging of 76 new DOTA derivatives that are developed by coupling with a single residue onto each of the three arms of a DOTA-tetraamide scaffold attached to resin beads. This single residue predominantly carries negatively charged groups blended with various physico-chemical characteristics. We found that non-bulky negatively charged groups are best suited at the immediate vicinity of the metal ion, while positive, bulky and halogen containing moieties suppress the CEST signal. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Selective CO2 gas adsorption in the narrow crystalline cavities of flexible peptide metallo-macrocycles.

    PubMed

    Miyake, Ryosuke; Kuwata, Chika; Masumoto, Yui

    2015-02-21

    Crystalline peptide Ni(ii)-macrocycles (BF4(-) salt) exhibited moderate CO2 gas adsorption (ca. 6-7 CO2 molecules per macrocycle) into very narrow cavities (narrowest part <2 Å), accompanied by the expansion of the cavities. The BF4(-) salt demonstrated selective uptake of CO2 gas in preference to CH4 and N2 gases.

  11. Fused tetracycles with a benzene or cyclohexadiene core: [2 + 2 + 2] cycloadditions on macrocyclic systems.

    PubMed

    Brun, Sandra; Garcia, Lídia; González, Iván; Torrent, Anna; Dachs, Anna; Pla-Quintana, Anna; Parella, Teodor; Roglans, Anna

    2008-09-28

    A series of fused tetracycles with a benzene or cyclohexadiene core (2a-h) is satisfactorily prepared by intramolecular [2 + 2 + 2] cycloadditions of triynic and enediynic macrocycles (1a-h) under RhCl(PPh3)3 catalysis; the enantioselective cycloaddition of macrocycles 1b and 1e and gives chiral tetracycles with moderate enantiomeric excess.

  12. Unsaturated macrocyclic dihydroxamic acid siderophores produced by Shewanella putrefaciens using precursor-directed biosynthesis.

    PubMed

    Soe, Cho Z; Codd, Rachel

    2014-04-18

    To acquire iron essential for growth, the bacterium Shewanella putrefaciens produces the macrocyclic dihydroxamic acid putrebactin (pbH2; [M + H(+)](+), m/zcalc 373.2) as its native siderophore. The assembly of pbH2 requires endogenous 1,4-diaminobutane (DB), which is produced from the ornithine decarboxylase (ODC)-catalyzed decarboxylation of l-ornithine. In this work, levels of endogenous DB were attenuated in S. putrefaciens cultures by augmenting the medium with the ODC inhibitor 1,4-diamino-2-butanone (DBO). The presence in the medium of DBO together with alternative exogenous non-native diamine substrates, (15)N2-1,4-diaminobutane ((15)N2-DB) or 1,4-diamino-2(E)-butene (E-DBE), resulted in the respective biosynthesis of (15)N-labeled pbH2 ((15)N4-pbH2; [M + H(+)](+), m/zcalc 377.2, m/zobs 377.2) or the unsaturated pbH2 variant, named here: E,E-putrebactene (E,E-pbeH2; [M + H(+)](+), m/zcalc 369.2, m/zobs 369.2). In the latter system, remaining endogenous DB resulted in the parallel biosynthesis of the monounsaturated DB-E-DBE hybrid, E-putrebactene (E-pbxH2; [M + H(+)](+), m/zcalc 371.2, m/zobs 371.2). These are the first identified unsaturated macrocyclic dihydroxamic acid siderophores. LC-MS measurements showed 1:1 complexes formed between Fe(III) and pbH2 ([Fe(pb)](+); [M](+), m/zcalc 426.1, m/zobs 426.2), (15)N4-pbH2 ([Fe((15)N4-pb)](+); [M](+), m/zcalc 430.1, m/zobs 430.1), E,E-pbeH2 ([Fe(E,E-pbe)](+); [M](+), m/zcalc 422.1, m/zobs 422.0), or E-pbxH2 ([Fe(E-pbx)](+); [M](+), m/zcalc 424.1, m/zobs 424.2). The order of the gain in siderophore-mediated Fe(III) solubility, as defined by the difference in retention time between the free ligand and the Fe(III)-loaded complex, was pbH2 (ΔtR = 8.77 min) > E-pbxH2 (ΔtR = 6.95 min) > E,E-pbeH2 (ΔtR = 6.16 min), which suggests one possible reason why nature has selected for saturated rather than unsaturated siderophores as Fe(III) solubilization agents. The potential to conduct multiple types of ex situ chemical

  13. Microscale Synthesis, Reactions, and (Super 1)H NMR Spectroscopic Investigations of Square Planar Macrocyclic, Tetramido-N Co(III) Complexes Relevant to Green Chemistry

    ERIC Educational Resources Information Center

    Watson, Tanya T.; Uffelman, Erich S.; Lee, Daniel W., III; Doherty, Jonathan R.; Schulze, Carl; Burke, Amy L.; Bonnema, Kristen, R.

    2004-01-01

    The microscale preparation, characterization, and reactivity of a square planar Co(III) complex that has grown out of a program to introduce experiments of relevance to green chemistry into the undergraduate curriculum is presented. The given experiments illustrate the remarkable redox and aqueous acid-base stability that make the macrocycles very…

  14. Design, Synthesis, Biological Evaluation, and X-ray Studies of HIV-1 Protease Inhibitors with Modified P2′ Ligands of Darunavir

    PubMed Central

    Fyvie, W. Sean; Brindisi, Margherita; Steffey, Melinda; Agniswamy, Johnson; Wang, Yuan-Fang; Aoki, Manabu; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2018-01-01

    The structure-based design, synthesis, and biological evaluation of a series of nonpeptidic HIV-1 protease inhibitors with rationally designed P2′ ligands are described. The inhibitors are designed to enhance backbone binding interactions, particularly at the S2′ subsite. Synthesis of inhibitors was carried out efficiently. The stereochemistry of alcohol functionalities of the P2′ ligands was set by asymmetric reduction of the corresponding ketone using (R,R)- or (S,S)-Noyori catalysts. A number of inhibitors displayed very potent enzyme inhibitory and antiviral activity. Inhibitors 3g and 3h showed enzyme Ki values of 27.9 and 49.7 pM and antiviral activity of 6.2 and 3.9 nM, respectively. These inhibitors also remained quite potent against darunavir-resistant HIV-1 variants. An X-ray structure of inhibitor 3g in complex with HIV-1 protease revealed key interactions in the S2′ subsite. PMID:29110408

  15. Interpreting medium ring canonical conformers by a triangular plane tessellation of the macrocycle

    NASA Astrophysics Data System (ADS)

    Khalili, Pegah; Barnett, Christopher B.; Naidoo, Kevin J.

    2013-05-01

    Cyclic conformational coordinates are essential for the distinction of molecular ring conformers as the use of Cremer-Pople coordinates have illustrated for five- and six-membered rings. Here, by tessellating medium rings into triangular planes and using the relative angles made between triangular planes we are able to assign macrocyclic pucker conformations into canonical pucker conformers such as chairs, boats, etc. We show that the definition is straightforward compared with other methods popularly used for small rings and that it is computationally simple to implement for complex macrocyclic rings. These cyclic conformational coordinates directly couple to the motion of individual nodes of a ring. Therefore, they are useful for correlating the physical properties of macrocycles with their ring pucker and measuring the dynamic ring conformational behavior. We illustrate the triangular tessellation, assignment, and pucker analysis on 7- and 8-membered rings. Sets of canonical states are given for cycloheptane and cyclooctane that have been previously experimentally analysed.

  16. A Systematic Exploration of Macrocyclization in Apelin-13: Impact on Binding, Signaling, Stability, and Cardiovascular Effects.

    PubMed

    Trân, Kien; Murza, Alexandre; Sainsily, Xavier; Coquerel, David; Côté, Jérôme; Belleville, Karine; Haroune, Lounès; Longpré, Jean-Michel; Dumaine, Robert; Salvail, Dany; Lesur, Olivier; Auger-Messier, Mannix; Sarret, Philippe; Marsault, Éric

    2018-03-22

    The apelin receptor generates increasing interest as a potential target across several cardiovascular indications. However, the short half-life of its cognate ligands, the apelin peptides, is a limiting factor for pharmacological use. In this study, we systematically explored each position of apelin-13 to find the best position to cyclize the peptide, with the goal to improve its stability while optimizing its binding affinity and signaling profile. Macrocyclic analogues showed a remarkably higher stability in rat plasma (half-life >3 h versus 24 min for Pyr-apelin-13), accompanied by improved affinity (analogue 15, K i 0.15 nM and t 1/2 6.8 h). Several compounds displayed higher inotropic effects ex vivo in the Langendorff isolated heart model in rats (analogues 13 and 15, maximum response at 0.003 nM versus 0.03 nM of apelin-13). In conclusion, this study provides stable and active compounds to better characterize the pharmacology of the apelinergic system.

  17. Turn on macrocyclic chemosensor for Al3+ ion with facile synthesis and application in live cell imaging

    NASA Astrophysics Data System (ADS)

    Ezhumalai, Dhineshkumar; Mathivanan, Iyappan; Chinnadurai, Anbuselvan

    2018-06-01

    An effort of a new Schiff base macrocyclic chemosensor, 14‑methyl‑2,6,8,12,14,18‑hexaaza‑1,7,13(1,2),4,10,16(1,4)‑hexabenzenacyclooctadecaphane‑2,5,8,11,14,17‑hexaene (me1) and 14,74‑dimethyl‑2,6,8,12,14,18‑hexaaza‑1,7,13(1,2),4,10,16(1,4)‑hexabenzenacyclooctadecadecaphane‑2,5,8,11,14,17‑hexaene (dm2), which enables selective sensing of Al3+ in aqueous DMF were synthesized by a simplistic one-step condensation reaction of macrocyclic compounds. The probe me1 and dm2 characterized by elemental analysis, FT-IR, 1H and 13C NMR, LC-MS spectral techniques. The compounds as mentioned above subjected to FE-SEM with EDS and elemental color mapping. On addition of Al3+, the fluorescent probe me1 and dm2 induces turn-on responses in both absorption and sensing spectra by a PET mechanism. The receptor me1 and dm2 serve highly selective, sensitive and turn-on detection of Al3+. Further, they did not interfere with other cations present in biological or environmental samples. The detection limit is found to be 3 μM and 5 μM. From the view of cytotoxic activity, the ability of these compounds me1 and dm2 to inhibit the growth of KB cell lines examined. The chelating functionality of compounds me1 and dm2 examined for their inhibitory properties of KB cell, live cell images. The compounds me1 and dm2 subjected to theoretical studies by DFT-B3LYP invoking the 6-31G level of theory. The energy of the HOMO and LUMO has been established.

  18. Turn on macrocyclic chemosensor for Al3+ ion with facile synthesis and application in live cell imaging.

    PubMed

    Ezhumalai, Dhineshkumar; Mathivanan, Iyappan; Chinnadurai, Anbuselvan

    2018-06-15

    An effort of a new Schiff base macrocyclic chemosensor, 1 4 ‑methyl‑2,6,8,12,14,18‑hexaaza‑1,7,13(1,2),4,10,16(1,4)‑hexabenzenacyclooctadecaphane‑2,5,8,11,14,17‑hexaene (me1) and 1 4 ,7 4 ‑dimethyl‑2,6,8,12,14,18‑hexaaza‑1,7,13(1,2),4,10,16(1,4)‑hexabenzenacyclooctadecadecaphane‑2,5,8,11,14,17‑hexaene (dm2), which enables selective sensing of Al 3+ in aqueous DMF were synthesized by a simplistic one-step condensation reaction of macrocyclic compounds. The probe me1 and dm2 characterized by elemental analysis, FT-IR, 1 H and 13 C NMR, LC-MS spectral techniques. The compounds as mentioned above subjected to FE-SEM with EDS and elemental color mapping. On addition of Al 3+ , the fluorescent probe me1 and dm2 induces turn-on responses in both absorption and sensing spectra by a PET mechanism. The receptor me1 and dm2 serve highly selective, sensitive and turn-on detection of Al 3+ . Further, they did not interfere with other cations present in biological or environmental samples. The detection limit is found to be 3μM and 5μM. From the view of cytotoxic activity, the ability of these compounds me1 and dm2 to inhibit the growth of KB cell lines examined. The chelating functionality of compounds me1 and dm2 examined for their inhibitory properties of KB cell, live cell images. The compounds me1 and dm2 subjected to theoretical studies by DFT-B3LYP invoking the 6-31G level of theory. The energy of the HOMO and LUMO has been established. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Minimum structural requirements for cell membrane leakage-mediated anti-MRSA activity of macrocyclic bis(bibenzyl)s.

    PubMed

    Fujii, Kana; Morita, Daichi; Onoda, Kenji; Kuroda, Teruo; Miyachi, Hiroyuki

    2016-05-01

    Macrocyclic bis(bibenzyl)-type phenolic natural products, found exclusively in bryophytes, exhibit potent antibacterial activity towards methicillin-resistant Staphylococcus aureus (anti-MRSA activity). Here, in order to identify the minimum essential structure for cell membrane leakage-mediated anti-MRSA activity of these compounds, we synthesized acyclic fragment structures and evaluated their anti-MRSA activity. The activities of all of the acyclic fragments tested exhibited similar characteristics to those of the macrocycles, i.e., anti-MRSA bactericidal activity, an enhancing effect on influx and efflux of ethidium bromide (EtBr: fluorescent DNA-binder) in Staphylococcus aureus cells, and bactericidal activity towards a Staphylococcus aureus strain resistant to 2-phenoxyphenol (4). The latter result suggests that they have a different mechanism of action from 4, which is a FabI inhibitor previously proposed to be the minimum active fragment of riccardin-type macrocycles. Thus, cyclic structure is not a necessary condition for cell membrane leakage-mediated anti-MRSA activity of macrocyclic bis(bibenzyl)s. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Tetraphenylethylene-Interweaving Conjugated Macrocycle Polymer Materials as Two-Photon Fluorescence Sensors for Metal Ions and Organic Molecules.

    PubMed

    Li, Xi; Li, Zheng; Yang, Ying-Wei

    2018-05-01

    A luminescent conjugated macrocycle polymer (CMP) with strong two-photon fluorescence property, namely, P[5]-TPE-CMP, is constructed from ditriflate-functionalized pillar[5]arene and a 1,1,2,2-tetrakis(4-ethynylphenyl)ethylene (TPE) linker through a Sonogashira-Hagihara cross-coupling reaction. Significantly, in sharp contrast with the corresponding conjugated microporous polymer without synthetic macrocycles, P[5]-TPE-CMP shows an outstanding stability against photobleaching and exhibits highly selective cation sensing capability toward Fe 3+ at different excitation wavelengths (both UV and red-near-infrared regions). Meanwhile, its fluorescence could also be sufficiently quenched by 4-amino azobenzene, a frequently used organic dye that is certified to be carcinogenic, as compared with a group of common organic compounds. This work paves a new way for enhancing the properties of porous organic polymers through the introduction of supramolecular macrocycles like macrocyclic arenes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Design and Synthesis of Self-Assembled Monolayers on Mesoporous Supports (SAMMS): The Importance of Ligand Posture in Functional Nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryxell, Glen E.; Mattigod, Shas V.; Lin, Yuehe

    2007-07-01

    Water, and water quality, are issues of critical importance to the future of humankind. The Earth’s water supplies have been contaminated by a wide variety of industrial, military and natural sources. The need exists for an efficient separation technology to remove heavy metal and radionuclide contamination from water. Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to build high efficiency environmental sorbents. These nanoporous ceramics condense a huge amount of surface area into a very small volume. These mesoporous architectures can be subsequently functionalized through molecular self-assembly. These functional mesoporous materials offer significant capabilities in termsmore » of removal of heavy metals and radionuclides from a variety of liquid media, including groundwater, contaminated oils and contaminated chemical weapons. They are highly efficient sorbents, whose rigid, open pore structure allows for rapid, efficient sorption kinetics. Their interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometallate anions and radionuclides. This manuscript provides a review of the design, synthesis and performance of the sorbent materials. The role that ligand posture plays in the chemistry of these interfacial ligand fields is discussed.« less

  2. Developing Ligands for Palladium(II)-Catalyzed C–H Functionalization: Intimate Dialogue between Ligand and Substrate

    PubMed Central

    Engle, Keary M.; Yu, Jin-Quan

    2013-01-01

    Homogeneous transition metal–catalyzed reactions are indispensable to all facets of modern chemical synthesis. It is thus difficult to imagine that for much of the early 20th century, the reactivity and selectivity of all known homogeneous metal catalysts paled in comparison to their heterogeneous and biological counterparts. In the intervening decades, advances in ligand design bridged this divide, such that today some of the most demanding bond-forming events are mediated by ligand-supported homogeneous metal species. While ligand design has propelled many areas of homogeneous catalysis, in the field of Pd(II)-catalyzed C–H functionalization, suitable ligand scaffolds are lacking, which has hampered the development of broadly practical transformations based on C–H functionalization logic. In this review, we offer an account of our research employing three ligand scaffolds, mono-N-protected amino acids, 2,6-disubstituted pyridines, and 2,2′-bipyridines, to address challenges posed by several synthetically versatile substrate classes. Drawing on this work, we discuss principles of ligand design, such as the need to match a ligand to a particular substrate class, and how ligand traits such as tunability and modularity can be advantageous in reaction discovery. PMID:23565982

  3. Combining two-directional synthesis and tandem reactions. Part 21: Exploitation of a dimeric macrocycle for chain terminus differentiation and synthesis of an sp(3)-rich library.

    PubMed

    Storr, Thomas E; Cully, Sarah J; Rawling, Michael J; Lewis, William; Hamza, Daniel; Jones, Geraint; Stockman, Robert A

    2015-06-01

    The application of a tandem condensation/cyclisation/[3+2]-cycloaddition/elimination reaction gives an sp(3)-rich tricyclic pyrazoline scaffold with two ethyl esters in a single step from a simple linear starting material. The successive hydrolysis and cyclisation (with Boc anhydride) of these 3-dimensional architectures, generates unprecedented 16-membered macrocyclic bisanhydrides (characterised by XRD). Selective amidations could then be achieved by ring opening with a primary amine followed by HATU-promoted amide coupling to yield an sp(3)-rich natural product-like library. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Dynamic control of chirality in phosphine ligands for enantioselective catalysis

    PubMed Central

    Zhao, Depeng; Neubauer, Thomas M.; Feringa, Ben L.

    2015-01-01

    Chirality plays a fundamental role in biology and chemistry and the precise control of chirality in a catalytic conversion is a key to modern synthesis most prominently seen in the production of pharmaceuticals. In enantioselective metal-based catalysis, access to each product enantiomer is commonly achieved through ligand design with chiral bisphosphines being widely applied as privileged ligands. Switchable phosphine ligands, in which chirality is modulated through an external trigger signal, might offer attractive possibilities to change enantioselectivity in a catalytic process in a non-invasive manner avoiding renewed ligand synthesis. Here we demonstrate that a photoswitchable chiral bisphosphine based on a unidirectional light-driven molecular motor, can be used to invert the stereoselectivity of a palladium-catalysed asymmetric transformation. It is shown that light-induced changes in geometry and helicity of the switchable ligand enable excellent selectivity towards the racemic or individual enantiomers of the product in a Pd-catalysed desymmetrization reaction. PMID:25806856

  5. Effects of macrocyclic trichothecene mycotoxins on the murine immune system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, B.J.

    1988-01-01

    The macrocyclic trichothecenes are a unique group of toxins which have some antileukemic properties. In the first study, verrucarin A and roridin A were examined. Both mycotoxins were administered intraperitoneally at an equitoxic dose of 0.35 mg/kg to CD-1 mice. Lymphocyte proliferation was studied after animals were dosed with verrucarin A. After day 2, no differences in {sup 3}H-thymidine incorporation were observed using concanavalin A (Con A), phytohemagglutinin (PHA), pokeweed mitogen (PWM), or lipopolysaccharide (LPS). On day 4, DNA synthesis induced by Con A, PHA, and PWM increased significantly. On day 7, PHA stimulation increased above controls while Con A,more » PWM, and LPS responses were not significantly different. In contrast, roridin A decreased PHA stimulation only on day 7. In the second study the mycotoxins roritoxin B, myrotoxin B, roridin A, verrucarin A, 16-hydroxyverrucarin A, verrucarin J, baccharinoid B12, roridin D, roridin E, baccharinoid B4, and baccharinoid B5 were investigated. In the third study lymphocytes were cultured with each of the mycotoxins for 48 hr to assess their lethality.« less

  6. Antiandrogen and Antimicrobial Aspects of Coordination Compounds of Palladium(II), Platinum(II) and Lead(II)

    PubMed Central

    Joshi, S. C.; Kulshrestha, Shalini; Nagpal, Pooja; Bansal, Anil

    2001-01-01

    Synthesis, characterization and antimicrobial activities of an interesting class of biologically potent macrocyclic complexes have been carried out. All the complexes have been evaluated for their antimicrobial effects on different species of pathogenic fungi and bacteria. The testicular sperm density, testicular sperm morphology, sperm motility, density of cauda epididymal spermatozoa and fertility in mating trails and biochemical parameters of reproductive organs have been examined and discussed. The resulting biologically active [M(MaLn)(R2)]Cl2 and [Pb(MaLn)(R2)X2] (where, M = PdII or PtII and X = Cl or NO3) type of complexes have been synthesized by the reactions of macrocyclic ligands (MaLn) with metal salts and different diamines in 1:1:1 molar ratio in methanol. Initially the complexes were characterized by elemental analyses, molecular weight determinations and conductivity measurements. The mode of bonding was established on the basis of IR, 1H NMR, 13C NMR, 195Pt NMR, 207Pb NMR, XRD and electronic spectral studies. The macrocyclic ligand coordinates through the four azomethine nitrogen atoms which are bridged by benzil moieties. IR spectra suggest that the pyridine nitrogen is not coordinating. The palladium and platinum complexes exhibit tetracoordinated square-planar geometry, whereas a hexacoordinated octahedral geometry is suggested for lead complexes. PMID:18475989

  7. Synthesis of β-galactosylamides as ligands of the peanut lectin. Insights into the recognition process.

    PubMed

    Cano, María Emilia; Varela, Oscar; García-Moreno, María Isabel; García Fernández, José Manuel; Kovensky, José; Uhrig, María Laura

    2017-04-18

    The synthesis of mono and divalent β-galactosylamides linked to a hydroxylated chain having a C2 symmetry axis derived from l-tartaric anhydride is reported. Reference compounds devoid of hydroxyl groups in the linker were also prepared from β-galactosylamine and succinic anhydride. After functionalization with an alkynyl residue, the resulting building blocks were grafted onto different azide-equipped scaffolds through the copper catalyzed azide-alkyne cycloaddition. Thus, a family of structurally related mono and divalent β-N-galactopyranosylamides was obtained and fully characterized. The binding affinities of the ligands towards the model lectin PNA were measured by the enzyme-linked lectin assay (ELLA). The IC 50 values were significantly higher than that of galactose but the presence of hydroxyl groups in the aglycone chain improved lectin recognition. Docking and molecular dynamics experiments were in accordance with the hypothesis that a hydroxyl group properly disposed in the linker could mimic the Glc O3 in the recognition process. On the other hand, divalent presentation of the ligands led to lectin affinity enhancements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Carbene complexes of rhodium and iridium from tripodal N-heterocyclic carbene ligands: synthesis and catalytic properties.

    PubMed

    Mas-Marzá, Elena; Poyatos, Macarena; Sanaú, Mercedes; Peris, Eduardo

    2004-03-22

    Two tripodal trisimidazolium ligand precursors have been tested in the synthesis of new N-heterocyclic carbene rhodium and iridium complexes. [Tris(3-methylbenzimidazolium-1-yl)]methane sulfate gave products with coordination of the decomposed precursor. [1,1,1-Tris(3-butylimidazolium-1-yl)methyl]ethane trichloride (TIMEH(3)(Bu)) coordinated to the metal in a chelate and bridged-chelate form, depending on the reaction conditions. The crystal structures of two of the products are described. The compounds resulting from the coordination with TIME(Bu) were tested in the catalytic hydrosilylation of terminal alkynes.

  9. Actinide Corroles: Synthesis and Characterization of Thorium(IV) and Uranium(IV) bis(-chloride) Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Ashleigh L.; Buckley, Heather L.; Gryko, Daniel T.

    2013-12-01

    The first synthesis and structural characterization of actinide corroles is presented. Thorium(IV) and uranium(IV) macrocycles of Mes2(p-OMePh)corrole were synthesised and characterized by single-crystal X-ray diffraction, UV-Visible spectroscopy, variable-temperature 1H NMR, ESI mass spectrometry and cyclic voltammetry.

  10. Template-constrained macrocyclic peptides prepared from native, unprotected precursors

    PubMed Central

    Lawson, Kenneth V.; Rose, Tristan E.; Harran, Patrick G.

    2013-01-01

    Peptide–protein interactions are important mediators of cellular-signaling events. Consensus binding motifs (also known as short linear motifs) within these contacts underpin molecular recognition, yet have poor pharmacological properties as discrete species. Here, we present methods to transform intact peptides into stable, templated macrocycles. Two simple steps install the template. The key reaction is a palladium-catalyzed macrocyclization. The catalysis has broad scope and efficiently forms large rings by engaging native peptide functionality including phenols, imidazoles, amines, and carboxylic acids without the necessity of protecting groups. The tunable reactivity of the template gives the process special utility. Defined changes in reaction conditions markedly alter chemoselectivity. In all cases examined, cyclization occurs rapidly and in high yield at room temperature, regardless of peptide composition or chain length. We show that conformational restraints imparted by the template stabilize secondary structure and enhance proteolytic stability in vitro. Palladium-catalyzed internal cinnamylation is a strong complement to existing methods for peptide modification. PMID:24043790

  11. New Human CD22/Siglec-2 Ligands with a Triazole Glycoside.

    PubMed

    Prescher, Horst; Schweizer, Astrid; Kuhfeldt, Elena; Nitschke, Lars; Brossmer, Reinhard

    2017-07-04

    CD22 is a member of the Siglec family. Considerable attention has been drawn to the design and synthesis of new Siglec ligands to explore target biology and innovative therapies. In particular, CD22-ligand-targeted nanoparticles with therapeutic functions have proved successful in preclinical settings for blood cancers, autoimmune diseases, and tolerance induction. Here we report the design, synthesis and affinity evaluation of a new class of Siglec ligands: namely sialic acid derivatives with a triazole moiety replacing the natural glycoside oxygen atom. In addition, we describe important and surprising differences in binding to CD22 expressed at the cell surface for compounds with distinct valences. The new class of compounds might serve as a template for the design of ligands for other members of the Siglec family and next-generation CD22-ligand-based targeted therapies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. UV-visible spectroscopy of macrocyclic alkyl, nitrosyl and halide complexes of cobalt and rhodium. Experiment and calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hull, Emily A.; West, Aaron C.; Pestovsky, Oleg

    2015-01-22

    In this paper, transition metal complexes (NH 3) 5CoX2 + (X = CH 3, Cl) and L(H 2O)MX 2+, where M = Rh or Co, X = CH 3, NO, or Cl, and L is a macrocyclic N 4 ligand are examined by both experiment and computation to better understand their electronic spectra and associated photochemistry. Specifically, irradiation into weak visible bands of nitrosyl and alkyl complexes (NH 3) 5CoCH 3 2+ and L(H 2O)M IIIX 2+ (X = CH 3 or NO) leads to photohomolysis that generates the divalent metal complex and ˙CH3 or ˙NO, respectively. On the othermore » hand, when X = halide or NO 2, visible light photolysis leads to dissociation of X – and/or cis/trans isomerization. Computations show that visible bands for alkyl and nitrosyl complexes involve transitions from M–X bonding orbitals and/or metal d orbitals to M–X antibonding orbitals. In contrast, complexes with X = Cl or NO 2 exhibit only d–d bands in the visible, so that homolytic cleavage of the M–X bond requires UV photolysis. UV-Vis spectra are not significantly dependent on the structure of the equatorial ligands, as shown by similar spectral features for (NH 3) 5CoCH 3 2+ and L 1(H 2O)CoCH 3 2+.« less

  13. UV-visible spectroscopy of macrocyclic alkyl, nitrosyl and halide complexes of cobalt and rhodium. Experiment and calculation.

    PubMed

    Hull, Emily A; West, Aaron C; Pestovsky, Oleg; Kristian, Kathleen E; Ellern, Arkady; Dunne, James F; Carraher, Jack M; Bakac, Andreja; Windus, Theresa L

    2015-02-28

    Transition metal complexes (NH3)5CoX(2+) (X = CH3, Cl) and L(H2O)MX(2+), where M = Rh or Co, X = CH3, NO, or Cl, and L is a macrocyclic N4 ligand are examined by both experiment and computation to better understand their electronic spectra and associated photochemistry. Specifically, irradiation into weak visible bands of nitrosyl and alkyl complexes (NH3)5CoCH3(2+) and L(H2O)M(III)X(2+) (X = CH3 or NO) leads to photohomolysis that generates the divalent metal complex and ˙CH3 or ˙NO, respectively. On the other hand, when X = halide or NO2, visible light photolysis leads to dissociation of X(-) and/or cis/trans isomerization. Computations show that visible bands for alkyl and nitrosyl complexes involve transitions from M-X bonding orbitals and/or metal d orbitals to M-X antibonding orbitals. In contrast, complexes with X = Cl or NO2 exhibit only d-d bands in the visible, so that homolytic cleavage of the M-X bond requires UV photolysis. UV-Vis spectra are not significantly dependent on the structure of the equatorial ligands, as shown by similar spectral features for (NH3)5CoCH3(2+) and L(1)(H2O)CoCH3(2+).

  14. Templated bilayer self-assembly of fully conjugated π-expanded macrocyclic oligothiophenes complexed with fullerenes

    PubMed Central

    Cojal González, José D.; Iyoda, Masahiko; Rabe, Jürgen P.

    2017-01-01

    Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current–voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor–acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure. PMID:28281557

  15. Templated bilayer self-assembly of fully conjugated π-expanded macrocyclic oligothiophenes complexed with fullerenes

    NASA Astrophysics Data System (ADS)

    Cojal González, José D.; Iyoda, Masahiko; Rabe, Jürgen P.

    2017-03-01

    Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current-voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor-acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure.

  16. New 15-membered tetraaza (N4) macrocyclic ligand and its transition metal complexes: Spectral, magnetic, thermal and anticancer activity

    NASA Astrophysics Data System (ADS)

    El-Boraey, Hanaa A.; EL-Gammal, Ohyla A.

    2015-03-01

    Novel tetraamidemacrocyclic 15-membered ligand [L] i.e. naphthyl-dibenzo[1,5,9,12]tetraazacyclopentadecine-6,10,11,15-tetraoneand its transition metal complexes with Fe(II), Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been synthesized and characterized by elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On the basis of analytical, spectral (IR, MS, UV-Vis, 1H NMR and EPR) and thermal studies distorted octahedral or square planar geometry has been proposed for the complexes. The antitumor activity of the synthesized ligand and some complexes against human breast cancer cell lines (MCF-7) and human hepatocarcinoma cell lines (HepG2) has been studied. The complexes (IC50 = 2.27-2.7, 8.33-31.1 μg/mL, respectively) showed potent antitumor activity, towards the former cell lines comparable with their ligand (IC50 = 13, 26 μg/mL, respectively). The results show that the activity of the ligand towards breast cancer cell line becomes more pronounced and significant when coordinated to the metal ion.

  17. Synthesis of Water-Soluble Amino Functionalized Multithiacalix[4]arene via Quaternization of Tertiary Amino Groups.

    PubMed

    Nosov, Roman; Padnya, Pavel; Shurpik, Dmitriy; Stoikov, Ivan

    2018-05-08

    A convenient approach to the synthesis of multithiacalix[4]arene derivatives containing amino groups and phthalimide fragments by the formation of quaternary ammonium salts is presented. As the initial macrocycle for the synthesis of multithiacalix[4]arenes, a differently substituted p-tert- butylthiacalix[4]arene containing bromoacetamide and three phthalimide fragments was used in a 1,3-alternate conformation. The macrocycle in cone conformation containing the tertiary amino groups was found to be a convenient core for the multithiacalix[4]arene systems. Interaction of the core multithiacalix[4]arene with monobromoacetamide derivatives of p-tert- butylthiacalix[4]arene resulted in formation in high yields of pentakisthiacalix[4]arene containing quaternary ammonium and phthalimide fragments. The removal of phthalimide groups led to the formation of amino multithiacalix[4]arene in a good yield. Based on dynamic light scattering, it was shown that the synthesized amino multithiacalix[4]arene, with pronounced hydrophobic and hydrophilic fragments, formed dendrimer-like nanoparticles in water via direct supramolecular self-assembly.

  18. Simple Syntheses of Two New Benzo-Fused Macrocycles Incorporating Chalcone Moiety

    PubMed Central

    Mondal, Rina; Samanta, Swati; Sarkar, Saheli; Mallik, Asok K.

    2014-01-01

    Simple syntheses of the benzo-fused 26-membered macrocyclic bischalcone (19E,43E)-2.11.27.36-tetroxaheptacyclo[44.4.0.04,9.012,17.021,26.029,34.037,42]pentaconta-1(46),4(9),5,7,12(17),13,15,19,21,23,25,29,31,33,37,39,41,43,47,49-icosaene-18,45-dione (3) and the benzo-fused 13-membered macrocyclic chalcone (19E)-2.11-dioxatetracyclo[19.4.0.04,9.012,17]pentacosa-1(25),4(9),5,7,12(17),13,15,19,21,23-decaen-18-one (5) using very common starting materials and reagents are described. The compounds are new and they have been characterized from their analytical and spectral data. PMID:27379283

  19. Benzoylureas as removable cis amide inducers: synthesis of cyclic amides via ring closing metathesis (RCM).

    PubMed

    Brady, Ryan M; Khakham, Yelena; Lessene, Guillaume; Baell, Jonathan B

    2011-02-07

    Rapid and high yielding synthesis of medium ring lactams was made possible through the use of a benzoylurea auxiliary that serves to stabilize a cisoid amide conformation, facilitating cyclization. The auxiliary is released after activation under the mild conditions required to deprotect a primary amine, such as acidolysis of a Boc group in the examples given here. This methodology is a promising tool for the synthesis of medium ring lactams, macrocyclic natural products and peptides.

  20. A new spermidine macrocyclic alkaloid isolated from Gymnosporia arenicola leaf.

    PubMed

    da Silva, Gustavo; Martinho, Ana; Soengas, Raquel González; Duarte, Ana Paula; Serrano, Rita; Gomes, Elsa Teixeira; Silva, Olga

    2015-10-01

    The isolation and structural elucidation of a macrocyclic alkaloid, characterized by the presence of a 13-membered macrolactam ring containing a spermidine unit N-linked to a benzoyl group is hereby reported. The structure of this previously unknown spermidine alkaloid isolated from Gymnosporia arenicola (Celastraceae) leaves has been elucidated by (1)H and (13)C NMR spectroscopy (including bidimensional analysis) and further characterized by high-resolution mass spectrometry and polarimetry. A route for the biosynthesis of this new bioactive macrocycle is proposed and the cytotoxicity of the compound was evaluated against two ATCC cell lines - one normal-derived (MCF10A) and one cancer-derived cell line (MCF7) - using the MTT assay. The alkaloid revealed to be non-cytotoxic against both cell lines. The IC50 values from the cells were also determined. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Synthesis of β-C-Glycopyranosyl Aldehydes and 2,6-Anhydro-heptitols.

    PubMed

    Khatri, Vinod; Kumar, Amit; Singh, Balram; Malhotra, Shashwat; Prasad, Ashok K

    2015-11-06

    A convenient route has been developed for the diastereoselective synthesis of β-C-glycopyranosyl aldehydes from D-glucose, D-mannose, and D-galactose. The key step in the synthesis of C-glycosyl aldehydes is the aryl driven reductive dehydration on 1-phenyl-2-(2',3',4',6'-tetra-O-acetyl-β-D-glycopyranosyl)ethanone to afford alkenes, which on oxidation afford the desired compounds in good yield. β-C-Glycopyranosyl aldehydes have been converted to 2,6-anhydro-heptitols in quantitative yields. The 2,6-anhydro-heptitols derived from D-mannose and D-galactose are enantiomeric and are useful linkers for the synthesis of macrocycles/amphiphiles of complementary chirality.

  2. Synthesis and photoluminescence properties of europium(III) complexes sensitized with β-diketonato and N, N-donors ancillary ligands

    NASA Astrophysics Data System (ADS)

    Bala, Manju; Kumar, Satish; Devi, Rekha; Taxak, V. B.; Boora, Priti; Khatkar, S. P.

    2018-05-01

    Synthesis of three new europium(III) complexes with 1,3-[bis(4-methoxyphenyl)]propane-1,3-dionato (HBMPD) ligand and ancillary ligands such as 2,2‧-biquinoline (biq) or neocuproine (neo) has been reported in this report. The synthesized complexes were characterized by IR (infrared), 1H and 13C NMR (nuclear magnetic resonance) spectroscopy, CHN (carbon, hydrogen and nitrogen) elemental analysis, XRD (X-ray diffraction), TGA (thermogravimetric analysis) and photoluminescence (PL) spectroscopy. The emission spectra of europium(III) complexes displayed both the low intensity 5D1-3 → 7F0-3 transitions in 410-560 nm blue-green region and high intensity characteristic 5D0 → 7F0-3 transitions in 575-640 nm orange-red region correspond to the emission of ancillary ligands and europium ion respectively, which can lead to white luminescence due to integration of blue, green and red color emissions. The photoluminescence investigations indicate that the absorbed energy of the HBMPD ligand transferred to the central europium(III) ion in an efficient manner, which clearly explained by antenna effect. The excellent results of thermal behavior and photophysical properties like luminescence spectra, CIE (Commission Internationale Eclairage) chromaticity coordinates, luminescence decay curves and high quantum efficiency of the complexes make them a promising component of the white light-emitting diodes in display devices.

  3. EPR, UV-vis, magnetic, spectral studies and electrochemical behaviour of mononuclear transition metal complexes derived from novel hexa-aza-macrotricyclic ligand

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gupta, Nidhi; Gupta, Rachna; Bawa, Sukhwant Singh

    2005-11-01

    Aza-macrocyclic complexes have gained importance because of their pharmacological properties [N.K. Singh, Srivastava, Trans. Met. Chem. 25 (2000) 133]. Hexa-aza-macrocyles containing glutarimide efficiently coordinate as hexa-dentate ligand, to give complexes of Cu(II) possessing tetragonal structure and Mn(II), Co(II) and Ni(II) metal ions that are essentially octahedral. Spectroscopic, and chemical characterizations of these systems are presented in this article. For Ni(II) complexes results on electron transfer processes measured by cyclic voltammetry and colourimetry have been studied.

  4. Interlocked Photo-degradable Macrocycles Allow One-Off Photo-triggerable Gelation of Organo- and Hydrogelators.

    PubMed

    Tung, Shun-Te; Cheng, Hung-Te; Inthasot, Alex; Hsueh, Fang-Che; Gu, Ting-Jia; Yan, Pei-Cong; Lai, Chien-Chen; Chiu, Sheng-Hsien

    2018-02-01

    [2]Rotaxanes displaying one-off photo-triggerable gelation properties have been synthesized through the "clipping" of photo-degradable macrocycles around the amide or urea functionalities of organo- and hydrogelators. Irradiation with UV-light cleaved the photo-labile macrocyclic components from the [2]rotaxanes, resulting in the free gelators being released into solution and, thereafter, forming gels. When the rate of gelation was sufficiently rapid, selective gelation of specific regions of the solution-and, indeed, photo-patterning of the solution-was possible. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis and Characterization of PEGylated Toll Like Receptor 7 Ligands

    PubMed Central

    Chan, Michael; Hayashi, Tomoko; Mathewson, Richard D.; Yao, Shiyin; Gray, Christine; Tawatao, Rommel; Kalenian, Kevin; Zhang, Yanmei; Hayashi, Yuki; Lao, Fitzgerald S.; Cottam, Howard B.; Carson, Dennis A.

    2011-01-01

    Toll like receptor 7 (TLR7) is located in the endosomal compartment of immune cells. Signaling through TLR7, mediated by the adaptor protein MyD88, stimulates the innate immune system and shapes adaptive immune responses. Previously, we characterized TLR7 ligands conjugated to protein, lipid or polyethylene glycol (PEG). Among the TLR7 ligand conjugates, the addition of PEG chains reduced the agonistic potency. PEGs are safe in humans and widely used for improvement of pharmacokinetics in existing biologics and some low molecular weight compounds. PEGylation could be a feasible method to alter the pharmacokinetics and pharmacodynamics of TLR7 ligands. In this study, we systematically studied the influence of PEG chain length on the in vitro and in vivo properties of potent TLR7 ligands. PEGylation increased solubility of the TLR7 ligands and modulated protein binding. Adding a 6–10 length PEG to the TLR7 ligand reduced its potency toward induction of interleukin (IL)-6 by murine macrophages in vitro and IL-6 and tumor necrosis factor (TNF) in vivo. However, PEGylation with 18 or longer chain restored, and even enhanced, the agonistic activity of the drug. In human peripheral blood mononuclear cells, similar effects of PEGylation were observed for secretion of proinflammatory cytokines, IL-6, IL-12, TNF-α, IL-1β and type 1 interferon, as well for B cell proliferation. In summary, these studies demonstrate that conjugation of PEG chains to a synthetic TLR ligand can impact its potency for cytokine induction depending on the size of the PEG moiety. Thus, PEGylation may be a feasible approach to regulate the pharmacological properties of TLR7 ligands. PMID:21338093

  6. Simple Syntheses of Two New Benzo-Fused Macrocycles Incorporating Chalcone Moiety.

    PubMed

    Mondal, Rina; Samanta, Swati; Sarkar, Saheli; Mallik, Asok K

    2014-01-01

    Simple syntheses of the benzo-fused 26-membered macrocyclic bischalcone (19E,43E)-2.11.27.36-tetroxaheptacyclo[44.4.0.0(4,9).0(12,17).0(21,26).0(29,34).0(37,42)]pentaconta-1(46),4(9),5,7,12(17),13,15,19,21,23,25,29,31,33,37,39,41,43,47,49-icosaene-18,45-dione (3) and the benzo-fused 13-membered macrocyclic chalcone (19E)-2.11-dioxatetracyclo[19.4.0.0(4,9).0(12,17)]pentacosa-1(25),4(9),5,7,12(17),13,15,19,21,23-decaen-18-one (5) using very common starting materials and reagents are described. The compounds are new and they have been characterized from their analytical and spectral data.

  7. Cyclic mu-opioid receptor ligands containing multiple N-methylated amino acid residues.

    PubMed

    Adamska-Bartłomiejczyk, Anna; Janecka, Anna; Szabó, Márton Richárd; Cerlesi, Maria Camilla; Calo, Girolamo; Kluczyk, Alicja; Tömböly, Csaba; Borics, Attila

    2017-04-15

    In this study we report the in vitro activities of four cyclic opioid peptides with various sequence length/macrocycle size and N-methylamino acid residue content. N-Methylated amino acids were incorporated and cyclization was employed to enhance conformational rigidity to various extent. The effect of such modifications on ligand structure and binding properties were studied. The pentapeptide containing one endocyclic and one exocyclic N-methylated amino acid displayed the highest affinity to the mu-opioid receptor. This peptide was also shown to be a full agonist, while the other analogs failed to activate the mu opioid receptor. Results of molecular docking studies provided rationale for the explanation of binding properties on a structural basis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Synthesis of Thieno[3,2-b]indoles via Halogen Dance and Ligand-Controlled One-Pot Sequential Coupling Reaction.

    PubMed

    Hayashi, Yuki; Okano, Kentaro; Mori, Atsunori

    2018-02-16

    A two-pot synthesis of thieno[3,2-b]indole from 2,5-dibromothiophene is described. A halogen dance of 2,5-dibromothiophene was performed with LDA, and subsequent Negishi coupling was performed with 2-iodoaniline derivatives to provide the corresponding coupling products. The resulting two bromo groups have different reactivities, which were utilized for the one-pot Suzuki-Miyaura coupling/intramolecular Buchwald-Hartwig amination to produce thieno[3,2-b]indole via an assisted tandem catalysis that involved in situ ligand exchange.

  9. A macrocyclic ellagitannin trimer, oenotherin T(1), from Oenothera species.

    PubMed

    Taniguchi, Shoko; Imayoshi, Yoko; Yabu-uchi, Ryoko; Ito, Hideyuki; Hatano, Tsutomu; Yoshida, Takashi

    2002-01-01

    Oenotherin T(1) was isolated from leaves of Oenothera tetraptera as a major ellagitannin. Its structure, that of a macrocyclic trimer with a new acyl group, an isodehydrovaloneoyl group, was established. This compound was also produced by callus tissues induced from O. laciniata leaves.

  10. Hafnium(IV) chloride complexes with chelating β-ketiminate ligands: Synthesis, spectroscopic characterization and volatility study

    NASA Astrophysics Data System (ADS)

    Patil, Siddappa A.; Medina, Phillip A.; Antic, Aleks; Ziller, Joseph W.; Vohs, Jason K.; Fahlman, Bradley D.

    2015-09-01

    The synthesis and characterization of four new β-ketiminate hafnium(IV) chloride complexes dichloro-bis[4-(phenylamido)pent-3-en-2-one]-hafnium (4a), dichloro-bis[4-(4-methylphenylamido)pent-3-en-2-one]-hafnium (4b), dichloro-bis[4-(4-methoxyphenylamido)pent-3-en-2-one]-hafnium (4c), and dichloro-bis[4-(4-chlorophenylamido)pent-3-en-2-one]-hafnium (4d) are reported. All the complexes (4a-d) were characterized by spectroscopic methods (1H NMR, 13C NMR, IR), and elemental analysis while the compound 4c was further examined by single-crystal X-ray diffraction, revealing that the complex is monomer with the hafnium center in octahedral coordination environment and oxygens of the chelating N-O ligands are trans to each other and the chloride ligands are in a cis arrangement. Volatile trends are established for four new β-ketiminate hafnium(IV) chloride complexes (4a-d). Sublimation enthalpies (ΔHsub) were calculated from thermogravimetric analysis (TGA) data, which show that, the dependence of ΔHsub on the molecular weight (4a-c) and inductive effects from chlorine (4d).

  11. Biaryl Phosphine Ligands in Palladium-Catalyzed Amination

    PubMed Central

    Surry, David S.

    2012-01-01

    Palladium-catalyzed amination of aryl halides has undergone rapid development in the last 12 years. This has been largely driven by implementation of new classes of ligands. Biaryl phosphines have proven to provide especially active catalysts in this context. This review discusses the applications that these catalysts have found in C-N cross-coupling in heterocycle synthesis, pharmaceuticals, materials science and natural product synthesis. PMID:18663711

  12. Macrocyclic 2,7-Anthrylene Oligomers.

    PubMed

    Yamamoto, Yuta; Wakamatsu, Kan; Iwanaga, Tetsuo; Sato, Hiroyasu; Toyota, Shinji

    2016-05-06

    A macrocyclic compound consisting of six 2,7-anthrylene units was successfully synthesized by Ni-mediated coupling of the corresponding dibromo precursor as a novel π-conjugated compound. This compound was sufficiently stable and soluble in organic solvents due to the presence of mesityl groups. X-ray analysis showed that the molecule had a nonplanar and hexagonal wheel-shaped framework of approximately S6 symmetry. The dynamic process between two S6 structures was observed by using the dynamic NMR technique, the barrier being 58 kJ mol(-1) . The spectroscopic properties of the hexamer were compared with those of analogous linear oligomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structural characterization of synthetic and protein-bound porphyrins in terms of the lowest-frequency normal coordinates of the macrocycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jentzen, W.; Song, X.Z.; Shelnutt, J.A.

    1997-02-27

    The X-ray crystal structures of synthetic and protein-bound metalloporphyrins are analyzed using a new normal structural decomposition method for classifying and quantifying their out-of-plane and in-plane distortions. These distortions are characterized in terms of equivalent displacements along the normal coordinates of the D{sub 4h}-symmetric porphyrin macrocycle (normal deformations). It is shown that the macrocyclic structure is, even in highly distorted porphyrins, accurately represented by displacements along only the lowest-frequency normal coordinates. Accordingly, the macrocyclic structure obtained from just the out-of-plane normal deformations of the saddling (sad, B{sub 2u})-, ruffling (ruf, B{sub 1u})-, doming (dom, A{sub 2u})-, waving [wav(x), wav(y); E{submore » g}]-, and propellering (pro, A{sub 1u})-type essentially simulates the out-of-plane distortion of the X-ray crystal structure. Similarly, the observed in-plane distortions are decomposed into in-plane normal deformations corresponding to the lowest-frequency vibrational modes including macrocycle stretching in the direction of the meso-carbon atoms (meso-str, B{sub 2g}), stretching in the direction of the nitrogen atoms (N-str, B{sub 1g}), x and y pyrrole translations [trn(x), trn(y); E{sub u}], macrocycle breathing (bre, A{sub 1g}), and pyrrole rotation (rot, A{sub 2g}). 71 refs., 9 figs., 4 tabs.« less

  14. Cyclic tetraureas with variable flexibility--synthesis, crystal structures and properties.

    PubMed

    Meshcheryakov, Denys; Arnaud-Neu, Françoise; Böhmer, Volker; Bolte, Michael; Cavaleri, Julien; Hubscher-Bruder, Véronique; Thondorf, Iris; Werner, Sabine

    2008-09-21

    Macrocyclic molecules containing several amide or urea functions may serve as anion receptors. We describe the synthesis of 32-membered macrocycles, in which four rigid xanthene units (X) and/or diphenyl ether units (D) as flexible analogues are linked via urea groups. All six possible combinations of these units (XXXX, XXXD, XXDD, XDXD, XDDD and DDDD) were synthesized and two examples were characterised by single-crystal X-ray analyses (DDDD and two structures for XXXD). Both macrocycles showed distinct differences in their overall conformation and consequently in their hydrogen-bonding pattern. Hydrogen-bonded solvent molecules are found for both compounds and intramolecular hydrogen bonds for the two structures of XXXD, but surprisingly no direct intermolecular hydrogen bonds between the macrocyclic tetraurea molecules. The interaction with various anions was studied by (1)H NMR spectroscopy. Stability constants for all tetramers were determined by UV spectroscopy for complexes with chloride, bromide, acetate and dihydrogenphosphate in acetonitrile-THF (3:1). The strongest binding was found for XXXD and acetate (log beta = 7.4 +/- 0.2), the weakest for XXXX and acetate (log beta = 5.1 +/- 0.5). MD simulations in chloroform and acetonitrile boxes show that all molecules except DDDD adopt very similar conformations characterized by an up-down-up-down arrangement of the spacer groups. Clustered solvation shells of acetonitrile molecules around XXXX and DDDD suggest their preorganization for spherical/planar and tetrahedral/bidentate anions, respectively, which in turn was corroborated by simulation of the corresponding complexes with chloride and dihydrogenphosphate.

  15. Understanding ligand effects in gold clusters using mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Laskin, Julia

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because “each-atom-counts” toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation ofmore » numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted that may be compared with the results of high-level theoretical calculations. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on

  16. Fragment-Based, Structure-Enabled Discovery of Novel Pyridones and Pyridone Macrocycles as Potent Bromodomain and Extra-Terminal Domain (BET) Family Bromodomain Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Le; Pratt, John K.; Soltwedel, Todd

    Members of the BET family of bromodomain containing proteins have been identified as potential targets for blocking proliferation in a variety of cancer cell lines. A two-dimensional NMR fragment screen for binders to the bromodomains of BRD4 identified a phenylpyridazinone fragment with a weak binding affinity (1, Ki = 160 μM). SAR investigation of fragment 1, aided by X-ray structure-based design, enabled the synthesis of potent pyridone and macrocyclic pyridone inhibitors exhibiting single digit nanomolar potency in both biochemical and cell based assays. Advanced analogs in these series exhibited high oral exposures in rodent PK studies and demonstrated significant tumormore » growth inhibition efficacy in mouse flank xenograft models.« less

  17. Modification of the 5' terminus of oligodeoxyribonucleotides for conjugation with ligands.

    PubMed

    Asseline, U; Thuong, N T

    2001-08-01

    Ligands can be introduced at the 5' terminus of an oligonucleotide by adding a linker to the ligand and modifying the 5' terminus of the oligonucleotide. These are then reacted to give the ligand-oligonucleotide conjugate. This unit describes the addition of carboxylated and aminoalkylated linkers, and phosphorothioate, phosphate, and masked thiol groups to the 5' terminus of an oligonucleotide. The addition of linkers to ligands and the final reaction that produces the ligand-conjugated oligonucleotide are described elsewhere in the series. This approach is particularly useful when there is a limited amount of ligand available, when the ligand is sensitive to chemical conditions required for oligonucleotide deprotection, or when the ligand is weakly soluble in solvents required for phosphoramidite- or H-phosphonate-mediated oligonucleotide synthesis.

  18. Enhanced liquid-liquid anion exchange using macrocyclic anion receptors: effect of receptor structure on sulphate-nitrate exchange selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Bruce A; Sloop Jr, Frederick; Fowler, Christopher J

    2010-01-01

    When certain macrocyclic anion receptors are added to a chloroform solution of the nitrate form of a lipophilic quaternary ammonium salt (methyltri-C8,10-ammonium nitrate, Aliquat 336N), the extraction of sulphate from an aqueous sodium nitrate solution via exchange with the organic-phase nitrate is significantly enhanced. Eight macrocycles were surveyed, including two derivatives of a tetraamide macrocycle, five derivatives of calix[4]pyrrole and -decafluorocalix[5]pyrrole. Under the hypothesis that the enhancement originates from sulphate binding by the anion receptors in the chloroform phase, it was possible to obtain reasonable fits to the sulphate distribution survey data based on the formation of 1:1 and 2:1more » receptor:sulphate complexes in the chloroform phase. Apparent 1:1 sulphate-binding constants obtained from the model in this system fell in the range . Comparison of the results for the various anion receptors included in this study reveals that sulphate binding is sensitive to the nature of the substituents on the parent macrocycle scaffolds in a way that does not follow straightforwardly from simple chemical expectations, such as electron-withdrawing effects on hydrogen-bond donor strength.« less

  19. Magnetism in (Semi)Conducting Macrocycles of pi conjugated Polymers

    DTIC Science & Technology

    2016-12-09

    wise and avoiding a break in the continuity of the macrocycle. As a first criterion we tested the continuity of the electron orbitals over the...magnesium chloride) and post polymerization functionalization by a Sonogashira coupling reaction is required (scheme 2). Scheme 2: Synthetic...Sonogashira post - polymerization chain end functionalization and B isotopic model of the different population present in the final batch

  20. New Synthetic Approach for the Incorporation of 3,2-Hydroxypyridinone (HOPO) Ligands: Synthesis of Structurally Diverse Poly HOPO Chelators

    PubMed Central

    Arumugam, Jayanthi; Brown, Hayley A.; Jacobs, Hollie K.; Gopalan, Aravamudan S.

    2011-01-01

    The HOPO sulfonamide reagent, 3, was prepared from commercial 2,3-dihydroxypyridine in four steps in good yields. Sulfonamide 3 readily underwent selective alkylation with dibromides in the presence of base or could be coupled to alcohols using Mitsunobu conditions. The utility of this nucleophilic HOPO reagent was demonstrated by the synthesis some tris and tetraHOPO chelators. This approach for tethering HOPO ligands is unique and flexible as shown by the preparation of HOPO/iminocarboxylic acid chelator 17. PMID:21709749

  1. Hydrolyzable tannins of tamaricaceous plants. III. Hellinoyl- and macrocyclic-type ellagitannins from Tamarix nilotica.

    PubMed

    Orabi, Mohamed A A; Taniguchi, Shoko; Yoshimura, Morio; Yoshida, Takashi; Kishino, Kaori; Sakagami, Hiroshi; Hatano, Tsutomu

    2010-05-28

    Three new hellinoyl-type ellagitannins, nilotinins M4 (7), D7 (8), and D8 (9), and a new macrocyclic-type, nilotinin D9 (10), together with eight known tannins, hirtellins B (2), C (11), and F (12), isohirtellin C (13), tamarixinin A (3), tellimagrandins I and II, and 1,2,6-tri-O-galloyl-beta-d-glucose (14), were isolated from an aqueous acetone extract of Tamarix nilotica dried leaves. Nilotinin M4 (7) is a monomeric tannin possessing a hellinoyl moiety. The structure of 8 demonstrated replacement of one of the HHDP groups at the glucose core O-4/O-6 in ordinary dimeric tannins with a galloyl moiety at O-6. This is a new structural feature among the tamaricaceous ellagitannins. On the basis of the results, reported spectroscopic assignments for 2, 3, and the macrocyclic tannins 11-13 were revised. Unusual shifts in the NMR spectra of these macrocyclic tannins are also discussed in relation to their conformations. Several tannins isolated from T. nilotica were assessed for possible cytotoxic activity against four human tumor cell lines, and nilotinin D8 (9) and hirtellin A (1) showed high cytotoxic effects.

  2. Rhenium(V) Oxo Complexes of Novel N(2)S(2) Dithiourea (DTU) Chelate Ligands: Synthesis and Structural Characterization.

    PubMed

    Lipowska, Malgorzata; Hayes, Brittany L.; Hansen, Lory; Taylor, Andrew; Marzilli, Luigi G.

    1996-07-03

    The compounds RNHC(=S)NH(CH(2))(n)()NHC(=S)NHR were prepared in a search for new, relatively small N(2)S(2) ligands. These dithiourea (DTU) ligands are the first chelates containing two potentially bidentate thiourea moieties. A one-step reaction of 1,3-diaminopropane (1) with aryl or alkyl isothiocyanates or of 1,2-diaminoethane (2) with phenyl isothiocyanate afforded the target ligands in excellent yields (95-98%). The Re(V)=O complexes of RNHC(=S)NH(CH(2))(3)NHC(=S)NHR ligands were obtained through ligand exchange reactions with Re(V) precursors. The chemistry required neither protection of the sulfur atoms for ligand synthesis nor deprotection prior to metal complexation. The structure of (1-phenyl-3-(3-phenylthioureido)propyl]thioureato)oxorhenium(V) (7a), determined by X-ray diffraction methods, revealed the expected pseudo-square-pyramidal geometry with an N(2)S(2) basal and an apical oxo donor set. Both coordinated N's (N(c)) were deprotonated. One uncoordinated N (N(u)) was deprotonated, producing a neutral complex containing an unexpected new type of dianionic, four-membered N,S chelate. In the crystal, the N(u) atoms, N(3)H and N(4), of one complex each formed an H-bond with N(4) and N(3)H, respectively, of a symmetry-related complex. The N(c)-C-S bond angles (106.1(6) and 101.5(6) degrees ) were severely distorted from the 120 degrees expected for an sp(2)-hybridized C. However, these small bite angles and the large N-Re-N bond angle (86.1(3) degrees ) allowed for the formation of two four-membered chelate rings with normal Re-N and Re-S bond distances. Attempts to prepare complexes with the PhNHC(=S)NH(CH(2))(2)NHC(=S)NHPh ligand were unsuccessful. These results suggest that a central five-membered chelate ring is too small to accommodate bidentate coordination of both thiourea moieties. NMR studies in methanol established that the neutral complex with one uncoordinated N deprotonated was the favored form in neutral and basic solutions. However, under

  3. Enantioselective synthesis of α-phenyl- and α-(dimethylphenylsilyl)alkylboronic esters by ligand mediated stereoinductive reagent-controlled homologation using configurationally labile carbenoids.

    PubMed

    Barsamian, Adam L; Wu, Zhenhua; Blakemore, Paul R

    2015-03-28

    Chain extension of boronic esters by the action of configurationally labile racemic lithium carbenoids in the presence of scalemic bisoxazoline ligands was explored for the enantioselective synthesis of the two title product classes. Enantioenriched 2° carbinols generated by oxidative work-up (NaOOH) of initial α-phenylalkylboronate products were obtained in 35-83% yield and 70-96% ee by reaction of B-alkyl and B-aryl neopentyl glycol boronates with a combination of O-(α-lithiobenzyl)-N,N-diisopropylcarbamate and ligand 3,3-bis[(4S)-4,5-dihydro-4-isopropyloxazol-2-yl] pentane in toluene solvent (-78 °C to rt) with MgBr2·OEt2 additive. Enantioenriched α-(dimethylsilylphenylsilyl)alkylboronates were obtained in 35-69% yield and 9-57% ee by reaction of B-alkyl pinacol boronates with a combination of lithio(dimethylphenylsilyl)methyl 2,4,6-triisopropylbenzoate and ligand 2,2-bis[(4S)-4,5-dihydro-4-isopropyloxazol-2-yl]propane in cumene solvent (-45 °C to -95 °C to rt). The stereochemical outcome of the second type of reaction depended on the temperature history of the organolithium·ligand complex indicating that the stereoinduction mechanism in this case involves some aspect of dynamic thermodynamic resolution.

  4. Pharmacophore mapping in the laulimalide series: total synthesis of a vinylogue for a late-stage metathesis diversification strategy.

    PubMed

    Wender, Paul A; Hilinski, Michael K; Skaanderup, Philip R; Soldermann, Nicolas G; Mooberry, Susan L

    2006-08-31

    An efficient synthesis of the macrocyclic core of laulimalide with a pendant vinyl group at C20 is described, allowing for late-stage introduction of various side chains through a selective and efficient cross metathesis diversification step. Representative analogues reported herein are the first to contain modifications to only the side chain dihydropyran of laulimalide and des-epoxy laulimalide. This step-economical strategy enables the rapid synthesis of new analogues using alkenes as an inexpensive, abundantly available diversification feedstock.

  5. Synthesis of triple-stranded complexes using bis(dipyrromethene) ligands.

    PubMed

    Zhang, Zhan; Dolphin, David

    2010-12-20

    The reaction of an α-free, β,β'-linked bis(dipyrromethene) ligand with Fe(3+) or Co(3+) led to noninterconvertible triple-stranded helicates and mesocates. In the present context, a stable α-free ligand 2 has been developed and complexation of ligands 1 and 2 with diamagnetic Co(3+), Ga(3+), and In(3+) has been studied. The triple-stranded M(2)1(3) (M = Ga, In) and M(2)2(3) (M = Co, Ga, In) complexes were characterized using matrix-assisted laser desorption ionization time-of-flight spectrometry, (1)H NMR and UV-vis spectroscopy, and X-ray crystallography. Again, the (1)H NMR analysis showed that both the triple-stranded helicates and mesocates were generated in this metal-directed assembly. Consistent with our previous finding on coordinatively inert Co(3+) complexes, variable-temperature NMR spectroscopy indicated that the triple-stranded helicate and mesocate of labile In(3+) did not interconvert in solution, either. However, the diastereoselectivity of the M(2)2(3) complexes was found to improve with an increase in the reaction temperature. Taken together, this study complements the coordination chemistry of poly(dipyrromethene) ligands and provides further insight into the formation of helicates versus mesocates.

  6. Fixation of carbon dioxide by macrocyclic lanthanide(III) complexes under neutral conditions producing self-assembled trimeric carbonato-bridged compounds with μ3-η2:η2:η2 bonding.

    PubMed

    Bag, Pradip; Dutta, Supriya; Biswas, Papu; Maji, Swarup Kumar; Flörke, Ulrich; Nag, Kamalaksha

    2012-03-28

    A series of mononuclear lanthanide(III) complexes [Ln(LH(2))(H(2)O)(3)Cl](ClO(4))(2) (Ln = La, Nd, Sm, Eu, Gd, Tb, Lu) of the tetraiminodiphenolate macrocyclic ligand (LH(2)) in 95 : 5 (v/v) methanol-water solution fix atmospheric carbon dioxide to produce the carbonato-bridged trinuclear complexes [{Ln(LH(2))(H(2)O)Cl}(3)(μ(3)-CO(3))](ClO(4))(4)·nH(2)O. Under similar conditions, the mononuclear Y(III) complex forms the dimeric compound [{Y(LH(2))(H(2)O)Cl}(μ(2)-CO(3)){Y(LH(2))(H(2)O)(2)}](ClO(4))(3)·4H(2)O. These complexes have been characterized by their IR and NMR ((1)H, (13)C) spectra. The X-ray crystal structures have been determined for the trinuclear carbonato-bridged compounds of Nd(III), Gd(III) and Tb(III) and the dinuclear compound of Y(III). In all cases, each of the metal centers are 8-coordinate involving two imine nitrogens and two phenolate oxygens of the macrocyclic ligand (LH(2)) whose two other imines are protonated and intramolecularly hydrogen-bonded with the phenolate oxygens. The oxygen atoms of the carbonate anion in the trinuclear complexes are bonded to the metal ions in tris-bidentate μ(3)-η(2):η(2):η(2) fashion, while they are in bis-bidentate μ(2)-η(2):η(2) mode in the Y(III) complex. The magnetic properties of the Gd(III) complex have been studied over the temperature range 2 to 300 K and the magnetic susceptibility data indicate a very weak antiferromagnetic exchange interaction (J = -0.042 cm(-1)) between the Gd(III) centers (S = 7/2) in the metal triangle through the carbonate bridge. The luminescence spectral behaviors of the complexes of Sm(III), Eu(III), and Tb(III) have been studied. The ligand LH(2) acts as a sensitizer for the metal ions in an acetonitrile-toluene glassy matrix (at 77 K) and luminescence intensities of the complexes decrease in the order Eu(3+) > Sm(3+) > Tb(3+).

  7. Synthesis, spectral, thermal and biological studies of mixed ligand complexes with newly prepared Schiff base and 1,10-phenanthroline ligands

    NASA Astrophysics Data System (ADS)

    Abd El-Halim, Hanan F.; Mohamed, Gehad G.; Khalil, Eman A. M.

    2017-10-01

    A series of mixed ligand complexes were prepared from the Schiff base (L1) as a primary ligand, prepared by condensation of oxamide and furan-2-carbaldehyde, and 1,10-phenanthroline (1,10-phen) as a secondary ligand. The Schiff base ligand and its mixed ligand chelates were characterized based on elemental analysis, IR, 1H NMR, thermal analysis, UV-Visible, mass, molar conductance, magnetic moment. X-ray diffraction, solid reflectance and ESR also have been studied. The mixed ligand complexes were found to have the formulae of [M(L1) (1,10-phen)]Clm.nH2O (M = Cr(III) and Fe(III) (m = 3) (n = 0); M = Mn(II), Cu(II) and Cd(II) (m = 2) (n = 0); and M = Co(II) (m = 2) (n = 1), Ni(II) (m = 2) (n = 2) and Zn(II) (m = 2) (n = 3)) and that the geometrical structure of the complexes were octahedral. The parameters of thermodynamic using Coats-Redfern and Horowitz-Metzger equations were calculated. The synthesized Schiff base ligand, 1,10-phenanthroline ligand and Their mixed ligand complexes were also investigated for their antibacterial and antifungal activity against bacterial species (Gram-Ve bacteria: Pseudomonas aeruginosa and Escherichia coli) and (Gram + Ve bacteria: Bacillus subtilis and Streptococcus pneumonia) and fungi (Aspergillus fumigates and Candida albicans). The anticancer activity of the new compounds had been tested against breast (MFC7) and colon (HCT-116) cell lines. The results showed high activity for the synthesized compounds.

  8. Anti-MRSA activity of isoplagiochin-type macrocyclic bis(bibenzyl)s is mediated through cell membrane damage.

    PubMed

    Onoda, Kenji; Sawada, Hiromi; Morita, Daichi; Fujii, Kana; Tokiwa, Hiroaki; Kuroda, Teruo; Miyachi, Hiroyuki

    2015-07-01

    We synthesized three geometrical isomers of a macrocyclic bis(bibenzyl) based on isoplagiochin, a natural product isolated from bryophytes, and evaluated their antibacterial activity towards methicillin-resistant Staphylococcus aureus (anti-MRSA activity). The isomer containing a 1,4-linked ring (5) showed only weak activity, whereas the isomers containing a 1,3-linked (6) or 1,2-linked (7) C ring showed potent anti-MRSA activity. Molecular dynamics calculations indicated that these differences are probably due to differences in the conformational flexibility of the macrocyclic ring; the active compounds 6 and 7 were more rigid than 5. In order to understand the action mechanism of anti-MRSA activity, we investigated the cellular flux of a fluorescent DNA-binder, ethidium bromide (EtBr), in the presence and absence of these macrocycles. The active compound 6 increased the levels of EtBr inflow and outflow in S. aureus cells, as did our potent anti-MRSA riccardin derivative (4), indicating that these compounds increased the permeability of the cytoplasmic membrane. Inactive 5 had no effect on EtBr inflow or outflow. Furthermore, compound 6 abrogated the normal intracellular concentration gradients of Na(+) and K(+) in S. aureus cells, increasing the intracellular Na(+) concentration and decreasing the K(+) concentration, while 5 had no such effect. These results indicate that anti-MRSA-active macrocyclic bis(bibenzyl) derivatives directly damage the gram-positive bacterial membrane, resulting in increased permeability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Biodegradable polyester-based eco-composites containing hemp fibers modified with macrocyclic oligomers

    NASA Astrophysics Data System (ADS)

    Conzatti, Lucia; Utzeri, Roberto; Hodge, Philip; Stagnaro, Paola

    2016-05-01

    An original compatibilizing pathway for hemp fibers/poly(1,4-butylene adipate-co-terephtalate) (PBAT) eco-composites was explored exploiting the capability of macrocyclic oligomers (MCOs), obtained by cyclodepolymerization (CDP) of PBAT at high dilution, of being re-converted into linear chains by entropically-driven ring-opening polymerization (ED-ROP) that occurs simply heating the MCOS in the bulk. CDP reaction of PBAT was carried out varying solvent, catalyst and reaction time. Selected MCOs were used to adjust the conditions of the ED-ROP reaction. The best experimental conditions were then adopted to modify hemp fibers. Eco-composites based on PBAT and hemp fibers as obtained or modified with PBAT macrocyclics or oligomers were prepared by different process strategies. The best fiber-PBAT compatibility was observed when the fibers were modified with PBAT oligomers before incorporation in the polyester matrix.

  10. Macrocyclic lactones: A versatile source for omega radiohalogenated fatty acid analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougan, A.H.; Lyster, D.M.; Robertson, K.A.

    For each omega halogenated fatty acid there exists a potential omega hydroxy fatty acid and the corresponding macrocyclic lactone. The authors have utilized such lactones as starting materials for omega /sup 123/I fatty acid analogs intended for myocardial imaging. Macrocyclic musk lactones are industrially available; 120 analogs are described in the literature. The preparation requires saponification, tosylation, and radio-iodide substitution. Iodo-fatty acids are readily separated from tosylate fatty acids on TLC. While providing a secure source of 16-iodo-hexadecanoic acid and 17-iodo-heptadecanoic acid, the scheme allows ready access to a large number of untried fatty acid analogs. Examples presented are 16-iodo-hexadecanoicmore » acid, 16-iodo-7-hexadecanoic acid, 16-iodo-12-oxa-hexadecanoic acid, 15-iodo-pentadecanoic acid, and 15-iodo-12-keto-pentadecanoic acid. Metabolic studies are in progress in mice and dogs to assess the utility of these analogs for myocardial imaging.« less

  11. Synthesis, spectroscopic, physicochemical and structural characterization of tetrandrine-based macrocycles functionalized with acridine and anthracene groups: DNA binding and anti-proliferative activity.

    PubMed

    Calvillo-Páez, Viviana; Sotelo-Mundo, Rogerio R; Leyva-Peralta, Mario; Gálvez-Ruiz, Juan Carlos; Corona-Martínez, David; Moreno-Corral, Ramón; Escobar-Picos, Raymundo; Höpfl, Herbert; Juárez-Sánchez, Octavio; Lara, Karen Ochoa

    2018-04-25

    In this work, we report on the synthesis of two new mono-alkylated tetrandrine derivatives with acridine and anthracene units, MAcT and MAnT. The compounds were fully characterized by physicochemical techniques and single-crystal X-ray diffraction analysis. In addition, both derivatives were studied as nucleotide receptors and double-stranded DNA binders in aqueous phosphate buffer at pH = 7.2 using UV-vis and fluorescence spectroscopy. According to the molecular recognition studies, MAcT and MAnT exhibit high affinity (K ∼ 10 5  M -1 ) and selectivity for ds-DNA, presumably in an intercalation mode. Finally, the anti-proliferative effects of the tetrandrine derivatives on different cancer cell lines were explored, revealing promising activities. Particularly, the mono-anthracene tetrandrine derivative MAnT showed an IC 50 of 2.74 μg/mL on the HeLa cervical cancer cell line, representing a value 3.3 times smaller than that obtained for unsubstituted tetrandrine. Examination of the cytotoxic effects on the HeLa cell line by inverted microscopy suggests that the cell death mechanism consists basically in apoptosis. The molecular modelling of three ds-DNA-MAcT complexes, suggested that the macrocycles may use an intercalation binding mode towards DNA. MAcT is predicted to bind into the major groove of the ds-DNA providing non-covalent interactions such as electrostatic, van der Waals and hydrophobic interactions that lead to selectivity. Overall experimental data supports the mode of action of MAnT and MAcT as cytotoxic compounds against cancer cell lines via a DNA interaction mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Excellent acceleration of the Diels-Alder reaction by microwave irradiation for the synthesis of new fluorine-substituted ligands of NMDA receptor.

    PubMed

    Sasaki, S; Ishibashi, N; Kuwamura, T; Sano, H; Matoba, M; Nisikawa, T; Maeda, M

    1998-11-03

    A series of 6,11-ethanobenzo[b]quinolizinium derivatives was synthesized through the Diels-Alder reaction between azoniaanthracne and the corresponding 1,1-disubstituted olefin. After a systematic investigation for achieving rapid synthesis, it was found that the reaction is accelerated in polar media such as H2O and trifluoroethanol. In particular, excellent acceleration was effected by microwave irradiation. The new fluorine-substituted ligands thus obtained exhibited potential affinity toward NMDA receptors.

  13. Quaternary Cu2ZnSnS4 quantum dot-sensitized solar cells: Synthesis, passivation and ligand exchange

    NASA Astrophysics Data System (ADS)

    Bai, Bing; Kou, Dongxing; Zhou, Wenhui; Zhou, Zhengji; Tian, Qingwen; Meng, Yuena; Wu, Sixin

    2016-06-01

    The quaternary Cu2ZnSnS4 (CZTS) QDs had been successfully introduced into quantum dot-sensitized solar cells (QDSC) via hydrolysis approach in our previous work [Green Chem. 2015, vol. 17, p. 4377], but the obtained cell efficiency was still limited by low open-circuit voltage and fill factor. Herein, we use 1-dodecanethiol (DDT) as capping ligand for fairly small-sized CZTS QDs synthesis to improve their intrinsic properties. Since this strong bonded capping ligand can not be replaced by 3-mercaptopropionic acid (MPA) directly, the nature cation (Cu, Zn or Sn)-DDT units of QDs are first exchanged by the preconjugated Cd-oleate via successive ionic layer adsorption and reaction (SILAR) procedure accompanied with the formation of a core/shell structure. The weak bonded oleic acid (OA) can be finally replaced by MPA and the constructed water soluble CZTS/CdSe QDSC achieves an impressive conversion efficiency of 4.70%. The electron transport and recombination dynamic processes are confirmed by intensity-modulated photocurrent spectroscopy (IMPS)/intensity-modulated photovoltage spectroscopy (IMVS) measurements. It is found that the removal of long alkyl chain is conducive to improve the electron transport process and the type-II core/shell structure is beneficial to accelerate electron transport and retard charge recombination. This effective ligand removal strategy is proved to be more convenient for the applying of quaternary QDs in QDSC and would boost a more powerful efficiency in the future work.

  14. A macrocyclic polyamine as an anion receptor in the capillary electrochromatographic separation of carbohydrates.

    PubMed

    Liu, Chuen-Ying; Chen, Tse-Hsien; Misra, Tarun Kumar

    2007-06-22

    An analytical approach of the 32-membered macrocyclic polyamine, 1,5,9,13,17,21,25,29-octaazacyclodotriacontane ([32]ane-N8) was described for the capillary electrochromatographic (CEC) separation of derivatized mono- and disaccharides. The column displayed reversal electroosmotic flow (EOF) at pH below 7.0, while a cathodic EOF was shown at pH above 7.0. The reductive amination of saccharides was carried out with p-aminobenzoic acid. Some parameters that affect the CEC separations were investigated. Several competitive ligands, such as Tris, EDTA and phosphate were also examined for the effect on the performance. We achieved a complete separation of all compounds as well as the excess derivatizing agent by using borate buffer (pH 9.0) in a mode of concentration gradient (60 mM inlet side and 70 mM outlet side). The relative standard deviation of the retention time measured for each sample was less than 4% in six continuous runs, suggesting that the bonded phase along with the gradient formed inside the column was quite stable. With the mixing modes of anion coordination, anion exchange, and shape discrimination, the interaction adequately accomplishes the separation of carbohydrates which are epimers or have different glycosidic linkage, although the electrophoretic migration is also involved in the separation mechanism.

  15. Design, synthesis, and anaplastic lymphoma kinase (ALK) inhibitory activity for a novel series of 2,4,8,22-tetraazatetracyclo[14.3.1.1³,⁷.1⁹,¹³]docosa-1(20),3(22),4,6,9(21),10,12,16,18-nonaene macrocycles.

    PubMed

    Breslin, Henry J; Lane, Brandon M; Ott, Gregory R; Ghose, Arup K; Angeles, Thelma S; Albom, Mark S; Cheng, Mangeng; Wan, Weihua; Haltiwanger, R Curtis; Wells-Knecht, Kevin J; Dorsey, Bruce D

    2012-01-12

    A novel set of 2,4,8,22-tetraazatetracyclo[14.3.1.1(3,7).1(9,13)]docosa-1(20),3(22),4,6,9(21),10,12,16,18-nonaene macrocycles were prepared as potential anaplastic lymphoma kinase (ALK) inhibitors, designed to rigidly lock an energy-minimized bioactive conformation of the diaminopyrimidine (DAP) scaffold, a well-documented kinase platform. From 13 analogues prepared, macrocycle 2m showed the most promising in vitro ALK enzymatic (IC(50) = 0.5 nM) and cellular (IC(50) = 10 nM) activities. In addition, macrocycle 2m exhibited a favorable kinase selectivity preference for inhibition of ALK relative to the highly homologous insulin receptor (IR) kinase (IR/ALK ratio of 173). The inclusive in vitro biological results for this set of macrocycles validate this scaffold as a viable kinase template and further corroborate recent DAP/ALK solid state studies indicating that the inverted "U" shaped conformation of the acyclic DAPs is a preferred bioactive conformation.

  16. Stabilization of peroxisome proliferator-activated receptor alpha by the ligand.

    PubMed

    Hirotani, M; Tsukamoto, T; Bourdeaux, J; Sadano, H; Osumi, T

    2001-10-19

    Peroxisome proliferator-activated receptor (PPAR) constitutes a subfamily among a large group of ligand-activated transcription factors, the nuclear receptor superfamily. We studied the effects of ligand on the intracellular behaviors of PPARalpha. Although nuclear localization of PPARalpha was not affected by a selective ligand, Wy14643, we observed that exogenously expressed PPARalpha was rapidly degraded in HeLa cells, and the ligand significantly stabilized the protein. The stability of PPARalpha was also improved by coexpression of the heterodimer partner retinoid X receptor (RXR) alpha, and further stabilization was not observed with the ligand. These results indicate that PPARalpha is stabilized through heterodimerization with RXR, and the excess protein unpaired with RXR is rapidly turned over, if not bound by an appropriate ligand. These observations on PPARalpha are in sharp contrast to the ligand-stimulated degradation reported on PPARgamma. The ligand-dependent stabilization would have physiological significance when the synthesis of PPARalpha is elevated exceeding the available level of RXR. Copyright 2001 Academic Press.

  17. Synthesis and investigation of Pd(I) carbonyl complexes with heteroorganic ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamberov, A.A.; Polovnyak, V.K.; Akhmetov, N.S.

    1987-09-10

    Pd(I) carbonyl complexes are attracting attention because they have been shown to have catalytic properties in a series of organic syntheses. The stability and catalytic properties of these compounds are determined by the nature of the phosphine ligand and the bridge coordination of the carbonylgroup. Through the partial replacement of carbonyl and acido ligands by heteroorganic ligands in carbonyl halogenide and carbonyl acetate Pd(I) complexes, new stable Pd(I) complexes were obtained: (PdLX)/sub 2/CO, where L = PPh/sub 3/, X = OAc; L = AsPh/sub 3/, X = Cl, Br, OAc; L = SbPh/sub 3/, X = Cl Br, OAc; Lmore » = Ph/sub 2/PCH/sub 2/PPh/sub 2/, Ph/sub 2/AsCH/sub 2/AsPh/sub 2/, X = OAc. Atoms of the heteroorganic and acido ligands are equivalently coordinated to the palladium atoms. The carbonyl group in the complexes has bridge coordination to palladium atoms in the Pd(CO)Pd fragment; in complexes with bidentate heteroorganic ligands the covalent bond between palladium atoms is absent.« less

  18. Synthesis of 3-alkyl naphthalenes as novel estrogen receptor ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Jing; Akwabi-Ameyaw, Adwoa; Britton, Jonathan E.

    2009-06-24

    A series of estrogen receptor ligands based on a 3-alkyl naphthalene scaffold was synthesized using an intramolecular enolate-alkyne cycloaromatization as the key step. Several of these compounds bearing a C6-OH group were shown to be high affinity ligands. All compounds had similar ER{alpha} and ER{beta} binding affinity ranging from micromolar to low nanomolar.

  19. Macrocyclic {3d-4f} SMMs as building blocks for 1D-polymers: selective bridging of 4f ions by use of an O-donor ligand.

    PubMed

    Dhers, Sébastien; Feltham, Humphrey L C; Rouzières, Mathieu; Clérac, Rodolphe; Brooker, Sally

    2016-11-15

    Crystallisation of the tetranuclear 3d-4f Single-Molecule Magnet (SMM) [CuTb III (L Et )(NO 3 ) 3 (MeOH)]·MeOH (1) with Na 2 [tpa] (tpa = terephthalate and H 6 L Et is the [3 + 3] imine macrocycle derived from 1,4-diformyl-2,3-dihydroxybenzene and 1,2-diaminoethane) gives a structurally characterised one-dimensional cationic polymer {[CuTb III (L Et )(tpa)(H 2 O) 3 ](NO 3 )·0.5H 2 O·0.25MeOH} n (2). A comparative study of the static and dynamic magnetic properties of 2 and its precursor, 1, is reported.

  20. Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins in the indoor environment.

    PubMed

    Brasel, T L; Martin, J M; Carriker, C G; Wilson, S C; Straus, D C

    2005-11-01

    The existence of airborne mycotoxins in mold-contaminated buildings has long been hypothesized to be a potential occupant health risk. However, little work has been done to demonstrate the presence of these compounds in such environments. The presence of airborne macrocyclic trichothecene mycotoxins in indoor environments with known Stachybotrys chartarum contamination was therefore investigated. In seven buildings, air was collected using a high-volume liquid impaction bioaerosol sampler (SpinCon PAS 450-10) under static or disturbed conditions. An additional building was sampled using an Andersen GPS-1 PUF sampler modified to separate and collect particulates smaller than conidia. Four control buildings (i.e., no detectable S. chartarum growth or history of water damage) and outdoor air were also tested. Samples were analyzed using a macrocyclic trichothecene-specific enzyme-linked immunosorbent assay (ELISA). ELISA specificity was tested using phosphate-buffered saline extracts of the fungal genera Aspergillus, Chaetomium, Cladosporium, Fusarium, Memnoniella, Penicillium, Rhizopus, and Trichoderma, five Stachybotrys strains, and the indoor air allergens Can f 1, Der p 1, and Fel d 1. For test buildings, the results showed that detectable toxin concentrations increased with the sampling time and short periods of air disturbance. Trichothecene values ranged from <10 to >1,300 pg/m3 of sampled air. The control environments demonstrated statistically significantly (P < 0.001) lower levels of airborne trichothecenes. ELISA specificity experiments demonstrated a high specificity for the trichothecene-producing strain of S. chartarum. Our data indicate that airborne macrocyclic trichothecenes can exist in Stachybotrys-contaminated buildings, and this should be taken into consideration in future indoor air quality investigations.

  1. Functionalized Derivatives of Benzo-Crown Ethers. Part 4. Antifungal Macrocyclic Supramolecular Complexes of Transition Metal Ions Acting as Lanosterol-14-α-Demethylase Ihibitors

    PubMed Central

    Barboiu, Mihai; Scozzafava, Andrea; Guran, Cornelia; Diaconescu, Paula; Bojin, Mihaela; Iluc, Vlad; Cot, Louis

    1999-01-01

    Poly- and mononuclear metal complexes of 2,3,11,12-bis[4-(10-aminodecylcarbonyl)]benzo-18- crown-6 (L) and Cu(II); Ni(II); Co(II) and Cr(III) have been synthesized and characterized by standard physico-chemical procedures. In the newly prepared complexes the crown moiety oxygen atoms of the macrocyclic host did not generally interact with metal ions, whereas the two amino groups of the ligand always did. Several of the newly synthesized compounds act as effective antifungal agents against Aspergillus and Candida spp., some of them showing activities comparable to ketoconazole, with minimum inhibitory concentrations in the range of 0.3−0.5 μg/mL. The mechanism of antifungal action of these coordination compounds is probably connected to an inhibition of lanosterol-14-α-demethylase, a metallo-enzyme playing a key role in sterol biosynthesis in fungi, bacteria and eukariotes. PMID:18475888

  2. Design and Synthesis of Highly Potent HIV-1 Protease Inhibitors Containing Tricyclic Fused Ring Systems as Novel P2 Ligands: Structure-Activity Studies, Biological and X-ray Structural Analysis.

    PubMed

    Ghosh, Arun K; R Nyalapatla, Prasanth; Kovela, Satish; Rao, Kalapala Venkateswara; Brindisi, Margherita; Osswald, Heather L; Amano, Masayuki; Aoki, Manabu; Agniswamy, Johnson; Wang, Yuan-Fang; Weber, Irene T; Mitsuya, Hiroaki

    2018-05-24

    The design, synthesis, and biological evaluation of a new class of HIV-1 protease inhibitors containing stereochemically defined fused tricyclic polyethers as the P2 ligands and a variety of sulfonamide derivatives as the P2' ligands are described. A number of ring sizes and various substituent effects were investigated to enhance the ligand-backbone interactions in the protease active site. Inhibitors 5c and 5d containing this unprecedented fused 6-5-5 ring system as the P2 ligand, an aminobenzothiazole as the P2' ligand, and a difluorophenylmethyl as the P1 ligand exhibited exceptional enzyme inhibitory potency and maintained excellent antiviral activity against a panel of highly multidrug-resistant HIV-1 variants. The umbrella-like P2 ligand for these inhibitors has been synthesized efficiently in an optically active form using a Pauson-Khand cyclization reaction as the key step. The racemic alcohols were resolved efficiently using a lipase catalyzed enzymatic resolution. Two high resolution X-ray structures of inhibitor-bound HIV-1 protease revealed extensive interactions with the backbone atoms of HIV-1 protease and provided molecular insight into the binding properties of these new inhibitors.

  3. Hydroxyalkylation with cyclic sulfates: synthesis of carbazole derived CB(2) ligands with increased polarity.

    PubMed

    Lueg, Corinna; Galla, Fabian; Frehland, Bastian; Schepmann, Dirk; Daniliuc, Constantin G; Deuther-Conrad, Winnie; Brust, Peter; Wünsch, Bernhard

    2014-01-01

    In order to increase the polarity of the potent CB2 ligand 1a, the homologous hydroxyalkyl carbazoles 2a-c were prepared and pharmacologically evaluated. An important step in the synthesis is the hydroxyalkylation of carbazole with cyclic sulfates providing the 2-hydroxyethyl and 3-hydroxypropyl derivatives 5a and 5b in a one-step reaction. The final propionamides 2a-c were prepared using the recently reported coupling reagent COMU®. The X-ray crystal structure of 2c displays an almost coplanar arrangement of the 3-phenyl-1,2,4-oxadiazole biaryl system. The increased polarity of 2a is associated with an almost 100-fold reduced CB2 affinity. The 3-hydroxypropyl derivative 2b represents the best compromise between lipophilicity and CB2 affinity (Ki  = 33 nM). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Theory of optical transitions in π-conjugated macrocycles

    NASA Astrophysics Data System (ADS)

    Marcus, Max; Coonjobeeharry, Jaymee; Barford, William

    2016-04-01

    We describe a theoretical and computational investigation of the optical properties of π-conjugated macrocycles. Since the low-energy excitations of these systems are Frenkel excitons that couple to high-frequency dispersionless phonons, we employ the quantized Frenkel-Holstein model and solve it via the density matrix renormalization group (DMRG) method. First we consider optical emission from perfectly circular systems. Owing to optical selection rules, such systems radiate via two mechanisms: (i) within the Condon approximation, by thermally induced emission from the optically allowed j = ± 1 states and (ii) beyond the Condon approximation, by emission from the j = 0 state via coupling with a totally non-symmetric phonon (namely, the Herzberg-Teller effect). Using perturbation theory, we derive an expression for the Herzberg-Teller correction and show via DMRG calculations that this expression soon fails as ħ ω/J and the size of the macrocycle increase. Next, we consider the role of broken symmetry caused by torsional disorder. In this case the quantum number j no longer labels eigenstates of angular momentum, but instead labels localized local exciton groundstates (LEGSs) or quasi-extended states (QEESs). As for linear polymers, LEGSs define chromophores, with the higher energy QEESs being extended over numerous LEGSs. Within the Condon approximation (i.e., neglecting the Herzberg-Teller correction) we show that increased disorder increases the emissive optical intensity, because all the LEGSs are optically active. We next consider the combined role of broken symmetry and curvature, by explicitly evaluating the Herzberg-Teller correction in disordered systems via the DMRG method. The Herzberg-Teller correction is most evident in the emission intensity ratio, I00/I01. In the Condon approximation I00/I01 is a constant function of curvature, whereas in practice it vanishes for closed rings and only approaches a constant in the limit of vanishing curvature. We

  5. Copper(II) hexaaza macrocyclic binuclear complexes obtained from the reaction of their copper(I) derivates and molecular dioxygen.

    PubMed

    Costas, Miquel; Ribas, Xavi; Poater, Albert; López Valbuena, Josep Maria; Xifra, Raül; Company, Anna; Duran, Miquel; Solà, Miquel; Llobet, Antoni; Corbella, Montserrat; Usón, Miguel Angel; Mahía, José; Solans, Xavier; Shan, Xiaopeng; Benet-Buchholz, Jordi

    2006-05-01

    Density functional theory (DFT) calculations have been carried out for a series of Cu(I) complexes bearing N-hexadentate macrocyclic dinucleating ligands and for their corresponding peroxo species (1c-8c) generated by their interaction with molecular O2. For complexes 1c-7c, it has been found that the side-on peroxodicopper(II) is the favored structure with regard to the bis(mu-oxo)dicopper(III). For those complexes, the singlet state has also been shown to be more stable than the triplet state. In the case of 8c, the most favored structure is the trans-1,2-peroxodicopper(II) because of the para substitution and the steric encumbrance produced by the methylation of the N atoms. Cu(II) complexes 4e, 5e, and 8e have been obtained by O2 oxidation of their corresponding Cu(I) complexes and structurally and magnetically characterized. X-ray single-crystal structures for those complexes have been solved, and they show three completely different types of Cu(II)2 structures: (a) For 4e, the Cu(II) centers are bridged by a phenolate group and an external hydroxide ligand. The phenolate group is generated from the evolution of 4c via intramolecular arene hydroxylation. (b) For 5e, the two Cu(II) centers are bridged by two hydroxide ligands. (c) For the 8e case, the Cu(II) centers are ligated to terminally bound hydroxide ligands, rare because of its tendency to bridge. The evolution of complexes 1c-8c toward their oxidized species has also been rationalized by DFT calculations based mainly on their structure and electrophilicity. The structural diversity of the oxidized species is also responsible for a variety of magnetic behavior: (a) strong antiferromagnetic (AF) coupling with J = -482.0 cm(-1) (g = 2.30; rho = 0.032; R = 5.6 x 10(-3)) for 4e; (b) AF coupling with J = -286.3 cm(-1) (g = 2.07; rho = 0.064; R = 2.6 x 10(-3)) for 5e; (c) an uncoupled Cu(II)2 complex for 8e.

  6. Fluorescence Turn-on Enantioselective Recognition of both Chiral Acidic Compounds and α-Amino Acids by a Chiral Tetraphenylethylene Macrocycle Amine.

    PubMed

    Feng, Hai-Tao; Zhang, Xing; Zheng, Yan-Song

    2015-08-21

    New chiral tetraphenylethylene (TPE) macrocycles bearing optically pure amine groups were synthesized and found to have a discriminating ability between the two enantiomers of not only chiral acidic compounds but also α-amino acids by enantioselective aggregation and aggregation-induced emission (AIE) effects. NMR spectra, including 2D-NOESY, disclosed that the host-guest interaction of the macrocycle receptor played a key role in addition to the acid-base interactions.

  7. Preparation, structure, and luminescence of dinuclear lanthanide complexes of a novel imine-amine phenolate macrocycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, K.D.; Kahwa, I.A.; Williams, D.J.

    1994-03-30

    Metal-free condensation of 2,6-diformyl-p-cresol with 3,6-dioxa-1,8-octanediamine followed by reduction with sodium tetrahydroborate and addition of lanthanide(III) nitrate salts, in that order, yield (slowly) crystalline dinuclear complexes of a novel imine-amine phenolate macrocycle 2. The decacoordination geometry of the identical Pr[sup 3+] ions in a C[sub 2v] 4A,6B-extended dodecahedron made up of two bidentate NO[sub 3]-ions, two phenolate and two either oxygens, and one imine and one amine nitrogens. Dinuclear lanthanide complexes of 2 appear to be more stable than those of the totally reduced chelate 2 in alcoholic media. The Tb[sub 2]2(NO[sub 3])[sub 4][center dot]1.2CH[sub 3]-OH and (La[sub 0.97]Tb[sub 0.03])[submore » 2]2(NO[sub 3])[sub 4][center dot]1.2CH[sub 3]OH compounds exhibit strong Tb[sup 3+] ([sup 5]D[sub 4] [yields] [sup 7]F[sub J]) emission sensitized by the single state of 2 at both 77 and 295 K. No Tb[sup 3+]-Tb[sup 3+] self-quenching or N-H trapping effects are observed at 77 K (decay rate is 598 s[sup [minus]1]); the coordination cavities of 2 are therefore potentially good hosts for Tb[sup 3+] in luminescent diagnostic agents. At room temperature the complex decay kinetics of Tb[sup 3+] in Tb[sub 2]2(NO[sub 3])[sub 4][center dot]1.2CH[sub 3]OH are similar to those of Tb[sub 2]1(NO[sub 3])[sub 4][center dot]H[sub 2]O. But for the dilute complex, (La[sub 0.97]-Tb[sub 0.03])[sub 2]2(NO[sub 3])[sub 4][center dot]1.35CH[sub 3]OH, unusual thermal equilibration of the ligand triplet and Tb[sup 3+] [sup 5]D[sub 4] states occurs at room temperature; the ligand-to-Tb[sup 3+] energy-transfer rate is [approx]4.36 x 10[sup 4] s[sup [minus]1], while Tb[sup 3+]-to-ligand back-energy-transfer is [approx]7.1 x 10[sup 4] s[sup [minus]1].« less

  8. Gallium(III) chelates of mixed phosphonate-carboxylate triazamacrocyclic ligands relevant to nuclear medicine: Structural, stability and in vivo studies.

    PubMed

    Prata, Maria I M; André, João P; Kovács, Zoltán; Takács, Anett I; Tircsó, Gyula; Tóth, Imre; Geraldes, Carlos F G C

    2017-12-01

    Three triaza macrocyclic ligands, H 6 NOTP (1,4,7-triazacyclononane-N,N',N″-trimethylene phosphonic acid), H 4 NO2AP (1,4,7-triazacyclononane-N-methylenephosphonic acid-N',N″-dimethylenecarboxylic acid), and H 5 NOA2P (1,4,7-triazacyclononane-N,N'-bis(methylenephosphonic acid)-N″-methylene carboxylic acid), and their gallium(III) chelates were studied in view of their potential interest as scintigraphic and PET (Positron Emission Tomography) imaging agents. A 1 H, 31 P and 71 Ga multinuclear NMR study gave an insight on the structure, internal dynamics and stability of the chelates in aqueous solution. In particular, the analysis of 71 Ga NMR spectra gave information on the symmetry of the Ga 3+ coordination sphere and the stability of the chelates towards hydrolysis. The 31 P NMR spectra afforded information on the protonation of the non-coordinated oxygen atoms from the pendant phosphonate groups and on the number of species in solution. The 1 H NMR spectra allowed the analysis of the structure and the number of species in solution. 31 P and 1 H NMR titrations combined with potentiometry afforded the measurement of the protonation constants (log K Hi ) and the microscopic protonation scheme of the triaza macrocyclic ligands. The remarkably high thermodynamic stability constant (log K GaL =34.44 (0.04) and stepwise protonation constants of Ga(NOA2P) 2- were determined by potentiometry and 69 Ga and 31 P NMR titrations. Biodistribution and gamma imaging studies have been performed on Wistar rats using the radiolabeled 67 Ga(NO2AP) - and 67 Ga(NOA2P) 2- chelates, having both demonstrated to have renal excretion. The correlation of the molecular properties of the chelates with their pharmacokinetic properties has been analysed. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Synthesis, stabilization, and characterization of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    White, Gregory Von, II

    Wet chemical synthesis techniques offer the ability to control various nanoparticle characteristics including size, shape, dispersibility in both aqueous and organic solvents, and tailored surface chemistries appropriate for different applications. Large quantities of stabilizing ligands or surfactants are often required during synthesis to achieve these nanoparticle characteristics. Unfortunately, excess reaction byproducts, surfactants, and ligands remaining in solution after nanoparticle synthesis can impede application, and therefore post-synthesis purification must be employed. A liquid-liquid solvent/antisolvent pair (typically ethanol/toluene or ethanol/hexane for gold nanoparticles, GNPs) can be used to both purify and size-selectively fractionate hydrophobically modified nanoparticles. Alternatively, carbon dioxide may be used in place of a liquid antisolvent, a "green" approach, enabling both nanoparticle purification and size-selective fractionation while simultaneously eliminating mixed solvent waste and allowing solvent recycle. We have used small-angle neutron scattering (SANS) to investigate the ligand structure and composition response of alkanethiol modified gold and silver nanoparticles at varying anti-solvent conditions (CO2 or ethanol). The ligand lengths and ligand solvation for alkanethiol gold and silver NPs were found to decrease with increased antisolvent concentrations directly impacting their dispersibility in solution. Calculated Flory-Huggins interaction parameters support our SANS study for dodecanethiol dispersibility in the mixed organic solvents. This research has led to a greater understanding of the liquid-liquid precipitation process for metal nanoparticles, and provides critical results for future interaction energy modeling.

  10. Scouting new sigma receptor ligands: Synthesis, pharmacological evaluation and molecular modeling of 1,3-dioxolane-based structures and derivatives.

    PubMed

    Franchini, Silvia; Battisti, Umberto Maria; Prandi, Adolfo; Tait, Annalisa; Borsari, Chiara; Cichero, Elena; Fossa, Paola; Cilia, Antonio; Prezzavento, Orazio; Ronsisvalle, Simone; Aricò, Giuseppina; Parenti, Carmela; Brasili, Livio

    2016-04-13

    Herein we report the synthesis and biological activity of new sigma receptor (σR) ligands obtained by combining different substituted five-membered heterocyclic rings with appropriate σR pharmacophoric amines. Radioligand binding assay, performed on guinea pig brain membranes, identified 25b (1-(1,4-dioxaspiro[4.5]decan-2-ylmethyl)-4-benzylpiperazine) as the most interesting compound of the series, displaying high affinity and selectivity for σ1R (pKiσ1 = 9.13; σ1/σ2 = 47). The ability of 25b to modulate the analgesic effect of the κ agonist (-)-U-50,488H and μ agonist morphine was evaluated in vivo by radiant heat tail-flick test. It exhibited anti-opioid effects on both κ and μ receptor-mediated analgesia, suggesting an agonistic behavior at σ1R. Docking studies were performed on the theoretical σ1R homology model. The present work represents a new starting point for the design of more potent and selective σ1R ligands. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. New macrocyclic lactones with acaricidal and nematocidal activities from a genetically engineered strain Streptomyces bingchenggensis BCJ60.

    PubMed

    Li, Jian-Song; Zhang, Hui; Zhang, Shao-Yong; Wang, Hai-Yan; Zhang, Ji; Chen, An-Liang; Wang, Ji-Dong; Xiang, Wen-Sheng

    2017-04-01

    Two new macrocyclic lactones, 4,25-diethyl-4,25-demethyl-milbemycin β 3 (1) and 27-formaldehyde-milbemycin β 14 (2), were isolated from a genetically engineered strain Streptomyces bingchenggensis BCJ60. Their structures were determined on the basis of spectroscopic analysis, including 1D and 2D NMR techniques as well as ESI-MS and comparison with data from the literature. The acaricidal and nematocidal capacities of compounds 1 and 2 were evaluated against Tetranychus cinnabarinus and Bursaphelenchus xylophilus, respectively. The results showed that the two new macrocyclic lactones 1 and 2 possessed potent acaricidal and nematocidal activities.

  12. The interaction of amino acids with macrocyclic pH probes of pseudopeptidic nature.

    PubMed

    Izquierdo, M Angeles; Wadhavane, Prashant D; Vigara, Laura; Burguete, M Isabel; Galindo, Francisco; Luis, Santiago V

    2017-08-09

    The fluorescence quenching, by a series of amino acids, of pseudopeptidic compounds acting as probes for cellular acidity has been investigated. It has been found that amino acids containing electron-rich aromatic side chains like Trp or Tyr, as well as Met quench the emission of the probes mainly via a collisional mechanism, with Stern-Volmer constants in the 7-43 M -1 range, while other amino acids such as His, Val or Phe did not cause deactivation of the fluorescence. Only a minor contribution of a static quenching due to the formation of ground-state complexes has been found for Trp and Tyr, with association constants in the 9-24 M -1 range. For these ground-state complexes, a comparison between the macrocyclic probes and an open chain analogue reveals the existence of a moderate macrocyclic effect due to the preorganization of the probes in the more rigid structure.

  13. Synthesis of ligand-stabilized metal oxide nanocrystals and epitaxial core/shell nanocrystals via a lower-temperature esterification process.

    PubMed

    Ito, Daisuke; Yokoyama, Shun; Zaikova, Tatiana; Masuko, Keiichiro; Hutchison, James E

    2014-01-28

    The properties of metal oxide nanocrystals can be tuned by incorporating mixtures of matrix metal elements, adding metal ion dopants, or constructing core/shell structures. However, high-temperature conditions required to synthesize these nanocrystals make it difficult to achieve the desired compositions, doping levels, and structural control. We present a lower temperature synthesis of ligand-stabilized metal oxide nanocrystals that produces crystalline, monodisperse nanocrystals at temperatures well below the thermal decomposition point of the precursors. Slow injection (0.2 mL/min) of an oleic acid solution of the metal oleate complex into an oleyl alcohol solvent at 230 °C results in a rapid esterification reaction and the production of metal oxide nanocrystals. The approach produces high yields of crystalline, monodisperse metal oxide nanoparticles containing manganese, iron, cobalt, zinc, and indium within 20 min. Synthesis of tin-doped indium oxide (ITO) can be accomplished with good control of the tin doping levels. Finally, the method makes it possible to perform epitaxial growth of shells onto nanocrystal cores to produce core/shell nanocrystals.

  14. Design and synthesis of a tetradentate '3-amine-1-carboxylate' ligand to mimic the metal binding environment at the non-heme iron(II) oxidase active site.

    PubMed

    Dungan, Victoria J; Ortin, Yannick; Mueller-Bunz, Helge; Rutledge, Peter J

    2010-04-07

    Non-heme iron(II) oxidases (NHIOs) catalyse a diverse array of oxidative chemistry in Nature. As part of ongoing efforts to realize biomimetic, iron-mediated C-H activation, we report the synthesis of a new 'three-amine-one-carboxylate' ligand designed to complex with iron(II) and mimic the NHIO active site. The tetradentate ligand has been prepared as a single enantiomer in nine synthetic steps from N-Cbz-L-alanine, pyridine-2,6-dimethanol and diphenylamine, using Seebach oxazolidinone chemistry to control the stereochemistry. X-Ray crystal structures are reported for two important intermediates, along with variable temperature NMR experiments to probe the hindered interconversion of conformational isomers of several key intermediates, 2,6-disubstituted pyridine derivatives. The target ligand and an N-Cbz-protected precursor were each then complexed with iron(II) and tested for their ability to promote alkene dihydroxylation, using hydrogen peroxide as the oxidant.

  15. Biocatalyzed Regioselective Synthesis in Undergraduate Organic Laboratories: Multistep Synthesis of 2-Arachidonoylglycerol

    ERIC Educational Resources Information Center

    Johnston, Meghan R.; Makriyannis, Alexandros; Whitten, Kyle M.; Drew, Olivia C.; Best, Fiona A.

    2016-01-01

    In order to introduce the concepts of biocatalysis and its utility in synthesis to organic chemistry students, a multistep synthesis of endogenous cannabinergic ligand 2-arachidonoylglycerol (2-AG) was tailored for use as a laboratory exercise. Over four weeks, students successfully produced 2-AG, purifying and characterizing products at each…

  16. Proof of Principle: Immobilisation of Robust CuII3 TbIII -Macrocycles on Small, Suitably Pre-functionalised Gold Nanoparticles.

    PubMed

    Feltham, Humphrey L C; Dumas, Christophe; Mannini, Matteo; Otero, Edwige; Sainctavit, Philippe; Sessoli, Roberta; Meledandri, Carla J; Brooker, Sally

    2017-02-21

    In a proof-of-principle study, a soluble macrocyclic single-molecule magnet (SMM) containing a Cu II 3 Tb III magnetic core was covalently grafted onto small gold nanoparticles pre-functionalised with carboxylate-terminated tethers. A modified microemulsion method allowed production of the small and monodisperse nanoparticles (approximately 3.5 nm in diameter) for the chemisorption of a large amount of intact macrocyclic complexes in the hybrid system. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Discovery, Total Synthesis and Key Structural Elements for the Immunosuppressive Activity of Cocosolide, a Symmetrical Glycosylated Macrolide Dimer from Marine Cyanobacteria.

    PubMed

    Gunasekera, Sarath P; Li, Yang; Ratnayake, Ranjala; Luo, Danmeng; Lo, Jeannette; Reibenspies, Joseph H; Xu, Zhengshuang; Clare-Salzler, Michael J; Ye, Tao; Paul, Valerie J; Luesch, Hendrik

    2016-06-06

    A new dimeric macrolide xylopyranoside, cocosolide (1), was isolated from the marine cyanobacterium preliminarily identified as Symploca sp. from Guam. The structure was determined by a combination of NMR spectroscopy, HRMS, X-ray diffraction studies and Mosher's analysis of the base hydrolysis product. Its carbon skeleton closely resembles that of clavosolides A-D isolated from the sponge Myriastra clavosa, for which no bioactivity is known. We performed the first total synthesis of cocosolide (1) along with its [α,α]-anomer (26) and macrocyclic core (28), thus leading to the confirmation of the structure of natural 1. The convergent synthesis featured Wadsworth-Emmons cyclopropanation, Sakurai annulation, Yamaguchi macrocyclization/dimerization reaction, α-selective glycosidation and β-selective glycosidation. Compounds 1 and 26 potently inhibited IL-2 production in both T-cell receptor dependent and independent manners. Full activity requires the presence of the sugar moiety as well as the intact dimeric structure. Cocosolide also suppressed the proliferation of anti-CD3-stimulated T-cells in a dose-dependent manner. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Biferrocene-Based Diphosphine Ligands: Synthesis and Application of Walphos Analogues in Asymmetric Hydrogenations

    PubMed Central

    2013-01-01

    A total of four biferrocene-based Walphos-type ligands have been synthesized, structurally characterized, and tested in the rhodium-, ruthenium- and iridium-catalyzed hydrogenation of alkenes and ketones. Negishi coupling conditions allowed the biferrocene backbone of these diphosphine ligands to be built up diastereoselectively from the two nonidentical and nonracemic ferrocene fragments (R)-1-(N,N-dimethylamino)ethylferrocene and (SFc)-2-bromoiodoferrocene. The molecular structures of (SFc)-2-bromoiodoferrocene, the coupling product, two ligands, and the two complexes ([PdCl2(L)] and [RuCl(p-cymene)(L)]PF6) were determined by X-ray diffraction. The structural features of complexes and the catalysis results obtained with the newly synthesized biferrocene-based ligands were compared with those of the corresponding Walphos ligands. PMID:23457421

  19. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions.

    PubMed

    Lipinski, Christopher A

    2016-06-01

    The rule of five (Ro5), based on physicochemical profiles of phase II drugs, is consistent with structural limitations in protein targets and the drug target ligands. Three of four parameters in Ro5 are fundamental to the structure of both target and drug binding sites. The chemical structure of the drug ligand depends on the ligand chemistry and design philosophy. Two extremes of chemical structure and design philosophy exist; ligands constructed in the medicinal chemistry synthesis laboratory without input from natural selection and natural product (NP) metabolites biosynthesized based on evolutionary selection. Exceptions to Ro5 are found mostly among NPs. Chemistry chameleon-like behavior of some NPs due to intra-molecular hydrogen bonding as exemplified by cyclosporine A is a strong contributor to NP Ro5 outliers. The fragment derived, drug Navitoclax is an example of the extensive expertise, resources, time and key decisions required for the rare discovery of a non-NP Ro5 outlier. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Total synthesis and structural revision of the marine macrolide neopeltolide.

    PubMed

    Custar, Daniel W; Zabawa, Thomas P; Scheidt, Karl A

    2008-01-23

    The total synthesis and structural revision of the marine natural product neopeltolide is reported. The key bond-forming step involves a Lewis acid-catalyzed intramolecular cyclization to install the tetrahydropyran ring and the macrocycle simultaneously. This type of cyclization is the first of its kind and assembles the carbon backbone of the natural product efficiently. The synthesis of the reported structure revealed differences in the data between the natural and synthetic material. After significant investigation, the diastereomeric molecule with the C11 and C13 configurations inverted was synthesized using the initial route. This compound matches the data reported for neopeltolide (1H, 13C, HRMS, IR, NOESY, [alpha]), thereby establishing the correct overall structure for this potent macrolide natural product, including the relative and absolute stereochemistry.

  1. A grand unified model for liganded gold clusters

    NASA Astrophysics Data System (ADS)

    Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi

    2016-12-01

    A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three `flavours' (namely, bottom, middle and top) to represent three possible valence states. The `composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design.

  2. A grand unified model for liganded gold clusters

    PubMed Central

    Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi

    2016-01-01

    A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three ‘flavours' (namely, bottom, middle and top) to represent three possible valence states. The ‘composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design. PMID:27910848

  3. Indole synthesis by conjugate addition of anilines to activated acetylenes and an unusual ligand-free copper(II)-mediated intramolecular cross-coupling.

    PubMed

    Gao, Detian; Back, Thomas G

    2012-11-12

    A versatile new synthesis of indoles was achieved by the conjugate addition of N-formyl-2-haloanilines to acetylenic sulfones, ketones, and esters followed by a copper-catalyzed intramolecular C-arylation. The conjugate addition step was conducted under exceptionally mild conditions at room temperature in basic, aqueous DMF. Surprisingly, the C-arylation was performed most effectively by employing copper(II) acetate as the catalyst in the absence of external ligands, without the need for protection from air or water. An unusual feature of this process, for the case of acetylenic ketones, is the ability of the initial conjugate-addition product to serve as a ligand for the catalyst, which enables it to participate in the catalysis of its further transformation to the final indole product. Mechanistic studies, including EPR experiments, indicated that copper(II) is reduced to the active copper(I) species by the formate ion that is produced by the base-catalyzed hydrolysis of DMF. This process also served to recycle any copper(II) that was produced by the adventitious oxidation of copper(I), thereby preventing deactivation of the catalyst. Several examples of reactions involving acetylenic sulfones attached to a modified Merrifield resin demonstrated the feasibility of solid-phase synthesis of indoles by using this protocol, and tricyclic products were obtained in one pot by employing acetylenic sulfones that contain chloroalkyl substituents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Oocydin A, a chlorinated macrocyclic lactone with potent anti-oomycete activity from Serratia marcescens.

    PubMed

    Srobel, G; Li, J Y; Sugawara, F; Koshino, H; Harper, J; Hess, W M

    1999-12-01

    A unique chlorinated macrocyclic lactone, termed oocydin A, was isolated from a strain of Serratia marcescens growing as an epiphyte on Rhyncholacis pedicillata, an aquatic plant native to the Carrao river of the Venezuelan-Guyanan region of South America. The lactone has a molecular mass of 470 Da, and contains one atom of chlorine, a carboxyl group and a tetrahydrofuran ring internal to a larger macrocyclic ring. MICs of approximately 0.03 microg ml(-1) were noted for oocydin A against such phytopathogenic oomycetes as Pythium ultimum, Phytophthora parasitica, Phytophthora cinnamomi and Phytophthora citrophora. With regard to the true fungi, oocydin A had either minimal or no effect against certain Fungi Imperfecti (including several pathogens of humans), two ascomycetes and a basidiomycete. Oocydin A may have potential as an antimycotic in agricultural applications and especially for crop protection.

  5. A Macrocyclic Agouti-Related Protein/[Nle4,DPhe7]α-Melanocyte Stimulating Hormone Chimeric Scaffold Produces Subnanomolar Melanocortin Receptor Ligands.

    PubMed

    Ericson, Mark D; Freeman, Katie T; Schnell, Sathya M; Haskell-Luevano, Carrie

    2017-01-26

    The melanocortin system consists of five receptor subtypes, endogenous agonists, and naturally occurring antagonists. These receptors and ligands have been implicated in numerous biological pathways including processes linked to obesity and food intake. Herein, a truncation structure-activity relationship study of chimeric agouti-related protein (AGRP)/[Nle4,DPhe7]α-melanocyte stimulating hormone (NDP-MSH) ligands is reported. The tetrapeptide His-DPhe-Arg-Trp or tripeptide DPhe-Arg-Trp replaced the Arg-Phe-Phe sequence in the AGRP active loop derivative c[Pro-Arg-Phe-Phe-Xxx-Ala-Phe-DPro], where Xxx was the native Asn of AGRP or a diaminopropionic (Dap) acid residue previously shown to increase antagonist potency at the mMC4R. The Phe, Ala, and Dap/Asn residues were successively removed to generate a 14-member library that was assayed for agonist activity at the mouse MC1R, MC3R, MC4R, and MC5R. Two compounds possessed nanomolar agonist potency at the mMC4R, c[Pro-His-DPhe-Arg-Trp-Asn-Ala-Phe-DPro] and c[Pro-His-DPhe-Arg-Trp-Dap-Ala-DPro], and may be further developed to generate novel melanocortin probes and ligands for understanding and treating obesity.

  6. Pentamethylcyclopentadienyl-rhodium and iridium complexes containing (N^N and N^O) bound chloroquine analogue ligands: synthesis, characterization and antimalarial properties.

    PubMed

    Ekengard, Erik; Kumar, Kamlesh; Fogeron, Thibault; de Kock, Carmen; Smith, Peter J; Haukka, Matti; Monari, Magda; Nordlander, Ebbe

    2016-03-07

    The synthesis and characterization of twenty new pentamethylcyclopentadienyl-rhodium and iridium complexes containing N^N and N^O-chelating chloroquine analogue ligands are described. The in vitro antimalarial activity of the new ligands as well as the complexes was evaluated against the chloroquine sensitive (CQS) NF54 and the chloroquine resistant (CQR) Dd2 strains of Plasmodium falciparum. The antimalarial activity was found to be good to moderate; although all complexes are less active than artesunate, some of the ligands and complexes showed better activity than chloroquine (CQ). In particular, rhodium complexes were found to be considerably more active than iridium complexes against the CQS NF54 strain. Salicylaldimine Schiff base ligands having electron-withdrawing groups (F, Cl, Br, I and NO2) in para position of the salicyl moiety and their rhodium complexes showed good antiplasmodial activity against both the CQS-NF54 and the CQR-Dd2 strains. The crystal structures of (η(5)-pentamethylcyclopentadienyl){N(1)-(7-chloroquinolin-4-yl)-N(2)-(pyridin-2-ylmethyl)ethane-1,2-diamine)} chlororhodium(III) chloride and (η(5)-pentamethylcyclopentadienyl){(4-chloro-2-(((2-((7-chloroquinolin-4-yl)amino)ethyl)imino)methyl)phenolate)}chlororhodium(III) chloride are reported. The crystallization of the amino-pyridyl complex (η(5)-pentamethylcyclopentadienyl){(N(1)-(7-chloroquinolin-4-yl)-N(2)-(pyridin-2-ylmethyl)ethane-1,2-diamine)}chloroiridium(III) chloride in acetone resulted in the formation of the imino-pyridyl derivative (η(5)-pentamethylcyclopentadienyl){(N1-(7-chloroquinolin-4-yl)-N2-(pyridin-2-ylmethylene)ethane-1,2-diamine)}chloroiridium(III) chloride, the crystal structure of which is also reported.

  7. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands.

    PubMed

    Hubin, Timothy J; Amoyaw, Prince N-A; Roewe, Kimberly D; Simpson, Natalie C; Maples, Randall D; Carder Freeman, TaRynn N; Cain, Amy N; Le, Justin G; Archibald, Stephen J; Khan, Shabana I; Tekwani, Babu L; Khan, M O Faruk

    2014-07-01

    Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn(2+) complex of this ligand was the most potent with IC50s of 0.127 and 0.157μM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better anti-malarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn(2+). Few of the Cu(2+) and Fe(2+) complexes also showed improvement in activity but Ni(2+), Co(2+) and Zn(2+) complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development. Published by Elsevier Ltd.

  8. Synthesis, Characterization and the Corrosion Inhibition Study of Two Schiff Base Ligands Derived From Urea and Thiourea and Their Complexes with Cu(II) and Hg(II) Ions

    NASA Astrophysics Data System (ADS)

    Alwan, Wasan Mohammed

    2018-05-01

    The research includes synthesis of [L1] and [L2] Schiff base ligands by the reaction of vanillin with urea and thiourea respectively in 2:1 mol ratio. The two ligands were reacted with CuII ion in 1:2 mol ratio and HgII ion in 1:1 mol ratio. The prepared compounds have been identified by FTIR, U.V-Vis, 1H-NMR (L1, L2 and HgII complex) spectroscopies, microelemental analysis (C.H.N.S), magnetic susceptibility measurements, atomic absorption, chloride content along with conductivity and melting point measurements. According to applied characterization methods, the proposed general formulas of CuII and HgII complexes were [Cu2LnCl4] and [HgLnCl]Cl, respectively, (where n = 1, 2). The ability of corrosion inhibition with two ligands and their cupper complexes has been studied in diluted hydrochloric acid media.

  9. Synthesis and Biological Evaluation of Neopeltolide and Analogs

    PubMed Central

    Cui, Yubo; Balachandran, Raghavan

    2012-01-01

    The synthesis of neopeltolide analogs that contain variations in the oxazole-containing side chain and in the macrolide core are reported along with the GI50 values for these compounds against MCF7, HCT-116, and p53 knockout HCT-116 cell lines. Although biological activity is sensitive to changes in the macrocycle and the side chain, several analogs displayed GI50 values of <25 nM. Neopeltolide and several of the more potent analogs were significantly less potent against p53 knockout cells, suggesting that p53 plays an auxiliary role in the activity of these compounds. PMID:22329423

  10. Synthesis, structure, and DNA cleavage properties of copper(II) complexes of 1,4,7-triazacyclononane ligands featuring pairs of guanidine pendants.

    PubMed

    Tjioe, Linda; Joshi, Tanmaya; Brugger, Joël; Graham, Bim; Spiccia, Leone

    2011-01-17

    Two new ligands, L(1) and L(2), have been prepared via N-functionalization of 1,4,7-triazacyclononane (tacn) with pairs of ethyl- or propyl-guanidine pendants, respectively. The X-ray crystal structure of [CuL(1)](ClO4)2 (C1) isolated from basic solution (pH 9) indicates that a secondary amine nitrogen from each guanidine pendants coordinates to the copper(II) center in addition to the nitrogen atoms in the tacn macrocycle, resulting in a five-coordinate complex with intermediate square-pyramidal/trigonal bipyramidal geometry. The guanidines adopt an unusual coordination mode in that their amine nitrogen nearest to the tacn macrocycle binds to the copper(II) center, forming very stable five-membered chelate rings. A spectrophotometric pH titration established the pK(app) for the deprotonation and coordination of each guanidine group to be 3.98 and 5.72, and revealed that [CuL(1)](2+) is the only detectable species present in solution above pH ∼ 8. The solution speciation of the CuL(2) complex (C2) is more complex, with at least 5 deprotonation steps over the pH range 4-12.5, and mononuclear and binuclear complexes coexisting. Analysis of the spectrophotometric data provided apparent deprotonation constants, and suggests that solutions at pH ∼ 7.5 contain the maximum proportion of polynuclear complexes. Complex C1 exhibits virtually no cleavage activity toward the model phosphate diesters, bis(p-nitrophenyl)phosphate (BNPP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNPP), while C2 exhibits moderate activity. For C2, the respective kobs values measured at pH 7.0 (7.24 (± 0.08) × 10(-5) s(-1) (BNPP at 50 °C) and 3.2 (± 0.3) × 10(-5) s(-1) (HPNPP at 25 °C)) are 40- and 10-times faster than [Cu(tacn)(OH2)2](2+) complex. Both complexes cleave supercoiled pBR 322 plasmid DNA, indicating that the guanidine pendants of [CuL(1)](2+) may have been displaced from the copper coordination sphere to allow for DNA binding and subsequent cleavage. The rate of DNA

  11. Intraindividual Analysis of Signal Intensity Changes in the Dentate Nucleus After Consecutive Serial Applications of Linear and Macrocyclic Gadolinium-Based Contrast Agents.

    PubMed

    Radbruch, Alexander; Weberling, Lukas D; Kieslich, Pascal J; Hepp, Johanna; Kickingereder, Philipp; Wick, Wolfgang; Schlemmer, Heinz-Peter; Bendszus, Martin

    2016-11-01

    Recent studies reported an increase in the dentate nucleus (DN)-to-pons signal intensity (SI) ratio (DN-pons SI ratio) on unenhanced T1-weighted images in patients who received consecutive serial injections of linear gadolinium-based contrast agents (GBCAs). In contrast, most studies found no increase in the DN-pons SI ratio when patients were treated with consecutive serial injections of macrocyclic GBCAs. However, the potential difference between macrocyclic and linear GBCAs has never been assessed in individuals who received subsequent applications of both contrast agents. In this retrospective study, we assessed the evolution of the DN-pons SI ratio change in patients that were treated with a comparable number of serial consecutive injections of the linear GBCA gadopentetate dimeglumine and subsequent serial injections of the macrocyclic GBCAs gadobutrol and gadoterate meglumine. Data of 36 patients was analyzed. All patients underwent at least 5 consecutive administrations of the linear GBCA gadopentetate dimeglumine followed by an equal number of consecutive administrations of the macrocyclic GBCA gadobutrol. In 12 of the 36 patients, 5 or more final consecutive injections of the macrocyclic GBCA gadoterate meglumine were analyzed additionally. The difference of DN-pons SI ratios on unenhanced T1-weighted images was calculated by subtracting the ratio at the first examination from the ratio at the last examination in each of the 3 periods. The mean DN-pons SI ratio difference in the gadopentetate dimeglumine period was significantly greater than 0 (mean ± SD, 0.0448 ± 0.0345; P < 0.001), whereas the mean DN-pons SI ratio difference in the subsequent gadobutrol and gadoterate meglumine period was significantly smaller than 0 (gadobutrol: -0.0178 ± 0.0459, P = 0.026; gadoterate meglumine: -0.0250 ± 0.0284, P = 0.011). In this observational study, the application of the linear GBCA gadopentetate dimeglumine was associated with a DN-pons SI ratio increase

  12. Ferrocene- and Biferrocene-Containing Macrocycles towards Single-Molecule Electronics.

    PubMed

    Wilson, Lucy E; Hassenrück, Christopher; Winter, Rainer F; White, Andrew J P; Albrecht, Tim; Long, Nicholas J

    2017-06-06

    Cyclic multiredox centered systems are currently of great interest, with new compounds being reported and developments made in understanding their behavior. Efficient, elegant, and high-yielding (for macrocyclic species) synthetic routes to two novel alkynyl-conjugated multiple ferrocene- and biferrocene-containing cyclic compounds are presented. The electronic interactions between the individual ferrocene units have been investigated through electrochemistry, spectroelectrochemistry, density functional theory (DFT), and crystallography to understand the effect of cyclization on the electronic properties and structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Thio-,amine-,nitro-,and macrocyclic containing organic aerogels & xerogels

    DOEpatents

    Fox, Glenn A.; Tillotson, Thomas M.

    2005-08-02

    An organic aerogel or xerogel formed by a sol-gel reaction using starting materials that exhibit similar reactivity to the most commonly used resorcinol starting material. The new starting materials, including thio-, amine- and nitro-containing molecules and functionalized macrocyclic molecules will produce organic xerogels and aerogels that have improved performance in the areas of detection and sensor technology, as well as water stream remediation. Also, further functionalization of these new organic aerogels or xerogels will yield material that can be extracted with greater facility than current organic aerogels.

  14. Synthesis and spectroscopic behavior of highly luminescent Eu 3+-dibenzoylmethanate (DBM) complexes with sulfoxide ligands

    NASA Astrophysics Data System (ADS)

    Niyama, E.; Brito, H. F.; Cremona, M.; Teotonio, E. E. S.; Reyes, R.; Brito, G. E. S.; Felinto, M. C. F. C.

    2005-09-01

    In this paper the synthesis, characterization and photoluminescent behavior of the [RE(DBM) 3L 2] complexes (RE = Gd and Eu) with a variety of sulfoxide ligands; L = benzyl sulfoxide (DBSO), methyl sulfoxide (DMSO), phenyl sulfoxide (DPSO) and p-tolyl sulfoxide (PTSO) have been investigated in solid state. The emission spectra of the Eu 3+-β-diketonate complexes show characteristics narrow bands arising from the 5D 0 → 7F J ( J = 0-4) transitions, which are split according to the selection rule for C n, C nv or C s site symmetries. The experimental Judd-Ofelt intensity parameters ( Ω2 and Ω4), radiative ( Arad) and non-radiative ( Anrad) decay rates, and R02 for the europium complexes have been determined and compared. The highest value of Ω2 (61.9 × 10 -20 cm 2) was obtained to the complex with PTSO ligand, indicating that Eu 3+ ion is in the highly polarizable chemical environment. The higher values of the experimental quantum yield ( q) and emission quantum efficiency of the emitter 5D 0 level ( η) for the Eu-complexes with DMSO, DBSO and PTSO sulfoxides suggest that these complexes are promising Light Conversion Molecular Devices (LCMDs). The lower value of quantum yield ( q = 1%), for the hydrated complex [Eu(DBM) 3(H 2O)], indicates that the luminescence quenching occurs via multiphonon relaxation by coupling with the OH-oscillators from water molecule coordinated to rare earth ion. The pure red emission of the Eu-complexes has been confirmed by ( x, y) color coordinates.

  15. Synthesis, spectroscopic and thermal studies of transition metal complexes derived from benzil and diethylenetriamine

    NASA Astrophysics Data System (ADS)

    Khan, Sadaf; Nami, Shahab A. A.; Siddiqi, K. S.

    2007-10-01

    A macrocyclic ligand, bdta (where bdta = 3,6,9,12,15,18-hexaaza-1,2,10,11-tetraphenyl-2,9,11,18-tetraenecyclododecane) has been prepared by cyclocondensation of benzil with diethylenetriamine which efficiently encapsulates transition as well as pseudo-transition metal ions leading to the formation of M(bdta)Cl 2 type complexes [where M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)]. The analytical, spectroscopic and magnetic moment data suggests an octahedral geometry for all the complexes. EPR spectra of Mn(II) and Cu(II) show considerable exchange interaction in the complex. They are non-conducting in DMSO. The TGA profile of the ligand and its complexes are identical and consists of two discreet stages. The voltammogram of Cu-complex exhibits a quasi-reversible one-electron transfer wave for Cu(II)/Cu(I) couple.

  16. Synthesis, spectroscopic and thermal studies of transition metal complexes derived from benzil and diethylenetriamine.

    PubMed

    Khan, Sadaf; Nami, Shahab A A; Siddiqi, K S

    2007-10-01

    A macrocyclic ligand, bdta (where bdta=3,6,9,12,15,18-hexaaza-1,2,10,11-tetraphenyl-2,9,11,18-tetraenecyclododecane) has been prepared by cyclocondensation of benzil with diethylenetriamine which efficiently encapsulates transition as well as pseudo-transition metal ions leading to the formation of M(bdta)Cl2 type complexes [where M=Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)]. The analytical, spectroscopic and magnetic moment data suggests an octahedral geometry for all the complexes. EPR spectra of Mn(II) and Cu(II) show considerable exchange interaction in the complex. They are non-conducting in DMSO. The TGA profile of the ligand and its complexes are identical and consists of two discreet stages. The voltammogram of Cu-complex exhibits a quasi-reversible one-electron transfer wave for Cu(II)/Cu(I) couple.

  17. Cationic Gold Clusters Ligated with Differently Substituted Phosphines: Effect of Substitution on Ligand Reactivity and Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Olivares, Astrid M.; Hill, David E.

    2015-01-01

    We present a systematic study of the effect of the number of methyl (Me) and cyclohexyl (Cy) functional groups in monodentate phosphine ligands on the solution-phase synthesis of ligated sub-nanometer gold clusters and their gas-phase fragmentation pathways. Small mixed ligand cationic gold clusters were synthesized using ligand exchange reactions between pre-formed triphenylphosphine ligated (PPh3) gold clusters and monodentate Me- and Cy-substituted ligands in solution and characterized using electrospray ionization mass spectrometry (ESI-MS) and collision-induced dissociation (CID) experiments. Under the same experimental conditions, larger gold-PPh3 clusters undergo efficient exchange of unsubstituted PPh3 ligands for singly Me- and Cy-substituted PPh2Me and PPh2Cymore » ligands. The efficiency of ligand exchange decreases with an increasing number of Me or Cy groups in the substituted phosphine ligands. CID experiments performed for a series of ligand-exchanged gold clusters indicate that loss of a neutral Me-substituted ligand is preferred over loss of a neutral PPh¬3 ligand while the opposite trend is observed for Cy-substituted ligands. The branching ratio of the competing ligand loss channels is strongly correlated with the electron donating ability of the phosphorous lone pair as determined by the relative proton affinity of the ligand. The results indicate that the relative ligand binding energies increase in the order PMe3 < PPhMe2 < PPh2Me < PPh3< PPh2Cy < PPhCy2< PCy3. Furthermore, the difference in relative ligand binding energies increases with the number of substituted PPh3-mMem or PPh3-mCym ligands (L) exchanged onto each cluster. This study provides the first experimental determination of the relative binding energies of ligated gold clusters containing differently substituted monophosphine ligands, which are important to controlling their synthesis and reactivity in solution. The results also indicate that ligand substitution is an important

  18. Cell-free synthesis of functional human epidermal growth factor receptor: Investigation of ligand-independent dimerization in Sf21 microsomal membranes using non-canonical amino acids

    PubMed Central

    Quast, Robert B.; Ballion, Biljana; Stech, Marlitt; Sonnabend, Andrei; Varga, Balázs R.; Wüstenhagen, Doreen A.; Kele, Péter; Schiller, Stefan M.; Kubick, Stefan

    2016-01-01

    Cell-free protein synthesis systems represent versatile tools for the synthesis and modification of human membrane proteins. In particular, eukaryotic cell-free systems provide a promising platform for their structural and functional characterization. Here, we present the cell-free synthesis of functional human epidermal growth factor receptor and its vIII deletion mutant in a microsome-containing system derived from cultured Sf21 cells. We provide evidence for embedment of cell-free synthesized receptors into microsomal membranes and asparagine-linked glycosylation. Using the cricket paralysis virus internal ribosome entry site and a repetitive synthesis approach enrichment of receptors inside the microsomal fractions was facilitated thereby providing analytical amounts of functional protein. Receptor tyrosine kinase activation was demonstrated by monitoring receptor phosphorylation. Furthermore, an orthogonal cell-free translation system that provides the site-directed incorporation of p-azido-L-phenylalanine is characterized and applied to investigate receptor dimerization in the absence of a ligand by photo-affinity cross-linking. Finally, incorporated azides are used to generate stable covalently linked receptor dimers by strain-promoted cycloaddition using a novel linker system. PMID:27670253

  19. A Macrocyclic Chelator That Selectively Binds Ln 4+ over Ln 3+ by a Factor of 10 29

    DOE PAGES

    Pham, Tiffany A.; Altman, Alison B.; Stieber, S. Chantal E.; ...

    2016-06-24

    A tetravalent cerium macrocyclic complex (CeLK 4) was prepared with an octadentate terephthalamide ligand comprised of hard catecholate donors and characterized in the solution state by spectrophotometric titrations and electrochemistry and in the crystal by X-ray diffraction. The solution-state studies showed that L exhibits a remarkably high affinity toward Ce 4+, with log β 110 = 61(2) and ΔG = -348 kJ/mol, compared with log β 110 = 32.02(2) for the analogous Pr 3+ complex. In addition, L exhibits an unusual preference for forming CeL 4- relative to formation of the analogous actinide complex, ThL 4- , which has βmore » 110 = 53.7(5). The extreme stabilization of tetravalent cerium relative to its trivalent state is also evidenced by the shift of 1.91 V in the redox potential of the Ce 3+/Ce 4+ couple of the complex (measured at -0.454 V vs SHE). The unprecedented behavior prompted an electronic structure analysis using L 3 - and M 5,4-edge X-ray absorption near-edge structure (XANES) spectroscopies and configuration interaction calculations, which showed that 4f-orbital bonding in CeLK 4 has partial covalent character due to ligand-to-metal charge transfer (LMCT) in the ground state. The experimental results are presented in the context of earlier measurements on tetravalent cerium compounds, indicating that the amount of LMCT for CeLK 4 is similar to that observed for [Et 4N] 2[CeCl 6] and CeO 2 and significantly less than that for the organometallic sandwich compound cerocene, (C 8H 8) 2Ce. A simple model to rationalize changes in 4f orbital bonding for tri- and tetravalent lanthanide and actinide compounds is also provided.« less

  20. Metacridamides A and B, bioactive macrocycles from conidia of the entomopathogenic fungus Metarhizium acridum

    USDA-ARS?s Scientific Manuscript database

    Metarhizium acridum, an entomopathogenic fungus, has been commercialized and used successfully for biocontrol of grasshopper pests in Africa and Australia. Its conidia produce two novel 17-membered macrocycles, metacridamides A (1) and B (2), which consist of a Phe unit condensed with a nonaketide....

  1. Synthesis and binding properties of new selective ligands for the nucleobase opposite the AP site.

    PubMed

    Abe, Yukiko; Nakagawa, Osamu; Yamaguchi, Rie; Sasaki, Shigeki

    2012-06-01

    DNA is continuously damaged by endogenous and exogenous factors such as oxidative stress or DNA alkylating agents. These damaged nucleobases are removed by DNA N-glycosylase and form apurinic/apyrimidinic sites (AP sites) as intermediates in the base excision repair (BER) pathway. AP sites are also representative DNA damages formed by spontaneous hydrolysis. The AP sites block DNA polymerase and a mismatch nucleobase is inserted opposite the AP sites by polymerization to cause acute toxicities and mutations. Thus, AP site specific compounds have attracted much attention for therapeutic and diagnostic purposes. In this study, we have developed nucleobase-polyamine conjugates as the AP site binding ligand by expecting that the nucleobase part would play a role in the specific recognition of the nucleobase opposite the AP site by the Watson-Crick base pair formation and that the polyamine part should contribute to the access of the ligand to the AP site by a non-specific interaction to the DNA phosphate backbone. The nucleobase conjugated with 3,3'-diaminodipropylamine (A-ligand, G-ligand, C-ligand, T-ligand and U-ligand) showed a specific stabilization of the duplex containing the AP site depending on the complementary combination with the nucleobase opposite the AP site; that is A-ligand to T, G-ligand to C, C-ligand to G, T- and U-ligand to A. The thermodynamic binding parameters clearly indicated that the specific stabilization is due to specific binding of the ligands to the complementary AP site. These results have suggested that the complementary base pairs of the Watson-Crick type are formed at the AP site. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Versatile synthesis of cationic N-heterocyclic carbene-gold(i) complexes containing a second ancillary ligand. Design of heterobimetallic ruthenium-gold anticancer agents.

    PubMed

    Fernández-Gallardo, Jacob; Elie, Benelita T; Sanaú, Mercedes; Contel, María

    2016-02-21

    We describe a versatile and quick route to cationic gold(i) complexes containing N-heterocyclic carbenes and a second ancillary ligand (such as phosphanes, phosphites, arsines and amines) of interest for the synthesis of compounds with potential catalytic and medicinal applications. The general synthetic strategy has been applied in the preparation of novel cationic heterobimetallic ruthenium(ii)-gold(i) complexes that are highly cytotoxic to renal cancer Caki-1 and colon cancer HCT 116 cell lines while showing a synergistic effect and being more selective than their monometallic counterparts.

  3. Synthesis, spectroscopic, and antibacterial activity of tetraazamacrocyclic complexes of trivalent chromium, manganese, and iron.

    PubMed

    Singh, D P; Malik, Vandna; Kumar, Ramesh; Singh, Jitender

    2009-10-01

    A new series of macrocyclic complexes of type [M(TML)X]X(2), where M = Cr(III), Mn(III), or Fe(III), TML is tetradentate macrocyclic ligand, and X = Cl(-), NO(3)(-), CH(3)COO(-) for Cr(III), Fe(III) and X = CH(3)COO(-) for Mn (III), has been synthesized by condensation of benzil and succinyldihydrazide in the presence of metal salt. The complexes have been so formulated due to the 1:2 electrolytic nature of these complexes as shown by conductivity measurements. The complexes have been characterized with the help of various physicochemical techniques such as elemental analysis, molar conductance, electronic and infrared spectral studies, and magnetic susceptibility. On the basis of these studies, a five-coordinate distorted square pyramidal geometry, in which two nitrogens and two carbonyl oxygen atoms are suitably placed for coordination toward the metal ion, has been proposed for all the complexes. The complexes have been tested for their in vitro antibacterial activity. Some of the complexes show remarkable antibacterial activities against some selected bacterial strains. The minimum inhibitory concentrations shown by these complexes have been compared with those shown by some standard antibiotics such as linezolid and cefaclor.

  4. Reversible adaptation to photoinduced shape switching by oligomer-macrocycle interconversion with component selection in a three-state constitutional dynamic system.

    PubMed

    Vantomme, Ghislaine; Lehn, Jean-Marie

    2014-12-01

    Light irradiation of the molecular photoswitch 1-E causes isomerization into the 1-Z configuration stabilized by an internal hydrogen bond. 1-E bears aldehyde groups allowing for dynamic covalent reaction with linear diamines. On photoinduced E/Z shape switching of 1 in presence of diamines, the system undergoes interconversion between two states, a non-cyclic oligomeric one and a macrocyclic one, corresponding respectively to the E and Z configurations of 1. With a mixture of linear α,ω-diamines, 1-E yields non-selective dynamic oligomers by random incorporation of diamine components. Photoswitching to the 1-Z form leads to constitutional adaptation with preferential formation of the macrocycle incorporating the best suited diamine, H2 N(CH2 )7 NH2 . In presence of metal cations, the E form switches from its unbound W shape to its coordinated U shape and yields the macrocycle resulting from the selective incorporation of the diamine H2 NCH2 CH2 OCH2 CH2 NH2 that contains an additional O coordination site. Taken together, the results obtained describe constitutional adaptation in a triple state system: an oligomeric one and two different macrocyclic ones generated in response to two orthogonal agents, a physical stimulus, light, or a chemical effector, metal cations. These three states present, towards the incorporation of diamine components, respectively no selection, photoselection and metalloselection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Characterization of Colloidal Quantum Dot Ligand Exchange by X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Atewologun, Ayomide; Ge, Wangyao; Stiff-Roberts, Adrienne D.

    2013-05-01

    Colloidal quantum dots (CQDs) are chemically synthesized semiconductor nanoparticles with size-dependent wavelength tunability. Chemical synthesis of CQDs involves the attachment of long organic surface ligands to prevent aggregation; however, these ligands also impede charge transport. Therefore, it is beneficial to exchange longer surface ligands for shorter ones for optoelectronic devices. Typical characterization techniques used to analyze surface ligand exchange include Fourier-transform infrared spectroscopy, x-ray diffraction, transmission electron microscopy, and nuclear magnetic resonance spectroscopy, yet these techniques do not provide a simultaneously direct, quantitative, and sensitive method for evaluating surface ligands on CQDs. In contrast, x-ray photoelectron spectroscopy (XPS) can provide nanoscale sensitivity for quantitative analysis of CQD surface ligand exchange. A unique aspect of this work is that a fingerprint is identified for shorter surface ligands by resolving the regional XPS spectrum corresponding to different types of carbon bonds. In addition, a deposition technique known as resonant infrared matrix-assisted pulsed laser evaporation is used to improve the CQD film uniformity such that stronger XPS signals are obtained, enabling more accurate analysis of the ligand exchange process.

  6. Organic Materials as Electrodes for Li-ion Batteries

    DTIC Science & Technology

    2015-09-04

    Various macrocycles, their synthesis, characterization and subsequent use in lithium - ion batteries were attempted. Ellagic acid, alizarin and...Various macrocycles, their synthesis, characterization and subsequent use in lithium - ion batteries were attempted. Ellagic acid, alizarin and...characterization and subsequent use in lithium - ion batteries have been attempted to. Lithium -based batteries are at the forefront of battery

  7. Synthesis and coordinating ability of an anionic cobaltabisdicarbollide ligand geometrically analogous to BINAP.

    PubMed

    Rojo, Isabel; Teixidor, Francesc; Viñas, Clara; Kivekäs, Raikko; Sillanpää, Reijo

    2004-10-25

    The anionic chelating ligand [1,1'-(PPh2)2-3,3'-Co(1,2-C2B9H10)2]- has been synthesized from [3,3'-Co(1,2-C2B9H11)2]- in very good yield in a one-pot process with an easy work-up procedure. The coordinating ability of this ligand has been studied with Group 11 metal ions (Ag, Au) and with transition-metal ions (Pd, Rh). The two dicarbollide halves of the [1,1'-(PPh2)2-3,3'-Co(1,2-C2B9H10)2]- ligand can swing about one axis in a manner analogous to the constituent parts of BINAP and ferrocenyl phosphine derivatives. All these ligands function as hinges, with the most important property in relation to the coordination requirements of the metal being the PP distance. [1,1'-(PPh2)2-3,3'-Co(1,2-C2B9H10)2]-, BINAP, ferrocenyl phosphine derivatives, and other hinge ligands present a range of different PP separations, and consequently different coordination spheres and dispositions around metal cations. To account for these differences, the equation Dphi2 = D02 + 4 R2cos2(90-phi/2) has been developed. It relates the PP distance (Dphi) in a complex with the minimum PP distance (D0) that is characteristic of the hinge-type ligand.

  8. Enantioselective Rhodium-Catalyzed Dimerization of ω-Allenyl Carboxylic Acids: Straightforward Synthesis of C2 -Symmetric Macrodiolides.

    PubMed

    Steib, Philip; Breit, Bernhard

    2018-04-19

    Herein, we report on the first enantioselective and atom-efficient catalytic one-step dimerization method to selectively transform ω-allenyl carboxylic acids into C 2 -symmetric 14- to 28-membered bismacrolactones (macrodiolides). This convenient asymmetric access serves as an attractive route towards multiple naturally occuring homodimeric macrocyclic scaffolds and demonstrates excellent efficiency to construct the complex, symmetric core structures. By utilizing a rhodium catalyst with a modified chiral cyclopentylidene-diop ligand, the desired diolides were obtained in good to high yields, high diastereoselectivity, and excellent enantioselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The Synthesis, Structures, and Chemical Properties of Macrocyclic Ligands Covalently Bonded into Layered Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clearfield, Abraham

    2014-11-01

    In this part of the proposal we have concentrated on the surface functionalization of α-zirconium phosphate of composition Zr(O3POH)2•H2O. It is a layered compound that can be prepared as particles as small as 30 nm to single crystals in the range of cm. This compound is an ion exchanger with a capacity of 6.64 meq per gram. It finds use as a catalyst, proton conductor, sensors, biosensors, in kidney dialysis and drug delivery. By functionalizing the surface additional uses are contemplated as will be described. The layers consist of the metal, with 4+ charge, that is positioned slightly above andmore » below the mean layer plane and bridged by three of the four phosphate oxygens. The remaining POH groups point into the interlayer space creating double rows of POH groups but single arrays on the surface layers. The surface groups are reactive and we were able to bond silanes, isocyanates, epoxides, acrylates ` and phosphates to the surface POH groups. The layers are easily exfoliated or filled with ions by ion exchange or molecules by intercalation reactions. Highlights of our work include, in addition to direct functionalization of the surfaces, replacement of the protons on the surface with ions of different charge. This allows us to bond phosphates, biophosphates, phosphonic acids and alcohols to the surface. By variation of the ion charge of the ions that replace the surface protons, different surface structures are obtained. We have already shown that polymer fillers, catalysts and Janus particles may be prepared. The combination of surface functionalization with the ability to insert molecules and ions between the layers allow for a rich development of numerous useful other applications as well as nano-surface chemistry.« less

  10. A nickel tripeptide as a metallodithiolate ligand anchor for resin-bound organometallics.

    PubMed

    Green, Kayla N; Jeffery, Stephen P; Reibenspies, Joseph H; Darensbourg, Marcetta Y

    2006-05-17

    The molecular structure of the acetyl CoA synthase enzyme has clarified the role of individual nickel atoms in the dinickel active site which mediates C-C and C-S coupling reactions. The NiN2S2 portion of the biocatalyst (N2S2 = a cysteine-glycine-cysteine or CGC4- tripeptide ligand) serves as an S-donor ligand comparable to classical bidentate ligands operative in organometallic chemistry, ligating the second nickel which is redox and catalytically active. Inspired by this biological catalyst, the synthesis of NiN2S2 metalloligands, including the solid-phase synthesis of resin-bound Ni(CGC)2-, and sulfur-based derivatization with W(CO)5 and Rh(CO)2+ have been carried out. Through comparison to analogous well-characterized, solution-phase complexes, Attenuated Total Reflectance FTIR spectroscopy establishes the presence of unique heterobimetallic complexes, of the form [Ni(CGC)]M(CO)x, both in solution and immobilized on resin beads. This work provides the initial step toward exploitation of such an evolutionarily optimized nickel peptide as a solid support anchor for hybrid bioinorganic-organometallic catalysts.

  11. Unexpected self-sorting self-assembly formation of a [4:4] sulfate:ligand cage from a preorganized tripodal urea ligand.

    PubMed

    Pandurangan, Komala; Kitchen, Jonathan A; Blasco, Salvador; Boyle, Elaine M; Fitzpatrick, Bella; Feeney, Martin; Kruger, Paul E; Gunnlaugsson, Thorfinnur

    2015-04-07

    The design and synthesis of tripodal ligands 1-3 based upon the N-methyl-1,3,5-benzenetricarboxamide platform appended with three aryl urea arms is reported. This ligand platform gives rise to highly preorganized structures and is ideally suited for binding SO4 (2-) and H2 PO4 (-) ions through multiple hydrogen-bonding interactions. The solid-state crystal structures of 1-3 with SO4 (2-) show the encapsulation of a single anion within a cage structure, whereas the crystal structure of 1 with H2 PO4 (-) showed that two anions are encapsulated. We further demonstrate that ligand 4, based on the same platform but consisting of two bis-urea moieties and a single ammonium moiety, also recognizes SO4 (2-) to form a self-assembled capsule with [4:4] SO4 (2-) :4 stoichiometry in which the anions are clustered within a cavity formed by the four ligands. This is the first example of a self-sorting self-assembled capsule where four tetrahedrally arranged SO4 (2-) ions are embedded within a hydrophobic cavity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bambus[6]uril as a novel macrocyclic receptor for the nitrate anion.

    PubMed

    Toman, Petr; Makrlík, Emanuel; Vanura, Petr

    2013-01-01

    By using quantum mechanical DFT calculations, the most probable structure of the bambus[6]uril x NO3(-) anionic complex species was derived. In this complex having C3 symmetry, the nitrate anion NO3(-), included in the macrocyclic cavity, is bound by twelve weak hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the considered NO3(-) ion.

  13. Pyrrole-Based Macrocyclic Small-Molecule Inhibitors That Target Oocyte Maturation.

    PubMed

    Gunasekaran, Pethaiah; Lee, So-Rim; Jeong, Seung-Min; Kwon, Jeong-Woo; Takei, Toshiki; Asahina, Yuya; Bang, Geul; Kim, Seongnyeon; Ahn, Mija; Ryu, Eun Kyung; Kim, Hak Nam; Nam, Ki-Yub; Shin, Song Yub; Hojo, Hironobu; Namgoong, Suk; Kim, Nam-Hyung; Bang, Jeong Kyu

    2017-04-20

    Polo-like kinase 1 (PLK1) plays crucial roles in various stages of oocyte maturation. Recently, we reported that the peptidomimetic compound AB103-8, which targets the polo box domain (PBD) of PLK1, affects oocyte meiotic maturation and the resumption of meiosis. However, to overcome the drawbacks of peptidic compounds, we designed and synthesized a series of pyrrole-based small-molecule inhibitors and tested them for their effects on the rates of porcine oocyte maturation. Among them, the macrocyclic compound (E/Z)-3-(2,16-dioxo-19-(4-phenylbutyl)-3,19-diazabicyclo[15.2.1]icosa-1(20),6,17-trien-3-yl)propyl dihydrogen phosphate (4) showed the highest inhibitory activity with enhanced inhibition against embryonic blastocyst formation. Furthermore, the addition of this compound to culture media efficiently blocked the maturation of porcine and mouse oocytes, indicating its ability to penetrate the zona pellucida and cell membrane. We investigated mouse oocytes treated with compound 4, and the resulting impairment of spindle formation confirmed PLK1 inhibition. Finally, molecular modeling studies with PLK1 PBD also confirmed the presence of significant interactions between compound 4 and PLK1 PBD binding pocket residues, including those in the phosphate, tyrosine-rich, and pyrrolidine binding pockets. Collectively, these results suggest that the macrocyclic compound 4 may serve as a promising template for the development of novel contraceptive agents. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis of erbium,ytterbium-doped hexagonal phase sodium yttrium fluoride nanoparticles and application to ligand exchange and energy transfer studies

    NASA Astrophysics Data System (ADS)

    Goel, Vishya

    Nanoparticles containing rare earth ions have the ability to absorb and convert infrared light into visible light. The purpose of this work is to synthesize rare earth ion-doped NaYF4 nanoparticles in their most efficient form, the hexagonal phase. These nanoparticles are then used in ligand exchange and energy transfer studies. The synthesis procedure produces gram scale quantities of nanoparticles. Such a scale is important for reproducibility and application of these materials. Oleylamine-capped NaYF4 nanoparticles were synthesized and were doped with 2 % Er3+ and 20 % Yb3+ using a thermal decomposition method. The procedure was optimized in terms of precursor concentration and injection rate. The samples were characterized using photoluminescence spectroscopy, transmission electron microscopy, and X-ray diffraction. Photoluminescence spectra were collected using infrared excitation (980 nm). Control of the temperature and injection resulted in 15 nm (diameter) hexagonal phase NaYF4:Er3+,Yb3+ nanoparticles capped with oleylamine. The nanoparticles exhibited bright emission in the red (640 nm) and green (540 nm) portions of the visible spectrum. The surface of the nanoparticles was modified with decanoic acid, dodecanedioic acid, or dodecane sulfonic acid using a ligand exchange reaction. Energy transfer was studied from the oleylamine-capped nanoparticles to the fluorophores Nile Red, 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran, and poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene). Successful surface ligand exchange was achieved and the preliminary exploration of upconverting nanoparticles as an energy transfer donor was performed.

  15. Oxoiron(IV) Complex of the Ethylene-Bridged Dialkylcyclam Ligand Me2EBC.

    PubMed

    England, Jason; Prakash, Jai; Cranswick, Matthew A; Mandal, Debasish; Guo, Yisong; Münck, Eckard; Shaik, Sason; Que, Lawrence

    2015-08-17

    We report herein the first example of an oxoiron(IV) complex of an ethylene-bridged dialkylcyclam ligand, [Fe(IV)(O)(Me2EBC)(NCMe)](2+) (2; Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane). Complex 2 has been characterized by UV-vis, (1)H NMR, resonance Raman, Mössbauer, and X-ray absorption spectroscopy as well as electrospray ionization mass spectrometry, and its properties have been compared with those of the closely related [Fe(IV)(O)(TMC)(NCMe)](2+) (3; TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), the intensively studied prototypical oxoiron(IV) complex of the macrocyclic tetramethylcyclam ligand. Me2EBC has an N4 donor set nearly identical with that of TMC but possesses an ethylene bridge in place of the 1- and 8-methyl groups of TMC. As a consequence, Me2EBC is forced to deviate from the trans-I configuration typically found for Fe(IV)(O)(TMC) complexes and instead adopts a folded cis-V stereochemistry that requires the MeCN ligand to coordinate cis to the Fe(IV)═O unit in 2 rather than in the trans arrangement found in 3. However, switching from the trans geometry of 3 to the cis geometry of 2 did not significantly affect their ground-state electronic structures, although a decrease in ν(Fe═O) was observed for 2. Remarkably, despite having comparable Fe(IV/III) reduction potentials, 2 was found to be significantly more reactive than 3 in both oxygen-atom-transfer (OAT) and hydrogen-atom-transfer (HAT) reactions. A careful analysis of density functional theory calculations on the HAT reactivity of 2 and 3 revealed the root cause to be the higher oxyl character of 2, leading to a stronger O---H bond specifically in the quintet transition state.

  16. Electrochemically Triggered Co-Conformational Switching in a [2]catenane Comprising a Non-Symmetric Calix[6]arene Wheel and a Two-Station Oriented Macrocycle.

    PubMed

    Zanichelli, Valeria; Dallacasagrande, Luca; Arduini, Arturo; Secchi, Andrea; Ragazzon, Giulio; Silvi, Serena; Credi, Alberto

    2018-05-11

    Catenanes with desymmetrized ring components can undergo co-conformational rearrangements upon external stimulation and can form the basis for the development of molecular rotary motors. We describe the design, synthesis and properties of a [2]catenane consisting of a macrocycle-the 'track' ring-endowed with two distinct recognition sites (a bipyridinium and an ammonium) for a calix[6]arene-the 'shuttle' ring. By exploiting the ability of the calixarene to thread appropriate non-symmetric axles with directional selectivity, we assembled an oriented pseudorotaxane and converted it into the corresponding oriented catenane by intramolecular ring closing metathesis. Cyclic voltammetric experiments indicate that the calixarene wheel initially surrounds the bipyridinium site, moves away from it when it is reduced, and returns in the original position upon reoxidation. A comparison with appropriate model compounds shows that the presence of the ammonium station is necessary for the calixarene to leave the reduced bipyridinium site.

  17. LANTHANIDE ENHANCE LUMINESCENCE (LEL) WITH ONE AND TWO PHOTON EXCITATION OF QUANTUM DYES LANTHANIDE (III) - MACROCYCLES

    EPA Science Inventory

    Title: Lanthanide Enhance Luminescence (LEL) with one and two photon excitation of Quantum Dyes? Lanthanide(III)-Macrocycles
    Principal Author:
    Robert C. Leif, Newport Instruments
    Secondary Authors:
    Margie C. Becker, Phoenix Flow Systems
    Al Bromm, Virginia Commonw...

  18. Phosphate Tether-Mediated Approach to the Formal Total Synthesis of (-)-Salicylihalamides A and B

    PubMed Central

    Chegondi, Rambabu; Tan, Mary M. L.; Hanson, Paul R.

    2011-01-01

    A concise formal synthesis of the cytotoxic macrolides (-)-salicylihalamides A and B is reported. Key features of the synthetic strategy include a chemoselective hydroboration, highly regio- and diastereoselective methyl cuprate addition, Pd-catalyzed formate reduction, and an E-selective ring-closing metathesis to construct the 12-membered macrocycle subunit. Overall, two routes have been developed from a readily prepared bicyclic phosphate (4-steps), a 13-step route and a more efficient 9-step sequence relying on regioselective esterification of a key diol. PMID:21504150

  19. Organic Materials as Electrodes for Li-ion Batteries

    DTIC Science & Technology

    2015-09-04

    given for each class of materials. Various macrocycles, their synthesis, characterization and subsequent use in lithium - ion batteries were attempted...macrocycles, their synthesis, characterization and subsequent use in lithium - ion batteries have been attempted to. Lithium -based batteries are at the...organic dye can be used for storing reversibly, both lithium and sodium ions for rechargeable battery applications. In the present study, we have

  20. Synthesis, characterization and electrochemistry studies of iron(III) complex with curcumin ligand.

    PubMed

    Özbolat, Gülüzar; Yegani, Arash Alizadeh; Tuli, Abdullah

    2018-05-11

    Iron overload is a serious clinical condition for humans and is a key target in drug development. The aim of this study was to investigate the coordination of iron(III) ions with curcumin ligand that may be used in the treatment of iron overload. Iron(III) complex of curcumin was synthesized and structurally characterized in its solid and solution state by FT-IR, UV-Vis, elemental analysis, and magnetic susceptibility. Electrochemical behaviour of the ligand and the complexes were examined using cyclic voltammetry. The cytotoxic activities of the ligand and the iron(III) complex were evaluated by the MTT assay. Curcumin reacted with iron in high concentrations at physiological pH at room temperature. Subsequently, a brown-red complex was formed. Data regarding magnetic susceptibility showed that the complexes with a 1:2 (metal/ligand) mole ratio had octahedral geometry. The complex showed higher anti-oxidant effect towards the cell line ECV304 at IC 50 values of 4.83 compared to curcumin. The complex exhibited very high cytotoxic activity and showed a cytotoxic effect that was much better than that of the ligand. The potentials for redox were calculated as 0.180 V and 0.350 V, respectively. The electrochemistry studies showed that Fe 3+ /Fe 2+ couple redox process occurred at low potentials. This value was within the range of compounds that are expected to show superoxide dismutase activity. This finding indicates that the iron complex is capable of removing free radicals. The observed cytotoxicity could be pursued to obtain a potential drug. Further studies investigating the use of curcumin for this purpose are needed. © 2018 John Wiley & Sons Australia, Ltd.

  1. Organocatalytic atroposelective synthesis of axially chiral styrenes

    NASA Astrophysics Data System (ADS)

    Zheng, Sheng-Cai; Wu, San; Zhou, Qinghai; Chung, Lung Wa; Ye, Liu; Tan, Bin

    2017-05-01

    Axially chiral compounds are widespread in biologically active compounds and are useful chiral ligands or organocatalysts in asymmetric catalysis. It is well-known that styrenes are one of the most abundant and principal feedstocks and thus represent excellent prospective building blocks for chemical synthesis. Driven by the development of atroposelective synthesis of axially chiral styrene derivatives, we discovered herein the asymmetric organocatalytic approach via direct Michael addition reaction of substituted diones/ketone esters/malononitrile to alkynals. The axially chiral styrene compounds were produced with good chemical yields, enantioselectivities and almost complete E/Z-selectivities through a secondary amine-catalysed iminium activation strategy under mild conditions. Such structural motifs are important precursors for further transformations into biologically active compounds and synthetic useful intermediates and may have potential applications in asymmetric synthesis as olefin ligands or organocatalysts.

  2. Topical cream-based dosage forms of the macrocyclic drug delivery vehicle cucurbit[6]uril.

    PubMed

    Seif, Marian; Impelido, Michael L; Apps, Michael G; Wheate, Nial J

    2014-01-01

    The macrocycle family of molecules called cucurbit[n]urils are potential drug delivery vehicles as they are able to form host-guest complexes with many different classes of drugs. This study aimed to examine the utility of Cucurbit[6]uril (CB[6]) in topical cream-based formulations for either localised treatment or for transdermal delivery. Cucurbit[6]uril was formulated into both buffered cream aqueous- and oily cream-based dosage forms. The solid state interaction of CB[6] with other excipients was studied by differential scanning calorimetry and the macrocycle's transdermal permeability was determined using rat skin. Significant solid state interactions were observed between CB[6] and the other dosage form excipients. At concentrations up to 32% w/w the buffered aqueous cream maintained its normal consistency and could be effectively applied to skin, but the oily cream was too stiff and is not suitable as a dosage form. Cucurbit[6]uril does not permeate through skin; as such, the results imply that cucurbituril-based topical creams may potentially only have applications for localised skin treatment and not for transdermal drug delivery.

  3. Combined molecular and periodic DFT analysis of the adsorption of co macrocycles on graphene.

    PubMed

    Calborean, Adrian; Morari, Cristian; Maldivi, Pascale

    2018-01-15

    The molecular doping of graphene with π-stacked conjugated molecules has been widely studied during the last 10 years, both experimentally or using first-principle calculations, mainly with strongly acceptor or donor molecules. Macrocyclic metal complexes have been far less studied and their behavior on graphene is less clear-cut. The present density functional theory study of cobalt porphyrin and phthalocyanine adsorbed on monolayer or bilayer graphene allows to compare the outcomes of two models, either a finite-sized flake of graphene or an infinite 2D material using periodic calculations. The electronic structures yielded by both models are compared, with a focus on the density of states around the Fermi level. Apart from the crucial choice of calculation conditions, this investigation also shows that unlike strongly donating or accepting organic dopants, these macrocycles do not induce a significant doping of the graphene sheet and that a finite size model of graphene flake may be confidently used for most modeling purposes. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. 8th International Symposium on Supramolecular and Macrocyclic Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Jeffery T.

    2015-09-18

    This report summarizes the 8th International Conference on Supramolecular and Macrocyclic Chemistry (ISMSC-8). DOE funds were used to make it more affordable for students, post-docs and junior faculty to attend the conference by covering their registration costs. The conference was held in Crystal City, VA from July 7-11, 2013. See http://www.indiana.edu/~ismsc8/ for the conference website. ISMSC-8 encompassed the broad scope and interdisciplinary nature of the field. We met our goal to bring together leading scientists in molecular recognition and supramolecular chemistry. New research directions and collaborations resulted this conference. The DOE funding was crucial for us achieving our primary goal.

  5. Two sodium and lanthanide(III) MOFs based on oxalate and V-shaped 4,4‧-oxybis(benzoate) ligands: Hydrothermal synthesis, crystal structure, and luminescence properties

    NASA Astrophysics Data System (ADS)

    Wang, Chongchen; Guo, Guangliang; Wang, Peng

    2013-01-01

    Two lanthanide based metal-organic frameworks, [NaLn(oba)(ox)(H2O)] (Lndbnd6 Eu(1) and Sm(2)) were obtained from 4,4'-oxybisbenzoic acid, sodium oxalate and corresponding lanthanide salts by hydrothermal synthesis. They were characterized by single-crystal X-ray diffraction, IR spectra, and photoluminescent spectra. The crystallographic data reveals that complexes 1 and 2 are isomorphous and isostructural, composed of three-dimensional framework built up of distorted tricapped trigonal EuO9 units, distorted octahedron NaO6 units, 4,4'-oxybis(benzoate) and oxalate. The carboxylate oxygen atoms of the 4,4'-oxybis(benzoate) and oxalate ligand are coordinated to lanthanide ions and sodium ions, resulting into two-dimensional inorganic sheets, which are further linked into three-dimensional network by organic ligands. Thermogravimetric analyses of 1-2 display a considerable thermal stability. Photoluminescent measurements indicated that europium complex 1 displayed strong red emission.

  6. Synthesis and receptor binding studies of novel 4,4-disubstituted arylalkyl/arylalkylsulfonyl piperazine and piperidine-based derivatives as a new class of σ1 ligands.

    PubMed

    Sadeghzadeh, Masoud; Sheibani, Shahab; Ghandi, Mehdi; Daha, Fariba Johari; Amanlou, Massoud; Arjmand, Mohammad; Hasani Bozcheloie, Abolfazl

    2013-06-01

    This study presents the synthesis and biological evaluation of a new series of arylalkyl/arylalkylsulfonyl piperazine and piperidine-based derivatives as sigma receptor ligands. It was found that a number of halogen substituted sulfonamides display relatively high and low affinities to σ1 and σ2 receptors, respectively. The σ1 affinities and subtype selectivities of four piperidine derivatives were also found to be generally comparable to those of piperazine analogues. Compared to σ1-Rs compounds with n = 0 and 2, those with n = 1 proved to have optimal length of carbon chain by exhibiting higher affinities. Within this series, the 4-benzyl-1-(3-iodobenzylsulfonyl)piperidine sigma ligand was identified with 96-fold σ1/σ2 selectivity ratio (Kiσ1 = 0.96 ± 0.05 nM and Kiσ2 = 91.8 ± 8.1 nM). Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Metallosupramolecular Architectures Formed with Ferrocene-Linked Bis-Bidentate Ligands: Synthesis, Structures, and Electrochemical Studies.

    PubMed

    Findlay, James A; McAdam, C John; Sutton, Joshua J; Preston, Dan; Gordon, Keith C; Crowley, James D

    2018-04-02

    The self-assembly of ligands of different geometries with metal ions gives rise to metallosupramolecular architectures of differing structural types. The rotational flexibility of ferrocene allows for conformational diversity, and, as such, self-assembly processes with 1,1'-disubstituted ferrocene ligands could lead to a variety of interesting architectures. Herein, we report a small family of three bis-bidentate 1,1'-disubstituted ferrocene ligands, functionalized with either 2,2'-bipyridine or 2-pyridyl-1,2,3-triazole chelating units. The self-assembly of these ligands with the (usually) four-coordinate, diamagnetic metal ions Cu(I), Ag(I), and Pd(II) was examined using a range of techniques including 1 H and DOSY NMR spectroscopies, high-resolution electrospray ionization mass spectrometry, X-ray crystallography, and density functional theory calculations. Additionally, the electrochemical properties of these redox-active metallosupramolecular assemblies were examined using cyclic voltammetry and differential pulse voltammetry. The copper(I) complexes of the 1,1'-disubstituted ferrocene ligands were found to be coordination polymers, while the silver(I) and palladium(II) complexes formed discrete [1 + 1] or [2 + 2] metallomacrocyclic architectures.

  8. Synthesis, structural characterization and antitumor activity of a Ca(II) coordination polymer based on 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Xi-Shi, E-mail: taixs@wfu.edu.cn; Wang, Xin

    2017-03-15

    A new Ca(II) coordination polymer, ([CaL(H{sub 2}O){sub 4}] · (H{sub 2}O){sub 4}){sub n} (L = 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide) has been prepared by one-pot synthesis method. And it was characterized by elemental analysis, IR and thermal analysis. The result of X-ray single-crystal diffraction analysis shows that the Ca(II) complex molecules form one-dimensional chain structure by the bridging oxygen atoms. The anti-tumor activity of L ligand and the Ca(II) coordination polymer has also been studied.

  9. Ligand-Assisted Protein Structure (LAPS): An Experimental Paradigm for Characterizing Cannabinoid-Receptor Ligand-Binding Domains.

    PubMed

    Janero, David R; Korde, Anisha; Makriyannis, Alexandros

    2017-01-01

    Detailed characterization of the ligand-binding motifs and structure-function correlates of the principal GPCRs of the endocannabinoid-signaling system, the cannabinoid 1 (CB1R) and cannabinoid 2 (CB2R) receptors, is essential to inform the rational design of drugs that modulate CB1R- and CB2R-dependent biosignaling for therapeutic gain. We discuss herein an experimental paradigm termed "ligand-assisted protein structure" (LAPS) that affords a means of characterizing, at the amino acid level, CB1R and CB2R structural features key to ligand engagement and receptor-dependent information transmission. For this purpose, LAPS integrates three key disciplines and methodologies: (a) medicinal chemistry: design and synthesis of high-affinity, pharmacologically active probes as reporters capable of reacting irreversibly with particular amino acids at (or in the immediate vicinity of) the ligand-binding domain of the functionally active receptor; (b) molecular and cellular biology: introduction of discrete, conservative point mutations into the target GPCR and determination of their effect on probe binding and pharmacological activity; (c) analytical chemistry: identification of the site(s) of probe-GPCR interaction through focused, bottom-up, amino acid-level proteomic identification of the probe-receptor complex using liquid chromatography tandem mass spectrometry. Subsequent in silico methods including ligand docking and computational modeling provide supplementary data on the probe-receptor interaction as defined by LAPS. Examples of LAPS as applied to human CB2R orthosteric binding site characterization for a biarylpyrazole antagonist/inverse agonist and a classical cannabinoid agonist belonging to distinct chemical classes of cannabinergic compounds are given as paradigms for further application of this methodology to other therapeutic protein targets. LAPS is well positioned to complement other experimental and in silico methods in contemporary structural biology such

  10. Synthesis, spectroscopic, thermogravimetric and antimicrobial studies of mixed ligands complexes

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mahmoud, Nessma F.; Mohamed, Gehad G.; El-Sonbati, Adel Z.; El-Bindary, Ashraf A.

    2015-09-01

    An interesting series of mixed ligand complexes have been synthesized by the reaction of metal chloride with guaifenesin (GFS) in the presence of 2-aminoacetic acid (HGly) (1:1:1 molar ratio). The elemental analysis, magnetic moments, molar conductance, spectral (UV-Vis, IR, 1H NMR and ESR) and thermal studies were used to characterize the isolated complexes. The molecular structure of GFS is optimized theoretically and the quantum chemical parameters are calculated. The IR showed that the ligand (GFS) acts as monobasic tridentate through the hydroxyl, phenoxy etheric and methoxy oxygen atoms and co-ligand (HGly) as monobasic bidentate through the deprotonated carboxylate oxygen atom and nitrogen atom of amino group. The molar conductivities showed that all the complexes are non-electrolytes except Cr(III) complex is electrolyte. Electronic and magnetic data proposed the octahedral structure for all complexes under investigation. ESR spectrum for Cu(II) revealed data which confirm the proposed structure. Antibacterial screening of the compounds were carried out in vitro on gram positive (Bacillus subtilis and Staphylococcus aureus), gram negative (Escherichia coli and Neisseria gonorrhoeae) bacteria and for in vitro antifungal activity against Candida albicans organism. However, some complexes showed more chemotherapeutic efficiency than the parent GFS drug. The complexes were also screened for their in vitro anticancer activity against the breast cell line (MFC7) and the results obtained showed that they exhibit a considerable anticancer activity.

  11. Estimation of affinities of ligands in mixtures via magnetic recovery of target-ligand complexes and chromatographic analyses: chemometrics and an experimental model

    PubMed Central

    2011-01-01

    Abstract Background The combinatorial library strategy of using multiple candidate ligands in mixtures as library members is ideal in terms of cost and efficiency, but needs special screening methods to estimate the affinities of candidate ligands in such mixtures. Herein, a new method to screen candidate ligands present in unknown molar quantities in mixtures was investigated. Results The proposed method involves preparing a processed-mixture-for-screening (PMFS) with each mixture sample and an exogenous reference ligand, initiating competitive binding among ligands from the PMFS to a target immobilized on magnetic particles, recovering target-ligand complexes in equilibrium by magnetic force, extracting and concentrating bound ligands, and analyzing ligands in the PMFS and the concentrated extract by chromatography. The relative affinity of each candidate ligand to its reference ligand is estimated via an approximation equation assuming (a) the candidate ligand and its reference ligand bind to the same site(s) on the target, (b) their chromatographic peak areas are over five times their intercepts of linear response but within their linear ranges, (c) their binding ratios are below 10%. These prerequisites are met by optimizing primarily the quantity of the target used and the PMFS composition ratio. The new method was tested using the competitive binding of biotin derivatives from mixtures to streptavidin immobilized on magnetic particles as a model. Each mixture sample containing a limited number of candidate biotin derivatives with moderate differences in their molar quantities were prepared via parallel-combinatorial-synthesis (PCS) without purification, or via the pooling of individual compounds. Some purified biotin derivatives were used as reference ligands. This method showed resistance to variations in chromatographic quantification sensitivity and concentration ratios; optimized conditions to validate the approximation equation could be applied to

  12. Synthesis, Characterization and Biological Studies of 99mTc and 188Re Peptides

    NASA Astrophysics Data System (ADS)

    Sanders, Vanessa

    Radiopharmaceuticals are very powerful diagnostic tools for evaluation of a host of medical conditions. These drugs are labeled with radioactive isotopes, which are utilized to create pictures of areas of interest through absorption of the drug. They are currently in high demand due to their ability to image areas that traditional imaging devices cannot. The radioisotope 99mTc, with a half-life of 6.01 hours and a 140 keV gamma emission, is central to many radiopharmaceutical compounds. This isotope is easily obtained from a 99Mo-99mTc generator, through beta decay and column chromatography separations. Very little technetium, less than 6 ng, is needed to label the pharmaceuticals for use in-vivo. Another radioisotope 188Re is also important due to its ability to be used for therapy while being tracked throughout the body. Radiotherapy gives radiopharmaceuticals a huge advantage by their ability to destroy rapidly growing cells. One of the main reasons there is interest in rhenium pharmaceuticals is the chemical similarity between it and technetium. The 188Re isotope also has a considerably short half-life of approximately 17 hours and has emission energy of 155 keV. The 188Re isotope is separated from 188W-188Re generator, analogously to the 99Mo-99mTc generator. The ligand used in this work is a pentapepetide macrocyclic ligand. This ligand, KYCAR (lysyl-tyrosyl-cystyl-alanyl-arginine), has been designed as a potential chelating ligand for imaging and therapeutic in vivo agents. Ligands are chosen based on their in-situ biological behavior, and are used in the complexation with technetium and rhenium. Understanding and exploiting technetium and rhenium chemistry can provide insight into the reaction mechanisms and coordination chemistry of these compounds. The exploration of various oxidation states as a function of the ligands used and the reaction conditions can help develop novel radiopharmaceuticals. The investigations of the manipulation of oxidation states

  13. Vancomycin: ligand recognition, dimerization and super-complex formation.

    PubMed

    Jia, ZhiGuang; O'Mara, Megan L; Zuegg, Johannes; Cooper, Matthew A; Mark, Alan E

    2013-03-01

    The antibiotic vancomycin targets lipid II, blocking cell wall synthesis in Gram-positive bacteria. Despite extensive study, questions remain regarding how it recognizes its primary ligand and what is the most biologically relevant form of vancomycin. In this study, molecular dynamics simulation techniques have been used to examine the process of ligand binding and dimerization of vancomycin. Starting from one or more vancomycin monomers in solution, together with different peptide ligands derived from lipid II, the simulations predict the structures of the ligated monomeric and dimeric complexes to within 0.1 nm rmsd of the structures determined experimentally. The simulations reproduce the conformation transitions observed by NMR and suggest that proposed differences between the crystal structure and the solution structure are an artifact of the way the NMR data has been interpreted in terms of a structural model. The spontaneous formation of both back-to-back and face-to-face dimers was observed in the simulations. This has allowed a detailed analysis of the origin of the cooperatively between ligand binding and dimerization and suggests that the formation of face-to-face dimers could be functionally significant. The work also highlights the possible role of structural water in stabilizing the vancomycin ligand complex and its role in the manifestation of vancomycin resistance. © 2013 The Authors Journal compilation © 2013 FEBS.

  14. Ambient‐Temperature Synthesis of 2‐Phosphathioethynolate, PCS–, and the Ligand Properties of ECX– (E = N, P; X = O, S)

    PubMed Central

    Jupp, Andrew R.; Geeson, Michael B.; McGrady, John E.

    2015-01-01

    Abstract A synthesis of the 2‐phosphathioethynolate anion, PCS–, under ambient conditions is reported. The coordination chemistry of PCO–, PCS– and their nitrogen‐containing congeners is also explored. Photolysis of a solution of W(CO)6 in the presence of PCO– [or a simple ligand displacement reaction using W(CO)5(MeCN)] affords [W(CO)5(PCO)]– (1). The cyanate and thiocyanate analogues, [W(CO)5(NCO)]– (2) and [W(CO)5(NCS)]– (3), are also synthesised using a similar methodology, allowing for an in‐depth study of the bonding properties of this family of related ligands. Our studies reveal that, in the coordination sphere of tungsten(0), the PCO– anion preferentially binds through the phosphorus atom in a strongly bent fashion, while NCO– and NCS– coordinate linearly through the nitrogen atom. Reactions between PCS– and W(CO)5(MeCN) similarly afford [W(CO)5(PCS)]–; however, due to the ambidentate nature of the anion, a mixture of both the phosphorus‐ and sulfur‐bonded complexes (4a and 4b, respectively) is obtained. It was possible to establish that, as with PCO–, the PCS– ion also coordinates to the metal centre in a bent fashion. PMID:27134553

  15. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wei; Li, Yani; Yu, Bo

    2015-01-15

    A successive anchoring of Ti(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-sitemore » silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, {sup 13}C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated.« less

  16. Synthesis, Radiolabelling and In Vitro Characterization of the Gallium-68-, Yttrium-90- and Lutetium-177-Labelled PSMA Ligand, CHX-A''-DTPA-DUPA-Pep.

    PubMed

    Baur, Benjamin; Solbach, Christoph; Andreolli, Elena; Winter, Gordon; Machulla, Hans-Jürgen; Reske, Sven N

    2014-04-29

    Since prostate-specific membrane antigen (PSMA) has been identified as a diagnostic target for prostate cancer, many urea-based small PSMA-targeting molecules were developed. First, the clinical application of these Ga-68 labelled compounds in positron emission tomography (PET) showed their diagnostic potential. Besides, the therapy of prostate cancer is a demanding field, and the use of radiometals with PSMA bearing ligands is a valid approach. In this work, we describe the synthesis of a new PSMA ligand, CHX-A''-DTPA-DUPA-Pep, the subsequent labelling with Ga-68, Lu-177 and Y-90 and the first in vitro characterization. In cell investigations with PSMA-positive LNCaP C4-2 cells, KD values of ≤14.67 ± 1.95 nM were determined, indicating high biological activities towards PSMA. Radiosyntheses with Ga-68, Lu-177 and Y-90 were developed under mild reaction conditions (room temperature, moderate pH of 5.5 and 7.4, respectively) and resulted in nearly quantitative radiochemical yields within 5 min.

  17. Synthesis, Radiolabelling and In Vitro Characterization of the Gallium-68-, Yttrium-90- and Lutetium-177-Labelled PSMA Ligand, CHX-A''-DTPA-DUPA-Pep

    PubMed Central

    Baur, Benjamin; Solbach, Christoph; Andreolli, Elena; Winter, Gordon; Machulla, Hans-Jürgen; Reske, Sven N.

    2014-01-01

    Since prostate-specific membrane antigen (PSMA) has been identified as a diagnostic target for prostate cancer, many urea-based small PSMA-targeting molecules were developed. First, the clinical application of these Ga-68 labelled compounds in positron emission tomography (PET) showed their diagnostic potential. Besides, the therapy of prostate cancer is a demanding field, and the use of radiometals with PSMA bearing ligands is a valid approach. In this work, we describe the synthesis of a new PSMA ligand, CHX-A''-DTPA-DUPA-Pep, the subsequent labelling with Ga-68, Lu-177 and Y-90 and the first in vitro characterization. In cell investigations with PSMA-positive LNCaP C4-2 cells, KD values of ≤14.67 ± 1.95 nM were determined, indicating high biological activities towards PSMA. Radiosyntheses with Ga-68, Lu-177 and Y-90 were developed under mild reaction conditions (room temperature, moderate pH of 5.5 and 7.4, respectively) and resulted in nearly quantitative radiochemical yields within 5 min. PMID:24787458

  18. Recognition of thymine in DNA bulges by a Zn(II) macrocyclic complex.

    PubMed

    del Mundo, Imee Marie A; Fountain, Matthew A; Morrow, Janet R

    2011-08-14

    A Zn(II) macrocyclic complex with appended quinoline is a bifunctional recognition agent that uses both the Zn(II) center and the pendent aromatic group to bind to thymine in bulges with good selectivity over DNA containing G, C or A bulges. Spectroscopic studies show that the stem containing the bulge stays largely intact in a DNA hairpin with the Zn(II) complex bound to the thymine bulge. This journal is © The Royal Society of Chemistry 2011

  19. Rational Design, Development, and Stability Assessment of a Macrocyclic Four-Hydroxamate-Bearing Bifunctional Chelating Agent for 89 Zr.

    PubMed

    Seibold, Uwe; Wängler, Björn; Wängler, Carmen

    2017-09-21

    Zirconium-89 is a positron-emitting radionuclide of high interest for medical imaging applications with positron emission tomography (PET). For the introduction of this radiometal into biologically active targeting vectors, the chelating agent desferrioxamine B (DFO) is commonly applied. However, DFO is known to form 89 Zr complexes of limited in vivo stability. Herein we describe the rational design and chemical development of a new macrocyclic four-hydroxamate-bearing chelating agent-1,10,19,28-tetrahydroxy-1,5,10,14,19,23,28,32-octaazacyclohexatriacontan-2,6,11,15,20,24,29,33-octaone (CTH36)-for the stable complexation of Zr 4+ . For this purpose, we first performed computational studies to determine the optimal chelator geometry before we developed different synthesis pathways toward the target structures. The best results were obtained using an efficient solution-phase-based synthesis strategy toward the target chelating agent. To enable efficient and chemoselective conjugation to biomolecules, a tetrazine-modified variant of CTH36 was also developed. The excellent conjugation characteristics of the so-functionalized chelator were demonstrated on the example of the model peptide TCO-c(RGDfK). We determined the optimal 89 Zr radiolabeling parameters for CTH36 as well as its bioconjugate, and found that 89 Zr radiolabeling proceeds efficiently under very mild reaction conditions. Finally, we performed comparative complex stability tests for 89 Zr-CHT36-c(RGDfK) and 89 Zr-DFO-c(RGDfK), showing improved complex stability for the newly developed chelator CTH36. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Design synthesis and structure-activity relationship of 5-substituted (tetrahydronaphthalen-2yl)methyl with N-phenyl-N-(piperidin-2-yl)propionamide derivatives as opioid ligands.

    PubMed

    Deekonda, Srinivas; Rankin, David; Davis, Peg; Lai, Josephine; Vanderah, Todd W; Porecca, Frank; Hruby, Victor J

    2016-01-15

    Here, we report the design, synthesis and structure activity relationship of novel small molecule opioid ligands based on 5-amino substituted (tetrahydronaphthalen-2-yl)methyl moiety with N-phenyl-N-(piperidin-2-yl)propionamide derivatives. We synthesized various molecules including amino, amide and hydroxy substitution on the 5th position of the (tetrahydronaphthalen-2-yl)methyl moiety. In our further designs we replaced the (tetrahydronaphthalen-2-yl)methyl moiety with benzyl and phenethyl moiety. These N-phenyl-N-(piperidin-2-yl)propionamide analogues showed moderate to good binding affinities (850-4 nM) and were selective towards the μ opioid receptor over the δ opioid receptors. From the structure activity relationship studies, we found that a hydroxyl substitution at the 5th position of (tetrahydronapthalen-2yl)methyl group, ligands 19 and 20, showed excellent binding affinities 4 and 5 nM, respectively, and 1000 fold selectivity towards the μ opioid relative to the delta opioid receptor. The ligand 19 showed potent agonist activities 75±21 nM, and 190±42 nM in the GPI and MVD assays. Surprisingly the fluoro analogue 20 showed good agonist activities in MVD assays 170±42 nM, in contrast to its binding affinity results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Synthesis and characterization of Ni(II) complex with 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7,14-dienium bromide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, Latifah M.; Yusoff, Siti Fairus M.; Ismail, Wafiuddin

    Nickel(II) complex have been synthesized by treating a 14-membered ring tetraaza macrocyclic compound, 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7,14-dienium, bromide (Me{sub 6}N{sub 4}H{sub 4})Br{sub 2} with nickel acetate in metanol. The complex was characterized using elemental analysis, Fourier Transform Infrared (FTIR), Ultraviolet-Visible (UV-Vis), and single crystal diffraction (X-ray). The nickel atom coordinates through four nitrogen atoms in the ligand. Square planar geometry has been proposed for this complex.

  2. Conformational analysis of a condensed macrocyclic β-lactam by NMR and molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Keserű, György M.; Vásárhelyi, Helga; Makara, Gergely

    1994-09-01

    The conformation of the new macrocyclic β-lactam ( 1) was investigated by NMR and molecular dynamics (MD) calculations. Restraints obtained from NOESY and ROESY experiments were introduced into MD simulations which led to well-defined conformations. The preference for the calculated minimum energy conformation was confirmed by the analysis of vicinal coupling constants. Experimental coupling constants agreed with computed values.

  3. Concise and diversity-oriented synthesis of ligand arm-functionalized azoamides.

    PubMed

    Urankar, Damijana; Kosmrlj, Janez

    2008-01-01

    Azoamides, previously established as bioactive intracellular GSH-depleting agents, were decorated with a terminal alkyne moiety to 4 and then were transformed, by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), into different ligand-arm functionalized azoamides 6. Azides 5 having ligand-arms amenable for binding to platinum(II) were selected for this study. Because, for the fragile azoamides 4, the typically employed reaction conditions for CuAAC failed, several alternative solvents and copper catalysts were tested. Excellent results were obtained with copper(II) sulfate pentahydrate/metallic copper and especially with heterogeneous catalysts, such as copper-in-charcoal, cupric oxide, and cuprous oxide. The heterogeneous catalysts were employed to obtain the desired products in almost quantitative yields by a simple three-step "stir-filter-evaporate" protocol with no or negligible contamination with copper impurities. This is of particular importance because compounds 6 have been designed for coordination.

  4. Convergent synthesis of multiporphyrin light-harvesting rods

    DOEpatents

    Lindsey, Jonathan S.; Loewe, Robert S.

    2003-08-05

    The present invention provides a convergent method for the synthesis of light harvesting rods. The rods are oligomers of the formula A.sup.1 (A.sup.b+1).sub.b, wherein b is at least 1, A.sup.1 through A.sup.b+1 are covalently coupled rod segments, and each rod segment A.sup.1 through A.sup.1+b comprises a compound of the formula X.sup.1 (X.sup.m+1).sub.m wherein m is at least 1 and X.sup.1 through X.sup.m+1 are covalently coupled porphyrinic macrocycles. Light harvesting arrays and solar cells containing such light harvesting rods are also described, along with intermediates useful in such methods and rods produced by such methods.

  5. Metallosupramolecular Architectures Obtained from Poly-N-heterocyclic Carbene Ligands.

    PubMed

    Sinha, Narayan; Hahn, F Ekkehardt

    2017-09-19

    Over the past two decades, self-assembly of supramolecular architectures has become a field of intensive research due to the wide range of applications for the resulting assemblies in various fields such as molecular encapsulation, supramolecular catalysis, drug delivery, metallopharmaceuticals, chemical and photochemical sensing, and light-emitting materials. For these purposes, a large number of coordination-driven metallacycles and metallacages featuring different sizes and shapes have been prepared and investigated. Almost all of these are Werner-type coordination compounds where metal centers are coordinated by nitrogen and/or oxygen donors of polydentate ligands. With the evolving interest in the coordination chemistry of N-heterocyclic carbenes (NHCs), discrete supramolecular complexes held together by M-C NHC bonds have recently become of interest. The construction of such metallosupramolecular assemblies requires the synthesis of suitable poly-NHC ligands where the NHC donors form labile bonds with metal centers thus enabling the formation of the thermodynamically most stable reaction product. In organometallic chemistry, these conditions are uniquely met by the combination of poly-NHCs and silver(I) ions where the resulting assemblies also offer the possibility to generate new structures by transmetalation of the poly-NHC ligands to additional metal centers forming more stable C NHC -M bonds. Stable metallosupramolecular assemblies obtained from poly-NHC ligands feature special properties such as good solubility in many less polar organic solvents and the presence of the often catalyticlly active {M(NHC) n } moiety as building block. In this Account, we review recent developments in organometallic supramolecular architectures derived from poly-NHC ligands. We describe dinuclear (M = Ag I , Au I , Cu I ) tetracarbene complexes obtained from bis-NHC ligands with an internal olefin or two external coumarin pendants and their postsynthetic modification via a

  6. Characterization and validation of fluorescent receptor ligands: a case study of the ionotropic serotonin receptor.

    PubMed

    Hovius, Ruud

    2013-01-01

    The application of fluorescent receptor ligands has become widespread, incited by two important reasons. "Seeing is believing"-it is possible to visualize in real time in live cells ligand-receptor interactions, and to locate the receptors with subcellular precision allowing one to follow, e.g., internalization of the ligand-receptor complex. The high sensitivity of photon detection permits observation of on the one hand receptor-ligand interactions on cells with low, native receptor abundance, and on the other of individual fluorophores unveiling the stochastic properties of single ligand-receptor complexes.The major bottlenecks that impede extensive use of fluorescent ligands are due to possible dramatic changes of the pharmacological properties of a ligand upon chemical modification and fluorophore conjugation, aggravated by the observation that different fluorophores can provoke very dissimilar effects. This makes it virtually impossible to predict beforehand which labelling strategy to use to produce a fluorescent ligand with the desired qualities.Here, we focus on the design, synthesis, and evaluation of a high-affinity fluorescent antagonist for the ionotropic serotonin type-3 receptor.

  7. 1,2,4-Benzothiadiazine-1,1-dioxide derivatives as ionotropic glutamate receptor ligands: synthesis and structure-activity relationships.

    PubMed

    Varano, Flavia; Catarzi, Daniela; Colotta, Vittoria; Squarcialupi, Lucia; Matucci, Rosanna

    2014-11-01

    Ionotropic glutamate receptor (iGluR) modulators, specially AMPA receptor antagonists, are potential tools for numerous therapeutic applications in neurological disorders, including Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, chronic pain, and neuropathology ensuing from cerebral ischemia or cardiac arrest. In this work, the synthesis and binding affinities at the Gly/NMDA, AMPA, and kainic acid (KA) receptors of a new series of 1,2,4-benzothiadiazine-1,1-dioxide derivatives are reported. The results show that 1,2,4-benzothiadiazine-1,1-dioxide is a new scaffold for obtaining iGluR ligands. Moreover, this work has led us to the 7-(3-formylpyrrol-1-yl)-6-trifluoromethyl substituted compound 7, which displays the highest AMPA receptor affinity and high selectivity versus the Gly/NMDA (90-fold) and KA (46-fold) receptors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Topical Cream-Based Dosage Forms of the Macrocyclic Drug Delivery Vehicle Cucurbit[6]uril

    PubMed Central

    Seif, Marian; Impelido, Michael L.; Apps, Michael G.; Wheate, Nial J.

    2014-01-01

    The macrocycle family of molecules called cucurbit[n]urils are potential drug delivery vehicles as they are able to form host-guest complexes with many different classes of drugs. This study aimed to examine the utility of Cucurbit[6]uril (CB[6]) in topical cream-based formulations for either localised treatment or for transdermal delivery. Cucurbit[6]uril was formulated into both buffered cream aqueous- and oily cream-based dosage forms. The solid state interaction of CB[6] with other excipients was studied by differential scanning calorimetry and the macrocycle's transdermal permeability was determined using rat skin. Significant solid state interactions were observed between CB[6] and the other dosage form excipients. At concentrations up to 32% w/w the buffered aqueous cream maintained its normal consistency and could be effectively applied to skin, but the oily cream was too stiff and is not suitable as a dosage form. Cucurbit[6]uril does not permeate through skin; as such, the results imply that cucurbituril-based topical creams may potentially only have applications for localised skin treatment and not for transdermal drug delivery. PMID:24454850

  9. H-Bonding Assisted Self-Assembly of Anionic and Neutral Ligand on Metal: A Comprehensive Strategy To Mimic Ditopic Ligands in Olefin Polymerization.

    PubMed

    Mote, Nilesh R; Patel, Ketan; Shinde, Dinesh R; Gaikwad, Shahaji R; Koshti, Vijay S; Gonnade, Rajesh G; Chikkali, Samir H

    2017-10-16

    Self-assembly of two neutral ligands on a metal to mimic bidentate ligand coordination has been frequently encountered in the recent past, but self-assembly of an anionic ligand on a metal template alongside a neutral ligand remains an elusive target. Such a self-assembly is hampered by additional complexity, wherein a highly negatively charged anion can form intermolecular hydrogen bonding with the supramolecular motif, leaving no scope for self-assembly with neutral ligand. Presented here is the self-association of anionic ligand 3-ureidobenzoic acid (2a) and neutral ligand 1-(3-(diphenylphosphanyl)phenyl)urea (1a) on a metal template to yield metal complex [{COOC 6 H 4 NH(CO)NH 2 }{Ph 2 PC 6 H 4 NH(CO)NH 2 }PdMeDMSO] (4a). The identity of 4a was established by NMR and mass spectroscopy. Along the same lines, 3-(3-phenylureido)benzoic acid (2b) and 1-(3-(diphenylphosphanyl)phenyl)-3-phenylurea (1b) self-assemble on a metal template to produce palladium complex [{COOC 6 H 4 NH(CO)NHPh}{Ph 2 PC 6 H 4 NH(CO)NHPh}PdMePy] (5c). The existence of 5c was confirmed by Job plot, 1-2D NMR spectroscopy, deuterium labeling, IR spectroscopy, UV-vis spectroscopy, model complex synthesis, and DFT calculations. These solution and gas phase investigations authenticated the presence of intramolecular hydrogen bonding between hydrogen's of 1b and carbonyl oxygen of 2b. The generality of the supramolecular approach has been validated by preparing six complexes from four monodentate ligands, and their synthetic utility was demonstrated in ethylene polymerization. Complex 4a was found to be the most active, leading to the production of highly branched polyethylene with a molecular weight of 55700 g/mol and melting temperature of 112 °C.

  10. The effect of post-synthesis aging on the ligand exchange activity of iron oxide nanoparticles.

    PubMed

    Davis, Kathleen; Vidmar, Michael; Khasanov, Airat; Cole, Brian; Ghelardini, Melanie; Mayer, Justin; Kitchens, Christopher; Nath, Amar; Powell, Brian A; Mefford, O Thompson

    2018-02-01

    Ligand exchange is a widely-used method of controlling the surface chemistry of nanomaterials. Exchange is dependent on many factors including the age of the core particle being modified. Aging of the particles can impact surface structure and composition, which in turn can affect ligand binding. To quantify the effects of aging on ligand exchange, we employed a technique to track the exchange of radiolabeled 14 C-oleic acid with unlabeled, oleic acid bound to iron oxide nanoparticles. Liquid scintillation counting (LSC) was used to determine the amount of 14 C-oleic acid adsorbing to the particles throughout the duration of the exchange for particles aged for 2days, 7days, and 30days. Results revealed an increase in the total amount of ligands exchanged with aging up to 30days. Kinetic analysis of these results revealed a significant decrease in the overall rate of ligand exchange between 2 and 30days. The change in extent of adsorption with age could suggest increased availability of free binding sites. A follow-up study comparing exchange with oxidized and unoxidized particles suggested this increase in ligand adsorption may be due to changes in the Fe 2+ /Fe 3+ ratio on the surface as the particles aged. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Ti(NMe2)4, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1‧-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, 13C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands.

  12. Syn-anti conformational switching in an ethane-bridged Co(II)bisporphyrin induced by external stimuli: effects of inter-macrocyclic interactions, axial ligation and chemical and electrochemical oxidations.

    PubMed

    Dey, Soumyajit; Rath, Sankar Prasad

    2014-02-07

    The syn-anti conformational switching has been demonstrated in the ethane-bridged dicobalt(II)bisporphyrin which is present in the syn-form only. The addition of either perylene or axial ligands to Co(II)(bisporphyrin) completely transforms the syn form into the anti because of strong π-π interaction and axial coordination, respectively. The complex undergoes four 1e-oxidations in CH2Cl2 which are indicative of strong through space interactions between the two cofacial Co-porphyrins at 295 K. The first oxidation is a metal centered one and occurs at a potential much lower than that of the monomeric analog. However, the second oxidation, which is again metal centered, was at a significantly higher potential. The large difference between the first two oxidations, as observed here, is due to much stronger inter-porphyrin interactions. The step-wise oxidations have been performed both chemically and electro-chemically while the progress of the reactions was monitored by UV-visible and (1)H NMR spectroscopy. After 1e-oxidation, a very broad (1)H NMR signal results with increased difference between two meso resonances, which indicates that the two macrocycles are in the syn-form with lesser interplanar separation as also observed by DFT. However, 2e-oxidation results in the stabilization of the anti form. The addition of axial ligands to Co(II)(bisporphyrin) also completely transforms the syn form into the anti form. While additions of THF and I2/I(-) both result in the formation of five-coordinate complexes, Co(II) is oxidized to Co(III) in the case of the latter. However, additions of 1-methylimidazole, pyridine and pyrazine as axial ligands result in the formation of a six-coordinate complex in which Co(II) is spontaneously oxidized to Co(III) in air.

  13. Verbalactone, a new macrocyclic dimer lactone from the roots of Verbascum undulatum with antibacterial activity.

    PubMed

    Magiatis, P; Spanakis, D; Mitaku, S; Tsitsa, E; Mentis, A; Harvala, C

    2001-08-01

    A novel macrocyclic dimer lactone, named verbalactone, was isolated from the roots of Verbascum undulatum and exhibited interesting antibacterial activity. It is the first time that 1,7-dioxacyclododecane is reported as the ring system of a natural product. The structure and the absolute stereochemistry of the new compound were determined by spectral methods and chemical correlation.

  14. Non-nucleoside building blocks for copper-assisted and copper-free click chemistry for the efficient synthesis of RNA conjugates.

    PubMed

    Jayaprakash, K N; Peng, Chang Geng; Butler, David; Varghese, Jos P; Maier, Martin A; Rajeev, Kallanthottathil G; Manoharan, Muthiah

    2010-12-03

    Novel non-nucleoside alkyne monomers compatible with oligonucleotide synthesis were designed, synthesized, and efficiently incorporated into RNA and RNA analogues during solid-phase synthesis. These modifications allowed site-specific conjugation of ligands to the RNA oligonucleotides through copper-assisted (CuAAC) and copper-free strain-promoted azide-alkyne cycloaddition (SPAAC) reactions. The SPAAC click reactions of cyclooctyne-oligonucleotides with various classes of azido-functionalized ligands in solution phase and on solid phase were efficient and quantitative and occurred under mild reaction conditions. The SPAAC reaction provides a method for the synthesis of oligonucleotide-ligand conjugates uncontaminated with copper ions.

  15. Ligand induced shape transformation of thorium dioxide nanocrystals.

    PubMed

    Wang, Gaoxue; Batista, Enrique R; Yang, Ping

    2018-04-27

    Nanocrystals (NCs) with size and shape dependent properties are a thriving research field. Remarkable progress has been made in the controlled synthesis of NCs of stable elements in the past two decades; however, the knowledge of the NCs of actinide compounds has been considerably limited due the difficulties in handling them both experimentally and theoretically. Actinide compounds, especially actinide oxides, play a critical role in many stages of the nuclear fuel cycle. Recently, a non-aqueous surfactant assisted approach has been developed for the synthesis of actinide oxide NCs with different morphologies, but an understanding of its control factors is still missing to date. Herein we present a comprehensive study on the low index surfaces of thorium dioxide (ThO2) and their interactions with relevant surfactant ligands using density functional calculations. A systematic picture on the thermodynamic stability of ThO2 NCs of different sizes and shapes is obtained employing empirical models based on the calculated surface energies. It is found that bare ThO2 NCs prefer the octahedral shape terminated by (111) surfaces. Oleic acid displays selective adsorption on the (110) surface, leading to the shape transformation from octahedrons to nanorods. Other ligands such as acetylacetone, oleylamine, and trioctylphosphine oxide do not modify the equilibrium shape of ThO2 NCs. This work provides atomic level insights into the anisotropic growth of ThO2 NCs that was recently observed in experiments, and thus may contribute to the controlled synthesis of actinide oxide NCs with well-defined size and shape for future applications.

  16. Synthesis and properties of new chlorin and bacteriochlorin photosensitizers

    NASA Astrophysics Data System (ADS)

    Mironov, Andrei F.

    1996-01-01

    A series of novel sensitizers, which absorb in the range of 660 - 820 nm, derived from natural occurring chlorophyll and bacteriochlorophyll was synthesized. Biomass of blue-green algae Spirulina platensis was used to prepare chlorophyll a derivatives, and biomass of purple bacteria Rhodobacter capsulatus was applied for preparation of bacteriochlorophyll a. The influence of different substituents on spectral characteristics and the amphipility of the sensitizer was investigated. The route for the synthesis of porphyrin macrocycle with the spacer that bears the isothiocyanate group capable for binding with proteins was proposed. Photophysical properties of chlorin p6, purpurin 18 and their esters in different solvents are investigated. Accumulation of two chlorins in the model Erlich tumor was studied.

  17. Selective Anion Binding by a Cofacial Binuclear Zinc Complex of a Schiff-Base Pyrrole Macrocycle

    PubMed Central

    Devoille, Aline M. J.; Richardson, Patricia; Bill, Nathan; Sessler, Jonathan L.; Love, Jason B.

    2011-01-01

    The synthesis of the new cofacial binuclear zinc complex [Zn2(L)] of a Schiff-base pyrrole macrocycle is reported. It was discovered that the binuclear microenvironment between the two metals of [Zn2(L)] is suited for the encapsulation of anions, leading to the formation of [K(THF)6][Zn2(μ-Cl)(L)].2THF and [Bun4N][Zn2(μ-OH)(L)] which were characterized by X-ray crystallography. Unusually obtuse Zn-X-Zn angles (X=Cl: 150.54(9)° and OH: 157.4(3)°) illustrate the weak character of these interactions and the importance of the cleft pre-organization to stabilize the host. In the absence of added anion, aggregation of [Zn2(L)] was inferred and investigated by successive dilutions and by the addition of coordinating solvents to [Zn2(L)] solutions using NMR spectroscopy as well as isothermal microcalorimetry (ITC). On anion addition, evidence for de-aggregation of [Zn2(L)], combined with the formation of the 1:1 host-guest complex, was observed by NMR spectroscopy and ITC titrations. Furthermore, [Zn2(L)] binds to Cl− selectively in THF as deduced from the ITC analyses, while other halides induce only de-aggregation. These conclusions were reinforced by DFT calculations, which indicated that the binding energies of OH− and Cl− were significantly greater than for the other halides. PMID:21391550

  18. Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, Azza A.; Linert, Wolfgang

    2014-01-01

    Two series of mono- and binuclear complexes cyclic or acyclic thio-ferocine Schiff base ligands, derived from the condensation of 2-aminobenzenthiol (L) with monoacetyl ferrocene in the molar ratio 1:1 or in the molar ratio 1:2 for diacetyl ferocine have been prepared. The condensation reactions yield the corresponding Schiff Base ligands, HLa-Maf and H2Lb-Daf. The chelation of the ligands to metal ions occurs through the sulfur of the thiol group as well as the nitrogen atoms of the azomethine group of the ligands. HLa-Maf acts as monobasic bidentate or dibasic tetradentate, while H2Lb-Daf behaves as twice negatively cargend tetradentate ligand. The structures of these ligands were elucidated by elemental analysis, infrared, ultraviolet-visible spectra, as well as 1H NMR spectra. Reactions of the Schiff bases ligands with ruthenium(III), oxovanadium(IV) and dioxouranium(VI) afforded the corresponding transition metal complexes. The properties of the newly prepared complexes were analyse by elemental analyses, infrared, electronic spectra, 1H NMR as well as the magnetic susceptibility and conductivity measurement. The metal complexes exhibits different geometrical arrangements such as octahedral and square pyramidal coordination. Schiff base ligands and their metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi to study their biological activity. All the complexes exhibit antibacterial and antifungal activities against these organisms.

  19. Novel multi-target-directed ligands for Alzheimer's disease: Combining cholinesterase inhibitors and 5-HT6 receptor antagonists. Design, synthesis and biological evaluation.

    PubMed

    Więckowska, Anna; Kołaczkowski, Marcin; Bucki, Adam; Godyń, Justyna; Marcinkowska, Monika; Więckowski, Krzysztof; Zaręba, Paula; Siwek, Agata; Kazek, Grzegorz; Głuch-Lutwin, Monika; Mierzejewski, Paweł; Bienkowski, Przemysław; Sienkiewicz-Jarosz, Halina; Knez, Damijan; Wichur, Tomasz; Gobec, Stanislav; Malawska, Barbara

    2016-11-29

    As currently postulated, a complex treatment may be key to an effective therapy for Alzheimer's disease (AD). Recent clinical trials in patients with moderate AD have shown a superior effect of the combination therapy of donepezil (a selective acetylcholinesterase inhibitor) with idalopirdine (a 5-HT 6 receptor antagonist) over monotherapy with donepezil. Here, we present the first report on the design, synthesis and biological evaluation of a novel class of multifunctional ligands that combines a 5-HT 6 receptor antagonist with a cholinesterase inhibitor. Novel multi-target-directed ligands (MTDLs) were designed by combining pharmacophores directed against the 5-HT 6 receptor (1-(phenylsulfonyl)-4-(piperazin-1-yl)-1H-indole) and cholinesterases (tacrine or N-benzylpiperidine analogues). In vitro evaluation led to the identification of tacrine derivative 12 with well-balanced potencies against the 5-HT 6 receptor (K b  = 27 nM), acetylcholinesterase and butyrylcholinesterase (IC 50 hAChE  = 12 nM, IC 50 hBuChE  = 29 nM). The compound also showed good in vitro blood-brain-barrier permeability (PAMPA-BBB assay), which was confirmed in vivo (open field study). Central cholinomimetic activity was confirmed in vivo in rats using a scopolamine-induced hyperlocomotion model. A novel class of multifunctional ligands with compound 12 as the best derivative in a series represents an excellent starting point for the further development of an effective treatment for AD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Synthesis and Characterization of Metal Complexes with Schiff Base Ligands

    ERIC Educational Resources Information Center

    Wilkinson, Shane M.; Sheedy, Timothy M.; New, Elizabeth J.

    2016-01-01

    In order for undergraduate laboratory experiments to reflect modern research practice, it is essential that they include a range of elements, and that synthetic tasks are accompanied by characterization and analysis. This intermediate general chemistry laboratory exercise runs over 2 weeks, and involves the preparation of a Schiff base ligand and…

  1. How do the macrocyclic lactones kill filarial nematode larvae?

    PubMed

    Wolstenholme, Adrian J; Maclean, Mary J; Coates, Ruby; McCoy, Ciaran J; Reaves, Barbara J

    2016-09-01

    The macrocyclic lactones (MLs) are one of the few classes of drug used in the control of the human filarial infections, onchocerciasis and lymphatic filariasis, and the only one used to prevent heartworm disease in dogs and cats. Despite their importance in preventing filarial diseases, the way in which the MLs work against these parasites is unclear. In vitro measurements of nematode motility have revealed a large discrepancy between the maximum plasma concentrations achieved after drug administration and the amounts required to paralyze worms. Recent evidence has shed new light on the likely functions of the ML target, glutamate-gated chloride channels, in filarial nematodes and supports the hypothesis that the rapid clearance of microfilariae that follows treatment involves the host immune system.

  2. Bioactive ruthenium(II)-arene complexes containing modified 18β-glycyrrhetinic acid ligands.

    PubMed

    Kong, Yaqiong; Chen, Feng; Su, Zhi; Qian, Yong; Wang, Fang-Xin; Wang, Xiuxiu; Zhao, Jing; Mao, Zong-Wan; Liu, Hong-Ke

    2018-05-01

    Metal-arene complexes containing bioactive natural-product derived ligands can have new and unusual properties. We report the synthesis, characterization and antiproliferative activity of two new Ru(II) arene complexes with imidazole (dichlorido complex 1) or bipyridyl (chlorido complex 2) ligands conjugated to 18β-glycyrrhetinic acid, an active triterpenoid metabolite of Glycyrrhiza glabra. In general, the conjugated ligands and complexes showed only moderate activity against HeLa (cervical), MCF-7 (breast) and A2780 (ovarian) cancer cells, although the activity of complex 2 in the former two cell lines approached that of the drug cisplatin. Complex 2 (in contrast to complex 1) also exhibited significant activity towards both Gram-positive S. aureus and Gram-negative E. coil bacteria. Complex 2 can induce condensation of DNA and enhances the generation of intracellular reactive oxygen species (ROS). The conjugation of natural products to ligands in organometallic half-sandwich complexes provides a strategy to enhance their biological activities. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Macrocyclic Prodrugs of a Selective Nonpeptidic Direct Thrombin Inhibitor Display High Permeability, Efficient Bioconversion but Low Bioavailability.

    PubMed

    Andersson, Vincent; Bergström, Fredrik; Brånalt, Jonas; Grönberg, Gunnar; Gustafsson, David; Karlsson, Staffan; Polla, Magnus; Bergman, Joakim; Kihlberg, Jan

    2016-07-28

    The only oral direct thrombin inhibitors that have reached the market, ximelagatran and dabigatran etexilat, are double prodrugs with low bioavailability in humans. We have evaluated an alternative strategy: the preparation of a nonpeptidic, polar direct thrombin inhibitor as a single, macrocyclic esterase-cleavable (acyloxy)alkoxy prodrug. Two homologous prodrugs were synthesized and displayed high solubilities and Caco-2 cell permeabilities, suggesting high absorption from the intestine. In addition, they were rapidly and completely converted to the active zwitterionic thrombin inhibitor in human hepatocytes. Unexpectedly, the most promising prodrug displayed only moderately higher oral bioavailability in rat than the polar direct thrombin inhibitor, most likely due to rapid metabolism in the intestine or the intestinal wall. To the best of our knowledge, this is the first in vivo ADME study of macrocyclic (acyloxy)alkoxy prodrugs, and it remains to be established if the modest increase in bioavailability is a general feature of this category of prodrugs or not.

  4. LigandRNA: computational predictor of RNA–ligand interactions

    PubMed Central

    Philips, Anna; Milanowska, Kaja; Łach, Grzegorz; Bujnicki, Janusz M.

    2013-01-01

    RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA–small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA–ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a “meta-predictor” leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl. PMID:24145824

  5. Compositional Bias in Naïve and Chemically-modified Phage-Displayed Libraries uncovered by Paired-end Deep Sequencing.

    PubMed

    He, Bifang; Tjhung, Katrina F; Bennett, Nicholas J; Chou, Ying; Rau, Andrea; Huang, Jian; Derda, Ratmir

    2018-01-19

    Understanding the composition of a genetically-encoded (GE) library is instrumental to the success of ligand discovery. In this manuscript, we investigate the bias in GE-libraries of linear, macrocyclic and chemically post-translationally modified (cPTM) tetrapeptides displayed on the M13KE platform, which are produced via trinucleotide cassette synthesis (19 codons) and NNK-randomized codon. Differential enrichment of synthetic DNA {S}, ligated vector {L} (extension and ligation of synthetic DNA into the vector), naïve libraries {N} (transformation of the ligated vector into the bacteria followed by expression of the library for 4.5 hours to yield a "naïve" library), and libraries chemically modified by aldehyde ligation and cysteine macrocyclization {M} characterized by paired-end deep sequencing, detected a significant drop in diversity in {L} → {N}, but only a minor compositional difference in {S} → {L} and {N} → {M}. Libraries expressed at the N-terminus of phage protein pIII censored positively charged amino acids Arg and Lys; libraries expressed between pIII domains N1 and N2 overcame Arg/Lys-censorship but introduced new bias towards Gly and Ser. Interrogation of biases arising from cPTM by aldehyde ligation and cysteine macrocyclization unveiled censorship of sequences with Ser/Phe. Analogous analysis can be used to explore library diversity in new display platforms and optimize cPTM of these libraries.

  6. TCNQ molecular semiconductor of the Cu(II)TAAB macrocycle: Optical and electrical properties.

    PubMed

    Sánchez Vergara, M E; Salcedo, R; Molina, Bertha; Carrera-Téllez, R; Álvarez-Bada, J R; Hernández-García, A; Gómez-Vidales, V

    2018-07-05

    The present study reports the doping of a semiconducting molecular material through the formation of hydrogen bonds between the macrocycle Cu(II)(TAAB) and the electronic acceptor TCNQ. According to density functional theory (DFT) calculations and electron paramagnetic resonance (EPR) analysis, the doped compound has the shape of a distorted square pyramid, with four nitrogen atoms in the equatorial position and the apical oxygen atom from the water ligands. These water molecules can generate strong hydrogen bonds with TCNQ and the TAAB metallic complex. Thin films of copper molecular material were obtained through high vacuum evaporation and were structurally characterized by IR spectroscopy, EPR and scanning electron microscopy (SEM). Additionally, the absorption coefficient (α) and photon energy (hν) were calculated from UV-vis spectroscopy and used to determine the optical activation energy in each film, from which its semiconducting behavior was established. An important aspect to consider is that the presence of hydrogen bonds is essential to establish the semiconducting nature of these species; this chemical behavior, as well as the resulting electronic mobility, have been studied by DFT theoretical calculations, which reinforce the experimental conclusion of a relationship between Cu(II)TAAB and TCNQ moieties generated by a weak bond. Finally, I-V characteristics have been obtained from a glass/ITO/doped molecular semiconductor/Ag device using Ag and ITO electrodes. Results for the copper-based device show that, at low voltages, the conduction process is of an ohmic nature while, at higher voltages, space-charge-limited current (SCLC) is found. It is highly probable that the doping effect in TCNQ favors electronic transport due to the formation of conduction channels caused by dopant-favored anisotropy. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Structure-based design, synthesis and crystallization of 2-arylquinazolines as lipid pocket ligands of p38α MAPK

    PubMed Central

    Bührmann, Mike; Wiedemann, Bianca M.; Müller, Matthias P.; Hardick, Julia; Ecke, Maria

    2017-01-01

    In protein kinase research, identifying and addressing small molecule binding sites other than the highly conserved ATP-pocket are of intense interest because this line of investigation extends our understanding of kinase function beyond the catalytic phosphotransfer. Such alternative binding sites may be involved in altering the activation state through subtle conformational changes, control cellular enzyme localization, or in mediating and disrupting protein-protein interactions. Small organic molecules that target these less conserved regions might serve as tools for chemical biology research and to probe alternative strategies in targeting protein kinases in disease settings. Here, we present the structure-based design and synthesis of a focused library of 2-arylquinazoline derivatives to target the lipophilic C-terminal binding pocket in p38α MAPK, for which a clear biological function has yet to be identified. The interactions of the ligands with p38α MAPK was analyzed by SPR measurements and validated by protein X-ray crystallography. PMID:28892510

  8. Synthesis and Characterization of Paramagnetic Tungsten Imido Complexes Bearing α-Diimine Ligands.

    PubMed

    Tanahashi, Hiromasa; Ikeda, Hideaki; Tsurugi, Hayato; Mashima, Kazushi

    2016-02-15

    Tungsten imido complexes bearing a redox-active ligand, such as N,N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1,3-butadiene (L1), N,N'-bis(2,6-diisopropylphenyl)-1,4-diaza-1,3-butadiene (L2), and 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (L3), were prepared by salt-free reduction of W(═NC6H3-2,6-(i)Pr2)Cl4 (1) using 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (MBTCD) followed by addition of the corresponding redox-active ligands. In the initial stage, reaction of W(═NC6H3-2,6-(i)Pr2)Cl4 with MBTCD afforded a tetranuclear W(V) imido cluster, [W(═NC6H3-2,6-(i)Pr2)Cl3]4 (2), which served as a unique precursor for introducing redox-active ligands to the tungsten center to give the corresponding mononuclear complexes with a general formula of W(═NC6H3-2,6-(i)Pr2)Cl3(L) (3, L = L1; 4, L = L2; and 6, L = L3). X-ray analyses of complexes 3 and 6 revealed a neutral coordination mode of L1 and L3 to the tungsten in solid state, while the electron paramagnetic resonance (EPR) spectra of 3 and 4 clarified that a radical was predominantly located on the tungsten center supported by neutral L1 or L2, and the EPR spectra of complex 6 indicated that a radical was delocalized over both the tungsten center and the monoanionic redox-active ligand L3.

  9. Macrocyclic trichothecenes are undetectable in kudzu (Pueraria montana) plants treated with a high-producing isolate of Myrothecium verrucaria.

    PubMed

    Abbas, H K; Tak, H; Boyette, C D; Shier, W T; Jarvis, B B

    2001-09-01

    Myrothecium verrucaria was found to be an effective pathogen against kudzu grown in the greenhouse and the field. M. verrucaria produced large amounts of macrocyclic trichothecenes when cultured on solid rice medium, including epiroridin E (16.8 mg/g crude extract), epiisororidin E (1 mg/g), roridin E (8.7 mg/g), roridin H (31.3 mg/g), trichoverrin A (0.6 mg/g), trichoverrin B (0.1 mg/g), verrucarin A (37.4 mg/g), and verrucarin J (2.2 mg/g). Most of these toxins were also isolated from M. verrucaria spores and mycelia grown on potato dextrose agar medium, including epiroridin E (32.3 mg/g), epiisororidin E (28.6 mg/g), roridin E (0 mg/g), roridin H (60 mg/g), trichoverrin A (1.3 mg/g), trichoverrin B (1.8 mg/g), verrucarin A (13.8 mg/g), and verrucarin J (131 mg/g). When M. verrucaria was cultured on liquid media, the numbers but not the amounts of toxins decreased. Only epiroridin E (28.3 mg/g), epiisororidin E (29.6 mg/g), verrucarin B (195 mg/g) and verrucarin J (52.6 mg/g) were measured when the fungus was cultured on cornsteep medium. On soyflour-cornmeal broth M. verrucaria produced several toxins, including epiroridin E (58.1 mg/g), epiisororidin E (5.8 mg/g), verrucarin B (29.9 mg/g) and verrucarin J (32 mg/g). In contrast, no macrocyclic trichothecenes were detected by HPLC analysis of plant tissues of kudzu, sicklepod, and soybean treated with aqueous suspensions of M. verrucaria spores formulated with a surfactant. Chloroform-methanol extracts of kudzu leaves and stems treated with M. verrucaria spores were less cytotoxic to four cultured mammalian cell lines than the corresponding extracts from control plants. Purified macrocyclic trichothecenes (verrucarin A and T-2 toxin) were very cytotoxic to the same cell lines (< or = 2 ng/ml). These results show that neither intact macrocyclic trichothecenes nor toxic metabolites could be detected in plant tissues after treatment with M. verrucaria spores. These results argue for both safety and efficacy for the

  10. Analysis of macromolecules, ligands and macromolecule-ligand complexes

    DOEpatents

    Von Dreele, Robert B [Los Alamos, NM

    2008-12-23

    A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.

  11. Docking, synthesis, and NMR studies of mannosyl trisaccharide ligands for DC-SIGN lectin.

    PubMed

    Reina, José J; Díaz, Irene; Nieto, Pedro M; Campillo, Nuria E; Páez, Juan A; Tabarani, Georges; Fieschi, Franck; Rojo, Javier

    2008-08-07

    DC-SIGN, a lectin, which presents at the surface of immature dendritic cells, constitutes nowadays a promising target for the design of new antiviral drugs. This lectin recognizes highly glycosylated proteins present at the surface of several pathogens such as HIV, Ebola virus, Candida albicans, Mycobacterium tuberculosis, etc. Understanding the binding mode of this lectin is a topic of tremendous interest and will permit a rational design of new and more selective ligands. Here, we present computational and experimental tools to study the interaction of di- and trisaccharides with DC-SIGN. Docking analysis of complexes involving mannosyl di- and trisaccharides and the carbohydrate recognition domain (CRD) of DC-SIGN have been performed. Trisaccharides Manalpha1,2[Manalpha1,6]Man 1 and Manalpha1,3[Manalpha1,6]Man 2 were synthesized from an orthogonally protected mannose as a common intermediate. Using these ligands and the soluble extracellular domain (ECD) of DC-SIGN, NMR experiments based on STD and transfer-NOE were performed providing additional information. Conformational analysis of the mannosyl ligands in the free and bound states was done. These studies have demonstrated that terminal mannoses at positions 2 or 3 in the trisaccharides are the most important moiety and present the strongest contact with the binding site of the lectin. Multiple binding modes could be proposed and therefore should be considered in the design of new ligands.

  12. Axial coordination and conformational heterogeneity of nickel(II) tetraphenylprophyrin complexes with nitrogenous bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, S.L.; Song, X.Z.; Ma, J.G.

    1998-08-24

    Axial ligation of nickel(II) 5,10,15,20-tetraphenylporphyrin (NiTPP) with pyrrolidine or piperidine has been investigated using X-ray crystallography, UV-visible spectroscopy, resonance Raman spectroscopy, and molecular mechanics (MM) calculations. Distinct v{sub 4} Raman lines are found for the 4-, 5-, and 6-coordinate species of NiTPP. The equilibrium constants for addition of the first and second pyrrolidine axial ligands are 1.1 and 3.8 M{sup {minus}1}, respectively. The differences in the calculated energies of the conformers having different ligand rotational angles are small so they may coexist in solution. Because of the similarity in macrocyclic structural parameters of these conformers and the free rotation ofmore » the axial ligands, narrow and symmetric v{sub 2} and v{sub 8} Raman lines are observed. Nonetheless, the normal-coordinate structural-decomposition analysis of the nonplanar distortions of the calculated structures and the crystal structure of the bis(piperidine) complex reveals a relationship between the orientations of axial ligand(s) and the macrocyclic distortions. For the 5-coordinate complex with the plane of the axial ligand bisecting the Ni-N{sub pyrrole} bonds, a primarily ruffled deformation results. With the ligand plane eclipsing the Ni-N{sub pyrrole} bonds, a mainly saddled deformation occurs. With the addition of the second axial ligand, the small doming of the 5-coordinate complexes disappears, and ruffling or saddling deformations change depending on the relative orientation of the two axial ligands. The crystal structure of the NiTPP bis(piperidine) complex shows a macrocycle distortion composed of wav(x) and wav(y) symmetric deformations, but no ruffling, saddling, or doming. The difference in the calculated and observed distortions results partly from the phenyl group orientation imposed by crystal packing forces. MM calculations predict three stable conformers (ruf, sad, and planar) for 4-coordinate NiTPP, and resonance

  13. A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications.

    PubMed

    Pöller, Sascha; Beyl, Yvonne; Vivekananthan, Jeevanthi; Guschin, Dmitrii A; Schuhmann, Wolfgang

    2012-10-01

    A new synthesis route for Os-complex modified redox polymers was developed. Instead of ligand exchange reactions for coordinative binding of suitable precursor Os-complexes at the polymer, Os-complexes already exhibiting the final ligand shell containing a suitable functional group were bound to the polymer via an epoxide opening reaction. By separation of the polymer synthesis from the ligand exchange reaction at the Os-complex, the modification of the same polymer backbone with different Os-complexes or the binding of the same Os-complex to a number of different polymer backbones becomes feasible. In addition, the Os-complex can be purified and characterized prior to its binding to the polymer. In order to further understand and optimize suitable enzyme/redox polymer systems concerning their potential application in biosensors or biofuel cells, a series of redox polymers was synthesized and used as immobilization matrix for Trametes hirsuta laccase. The properties of the obtained biofuel cell cathodes were compared with similar biocatalytic interfaces derived from redox polymers obtained via ligand exchange reaction of the parent Os-complex with a ligand integrated into the polymer backbone during the polymer synthesis. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. QSAR studies of macrocyclic diterpenes with P-glycoprotein inhibitory activity.

    PubMed

    Sousa, Inês J; Ferreira, Maria-José U; Molnár, Joseph; Fernandes, Miguel X

    2013-02-14

    Multidrug resistance (MDR) represents a major limitation for cancer chemotherapy. There are several mechanisms of MDR but the most important is associated with P-glycoprotein (P-gp) overexpression. The development of modulators of P-gp that are able to re-establish drug sensitivity of resistant cells has been considered a promising approach for overcoming MDR. Macrocyclic lathyrane and jatrophane-type diterpenes from Euphorbia species were found to be strong MDR reversing agents. In this study we applied quantitative structure-activity relationship (QSAR) methodology in order to identify the most relevant molecular features of macrocyclic diterpenes with P-gp inhibitory activity and to determine which structural modifications can be performed to improve their activity. Using experimental biological data at two concentrations (4 and 40 μg/ml), we developed a QSAR model for a set of 51 bioactive diterpenic compounds which includes lathyrane and jatrophane-type diterpenes and another model just for jatrophanes. The cross-validation correlation values for all diterpenes QSAR models developed for biological activities at compound concentrations of 4 and 40 μg/ml were 0.758 and 0.729, respectively. Regarding the prediction ability, we get R²(pred) values of 0.765 and 0.534 for biological activities at compound concentrations of 4 and 40 μg/ml, respectively. Applying the cross-validation test to jatrophanes QSAR models, we obtained 0.680 and 0.787 for biological activities at compound concentrations of 4 and 40 μg/ml concentrations, respectively. For the same concentrations, the obtained R²(pred) values for jatrophanes models were 0.541 and 0.534, respectively. The obtained models were statistically valid and showed high prediction ability. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Directional Carrier Transfer in Strongly Coupled Binary Nanocrystal Superlattice Films Formed by Assembly and in Situ Ligand Exchange at a Liquid–Air Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yaoting; Li, Siming; Gogotsi, Natalie

    Two species of monodisperse nanocrystals (NCs) can self-assemble into a variety of complex 2D and 3D periodic structures, or binary NC superlattice (BNSL) films, based on the relative number and size of the NCs. BNSL films offer great promise for both fundamental scientific studies and optoelectronic applications; however, the utility of as-assembled structures has been limited by the insulating ligands that originate from the synthesis of NCs. Here we report the application of an in situ ligand exchange strategy at a liquid–air interface to replace the long synthesis ligands with short ligands while preserving the long-range order of BNSL films.more » This approach is demonstrated for BNSL structures consisting of PbSe NCs of different size combinations and ligands of interest for photovoltaic devices, infrared detectors, and light-emitting diodes. To confirm enhanced coupling introduced by ligand exchange, we show ultrafast (~1 ps) directional carrier transfer across the type-I heterojunction formed by NCs of different sizes within ligand-exchanged BNSL films. In conclusion, this approach shows the potential promise of functional BNSL films, where the local and long-range energy landscape and electronic coupling can be adjusted by tuning NC composition, size, and interparticle spacing.« less

  16. Sensitivity to Flg22 Is Modulated by Ligand-Induced Degradation and de Novo Synthesis of the Endogenous Flagellin-Receptor FLAGELLIN-SENSING2[W][OPEN

    PubMed Central

    Smith, John M.; Salamango, Daniel J.; Leslie, Michelle E.; Collins, Carina A.; Heese, Antje

    2014-01-01

    FLAGELLIN-SENSING2 (FLS2) is the plant cell surface receptor that perceives bacterial flagellin or flg22 peptide, initiates flg22-signaling responses, and contributes to bacterial growth restriction. Flg22 elicitation also leads to ligand-induced endocytosis and degradation of FLS2 within 1 h. Why plant cells remove this receptor precisely at the time during which its function is required remains mainly unknown. Here, we assessed in planta flg22-signaling competency in the context of ligand-induced degradation of endogenous FLS2 and chemical interference known to impede flg22-dependent internalization of FLS2 into endocytic vesicles. Within 1 h after an initial flg22 treatment, Arabidopsis (Arabidopsis thaliana) leaf tissue was unable to reelicit flg22 signaling in a ligand-, time-, and dose-dependent manner. These results indicate that flg22-induced degradation of endogenous FLS2 may serve to desensitize cells to the same stimulus (homologous desensitization), likely to prevent continuous signal output upon repetitive flg22 stimulation. In addition to impeding ligand-induced FLS2 degradation, pretreatment with the vesicular trafficking inhibitors Wortmannin or Tyrphostin A23 impaired flg22-elicited reactive oxygen species production that was partially independent of BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1. Interestingly, these inhibitors did not affect flg22-induced mitogen-activated protein kinase phosphorylation, indicating the ability to utilize vesicular trafficking inhibitors to target different flg22-signaling responses. For Tyrphostin A23, reduced flg22-induced reactive oxygen species could be separated from the defect in FLS2 degradation. At later times (>2 h) after the initial flg22 elicitation, recovery of FLS2 protein levels positively correlated with resensitization to flg22, indicating that flg22-induced new synthesis of FLS2 may prepare cells for a new round of monitoring the environment for flg22. PMID:24220680

  17. Crystal structures of two cross-bridged chromium(III) tetra­aza­macrocycles

    PubMed Central

    Prior, Timothy J.; Maples, Danny L.; Maples, Randall D.; Hoffert, Wesley A.; Parsell, Trenton H.; Silversides, Jon D.; Archibald, Stephen J.; Hubin, Timothy J.

    2014-01-01

    The crystal structure of di­chlorido­(4,10-dimethyl-1,4,7,10-tetra­aza­bicyclo­[5.5.2]tetra­deca­ne)chromium(III) hexa­fluorido­phosphate, [CrCl2(C12H26N4)]PF6, (I), has monoclinic symmetry (space group P21/n) at 150 K. The structure of the related di­chlorido­(4,11-dimethyl-1,4,8,11-tetra­aza­bicyclo­[6.6.2]hexa­deca­ne)chromium(III) hexa­fluorido­phosphate, [CrCl2(C14H30N4)]PF6, (II), also displays monoclinic symmetry (space group P21/c) at 150 K. In each case, the CrIII ion is hexa­coordinate with two cis chloride ions and two non-adjacent N atoms bound cis equatorially and the other two non-adjacent N atoms bound trans axially in a cis-V conformation of the macrocycle. The extent of the distortion from the preferred octa­hedral coordination geometry of the CrIII ion is determined by the parent macrocycle ring size, with the larger cross-bridged cyclam ring in (II) better able to accommodate this preference and the smaller cross-bridged cyclen ring in (I) requiring more distortion away from octa­hedral geometry. PMID:25309165

  18. Macrocycles inserted in graphene: from coordination chemistry on graphene to graphitic carbon oxide.

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Liu, Jingyao; Miao, Maosheng

    Tuning the electronic structure and the chemical properties of graphene by binding with metals has become a focus in the area of two dimension materials. Despite many interesting results and promising potentials, the approach suffers from weak binding and the high reactivity of the metal atoms. On the other hand, many macrocyclic molecules such as crown ether show strong and selective binding with metal atoms. The alliance of the two substances will largely benefit the two parallel fields: it will provide a scaffold for coordination chemistry as well as a controllable method for tuning the electronic structure of graphene through strong binding with metals. Here, using crown ether as an example, we demonstrate by first principles calculations that the embedment of macrocyclic molecules into graphene honeycomb lattice can be very thermochemically favored. The embedment of crown ether on graphene can form a family of new two-dimensional materials that possess varying band gaps and band edges. The one with highest O composition (C2O), with similar structure features as graphilic C3N4, shows strong potentials for photolysis and as true two-dimensional superconductor while binding with alkali metals. Calculations are performed on NSF-funded XSEDE resources (TG-DMR130005). This research is also supported by National Natural Science Foundation of China (Grants No. 21373098) in China.

  19. Separation and characterization of metallosupramolecular libraries by ion mobility mass spectrometry.

    PubMed

    Li, Xiaopeng; Chan, Yi-Tsu; Casiano-Maldonado, Madalis; Yu, Jing; Carri, Gustavo A; Newkome, George R; Wesdemiotis, Chrys

    2011-09-01

    The self-assembly of Zn(II) ions and bis(terpyridine) (tpy) ligands carrying 120° or 180° angles between their metal binding sites was utilized to prepare metallosupramolecular libraries with the connectivity. These combinatorial libraries were separated and characterized by ion mobility mass spectrometry (IM MS) and tandem mass spectrometry (MS(2)). The 180°-angle building blocks generate exclusively linear complexes, which were used as standards to determine the architectures of the assemblies resulting from the 120°-angle ligands. The latter ligand geometry promotes the formation of macrocyclic hexamers, but other n-mers with smaller (n = 5) or larger ring sizes (n = 7-9) were identified as minor products, indicating that the angles in the bis(terpyridine) ligand and within the coordinative tpy-Zn(II)-tpy bonds are not as rigid, as previously believed. Macrocyclic and linear isomers were detected in penta- and heptameric assemblies; in the larger octa- and nonameric assemblies, ring-opened conformers with compact and folded geometries were observed in addition to linear extended and cyclic architectures. IM MS(2) experiments provided strong evidence that the macrocycles present in the libraries were already formed in solution, during the self-assembly process, not by dissociation of larger complexes in the gas phase. The IM MS/MS(2) methods provide a means to analyze, based on size and shape (architecture), supramolecular libraries that are not amenable to liquid chromatography, LC-MS, NMR, and/or X-ray techniques.

  20. Synthesis and luminescence properties of polymer-rare earth complexes containing salicylaldehyde-type bidentate Schiff base ligand.

    PubMed

    Zhang, Dandan; Gao, Baojiao; Li, Yanbin

    2017-08-01

    Using molecular design and polymer reactions, two types of bidentate Schiff base ligands, salicylaldehyde-aniline (SAN) and salicylaldehyde-cyclohexylamine (SCA), were synchronously synthesized and bonded onto the side chain of polysulfone (PSF), giving two bidentate Schiff base ligand-functionalized PSFs, PSF-SAN and PSF-SCA, referred to as macromolecular ligands. Following coordination reactions between the macromolecular ligands and Eu(III) and Tb(III) ions (the reaction occurred between the bonded ligands SAN or SCA and the lanthanide ion), two series of luminescent polymer-rare earth complexes, PSF-SAN-Eu(III) and PSF-SCA-Tb(III), were obtained. The two macromolecular ligands were fully characterized by Fourier transform infrared (FTIR), 1 H NMR and UV absorption spectroscopy, and the prepared complexes were also characterized by FTIR, UV absorption spectroscopy and thermo-gravity analysis. On this basis, the photoluminescence properties of these complexes and the relationships between their structure and luminescence were investigated in depth. The results show that the bonded bidentate Schiff base ligands, SAN and SCA, can effectively sensitize the fluorescence emission of Eu(III) and Tb(III) ions, respectively. PSF-SAN-Eu(III) series complexes, namely the binary complex PSF-(SAN) 3 -Eu(III) and the ternary complex PSF-(SAN) 3 -Eu(III)-(Phen) 1 (Phen is the small-molecule ligand 1,10-phenanthroline), produce strong red luminescence, suggesting that the triplet state energy level of SAN is lower and well matched with the resonant energy level of the Eu(III) ion. By contrast, PSF-SAN-Eu(III) series complexes, namely the binary complex PSF-(SCA) 3 -Tb(III) and the ternary complex PSF-(SCA) 3 -Tb(III)-(Phen) 1 , display strong green luminescence, suggesting that the triplet state energy level of SCA is higher and is well matched with the resonant energy level of Tb(III). Copyright © 2017 John Wiley & Sons, Ltd.

  1. Tuning the Emission and Quantum Yield of Gold and Silver Nanoclusters Through Ligand Design and Doping

    NASA Astrophysics Data System (ADS)

    Mishra, Dinesh

    Nanoparticles have been extensively studied in the past few decades due to the possibilities they offer in applications ranging from medicine to energy generation. A new class of ultra-small noble metal nanoparticles consisting of tens to hundreds of atoms, commonly known as clusters or nanoclusters, have drawn interest of the research community recently due to their unique optical, electronic and structural properties. Over the past few years, advances have been made in the synthesis of atomically precise noble metal clusters (for example, silver and gold) with distinct optical properties. Their ultra-small size distinguishes them from conventional plasmonic nanoparticles and the properties are very sensitive to the slight variation in the compositon of the cluster, i.e. the number of the metal atoms and/or the nature of the ligands. These clusters are interesting because of their potential applications in field such as sensing, imaging, catalysis, clean energy, photonics, etc. as well as they provide fundamental insight into the evolution of the optical and electronic properties of these clusters. In this project, we explored the strategies to synthesize luminescent metallic clusters of gold and silver and to promote their solubility and stability in aqueous and biological medium. We focused particularly on the thiolate protected clusters due to the higher affinity of gold and silver to sulfur. Lipoic acid (Thioctic acid) is a bio-molecule with a cyclic disulfide ring, which also acts as a chelating ligand. Due to the higher binding affinity of the cyclic disulfide ring to nanocrystal surface, lipoic acid and chemically modified lipoic acid molecules have been widely reported for the synthesis and functionalization of inorganic nanocrystals. Here, we describe the use of bidentate lipoic acid ligands in the one phase growth of luminescent gold and silver nanoclusters. In addition, we have synthesized a new set of monothiol ligands containing PEG and zwitterion for

  2. Reaction of Donor-Acceptor Cyclobutanes with Indoles: A General Protocol for the Formal Total Synthesis of (±)-Strychnine and the Total Synthesis of (±)-Akuammicine.

    PubMed

    Feng, Liang-Wen; Ren, Hai; Xiong, Hu; Wang, Pan; Wang, Lijia; Tang, Yong

    2017-03-06

    A ligand-promoted catalytic [4+2] annulation reaction using indole derivatives and donor-acceptor (D-A) cyclobutanes is reported, thus providing an efficient and atom-economical access to versatile cyclohexa-fused indolines with excellent levels of diastereoselectivity and a broad substrate scope. In the presence of a chiral SaBOX ligand, excellent enantioselectivity was realized with up to 94 % ee. This novel synthetic method is applied as a general protocol for the total synthesis of (±)-akuammicine and the formal total synthesis of (±)-strychnine from the same common-core scaffold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A Saturn-Like Complex Composed of Macrocyclic Oligothiophene and C60 Fullerene: Structure, Stability, and Photophysical Properties in Solution and the Solid State.

    PubMed

    Shimizu, Hideyuki; Park, Kyu Hyung; Otani, Hiroyuki; Aoyagi, Shinobu; Nishinaga, Tohru; Aso, Yoshio; Kim, Dongho; Iyoda, Masahiko

    2018-03-12

    A Saturn-like 1:1 complex composed of macrocyclic oligothiophene E-8T7A and C 60 fullerene (C 60 ) was synthesized to investigate the interaction between macrocyclic oligothiophenes and C 60 in solution and the solid state. Because the Saturn-like 1:1 complex E-8T7A⋅C 60 is mainly stabilized by van der Waals interactions between C 60 and the sulfur atoms of the E-8T7A macrocycle, C 60 is rather weakly incorporated inside the macro-ring in solution. However, in the solid state the Saturn-like 1:1 complex preferentially formed single crystals or nanostructured polymorphs. Interestingly, X-ray analysis and theoretical calculations exhibited hindered rotation of C 60 in the Saturn-like complex due to interactions between C 60 and the sulfur atoms. Furthermore, the photoinduced charge transfer (CT) interaction between E-8T7A and C 60 in solution was investigated by using femtosecond transient absorption (TA) spectroscopy. The ultrafast TA spectral changes in the photoinduced absorption bands were attributed to the CT process in the Saturn-like structure. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis, Structures, and Reactions of Manganese Complexes Containing Diphosphine Ligands With Pendant Amines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Kevin D.; Dougherty, William G.; Kassel, W. S.

    2010-10-01

    Addition of the pendant amine ligand PNRP (PNRP = Et2PCH2NRCH2PEt2; R = Me, Ph, n-Bu) to Mn(CO)5Br gives fac-Mn(PNRP)(CO)3Br. Photolysis of fac-Mn(PNRP)(CO)3Br with dppm [dppm = 1,2-bis(diphenylphosphino)methane] provides mixed bis(diphosphine) complexes, trans-Mn(PNRP)(dppm)(CO)(Br). Reaction of trans-Mn(PNRP)(dppm)(CO)(Br) with LiAlH4 leads to trans-Mn(PNRP)(dppm)(CO)(H). The crystal structure of trans-Mn(PNMeP)(dppm)(CO)(H) determined by x-ray diffraction shows an unusual distortion of the Mn-H towards one C-H of the dppm ligand, resulting in an H Mn CO angle of 155(1)° and C H • • • H Mn distance of 2.10(3) Å. Mn(P2PhN2Bn)(dppm)(CO)(H) [P2PhN2Bn = 1, 5-diphenyl-3,7-dibenzyl-1,5-diaza-3,7-diphosphacyclooctane] can be prepared in a similar manner; its structure has onemore » chelate ring in a chair conformation and the second in a boat conformation. The boat-conformer ring directs the nitrogen of the ring towards the carbonyl ligand, and the N • • • C distance between one N of the P2PhN2Bn ligand and CO is 3.171(4) Å, indicating a weak interaction between the N of the pendant amine and the CO ligand. Reaction of NaBArF4 (ArF = = 3,5-bis(trifluoromethyl)phenyl) with Mn(P P)(dppm)(CO)(Br) produces the cations [Mn(P P)(dppm)(CO)]+. The crystal structure of [Mn(PNMeP)(dppm)(CO)][BArF4] shows two very weak agostic interactions between C-H bonds on the phenyl ring and the Mn. The cationic complexes [Mn(P P)(dppm)(CO)]+ react with H2 to form dihydrogen complexes [Mn(H2)(P P)(dppm)(CO)]+ (Keq = 1 - 90 atm-1 in fluorobenzene, for a series of different P P ligands). Similar equilibria with N2 produce [Mn(N2)(P P)(dppm)(CO)]+ (Keq generally 1-3.5 atm-1 in fluorobenzene). This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  5. Synthesis and stereospecificity of 4,5-disubstituted oxazolidinone ligands binding to T-box riboswitch RNA.

    PubMed

    Orac, Crina M; Zhou, Shu; Means, John A; Boehm, David; Bergmeier, Stephen C; Hines, Jennifer V

    2011-10-13

    The enantiomers and the cis isomers of two previously studied 4,5-disubstituted oxazolidinones have been synthesized, and their binding to the T-box riboswitch antiterminator model RNA has been investigated in detail. Characterization of ligand affinities and binding site localization indicates that there is little stereospecific discrimination for binding antiterminator RNA alone. This binding similarity between enantiomers is likely due to surface binding, which accommodates ligand conformations that result in comparable ligand-antiterminator contacts. These results have significant implications for T-box antiterminator-targeted drug discovery and, in general, for targeting other medicinally relevant RNA that do not present deep binding pockets.

  6. Synthesis and stereospecificity of 4,5-disubstituted oxazolidinone ligands binding to T-box riboswitch RNA

    PubMed Central

    Orac, Crina M.; Zhou, Shu; Means, John A.; Boehm, David; Bergmeier, Stephen C.; Hines, Jennifer V.

    2012-01-01

    The enantiomers and the cis isomers of two previously studied 4,5-disubstituted oxazolidinones have been synthesized and their binding to the T-box riboswitch antiterminator model RNA investigated in detail. Characterization of ligand affinities and binding site localization indicate that there is little stereospecific discrimination for binding antiterminator RNA alone. This binding similarity between enantiomers is likely due to surface binding, which accommodates ligand conformations that result in comparable ligand-antiterminator contacts. These results have significant implications for T-box antiterminator-targeted drug discovery and, in general, for targeting other medicinally relevant RNA that do not present deep binding pockets. PMID:21812425

  7. N-phosphino-p-tolylsulfinamide ligands: synthesis, stability, and application to the intermolecular Pauson-Khand reaction.

    PubMed

    Revés, Marc; Achard, Thierry; Solà, Jordi; Riera, Antoni; Verdaguer, Xavier

    2008-09-19

    Here we synthesized a family of racemic and optically pure N-phosphino-p-tolylsulfinamide (PNSO) ligands. Their stability and coordination behavior toward dicobalt-alkyne complexes was evaluated. Selectivities of up to 3:1 were achieved in the ligand exchange process with (mu-TMSC2H)Co2(CO)6. The resulting optically pure major complexes were tested in the asymmetric intermolecular Pauson-Khand reaction and yielded up to 94% ee. X-ray studies of the major complex 18a indicated that the presence of an aryl group on the sulfinamide reduces the hemilabile character of the PNSO ligands.

  8. Palladium(II) and platinum(II) derivatives of benzothiazoline ligands: Synthesis, characterization, antimicrobial and antispermatogenic activity

    NASA Astrophysics Data System (ADS)

    Sharma, Krishna; Singh, R. V.; Fahmi, Nighat

    2011-01-01

    A series of Pd(II) and Pt(II) complexes with two N ∩S donor ligands, 5-chloro-3-(indolin-2-one)benzothiazoline and 6-nitro-3-(indolin-2-one)benzothiazoline, have been synthesized by the reaction of metal chlorides (PdCl 2 and PtCl 2) with ligands in 1:2 molar ratios. All the synthesized compounds were characterized by elemental analyses, melting point determinations and a combination of electronic, IR, 1H NMR and 13C NMR spectroscopic techniques for structure elucidation. In order to evaluate the effect of metal ions upon chelation, both the ligands and their complexes have been screened for their antimicrobial activity against the various pathogenic bacterial and fungal strains. The metal complexes have shown to be more antimicrobial against the microbial species as compared to free ligands. One of the ligands, 5-chloro-3-(indolin-2-one)benzothiazoline and its corresponding palladium and platinum complexes have been tested for their antifertility activity in male albino rats. The marked reduction in sperm motility and density resulted in infertility by 62-90%. Significant alterations were found in biochemical parameters of reproductive organs in treated animals as compared to control group. It is concluded that all these effects may finally impair the fertility of male rats.

  9. New copper complexes with bipyrazolic ligands: Synthesis, characterization and evaluation of the antibacterial and catalytic properties

    NASA Astrophysics Data System (ADS)

    Harit, Tarik; Abouloifa, Houssam; Tillard, Monique; Eddike, Driss; Asehraou, Abdeslam; Malek, Fouad

    2018-07-01

    The synthesis of new bipyrazolic ligands functionalized by carboxyl groups, namely 3-Bis(3‧-carboxyl-5‧-methyl-l'-pyrazolyl) propan-2-ol (L1) and 1,3-Bis(3‧-carboxyl-5‧-methyl-l '-pyrazolyl),2-methyl propane (L2) is reported. Their corresponding [C13H15CuN4O5] (CuL1) and [C14H16CuN4O4] (CuL2) copper (II) complexes are also elaborated and characterized by elemental analysis, FTIR an UV-visible spectroscopy. The crystal structure of the CuL1 complex confirms that copper atom is 4-coordinated, in a distorted square planar geometry within the molecule, and achieves its coordination through weak intermolecular interactions leading to two dimensional slabs. This geometry is in agreement with UV-visible results which also evidence that structure of complexes are affected in DMSO in contrast to methanol. No antibacterial activity against all the tested bacterial strains has been found for the Cu (II) complexes. By contrast, CuL1 is characterized with good catalytic properties in the air-oxidation of catechol substrate to quinone.

  10. Templated synthesis of cyclic [4]rotaxanes consisting of two stiff rods threaded through two bis-macrocycles with a large and rigid central plate as spacer.

    PubMed

    Collin, Jean-Paul; Durola, Fabien; Frey, Julien; Heitz, Valérie; Reviriego, Felipe; Sauvage, Jean-Pierre; Trolez, Yann; Rissanen, Kari

    2010-05-19

    Two related cyclic [4]rotaxanes consisting of double macrocycles and rigid rods incorporating two bidentate chelates have each been prepared in high yield. The first step is a multigathering and threading reaction driven by coordination of two different bidentate chelates (part of either the rings or the rods) to each copper(I) center so as to afford the desired precursor. In both cases, the assembly step is done under very mild conditions, and it is quantitative. The second key reaction is the stopper-attaching reaction, based on click chemistry. Even if the quadruple stoppering reaction is not quantitative, it is relatively high-yielding (60% and 95%), and the copper-driven assembly process is carried out at room temperature without any aggressive reagent. The final copper-complexed [4]rotaxanes obtained contain two aromatic plates roughly parallel to one another located at the center of each bis-macrocycle. In the most promising case in terms of host-guest properties, the plates are zinc(II) porphyrins of the tetra-aryl series. The compounds have been fully characterized by various spectroscopic techniques ((1)H NMR, mass spectrometry, and electronic absorption spectroscopy). Unexpectedly, the copper-complexed porphyrinic [4]rotaxane could be crystallized as its 4PF(6)(-) salt to afford X-ray quality crystals. The structure obtained is in perfect agreement with the postulated chemical structure of the compound. It is particularly attractive in terms of symmetry and molecular aesthetics. The distance between the zinc atoms of the two porphyrins is 8.673 A, which is sufficient to allow insertion between the two porphyrinic plates of small ditopic basic substrates able to interact with the central porphyrinic Zn atoms. This prediction has been confirmed by absorption spectroscopy measurements in the presence of various organic substrates. However, large substrates cannot be introduced in the corresponding recognition site and are thus complexed mostly in an exo

  11. Studies of flerovium and element 115 homologs with macrocyclic extractants

    NASA Astrophysics Data System (ADS)

    Despotopulos, John Dustin

    charged metal cations. Extraction chromatography resins produced by Eichrom Technologies, specifically the Pb resin based on di-t-byutlcyclohexano-18-crown-6, were chosen as a starting point for these studies. Simple chemical systems based solely on HCl matrices were explored to determine the extent of extraction for Pb, Sn and Hg on the resin. The kinetics and mechanism of extraction were also explored to determine suitability for a Fl chemical experiment. Systems based on KI/HCl and KI/HNO3 were explored for Bi and Sb. In both cases suitable separations, with high separation factors, were performed with vacuum flow columns containing the Pb-resin. Unfortunately the kinetics of uptake for Hg are far too slow on the traditional crown-ether to perform a Fl experiment and obtain whether or not Fl has true Hg-like character or not. However, the kinetics of Pb and Sn are more than sufficient for a Fl experiment to differentiate between Pb- or Sn-like character. To assess this kinetic issue a novel macrocyclic extractant based on sulfur donors was synthesized. Hexathia-18-crown-6, the sulfur analog of 18-crown-6, was synthesized based with by a template reaction using high dilution techniques. The replacement of oxygen ring atoms with sulfur should give the extractant a softer character, which should allow for far greater affinity toward soft metals such as Hg and Pb. From HCl matrices hexathia-18-crown-6 showed far greater kinetics and affinity for Hg than the Pb-resin; however, no affinity for Pb or Sn was seen. This presumably is due to the fact the charge density of sulfur crown ethers does not point to the center of the ring, and future synthesis of a substituted sulfur crown ether which forces the charge density to mimic that of the traditional crown ether should enable extraction of Pb and Sn to a greater extent than with the Pb-resin. Initial studies show promise for the separation of Bi and Sb from HCl matrices using hexathia-18-crown-6. Other macrocyclic extractants

  12. Essential multimeric enzymes in kinetoplastid parasites: A host of potentially druggable protein-protein interactions.

    PubMed

    Wachsmuth, Leah M; Johnson, Meredith G; Gavenonis, Jason

    2017-06-01

    Parasitic diseases caused by kinetoplastid parasites of the genera Trypanosoma and Leishmania are an urgent public health crisis in the developing world. These closely related species possess a number of multimeric enzymes in highly conserved pathways involved in vital functions, such as redox homeostasis and nucleotide synthesis. Computational alanine scanning of these protein-protein interfaces has revealed a host of potentially ligandable sites on several established and emerging anti-parasitic drug targets. Analysis of interfaces with multiple clustered hotspots has suggested several potentially inhibitable protein-protein interactions that may have been overlooked by previous large-scale analyses focusing solely on secondary structure. These protein-protein interactions provide a promising lead for the development of new peptide and macrocycle inhibitors of these enzymes.

  13. Macrocyclic receptor showing extremely high Sr(II)/Ca(II) and Pb(II)/Ca(II) selectivities with potential application in chelation treatment of metal intoxication.

    PubMed

    Ferreirós-Martínez, Raquel; Esteban-Gómez, David; Tóth, Éva; de Blas, Andrés; Platas-Iglesias, Carlos; Rodríguez-Blas, Teresa

    2011-04-18

    Herein we report a detailed investigation of the complexation properties of the macrocyclic decadentate receptor N,N'-Bis[(6-carboxy-2-pyridil)methyl]-4,13-diaza-18-crown-6 (H(2)bp18c6) toward different divalent metal ions [Zn(II), Cd(II), Pb(II), Sr(II), and Ca(II)] in aqueous solution. We have found that this ligand is especially suited for the complexation of large metal ions such as Sr(II) and Pb(II), which results in very high Pb(II)/Ca(II) and Pb(II)/Zn(II) selectivities (in fact, higher than those found for ligands widely used for the treatment of lead poisoning such as ethylenediaminetetraacetic acid (edta)), as well as in the highest Sr(II)/Ca(II) selectivity reported so far. These results have been rationalized on the basis of the structure of the complexes. X-ray crystal diffraction, (1)H and (13)C NMR spectroscopy, as well as theoretical calculations at the density functional theory (B3LYP) level have been performed. Our results indicate that for large metal ions such as Pb(II) and Sr(II) the most stable conformation is Δ(δλδ)(δλδ), while for Ca(II) our calculations predict the Δ(λδλ)(λδλ) form being the most stable one. The selectivity that bp18c6(2-) shows for Sr(II) over Ca(II) can be attributed to a better fit between the large Sr(II) ions and the relatively large crown fragment of the ligand. The X-ray crystal structure of the Pb(II) complex shows that the Δ(δλδ)(δλδ) conformation observed in solution is also maintained in the solid state. The Pb(II) ion is endocyclically coordinated, being directly bound to the 10 donor atoms of the ligand. The bond distances to the donor atoms of the pendant arms (2.55-2.60 Å) are substantially shorter than those between the metal ion and the donor atoms of the crown moiety (2.92-3.04 Å). This is a typical situation observed for the so-called hemidirected compounds, in which the Pb(II) lone pair is stereochemically active. The X-ray structures of the Zn(II) and Cd(II) complexes show that

  14. Indenylmetal Catalysis in Organic Synthesis.

    PubMed

    Trost, Barry M; Ryan, Michael C

    2017-03-06

    Synthetic organic chemists have a long-standing appreciation for transition metal cyclopentadienyl complexes, of which many have been used as catalysts for organic transformations. Much less well known are the contributions of the benzo-fused relative of the cyclopentadienyl ligand, the indenyl ligand, whose unique properties have in many cases imparted differential reactivity in catalytic processes toward the synthesis of small molecules. In this Review, we present examples of indenylmetal complexes in catalysis and compare their reactivity to their cyclopentadienyl analogues, wherever possible. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A Readily Accessible Class of Chiral Cp Ligands and their Application in RuII -Catalyzed Enantioselective Syntheses of Dihydrobenzoindoles.

    PubMed

    Wang, Shou-Guo; Park, Sung Hwan; Cramer, Nicolai

    2018-05-04

    Chiral cyclopentadienyl (Cp x ) ligands have a large application potential in enantioselective transition-metal catalysis. However, the development of concise and practical routes to such ligands remains in its infancy. We present a convenient and efficient two-step synthesis of a novel class of chiral Cp x ligands with tunable steric properties that can be readily used for complexation, giving Cp x Rh I , Cp x Ir I , and Cp x Ru II complexes. The potential of this ligand class is demonstrated with the latter in the enantioselective cyclization of azabenzonorbornadienes with alkynes, affording dihydrobenzoindoles in up to 98:2 e.r., significantly outperforming existing binaphthyl-derived Cp x ligands. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. PDB-Ligand: a ligand database based on PDB for the automated and customized classification of ligand-binding structures.

    PubMed

    Shin, Jae-Min; Cho, Doo-Ho

    2005-01-01

    PDB-Ligand (http://www.idrtech.com/PDB-Ligand/) is a three-dimensional structure database of small molecular ligands that are bound to larger biomolecules deposited in the Protein Data Bank (PDB). It is also a database tool that allows one to browse, classify, superimpose and visualize these structures. As of May 2004, there are about 4870 types of small molecular ligands, experimentally determined as a complex with protein or DNA in the PDB. The proteins that a given ligand binds are often homologous and present the same binding structure to the ligand. However, there are also many instances wherein a given ligand binds to two or more unrelated proteins, or to the same or homologous protein in different binding environments. PDB-Ligand serves as an interactive structural analysis and clustering tool for all the ligand-binding structures in the PDB. PDB-Ligand also provides an easier way to obtain a number of different structure alignments of many related ligand-binding structures based on a simple and flexible ligand clustering method. PDB-Ligand will be a good resource for both a better interpretation of ligand-binding structures and the development of better scoring functions to be used in many drug discovery applications.

  17. Safety and clinical efficacy of tenvermectin, a novel antiparasitic 16-membered macrocyclic lactone antibiotics.

    PubMed

    Fei, Chenzhong; She, Rufeng; Li, Guiyu; Zhang, Lifang; Fan, Wushun; Xia, Suhan; Xue, Feiqun

    2018-05-30

    Tenvermectin (TVM) is a novel 16-membered macrocyclic lactone antibiotics, which contains component TVM A and TVM B. However there is not any report on safety and clinical efficacy of TVM for developing as a potential drug. In order to understand the part of safety and clinical efficacy of TVM, we conducted the acute toxicity test, the standard bacterial reverse mutation (Ames) test and the clinical deworming test. In the acute toxicity studies, TVM, TVM A and ivermectin (IVM) were administrated once by oral gavage to mice and rats. Results showed that the oral LD 50 values of TVM, TVM A and IVM in mice were 74.41, 106.95 and 53.06 mg/kg respectively. The oral LD 50 values of TVM and TVM A in rats were determined to be 164.22 and 749.34 mg/kg respectively. TVM and IVM are moderately toxic substances, meanwhile the TVM A belongs to low toxic compounds, implying that the acute toxicity is highly related to the length of side chain of TVM at position C25. In the Ames test, results showed that TVM did not induce mutagenicity in Salmonella typhimurium TA97a, TA98, TA100, TA102 and TA1535 with and without metabolic activation system, speculating that the mutagenicity is probably not related to the side chain at position C25 of 16-membered macrocyclic lactone antibiotics. In the efficacy trail of TVM against swine nematodes, growing pigs natural infection of Ascaris suum and Trichuris suis were treated with a single subcutaneous injection 0.3 mg/kg b.w.. Results showed that TVM and IVM had excellent effect in expelling Ascaris suum, and TVM had potential efficacy against Trichuris suis, however IVM had no effect on Trichuris suis. This study suggests that the side chain of TVM at position C25 may have important biological functions, which is one of the key sites of the studies on structure-activity relationship of 16-membered macrocyclic lactone compounds. TVM is a new compound exhibited some advantages worthy of developing. Copyright © 2018 Elsevier B.V. All

  18. Neighbor-directed histidine N(τ) alkylation. A route to imidazolium-containing phosphopeptide macrocycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Wen-Jian; Park, Jung-Eun; Grant, Robert

    2015-07-07

    Our recently discovered, selective, on-resin route to N(τ)-alkylated imidazolium-containing histidine residues affords new strategies for peptide mimetic design. In this, we demonstrate the use of this chemistry to prepare a series of macrocyclic phosphopeptides, in which imidazolium groups serve as ring-forming junctions. These cationic moieties subsequently serve to charge-mask the phosphoamino acid group that directed their formation. Furthermore, neighbor-directed histidine N(τ)-alkylation opens the door to new families of phosphopeptidomimetics for use in a range of chemical biology contexts.

  19. Synthesis, structures and properties of three copper complexes with dibutyldithiocarbamate ligand

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Niu, Jiao; Li, Jun; Ma, Xiaoxun

    2017-05-01

    Three copper complexes constructed with sulfur-containing dibutyldithiocarbamate ligand (DDTC), [(Et2NCS2)4Cu2] (1), [(Et2NCS2)(EtO)Cu]2 (2) and [(Et2NCS2)6Cu13I10]n (3) have been synthesized through the reaction of CuI with different mole ratios of DDTC under solution-diffusion conditions. The single crystal X-ray diffraction revealed that divalent Cu cations in complexes 1 and 2 imply that the reactant, Cu(I), was involved in the redox process. They formed binuclear complexes according to bridging S from DDTC ligands and O atoms from ethanol molecules respectively. The mixed valence Cu cations had two types of coordination environments in complex 3 and formed a two-dimensional layered coordination polymer by bridging the five-core Cu(I) clusters and Cu(II). The powder X-ray diffraction, luminescent, thermogravimetric analysis, etc. were also studied in this paper.

  20. Liquid phase low temperature method for production of methanol from synthesis gas and catalyst formulations therefor

    DOEpatents

    Mahajan, Devinder

    2005-07-26

    The invention provides a homogenous catalyst for the production of methanol from purified synthesis gas at low temperature and low pressure which includes a transition metal capable of forming transition metal complexes with coordinating ligands and an alkoxide, the catalyst dissolved in a methanol solvent system, provided the transition metal complex is not transition metal carbonyl. The coordinating ligands can be selected from the group consisting of N-donor ligands, P-donor ligands, O-donor ligands, C-donor ligands, halogens and mixtures thereof.

  1. A 26-Membered Macrocycle Obtained by a Double Diels-Alder Cycloaddition Between Two 2H-Pyran-2-one Rings and Two 1,1'-(Hexane-1,6-diyl)bis (1H-pyrrole-2,5-dione)s.

    PubMed

    Turek, Bor Lucijan; Kočevar, Marijan; Kranjc, Krištof; Perdih, Franc

    2017-12-01

    With the application of a double dienophile 1,1'-(hexane-1,6-diyl)bis(1H-pyrrole-2,5-dione) for a [4+2] cycloaddition with a substituted 2H-pyran-2-one a novel 26-membered tetraaza heteromacrocyclic system 3 was prepared via a direct method under solvent-free conditions with microwave irradiation. The macrocycle prepared is composed of two units of the dienophile and two of the diene. The structure of the macrocycle was characterized on the basis of IR, 1H and 13C NMR and mass spectroscopy, as well as by the elemental analysis and melting point determination. With X-ray diffraction of a single crystal of the macrocycle we have determined that the two acetyl groups (attached to the bridging double bond of the bicyclo[2.2.2]octene fragments) are oriented towards each other (and also towards the inside of the cavity of the macrocycle), therefore, mostly filling it completely.

  2. Macrocyclic peptides decrease c-Myc protein levels and reduce prostate cancer cell growth.

    PubMed

    Mukhopadhyay, Archana; Hanold, Laura E; Thayele Purayil, Hamsa; Gisemba, Solomon A; Senadheera, Sanjeewa N; Aldrich, Jane V

    2017-08-03

    The oncoprotein c-Myc is often overexpressed in cancer cells, and the stability of this protein has major significance in deciding the fate of a cell. Thus, targeting c-Myc levels is an attractive approach for developing therapeutic agents for cancer treatment. In this study, we report the anti-cancer activity of the macrocyclic peptides [D-Trp]CJ-15,208 (cyclo[Phe-D-Pro-Phe-D-Trp]) and the natural product CJ-15,208 (cyclo[Phe-D-Pro-Phe-Trp]). [D-Trp]CJ-15,208 reduced c-Myc protein levels in prostate cancer cells and decreased cell proliferation with IC 50 values ranging from 2.0 to 16 µM in multiple PC cell lines. [D-Trp]CJ-15,208 induced early and late apoptosis in PC-3 cells following 48 hours treatment, and growth arrest in the G2 cell cycle phase following both 24 and 48 hours treatment. Down regulation of c-Myc in PC-3 cells resulted in loss of sensitivity to [D-Trp]CJ-15,208 treatment, while overexpression of c-Myc in HEK-293 cells imparted sensitivity of these cells to [D-Trp]CJ-15,208 treatment. This macrocyclic tetrapeptide also regulated PP2A by reducing the levels of its phosphorylated form which regulates the stability of cellular c-Myc protein. Thus [D-Trp]CJ-15,208 represents a new lead compound for the potential development of an effective treatment of prostate cancer.

  3. Synthesis, Characterization and Application of Water-soluble Gold and Silver Nanoclusters

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh

    The term `nanotechnology' has emerged as a buzzword since the last few decades. It has found widespread applications across disciplines, from medicine to energy. The synthesis of gold and silver nanoclusters has found much excitement, due to their novel material properties. Seminal work by various groups, including ours, has shown that the size of these clusters can be controlled with atomic precision. This control gives access to tuning the optical and electronic properties. The majority of nanoclusters reported thus far are not water soluble, which limit their applications in biology that requires water-solubility. Going from organic to aqueous phase is by no means a simple task, as it is associated with many challenges. Their stability in the presence of oxygen, difficulty in characterization, and separation of pure nanoclusters are some of the major bottlenecks associated with the synthesis of water-soluble gold nanoclusters. Water-soluble gold nanoclusters hold great potential in biological labeling, bio-catalysis and nano-bioconjugates. To overcome this problem, a new ligand with structural rigidity is needed. After considering various possibilities, we chose Captopril as a candidate ligand. In my thesis research, the synthesis of Au25 nanocluster capped with captopril has been reported. Captopril-protected Au25 nanocluster showed significantly higher thermal stability and enhanced chiroptical properties than the Glutathione-capped cluster, which confirms our initial rationale, that the ligand is critical in protecting the nanocluster. The optical absorption properties of these Au25 nanoclusters are studied and compared to the plasmonic nanoparticles. The high thermal stability and solubility of Au25 cluster capped with Captopril motivated us to explore this ligand for the synthesis of other gold clusters. Captopril is a chiral molecule with two chiral centers. The chiral ligand can induce chirality to the overall cluster, even if the core is achiral

  4. Green synthesis, characterization and catalytic activity of the Pd/TiO2 nanoparticles for the ligand-free Suzuki-Miyaura coupling reaction.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad

    2016-03-01

    A green synthesis process was developed for production of the Pd/TiO2 nanoparticles (NPs) without using toxic, hazardous and dangerous materials. Myrtus communis L. leaf extract serves as a mild, renewable and non-toxic reducing agent. The advantages of this biosynthesis method include use of cheap, clean, nontoxic and environmentally benign precursors and simple procedures without time-consuming polymerization and problems with treatment of a highly viscous polymeric resin. More importantly, the synthesized Pd/TiO2 NPs presented excellent catalytic activity for ligand-free Suzuki-Miyaura coupling which could be easily separated from the reaction mixture and reused many times with no loss of activity. Therefore, these properties indicate demonstrative benefits of the catalyst. The Pd/TiO2 NPs was characterized by FESEM, TEM, FT-IR, UV-vis spectroscopy and EDS. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Synthesis, structural elucidation, biological, antioxidant and nuclease activities of some 5-Fluorouracil-amino acid mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram

    2015-01-01

    Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (Δ‡G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.

  6. Synthesis, characterization and electrochemical investigations of mixed-ligand copper(II)-organic supramolecular frameworks

    NASA Astrophysics Data System (ADS)

    Singh, Sandeep K.; Srivastava, Ashish Kumar; Srivastava, Krishna; Banerjee, Rahul; Prasad, Jagdish

    2017-11-01

    Two mixed-ligand copper(II)-organic coordination compounds with 5,5‧-dimethyl-2,2‧-bipyridine (5,5‧-Me2bpy) as a primary ligand while aliphatic malonate (Hmal) and aromatic 2-hydroxynicotinate (2-OHNA) as secondary ligands, were synthesized. These complexes are formulated as: [Cu(Hmal)(5,5‧-Me2bpy)(H2O)](ClO4) 1 and [Cu2(2-OHNA)2(5,5‧-Me2bpy)2(NO3)](NO3) 2. These two complexes were structurally characterized by single crystal X-ray diffraction analysis. Characterization was further supported by powder X-ray diffraction analysis, elemental analyses, FT-IR, FAB-MASS and TGA, DSC studies. Cyclic voltammetric and UV-visible spectral studies of these two complexes have also been done. The electrochemical studies of complex 1 in DMSO and DMF have shown that this complex undergoes quasi-reversible diffusion-controlled one-electron transfer reaction without any chemical complication while complex 2 in DMSO undergoes quasi-reversible diffusion-controlled one electron transfer reaction, following EC mechanism. The electrochemical behaviour of complex 2 in DMF is complicated probably due to presence of more than one species in solution phase.

  7. DOTA analogues with a phosphinate-iminodiacetate pendant arm: modification of the complex formation rate with a strongly chelating pendant.

    PubMed

    Procházková, Soňa; Kubíček, Vojtěch; Böhmová, Zuzana; Holá, Kateřina; Kotek, Jan; Hermann, Petr

    2017-08-08

    The new ligand H 6 do3aP ida combines the macrocyclic DOTA-like cavity and the open-chain iminodiacetate group connected through a coordinating phosphinate spacer. Its acid-base and coordination properties in solution were studied by potentiometry. Thermodynamic coordination characteristics of both chelating units are similar to those reported for H 4 dota and iminodiacetic acid themselves, respectively, so, macrocyclic and iminodiacetate units behave independently. The formation kinetics of the Ce(iii)-H 6 do3aP ida complex was studied by UV-Vis spectrophotometry. Various out-of-cage intermediates were identified with 1 : 1, 1 : 2 and 2 : 1 ligand-to-metal ratios. The presence of the strongly coordinating iminodiacetate group significantly slows down the metal ion transfer into the macrocyclic cavity and, so, the formation of the in-cage complex is two orders of magnitude slower than that reported for the Ce(iii)-H 4 dota system. The kinetic inertness of the [Ce(do3aP ida )] 3- complex towards acid-assisted dissociation is comparable to that of the [Ce(dota)] - complex. The coordination modes of the ligand are demonstrated in the solid-state structure of [Cu 4 (do3aP ida )(OH)(H 2 O) 4 ]Cl·7.5H 2 O.

  8. Solution synthesis of germanium nanocrystals

    DOEpatents

    Gerung, Henry [Albuquerque, NM; Boyle, Timothy J [Kensington, MD; Bunge, Scott D [Cuyahoga Falls, OH

    2009-09-22

    A method for providing a route for the synthesis of a Ge(0) nanometer-sized material from. A Ge(II) precursor is dissolved in a ligand heated to a temperature, generally between approximately 100.degree. C. and 400.degree. C., sufficient to thermally reduce the Ge(II) to Ge(0), where the ligand is a compound that can bond to the surface of the germanium nanomaterials to subsequently prevent agglomeration of the nanomaterials. The ligand encapsulates the surface of the Ge(0) material to prevent agglomeration. The resulting solution is cooled for handling, with the cooling characteristics useful in controlling the size and size distribution of the Ge(0) materials. The characteristics of the Ge(II) precursor determine whether the Ge(0) materials that result will be nanocrystals or nanowires.

  9. Synthesis and biological activity of small peptides as NOP and opioid receptors' ligands: view on current developments.

    PubMed

    Naydenova, Emilia; Todorov, Petar; Zamfirova, Rositza

    2015-01-01

    The heptadecapeptide nociceptin, also called orphanin FQ (N/OFQ), is the endogenous agonist of the N/OFQ peptide receptor (NOP receptor) and is involved in several central nervous system pathways, such as nociception, reward, tolerance, and feeding. The discovery of small molecule ligands for NOP is being actively pursued for several therapeutic applications. This review presents overview of the several recently reported NOP ligands (agonists and antagonists), with an emphasis of the structural features that may be important for modulating the intrinsic activity of these ligands. In addition, a brief account on the characterization of newly synthesized ligands of NOP receptor with aminophosphonate moiety and β-tryptophan analogues will be presented. © 2015 Elsevier Inc. All rights reserved.

  10. Synthesis, Photochemical, and Redox Properties of Gold(I) and Gold(III) Pincer Complexes Incorporating a 2,2′:6′,2″-Terpyridine Ligand Framework

    PubMed Central

    2015-01-01

    Reaction of [Au(C6F5)(tht)] (tht = tetrahydrothiophene) with 2,2′:6′,2″-terpyridine (terpy) leads to complex [Au(C6F5)(η1-terpy)] (1). The chemical oxidation of complex (1) with 2 equiv of [N(C6H4Br-4)3](PF6) or using electrosynthetic techniques affords the Au(III) complex [Au(C6F5)(η3-terpy)](PF6)2 (2). The X-ray diffraction study of complex 2 reveals that the terpyridine acts as tridentate chelate ligand, which leads to a slightly distorted square-planar geometry. Complex 1 displays fluorescence in the solid state at 77 K due to a metal (gold) to ligand (terpy) charge transfer transition, whereas complex 2 displays fluorescence in acetonitrile due to excimer or exciplex formation. Time-dependent density functional theory calculations match the experimental absorption spectra of the synthesized complexes. In order to further probe the frontier orbitals of both complexes and study their redox behavior, each compound was separately characterized using cyclic voltammetry. The bulk electrolysis of a solution of complex 1 was analyzed by spectroscopic methods confirming the electrochemical synthesis of complex 2. PMID:26496068

  11. Synthesis and characterization of new complexes of nickel (II), palladium (II) and platinum(II) with derived sulfonamide ligand: Structure, DFT study, antibacterial and cytotoxicity activities

    NASA Astrophysics Data System (ADS)

    Bouchoucha, Afaf; Zaater, Sihem; Bouacida, Sofiane; Merazig, Hocine; Djabbar, Safia

    2018-06-01

    The synthesis, characterization and biological study of new nickel (II), palladium (II), and platinum (II) complexes with sulfamethoxazole ligand used in pharmaceutical field, were reported. [MLCl2].nH2O is the general formula obtained for Pd(II) and Pt(II) complexes. These complexes have been prepared and characterized by elemental analysis, FTIR, 1HNMR spectral, magnetic measurements, UV-Visible spectra, and conductivity. The DFT calculation was applied to optimize the geometric structure of the Pd(II) and Pt(II) complexes. A new single-crystal X-ray structure of the Ni(II) complex has been determined. It crystallized in monoclinic system with P 21/c space group and Z = 8. The invitro antibacterial activity of ligand and complexes against Escherichia coli, P. aeruginosa, Klebsiella pneumoniae, S. aureus, Bacillus subtilis species has been carried out and compared using agar-diffusion method. The Pd(II) and Pt(II) complexes showed a remarkable inhibition against bacteria tested. The invitro cytotoxicity assay of the complexes against three cell lines chronic myelogenous leukaemia (K562), human colon adenocarcinoma (HT-29) and breast cancer (MCF-7) was also reported.

  12. External anion effect on the synthesis of new MOFs based on formate and a twisted divergent ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lago, Ana Belén, E-mail: ablago@uvigo.es; Carballo, Rosa; Lezama, Luis

    2015-11-15

    New copper(II) metal–organic compounds with the formulae [Cu{sub 3}Cl(HCO{sub 2}){sub 5}(SCS){sub 3}(H{sub 2}O){sub 2}]·8H{sub 2}O·EtOH (1) and [Cu{sub 3}(HCO{sub 2}){sub 4}(SCS){sub 4}(H{sub 2}O){sub 2}](NO{sub 3}){sub 2}·9H{sub 2}O (2) (SCS=bis(4-pyridylthio)methane) have been synthesized after a careful study of the reaction of the SCS ligand with copper(II) formate. The compounds were obtained in the presence of sodium chloride and nitrate salts under microwave irradiation. The influence of the anion at different metal/anion ratios on the final architecture has been studied. The new chloride-MOF 1 has been characterized by electron paramagnetic resonance (EPR), magnetic properties and single crystal X-ray diffraction studies. The thermalmore » stability and topological analysis have also been investigated. - Highlights: • Microwave synthesis of coordination polymers. • Anion-derived structural changes. • Influence of anions at different metal/anion ratios on the final architectures. • EPR and magnetic characterization of a MOF compound.« less

  13. Divergent Synthesis of Revised Apratoxin E, 30-epi-Apratoxin E, and 30S/30R-Oxoapratoxin E.

    PubMed

    Mao, Zhuo-Ya; Si, Chang-Mei; Liu, Yi-Wen; Dong, Han-Qing; Wei, Bang-Guo; Lin, Guo-Qiang

    2017-10-20

    In this report, originally proposed apratoxin E (30S-7), revised apratoxin E (30R-7), and (30S)/(30R)-oxoapratoxin E (30S)-38/(30R)-38 were efficiently prepared by two synthetic methods. The chiral lactone 10, recycled from the degradation of saponin glycosides, was utilized to prepare the key nonpeptide fragment 9. Our alternative convergent assembly strategy was applied to the divergent synthesis of revised apratoxin E and its three analogues. Moreover, ring-closing metathesis (RCM) was for the first time found to be an efficient strategy for the macrocyclization of apratoxins.

  14. Improvement in luminance of light-emitting diode using InP/ZnS quantum dot with 1-dodecanethiol ligand

    NASA Astrophysics Data System (ADS)

    Fukuda, Takeshi; Sasaki, Hironao

    2018-03-01

    We present the synthesis protocol of a red emissive InP/ZnS quantum dot with a 1-dodecanthiol ligand and its application to a quantum dot light-emitting diode. The ligand change from oleylamine to 1-dodecanthiol, which were connected around the InP/ZnS quantum dot, was confirmed by Fourier-transform infrared spectroscopy and thermal analysis. The absorption peak was blue-shifted by changing 1-dodecanthiol ligands from oleylamine ligands to prevent the unexpected nucleation of the InP core. In addition, the luminance of the light-emitting device was improved by using the InP/ZnS quantum dot with 1-dodecanthiol ligands, and the maximum current efficiency of 7.2 × 10-3 cd/A was achieved. The 1-dodecanthiol ligand is often used for capping to reduce the number of surface defects and/or prevent unexpected core growth, resulting in reduced Auger recombination. This result indicates that 1-dodecanthiol ligands prevent the deactivation of excitons while injecting carriers by applying a voltage, resulting in a high luminance efficiency.

  15. Laser initiation of Fe(II) complexes of 4-nitro-pyrazolyl substituted tetrazine ligands

    DOE PAGES

    Myers, Thomas Winfield; Brown, Kathryn Elizabeth; Chavez, David E.; ...

    2017-02-01

    Here, the synthesis and characterization of new 1,2,4-triazolyl and 4-nitro-pyrazolyl substituted tetrazine ligands has been achieved. The strongly electron deficient 1,2,4-triazolyl substituted ligands did not coordinate Fe(II) metal centers, while the mildly electron deficient 4-nitro-pyrazolyl substituted ligands did coordinate Fe(II) metal centers in a 2:1 ratio of ligand to metal. The thermal stability and mechanical sensitivity characteristics of the complexes are similar to the conventional explosive pentaerythritol tetranitrate. The complexes had strong absorption in the visible region of the spectrum that extended into the near-infrared. In spite of having improved oxygen balances, increased mechanical sensitivity, and similar absorption of NIRmore » light to recently reported Fe(II) tetrazine complexes, these newly synthesized explosives were more difficult to initiate with Nd:YAG pulsed laser light. More specifically, the complexes required lower densities (0.9 g/cm 3) to initiate at the same threshold utilized to initiate previous materials at higher densities (1.05 g/cm 3).« less

  16. Virtual libraries of tetrapyrrole macrocycles. Combinatorics, isomers, product distributions, and data mining.

    PubMed

    Taniguchi, Masahiko; Du, Hai; Lindsey, Jonathan S

    2011-09-26

    A software program (PorphyrinViLiGe) has been developed to enumerate the type and relative amounts of substituted tetrapyrrole macrocycles in a virtual library formed by one of four different classes of reactions. The classes include (1) 4-fold reaction of n disubstituted heterocycles (e.g., pyrroles or diiminoisoindolines) to form β-substituted porphyrins, β-substituted tetraazaporphyrins, or α- or β-substituted phthalocyanines; (2) combination of m aminoketones and n diones to form m × n pyrroles, which upon 4-fold reaction give β-substituted porphyrins; (3) derivatization of an 8-point tetrapyrrole scaffold with n reagents, and (4) 4-fold reaction of n aldehydes and pyrrole to form meso-substituted porphyrins. The program accommodates variable ratios of reactants, reversible or irreversible reaction (reaction classes 1 and 2), and degenerate modes of formation. Pólya's theorem (for enumeration of cyclic entities) has also been implemented and provides validation for reaction classes 3 and 4. The output includes the number and identity of distinct reaction-accessible substituent combinations, the number and identity of isomers thereof, and the theoretical mass spectrum. Provisions for data mining enable assessment of the number of products having a chosen pattern of substituents. Examples include derivatization of an octa-substituted phthalocyanine with eight reagents to afford a library of 2,099,728 members (yet only 6435 distinct substituent combinations) and reversible reaction of six distinct disubstituted pyrroles to afford 2649 members (yet only 126 distinct substituent combinations). In general, libraries of substituted tetrapyrrole macrocycles occupy a synthetically accessible region of chemical space that is rich in isomers (>99% or 95% for the two examples, respectively).

  17. Early/Late Heterobimetallic Tantalum/Rhodium Species Assembled Through a Novel Bifunctional NHC-OH Ligand.

    PubMed

    Srivastava, Ravi; Moneuse, Raphaël; Petit, Julien; Pavard, Paul-Alexis; Dardun, Vincent; Rivat, Madleen; Schiltz, Pauline; Solari, Marius; Jeanneau, Erwann; Veyre, Laurent; Thieuleux, Chloé; Quadrelli, Elsje Alessandra; Camp, Clément

    2018-03-20

    The straightforward synthesis of a new unsymmetrical hydroxy-tethered N-heterocyclic carbene (NHC) ligand, HL, is presented. The free ligand exhibits an unusual OH-carbene hydrogen-bonding interaction. This OH-carbene motif was used to yield 1) the first tantalum complex displaying both a Fischer- and Schrock-type carbene ligand and 2) a unique NHC-based early/late heterobimetallic complex. More specifically, the protonolysis chemistry between the ligand's hydroxy group and imido-alkyl or alkylidene-alkyl tantalum precursor complexes yielded the rare monometallic tantalum-NHC complexes [Ta(XtBu)(L)(CH 2 tBu) 2 ] (X=N, CH), in which the alkoxy-carbene ligand acts as a chelate. In contrast, HL only binds to rhodium through the NHC unit in [Rh(HL)(cod)Cl] (cod=cycloocta-1,5-diene), the hydroxy pendant arm remaining unbound. This bifunctional ligand scaffold successfully promoted the assembly of rhodium/tantalum heterobimetallic complexes upon either 1) the insertion of [Rh(cod)Cl] 2 into the Ta-NHC bond in [Ta(NtBu)(L)(CH 2 tBu) 2 ] or 2) protonolysis between the free hydroxy group in [Rh(HL)(cod)Cl] and one alkyl group in [Ta(NtBu)(CH 2 tBu) 3 ]. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Macrocyclic peptide inhibitors for the protein-protein interaction of Zaire Ebola virus protein 24 and karyopherin alpha 5.

    PubMed

    Song, Xiao; Lu, Lu-Yi; Passioura, Toby; Suga, Hiroaki

    2017-06-21

    Ebola virus infection leads to severe hemorrhagic fever in human and non-human primates with an average case fatality rate of 50%. To date, numerous potential therapies are in development, but FDA-approved drugs or vaccines are yet unavailable. Ebola viral protein 24 (VP24) is a multifunctional protein that plays critical roles in the pathogenesis of Ebola virus infection, e.g. innate immune suppression by blocking the interaction between KPNA and PY-STAT1. Here we report macrocyclic peptide inhibitors of the VP24-KPNA5 protein-protein interaction (PPI) by means of the RaPID (Random non-standard Peptides Integrated Discovery) system. These macrocyclic peptides showed remarkably high affinity to recombinant Zaire Ebola virus VP24 (eVP24), with a dissociation constant in the single digit nanomolar range, and could also successfully disrupt the eVP24-KPNA interaction. This work provides for the first time a chemical probe capable of modulating this PPI interaction and is the starting point for the development of unique anti-viral drugs against the Ebola virus.

  19. Synthesis and characterization of Pd(II)-methyl complexes with N-heterocyclic carbene-amine ligands.

    PubMed

    Warsink, Stefan; de Boer, Sandra Y; Jongens, Lianne M; Fu, Ching-Feng; Liu, Shiuh-Tzung; Chen, Jwu-Ting; Lutz, Martin; Spek, Anthony L; Elsevier, Cornelis J

    2009-09-21

    A number of palladium(ii) complexes with a heteroditopic NHC-amine ligand and their precursor silver(i) carbene complexes have been efficiently prepared and their structural features have been investigated. The heteroditopic coordination of this ligand class was unequivocally shown by NMR-spectroscopy and X-ray crystallographic analysis. The neutral and cationic cis-methyl-palladium(NHC) complexes are not prone to reductive elimination, which is normally a major degenerative pathway for this type of complex. In contrast, under carbon monoxide atmosphere rapid reductive elimination of the acyl-imidazolium salt was observed.

  20. Exploration of labeling by near infrared dyes of the polyproline linker for bivalent-type CXCR4 ligands.

    PubMed

    Nomura, Wataru; Aikawa, Haruo; Taketomi, Shohei; Tanabe, Miho; Mizuguchi, Takaaki; Tamamura, Hirokazu

    2015-11-01

    We have previously used poly-L-proline linkers for the development of bivalent-type ligands for the chemokine receptor, CXCR4. The bivalent ligands with optimum linkers showed specific binding to CXCR4, suggesting the existence of CXCR4 possibly as a dimer on the cell membrane, and enabled definition of the amount of CXCR4 expressed. This paper reports the synthesis by a copper-catalyzed azide-alkyne cycloaddition reaction as the key reaction, of bivalent CXCR4 ligands with near infrared (NIR) dyes at the terminus or the center of the poly-L-proline linker. Some of the NIR-labeled ligands, which would be valuable probes useful in studies of the behavior of cells expressing CXCR4, have been obtained. The information concerning the effects of the labeling positions of NIR dyes on their binding properties is useful for the design of modified bivalent-type CXCR4 ligands. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Screening the efficient biological prospects of triazole allied mixed ligand metal complexes

    NASA Astrophysics Data System (ADS)

    Utthra, Ponnukalai Ponya; Kumaravel, Ganesan; Raman, Natarajan

    2017-12-01

    Triazole appended mixed ligand complexes (1-8) of the general formula [ML (bpy/phen)2]Cl2, where M = Cu(II), Co(II), Ni(II) and Zn(II), L = triazole appended Schiff base (E)sbnd N-(4-nitrobenzylidene)-1H-1,2,4-triazol-3-amine and bpy/phen = 2,2‧-bipyridine/1,10-phenanthroline, have been synthesized. The design and synthesis of this elaborate ligand has been performed with the aim of increasing stability and conjugation of 1,2,4 triazole, whose Schiff base derivatives are known as biologically active compounds thereby exploring their DNA binding affinity and other biological applications. The compounds have been comprehensively characterized by elemental analysis, spectroscopic methods (IR, UV-Vis, EPR, 1H and 13C NMR spectroscopy), ESI mass spectrometry and magnetic susceptibility measurements. The complexes were found to exhibit octahedral geometry. The complexes 1-8 were subjected to DNA binding techniques evaluated using UV-Vis absorption, CV, CD, Fluorescence spectroscopy and hydrodynamic measurements. Complex 5 showed a Kb value of 3.9 × 105 M-1. The DNA damaging efficacy for the complexes was observed to be high compared to the ligand. The antimicrobial screening of the compounds against bacterial and fungal strains indicates that the complexes possess excellent antimicrobial activity than the ligand. The overall biological activity of the complexes with phen as a co-ligand possessed superior potential than the ligand.

  2. Two-Dimensional Nanoporous Networks Formed by Liquid-to-Solid Transfer of Hydrogen-Bonded Macrocycles Built from DNA Bases.

    PubMed

    Bilbao, Nerea; Destoop, Iris; De Feyter, Steven; González-Rodríguez, David

    2016-01-11

    We present an approach that makes use of DNA base pairing to produce hydrogen-bonded macrocycles whose supramolecular structure can be transferred from solution to a solid substrate. A hierarchical assembly process ultimately leads to two-dimensional nanostructured porous networks that are able to host size-complementary guests. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatimah, Soja Siti, E-mail: soja-sf@upi.edu; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor; Bahti, Husein H.

    2016-02-08

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, andmore » using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, ({sup 1}H, and {sup 13}C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.« less

  4. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    NASA Astrophysics Data System (ADS)

    Fatimah, Soja Siti; Bahti, Husein H.; Hastiawan, Iwan; Permanasari, Anna

    2016-02-01

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, (1H, and 13C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  5. Cucurbit[7]uril as a tool in the green synthesis of gold nanoparticles.

    PubMed

    Premkumar, Thathan; Geckeler, Kurt E

    2010-12-03

    A simple, green, one-pot synthesis of gold nanoparticles was achieved through the reaction of an aqueous mixture of potassium tetrachloroaurate(III) and the macrocycle cucurbit[7]uril in the presence of sodium hydroxide at room temperature without introducing any kind of traditional reducing agents and/or external energy. The as-prepared gold nanoparticles showed catalytic activity for the reduction reaction of 4-nitrophenol in the presence of NaBH(4), which has been established by visual inspection and UV/Vis spectroscopy. This report is the first for the preparation of gold nanoparticles using cucurbit[7]uril in aqueous media through chemical reduction without employing conventional reducing agents and/or external energy.

  6. Synthesis of imine bond containing insoluble polymeric ligand and its transition metal complexes, structural characterization and catalytic activity on esterification reaction.

    PubMed

    Gönül, İlyas; Ay, Burak; Karaca, Serkan; Saribiyik, Oguz Yunus; Yildiz, Emel; Serin, Selahattin

    2017-01-01

    In this study, synthesis of insoluble polymeric ligand (L) and its transition metal complexes [Cu(L)Cl 2 ]·2H 2 O (1) , [Co(L)Cl 2 (H 2 O) 2 ] (2) and [Ni(L)Cl 2 (H 2 O) 2 ] (3) , having the azomethine groups, were synthesized by the condensation reactions of the diamines and dialdehydes. The structural properties were characterized by the analytical and spectroscopic methods using by elemental analysis, Fourier Transform Infrared, Thermo Gravimetric Analysis, Powder X-ray Diffraction, magnetic susceptibility and Inductively Coupled Plasma. The solubilities of the synthesized polymeric materials were also investigated and found as insoluble some organic and inorganic solvents. Additionally, their catalytic performance was carried out for the esterification reaction of acetic acid and butyl acetate. The highest conversion rate is 75.75% by using catalyst 1 . The esterification of butanol gave butyl acetate with 100% selectivity.

  7. Synthesis of imine bond containing insoluble polymeric ligand and its transition metal complexes, structural characterization and catalytic activity on esterification reaction

    PubMed Central

    Gönül, İlyas; Ay, Burak; Karaca, Serkan; Saribiyik, Oguz Yunus; Yildiz, Emel; Serin, Selahattin

    2017-01-01

    Abstract In this study, synthesis of insoluble polymeric ligand (L) and its transition metal complexes [Cu(L)Cl2]·2H2O (1), [Co(L)Cl2(H2O)2] (2) and [Ni(L)Cl2(H2O)2] (3), having the azomethine groups, were synthesized by the condensation reactions of the diamines and dialdehydes. The structural properties were characterized by the analytical and spectroscopic methods using by elemental analysis, Fourier Transform Infrared, Thermo Gravimetric Analysis, Powder X-ray Diffraction, magnetic susceptibility and Inductively Coupled Plasma. The solubilities of the synthesized polymeric materials were also investigated and found as insoluble some organic and inorganic solvents. Additionally, their catalytic performance was carried out for the esterification reaction of acetic acid and butyl acetate. The highest conversion rate is 75.75% by using catalyst 1. The esterification of butanol gave butyl acetate with 100% selectivity. PMID:29491815

  8. Targeting protein-protein interactions with trimeric ligands: high affinity inhibitors of the MAGUK protein family.

    PubMed

    Nissen, Klaus B; Haugaard-Kedström, Linda M; Wilbek, Theis S; Nielsen, Line S; Åberg, Emma; Kristensen, Anders S; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.

  9. Hydrogenation and dehydrogenation iron pincer catalysts capable of metal-ligand cooperation by aromatization/dearomatization.

    PubMed

    Zell, Thomas; Milstein, David

    2015-07-21

    some cases can even exceed those of state-of-the-art noble-metal catalysts. For the iron PNP systems, we describe the synthesis of the pyridine- and acridine-based PNP iron complexes and their performances and limitations in catalytic reactions, and we present studies on their reactivity with relevance to their catalytic mechanisms. In the case of the bipyridine-based PNN system, we summarize the synthesis of new complexes and describe studies on the noninnocence of the methylene position, which can be reversibly deprotonated, as well as on the noninnocence of the bipyridine unit. Overall, this Account underlines that the combination of cheap and abundant iron with ligands that are capable of metal-ligand cooperation can result in the development of novel, versatile, and efficient catalysts for atom-efficient catalytic reactions.

  10. Radiochemical studies of 99mTc complexes of modified cysteine ligands and bifunctional chelating agents.

    PubMed

    Pillai, M R; Kothari, K; Banerjee, S; Samuel, G; Suresh, M; Sarma, H D; Jurisson, S

    1999-07-01

    The synthesis of four novel ligands using the amino-acid cysteine and its ethyl carboxylate derivative is described. The synthetic method involves a two-step procedure, wherein the intermediate Schiff base formed by the condensation of the amino group of the cysteine substrate and salicylaldehyde is reduced to give the target ligands. The intermediates and the final products were characterized by high resolution nuclear magnetic resonance spectroscopy. Complexation studies of the ligands with 99mTc were optimized using stannous tartrate as the reducing agent under varying reaction conditions. The complexes were characterized using standard quality control techniques such as thin layer chromatography, paper electrophoresis, and paper chromatography. Lipophilicities of the complexes were estimated by solvent extraction into chloroform. Substantial changes in net charge and lipophilicity of the 99mTc complexes were observed on substituting the carboxylic acid functionality in ligands I and II with the ethyl carboxylate groups (ligands II and IV). All the ligands formed 99mTc complexes in high yield. Whereas the complexes with ligands I and II were observed to be hydrophilic in nature and not extractable into CHCl3, ligands III and IV resulted in neutral and lipophilic 99mTc complexes. The 99mTc complex with ligand II was not stable and on storage formed a hydrophilic and nonextractable species. The biodistribution of the complexes of ligands I and II showed that they cleared predominantly through the kidneys, whereas the complexes with ligands III and IV were excreted primarily through the hepatobiliary system. No significant brain uptake was observed with the 99mTc complexes with ligands III and IV despite their favorable properties of neutrality, lipophilicity, and conversion into a hydrophilic species. These ligands offer potential for use as bifunctional chelating agents.

  11. Gd complexes of macrocyclic diethylenetriaminepentaacetic acid (DTPA) biphenyl-2,2'-bisamides as strong blood-pool magnetic resonance imaging contrast agents.

    PubMed

    Jung, Ki-Hye; Kim, Hee-Kyung; Lee, Gang Ho; Kang, Duk-Sik; Park, Ji-Ae; Kim, Kyeong Min; Chang, Yongmin; Kim, Tae-Jeong

    2011-08-11

    We report the synthesis of macrocyclic DTPA conjugates of 2,2'-diaminobiphenyl and their Gd complexes of the type [Gd(L)(H(2)O)]·xH(2)O (2a,b; L = 1a,b) for use as new MRI blood-pool contrast agents (MRI BPCAs). Pharmacokinetic inertness of 2 compares well with those of analogous Gd-DTPA MRI CAs currently in use. The present system also shows very high stability in human serum. The R(1) relaxivity reaches 10.9 mM(-1) s(-1), which is approximately 3 times as high as that of structurally related Gd-DOTA (R(1) = 3.7 mM(-1) s(-1)). The R(1) relaxivity in HSA goes up to 37.2 mM(-1) s(-1), which is almost twice as high as that of MS-325, a leading BPCA, demonstrating a strong blood pool effect. The in vivo MR images of mice obtained with 2b are coherent, showing strong signal enhancement in heart, abdominal aorta, and small vessels. Even the brain tumor is vividly enhanced for an extended period of time. The structural uniqueness of 2 is that it is neutral in charge and thus makes no resort to electrostatic interaction, supposedly one of the essential factors for the blood-pool effect.

  12. Macrocyclic receptors immobilized to monodisperse porous polymer particles by chemical grafting and physical impregnation for strontium capture: a comparative study.

    PubMed

    Song, Yang; Du, Yi; Lv, Dachao; Ye, Gang; Wang, Jianchen

    2014-06-15

    Separation of strontium is of great significance for radioactive waste treatment and environmental remediation after nuclear accidents. In this work, a novel class of adsorbent (Crown-g-MPPPs) was synthesized by chemical grafting a macrocyclic ether receptor to monodisperse porous polymer particles (MPPPs) for strontium adsorption. Meanwhile, a counterpart material (Crown@MPPPs) with the receptor molecules immobilized to the MPPPs substrate by physical impregnation was prepared. To investigate how the immobilization manner and distribution of the receptors influence the adsorption ability, a comparative study on the adsorption behaviour of the two materials towards Sr(II) in HNO3 media was accomplished. Due to the shorter diffusion path and covalently-bonded structure, Crown-g-MPPPs showed faster adsorption kinetics and better stability for cycle use. While Crown@MPPPs had the advantages of facile synthesis and higher adsorption capacity, owing to the absence of conformational constraint to form complexation with Sr(II). Kinetic functions (Lagergren pseudo-first-order/pseudo-second-order functions) and adsorption isotherm models (Langmuir/Freundlich models) were used to fit the experimental data and examine the adsorption mechanism. On this basis, a chromatographic process was proposed by using Crown@MPPPs for an effective separation of Sr(II) (91%) in simulated high level liquid waste (HLLW). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Structure-based design of oxygen-linked macrocyclic kinase inhibitors: discovery of SB1518 and SB1578, potent inhibitors of Janus kinase 2 (JAK2) and Fms-like tyrosine kinase-3 (FLT3)

    NASA Astrophysics Data System (ADS)

    Poulsen, Anders; William, Anthony; Blanchard, Stéphanie; Lee, Angeline; Nagaraj, Harish; Wang, Haishan; Teo, Eeling; Tan, Evelyn; Goh, Kee Chuan; Dymock, Brian

    2012-04-01

    Macrocycles from our Aurora project were screened in a kinase panel and were found to be active on other kinase targets, mainly JAKs, FLT3 and CDKs. Subsequently these compounds became leads in our JAK2 project. Macrocycles with a basic nitrogen in the linker form a salt bridge with Asp86 in CDK2 and Asp698 in FLT3. This residue is conserved in most CDKs resulting in potent pan CDK inhibition. One of the main project objectives was to achieve JAK2 potency with 100-fold selectivity against CDKs. Macrocycles with an ether linker have potent JAK2 activity with the ether oxygen forming a hydrogen bond to Ser936. A hydrogen bond to the equivalent residues of JAK3 and most CDKs cannot be formed resulting in good selectivity for JAK2 over JAK3 and CDKs. Further optimization of the macrocyclic linker and side chain increased JAK2 and FLT3 activity as well as improving DMPK properties. The selective JAK2/FLT3 inhibitor 11 (Pacritinib, SB1518) has successfully finished phase 2 clinical trials for myelofibrosis and lymphoma. Another selective JAK2/FLT3 inhibitor, 33 (SB1578), has entered phase 1 clinical development for the non-oncology indication rheumatoid arthritis.

  14. Combining ligand design and photo-ligation to provide optimal quantum dot-bioconjugates for sensing and imaging

    NASA Astrophysics Data System (ADS)

    Zhan, Naiqian; Palui, Goutam; Safi, Malak; Mattoussi, Hedi

    2014-03-01

    We describe the design and synthesis of two metal-coordinating zwitterion ligands to promote the transfer of hydrophobic QDs to buffer media over broad range of conditions. The ligands are prepared by appending either one or two lipoic acid anchoring groups onto a zwitterion, LA-TEG200-ZW and bis(LA)- ZW. Combining these ligands with a photochemical reduction of the lipoic acid group in the presence of UV irradiation, provides an easy to implement method to transfer luminescent QDs to buffer media, while preserving their optical and spectroscopic properties intact. The resulting zwitterion-QDs have very thin capping shell, which allows their self-assembly with full size proteins via metal-to-histidine coordination. These conjugates have great potential for use in various bio-motivated applications.

  15. Ruthenium(II) Complexes Containing Lutidine-Derived Pincer CNC Ligands: Synthesis, Structure, and Catalytic Hydrogenation of C-N bonds.

    PubMed

    Hernández-Juárez, Martín; López-Serrano, Joaquín; Lara, Patricia; Morales-Cerón, Judith P; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2015-05-11

    A series of Ru complexes containing lutidine-derived pincer CNC ligands have been prepared by transmetalation with the corresponding silver-carbene derivatives. Characterization of these derivatives shows both mer and fac coordination of the CNC ligands depending on the wingtips of the N-heterocyclic carbene fragments. In the presence of tBuOK, the Ru-CNC complexes are active in the hydrogenation of a series of imines. In addition, these complexes catalyze the reversible hydrogenation of phenantridine. Detailed NMR spectroscopic studies have shown the capability of the CNC ligand to be deprotonated and get involved in ligand-assisted activation of dihydrogen. More interestingly, upon deprotonation, the Ru-CNC complex 5 e(BF4 ) is able to add aldimines to the metal-ligand framework to yield an amido complex. Finally, investigation of the mechanism of the hydrogenation of imines has been carried out by means of DFT calculations. The calculated mechanism involves outer-sphere stepwise hydrogen transfer to the C-N bond assisted either by the pincer ligand or a second coordinated H2 molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Self-Assembly of a [1+1] Ionic Hexagonal Macrocycle and its Antiproliferative Activity

    NASA Astrophysics Data System (ADS)

    Singh, Khushwant; Gangrade, Ankit; Bhowmick, Sourav; Jana, Achintya; Mandal, Biman B.; Das, Neeladri

    2018-04-01

    A unique irregular hexagon was self-assembled using an organic donor clip (bearing terminal pyridyl units) and a complementary organometallic acceptor clip. The resulting metallamacrocycle was characterized by multinuclear NMR, mass spectrometry, and elemental analyses. Molecular modeling confirmed hexagonal shaped cavity for this metallamacrocycle which is a unique example of a discrete hexagonal framework self-assembled from only two building blocks. Cytotoxicity of the Pt-based acceptor tecton and the self-assembled PtII-based macrocycle was evaluated using three cancer cell lines and results were compared with cisplatin. Results confirmed a positive effect of the metallamacrocycle formation on cell growth inhibition.

  17. Ruthenium(II) bipyridine complexes bearing new keto-enol azoimine ligands: synthesis, structure, electrochemistry and DFT calculations.

    PubMed

    Al-Noaimi, Mousa; Awwadi, Firas F; Mansi, Ahmad; Abdel-Rahman, Obadah S; Hammoudeh, Ayman; Warad, Ismail

    2015-01-25

    The novel azoimine ligand, Ph-NH-N=C(COCH3)-NHPh(C≡CH) (H2L), was synthesized and its molecular structure was determined by X-ray crystallography. Catalytic hydration of the terminal acetylene of H2L in the presence of RuCl3·3H2O in ethanol at reflux temperature yielded a ketone (L1=Ph-N=N-C(COCH3)=N-Ph(COCH3) and an enol (L2=Ph-N=N-C(COCH3)=N-PhC(OH)=CH2) by Markovnikov addition of water. Two mixed-ligand ruthenium complexes having general formula, trans-[Ru(bpy)(Y)Cl2] (1-2) (where Y=L1 (1) and Y=L2 (2), bpy is 2.2'-bipyrdine) were achieved by the stepwise addition of equimolar amounts of (H2L) and bpy ligands to RuCl3·3H2O in absolute ethanol. Theses complexes were characterized by elemental analyses and spectroscopic (IR, UV-Vis, and NMR (1D (1)H NMR, (13)C NMR, (DEPT-135), (DEPT-90), 2D (1)H-(1)H and (13)C-(1)H correlation (HMQC) spectroscopy)). The two complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 604 mV vs. ferrocene/ferrocenium (Cp2Fe(0/+)) couple along with one electron ligand reduction at -1010 mV. The crystal structure of complex 1 showed that the bidentate ligand L1 coordinates to Ru(II) by the azo- and imine-nitrogen donor atoms. The complex adopts a distorted trans octahedral coordination geometry of chloride ligands. The electronic spectra of 1 and 1+ in dichloromethane have been modeled by time-dependent density functional theory (TD-DFT). Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Neighbor-Directed Histidine N (s)–Alkylation: A Route to Imidazolium-Containing Phosphopeptide Macrocycles-Biopolymers | Center for Cancer Research

    Cancer.gov

    Our recently discovered, selective, on-resin route to N(s)-alkylated imidazolium-containing histidine residues affords new strategies for peptide mimetic design. In this, we demonstrate the use of this chemistry to prepare a series of macrocyclic phosphopeptides, in which imidazolium groups serve as ring-forming junctions. Interestingly, these cationic moieties subsequently

  19. Interaction of d(10) metal ions with thioether ligands: a thermodynamic and theoretical study.

    PubMed

    Melchior, Andrea; Peralta, Elena; Valiente, Manuel; Tavagnacco, Claudio; Endrizzi, Francesco; Tolazzi, Marilena

    2013-05-07

    Thermodynamic parameters of complex formation between d(10) metal ions, such as Zn(2+), Cd(2+), Hg(2+) and Ag(+), and the macrocyclic thioether 1,4,7-trithiacyclononane ([9]AneS3) or the monodentate diethylsulfide (Et(2)S), in acetonitrile (AN) at 298.15 K, were studied by a systematic methodology including potentiometry, calorimetry and polarography. [9]AneS3 is able to form complexes with all the target cations, Et(2)S only reacts with Hg(2+) and Ag(+). Mononuclear ML(j) (j = 1, 2) complexes are formed with all the metal ions investigated, where the affinity order is Hg(2+) > Ag(+) > Cd(2+) ≈ Zn(2+) when L = [9]AneS3 and Hg(2+) > Ag(+) when L = Et(2)S. Enthalpy and entropy values are generally negative, as a consequence of both metal ion interactions with neutral ligands, the reagents' loss of degrees of freedom and the release of solvating molecules. DFT calculations on the complexes formed with [9]AneS3 in vacuum and in AN are also carried out, to correlate experimental and theoretical thermodynamic values and to highlight the interplay between the direct metal-thioether interaction and the solvation effects. Trends obtained for the stability constants and enthalpies of the 1 : 1 and 1 : 2 complexes in solvent well reproduce the experimental ones for all the divalent metal ion complexes with [9]AneS3 and indicate the release of 3 AN molecules in the formation of each consecutive octahedral complex. In addition, calculated and experimental values for Ag(+) complex formation in solution suggest that in AgL(2) species [9]AneS3 ligands are not both tridentate.

  20. Electrical and Plasmonic Properties of Ligand-Free Sn(4+) -Doped In2 O3 (ITO) Nanocrystals.

    PubMed

    Jagadeeswararao, Metikoti; Pal, Somnath; Nag, Angshuman; Sarma, D D

    2016-03-03

    Sn(4+) -doped In2 O3 (ITO) is a benchmark transparent conducting oxide material. We prepared ligand-free but colloidal ITO (8 nm, 10 % Sn(4+) ) nanocrystals (NCs) by using a post-synthesis surface-modification reaction. (CH3 )3 OBF4 removes the native oleylamine ligand from NC surfaces to give ligand-free, positively charged NCs that form a colloidal dispersion in polar solvents. Both oleylamine-capped and ligand-free ITO NCs exhibit intense absorption peaks, due to localized surface plasmon resonance (LSPR) at around λ=1950 nm. Compared with oleylamine-capped NCs, the electrical resistivity of ligand-free ITO NCs is lower by an order of magnitude (≈35 mΩ cm(-1) ). Resistivity over a wide range of temperatures can be consistently described as a composite of metallic ITO grains embedded in an insulating matrix by using a simple equivalent circuit, which provides an insight into the conduction mechanism in these systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Regulation of expression of the ligand for CD40 on T helper lymphocytes.

    PubMed

    Castle, B E; Kishimoto, K; Stearns, C; Brown, M L; Kehry, M R

    1993-08-15

    Activated Th cells deliver contact-dependent signals to resting B lymphocytes that initiate and drive B cell proliferation. Recently, a ligand for the B lymphocyte membrane protein, CD40, has been identified that delivers contact-dependent Th cell signals to B cells. A dimeric soluble form of CD40 was produced and used to further characterize the regulation of expression of the CD40 ligand. Expression of the CD40 ligand was rapidly induced after Th lymphocyte activation, and its stability depended upon whether Th cells were activated with soluble or plastic-bound stimuli. Th cells activated with soluble stimuli rapidly turned over cell-surface CD40 ligand whereas Th cells activated with plastic-bound stimuli exhibited more stable CD40 ligand expression for up to 48 h. Removal of activated Th cells from the plastic-bound stimulus resulted in a rapid turnover of CD40 ligand, suggesting that continuous stimulation could maintain CD40 ligand expression. Ligation by soluble CD40 could also stabilize expression of CD40 ligand on the Th cell surface. Both CD40 ligand and IL-2 were transiently synthesized from 1 to 12 h after Th cell activation and had similar kinetics of synthesis. In Con A-activated Th cells newly synthesized CD40 ligand exhibited an initial high turnover (1.5 h t1/2) and after 5 h of Th cell activation became more stable (10-h t1/2). In Th cells activated with plastic-bound anti-CD3, CD40 ligand exhibited a similar biphasic turnover except that the rapid turnover phase began significantly later. This delay could allow more time for newly synthesized CD40 ligand to assemble or associate with other molecules and thus become stabilized on the cell surface. Newly synthesized CD40 ligand in Con A-activated Th cells appeared to not be efficient in delivering Th cell-dependent contact signals to resting B cells, implying the need for assembly or accessory proteins. Regulation of CD40 ligand expression was consistent with all the characteristics of Th cell

  2. Probing the interface between semiconducting nanocrystals and molecular metal chalcogenide surface ligands: insights from first principles

    NASA Astrophysics Data System (ADS)

    Scalise, Emilio; Wippermann, Stefan; Galli, Giulia; Talapin, Dmitri

    Colloidal nanocrystals (NCs) are emerging as cost-effective materials offering exciting prospects for solar energy conversion, light emission and electronic applications. Recent experimental advances demonstrate the synthesis of fully inorganic nanocrystal solids from chemical solution processing. The properties of the NC-solids are heavily determined by the NCs surface and their interactions with the host matrix. However, information on the atomistic structure of such composites is hard to obtain, due to the complexity of the synthesis conditions and the unavailability of robust experimental techniques to probe nanointerfaces at the microscopic level. Here we present a systematic theoretical study of the interaction between InAs and InP NCs with Sn2S64- ligands. Employing a grand canonical ab initio thermodynamic approach we investigate the relative stability of a multitude of configurations possibly realized at the NC-ligand interface. Our study highlights the importance of different structural details and their strong impact on the resulting composite's properties. We show that to obtain a detailed understanding of experimental data it is necessary to take into account complex interfacial structures beyond simplified NC-ligand model interfaces. S. W. acknowledges BMBF NanoMatFutur Grant No. 13N12972. G.G. acknowledges DOE-BES for funding part of this work.

  3. Tuning the structure, dimensionality and luminescent properties of lanthanide metal-organic frameworks under ancillary ligand influence.

    PubMed

    D'Vries, Richard F; Gomez, German E; Hodak, José H; Soler-Illia, Galo J A A; Ellena, Javier

    2016-01-14

    This manuscript addresses the synthesis, structural characterization and optical properties of a 1D coordination polymer (CPs) and 2D and 3D Metal-Organic Frameworks (MOFs) obtained from lanthanide metals, 3-hydroxinaftalene-2,7-disulfonic acid (3-OHNDS) and two different phenanthroline derivates as ancillary ligands. The first is a family of 2D compounds with formula [Ln(3-OHNDS)(H2O)2], where Ln = La(), Pr(), Nd() and Sm(). The addition of 1,10-phenanthroline (phen) in the reaction produces 1D compounds with general formula [Ln(3-OHNDS)(phen)(H2O)]·3H2O, where Ln = La(), Pr(), Nd() and Sm(). Finally, the synthesis with 3,4,7,8-tetramethyl-1,10-phenanthroline (3,4,7,8-TMPhen) as an ancillary ligand results in the formation of the 3D [La(3-OHNDS)(3,4,7,8-TMphen)(H2O)] () compound. The photoluminescence (PL) properties of 1D and 2D compounds were fully investigated in comparison with the 3-OHNDS ligand. One of the most important results was the obtaining of a white-light single-emitter without adding dopant atoms in the structure. With all these results in mind it was possible to establish structure-property relationships.

  4. Dianionic Titanyl and Vanadyl (Cation+ )2 [MIV O(Pc4- )]2- Phthalocyanine Salts Containing Pc4- Macrocycles.

    PubMed

    Konarev, Dmitri V; Kuzmin, Alexey V; Khasanov, Salavat S; Litvinov, Alexey L; Otsuka, Akihiro; Yamochi, Hideki; Kitagawa, Hiroshi; Lyubovskaya, Rimma N

    2018-06-18

    In this study, the titanyl and vanadyl phthalocyanine (Pc) salts (Bu 4 N + ) 2 [M IV O(Pc 4- )] 2- (M=Ti, V) and (Bu 3 MeP + ) 2 [M IV O(Pc 4- )] 2- (M=Ti, V) with [M IV O(Pc 4- )] 2- dianions were synthesized and characterized. Reduction of M IV O(Pc 2- ) carried out with an excess of sodium fluorenone ketyl in the presence of Bu 4 N + or Bu 3 MeP + is exclusive to the phthalocyanine centers, forming Pc 4- species. During reduction, the metal +4 charge did not change, implying that Pc is an non-innocent ligand. The Pc negative charge increase caused the C-N(pyr) bonds to elongate and the C-N(imine) bonds to alternate, thus increasing the distortion of Pc. Jahn-Teller effects are significant in the [eg(π*)] 2 dianion ground state and can additionally distort the Pc macrocycles. Blueshifts of the Soret and Q-bands were observed in the UV/Vis/NIR when M IV O(Pc 2- ) was reduced to [M IV O(Pc . 3- )] . - and [M IV O(Pc 4- )] 2- . From magnetic measurements, [Ti IV O(Pc 4- )] 2- was found to be diamagnetic and (Bu 4 N + ) 2 [V IV O(Pc 4- )] 2- and (Bu 3 MeP + ) 2 [V IV O(Pc 4- )] 2- were found to have magnetic moments of 1.72-1.78 μ B corresponding to an S=1/2 spin state owing to V IV electron spin. As a result, two latter salts show EPR signals with V IV hyperfine coupling. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. PuPHOS: a synthetically useful chiral bidentate ligand for the intermolecular Pauson-Khand reaction.

    PubMed

    Verdaguer, Xavier; Lledó, Agustí; López-Mosquera, Cristina; Maestro, Miguel Angel; Pericàs, Miquel A; Riera, Antoni

    2004-11-12

    Here we describe the synthesis and use of the Pulegone-derived bidentate P,S ligands PuPHOS and CyPuPHOS in the intermolecular Pauson-Khand reaction. Ligand exchange reaction of hexacarbonyldicobalt-alkyne complexes with PuPHOS provides a diasteromeric mixture of complexes (up to 4.5:1) from which the major isomers can be conveniently separated by simple crystallization. An isomerization-crystallization sequence of the original mixture results in a dynamic resolution that allows the preparation of the pure major Co(2)(mu-TMSC(2)H)(CO)(4)-PuPHOS (15a) in a multigram scale. Pauson-Khand reaction of 15a with norbornadiene provided, for the first time, the corresponding enone 18 with up to 93% yield and 97% ee. The use of (+)-18 as a surrogate of chiral cyclopentadienone is also demonstrated. Copper-catalyzed Michael addition of a Grignard reagent followed by removal of the TMS group with TBAF were the most reliable methods to transform (+)-18 into valuable starting materials 20a-e for the enantioselective synthesis of cyclopentenoid systems.

  6. Supramolecular macrocycles reversibly assembled by Te…O chalcogen bonding

    PubMed Central

    Ho, Peter C.; Szydlowski, Patrick; Sinclair, Jocelyn; Elder, Philip J. W.; Kübel, Joachim; Gendy, Chris; Lee, Lucia Myongwon; Jenkins, Hilary; Britten, James F.; Morim, Derek R.; Vargas-Baca, Ignacio

    2016-01-01

    Organic molecules with heavy main-group elements frequently form supramolecular links to electron-rich centres. One particular case of such interactions is halogen bonding. Most studies of this phenomenon have been concerned with either dimers or infinitely extended structures (polymers and lattices) but well-defined cyclic structures remain elusive. Here we present oligomeric aggregates of heterocycles that are linked by chalcogen-centered interactions and behave as genuine macrocyclic species. The molecules of 3-methyl-5-phenyl-1,2-tellurazole 2-oxide assemble a variety of supramolecular aggregates that includes cyclic tetramers and hexamers, as well as a helical polymer. In all these aggregates, the building blocks are connected by Te…O–N bridges. Nuclear magnetic resonance spectroscopic experiments demonstrate that the two types of annular aggregates are persistent in solution. These self-assembled structures form coordination complexes with transition-metal ions, act as fullerene receptors and host small molecules in a crystal. PMID:27090355

  7. Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands

    PubMed Central

    Md Yusof, Enis Nadia; Ravoof, Thahira Begum S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhimanyu; Crouse, Karen Anne; Mohamed Tahir, Mohamed Ibrahim; Ahmad, Haslina

    2015-01-01

    Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC) with 2-methoxybenzaldehyde (2MB) and 3-methoxybenzaldehyde (3MB). The ligands were reacted separately with acetates of Cu(II), Ni(II) and Zn(II) yielding 1:2 (metal:ligand) complexes. The metal complexes formed were expected to have a general formula of [M(NS)2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1) and S2M3MBH (2) were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cell lines. Only the Cu(II) complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II) complexes have a strong DNA binding affinity. PMID:25988384

  8. Two novel mixed-ligand complexes containing organosulfonate ligands.

    PubMed

    Li, Mingtian; Huang, Jun; Zhou, Xuan; Fang, Hua; Ding, Liyun

    2008-07-01

    The structures reported herein, viz. bis(4-aminonaphthalene-1-sulfonato-kappaO)bis(4,5-diazafluoren-9-one-kappa(2)N,N')copper(II), [Cu(C(10)H(8)NO(3)S)(2)(C(11)H(6)N(2)O)(2)], (I), and poly[[[diaquacadmium(II)]-bis(mu-4-aminonaphthalene-1-sulfonato)-kappa(2)O:N;kappa(2)N:O] dihydrate], {[Cd(C(10)H(8)NO(3)S)(2)(H(2)O)(2)].2H(2)O}(n), (II), are rare examples of sulfonate-containing complexes where the anion does not fulfill a passive charge-balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the Cu(II) atom, and the asymmetric unit contains one-half of a Cu atom, one complete 4-aminonaphthalene-1-sulfonate (ans) ligand and one 4,5-diazafluoren-9-one (DAFO) ligand. The Cu(II) atom has an elongated distorted octahedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules. Complex (II) is polymeric and its crystal structure is built up by one-dimensional chains and solvent water molecules. Here also the cation (a Cd(II) atom) lies on a crystallographic inversion center and adopts a slightly distorted octahedral geometry. Each ans anion serves as a bridging ligand linking two Cd(II) atoms into one-dimensional infinite chains along the [010] direction, with each Cd(II) center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant pi-pi stacking interactions between adjacent ligands and hydrogen bonds contribute to the formation of two- and three-dimensional networks.

  9. Impairment of Fas-ligand-caveolin-1 interaction inhibits Fas-ligand translocation to rafts and Fas-ligand-induced cell death.

    PubMed

    Glukhova, Xenia A; Trizna, Julia A; Proussakova, Olga V; Gogvadze, Vladimir; Beletsky, Igor P

    2018-01-22

    Fas-ligand/CD178 belongs to the TNF family proteins and can induce apoptosis through death receptor Fas/CD95. The important requirement for Fas-ligand-dependent cell death induction is its localization to rafts, cholesterol- and sphingolipid-enriched micro-domains of membrane, involved in regulation of different signaling complexes. Here, we demonstrate that Fas-ligand physically associates with caveolin-1, the main protein component of rafts. Experiments with cells overexpressing Fas-ligand revealed a FasL N-terminal pre-prolin-rich region, which is essential for the association with caveolin-1. We found that the N-terminal domain of Fas-ligand bears two caveolin-binding sites. The first caveolin-binding site binds the N-terminal domain of caveolin-1, whereas the second one appears to interact with the C-terminal domain of caveolin-1. The deletion of both caveolin-binding sites in Fas-ligand impairs its distribution between cellular membranes, and attenuates a Fas-ligand-induced cytotoxicity. These results demonstrate that the interaction of Fas-ligand and caveolin-1 represents a molecular basis for Fas-ligand translocation to rafts, and the subsequent induction of Fas-ligand-dependent cell death. A possibility of a similar association between other TNF family members and caveolin-1 is discussed.

  10. Analytical Interference in Serum Iron Determination Reveals Iron Versus Gadolinium Transmetallation With Linear Gadolinium-Based Contrast Agents

    PubMed Central

    Fretellier, Nathalie; Poteau, Nathalie; Factor, Cécile; Mayer, Jean-François; Medina, Christelle; Port, Marc; Idée, Jean-Marc; Corot, Claire

    2014-01-01

    Objectives The purposes of this study were to evaluate the risk for analytical interference with gadolinium-based contrast agents (GBCAs) for the colorimetric measurement of serum iron (Fe3+) and to investigate the mechanisms involved. Materials and Methods Rat serum was spiked with several concentrations of all molecular categories of GBCAs, ligands, or “free” soluble gadolinium (Gd3+). Serum iron concentration was determined by 2 different colorimetric methods at pH 4.0 (with a Vitros DT60 analyzer or a Cobas Integra 400 analyzer). Secondly, the cause of interference was investigated by (a) adding free soluble Gd3+ or Mn2+ to serum in the presence of gadobenic acid or gadodiamide and (b) electrospray ionization mass spectrometry. Results Spurious decrease in serum Fe3+ concentration was observed with all linear GBCAs (only with the Vitros DT60 technique occurring at pH 4.0) but not with macrocyclic GBCAs or with free soluble Gd3+. Spurious hyposideremia was also observed with the free ligands present in the pharmaceutical solutions of the linear GBCAs gadopentetic acid and gadodiamide (ie, diethylene triamine pentaacetic acid and calcium-diethylene triamine pentaacetic acid bismethylamide, respectively), suggesting the formation of Fe-ligand chelate. Gadobenic acid-induced interference was blocked in a concentration-dependent fashion by adding a free soluble Gd3+ salt. Conversely, Mn2+, which has a lower affinity than Gd3+ and Fe3+ for the ligand of gadobenic acid (ie, benzyloxypropionic diethylenetriamine tetraacetic acid), was less effective (interference was only partially blocked), suggesting an Fe3+ versus Gd3+ transmetallation phenomenon at pH 4.0. Similar results were observed with gadodiamide. Mass spectrometry detected the formation of Fe-ligand with all linear GBCAs tested in the presence of Fe3+ and the disappearance of Fe-ligand after the addition of free soluble Gd3+. No Fe-ligand chelate was found in the case of the macrocyclic GBCA gadoteric

  11. Oncogenic BRAFV600E drives expression of MGL ligands in the colorectal cancer cell line HT29 through N-acetylgalactosamine-transferase 3.

    PubMed

    Sahasrabudhe, Neha M; Lenos, Kristiaan; van der Horst, Joost C; Rodríguez, Ernesto; van Vliet, Sandra J

    2018-06-27

    Colorectal cancer is the third most common cancer type worldwide. It is characterized by a high expression of aberrantly glycosylated ligands, such as the Tn antigen (GalNAcα1-Ser/Thr), which is a major ligand for the C-type lectin macrophage galactose-type lectin (MGL). We have previously determined that a high level of MGL ligands in colorectal tumors is associated with lower disease-free survival in patients with late stage disease, which we could attribute to the presence of oncogenic BRAFV600E mutations. Here we aimed to elucidate the downstream pathway of BRAFV600E governing high MGL ligand and Tn antigen expression. We focused on glycosylation-related enzymes involved in the synthesis or elongation of Tn antigen, N-acetylgalactosamine-transferases (GALNTs) and C1GalT1/COSMC, respectively. Both the activity and expression of C1GalT1 and COSMC were unrelated to the BRAF mutational status. In contrast, GALNT3, GALNT7 and GALNT12 were increased in colorectal cancer cells harboring the BRAFV600E mutation. Through CRISPR-Cas9 gene knockouts we could establish that GALNT3 increased MGL ligand synthesis in the HT29 cell line, while GALNT7 and GALNT12 appeared to have redundant roles. Together our results highlight a novel mechanistic pathway connecting BRAFV600E to aberrant glycosylation in colorectal cancer through GALNT3.

  12. Molecualr-scale multicoordinating ligands for coating luminescent QDs and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhan, Naiqian

    Colloidal semiconductor quantum dots (QDs) are inorganic nanocrystals that possess several unique photophysical properties, including tunable narrow emission and remarkable photo- and chemical stability. They have large surface area, and thus can be decorated with large numbers and a variety of molecular vectors. These properties combined offer a potentially superior alternative to traditional organic fluorophore for advanced applications in bio-imaging and bio-sensing. Herein, our effort has centered on developing a series of metal coordinating ligands with controllable structures to modify the QD surfaces and construct biocompatible nanocrystals. The ligand architecture accounts for several factors: (i) variable coordination number, (ii) nature of the hydrophilic moiety, polyethylene glycol (PEG) or zwitterion, and (iii) versatility of end-reactive groups including amine, azide, carboxylic acid and aldehyde. The ligand design is combined with a newly developed photoligation strategy to promote the dispersion of luminescent QDs in buffer media. The dissertation is organized in six chapters: In chapter 1, we provide a brief introduction of the basic photophysical properties of QDs and the synthesis history for growing high quality semiconductor nanocrystals. We also present some of the most effective methods reported to date to prepare aqueous QD dispersions, discuss the effective chemical coupling strategies for conjugating biomolecules, and review the recent literatures that have used QD-bioconjugates for imaging and sensing purposes. In Chapter 2, we describe a novel photoligation strategy to promote the transfer of luminescent QDs from hydrophobic to hydrophilic media using lipic acid (LA)-based ligands. We also discusse the experimental conditions, mechanismfor in-situ ligand exchange and the generosity of the method towards the diverse functionality while maintaining the optical properties of the nanocrystals. In chapter 3, we present the design and synthesis

  13. Ligand-hole localization in oxides with unusual valence Fe

    PubMed Central

    Chen, Wei-Tin; Saito, Takashi; Hayashi, Naoaki; Takano, Mikio; Shimakawa, Yuichi

    2012-01-01

    Unusual high-valence states of iron are stabilized in a few oxides. A-site-ordered perovskite-structure oxides contain such iron cations and exhibit distinct electronic behaviors at low temperatures, e.g. charge disproportionation (4Fe4+ → 2Fe3+ + 2Fe5+) in CaCu3Fe4O12 and intersite charge transfer (3Cu2+ + 4Fe3.75+ → 3Cu3+ + 4Fe3+) in LaCu3Fe4O12. Here we report the synthesis of solid solutions of CaCu3Fe4O12 and LaCu3Fe4O12 and explain how the instabilities of their unusual valence states of iron are relieved. Although these behaviors look completely different from each other in simple ionic models, they can both be explained by the localization of ligand holes, which are produced by the strong hybridization of iron d and oxygen p orbitals in oxides. The localization behavior in the charge disproportionation of CaCu3Fe4O12 is regarded as charge ordering of the ligand holes, and that in the intersite charge transfer of LaCu3Fe4O12 is regarded as a Mott transition of the ligand holes. PMID:22690318

  14. A ligand-directed divergent catalytic approach to establish structural and functional scaffold diversity

    NASA Astrophysics Data System (ADS)

    Lee, Yen-Chun; Patil, Sumersing; Golz, Christopher; Strohmann, Carsten; Ziegler, Slava; Kumar, Kamal; Waldmann, Herbert

    2017-02-01

    The selective transformation of different starting materials by different metal catalysts under individually optimized reaction conditions to structurally different intermediates and products is a powerful approach to generate diverse molecular scaffolds. In a more unified albeit synthetically challenging strategy, common starting materials would be exposed to a common metal catalysis, leading to a common intermediate and giving rise to different scaffolds by tuning the reactivity of the metal catalyst through different ligands. Herein we present a ligand-directed synthesis approach for the gold(I)-catalysed cycloisomerization of oxindole-derived 1,6-enynes that affords distinct molecular scaffolds following different catalytic reaction pathways. Varying electronic properties and the steric demand of the gold(I) ligands steers the fate of a common intermediary gold carbene to selectively form spirooxindoles, quinolones or df-oxindoles. Investigation of a synthesized compound collection in cell-based assays delivers structurally novel, selective modulators of the Hedgehog and Wnt signalling pathways, autophagy and of cellular proliferation.

  15. γ-Sultam-cored N,N-ligands in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation of aryl ketones.

    PubMed

    Rast, Slavko; Modec, Barbara; Stephan, Michel; Mohar, Barbara

    2016-02-14

    The synthesis of new enantiopure syn- and anti-3-(α-aminobenzyl)-benzo-γ-sultam ligands 6 and their application in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation (ATH) of ketones using formic acid/triethylamine is described. In particular, benzo-fused cyclic ketones afforded excellent enantioselectivities in reasonable time employing a low loading of the syn ligand-containing catalyst. A never-before-seen dynamic kinetic resolution (DKR) during reduction of a γ-keto carboxylic ester (S7) derivative of 1-indanone is realized leading as well to excellent induction.

  16. Microwave-Mediated Synthesis of Bulky Lanthanide Porphyrin-Phthalocyanine Triple-Deckers: Electrochemical and Magnetic Properties.

    PubMed

    Jin, Hong-Guang; Jiang, Xiaoqin; Kühne, Irina A; Clair, Sylvain; Monnier, Valérie; Chendo, Christophe; Novitchi, Ghenadie; Powell, Annie K; Kadish, Karl M; Balaban, Teodor Silviu

    2017-05-01

    Five heteroleptic lanthanide porphyrin-bis-phthalocyanine triple-decker complexes with bulky peripheral groups were prepared via microwave-assisted synthesis and characterized in terms of their spectroscopic, electrochemical, and magnetic properties. These compounds, which were easily obtained under our preparative conditions, would normally not be accessible in large quantities using conventional synthetic methods, as a result of the low yield resulting from steric congestion of bulky groups on the periphery of the phthalocyanine and porphyrin ligands. The electrochemically investigated triple-decker derivatives undergo four reversible one-electron oxidations and three reversible one-electron reductions. The sites of oxidation and reduction were assigned on the basis of redox potentials and UV-vis spectral changes during electron-transfer processes monitored by thin-layer spectroelectrochemistry, in conjunction with assignments of electronic absorption bands of the neutral compounds. Magnetic susceptibility measurements on two derivatives containing Tb III and Dy III metal ions reveal the presence of ferromagnetic interactions, probably resulting from magnetic dipolar interactions. The Tb III derivative shows SMM behavior under an applied field of 0.1 T, where the direct and Orbach process can be determined, resulting in an energy barrier of U eff = 132.0 K. However, Cole-Cole plots reveal the presence of two relaxation processes, the second of which takes place at higher frequencies, with the data conforming to a 1/t ∝ T 7 relation, thus suggesting that it can be assigned to a Raman process. Attempts were made to form two-dimensional (2D) self-assembled networks on a highly oriented pyrolytic graphite (HOPG) surface but were unsuccessful due to bulky peripheral groups on the two Pc macrocycles.

  17. Mixed-ligand Ru(II) complexes with 2,2'-bipyridine and aryldiazo-beta-diketonato auxillary ligands: synthesis, physico-chemical study and antitumour properties.

    PubMed

    Mishra, Lallan; Yadaw, Ajay K; Bhattacharya, Subrato; Dubey, Santosh K

    2005-05-01

    The complexes of Ru(II)-2,2'-bipyridyl with substituted diazopentane-2,4-diones (L1H-L5H) were synthesized and characterized by elemental analyses, conductance, FAB (fast atom bombardment) mass and spectral (IR, UV/Vis (UV/visible), NMR) studies. Molecular geometry optimization of the complexes was also made. None of the complexes luminesce. However, facilitated oxidation of Ru(II) to Ru(III) was evidenced from their lower reduction potential data. The ligands and their complexes were tested for their antitumour activity against a variety of tumour cell lines. Though activity is found to vary with the type of tumour cell lines used, yet complex 5 with naphtyldiazopentane-2,4-dione as co-ligand was found to be a potential compound as it showed in general significant activity against all cell lines studied.

  18. AutoSite: an automated approach for pseudo-ligands prediction—from ligand-binding sites identification to predicting key ligand atoms

    PubMed Central

    Ravindranath, Pradeep Anand; Sanner, Michel F.

    2016-01-01

    Motivation: The identification of ligand-binding sites from a protein structure facilitates computational drug design and optimization, and protein function assignment. We introduce AutoSite: an efficient software tool for identifying ligand-binding sites and predicting pseudo ligand corresponding to each binding site identified. Binding sites are reported as clusters of 3D points called fills in which every point is labelled as hydrophobic or as hydrogen bond donor or acceptor. From these fills AutoSite derives feature points: a set of putative positions of hydrophobic-, and hydrogen-bond forming ligand atoms. Results: We show that AutoSite identifies ligand-binding sites with higher accuracy than other leading methods, and produces fills that better matches the ligand shape and properties, than the fills obtained with a software program with similar capabilities, AutoLigand. In addition, we demonstrate that for the Astex Diverse Set, the feature points identify 79% of hydrophobic ligand atoms, and 81% and 62% of the hydrogen acceptor and donor hydrogen ligand atoms interacting with the receptor, and predict 81.2% of water molecules mediating interactions between ligand and receptor. Finally, we illustrate potential uses of the predicted feature points in the context of lead optimization in drug discovery projects. Availability and Implementation: http://adfr.scripps.edu/AutoDockFR/autosite.html Contact: sanner@scripps.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27354702

  19. Synthesis of a pH-Sensitive Hetero[4]Rotaxane Molecular Machine that Combines [c2]Daisy and [2]Rotaxane Arrangements.

    PubMed

    Waelès, Philip; Riss-Yaw, Benjamin; Coutrot, Frédéric

    2016-05-10

    The synthesis of a novel pH-sensitive hetero[4]rotaxane molecular machine through a self-sorting strategy is reported. The original tetra-interlocked molecular architecture combines a [c2]daisy chain scaffold linked to two [2]rotaxane units. Actuation of the system through pH variation is possible thanks to the specific interactions of the dibenzo-24-crown-8 (DB24C8) macrocycles for ammonium, anilinium, and triazolium molecular stations. Selective deprotonation of the anilinium moieties triggers shuttling of the unsubstituted DB24C8 along the [2]rotaxane units. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance.

    PubMed

    Rodriguez-Vivas, Roger I; Jonsson, Nicholas N; Bhushan, Chandra

    2018-01-01

    Infestations with the cattle tick, Rhipicephalus microplus, constitute the most important ectoparasite problem for cattle production in tropical and subtropical regions worldwide, resulting in major economic losses. The control of R. microplus is mostly based on the use of conventional acaricides and macrocyclic lactones. However, the intensive use of such compounds has resulted in tick populations that exhibit resistance to all major acaricide chemical classes. Consequently, there is a need for the development of alternative approaches, possibly including the use of animal husbandry practices, synergized pesticides, rotation of acaricides, pesticide mixture formulations, manual removal of ticks, selection for host resistance, nutritional management, release of sterile male hybrids, environmental management, plant species that are unfavourable to ticks, pasture management, plant extracts, essential oils and vaccination. Integrated tick management consists of the systematic combination of at least two control technologies aiming to reduce selection pressure in favour of acaricide-resistant individuals, while maintaining adequate levels of animal production. The purpose of this paper is to present a current review on conventional acaricide and macrocyclic lactone resistance for better understanding and control of resistant ticks with particular emphasis on R. microplus on cattle.